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ABSTRACT 
 

The cost of intensive care is huge, which necessitates careful thought regarding transfer 

of patients to lower-level ward care. Discharging a patient too early carries the risk of 

inadequate monitoring and care, often leading to readmission to the ICU. This risk can be 

mitigated by state-of-the-art machine learning methods. Limited research was carried out 

on readmission prediction tasks and the methods used were unable to attain good results. 

This study focuses on developing an ICURP (Intensive Care Unit Readmission 

Prediction) framework that can be used for the effective prediction of unplanned ICU 

readmission within 30 days. Particularly, the framework deals with the missing values 

(via the last observation carried forward technique) and data imbalance (via the Over- 

sampling Technique) problems. Our approach incorporates temporal features from chart 

events data with low-dimensional embeddings of medical concepts such as diseases 

coded using the ICD-9 code. Convolutional neural network (CNN) is used to fit three 

alternative CNN models using last 24-hour, 48-hour and 72-hour ICU stay data. Models 

are trained and validated using the Medical Information Mart for Intensive Care (MIMIC- 

III) dataset. To evaluate the effectiveness of our proposed methods, we conducted testing 

on the unseen data of the MIMIC-III dataset. The model trained using the last 48-hour 

ICU data has outperformed other models and reached an area under the curve of receiver 

operating characteristic (AUC-ROC) of 0.88. To establish a comparison, two Recurrent 

Neural Network (RNN) based models Long-short-term-memory (LSTM) Gated 

Recurrent Unit (GRU) and four conventional models (SVM, LR, NB, KNN) are trained 

using ICU data. The results suggested that our ICURP framework has the potential to 

surpass the existing standard of ICU discharge by accurately predicting readmissions up 

to 30 days of discharge time using a reduced features set. 

Key Words: readmission prediction, intensive care unit (ICU), convolutional neural 

network (CNN), machine learning (ML), time series analysis. 
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 Introduction 

Chapter 1 

INTRODUCTION 

 

Intensive care units (ICUs) deliver the most specialized care within hospital settings, 

catering to patients with severe medical conditions. Due to the limited ICU resources, 

only those patients are kept under ICU treatment that needed it badly. Afterwards, 

patients are discharged from ICU and transferred to low level wards [1]. Unplanned ICU 

readmission refers to situations where a patient is discharged from the ICU to a non- 

critical care hospital ward but later returns to the ICU on an unplanned basis. This 

situation is observed in approximately 4% to 11% of ICU patients and is linked to a 

significant 6 to 7 fold increase in the risk of mortality [2]. The readmission of patients to 

the ICU poses other financial risks as well as risks to morbidity and mortality [3, 4]. 

Discharging patients from ICU too soon may potentially subject them to the risks of 

inadequate treatment, ultimately leading to mortality [5]. According to reports, the 

mortality rates for patients who are readmitted vary, spanning from around 26% to 58%. 

Shockingly, developed countries hospitals also face high rates of readmission to the ICU, 

with approximately 10% of patients being readmitted during their hospital stay. 

Furthermore, there is an alarming upward trend in the United States, where ICU 

readmission rates have increased from 4.6% in 1989 to 6.4% in 2003 [6, 7]. 

To resolve this problem, the Affordable Care Act (ACA) developed the Hospital 

Readmissions Reduction Program in 2010. This program imposed the penalties on 

hospitals that have higher than expected readmission rates within 30 days [8]. Since the 

implementation of the Hospital Readmissions Reduction Program on October 1, 2012, 

hospitals have faced significant financial penalties which amounted nearly $2.5 billion 

for readmissions, with an assessed $564 million in financial year 2018 alone [9]. 

According to an estimate, 18% to 22% of unplanned readmissions are avoidable [10]. In 

order to minimize preventable readmissions, hospitals must identify patients who are at 

an increased risk of ICU readmission [11]. Decisions regarding ICU discharge heavily 

rely on subjective clinical judgment, making them susceptible to human errors. Factors 
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like hospital crowding, staff availability, and caregiver fatigue, seams unrelated to the 

patient's well-being, can also impact the timing of discharge. Consequently, the lack of 

standardized and patient-centered criteria in ICU discharge decisions raises concerns 

about the accuracy of these decisions. 

Utilizing a machine learning model can enhance the decision-making process during 

discharge. This approach alleviates the cognitive burden placed on caregivers by 

providing them with objective and standardized risk assessments. ML models can be 

constructed using numerous datasets, including electronic health records (EHRs), 

administrative claims, and insurance claims. An overview of 26 distinct prediction 

models for readmission is presented in a systematic review of readmission prediction in 

[12]. Out of these 26 models, 23 models utilized electronic health records (EHRs) as the 

primary data. 

Despite the existence of several studies aimed at finding high risk readmission patients, 

we still face challenges in achieving a practical solution. These studies reveal multiple 

limitations. Few predictive models have a limited scope, as they solely focus on specific 

diseases rather than providing a generalized solution. For example, certain studies 

targeted heart failure [13-16], diabetes [17], HIV [18], or kidney transplants [19]. None 

of the existing models have been able to achieve a satisfactory level performance in 

predicting ICU readmissions [20]. Majority of studies haven't used sequential data, and 

information loss occurs if time series nature of data is not used [21]. 

This study focuses on developing an ICURP (Intensive Care Unit Readmission 

Prediction) framework that can be used for unplanned ICU readmission prediction, 

leveraging advanced deep learning techniques with the time series nature of the data. Our 

approach incorporates temporal features from chart events data with low-dimensional 

embeddings of medical concepts such as diseases coded using the ICD-9 code. 

Convolutional neural network (CNN) is used to fit three alternative CNN models using 

last 24-hour, 48-hour and 72-hour ICU stay data. The embeddings are used to reduce the 

sparse nature of dataset [22]. The proposed ICURP framework is trained and validated 

using the MIMIC-III dataset [23], which comprises a vast amount of information over 

40,000 patients, including 60,000 ICU admission records and spanning over 10-year 

period. For evaluating the effectiveness of ICURP, we conducted testing on the unseen 
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data of same MIMIC-III dataset. The model trained using last 48-hour ICU data has 

outperformed other models and reached an area under the curve of receiver operating 

characteristic (AUC-ROC) of 0.88. Our hypothesis suggests that our ICURP framework 

has the potential to surpass the existing standard of ICU discharge by accurately 

predicting readmissions up to 30 days from the discharge time. Block diagram of ICURP 

framework is shown in Figure 1.1. 

 

Figure 1. 1: ICURP (Intensive Care Unit Readmission Prediction) Framework 

 Motivation 

 
Modern ICUs are best at providing constant monitoring of critically ill patients. These 

patients are liable to many complications which in turn will impact morbidity and 

mortality. The environment in ICU demands a significant staff-to-patient ratio and 

generates a substantial amount of data. The interpretation of real-time data and decision- 

making poses a terrible challenge for clinicians. However, the application of ML 

techniques in ICUs has shown promising advancements in detecting high-risk events at 

an early stage. By leveraging ML techniques, clinicians can better analyze and interpret 

ICU data, enabling more timely and informed decision-making. These advancements are 

made possible by the increasing computational power and the availability of openly 

accessible datasets like MIMIC-III [24]. 

The cost of intensive care is huge, which necessitates careful thought of when patients 

should be transferred to lower-level ward care. This decision is crucial to optimize the 
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allocation of resources. However, discharging a patient from the ICU too early carries the 

potential risk of inadequate monitoring and care, often leading to readmission to the ICU. 

Therefore, it is important to strike a balance in determining the appropriate timing for 

step-down, ensuring that patients receive optimal care while minimizing the likelihood of 

readmission. 

 Problem Statement 

 
Accurate and timely prediction of readmission has much significance for ICU patients. 

During literature survey, we came to the conclusion that limited research carried on 

readmission prediction task and the methods used were unable to attain good results. The 

review also emphasized the usage of clinical notes and time series data as these are 

critical in decision making. The purpose of this research is to explore latest learning 

techniques to improve prediction performance. This will focus on identifying critical 

factors associated with patients ICU readmission and develop a predictive framework 

using advanced data mining and machine learning techniques. 

 Aims and Objectives 

 
Major objectives of this research are as follow: 

 Review and comparison of recent developments for patients in ICU. Reviewing the 

latest techniques to determine when a patient should be discharged or transferred to 

low level ward.

 To study all the factors involved in ICU readmission.

 To perform comparison between the conventional machine learning techniques and 

the latest deep learning techniques available.

 To develop a 30 days ICU readmission predictive framework which outperform other 

state-of-the-art techniques by leveraging the ML techniques so that clinicians can 

better analyze and interpret ICU data, enabling more timely and informed decision- 

making.

 Particularly handling data imbalance and missing values through over-sampling and 

last observation carried forward technique respectively. Moreover, using optimum
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features to reduce computational complexity. 

 The research also focuses on the sequential and non-sequential way of handling 

features and analyzes the impact of combining different features like chart events data 

with ICD-9 diagnosis embeddings. By using the advanced ML architectures trained 

on MIMIC-III dataset, the implementation of our approach aspires to optimize 

resource allocation, improve patient outcomes, and enhance the overall efficiency of 

ICU care.

 Structure of Thesis 

 
This work is structured as follows: 

Chapter 2 covers the background detail of topic and gives review of the literature with 

respect to the researchers’ momentous work done in recent past years for the ICU 

readmission prediction task. 

Chapter 3 covers the proposed methodology in detail. It introduces database first and 

includes step wise explanation of all techniques involved for the development of 

prediction framework. 

Chapter 4 covers all the experiments starting from conventional techniques to the latest 

techniques. Results of all experiments are discussed in detail with the figures plots and 

tables. 

Chapter 5 gives the comparative analysis for results of all experiments performed in 

previous section. Moreover, it also compares the results with the state-of-the-art. 

Chapter 6 concludes the thesis and discloses future scope of this research. 
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Chapter 2 

PRELIMINARIES & LITERATURE REVIEW 

 Background 

 
Intensive care units: An intensive care unit is a department in any hospital that is 

specially allocated to provide intensive medication and care. The name ICU also termed 

as critical care unit (CCU) or intensive treatment unit (ITU). To ensure patients' normal 

body functioning, patients at higher risk of life threat or having severe injuries are kept 

under constant monitoring. ICUs are also different from general hospital wards as they 

carry advanced medical resources and equipment which are not routinely available in 

other hospital wards. Moreover, they also require a higher trained staff including 

physicians, therapist and nurses who got training in caring critically ill patients [1]. 

Patients with unstable conditions can be referred directly to ICU from ward or from 

emergency department. Those patients are also referred who have gone through critical 

surgery and need intensive care afterwards. Hospitals are equipped with a range of 

specialized ICUs adapted to meet special patient conditions or medical needs. Few of 

them are: Coronary Care Unit (CCU), Medical Intensive Care Unit (MICU), Cardiac 

Surgery Recovery Unit (CSRU), Surgical Intensive Care Unit (SICU) and Trauma 

Surgical Intensive Care Unit (TSICU). Depending on the hospital's demography and 

financial conditions, a hospital can allocate percentage of total beds for intensive care. As 

intensive care is expensive, United States hospitals allocate up to 20% of total beds as 

intensive-care beds. Whereas, hospitals in United Kingdom allocate only up to 2% of 

total beds as intensive-care beds [25]. 

Machine learning techniques: Machine learning is a sub field of artificial intelligence 

which introduced the concept of learning from data, enabling systems to make informed 

decisions according to their learning. Before this concept, systems were performing 

according to what they were programmed for. Machine learning has three main types: 

supervised learning, unsupervised learning and reinforcement learning [26]. These are 

explained below along with other types as well: 



7  

 Supervised Learning: The ML model is trained on labeled data, where each data 

sample is coupled with a target or outcome. The model learns from the input features 

and consequent target values to make predictions on unseen data. Classification and 

regression problems are solved through supervised leaning techniques.

 Unsupervised Learning: This technique involves training the model on data which is 

not labeled and the algorithm identifies patterns and structures within the data without 

any defined target label. Clustering, anomaly detection, and dimensionality reduction 

problems are solved through unsupervised learning techniques.

 Semi-supervised Learning: It combines both labeled and unlabeled data for training. 

It leverages the limited labeled data to guide the model's learning from the larger pool 

of unlabeled data.

 Reinforcement Learning: This technique employs training an agent to interact with an 

environment and learn optimal actions. The agent receives rewards or feedback based 

on its actions.

 Deep Learning: It is a subfield of machine learning that uses artificial neural 

networks, specifically deep neural networks with multiple layers. These networks can 

automatically learn hierarchical representations of data and deep features. The 

automation of feature learning has made deep leaning achieve highest performance on 

solving complex problems. However, deep learning demands systems with high 

computational power. Convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs) are specialized types of deep neural networks (DNNs).

Each machine learning technique has its pros and cons, making them appropriate for 

different types of problems. The choice of technique varies depending on the nature of 

the data, the available resources, and the specific goals of the task. 

Time series data: Time series data refers to a series of data points collected over 

consecutive time intervals. It is the representation of how a variable or a set of variables 

change over time. In time series data, the order and time interval between data points are 

important, as they capture the temporal dependencies and patterns present in the data. 

Time series data can be observed in various domains like finance, economics, weather 

forecasting and stock market analysis [27]. Time series data has the following 

components: 
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 Temporal Order: The data points are arranged in sequential order, with each 

observation occurring at a specific time or time interval.

 Time Dependence: Dependency lies between adjacent data points. The value at a 

given time point can be influenced by past values.

 Seasonality: Exhibits recurring patterns over fixed intervals of time.

 Trend: Data may have a long-term upward or downward movement known as a trend.

 Irregularity and Noise: Due to measurement errors or external factors, data can be 

subject to random fluctuations, irregularities, and noise.

Time series data can be analyzed though following techniques: 

 Descriptive Analysis: Examination through visual plots, and charts to identify 

patterns and trends.

 Segmentation: Separating the time series into its components, such as trend and, 

seasonality.

 Statistical Models: Application of statistical models like autoregressive integrated 

moving average (ARIMA), or state space models, and exponential smoothing models 

to predict the behavior.

 Classification: Using machine learning models, such as CNNs, RNNs, LSTM, or 

GBMs to learn complex patterns and make predictions while training models on 

historical data.

 Forecasting: Forecast future values, trends and behavior of the time series.

These techniques help to analyze time series data to provide valuable insights and support 

decision-making. 

Readmission prediction: ICU hosts patients who need continues monitoring and care 

because of their critical health condition. Since resources in ICU are limited and costly, 

patients must be transferred to low level wards when their condition is relatively stable 

and are able to get regular treatment in other hospital wards. This discharge or down- 

transfer-time from ICU is very critical as if a patient is down-transferred early then 

patient's condition can deteriorate and he can return back to ICU. This scenario can cause 

a patient to stay longer in ICU and utilize more resources contrary to previous stay. 

While, if a patient would be discharged late, someone else can be deprived of ICU 

treatment. So, researchers are finding and optimizing automated solutions to predict when 
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a patient should be discharged from ICU. Some researchers have focused patients' 

readmission within 30 days of their discharge, others on within 2 days of discharge etc. 

Our research is also targeted on the same problem of predicting patient ICU readmission 

within 30 days. It means if a visit is followed by another visit within 30 days or less, then 

the untimely discharge of the patient from the hospital based on earlier visit instigated the 

readmission. In addition, if a patient dies within 30 days from discharge date, then that 

visit is also labeled as readmission. Based on patient’s flow in and out of ICU, 

readmission cases are depicted in [28] and we have shown the same in Figure 2.1. 

 

Figure 2. 1:Readmission Cases Scenarios 

 Literature Review 

 
The main objective of this chapter is to extract and structure research findings in 

healthcare employing machine learning approaches, followed by the identification of 

potential avenues for future research. As this carry great importance and have prospective 

impact, we aimed to address the following review questions: 

 Understanding the readmission phenomenon and its negative impact on hospital 

facilities.

 How are various healthcare data types represented as input for ML methods?

 How do time series data impact the predictive performance of model?

 Which ML models are most effective?

 Is there any impact of diagnosis specific readmission cases on model performance?
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To answer these questions, we identified core characteristics including database used, 

input features, modeling methodology, nature of data (time series or other), and 

benchmark technique from each study. Table 2.1 elaborates these core characteristics one 

by one. The research papers have been critically reviewed on the basis of these mentioned 

characteristics. The survey includes papers based on both public and private datasets. Detail 

analysis of all studies will be given in 'Discussion' section of this chapter. This survey 

focuses on the papers published from major publishers like Elsevier, Springer, IEEE, 

Science Direct etc. from 2018 to 2023. 

Table 2. 1: Core Characteristics and their Description 
 

Feature Description 

Approach Conventional ML model or Deep Learning model 

Modeling How features are modeled i.e., sequential or non-sequential 

modeling 

Year Determines the year in which study got published 

Database Determines the source of data like EHR, MIMIC etc. 

Diagnosis specific 

readmission 

Determines whether the focus is on studying patients having 

certain disease like heart failure patients etc. 

Nature of data Time series or other (static data) 

Readmission after days 

discharge 

Determines the days considered after patient's discharge 

ML methodology Models or architectures used for prediction task 

Benchmark State of the art techniques which outperformed 

 Classification of Research Articles 

 
To present the summaries of all studies here, the articles included were reviewed and 

classified into two categories as shown in Figure 2.2. Conventional Models incorporates 

traditional modeling way which is typically composed of two steps, 1) feature 

engineering and 2) model building. Feature engineering extracts features from data that 

are good for the model building. Contrary to this method, Deep learning models supports 

an end-to-end learning mechanism by integrating the feature engineering process 

implicitly in the learning pipeline [29]. 
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Figure 2. 2: Classification of Research Articles 

 Conventional ML Models

In 2018, Rojas, J.C., et al. [30] developed an ICU readmission prediction model using 

ML techniques and compared it to previously published algorithms. From, University of 

Chicago, 24,885 ICU transfers to the wards were included; with 60% in the training and 

40% in the internal validation. For external validation; 42,303 ICU admissions from 

MIMIC-III were considered. Patients' considered features were: nursing assessments, 

Ninth Revision codes from prior admissions, ICD, medications, ICU interventions, 

diagnostic tests, vital signs, and laboratory results. These were used as predictor variables 

and fed in gradient-boosted model. The Stability and Workload Index for Transfer score 

and the Modified EarlyWarning Score were also used to evaluate the accuracy. AUROC 

score of 0.76 achieved from ML derived model which is significantly better than the 

Stability and Workload Index for Transfer score and Modified Early Warning Score. 

In 2018, Pakbin, A., et al. [28] have worked on identification of readmission risks for 

patients who got discharged from ICU within 24-hours, 72-hours, 7-days, 30-days, and 

also for the bounceback readmissions(readmission in the same hospital admission). 

MIMIC-III database is being used here and 58 features from the Chartevents, 2,784 

features from Labevents and demographic data were extracted. Mean, standard deviation, 

minimum, maximum, last measurements, and the count was used to represent time series 

data. Due to the limit set on number of days, different sample size sets got generated like 

for 24 hrs 998 samples, 72 hrs 2206 samples, 7 days 3559 samples, 30 days 6235 samples 

and for bounceback they got 3637 samples. Data was split with 80, 20 ratios for training 

and testing two models Logistic Regression and XGBoost and the results validated using 
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stratified 5-fold cross validation. XGBoost has performed better than Logistic Regression 

with AUROC of 0.76. 

In 2019, McWilliams, C.J., et al. [31] used two datasets which were created using 

historical data; 7592 samples from the MIMIC-III and 1870 samples from the Bristol 

General Intensive Care were taken. A RF and a LR that had been trained using multiple 

source cross-validation, both outperformed the initial criteria and generalized well across 

cohorts. The classifiers had good agreement on the characteristics that were most 

indicative of readiness for discharge. 

In 2019, Min, X., B. Yu, and F. Wang [29] realized the need to predict the 30 days 

readmission risk for Chronic Obstructive Pulmonary Disease (COPD) patients because of 

prevailing chronic pulmonary condition. Medical claims dataset containing 111,992 

patients' records from the Geisinger Health System was used to evaluate both types of 

models. These patients were monitored from January 2004 to September 2015. 

Knowledge driven and data driven features are extracted from dataset during feature 

engineering process and these are fed in five models for performance evaluation. Models 

include Logistic regression and its variants, Random Forest, Support Vector Machine, 

Gradient Boosting Decision Tree and Multi-Layer Perceptron. While CNN, RNN, LSTM 

and GRU are evaluated on deep features. By combining both features, GBDT 

outperformed with AUROC score of 0.653 on one year claims history dataset. 

In 2019, Li, Z., et al. [32] have determined the likelihood of ICU readmission by creating 

data-driven predictive algorithms. NLP techniques were used to carefully depict the 

discharge report for each hospital admission from MIMIC-III dataset. Bag-of-words 

(BoW) was used as the vectorization technique and Unified Medical Language System 

(UMLS) was used to standardize inconsistent nature of discharge summaries by uniquely 

identifying medical concepts (CUIs). Hence, two features set 1) Bag-of-Words and 2) 

Bag-of-CUIs were generated. Five ML classifiers (logistic regression, support vector 

machine, random forest, gradient boost Decision trees, and Naive Bayes) were trained on 

the two feature sets separately to perform prediction task. Logistic regression trained on 

Bag-of-CUIs had the best AUC score of 0.748 among other classifiers. 

In 2020, Assaf, R. and R. Jayousi [33] predicted 30-day hospital readmission using 

multiple conventional ML algorithms like Multi-Layer Perceptron, Support Vector 
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Machine, Logistic Regression and, Random Forest. MIMIC-III dataset was used to train 

and test all above mentioned algorithms. Authors didn't consider ICU transfers but 

instead targeted only the discharge data from hospital which resulted in 3,323 positive 

samples and total dataset comprised of 6642 samples. Time series measurements for chart 

events vital signs data (Respiratory rate, Glucose level, Heart rate, Systolic blood 

pressure, Diastolic blood pressure, Body temperature, Weight), ICD codes for diagnosis 

and gender from the demographics data are the main extracted features. For each visit, 

min, max and mean values computed for chart event features against all time available 

measurements since duration of these measurements is not mentioned; while embeddings 

for ICD-9 code were aggregated through mean value calculation. All features are 

concatenated and used to train and test all models. Author suggested Random Forest as 

the best model for prediction as it has performed well with 0.65 accuracy and 0.66 area 

under the curve score. 

In 2020, Liu, W., et al. [34] performed the 30-day readmission prediction task for patients 

hospitalised with acute myocardial infarction (AMI), congestive heart failure (HF), and 

pneumonia (PNA). In their study, they compared four prediction models for unplanned 

patient readmission using data from the Nationwide Readmissions Database (NRD). 

Three datasets related to each diagnosis are constructed to evaluate performance of four 

models i.e., Logistic Regression, eXtreme Gradient Boosting, ANN model using a feed- 

forward neural network and ANN model with deep structure. They demonstrate that the 

prediction task can be improved by combining ICD diagnosis and procedures codes 

embeddings from unsupervised Global Vector for Word Representations with artificial 

neural network classification models. In comparison to hierarchical logistic regression, 

proposed model raised the AUC for prediction of 30-day readmissions for AMI from 0.68 

to 0.72, HF from 0.60 to 0.64, and PNA from 0.63 to 0.68. 

In 2021, Moerschbacher, A. and Z. [35] have performed 30-day readmission prediction 

task on three different data types. MIMIC-III dataset is used to extract these different 

types to create three different datasets namely as structured, unstructured and combined 

dataset. Structured dataset consisted chart events, lab results, comorbidities and 

demographic information while unstructured dataset consisted discharge summaries from 

notes, and the combined dataset comprised both the structured and unstructured data. 
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Each admission is represented by min, max and average values from chart and lab events 

in structured data while a single note in unstructured data is represented by six different 

embeddings. The combined dataset is represented using equal number of features (50 

from each dataset) from both datasets, for this, principal component analysis is used to 

reduce the dimensionality of unstructured data. The experimented algorithms included 

LR, SVM, XGBOOST, FFNN and RF. The author concluded that using Bag-Of-Words 

embedding on unstructured dataset, the Logistic Regression model had achieved best 

results by gaining AUROC score of 0.757 and recall of 0.682. 

In 2022, Shi, K., et al. [36] investigated whether ML models can assess the likelihood of 

a 7-day ICU readmission upon discharge better than the existing benchmark, the Stability 

and Workload Index for Transfer (SWIFT) score. The data from Stanford Hospital (2009- 

2019) was used to train and validate the gradient boosting, random forest, support vector 

machine, and logistic regression models. The Beth Israel Deaconess Medical Centre 

(BIDMC) data (2008-2019) was used for external validation. Among the models 

mentioned above, Gradient Boosting had the best performance, with internal and external 

validation by obtaining F1-scores of 0.43 and 0.14 and AUROCs of 0.85 and 0.60, 

respectively. 

In 2022, Pishgar, M., et al. [16] carried research where a process of mining/deep learning 

method is proposed for predicting an unscheduled 30-day return of heart failure patients 

in ICU. With the help of the DREAM (Decay Replay Mining) algorithm, time 

information obtained. To further improve the prediction accuracy, demographic data and 

severity ratings at the time of admission were merged with the time information and fed 

to a neural network (NN) model. Furthermore, a number of ML algorithms were created 

as the baseline models for the comparison of the findings. MIMIC-III dataset is used with 

having 3411 heart failure patients. In comparison to the existing literature available, 

proposed model yielded an AUROC of 0.930, the precision of 0.886, sensitivity of 0.805, 

accuracy of 0.841, and F-score of 0.800 which clearly showed better performance than 

the existing literature results. The proposed approach models the time-related variables 

by incorporating the patients' medical history and shows improved outcome. 

In 2022, Orangi-Fard, N., A. Akhbardeh, and H. Sagreiya [37] employed text mining and 

ML on MIMIC-III to predict ICU 30-day readmission. Among the fifteen different types 
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of data available in noteevents, they only used discharge summaries. The Bag-of-Words 

approach is used from NLP to build a Document-Term-Matrix with 3000 features. These 

features were used as the input features to different models like support vector machines 

with the radial basis function kernel (SVM-RBF), quadratic discriminant analysis (QDA), 

adaptive boosting (AdaBoost), Ridge Regression, and least absolute shrinkage and 

selection operator (LASSO) for performance comparison. Models were trained and 

validated using 4000 and 6000 patients respectively. Using full feature set, the AUROC 

curve was 0.71, 0.68, 0.65, 0.69, and 0.65 respectively for SVM-RBF, AdaBoost, QDA, 

LASSO, and Ridge Regression. Performance of models got increased using SVM-RBF 

model feature selection process which resulted in only 825 features or words. Upon using 

these selected features, the AUROC curve was 0.74, 0.71, 0.69, 0.67, and 0.70 

respectively for SVM-RBF, Ridge Regression, AdaBoost, QDA, and LASSO. Summary 

of all the studies mentioned under this section in given is Table 2.2. 

 Deep Learning Models

In 2018, Rafi, P., A. Pakbin, and S.K. Pentyala [38] suggested using Interpretable Mimic 

Learning, a Knowledge-Distillation technique, to forecast 30-day ICU readmissions. This 

architecture consisted of a teacher model (LSTM) and a student model (XGBoost) where 

teacher model learns complex features and transfers the knowledge to student model 

which makes final predictions. This method allows combining the accuracy and 

sequential learning of deep models with the interpretability of basic models, transferring 

deep model (LSTM and then DNN) knowledge (features) to simple and understandable 

models (XGBoost). 

In 2018, Wang, H., et al. [39] done research where CNN is used for automatically 

extracting features from time series data, as well as categorical feature embedding, 

including demographics, hospitalization history, vital signs, and laboratory test. An MLP 

is given both statistical characteristics from feature embedding and learned features from 

CNN. To discourse the imbalance and skewness challenge, they trained MLP during 

prediction using a cost-sensitive formulation. Using two datasets from Barnes-Jewish 

Hospital, they validated their methodology. Using data from general hospital wards to 

predict 30-day readmissions, the proposed model's AUC was 0.70, which was 

significantly higher than all the baseline approaches. 
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Table 2. 2: Summary of Results using Conventional ML Models 

 

Year Author Dataset Technique 
Accuracy 

(ACC %) 
AUC (%) 

2022 [36] 
STARR Gradient Boosting 

Model (GBM) 

 ROC=0.85 

MIMIC-IV ROC=0.60 

 
2022 

 
[37] 

 
MIMIC-III 

SVM with the radial 

basis function kernel 

(RBF) 

  
ROC=0.74 

 
2022 

 
[16] 

 
MIMIC-III 

Neural Network and 

using Decay Replay 

Mining (DREAM) 

 
0.84 

 
ROC=0.93 

2021 [35] MIMIC-III 
Logistic Regression 

(LR) 

 
ROC=0.76 

 
2020 

 
[34] 

Nationwide 

Readmissions 

Database (NRD) 

Artificial Neural 

Network (ANN) 

  
ROC=0.72 

2020 [33] MIMIC-III Random Forest (RF) 0.65 ROC=0.66 

2019 [32] MIMIC-III 
NLP + Logistic 

Regression (LR) 

 
ROC=0.75 

 
2019 

 
[29] 

Geisinger Health 

System 

Gradient Boosting 

Decision Tree 

(GBDT) 

  
ROC=0.65 

 
2019 

 
[31] 

GICU & 

MIMIC-III 

Random Forest (RF) 

with extended feature 

set 

 
0.84 - 0.85 

ROC=0.86 

- 0.88 

2018 [28] MIMIC-III 
Extreme Gradient 

Boosting (XGBoost) 

 
ROC=0.76 

 
2018 

 
[30] 

University of 

Chicago dataset 

& MIMIC-III 

Gradient Boosted 

Machine (GBM) 

 
ROC=0.71 

– 0.78 
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In 2019, Lin, Y.-W., et al. [40] predicted 30-days ICU readmission using RNN based 

LSTM+CNN, CNN+LSTM, LSTM and CNN model architectures. Researchers have also 

trained multiple conventional ML algorithms like Support Vector Machine, Logistic 

Regression and, Random Forest etc. for comparison purposes. MIMIC-III dataset was 

used to train and test all above mentioned algorithms having 35,334 patients with 48,393 

ICU stays records after data preprocessing. Last 48 hours data before a patient is 

discharged or down-transfer is used for temporal features. 17 chart events features, 300 

dimensional embeddings for ICD codes for diagnosis and 4 demographics features are the 

main extracted data features used here. For training conventional models, basic statistical 

and advanced features are extracted from temporal data like mean, slope and intercept 

computation etc. Author suggested RNN based LSTM+CNN architecture as the best 

model for prediction as it has performed well with AUROC of 0.791 and a sensitivity rate 

of 0.742. 

In 2019, Ashfaq, A., et al. [41] predicted 30-day readmissions task for patients suffering 

from Congestive Heart Failure (CHF) to reduce readmissions. To predict unplanned 

readmission, they have taken over 7500 patients with CHF between 2012 and 2016 in 

Sweden. By using expert features and embeddings on clinical concepts, they have tested 

a cost-sensitive LSTM network. In a single framework, their study focused on three 

essential components of an EHR driven prediction model. By assessing each component's 

contribution, they demonstrated that the model outperforms in at least two evaluation 

metrics (AUC: 0.77; Cost: 22% of maximum feasible savings). 

In 2020, Barbieri, S., et al. [42] presented different deep learning architectures for 30 

days readmission risk prediction using interpretability of attention-based models on 

MIMIC-III dataset. Several deep learning architectures were trained, including those 

incorporating attention mechanisms, and medical concept embeddings with time-aware 

attention. Additionally, odds ratios were calculated for static variables to determine their 

association with an increased risk of readmission. Diagnoses, medications, procedures, 

and vital signs were ranked based on their contribution towards readmission risk. 

Amongst the architectures tested, a RNN, computed by neural ODEs, achieved the 

highest AUROC of 0.739 and an F1-Score of 0.372. 
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In 2020, Zhang, D., et al. [43] have performed three prediction tasks including in-hospital 

mortality, 30-day hospital readmission, and length of stay for MIMIC-III dataset. Here 

two multi-modal neural network architectures (Fusion-CNN and Fusion-LSTM) are 

proposed which combined the unstructured and structured data to develop patient 

representation learning. Structured data included temporal info (vital signs etc.) and static 

info (demography etc.) while unstructured data included the clinical notes by nurses or 

physicians. Depending on model's architecture, structured data is been modeled by CNN 

or LSTM networks while clinical notes are modeled by document embeddings. Hence a 

full patient representation is created by concatenating three representations from other 

modalities of data and fed as input to the model. On model's evaluation, it got evident 

that the proposed model performs better on combination of unstructured and structured 

data than other models which used either one kind of data only. For 30-day hospital 

readmission, Fusion-LSTM achieved better results than Fusion-CNN with AUROC score 

of 0.674 and AUPRC score of 0.079. 

In 2022, Moazemi, S., et al. [15] did experiments with two models trained on MIMIC-III 

dataset (public) and validated on UKD dataset (private) for the patients who visited 

cardiovascular care units. The final dataset resulted in 11,513 patients, out of which 966 

patients were labeled as positive and 10,547 were labeled as negative. Lab Values 

(Creatinine, Blood PH, Sodium, Potassium, Hematocrit, Bilirubin), Vital Signs (Body 

Temperature, ABP, Heart Rate, Oxygenation) and Patient Info (Age, Weight, LoS) are 

the main extracted data features used here. A special kind of RNN based LSTM model is 

proposed and trained on two datasets forming two models for further evaluation on test 

dataset. One is trained on all-time series data available before ICU discharged and the 

second one trained using only the 48 hours window before ICU discharge. Model with 48 

hours window outperformed using RNN (LSTM) with AUROC 0.82. 

In 2023, Kessler, S., et al. [14] researched on data samples which were taken from two 

cardiovascular ICUs (CCU and CSRU) and predicted 2-days ICU readmission. 

Researchers have also trained other 5 already known models Logistic Regression, 

Random Forest, ET, feed forward neural network (FNN), LSTM+CNN and one deep 

learning model (proposed LSTM model) have been trained and validated using an 80, 20 

train test split strategy. MIMIC-III dataset was used to train and test all above mentioned 
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algorithms having 12,797 ICU stays records after data preprocessing. Last 48 hours data 

before a patient is discharged or down-transfer is used for temporal features. Lab Values 

(Creatinine, Blood PH, Sodium, Potassium, Hematocrit, White blood cell counts, 

Bicarbonate, Bilirubin), Vital Signs (Body Temperature, ABP, Heart Rate, Oxygenation) 

and Patient Info (Age, Weight) are the main extracted data features used here. Author 

suggested proposed RNN based LSTM architecture as the best model for prediction as it 

has performed well with AUROC of 0.860 and AUCPR of 0.706. 

Table 2. 3: Summary of Results using Deep Learning Models 

 

Year Author Dataset Technique 
Accuracy 

(ACC %) 
AUC (%) 

2023 [44] MIMIC-III BERT 
 ROC=0.75 

PRC=0.30 

2023 [14] MIMIC-III RNN+LSTM 
 ROC=0.86 

PRC=0.71 

2022 [15] 
UKD Dataset 

& MIMIC-III 
RNN+LSTM 

 ROC=0.82 

PRC=0.57 

2020 [43] MIMIC-III Fusion-LSTM 
 ROC=0.67 

PRC= 0.79 

 
2020 

 
[42] 

 
MIMIC-III 

RNN+ neural ordinary 

diff. equations with 

time-aware attention 

  
ROC=0.74 

2019 [41] 
Halland 

Hospital 
LSTM 

 
ROC=0.77 

2019 [40] MIMIC-III LSTM+CNN  ROC=0.79 

2018 [39] 
GHWs 

DNN+MLP 
0.89 ROC=0.70 

ORP 0.82 ROC=0.73 

2018 [38] MIMIC-III 
Extreme Gradient 

Boosting (XGBoost) 

 
ROC=0.71 



20  

In 2023, Sheetrit, E., M. Brief, and O. Elisha [44] have analyzed the difficulty to predict 

unplanned 30 days readmissions in ICUs and presented different experiments for the 

same task. By utilizing the two main models BERT and Gated Recurrent Network based 

bidirectional RNN network (BIRNN), they have assessed readmission for all four 

modalities of data from MIMIC-III dataset individually and then in combination. 

Standard architecture from Hugging Face used for BERT while the architecture of 

BIRNN has four main layers; the Embedding layer, two GRUs, an attention layer with a 

fully connected layer. The data modalities included static info like patient demographics, 

sequential info for diagnoses and prescriptions, unstructured clinical discharge notes, and 

multivariate time-series data, such as lab results and measurements etc. By assessing each 

data modality using the evaluation process, they concluded that BERT model trained on 

the Discharge notes outperformed others with AUROC score of 0.7522 and AUPRC 

score of 0.2988. Summary of all the studies mentioned under this section is given in 

Table 2.3. 

 Discussion 

 
The review conducted in this chapter provides a summary of the prediction techniques 

applied on different public and private datasets from 2018 – 2023. From summary tables 

and 2.3, we see 11 studies have used conventional machine learning models while 

9 studies have used deep learning models. If we compare performance, we can see 

that using conventional models, lowest ROC score reported is 0.60 and highest 

ROC score reported is 0.93 while using deep learning models, ROC score 

reported by almost all studies is around 0.75. Through this, we can analyze that 

although there are fewer articles which have used deep learning, yet their reported 

results are consistent compared to others'. 

Figure 2.3 shows year wise number of publications included in our survey. As it is 

already mentioned that this survey includes articles published from 2018 to 2023, the 

maximum number of publications included in our survey are from year 2019. Figure 2.4 

depicts technique wise number of publications. LSTM is very popular technique of RNN. 

Although fewer numbers of studies reported to be using deep learning techniques, 6 

studies have used LSTM making it greatest reported 'used' technique. 
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Figure 2. 3: Year Wise Number of Publications 
 

Figure 2. 4: Technique Wise Number of Publications 

 

Table 2.4 demonstrates the summary of survey articles on the basis of core 

characteristics. The survey reveals that the Medical Information Mart for Intensive Care 

(MIMIC-III) is the most common database used by most of the researchers. The 

description of database has also been provided in chapter 3. Most of the studies have used 

time series data as almost all studies have used lab and chart measurements as their main 

features. 50% of the included studies have focused readmission within 30 days of 

patients' discharge. Although articles mentioned in survey are mostly those which haven't 

targeted any specific diagnosis yet there are considerable numbers of articles targeting 

specific disease like heart failure. This chapter provides a comprehensive analysis of 

different prediction models, which can help a practitioner choose his/her model for the 

underlying prediction problem. 
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Table 2. 4: Summary of Survey Articles on the Basis of Core Characteristics 
 

Category Sub Category Count 

Database MIMIC-III 12 

Combined or Other Mixed 8 

Approach Conventional Machine Learning 13 

Deep Learning 7 

Nature of data Time Series 14 

Other 6 

Diagnosis specific 

readmission 

Yes 6 

No 14 

Readmission after 

days discharge 

30 Days 10 

2 Days 2 

NIL 8 

 Research Gap 

 
The environment in ICU demands a significant staff-to-patient ratio and generates a 

substantial amount of data. The interpretation of real-time data and decision-making 

poses a terrible challenge for clinicians. The cost of intensive care is huge, which 

necessitates careful thought of when patients should be transferred to lower-level ward 

care. This decision is crucial to optimize the allocation of resources so, it is important to 

strike a balance in determining the appropriate timing for step-down, ensuring that 

patients receive optimal care while minimizing the likelihood of readmission. 

From the literature survey, we see that limited research carried on readmission prediction 

task and the methods used were unable to attain good results. The articles included have 

also emphasized the usage of clinical notes and time series data as these are critical in 

decision making. Most of the studies have used traditional machine learning techniques. 

One drawback of traditional machine learning models is that patients' vectors are formed 

by aggregating patient features presented in observation window. Hence the temporality, 

which is important in healthcare situations, is ignored. So, we will move forward from 

here by choosing a technique that will keep temporality and will process the features 

sequentially. 
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Chapter 3 

MATERIAL AND METHODOLOGY 
 

This chapter is about the methods under taken and the material used to carry out this 

research. Material used will be elaborated in detail in data preparation section and 

remaining sections are about methodology explanation. These will be explained here 

under one by one. Flow diagram of proposed ICURP framework is also given in Figure 

3.1 which helps to present the summary of this chapter. 
 

Figure 3. 1: Flow Diagram of Proposed ICURP Framework 

Dataset construction will be explained first by explaining database archeology and data 

preparation steps. Data preprocessing steps will be explained second. Then the machine 

learning architecture will be explained in detail that will lead to the explanation of model 

training and evaluation stage. At the end, prediction process is explained. 
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 Dataset Construction 

 
The dataset for readmission prediction task is constructed from the MIMIC-III Critical 

Care Database which is maintained by the Massachusetts Institute of Technology (MIT) 

's Laboratory for Computational Physiology [45]. MIMIC-III (Medical Information Mart 

for Intensive Care III) and eICU (electronic Intensive Care Unit) are the two publicly 

available datasets for this task; remaining datasets used in literature are private datasets. 

MIMIC-III contains 61,532 ICU stays with demographics, medications, vital signs, tests 

from laboratory and additional clinical data. Data included here can be categorized in two 

types as structured (static and temporal info) and unstructured (clinical notes) data. It has 

records of 46,620 patients of the Beth Israel Deaconess Medical Center between 2001 

and 2012. Data preparation steps are followed from [14] and those patients are removed 

who are under the age of 18 and who died in the ICU. After applying major Data 

Preparation steps, we got 35,334 patients having 48,403 ICU stays which were used 

further in Data Preprocessing tasks. To build the dataset for ICU readmission, all chosen 

patients and their corresponding ICU stays records were classified as positive or negative 

cases while keeping 30 days movements (down transfer or up transfer) in mind. 

Positive patient stays: Patients who can take advantage from early readmission 

prediction. In our dataset, among 48,403 ICU stays, we got 9,587 positive ICU stays. 

These are further categorized as: 

i) Patients who returned to the ICU after being transferred to low level wards. 

ii) Patients who died after transferred to low level ward. 

iii) Patients who returned to the ICU within 30 days after being discharged. 

iv) Patients who died within 30 days after being discharged. 

 
Negative patient stays: Patients who do not need ICU readmission means being 

discharged or transferred from ICU and for next 30 days, they did not return and are still 

alive. In our dataset, among 48,403 ICU stays, we got 38,816 negative ICU stays. 
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 MIMIC-III Database Archaeology 

 
Table 3. 1: MIMIC-III Database Tables 

 

Sr. 

No. 
Table Name Description 

For defining and tracking patient stays 

1 ADMISSIONS Every record of hospitalization for patient 

2 CALLOUT Information regarding ICU discharge 

4 ICUSTAYS Every record of ICU stays in the database 

5 PATIENTS Every record of patient in the database 

6 SERVICES The patient registered clinical service 

7 TRANSFERS Patients bed-to-bed movement within hospital 

Contain data collected in the critical care unit 

8 CHARTEVENTS Charted observations for patients 

9 NOTEEVENTS Nursing notes, ECG reports, and discharge summaries 

10 OUTPUTEVENTS Output information for patients 

Contain data collected in the hospital record system 

11 DIAGNOSES_ICD Hospital assigned diagnoses 

12 DRGCODES Diagnosis Related Groups (DRG) 

13 LABEVENTS Laboratory measurements records 

14 PRESCRIPTIONS Patients' medications records 

15 PROCEDURES_ICD Patients' procedures records 

The following tables are dictionaries 

16 D_ICD_DIAGNOSES Dictionary of ICD codes relating to diagnoses 

17 D_ICD_PROCEDURES Dictionary of ICD codes relating to procedures 

18 D_ITEMS Dictionary of ITEMIDs in the MIMIC database 

 

This is a relational database comprising 26 tables of patient's records that stayed in the 

ICUs at Beth Israel Deaconess Medical Center. Database table names and their 

description are given under in Table 3.1. 16 tables have information on time-stamped 

events. To obtain the label of the itemid supplied in the chartevents table for this study, 
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we have mostly used the chartevents table in conjunction with the connected d_item 

table. The mapping may be found in the diagnoses_ icd and procedures_ icd tables. 

International Classification of Diseases version 9 (ICD-9) codes are used to encode 

diseases. The majority of data is stored with a time stamp identifying the event's date and 

time (CHARTTIME and STORETIME, respectively). Dates are internally consistent for 

the same patient but inconsistent across patients as patients' data has been de-identified 

and all dates have been arbitrarily pushed into the future. 

 Data Preparation 

 
This section explains in detail how MIMIC-III database is been processed so that it can 

be used further for readmission prediction task. For simplicity, data preparation tasks are 

performed on structured data. The statistics taken before data preparation step are given 

in Table 3.2. 

Table 3. 2: MIMIC-III Database Statistics 
 

Sr. No. Description Count 

1 Records of patients 46,520 

2 Records of admissions (visits) 58,976 

3 Records of chart events (i.e., labs, tests, vital signs) 330,712,483 

4 Records of diagnoses records 651,047 

5 Records of procedures records 240,095 

 

Data preparation steps are narrated below in the sequence order as they are executed. 

These are: 

 Patient wise segregation of data: This step involves creating folders for each patient 

and keeping all other patient information like diagnoses, procedures, events and 

prescriptions etc. in these folders respectively.

 Extract subject:

o Only those ICU stays are kept which have patients having age greater than 18 

years. 
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o Only those records of Diagnoses, Procedures, Prescriptions and Events (charts, 

labs, and output etc.) are extracted which are related to ICU stays kept in previous 

step. 

 Validate events: This is done to maintain the integrity of the records left.

 Assign readmission labels: In this step, labels are assigned to ICU stays by 

following the criteria as under;

o 2: patients who died in ICU. 

o 1: positive; patients who are transferred back to ICU after being 

discharged/transferred to hospital ward or who died in less than 30 days after they 

are discharged. 

o 0: negative; patients who are not transferred back to ICU after being discharged/ 

transferred to hospital ward or who do not die in less than 30 days. 

 Extract episodes from ICU stay: One patient can have multiple ICU stays. This step 

involves creating separate files for time series and non-time series data against each 

ICU stay. One ICU stay will have one episode file and that one episode would have;

o Basic info data: This includes patient's demographic data. 

o Time series data: This includes patient's measurements in laboratory, output 

measurements and charted measurements. 

 Create readmission data: This is the final step of data preparation which involves:

o Removing un-labelled data. 

o Combining all ICU stays together in one separate file. 

o Putting time series files data at separate place. 

o Extracting meaningful features from time series data. These are those features 

which carry importance for the problem under discussion. 

 Over-Sampling: From the last step, we got 48,403 ICU stays with 9,587 positive 

ICU stays and 38,816 negative ICU stays. Machine learning models may be trained 

on such data, but may not be able to reliably predict the minority class labels due to 

the imbalance in the label distribution [18]. In our scenario, we have less positive but 

large number of negative samples i.e., Positive Samples: 9,587, Negative Samples: 

38,816, Total Samples: 48,403. Therefore, we have a very low 0.19 (19%) prevalence 

of readmission in our dataset. So, for adequate training and evaluation of ML models,
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we must do oversampling before splitting this data into train, validation and test sets. 

From total samples, we have picked 9,587 positive ICU stays and replicated them 

twice and we have chosen the negative samples randomly in equal numbers as of 

positive samples. Now the data contains 38,348 samples with balanced labels and we 

moved further for creating data splits. 

 Splitting data into train, validation and test sets: Data splitting is carried in 70%, 

15% and 15% ratio for train, validation and test sets respectively. Five types of train, 

validation and test files sets with different samples are created; here we have used just 

one of them among all for our all experiments to ensure results consistency. Statistics 

related to distribution of samples among the three splits is described in Table 3.3.

Table 3. 3: Train, Validation and Test Data Split Statistics 
 

Sr. No. Data Split Positive Samples Negative Samples Total Samples 

1 Train Set 13422 13421 26843 

2 Validation Set 2876 2876 5752 

3 Test Set 2876 2877 5753 

 Data Preprocessing 

 
After the MIMIC-III database being split into three separate dataset files for model 

training and testing, data is further preprocessed. The preprocessing pipeline consists of 

several chronological steps illustrated as a separate data preprocessing block in Figure 

3.1. These preprocessing steps are executed for all data splits and the course of action is 

as follows: first, the two vital features (ICD-9 embeddings for disease diagnosis, chart 

measurements (events)) are obtained from the dataset. For the sake of comparison 

between new machine leaning models and conventional models, we will use time series 

nature of chart events as well as other basic and statistical features of the same chart 

events. Feature values are discretized then missing data is filled and normalization is 

performed. These steps are followed by data replication and zero padding. Finally, the list 

format data is converted into 2D numpy arrays before being passed to the model. The 

mechanism is explained in more detail here under: 
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 Feature Extraction 

 
It is the major step of data preprocessing phase so it will be explained in more detail 

likewise. We have chosen the time series window being used and extracted the features 

for the ICU readmission prediction task. For modeling of the time series ICU records, we 

use the last 24-hour, last 48-hour and last 72-hour measurements data of each ICU stay. 

The last hour values before the patient is discharged or down transferred to ward, are 

found to be the most useful data for prediction of readmission [46]. First, chart events 

features are extracted from health care notes provided by physicians and nurses. The 

experts make their observations while examining the patients' physiological conditions 

and these opinions are represented in chart events [20]. Second, the patient's diseases 

diagnosis measurements are extracted. These diseases diagnosis features are strongly 

associated with ICU readmission [46]. 

Chart events (Temporal Information): These events are the measurements made 

while examining patients from laboratory results, output and chart events measurements 

(vital signs). We have combined these three types in a single type and named it as chart 

events. Table 3.4 shows in detail the 17 temporal features with their dimensions besides 

showing their normal values in the humans. It is evident from table that chart events have 

59 dimensions in total. These features are time series in nature, as these can be the 

measurements made on hourly basis or can have more than one measurement in an hour. 

Measuring window is 24-hour, 48-hour and 72-hour long, and occupies both types of 

features e.g., numerical (diastolic blood pressure) and categorical (capillary refill rate). 

ICD-9 embeddings: One of the most significant factors linked to readmissions is 

chronic illness [46]. ICD codes symbolize specific diagnoses assigned to patients during 

their medical visits. These codes provide information about various diseases and 

conditions such as diabetes mellitus without complications (code 250.00) and 

cardiovascular disease (code 429.2). With a vast array of approximately 18,000 ICD-9 

codes available, a simple approach to convert them into features is to create a binary 

feature vector consisting of 18,000 elements. Each element in the vector shows whether 

the patient has the corresponding disease or not. However, employing this approach 

would result in a sparse and high-dimensional feature vector. Here, we used the method 

described in [22] which suggests using the pre-trained embeddings to address the data 
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scarcity.   A pre-trained 300-dimensional embedding is computed against each ICD-9 

code and utilized instead of ICD-9 code for disease. By avoiding a sparse representation 

and using the relationship information between various diseases, employing a lower 

dimensional embedding of the ICD-9 is advantageous for the model training process. In 

order to build the feature for a patient with several diagnoses' conditions, we only added 

the embeddings of each condition. 

Table 3. 4: 17 Chart Events (Temporal) Features 
 

Sr. 

No. 
Chart Events Possible Values Dimensions 

Normal 

Values 

 

1 

Glasgow 

coma scale 

eye opening 

'To Pain', '3 To speech', '1 No 

Response', '4 Spontaneously', 'None', 

'To Speech', 'Spontaneously', '2 To 

pain' 

 

8 

 
4 Spon- 

taneously 

 

 

2 

 
Glasgow 

coma scale 

verbal 

response 

'1 No Response', 'No Response', 

'Confused', 'Inappropriate Words', 

'Oriented', 'No Response-ETT', '5 

Oriented', 'Incomprehensible sounds', 

'1.0 ET/Trach', '4 Confused', '2 

Incomp sounds', '3 Inapprop words' 

 

 

12 

 

 

5 Oriented 

 

 

 
3 

 

Glasgow 

coma scale 

motor 

response 

'1 No Response', '3 Abnorm flexion', 

'Abnormal extension', 'No response', 

'4 Flex-withdraws', 'Localizes Pain', 

'Flex-withdraws', 'Obeys 

Commands', 'Abnormal Flexion', '6 

Obeys Commands', '5 Localizes 

Pain', '2 Abnorm xtensn' 

 

 

 
12 

 

 

6 Obeys 

Commands 

 
4 

Glasgow 

coma scale 

total 

'11', '10', '13', '12', '15', '14', '3', '5', '4', 

'7', '6', '9', '8' 

 
13 

 
15 

5 
Capillary 

refill rate 
'0.0', '1.0' 2 0.0 

 
6 

Diastolic 

blood 

pressure 

  
1 

 
59.0 

7 
Systolic blood 

pressure 

 
1 118.0 

8 Mean blood  1 77.0 
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 pressure    

9 Heart Rate  1 86.0 

10 Glucose  1 128.0 

 
11 

Fraction 

inspired 

oxygen 

  
1 

 
0.21 

12 
Oxygen 

saturation 

 
1 98.0 

13 
Respiratory 

rate 

 
1 19.0 

14 
Body 

Temperature 

 
1 36.6 

15 pH  1 7.4 

16 Weight  1 81 

17 Height  1 170.0 

 Data Discretization 

 
This step is majorly performed on the time series data obtained for chart events. Since we 

already know, chart events have 17 types of features. Among these 17 features, 5 are 

categorical and remaining 12 are numerical features. Numerical features don't need any 

discretization since numerical values are well handled by machine learning models. 

While categorical data must be converted to numerical data through any means to be used 

by models for further processing. Many techniques are proposed in literature, but here we 

have used one-hot encoding. 'One Hot Encoding' is where labels are encoded in a way 

that each label gets equal weight. So, after conversion/discretization, we got 59 

dimensions from the chart events which are surely the increased number. The same step 

also involves creating a binary mask for each feature (total 17) which indicates the 

existence of record for each feature. After performing all steps here, we got chart events 

with 76 features. 

 Handling Missing Data 

 
It is not always possible that every feature has recorded measurements for every patient. 

The input to the models must have a constant size, therefore missing features must be 

restored or data from ICU stays that lack certain features cannot be included, leaving the 
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dataset with insufficient data. So, handling most of the missing time series data, we need 

to use some well efficient techniques. Many techniques, in literature, are used to handle 

such discrepancies in data like deletion or imputation. While deleting records with 

missing values may cost us to lose important data, we have used Last-Observation- 

Carried-Forward (LOCF) method for missing values imputation. The last existing value 

is carried forward and imputed to fill the missing value. 

 Data Normalization 

 
Normalization, a data preprocessing step, aims at scaling and transforming the data to 

ensure that all features have similar distributions. This helps to ensure the algorithm's 

learning efficacy and prevents certain features from dominating others. Here 

normalization is applied in two ways; on one hand, it unifies the features data which 

might have been stored with different measuring units. One the other hand, all features 

are normalized using the z-score standardization method which brings features values to 

have a mean of 0 and a standard deviation of 1. This equation is defined as: 

  (3.1) 

where sˆi is the normalized value, μx is the mean of the feature over the whole dataset x, 

and σx is the standard deviation over x. 

 Data Replication 

 
This preprocessing step is very specific to this research. One ICU stay sample has one 

disease embedding vector while there are many chart events records against one ICU stay 

ID. In this step, disease embeddings records are replicated to as many times as hourly 

time series data (measurements) then concatenated. This step makes all data look similar 

so that it can be processed in temporal manner further. This process can be viewed in 

Figure 3.2. 
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Figure 3. 2: Structure of Features after Data Replication 

 Zero padding for Timestamps Equalization 

 
The input feature vectors must all be of the same size before being analyzed by the deep 

learning algorithms which we are using further in our experiments. Almost half of the 

ICU stay samples in our dataset did not have the 48 hours long ICU stay, consequently no 

48 hours measurements. So, to consider 48-hour window size for experimentation, we 

have to pad the missing measurements with zero values. Table 3.5 provides the period 

length wise distribution of data samples. Number of padded rows depends on the window 

size we are using. 

Table 3. 5: Period Length wise Data Distribution 

 

Sr. No. Length of Stay No of Samples 

1 <=24 6978 

2 <=48 22510 

3 <=72 31307 

 Conversion of List Data into 2D numpy Arrays 

 
LSTMs are specifically designed for sequential data and capture long-term dependencies 

and CNNs are commonly used in image processing due to their ability to capture spatial 

patterns. In the case of time series, CNNs process data in a different way compared to 

traditional sequential processing. They use 1D or 2D convolutions to extract features 

across the sequential data, identifying patterns and dependencies within certain window 

sizes. Here we have applied 2D convolutions so, we have converted the data into 2D 
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matrix. Time stamps represented the rows and feature dimensions represented the 

columns. 

 

 

Figure 3. 3: 2D Visualization of Negative Samples 

 

 

Figure 3. 4: 2D Visualization of Positive Samples 
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 CNN Architecture 

 
Artificial neural networks (ANNs) are fundamental components within deep learning 

methodologies. Among these networks, Recurrent Neural Networks (RNNs) specifically 

process sequential or time-oriented data. They find applicability in various fields such as 

NLP, language translation, speech recognition, and image captioning. On the other hand, 

the Convolutional Neural Network (CNN) is an expanded version of the ANN, adept at 

extracting crucial information from both time series and image-based data, making it 

particularly valuable for pattern recognition tasks [47]. CNNs utilize principles of linear 

algebra, like matrix multiplication, to identify patterns, and are capable of classifying not 

only images but also audio and signal data. The CNN's architecture, often referred to as 

covnets, comprises layers that sequentially transform one volume of data into another 

through differentiable functions. These layers are explained here under: 

 Input Layers: Input Layers serve as the initial point where data is fed into the model. 

In CNNs, the input is typically a 2D matrix. This layer contains the raw input data 

structured with parameters like width, height, and depth.

 Convolutional Layers: Convolutional Layers are fundamental components within a 

CNN responsible for the major part of the network's computational processes. These 

layers extract features from the input dataset by applying learnable filters, or kernels, 

to the input data. Kernels, typically smaller matrices like 2×2, 3×3, or 5×5 in size, 

move across the input, calculating the dot product between the kernel weights and the 

corresponding input values. The result is known as feature maps. The output volume's 

size can be determined using a formula based on the input size (W x W x D), the 

number of kernels (Dout), the kernel's spatial size (F), the stride (S), and the amount 

of padding (P), then the size of output can be determined by the following formula:

  (3.2) 

 Activation Layer: The Activation Layer introduces nonlinearity to the network by 

implementing an activation function on the output of the previous layer. It applies an 

element-wise activation function, such as RELU (max (0, x)), Tanh, Leaky RELU, 

Sigmoid, etc.

https://www.geeksforgeeks.org/activation-functions-neural-networks/
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 Pooling layer: This layer is intermittently integrated into convolutional networks to 

decrease the volume's size, enabling faster computations, reduced memory usage, and 

preventing overfitting. Max pooling and average pooling are two frequently used 

types. Using an activation map of size W x W x D, a pooling kernel with a spatial size 

F, and a specific stride S, the output volume's size can be calculated using a particular 

formula:

(3.3) 
 

 Flattening: After passing through the convolutional and pooling layers, the resulting 

feature maps are flattened into a one-dimensional vector. This step allows them to be 

fed into fully connected layers for classification or regression purposes.

 Fully Connected Layers: Fully Connected Layers establish complete connectivity 

between neurons in the preceding and subsequent layers. This connectivity allows 

standard computations through matrix multiplication followed by bias addition. The 

role of the FC layer is to facilitate the mapping of representations between the input 

and output.

 Output Layer: The output generated by the fully connected layers is directed into a 

logistic function, such as sigmoid or softmax. This step is crucial for classification 

tasks as it transforms the output of each class into the respective probability scores 

for those classes.

Figure 3. 5: CNN Architecture 

The CNN architecture used in this research is shown in Figure 3.3. It has multiple layers; 

the used CNN architecture is explained here under: 

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
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 keras.Sequential: This creates a linear stack of layers for building the neural network. 

The layers will be added sequentially.

 layers.Conv2D(32, (3, 3), activation='relu', input_shape=(48, 376, 1)): This line 

creates the first convolutional layer. It includes 32 filters/kernels of size 3x3. The 

activation function used is Rectified Linear Unit (ReLU). The input shape for this 

layer is (48, 376, 1), which represents a 2D matrix with a height of 48 rows, width of 

376 columns, and a single channel.

 layers.MaxPooling2D((2, 2)): This layer performs max pooling, which reduces the 

dimensions of the previous layer by taking the maximum value within each 2x2 

window. This helps in reducing computation and controlling overfitting.

 layers.Conv2D(32, (3, 3), activation='relu'): The second convolutional layer with 32 

filters of size 3x3 and ReLU activation. This layer learns more complex features as it 

goes deeper into the network.

 layers.MaxPooling2D((2, 2)): Another max pooling layer to further reduce 

dimensions.

 layers.Dropout(0.4): Dropout is a regularization technique that helps prevent 

overfitting by randomly setting a fraction (in this case, 40%) of input units to 0 at 

each update during training, which helps in creating robust networks.

 layers.Flatten(): This layer flattens the 2D output from the previous layer into a 1D 

array, which is necessary before passing the data to the densely connected layers.

 layers.Dense(64, activation='relu'): A fully connected (dense) layer with 64 neurons 

and ReLU activation function. It learns patterns from the features extracted by the 

convolutional layers.

 layers.Dense(1, activation='sigmoid', name="class"): The final dense layer with a 

single neuron, using a sigmoid activation function. This layer is for binary 

classification tasks as it produces a probability output between 0 and 1, representing 

the likelihood of the input belonging to 1 class. The layer is named "class".
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 Model Training and Evaluation 

 
This step explains the hyper parameters used for training CNN model and is the basis for 

saving the trained model weights. Model is trained using training set and hyper 

parameters are tuned while validating the performance on validation set. 

 Tuning Hyper Parameters 

 
 loss = binary_crossentropy: Sets the loss to 'binary cross entropy' since the problem 

under consideration is binary classification problem.

 optimizer = Adam: Sets the optimizer to 'Adam' which helps to optimize the weights 

while calculating gradients. Adam is an addition of the stochastic gradient descent 

(SGD) algorithm that incorporates adaptive learning rates and momentum.

 metrics = accuracy: The metrics parameter is used to specify one or more 

performance metrics that we want to track and evaluate during the training and 

validation of our model. In this case, we specified 'accuracy' as our required metric.

 learning_rate = 0.001: Sets learning rate which indicates the step size at which the 

model parameters will be updated during the optimization process.

 batch_size = 128: Sets the batch size to 128, indicating the number of samples 

processed before updating the model's weights during training.

 epochs = 120: Models is trained till 120 epochs.

 

 Checking Performance Metric and Saving Weights 

 
One type of performance metric is monitored i.e., validation accuracy. Model is trained 

using 120 epochs and while training, validation accuracy is monitored. Those model 

weights are saved which have improved validation accuracy. 

 Readmission Prediction 

 
This is the final step of our proposed methodology. Weights with the highest validation 

accuracy are loaded and ICURP framework's performance is checked on unseen data (test 

set). Test set have to go through all data preprocessing steps which are being opted for 
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training and validation sets. Once the test data is preprocessed, it is used for prediction. 

Confusion matrix, precision, recall, Accuracy, ROC, and PRC are monitored. 

 Summary 

 
MIMIC-III database is huge database. Data Preparation steps mentioned above are used 

just to formulate the data according to the machine learning problem. Multiple Data 

Preprocessing steps are taken to extract the needed features and bring it into a form so 

that machine learning algorithms can perform training easily. The major part comes here 

which is about the machine learning model and model's architecture and for that we have 

chosen CNN. Number of layers, their types and units in each layer are decided. Then 

model is trained on training dataset and hyper parameters are tuned while seeing 

performance on validation dataset. Weights are saved while training and performance is 

evaluated using test dataset. All these steps are performed in the order in which they are 

mentioned here. Results of experiments with different machine learning models on 

varying window size are given in next chapter. Next chapter also elaborates the features 

modeling process used for different models experimented here in this research in detail. 
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Chapter 4 

RESULTS AND DISCUSSION 

This chapter is about the experimental results and the detail discussion of the obtained 

results explained here in detail. First section visually shows about the feature engineering 

strategy for model training while second section describes the test datasets. Third section 

mentions the performance metrics used to evaluate the experiments and the fourth section 

describes the detail of experiments. Last section discusses the above experimental results 

through comparison. 

 Training Machine Learning Models 
 

Machine learning models are used to learn hidden patterns in data and make decisions on 

unseen data. For this research, many conventional machine learning and deep learning 

algorithms have been experimented. Conventional algorithms included Support Vector 

Machine, Logistic Regression, K Nearest Neighbor and Naïve Bayes while deep leaning 

algorithms included CNN, RNN based LSTM and GRU. 

After following multiple processes in Data Preparation step, we got three dataset files for 

train, validation and test set. These dataset files have to go through multiple Data 

Preprocessing steps. Data Preprocessing phase have feature extraction, Data 

Discretization and 2D data conversion as their major steps. Two types of features are 

extracted and used to train all experimented models. These features are diagnosis features 

and chart event features. After data discretization process and using the ICD-9 

embeddings for diseases diagnosis, we obtained 376 total features (ICD-9 Diagnosis 

Embeddings features: 300 & Chart Events features: 76). 

For training conventional machine learning and deep learning models, features are 

modeled differently. Figure 4.1 shows the difference between two approaches. Here for 

training conventional models, temporal features are aggregated while for training deep 

learning models, static features are replicated. Through the feature engineering process 

adopted by conventional ML models, basic as well as advanced statistical features like 

coefficients, intercept are computed from numerical chart events. Binary mask and 
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average occurrence of category is also computed and used for training these conventional 

models. 

 
 

 
 Test Datasets 

Figure 4. 1: Features Modeling for Training 

 

For evaluation, two unseen datasets from MIMIC-III are used. Dataset A contains the 

unseen test data created after over-sampling and stratified splitting of whole data while 

Dataset B contains data which haven't gone through over-sampling and stratified splitting 

techniques. Number of samples in A and B are 5753, 4797 respectively. Lin, Y.-W., et al. 

[40] have also used the same dataset B for evaluation in his research. Table 4.1 shows the 

data split statistics. 

Table 4. 1: Test Data Split Statistics 
 

Sr. No. Dataset Positive Samples Negative Samples Total Samples 

1 Dataset A 2876 2877 5753 

2 Dataset B 928 3869 4797 

 Performance Measures 
 

Performance metrics are the criteria used to assess the performance of a classifier. They 

represent quantitative measures of how accurately the classifier predicted or classified the 

class variable. The building blocks that are used to compute many metrics are: 

True positives (TP): TP refers to the positive tuples labeled positive by the classifier. 

True negatives (TN): TN refers to the negative tuples labeled negative by the classifier. 
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False positives (FP): FP refers to the negative tuples labeled positive by the classifier 

(incorrect classification; negatives labeled as positives). 

False negatives (FN): FN refers to the positive tuples labeled negative by the classifier 

(incorrect classification; positives labeled as negatives). 

These terms are summarized in the confusion matrix shown in Table 4.2 which is a tool 

to analyze how well a classifier can classify the records. The evaluation metrics used to 

evaluate our proposed methodology and other classifiers are listed in Table 4.3. To 

calculate ROC, two parameters are required: true positive rate (TPR) and false positive 

rate (FPR), while for calculating PRC, precision and recall is required. 

Table 4. 2: Confusion Matrix 
 

Actual Class Predicted Class 

 No Yes 

No TN FP 

Yes FN TP 

 

Table 4. 3: Performance Measures 
 

Sr. 

No. 

Performance 

Metric 
Description Formula 

1 AUC ROC 
Area under the receiver operating 

characteristic curve 

 

2 AUC PRC Area under the precision recall curve  

3 
Accuracy 

(ACC) 

Percentage of tuples that are correctly 

classified by classifier 

𝑇𝑃 + 𝑇𝑁 
𝐴𝐶𝐶 = 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

4 Precision 
Percentage of positive predicted tuples 

out of all positive predicted 

𝑇𝑃 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇𝑃 + 𝐹𝑃
 

 
5 

Recall / 

Sensitivity 

(SEN) (TPR) 

Percentage of actual positive tuples 

that are correctly classified as positive 

 

𝑇𝑃 
𝑆𝐸𝑁 = 𝑇𝑃𝑅 = 

𝑇𝑃 + 𝐹𝑁
 

6 (FPR) 
Percentage of   negative   tuples that 

are incorrectly classified as positive 

𝐹𝑃 
𝐹𝑃𝑅 = 

𝐹𝑃 + 𝑇𝑁 
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In our scenario, TP is the no. of patients who got readmitted in ICU after 

discharge/transfer and are correctly classified as patients readmitted. FP is the no. of 

patients who didn't get readmitted and wrongly classified as the patients who got 

readmitted. TN is the no. of patients who didn't get readmitted in ICU after discharge and 

are correctly classified as patients who didn't get readmitted and FN is the no. of patients 

who got readmitted and wrongly classified as the patients who didn't get readmitted. 

 Experimental Study 

 
In this section, four experiments have been demonstrated. First subsection shows the 

experimental results using four conventional models. Second subsection demonstrates the 

experiments using RNN based LSTM and GRU models and third subsection presents 

experimental results using the ICURP framework's-based CNN model. All the 

experimental results are displayed one by one below in their respective section. The 

experiments were performed using training, validation and test datasets and the scores 

obtained on test sets are listed in tables and plotted as graphs as well. 

For deep learning models, three further experiments are performed with widow size 

variations in feature set. Three models are trained using last 24-hour, 48-hour and 72- 

hour ICU time series data. Hence, the impact of varying window size is analyzed in 

different experiments. Important aspect to be considered here is that for all deep learning 

models, the chosen features and the experimental setup kept the same. Two test datasets 

A and B are used to get the evaluation values and these values are reported in result 

tables. While training deep learning models, validation accuracy is monitored, and 

weights with best validation accuracy are saved. The weights with highest validation 

accuracy are loaded and test dataset performance is evaluated and reported in tables here. 

Major performance metrics used for analysis are: accuracy, area under the receiver 

operating characteristic curve (AUC of ROC) and area under the precision-recall curve 

(AUC of PRC). Among all five metrics i.e., ROC, PRC, Precision, Recall and Accuracy, 

if ROC, PRC and Accuracy have improved results compared to others then we have 

declared that method as our benchmark method. The receiver operating characteristic 

(ROC) curve illustrates the diagnostic capability of a binary classifier by plotting the TPR 

versus FPR at different cut-off or threshold points. The more the curve is inclined 
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towards the top-left corner, the better the classifier is. The precision-recall curve (PRC) 

assesses the classifier's precision and recall trade-off. The top-right corner represents the 

optimal performance for Precision-Recall curve, with high precision and high recall 

simultaneously. 

 Experimentation with Conventional ML Models 

 
This is the first experiment conducted in this research. Here four machine learning 

classifiers are trained and evaluated. These classifiers include Support Vector Machine 

(SVM), Logistic Regression (LR), K Nearest Neighbor (KNN) and Naïve Bayes (NB). 

LR is trained using 'l2' regularization having strong inverse regularization value. KNN is 

trained using 7 nearest neighbors. The dataset comprised of last 48-hour ICU data and 

evaluated using unseen dataset A. The result statistics of all classifiers are shown in Table 

4.4. From the statistics, it is evident that SVM outperformed all other classifiers with 

ROC score 0.789, PRC score 0.776 and accuracy score 0.719 which are the highest 

among all other classifiers so, we are giving it priority. After SVM, LR can be ranked on 

second number. Its ROC and PRC scores are high with 0.774 and 0.765 values 

respectively. It has accuracy score of 0.702 which is higher than NB and KNN accuracy 

scores. Plot of ROCs for all conventional classifiers are shown in Figure 4.2. 

Table 4. 4: Conventional ML Models Performance on Dataset A 
 

Classifier Accuracy Precision Recall PRC ROC 

SVM 0.719 0.722 0.713 0.776 0.789 

LR 0.702 0.718 0.666 0.765 0.774 

KNN 0.687 0.680 0.706 0.741 0.756 

NB 0.642 0.708 0.483 0.733 0.714 
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Figure 4. 2: Conventional Models ROC Curve 

 Experimentation using RNN based Models 

 
Recurrent neural networks (RNN) are used most commonly for processing sequential and 

time series data [48]. Long-Short-Term-Memory Networks (LSTM) and Gated Recurrent 

Unit (GRU) are types of Recurrent Neural Network (RNN) introduced to handle the 

short-term memory problem of RNN. GRU was introduced by Cho et al. in 2014 as a 

simpler substitute to LSTM networks and it is generally well-suited for capturing short- 

term dependencies and patterns within sequences. For longer sequences, other 

architectures may be more appropriate. The basic difference between LSTM and GRU is 

their gating mechanism and number of gates. 

 Experimentation using LSTM

 
This is the second experimentation technique. Hochreiter and Schmidhuber introduced 

LSTM as improvement over traditional RNNs to overcome their limitations. By 

incorporating additional interactions per module, LSTMs can learn long-term 

dependencies and retain information for extended periods effectively [49]. Figure 4.3 

visually depicts the structure of LSTM model used here in our research. The model 

incorporates a LSTM layer with 16 units, which is a type of RNN layer suitable for 

sequential data. A dropout layer with a dropout rate of 0.4 is added for regularization, 

followed by a dense output layer with one unit and a sigmoid activation function for 
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binary classification. The model is compiled till 120 epochs using the Adam optimizer 

with a learning rate of 0.001, binary cross-entropy loss, and accuracy as the evaluation 

metric. Additionally, the code sets up callbacks for model checkpointing, saving the best 

weights based on validation accuracy. 

Figure 4. 3: LSTM Model Structure 

 

Three alternative LSTM models are trained by changing window size and evaluated using 

dataset A. The evaluation results show that by using last 24-hour ICU data, the achieved 

accuracy, PRC and ROC scores are 0.757, 0.808 and 0.827 respectively. Using last 48- 

hour ICU data, accuracy, PRC and ROC scores got improved as compared to last 24- 

hour. It has achieved the accuracy, PRC and ROC scores of 0.775, 0.815 and 0.842 

respectively. Third evaluation results are obtained by using last 72-hour ICU data. We 

see performance did not improve as compared to last 48-hour feature set as the accuracy, 

PRC and ROC scores are 0.765, 0.794 and 0.820 respectively. The result statistics for 

three experiments are presented in detail in Table 4.5. Figure 4.4 visually compares the 

ROCs and PRCs for the three experiments which are performed using LSTM. 

Table 4. 5: LSTM Performance on Dataset A 
 

Window Size Accuracy Precision Recall PRC ROC 

24-h 0.757 0.738 0.796 0.808 0.827 

48-h 0.775 0.764 0.793 0.815 0.842 

72-h 0.765 0.749 0.799 0.794 0.820 
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Figure 4. 4: LSTM - ROC & PR Curves 

 Experimentation using GRU

 
This is the third experimentation technique. GRU has a simplified version of the LSTM 

cell to address the complexities while achieving improved network performance and 

faster training time. GRUs and LSTMs operate similarly, but GRU merges the hidden 

state and cell state into a single state, effectively reducing the total number of gates to 

half of what LSTM requires [50]. Figure 4.5 visually depicts the structure of GRU model 

used here in our research. The model incorporates a GRU layer with 16 units followed by 

a dropout layer with a dropout rate of 0.4. Finally, a dense output layer added with one 

unit and a sigmoid activation function for binary classification. The model is compiled till 

120 epochs using the Adam optimizer with a learning rate of 0.001, binary cross-entropy 

loss, and accuracy as the evaluation metric. The code sets up callbacks for model 

checkpointing, saving the best weights based on validation accuracy. 
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Figure 4. 5: GRU Model Structure 

 

Three alternative GRU models are trained by changing window size and evaluated using 

dataset A. The evaluation results show that by using last 24-hour ICU data, the achieved 

accuracy, PRC and ROC scores are 0. 748, 0.799 and 0.821 respectively. Using last 48- 

hour ICU data, accuracy and ROC scores got improved but we see decline in PRC score 

as compared to last 24-hour. It has achieved the accuracy, PRC and ROC scores of 0.772, 

0.788 and 0.826 respectively. Third evaluation results are obtained by using last 72-hour 

ICU data. We see performance did not improve as compared to previous two 

experiments. The result statistics for three experiments are presented in detail in Table 

4.6. Figure 4.6 visually compares the ROCs and PRCs for the three experiments which 

are performed using GRU. 

Table 4. 6: GRU Performance on Dataset A 

 
Window Size Accuracy Precision Recall PRC ROC 

24-h 0.748 0.727 0.792 0.799 0.821 

48-h 0.772 0.749 0.817 0.788 0.826 

72-h 0.749 0.727 0.799 0.775 0.807 
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Figure 4. 6: GRU - ROC & PR Curves 

 Experimentation using ICURP Framework 

 

CNN is an expanded version of the ANN, adept at extracting crucial information from 

both time series and image-based data, making it particularly valuable for pattern 

recognition tasks. Figure 4.7 visually depicts the structure of CNN model used here in our 

research. The model consists of two convolutional layers with 32 filters each, using a 

ReLU activation function. Max pooling layers with a (2,2) pool size are applied after 

each convolutional layer. A dropout layer with a dropout rate of 0.4 is included. The 

flattened output is connected to a dense layer with 64 units and a ReLU activation 

function, followed by a final dense layer with one unit and a sigmoid activation function, 

indicating binary classification. The model is compiled till 120 epochs using the Adam 

optimizer with a learning rate of 0.001, and binary cross-entropy loss function. Callbacks 

are set up for model checkpointing, saving the best weights based on validation accuracy. 

Using the methods suggested by ICURP framework, three alternative CNNs models are 

trained and validated using 24-hour, 48-hours and 72-hour window size on ICU data. For 

evaluation, two unseen datasets A and B are used. Evaluation of results using dataset A 

are presented in Table 4.7 and the results of evaluation on dataset B are shown in Table 

4.8. Using dataset A, all the three models performed well and model trained using 48- 

hour window outperformed others with accuracy, PRC and ROC score of 0.816, 0.866 

and 0.882. Figure 4.8 visually compares the ROC and PRC of the three experiments. 

Using dataset B, all the three models showed improved performance than on dataset A 
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and model trained using 72-hour window outperformed others with accuracy, PRC and 

ROC score of 0.861, 0.781 and 0.946. Figure 4.9 visually compares the ROC and PRC of 

the three experiments. 

 

Figure 4. 7: CNN Model Structure 

 

 
Table 4. 7: ICURP Performance on Dataset A 

 

Window Size Accuracy Precision Recall PRC ROC 

24-h 0.795 0.759 0.863 0.839 0.862 

48-h 0.816 0.788 0.863 0.866 0.882 

72-h 0.806 0.764 0.884 0.853 0.876 
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Table 4. 8: ICURP Performance on Dataset B 

 

Window Size Accuracy Precision Recall PRC ROC 

24-h 0.847 0.562 0.9375 0.731 0.935 

48-h 0.861 0.588 0.947 0.781 0.946 

72-h 0.845 0.558 0.959 0.786 0.947 

 

Figure 4. 8: ICURP’s ROC & PR curves on dataset A 

 

 

Figure 4. 9: ICURP’s ROC & PR curves on dataset B 

 

Figure 4.10 plots the training and validation process for the 48-hour window size. This 

plot shows that model starts to overfit on validation data after 50th epoch. Figure 4.11 

shows the prediction results for few ICU stays samples using dataset A on last 48-hour 

ICU data. Only static features are shown here for our own convenience. Demographics 
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features include Age, Gender, Ethnicity and Insurance while Diagnoses features include 

diagnoses code and diagnoses count. Period length represents the time spent by patient in 

particular ICU stay on hourly basis. Prediction label shows the output/result; 1 represents 

positive outcome (Needs Readmission), 0 represents negative outcome (Needs No 

Readmission). 

 

Figure 4. 10: ICURP – Model Training Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. 11: Readmission Prediction Results using ICURP 
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 Discussion 

 
This section presents the detail discussion on results achieved from experiments which 

are described earlier in this chapter. It compares the evaluation results of experiments 

among themselves and also compares the achieved results with the state-of-the-art. 

Performance metrics used for comparison are accuracy, ROC, and PRC. 

 Comparison among Experimented Techniques 

 
We have combined results of all experiments and have shown them in Table 4.9. Since 

last 48-hour ICU data has given better results for all experimented techniques, so we have 

reported only those results for the sake of comparison. All models compared here are 

evaluated using test dataset A. 

From the experimental results of four conventional models (SVM, LR, NB & KNN), we 

can see that SVM is able to achieve high ROC and PRC score which is good, but since 

the dataset we are handling with, is time series data. There are new techniques available 

which can process temporality in data and we can achieve even more better results 

through them so, traditional ML techniques are not recommend here. LSTM and GRU 

have the ability to process temporal data sequentially, so they achieved better results than 

SVM. CNN model from ICURP's framework has achieved even more better results than 

RNN based models. 

Table 4. 9: Comparison of all Experimented Techniques 

 

Classifier Accuracy PRC ROC 

ICURP 0.816 0.866 0.882 

LSTM 0.775 0.815 0.842 

GRU 0.772 0.788 0.826 

SVM 0.719 0.776 0.789 

LR 0.702 0.765 0.774 

KNN 0.687 0.741 0.756 

NB 0.642 0.733 0.714 
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So, we can easily conclude that ICD-9 diagnosis embeddings and last 48-hour chart 

events features if used altogether, they are best at predicting patients' readmission before 

their discharge. Among the results of all techniques, ICURP achieved highest results for 

all the three chosen performance metrics accuracy, PRC and ROC. It has achieved great 

results with approximate 4% increase in accuracy, 5% increase in PRC and 4% increase 

in ROC scores than LSTM which has got the second highest scores. 

Confusion matrixes are also created using LSTM and ICURP in Table 4.10 and Table 

4.11 respectively. While prediction using ICURP, we see increase in true positive and 

true negative instances as compared to prediction using LSTM. And also, false negative 

and false positive instances have been reduced in great number contrary to LSTM, 

putting an impact on increase in overall performance. One more important aspect to be 

noticed is that, false negative instances have seen great reduction than false positive 

instances. This is our preferred metric, means that, patients with illness should be given 

higher chances to avail ICU facilities. 

Table 4. 10: Confusion Matrix- LSTM 
 

Actual Predicted 

 0 1 

0 2174 703 

1 594 2282 

 Comparison with the State-of-the-Art 

 

Table 4. 11: Confusion Matrix- ICURP 

Actual Predicted 

 0 1 

0 2210 667 

1 394 2482 

 

The comparison of different methodologies from the past six years literature on MIMIC 

dataset is shown in Table 4.12. The experimental results reveal that the ICURP 

framework acquired a significantly better classification performance as compared to other 

studies that used time series data and deep learning models in their research. The 

experiment performed in [16] show better performance than our framework. Their 

experiment targets a specific disease while our ICURP framework does not target any 

specific disease, it is more generalized. The performance of RF model is also very high in 

[31] and it is equivalent to ICURP's performance but as per our understanding, they 

haven't used time series data. Moreover, model training was performed on a dataset that 

included records of patients from both institutions i.e., internal and external validation. 
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Table 4. 12: Comparison with the State of the Art on MIMIC Dataset 
 

Year Author 
Diagnosis 

Specific 

 

Technique 
Accuracy 

(ACC %) 
AUC (%) 

2023 Our No 
 

ICURP Framework 0.816 
ROC=0.882 

PRC=0.866 

2023 [44] No 
 

BERT 
 ROC=0.75 

PRC=0.30 

2023 [14] Yes 
 

RNN+LSTM 
 ROC=0.86 

PRC=0.71 

2022 [37] No SVM with the radial basis 

function kernel (RBF) 

 
ROC=0.74 

2022 [16] Yes Neural Network and using 

Decay Replay Mining 
0.84 ROC=0.93 

2022 [15] Yes 
 

RNN+LSTM 
 ROC=0.82 

PRC=0.57 

2021 [35] No Logistic Regression (LR)  ROC=0.76 

2020 [43] No 
 

Fusion-LSTM 
 ROC=0.67 

PRC= 0.79 

 

2020 
 

[42] 
 

No 
RNN+ neural ordinary diff. 

equations (ODE) with time- 

aware attention 

  

ROC=0.74 

2020 [33] No Random Forest 0.65 ROC=0.66 

2019 [32] No NLP + Logistic Regression 

(LR) 

 
ROC=0.75 

2019 [40] No LSTM+CNN  ROC=0.79 

2019 [31] No 
Random Forest with 

extended feature set 
0.84 - 0.85 

ROC=0.86 - 

0.88 

2018 [38] No Extreme Gradient Boosting 

(XGBoost) 

 
ROC=0.71 

2018 [28] No Extreme Gradient Boosting 

(XGBoost) 

 
ROC=0.76 

2018 [30] No 
Gradient Boosted Machine 

(GBM) 

 ROC=0.71 

– 0.78 
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So, their results could have significant change. While, from all the remaining articles 

mentioned here, our proposed ICURP framework outperformed others with ACC=0.816, 

PRC=0.866 and ROC=0.882. 

Proposed ICURP framework results can be validated by analyzing the characteristics of 

basic metrics shown in Table 4.13. Table compares the characteristics of four basic 

metrics TP, FN, FP and TN counts using their mean values. Patient ICU stay length has 

the maximum values for positively predicted cases means that patients who are predicted 

positive have the maximum ICU stay length. Similarly, the same trend is been observed 

for diagnoses count. Age and procedure count also have the maximum values for true 

positives. This validates our achieved results as patients diagnosed with multiple diseases 

have more probability of needing ICU readmission. 

Table 4. 13: Characteristics of TP, FN, FP and TN (Mean Values) 
 

Variables TP FN FP TN 

Period Length 120.79 103.00 129.44 72.70 

Age 85.33 78.93 77.14 69.40 

Diagnoses Count 15.33 13.73 13.75 10.28 

Procedure Count 6.41 5.79 5.30 3.84 

 

From the above discussion, we can conclude that deep learning models perform better 

than conventional models with respect to accuracy, PRC and ROC. We can also conclude 

that our proposed ICURP framework has outperformed all other experimented models 

also acquired significantly better performance as compared to the state-of-the-art. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

The cost of intensive care is huge, which necessitates careful thought regarding when 

patients should be discharged or transferred to lower-level ward care. This decision is 

crucial to optimize the allocation of resources. However, discharging a patient from the 

ICU too early carries the potential risk of inadequate monitoring and care, often leading 

to readmission to the ICU. Therefore, it is important to strike a balance in determining the 

appropriate timing for step-down, ensuring that patients receive optimal care while 

minimizing the likelihood of readmission. 

The application of ML techniques in ICUs has shown promising advancements in 

detecting high-risk events at an early stage. By leveraging ML techniques, clinicians can 

better analyze and interpret ICU data, enabling more timely and informed decision- 

making. This research is carried to solve the underlying problem of 30-day ICU 

readmission prediction. We have compared different conventional ML and deep learning 

models. We have analyzed that chart events data incorporated with ICD-9 diagnosis 

embeddings, are best at predicting readmission. Convolutional neural network 

architecture trained on MIMIC-III dataset has outperformed other models for prediction 

of 30-day ICU readmission. 

By adopting this data-driven approach, we aspire to alleviate the premature discharge or 

transfer of patients. Correctly identified patients can be benefitted with long stays in the 

ICU, allowing them to receive the necessary medical attention. On the other hand, by 

provision of timely decision-making support to clinicians, proposed ICURP framework 

will contribute to reducing unnecessary readmissions, thereby minimizing the financial 

burden imposed on healthcare facilities. The implementation of our approach can 

optimize resource allocation, improve patient outcomes, and enhance the overall 

efficiency of ICU care. 

Our next objective is to investigate alternative methods for effectively combining all data 

modalities to improve the performance of prediction results. We also aim to explore other 

relevant data features that can be helpful to improve our results as MIMIC-III dataset is 

huge and we have just used a little data from it. 
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