
Discrete Symmetry Analysis of 

Some Partial Differential Equations 

and Related Exact Solutions  

 
A thesis presented for the degree of 

MS Mathematics 

 

 
 

Submitted by: Syed Tahirul Husnain 

Supervisor: Dr. Tooba Feroze 

 

Department of Mathematics 

School of Natural Sciences 

National University of Sciences and Technology 

Islamabad, Pakistan 

2017 



Discrete Symmetry Analysis of
Some Partial Differential

Equations and Related Exact
Solutions

A thesis presented for the degree of

MS Mathematics

Submitted by: Syed Tahirul Husnain
Supervisor: Dr. Tooba Feroze

Department of Mathematics

School of Natural Sciences

National University of Sciences and Technology

Islamabad, Pakistan

2017







Acknowledgements

I am grateful to Allah, my parents and family. I am indebted to my supervisor
Dr. Tooba Feroze and the entire faculty of SNS, NUST, for their guidance
and support. I am also thankful to the administrative and support staff
especially Tanveer bhai.

i



Contents

Preamble iv

1 Lie Point Symmetries of Differential Equations 1
1.1 One-Parameter Lie Groups of Point Transformations and their

Infinitesimal Generators . . . . . . . . . . . . . . . . . . . . . 1
1.2 Multi-Parameter Lie Groups of Point Transformations and

their Infinitesimal Generators . . . . . . . . . . . . . . . . . . 5
1.3 How to Find Lie Point Symmetries of an Ordinary Differential

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Lie Point Transformations and their Prolongations . . . 6
1.3.2 Symmetry Condition . . . . . . . . . . . . . . . . . . . 8
1.3.3 Lie Algebra of Infinitesimal Generators . . . . . . . . . 9

2 Discrete Symmetries Analysis of Differential Equations 11
2.1 Core Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Basic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Improvements in the Method . . . . . . . . . . . . . . . . . . . 24

2.3.1 Canonical Coordinates . . . . . . . . . . . . . . . . . . 24
2.3.2 Nonlinear Constraints . . . . . . . . . . . . . . . . . . 26
2.3.3 Inequivalent Discrete Symmetries . . . . . . . . . . . . 31

2.4 Some Well Known Differential Equations and their Inequiva-
lent Discrete Symmetries . . . . . . . . . . . . . . . . . . . . . 36

2.5 Review of Group Invariant Solutions . . . . . . . . . . . . . . 38
2.5.1 Method for Obtaining Group Invariant Solutions of

ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 Method for Obtaining Group Invariant Solutions of PDEs 40

ii



3 Discrete Symmetries Analysis of Korteweg de Vries Equation
and Related Exact Solutions 42
3.1 Discrete Symmetries Analysis . . . . . . . . . . . . . . . . . . 42

3.1.1 Infinitesimal Generators of (One-Parameter) Lie Groups
of Point Symmetries of the KdV Equation . . . . . . . 43

3.1.2 Corresponding Lie Groups of Point Symmetries . . . . 43
3.1.3 Nonzero Structure Constants . . . . . . . . . . . . . . 43
3.1.4 Nonlinear Constraints . . . . . . . . . . . . . . . . . . 43
3.1.5 Inequivalent Symmetries . . . . . . . . . . . . . . . . . 50
3.1.6 Solution of the System of Determining Equations . . . 55
3.1.7 Symmetry Condition . . . . . . . . . . . . . . . . . . . 59

3.2 Related Exact Solutions . . . . . . . . . . . . . . . . . . . . . 62

4 Discrete Symmetries Analysis of a Particular Nonlinear Fil-
tration Equation 66
4.1 Discrete Symmetries Analysis . . . . . . . . . . . . . . . . . . 67

4.1.1 Infinitesimal Generators of (One-Parameter) Lie Groups
of Point Symmetries of the NLF Equation . . . . . . . 67

4.1.2 Corresponding Lie Groups of Point Symmetries . . . . 67
4.1.3 Nonzero Structure Constants . . . . . . . . . . . . . . 68
4.1.4 Nonlinear Constraints . . . . . . . . . . . . . . . . . . 68
4.1.5 Inequivalent Symmetries . . . . . . . . . . . . . . . . . 80
4.1.6 Solution of the System of Determining Equations . . . 88
4.1.7 Symmetry Condition . . . . . . . . . . . . . . . . . . . 94

4.2 Related Exact Solutions . . . . . . . . . . . . . . . . . . . . . 97

Summary 101

Appendix 103
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Topological Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105

iii



Preamble

There are many ingenious techniques for solving differential equations. Sur-
prisingly, many of these techniques emanate from a unified theory of continu-
ous symmetries of differential equations. These numerous techniques are ac-
tually specific cases of symmetry methods for solving differential equations.
Symmetry methods for differential equations were first studied by Marius
Sophus Lie (17 December 1842 - 18 February 1899). He was a Norwegian
mathematician. He largely created the theory of continuous symmetry, and
applied it to the study of geometry and differential equations. His primary
inspiration was Galois’s theory. In nineteenth century, Evariste Galois (25
October 1811 - 31 May 1832) had used group theory to solve algebraic (poly-
nomial) equations that were quadratic, cubic, and quartic. Lie initiated his
program on the basis of analogy. If finite groups were required to decide
on the solvability of finite-degree polynomial equations, then infinite groups,
groups depending continuously on one or more real or complex parameters,
would probably be involved in the treatment of ordinary and partial differ-
ential equations.

It turned out that the continuous groups which Lie sought were the groups
of symmetries of the differential equations, which depended continuously on
one or more real or complex parameters. Such groups of symmetries were
later called Lie groups. Lie developed conditions for finding such symme-
tries. Symmetries of differential equations which are outside such Lie groups
are called discrete symmetries. There are many applications of discrete sym-
metries of differential equations, some major applications are discussed in
[1-4].

Many techniques have been developed for finding discrete symmetries,
but often, either the symmetry condition is too difficult to solve, that is,
the resulting system of determining equations is very difficult to solve, or
the technique does not give all the discrete symmetries of the differential
equation. Peter H. Hydon has developed an indirect method, for construct-
ing discrete symmetries of differential equations, having a finite dimensional
Lie algebra of infinitesimal generators of its (one-parameter) Lie groups of
point symmetries [1-3, 5-8] His method is based on the observation that ev-
ery point symmetry yields an automorphism of the Lie algebra of the Lie
point symmetry generators. The method not only results in an easier system
of determining equations, uncoupled, but it is also exhaustive, that is, all

iv



discrete symmetries are obtained.
My work concerns reviewing Peter H. Hydon’s method, and calculating

all discrete point symmetries of two partial differential equations using his
method. As an immediate application of discrete symmetries, group invari-
ant solutions of the equations, corresponding to the basis vectors of the Lie
algebra, will be investigated for further solutions under transformations due
to the discrete symmetries.

v



Chapter 1

Lie Point Symmetries of
Differential Equations

The purpose of this chapter is to concisely review some fundamental concepts
related to Lie point symmetries of differential equations. Basic definitions
and notations are presented. All the theorems are stated without proofs.
Appropriate references are given for detail. Our goal is to be able to find
Lie groups of point symmetries of differential equations. Some prerequisite
definitions and concepts are discussed in the appendix.

1.1 One-Parameter Lie Groups of Point Trans-

formations and their Infinitesimal Gener-

ators

We start this section with the definition of an r-parameter Lie group [9].

Definition 1.1.1

An r-parameter Lie group is a group G which also carries the structure
of an r-dimensional smooth manifold in such a way, that both, the group op-
eration

m : G×G 7−→ G , m(g, h) = g.h , g, h ∈ G ,
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and the inversion

i : G 7−→ G , i(g) = g−1 , g ∈ G ,

are smooth maps between manifolds.

For applications of Lie groups to differential equations we consider the trans-
formation of coordinates. Such transformations form a Lie transformation
group [10].

Definition 1.1.2

Let M be a sooth manifold and G be a Lie group. The group G is called a
Lie transformation group of M if there is a smooth map

ϕ : G×M 7−→ M , ϕ(g, z) = gz ,

such that the following conditions are satisfied

(1) (g1.g2) z = g1(g2z) for all z ∈ M and g1, g2 ∈ G,
(2) ez = z for all z ∈ M where e is the identity element of G.

Now we discuss a specific Lie transformation group called one-parameter
Lie transformation group [11]. Consider

ẑ = φ(z, ϵ) , (1.1)

where φ = (φ1, φ2, · · · , φn). ẑ = (ẑ1, ẑ2, · · · , ẑn) and z = (z1, z2, · · · , zn)
belong to an open domain D ⊂ Rn. The group operation is ϕ(ϵ, δ) where
ϵ, δ ∈ I ⊂ R are the group parameters. If ẑ = φ(z, ϵ) and ˆ̂z = φ(ẑ, δ) then

ˆ̂z = φ(z, ϕ(ϵ, δ)) , (1.2)

where ẑ and ˆ̂z lie in D.

In its standard form, such a group can be re-parameterized such that the
group operation is given by

ϕ(ϵ, δ) = ϵ+ δ , (1.3)
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the identity of the transformation group is ϵ = 0 and the inverse is −ϵ.

Writing eq.(1.1) in its Taylor series at ϵ = 0, we obtain

ẑ = z+ ϵ
∂φ

∂ϵ
(z, ϵ)

∣∣∣
ϵ=0

+O(ϵ2) . (1.4)

From this we define

ξ(z) =
∂φ

∂ϵ
(z, ϵ)

∣∣∣
ϵ=0

. (1.5)

This definition is used in the following theorem, known as Lie’s first fun-
damental theorem [11]. This theorem provides us with an algorithmic
method to re-parameterize a one-parameter transformation group such that
it is of the standard form.

Theorem 1.1.3

There exists a parameterization τ(ϵ) such that the Lie group of transforma-
tions eq.(1.1) is equivalent to the solution of the initial value problem for the
autonomous system of first order ordinary differential equations

dẑ

dτ
= ξ(ẑ) , (1.6)

with ẑ = z when τ = 0. In particular

τ(ϵ) =

∫ ϵ

0

β(ϵ′) dϵ′ , (1.7)

where

β(ϵ) =
∂ϕ

∂b
(a, b)

∣∣∣
(a,b)=(ϵ,ϵ−1)

, β(0) = 1 . (1.8)

In terms of ϵ the one-parameter group is given by the solution of the initial
value problem

dẑ

dϵ
= β(ϵ) ξ(ẑ) . (1.9)

We now introduce a representation of a one-parameter Lie group of transfor-
mations by way of a group generator [10, 11].
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Definition 1.1.4

The infinitesimal generator of the one-parameter Lie group of transfor-
mations is defined by the linear differential operator

X = ξ(z).∇ = ξi(z)
∂

∂zi
, (1.10)

where
ξ(z) = (ξ1(z), ξ2(z), · · · , ξn(z)) ,

and ∇ is the gradient operator.

The following theorem [10, 11] shows how can we write the one-parameter
Lie group of transformations in terms of this generator.

Theorem 1.1.5

The one-parameter Lie group of transformations eq.(1.1) can be written as

ẑ = φ(z, ϵ) = eϵXz = z+ ϵXz+
ϵ2

2!
X2z+O(ϵ3) (1.11)

=
∞∑
k=0

ϵk

k!
Xkz , (1.12)

where the linear operator X is defined by eq.(1.10) and Xk = XXk−1.

This theorem can be generalized [10, 11] to any analytic function as fol-
lowing.

Theorem 1.1.6

Let f be an analytic function. For a one-parameter Lie group of transforma-
tions eq.(1.1) with infinitesimal generator eq.(1.10) it follows that

f(ẑ) = f(eϵXz) = eϵXf(z) . (1.13)
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1.2 Multi-Parameter Lie Groups of Point Trans-

formations and their Infinitesimal Gener-

ators

We now generalize one-parameter Lie group of transformations to r-parameter
Lie group of transformations. Consider

ẑ = φ(z, ϵ) . (1.14)

As before, φ = (φ1, φ2, · · · , φn). ẑ = (ẑ1, ẑ2, · · · , ẑn) and z = (z1, z2, · · · , zn)
belong to an open domain D ⊂ Rn, but ϵ = (ϵ1, ϵ2, · · · , ϵn) ∈ I ⊂ Rn. The
group operation is given by ϕ(ϵ, δ).

Such groups also have an analogous version of Lie’s first fundamental theo-
rem [10, 11].

The vector ξ(z) becomes a matrix ξαi(x) in case of r -parameter group, where
α = 1, 2, · · · , r and i = 1, 2, · · · , n.

Now we define the infinitesimal generators of an r -parameter Lie group of
transformations [10, 11].

Definition 1.2.1

The infinitesimal generator Xα, corresponding to the parameter ϵα of the
r-parameter Lie group of transformations eq.(1.14) is

Xα = ξαi(z)
∂

∂zi
, α = 1, 2, · · · , r . (1.15)

The r -parameter Lie group of transformations can be written as

ẑ = φ(z, ϵ) =
r∏

α=1

exp(ϵαXα) z . (1.16)
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1.3 How to Find Lie Point Symmetries of an

Ordinary Differential Equation

In this section we discuss how to find Lie point symmetries of an ordinary
differential equation (ODE). Similar theory exists for partial differential equa-
tions (PDE) also, its detail can be read from [12], for instance.

1.3.1 Lie Point Transformations and their Prolonga-
tions

Since there is one dependent and one independent variable in an ODE,
eq.(1.1) becomes

x̂ = x̂(x, y, ϵ) , ŷ = ŷ(x, y, ϵ) . (1.17)

Likewise eq.(1.5) becomes

ξ(x, y) =
∂x̂

∂ϵ
(x, y, ϵ)

∣∣∣
ϵ=0

, η(x, y) =
∂ŷ

∂ϵ
(x, y, ϵ)

∣∣∣
ϵ=0

. (1.18)

Henceforth, the entire group eq.(1.17) will be denoted by Γ(ϵ) and a particular
member of this group will be denoted by Γϵ. That is

Γϵ : (x, y) 7−→ (x̂(x, y, ϵ), ŷ(x, y, ϵ)). (1.19)

If we want to apply eq.(1.17) to an ODE

H(x, y, y′, ... , y(n)) = 0 , (1.20)

we must prolong the point transformation eq.(1.17) to the derivatives y(k),
k = 1, 2, ..., n. We calculate ŷ(k) recursively as

ŷ(k) ≡ dkŷ

dx̂k
=

dŷ(k−1)

dx̂
=

Dxŷ
(k−1)

Dxx̂
, ŷ(0) ≡ ŷ , (1.21)

where Dx is the total derivative with respect to x

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · . (1.22)
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Corresponding to eq.(1.4) we also have

x̂ = x+ ϵ ξ(x, y) +O(ϵ2),

ŷ = y + ϵ η(x, y) +O(ϵ2),

ŷ′ = y′ + ϵ η′(x, y, y′) +O(ϵ2),

...

ŷ(n) = y(n) + ϵ η(n)(x, y, y′, ... , y(n)) +O(ϵ2),

(1.23)

where η′, η′′, · · · , η(n) are defined by

η′ =
∂ŷ′

∂ϵ

∣∣∣
ϵ=0

, η′′ =
∂ŷ′′

∂ϵ

∣∣∣
ϵ=0

, · · · , η(n) = ∂ŷn

∂ϵ

∣∣∣
ϵ=0

, (1.24)

and can be computed [12], using

η(k) = Dxη
(k−1) − y(k)Dxξ , η(0) ≡ η. (1.25)

For example

η′ = ηx + (ηy − ξx)y
′ − ξyy

′2 , (1.26)

η′′ = ηxx + (2ηxy − ξxx)y
′ − (ηyy − 2ξxy)y

′2 (1.27)

− ξyyy
′3 + (ηy − 2ξx − 3ξyy

′)y′′ .

Now we seek prolongation of X, the infinitesimal generator of eq.(1.17), such
that eq.(1.23) can be written as

x̂ = x+ ϵXx+O(ϵ2),

ŷ = y + ϵXy +O(ϵ2),

ŷ′ = y′ + ϵXy′ +O(ϵ2),

...

ŷ(n) = y(n) + ϵXy(n) +O(ϵ2).

(1.28)

This prolonged generator [12], is given by

X(n) = ξ
∂

∂x
+ η

∂

∂y
+ η′

∂

∂y′
+ · · · + η(n)

∂

∂y(n)
. (1.29)

When there is no ambiguity X(n) is written as X.
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1.3.2 Symmetry Condition

We are now equipped with all the mathematical machinery to state the sym-
metry condition [12] for an ODE and use it to find its Lie point symmetries.

Theorem 1.3.1

An ODE
H(x, y, y′, ... , y(n)) = 0 ,

admits a group of symmetries with generator X if and only if

XH = 0,

holds.

Example 1.3.2

As an example [12] we now calculate the symmetries of the second order
ODE y′′ = 0. Here H(x, y, y′, y′′) = y′′. We first prolong X to X(2). That is

X = ξ
∂

∂x
+ η

∂

∂y
+ η′

∂

∂y′
+ η′′

∂

∂y′′
. (1.30)

Applying X to H we obtain XH = η′′. Therefore, the symmetry condition
is

η′′ = 0,

η′′ = ηxx + (2ηxy − ξxx)y
′ − (ηyy − 2ξxy)y

′2

− ξyyy
′3 + (ηy − 2ξx − 3ξyy

′)y′′ = 0 .

(1.31)

This leads to the system of PDEs

ηxx = 0,

2ηxy − ξxx = 0,

ηyy − 2ξxy = 0,

ξyy = 0.

(1.32)

Solving the system we obtain

ξ(x, y) = a1 + a2x+ a3y + a4xy + a5x
2,

η(x, y) = a6 + a7x+ a8y + a5xy + a4y
2.

(1.33)
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Here ai, i = 1, · · · , 8 are arbitrary constants.

So the most general one-parameter Lie group of point symmetries of the
ODE, y′′ = 0 is obtained by the infinitesimal generator

X = (a1 + a2x+ a3y + a4xy + a5x
2)

∂

∂x

+ (a6 + a7x+ a8y + a5xy + a4y
2)

∂

∂y
. (1.34)

1.3.3 Lie Algebra of Infinitesimal Generators

We define the algebraic structure Lie algebra [10] before we say more about
eq.(1.34).

Definition 1.3.3

A Lie algebra L is a vector space over a field F on which a product [ , ]
called the Lie bracket or commutator is defined with the properties

(1) [X,Y] ∈ L for all X,Y ∈ L.

(2) [X, αY + βZ] = [X, αY] + [X, βZ] for all X,Y,Z ∈ L
and for all α, β ∈ F .

(3) [X,Y] = −[Y,X] for all X,Y ∈ L.

(4) [X, [Y,Z]] + [Z, [X,Y]] + [Y, [Z,X]] = 0 for all X,Y,Z ∈ L.

From (3) it follows that [X,X] = 0. A Lie algebra is a called abelian if
[X,Y] = 0 for all X,Y ∈ L.

Infinitesimal generators form a Lie algebra, with the commutator defined
as

[X,Y] = XY −YX. (1.35)

For example the generators eq.(1.34) form a Lie algebra. The basis for this
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Lie algebra are, Xi, infinitesimal generators corresponding to ai = 1 and
aj ̸=i = 0. Namely

X1 =
∂

∂x
, X5 = x2 ∂

∂x
+ xy

∂

∂y
,

X2 = x
∂

∂x
, X6 =

∂

∂y
,

X3 = y
∂

∂x
, X7 = x

∂

∂y
,

X4 = xy
∂

∂x
+ y2

∂

∂y
, X8 = y

∂

∂y
.

(1.36)

Since [Xi,Xj] ∈ L we express these commutators as a linear combination
of the basis elements. That is κiXi. We give all κi a special name, struc-
ture constants and also give them a special notation

[Xi,Xj] = ckijXk, (1.37)

For example in eq.(1.36) [X1,X5] = 2X2 +X8, so c215 = 2 and c815 = 1.

Axiom (3) of Definition (1.3.3) gives ckij = −ckji.

We conclude this section with listing all the nonzero structure constants
for eq.(1.36). They completely determine the Lie algebra of eq.(1.36).

c112 = 1, c121 = −1, c727 = 1, c772 = −1, c846 = −2, c864 = 2,

c314 = 1, c341 = −1, c435 = 1, c453 = −1, c547 = −1, c574 = 1,

c215 = 2, c251 = −2, c136 = −1, c163 = 1, c448 = −1, c484 = 1,

c815 = 1, c851 = −1, c837 = 1, c873 = −1, c756 = −1, c765 = 1,

c617 = 1, c671 = −1, c237 = −1, c273 = 1, c668 = 1, c686 = −1,

c323 = −1, c332 = 1, c338 = −1, c383 = 1, c778 = 1, c787 = −1,

c525 = 1, c552 = −1, c246 = −1, c264 = 1.

10



Chapter 2

Discrete Symmetries Analysis
of Differential Equations

Many techniques have been developed for finding discrete symmetries of dif-
ferential equations, but often, either the symmetry condition is too difficult
to solve, that is, the resulting system of determining equations is very dif-
ficult to solve or the technique does not give all the discrete symmetries of
the differential equation. Peter H. Hydon has developed an indirect method
for constructing discrete symmetries of differential equations, [1-3, 5-8] hav-
ing a finite dimensional Lie algebra of infinitesimal generators of its (one-
parameter) Lie groups of point symmetries. This chapter describes Peter H.
Hydon’s method. The method not only results in an easier system of deter-
mining equations; uncoupled, but it is also exhaustive, that is, all discrete
symmetries are obtained.

Only the method for ODEs will be explained. The method for PDEs
is almost the same. Explaining the two methods simultaneously requires
the use of generalized variables which would make understanding difficult.
Appropriate additional detail will be given for PDEs where required.

2.1 Core Theory

This section presents the core theory, that is, definitions, main theorems,
their proofs and some exmaples for the elaboration of the theory.

We start the section with the definition of a discrete symmetry [1-3].
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Definition 2.1.1

A point symmetry of a differential equation which does not belong to any
(one-parameter) Lie group of point symmetries of the differential equation is
called a discrete symmetry.

In other words, discrete point symmetries are outside the r -parameter Lie
group of point symmetries. They may still be related by continuous param-
eters, but they can never form a Lie group. One simple reason is that, these
point symmetries do not have the identity symmetry among them, which
is obviously inside the Lie group. Corresponding to discrete symmetry, the
point symmetries inside the r -parameter Lie group are also called continuous
point symmetries.

Example 2.1.2

As an example [1] consider the Chazy equation

y′′′ = 2yy′′ − 3(y′)2 + λ(6y′ − y2)2. (2.1)

Three of its discrete symmetries are

(x̂, ŷ) ∈
{
(−x,−y), (−1

x
, x2y + 6x), (

1

x
,−x2y − 6x)

}
. (2.2)

Now we recall some notation and definitions from chapter 1. Consider an
ODE

y(n) = ω(x, y, y′, ..., y(n−1)), n ≥ 2. (2.3)

A point symmetry of eq.(2.3), continuous or discrete, will be denoted as

Γ : (x, y) 7−→ (x̂(x, y), ŷ(x, y)), (2.4)

x̂ = x̂(x, y), ŷ = ŷ(x, y). (2.5)

If such a point symmetry belongs to a (one-parameter) Lie group of point
symmetries Γ(ϵ), then the infinitesimal generator of the group is

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (2.6)
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As stated in the beginning of this chapter, eq.(2.3) is required to have a finite
dimensional Lie algebra, L, of infinitesimal generators of its (one-parameter)
Lie groups of point symmetries. If the dimension of L is R then the basis
elements of L are denoted by Xi, i = 1, · · · , R.

For emphasis Theorem (1.1.6) is being re-stated here specialized to two vari-
ables, (x, y).

Theorem 2.1.3

If F (x, y) is an infinitely differentiable function, then for a (one-parameter)
Lie group of point symmetries Γ(ϵ) with infinitesimal generator eq.(2.6), we
have

F (x̂, ŷ) = F (eϵXx, eϵXy) = eϵXF (x, y) = ΓF (x, y).

The following definition [1] is motivated by the above theorem.

Definition 2.1.4

Action of a point symmetry , Γ, continuous or discrete, on an infinitely
differentiable function F , is defined as

ΓF (x, y) = F (x̂, ŷ).

Before proceeding further we list some properties of the action of a point
symmetry on an infinitely differentiable function.

Γ
(
cF (x, y)

)
= cΓF (x, y),

Γ
(
F (x, y) +G(x, y)

)
= ΓF (x, y) + ΓG(x, y),

Γ−1F (x̂, ŷ) = F (x, y),

ΓΓ−1F (x̂, ŷ) = F (x̂, ŷ),

Γ−1ΓF (x, y) = F (x, y),

Γx = x̂,

Γy = ŷ,

Γ−1x̂ = x,

Γ−1ŷ = y.

(2.7)
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Now we state the two main theorems [1-3] on which the entire theory of the
method is based.

Theorem 2.1.5

Let L be the Lie algebra of infinitesimal generators of (one-parameter) Lie
groups of point symmetries of a differential equation. Let X ∈ L and
Γ : (x, y) 7−→ (x̂(x, y), ŷ(x, y)) be any symmetry, continuous or discrete, of
the differential equation. Also, let Γ(δ) be the Lie group of point symmetries
generated by X. Then, ΓΓ(δ)Γ−1 is also a Lie group of point symmetries of
the differential equation and its generator is ΓXΓ−1 ∈ L.

Theorem 2.1.6

For an arbitrary Γ, continuous or discrete, if {Xi}Ri=1 is a basis of L then
{ΓXiΓ

−1}Ri=1 is a basis of L as well.

The following example [1] will help us understand the preceding two the-
orems.

Example 2.1.7

Consider the Chazy equation again,

y′′′ = 2yy′′ − 3(y′)2 + λ(6y′ − y2)2. (2.8)

It has a three dimensional Lie algebra of infinitesimal generators of its (one-
parameter) Lie groups of point symmetries. Following are the basis elements

X1 =
∂

∂x
, (2.9)

X2 = x
∂

∂x
− y

∂

∂y
, (2.10)

X3 = x2 ∂

∂x
− (2xy + 6)

∂

∂y
. (2.11)
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Following are the corresponding Lie groups

Γ1(ϵ) (x̂, ŷ) = (x+ ϵ, y), (2.12)

Γ2(ϵ) (x̂, ŷ) = (eϵx, e−ϵy), (2.13)

Γ3(ϵ) (x̂, ŷ) =

(
x

1− ϵx
, [ y(1− ϵx)− 6ϵ ](1− ϵx)

)
. (2.14)

We use the discrete symmetry

Γ (x̂, ŷ) = (−x,−y), (2.15)

of eq.(2.8) to construct another basis for Lie algebra of infinitesimal gener-
ators of (one-parameter) Lie groups of point symmetries of eq.(2.8). In this
case

Γ = Γ−1. (2.16)

ΓΓ1(ϵ)Γ
−1 (x̂, ŷ) = (−((−x) + ϵ), −((−y)) ), (2.17)

= ( x− ϵ, y ). (2.18)

By Theorem (2.1.5) this is a (one-parameter) Lie group of point symmetries
of eq.(2.8) and its generator is ΓX1Γ

−1.

Now we calculate the generator

dx̂

dϵ

∣∣∣
ϵ=0

= (−1)|ϵ=0 = −1. (2.19)

dŷ

dϵ

∣∣∣
ϵ=0

= (0)|ϵ=0 = 0. (2.20)

Therefore

ΓX1Γ
−1 = − ∂

∂x
. (2.21)

Similarly

ΓΓ2(ϵ)Γ
−1 (x̂, ŷ) = (−(eϵ(−x)), −(e−ϵ(−y)) ), (2.22)

= (eϵx, e−ϵy). (2.23)
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In this case ΓΓ2(ϵ)Γ
−1 = Γ2(ϵ). Therefore

ΓX2Γ
−1 = x

∂

∂x
− y

∂

∂y
. (2.24)

Also

ΓΓ3(ϵ)Γ
−1 x̂ = −

(
(−x)

1− ϵ (−x)

)
, (2.25)

ŷ = −
(
[ (−y)(1− ϵ (−x))− 6ϵ ](1− ϵ (−x))

)
, (2.26)

x̂ =
x

1 + ϵx
, (2.27)

ŷ = [ y(1 + ϵx) + 6ϵ ](1 + ϵx). (2.28)

By Theorem (2.1.5) this is a (one-parameter) Lie group of point symmetries
of eq.(2.8) and its generator is ΓX3Γ

−1.

Now we calculate the generator

dx̂

dϵ

∣∣∣
ϵ=0

=
−x2

(1 + ϵx)2

∣∣∣
ϵ=0

= −x2. (2.29)

dŷ

dϵ

∣∣∣
ϵ=0

= 2xy + 6. (2.30)

Therefore

ΓX3Γ
−1 = −x2 ∂

∂x
+ (2xy + 6)

∂

∂y
. (2.31)

Next we will show that ΓX1Γ
−1, ΓX2Γ

−1 and ΓX3Γ
−1 are linearly indepen-

dent and therefore forms a basis.

Consider
c1ΓX1Γ

−1 + c2ΓX2Γ
−1 + c3ΓX3Γ

−1 = 0, (2.32)

c1

(
− ∂

∂x

)
+ c2

(
x
∂

∂x
− y

∂

∂y

)
+ c3

(
− x2 ∂

∂x
+ (2xy + 6)

∂

∂y

)
= 0, (2.33)
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(
− c1 + c2x− c3x

2

)
∂

∂x
+

(
− c2y + c3(2xy + 6)

)
∂

∂y
= 0. (2.34)

This implies

−c1 + c2x− c3x
2 = 0, (2.35)

−c2y + c3(2xy + 6) = 0. (2.36)

So
c1 = c2 = c3 = 0. (2.37)

Therefore, ΓX1Γ
−1, ΓX2Γ

−1 and ΓX3Γ
−1 are linearly independent.

In terms of the original basis

(ΓX1Γ
−1, ΓX2Γ

−1, ΓX3Γ
−1) = (−X1, X2, −X3). (2.38)

In matrix form X1

X2

X3

 =

−1 0 0
0 1 0
0 0 −1

ΓX1Γ
−1

ΓX2Γ
−1

ΓX3Γ
−1

 . (2.39)

It should be noted that the symmetry Γ (x̂, ŷ) = (−x,−y) has induced an
automorphism of the Lie algebra of infinitesimal generators represented by
the matrix

B =

−1 0 0
0 1 0
0 0 −1

 . (2.40)

How these automorphisms are related to the point symmetries and what role
do they play in finding point symmetries is the subject of the next section.
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2.2 Basic Method

Our aim is not to construct an alternative basis (Example 2.1.7) for the Lie
algebra using a continuous or discrete point symmetry but it is almost the
opposite. We will use the basis correponding to a point symmetry to find
the point symmetry itself, which is what we discuss in this section.

Theorems (2.1.5) and (2.1.6) say that for a fixed basis {Xi}Ri=1 of L and
an arbitrary but fixed symmetry Γ, continuous or discrete, we obtain the
corresponding basis {ΓXiΓ

−1}Ri=1 of L. Since both are bases of the same
Lie algebra, we can write each Xi as a linear combination of ΓXiΓ

−1’s. The
following Lemma [1-3] summarizes this argument.

Lemma 2.2.1

Every point symmetry Γ, continuous or discrete, of eq.(2.3) induces an au-
tomorphism of the Lie algebra of infinitesimal generators of (one-parameter)
Lie groups of point symmetries of eq.(2.3). For each such Γ, there exists a
constant nonsingular N ×N matrix B = (bli) such that

Xi = bli ΓXlΓ
−1. (2.41)

This lemma gives us a method for calculating the discrete point symmetries
of a given differential equation, with a known finite dimensional Lie algebra.
The most basic and direct approach is discussed in this section. Improve-
ments in the method will be introduced in the next section.

The method has two stages. First, we apply the lemma to obtain the follow-
ing first-order PDEs which every point symmetry, continuous or discrete, of
the eq.(2.3) must satisfy.

Xix̂ = bli ΓXlΓ
−1x̂, (2.42)

Xix̂ = bli ΓXlx, (2.43)

Xix̂ = bli Γ ξl(x, y), (2.44)

Xix̂ = bli ξl(x̂, ŷ), (2.45)

Xix̂ = bli ξ̂l. (2.46)
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Likewise

Xiŷ = bli ΓXlΓ
−1ŷ, (2.47)

Xiŷ = bli ΓXly, (2.48)

Xiŷ = bli Γ ηl(x, y), (2.49)

Xiŷ = bli ηl(x̂, ŷ), (2.50)

Xiŷ = bli η̂l. (2.51)

Eq.(2.46) and eq.(2.51) together constitute a system of first order PDEs.
This system can be solved by the method of characteristics to obtain (x̂, ŷ)
in terms of x, y, bli and some unknown constants or functions. The solutions
of this system always include the trivial symmetry (x̂, ŷ) = (x, y), corre-
sponding to bli = δli.

In the second stage, we apply the symmetry condition on the general so-
lution of eq.(2.46) and eq.(2.51). By construction every point symmetry Γ,
continuous or discrete, of eq.(2.3) satisfies this system of PDEs but it may
have solutions which are not point symmetries of eq.(2.3). This second stage
separates such non-symmetry solutions from the general solution of this sys-
tem of PDEs.

This two-stage process gives a complete list of the point symmetries of
eq.(2.3). Since we already know about the Lie point symmetries, any sym-
metries other than them are the discrete symmetries of eq.(2.3).

Before we solve an example of the method we learn to write eq.(2.46) and
eq.(2.51) in matrix form and discuss some of its salient features.

Eq.(2.46) can be written in matrix form as
X1x̂
X2x̂
...

Xnx̂

 =


b11 b21 · · · bn1
b12 b22 · · · bn2
...

...
. . .

...
b1n b2n · · · bnn



ξ̂1
ξ̂2
...

ξ̂n

 . (2.52)
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Likewise, eq.(2.51) can be written as
X1ŷ
X2ŷ
...

Xnŷ

 =


b11 b21 · · · bn1
b12 b22 · · · bn2
...

...
. . .

...
b1n b2n · · · bnn



η̂1
η̂2
...
η̂n

 . (2.53)

Combining the two, we obtain
X1x̂ X1ŷ
X2x̂ X2ŷ
...

...
Xnx̂ Xnŷ

 =


b11 b21 · · · bn1
b12 b22 · · · bn2
...

...
. . .

...
b1n b2n · · · bnn



ξ̂1 η̂1
ξ̂2 η̂2
...

...

ξ̂n η̂1

 . (2.54)

This system of equations will henceforth be called system of determining
equations.

Following are some salient features of the system (2.54) which makes it solv-
ing easier.

(1) All the partial derivatives in the system are of first order.

(2) All the PDEs in the system are linear.

(3) All the PDEs in the system are un-coupled.

(4) If the parameters in the symmetry condition are allowed to take com-
plex values then this method also gives the complex discrete symmetries.

If we are to find the discrete symmetries of a PDE instead of the ODE
(2.3) there will be additional columns for other independent variables. For
example, a PDE with one dependent variable u, and two independent vari-
ables (x, t), system (2.54) will take the form


X1x̂ X1t̂ X1û
X2x̂ X2t̂ X2û
...

...
...

Xnx̂ Xnt̂ Xnû

 =


b11 b21 · · · bn1
b12 b22 · · · bn2
...

...
. . .

...
b1n b2n · · · bnn



ξ̂1 τ̂1 η̂1
ξ̂2 τ̂2 η̂2
...

...
...

ξ̂n τ̂n η̂n

 , (2.55)

20



where

Xi = ξi(x, t, u)
∂

∂x
+ τi(x, t, u)

∂

∂t
+ ηi(x, t, u)

∂

∂u
. (2.56)

The rest of the method will remain exactly the same.

Now we give a detailed but simple example [1, 2] of the method.

Example 2.2.2

Consider the ODE
y′′ = tan y′. (2.57)

It has a two dimensional Lie algebra of infinitesimal generators of (one-
parameter) Lie groups of its point symmetries

X1 =
∂

∂x
, (2.58)

X2 =
∂

∂y
. (2.59)

For this ODE the system of determining equations (2.54) becomes[
X1x̂ X1ŷ
X2x̂ X2ŷ

]
=

[
b11 b21
b12 b22

] [
ξ̂1 η̂1
ξ̂2 η̂2

]
, (2.60)

[
X1x̂ X1ŷ
X2x̂ X2ŷ

]
=

[
b11 b21
b12 b22

] [
1 0
0 1

]
, (2.61)

[
X1x̂ X1ŷ
X2x̂ X2ŷ

]
=

[
b11 b21
b12 b22

]
. (2.62)

In addition to some other solutions, which are not point symmetries, the gen-
eral solution of this system eq.(2.62) has all the point symmetries of eq.(2.57).
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Solving the system, we have

X1x̂ = b11, (2.63)

∂x̂

∂x
= b11, (2.64)

x̂ = b11x+ f(y). (2.65)

We also have

X2x̂ = b12, (2.66)

∂x̂

∂y
= b12 = f ′(y), (2.67)

f(y) = b12y + c1. (2.68)

This implies
x̂ = b11x+ b12y + c1. (2.69)

Likewise
ŷ = b21x+ b22y + c2. (2.70)

Therefore, the general solution of eq.(2.62) is

(x̂, ŷ) = (b11x+ b12y + c1, b
2
1x+ b22y + c2). (2.71)

Now we separate the non-symmetry solutions from the general solution
eq.(2.71). By definition eq.(2.71) is a symmetry of eq.(2.57), if and only if

y′′ = tan y′ =⇒ ŷ′′ = tan ŷ′. (2.72)

We calculate ŷ′ and ŷ′′.

ŷ′ =
dŷ

dx̂
=

d(b21x+ b22y + c2)

d(b11x+ b12y + c1)
=

b21 + b22
dy
dx

b11 + b12
dy
dx

=
b21 + b22y

′

b11 + b12y
′ . (2.73)

ŷ′′ =
dŷ′

dx̂
=

d(
b21+b22y

′

b11+b12y
′ )

d(b11x+ b12y + c1)

=
(b11b

2
2 − b21b

1
2)y

′′

(b11 + b12y
′)3

=
(b11b

2
2 − b21b

1
2) tan y

′

(b11 + b12y
′)3

. (2.74)
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Therefore, the symmetry condition is

(b11b
2
2 − b21b

1
2) tan y

′

(b11 + b12y
′)3

= tan
(b21 + b22y

′

b11 + b12y
′

)
. (2.75)

Now we find out what values of bli satisfy eq.(2.75).

Differentiating both sides with respect to y′and comapiring cefficients of tan y′

and tan2 y′ we find that b12 = 0, b11 = 1 and b22 = α = ±1.

Therefore, eq.(2.75) becomes

α tan y′ = tan(b21 + αy′). (2.76)

This further implies b21 = kπ, k ∈ Z. So symmetry condition is satisfied if
and only if [

b11 b21
b12 b22

]
=

[
1 kπ
0 ±1

]
. (2.77)

Therefore, all the point symmetries of eq.(2.57) are

(x̂, ŷ) = (x+ c1, kπx+ αy + c2), α = ±1 k ∈ Z. (2.78)

Since we already know the Lie point symmetries of eq.(2.57), we can separate
them from eq.(2.78) to obtain the discrete symmetries of eq.(2.57).

Following are the discrete symmetries

(x̂, ŷ) = (x+ c1, kπx− y + c2), k ∈ Z, (2.79)

(x̂, ŷ) = (x+ c1, kπx+ y + c2), k ∈ Z− {0}. (2.80)

The only case left, that is, α = 1 and k = 0, are precisely the continuous
point symmetries

(x̂, ŷ) = (x+ c1, y + c2). (2.81)
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2.3 Improvements in the Method

This section discusses improvements in the basic method which was intro-
duced in the last section. Little improvement can be made if the Lie algebra
of infinitesimal generators of the (one-parameter) Lie groups of point sym-
metries is abelian. On the contrary, when the Lie algebra is non-abelian the
system of determining equations can be considerably simplified in two stages
[1-3].

2.3.1 Canonical Coordinates

The only improvement which can be made in the basic method, when the
Lie algebra is abelian, is the use of canonical coordinates. This way atleast
one generator in the basis is simplified. This is especially useful when the
dimension of the Lie algebra is one [2].

Canonical coordinates s(x, y), r(x, y), satisfy

X1s = 1, X1r = 0, (2.82)

so that

X1 =
∂

∂s
. (2.83)

In this case, the system of determining equations eq.(2.54) becomes[
X1ŝ X1r̂

]
= [b11]

[
1 0

]
, (2.84)

∂ŝ

∂s
= b11 ̸= 0,

∂r̂

∂s
= 0 . (2.85)

General solution of eq.(2.85) is

ŝ = b11s+ g(r), r̂ = f(r), (2.86)

for some functions f and g. The application of the symmetry condition on
this transformation determines which functions f , g and constants b11 are
allowable.
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Example 2.3.1

For example [2], consider the ODE

y′′ =
y′

x
+

4y2

x3
. (2.87)

This ODE has a one dimensional Lie algebra of point symmetry generators,
with a basis

X1 = x
∂

∂x
+ y

∂

∂y
. (2.88)

In canonical coordinates

s = ln |x|, r =
y

x
, (2.89)

eq.(2.87) becomes
d2r

ds2
= 4r2 + r. (2.90)

The symmetry condition says

d2r

ds2
= 4r2 + r =⇒ d2r̂

dŝ2
= 4r̂2 + r̂. (2.91)

Calculating d2r̂/dŝ2, we already know r̂ = f(r), and after applying the sym-
metry condition (its calculation is too long, refer to [2], page 5) then convert-
ing back to (x, y) coordinates, we obtain the following inequivalent discrete
symmetries of eq.(2.87)

(x̂, ŷ) ∈

{
(x, y), (−x,−y), (

1

x
,
y

x2
), (−1

x
, − y

x2
)

}
. (2.92)

Note that the identity symmetry has been included here for the sake of com-
pletion, because the above set of discrete symmetries is incidently isomorphic
to the group Z2 × Z2.
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2.3.2 Nonlinear Constraints

The improvements discussed henceforth apply only when the Lie algebra, L,
of infinitesimal generators of the (one-parameter) Lie groups of point sym-
metries is non-abelian.

In this section we discuss certain constraints, nonlinear algebraic equations
involving ckij and bli, on the system of determining equations (2.54) which will
simplify the system considerably.

Theorem 2.3.2

If [Xi,Xj] = ckij Xk then [ ΓXiΓ
−1,ΓXjΓ

−1 ] = ckij ΓXkΓ
−1.

If L is non-abelian, then at least some of the equations [Xi,Xj] = ckij Xk

are nontrivial. Also, the above theorem [1-3] says ΓXiΓ
−1 satisfy the same

commutator relations as Xi. This leads us to the following theorem [1-3].

Theorem 2.3.3

The structure constants ckij and the elements of B = (bli) satisfy the following
equations

cnlmb
l
ib

m
j = ckijb

n
k , all indices are from 1 to dim(L).

If dim(L) = R then these are R3 equations, but

ckij = −ckji and ckii = 0 (2.93)

so we have
R(R2 −R)

2
(2.94)

distinct equations and it is sufficient to restrict attention to i < j.

These constraints on the elements of the matrix B = (bli) simplify the sys-
tem of determining equations (2.54) considerably before we solve it. Thereby
making the system easier to solve.
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The following table lists the number of equations against dim(L) = R, for
2 ≤ R ≤ 10.

R
Number of
equations

2 2
3 9
4 24
5 50
6 90
7 147
8 224
9 324
10 450

The number of equations increase very rapidly as R increases so a very sys-
tematic approach needs to be followed to avoid any complexities. Following
are some guidelines in this regard.

(1) Note that all these equations are nonlinear algebraic equations.

(2) If there is one or more nonzero structure constant with every value of
superscript then the system of equations may become difficult to solve.

(3) If possible start solving the system with a superscript value such that
the structure constant with this superscript value is zero. The left hand side
of the corresponding equations for such a superscript value becomes zero and
all such equations reduce to linear equations. Thereby becoming easier to
solve.

(4) Some equations remain unsolved almost always but such equations may
be used in later calculations.

(5) When the number of equations is too large use of some computer al-
gebra system is recomended.
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Now we give a detailed example [2].

Example 2.3.4

Consider the ODE,
y′′′ = y′′(1− y′′). (2.95)

It has a three dimensional Lie algebra, with the basis

X1 =
∂

∂x
, (2.96)

X2 = x
∂

∂y
, (2.97)

X3 =
∂

∂y
. (2.98)

The only nonzero structure constants are

c312 = 1, c321 = −1. (2.99)

Now we solve the equations

cnlmb
l
ib

m
j = ckijb

n
k , all indices are from 1 to 3. (2.100)

As discussed above we have distinct equations only when we keep i < j. In
this case, (i, j) = (1, 2), (1, 3), (2, 3). Following guideline (3) above, we should
start from n = 1 or n = 2.

For n = 1
c1lm = 0, l,m = 1, 2, 3. (2.101)

The constraints reduce to linear equations

0 = ckijb
1
k, (2.102)

0 = c1ijb
1
1 + c2ijb

1
2 + c3ijb

1
3. (2.103)

When (i, j) = (1, 2)

0 = c112b
1
1 + c212b

1
2 + c312b

1
3, (2.104)

0 = (0)b11 + (0)b12 + (1)b13, (2.105)

0 = b13. (2.106)
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When (i, j) = (1, 3)

0 = c113b
1
1 + c213b

1
2 + c313b

1
3, (2.107)

0 = (0)b11 + (0)b12 + (0)(0), (2.108)

0 = 0. (2.109)

When (i, j) = (2, 3)

0 = c123b
1
1 + c223b

1
2 + c323b

1
3, (2.110)

0 = (0)b11 + (0)b12 + (0)(0), (2.111)

0 = 0. (2.112)

For n = 2
c2lm = 0, l,m = 1, 2, 3. (2.113)

The constraints reduce to linear equations

0 = ckijb
2
k, (2.114)

0 = c1ijb
2
1 + c2ijb

2
2 + c3ijb

2
3. (2.115)

When (i, j) = (1, 2)

0 = c112b
2
1 + c212b

2
2 + c312b

2
3, (2.116)

0 = (0)b21 + (0)b22 + (1)b23, (2.117)

0 = b23. (2.118)

When (i, j) = (1, 3)

0 = c113b
2
1 + c213b

2
2 + c313b

2
3, (2.119)

0 = (0)b21 + (0)b22 + (0)(0), (2.120)

0 = 0. (2.121)

When (i, j) = (2, 3)

0 = c123b
2
1 + c223b

2
2 + c323b

2
3, (2.122)

0 = (0)b21 + (0)b22 + (0)(0), (2.123)

0 = 0. (2.124)
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For n = 3
c3lm = 0, (l,m) ̸= (1, 2), (2, 1). (2.125)

The constraints reduce to nonlinear equations

c312b
1
i b

2
j + c321b

2
i b

1
j = ckijb

3
k, (2.126)

(1)b1i b
2
j + (−1)b2i b

1
j = c1ijb

3
1 + c2ijb

3
2 + c3ijb

3
3, (2.127)

b1i b
2
j − b2i b

1
j = c1ijb

3
1 + c2ijb

3
2 + c3ijb

3
3. (2.128)

When (i, j) = (1, 2)

b11b
2
2 − b21b

1
2 = c112b

3
1 + c212b

3
2 + c312b

3
3, (2.129)

b11b
2
2 − b21b

1
2 = (0)b31 + (0)b32 + (1)b33, (2.130)

b11b
2
2 − b21b

1
2 = b33. (2.131)

When (i, j) = (1, 3)

b11b
2
3 − b21b

1
3 = c113b

3
1 + c213b

3
2 + c313b

3
3, (2.132)

b11(0)− b21(0) = (0)b31 + (0)b32 + (0)b33, (2.133)

0 = 0. (2.134)

When (i, j) = (2, 3)

b12b
2
3 − b22b

1
3 = c123b

3
1 + c223b

3
2 + c323b

3
3, (2.135)

b12(0)− b22(0) = (0)b31 + (0)b32 + (0)b33, (2.136)

0 = 0. (2.137)

We have been able to simplyfy B = (bli) as

B =

b11 b21 b31
b12 b22 b32
0 0 b33

 ,

with further condition
b11b

2
2 − b21b

1
2 = b33. (2.138)

and because B = (bli) is nonsingular, b
3
3 ̸= 0.
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2.3.3 Inequivalent Discrete Symmetries

In this section we improve the method further and learn how to find inequiv-
alent discrete symmetries [1, 7].

Definition 2.3.5

Two point symmetries Γ̃ and Γ of the eq.(2.3) are called equivalent if there
exists an X ∈ L such that Γ̃ = eϵXΓ. Likewise the corresponding induced
automorphisms of the Lie algebra represented with the matrices, say, B̃ and
B respectively are called equivalent as well.

Since we are reducing the number of discrete symmetries to be found, and
hence the number of corresponding matrices which represent the automor-
phisms, this naturally simplifies the system of determining equations (2.54).

Theoretically this improvement is not restricted to non-abelian Lie algebra,
of infinitesimal generators of the (one-parameter) Lie groups of point symme-
tries, but no substantial simplification of the system (2.54) is obtained when
the Lie algebra is abelian. For the non-abelian case improvements discussed
in this section and the nonlinear constraints discussed in the preceding sec-
tion are used simultaneously. We almost always use the nonlinear constraints
first to simplify B = (bli).

Now we define some notation [1, 7]. The matrices C(j) and A(j, ϵ) are
defined as

(C(j))ki = ckij . (2.139)

A(j, ϵ) =
∞∑
n=0

ϵn

n!
(C(j))n = eϵC(j). (2.140)

The following theorem [1, 7] forms the basis for finding inequivalent discrete
symmetries.

Theorem 2.3.6

(1) The automorphism of the Lie algebra L induced by the point symmetry
Γ = eϵXj is represented with the matrix B = A(j, ϵ), here Xj is the basis
element of L.
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(2) If the automorphisms induced by the point symmetries Γ1 and Γ2 are
represented with the matrices B1 and B2 respectively then the automorphism
induced by the point symmetry Γ2 ◦ Γ1 is represented with the matrix B2B1.

(3) If Γ1 and Γ2 = eϵXΓ1 induce automorphisms represented with matrices
B1 and B2 respectively then

B2 = A(1, ϵ1)A(2, ϵ2) · · ·A(R, ϵR)B1.

here R is the dimension of L and ϵj are some parameters.

Inequivalent discrete symmetries are found by solving the system (2.54)
for only the inequivalent matrices. B2 = A(1, ϵ1)A(2, ϵ2) · · ·A(R, ϵR)B1 is
a generic member of the equivalence class of an arbitrary B1. Inequivalent
symmetries are calculated by solving system (2.54) for only one such B2, that
is, by fixing the values of ϵi s. Following a similar argument B1 can also be
replaced by B2 = B1A(1, ϵ1)A(2, ϵ2) · · ·A(R, ϵR).

We illustrate the procedure with an example [1].

Example 2.3.7

Consider the ODE

y′′′ =
1

y3
. (2.141)

It has a two dimensional Lie algebra of point symmetry generators, spanned
by

X1 =
∂

∂x
, (2.142)

X2 = x
∂

∂x
+

3y

4

∂

∂y
. (2.143)

Following are the only nonzero structure constants, they will be used in
solving the system of nonlinear constraints.

c112 = 1, c121 = −1. (2.144)

Now we substitute the respective values of ckij and bli in the system of nonlinear
constraints and solve it.

cnlmb
l
ib

m
j = ckijb

n
k , all indices are from 1 to 2. (2.145)
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For n = 2
c2lm = 0, l,m = 1, 2. (2.146)

The constraints reduce to

0 = ckijb
2
k, (2.147)

0 = c1ijb
2
1 + c2ijb

2
2. (2.148)

When (i, j) = (1, 2)

0 = c112b
2
1 + c212b

2
2, (2.149)

0 = (1)b21 + (0)b22, (2.150)

0 = b21. (2.151)

For n = 1
c1lm = 0, (l,m) ̸= (1, 2), (2, 1). (2.152)

The constraints reduce to

c112b
1
i b

2
j + c121b

2
i b

1
j = ckijb

1
k, (2.153)

(1)b1i b
2
j + (−1)b2i b

1
j = c1ijb

1
1 + c2ijb

1
2. (2.154)

When (i, j) = (1, 2)

(1)b11b
2
2 + (−1)b21b

1
2 = c112b

1
1 + c212b

1
2, (2.155)

(1)b11b
2
2 + (−1)b21b

1
2 = (1)b11 + (0)b12, (2.156)

b11b
2
2 − b21b

1
2 = b11. (2.157)

Since b21 = 0, so b11b
2
2 = b11. Also B is nonsingualr, therefore b11 ̸= 0 and b22 = 1.

Using the nonlinear constraints we have been able to simplyfy B = (bli)
as,

B =

[
b11 0
b12 1

]
, (2.158)

b11 ̸= 0.
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Now we find the inequivalent matrices using Theorem (2.3.6). We first cal-
culate the matrices A(j, ϵ).

C(1) =

[
0 0
−1 0

]
, (2.159)

so

A(1, ϵ) =

[
1 0
−ϵ 1

]
. (2.160)

Likewise

C(2) =

[
1 0
0 0

]
, (2.161)

so

A(2, ϵ) =

[
eϵ 0
0 1

]
. (2.162)

We multiply B with A(1, ϵ)

A(1, ϵ)B =

[
1 0
−ϵ 1

] [
b11 0
b12 1

]
(2.163)

=

[
b11 0

−ϵb11 + b12 1

]
. (2.164)

Choosing ϵ = ϵ1 =
b12
b11
,

−ϵb11 + b12 = −ϵ1b
1
1 + b12 = −

(b12
b11

)
b11 + b12 = 0,

so

A(1, ϵ1)B =

[
b11 0
0 1

]
. (2.165)

Now

A(2, ϵ)A(1, ϵ1)B =

[
eϵ 0
0 1

] [
b11 0
0 1

]
(2.166)

=

[
eϵb11 0
0 1

]
. (2.167)
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Choosing ϵ = ϵ2 = ln 1
|b11|

,

eϵb11 = eϵ2b11 = e
ln 1

|b11| b11 =
b11
|b11|

,

so

A(2, ϵ2)A(1, ϵ1)B =

[
b11
|b11|

0

0 1

]
. (2.168)

Let B̃ = A(2, ϵ2)A(1, ϵ1)B. These are the required inequivalent matrices.
So the inequivalent symmetries satisfy system of determining equations (2.54)
which becomes in this case[

X1x̂ X1ŷ
X2x̂ X2ŷ

]
=

[
b11
|b11|

0

0 1

][
1 0
x̂ 3

4
ŷ

]
, (2.169)

[
X1x̂ X1ŷ
X2x̂ X2ŷ

]
=

[
b11
|b11|

0

x̂ 3
4
ŷ

]
. (2.170)

Its general solution is

(x̂, ŷ) = (
b11
|b11|

x+ c2y
4
3 , c1y), (2.171)

where ci are constants.

Applying the symmetry condition on the general solution we conclude that
b11
|b11|

(c1)
4 = 1 and c2 = 0. Therefore, up to equivalence there is one discrete

symmetry of eq.(2.141)
(x̂, ŷ) = (x, −y). (2.172)

35



2.4 Some Well Known Differential Equations

and their Inequivalent Discrete Symme-

tries

This section lists inequivalent discrete symmetries of some differential equa-
tions obtained by the method described in the previous three sections.

Harry-Dym equation.
∂u

∂t
= u3∂

3u

∂t3
. (2.173)

Inequivalent discrete symmetries [1].

(x̂, t̂, û) ∈

{
(αx, βt, αβu), (−α

x
, βt,

αβu

x2
)

}
α, β ∈ {1,−1}. (2.174)

Burger’s equation.
∂u

∂t
+ u

∂u

∂x
=

∂2u

∂x2
. (2.175)

Inequivalent discrete symmetries [1].

(x̂, t̂, û) ∈

{
(αx, t, αu), (

αx

2t
, − 1

4t
, 2α(ut− x))

}
α ∈ {1,−1}. (2.176)

Spherical Burger’s equation.

∂u

∂t
+

u

t
+ u

∂u

∂x
=

∂2u

∂x2
. (2.177)

Inequivalent discrete symmetries [3].

(x̂, t̂, û) = (−x, t, −u). (2.178)
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Euler Poisson Darboux equation.

∂2u

∂t2
− ∂2u

∂x2
=

p(p+ 1)

t2
u. (2.179)

Inequivalent discrete symmetries [8].

(x̂, t̂, û) ∈

{
(−x, t, u), (x,−t, u), (x, t,−u),

(
x

t2 − x2
,

t

t2 − x2
, u

)}
. (2.180)

Heat equation.
∂u

∂t
=

∂2u

∂x2
. (2.181)

The group of inequivalent discrete symmetries [8], of heat equation is iso-
morphic to Z4, and is generated by

(x̂, t̂, û) =

(
x

2t
, − 1

4t
, u

√
2i t e

x2

4t

)
. (2.182)
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2.5 Review of Group Invariant Solutions

The most immediate application of discrete symmetries of a differential equa-
tion is mapping known exact solutions to possibly new exact solutions. Since
the method for obtaining discrete symmetries discussed in this chapter gives
all the discrete symmetries of a differential equation, it is specially useful
when a differential equation has some hidden discrete symmetries, which are
otherwise difficult to find. In this case the chances of obtaining new exact
solutions from known exact solutions are even higher. The safest bet are the
group invaraint solutions. Since the symmetry groups, under which these
solutions are invaraint, are known, therefore the chances of mapping these
solutions to themselves, under a discrete symmetry, or to other group in-
varaint solutions are less. In later chapters when we find discrete symmetries
of some PDEs, their group invaraint solutions will be analysed under the
discrete symmetries for possible new solutions.

The purpose of this section is a brief review of the group invaraint solu-
tions of ODEs and PDEs [1]. The underlying theory is not discussed only
the direct method of obtaining group invaraint solutions is reviewed.

Definition 2.5.1

A solution or a family of solutions of a differential equation, ODE or PDE,
which remain functionally unchanged when transformed under a (one-parameter)
Lie group of point symmetries of the differential equation, are called group
invaraint solutions of the differential equation.

Example 2.5.2

As an example [1] consider the ODE

y′′′ = −yy′′. (2.183)

It has the group invariant solution

y =
3

x
, (2.184)

corresponding to the Lie group

(x̂, ŷ) = (xeϵ, ye−ϵ), (2.185)
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generated by

X = x
∂

∂x
− y

∂

∂y
. (2.186)

Now we verify that, transfroming eq.(2.184) using eq.(2.185)

ŷeϵ =
3

x̂e−ϵ
, (2.187)

ŷ =
3

x̂
. (2.188)

Since the solution eq.(2.184) remains funtionally invariant after the transfor-
mation, it is a group invariant solution.

The following two sections illustrate the method for obtaining group invaraint
solutions of ODEs and PDEs respectively.

2.5.1 Method for Obtaining Group Invariant Solutions
of ODEs

For ODEs, solutions invariant under the Lie group Γ(ϵ), generated by

X = ξ
∂

∂x
+ η

∂

∂y
, (2.189)

satisfy the ODE

η − ξ
dy

dx
= 0. (2.190)

Usually eq.(2.190) is easier to solve than the original ODE. Also note that,
eq.(2.190) is only a necessary condition.

Example 2.5.3

As an example [1] consider the ODE

y′′′ = −yy′′. (2.191)

We will obtain group invariant solutions of eq.(2.191) with respect to the Lie
group

(x̂, ŷ) = ((x− 1)eϵ + 1, ye−ϵ), (2.192)
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generated by

X = (x− 1)
∂

∂x
− y

∂

∂y
. (2.193)

eq.(2.190) becomes in this case

(−y)− (x− 1)
dy

dx
= 0, (2.194)

dy

y
=

dx

−x+ 1
. (2.195)

Solving eq.(2.195), we obtain

y =
c

x− 1
. (2.196)

Substituting eq.(2.196) back in eq.(2.191)

−6c

(x− 1)4
= −

( c

(x− 1)

)( 2c

(x− 1)3

)
. (2.197)

This implies c = 0 or c = 3.

Therefore, the group invariant solutions due to eq.(2.192) are

y = 0 or y =
3

x− 1
. (2.198)

2.5.2 Method for Obtaining Group Invariant Solutions
of PDEs

For PDEs, with one dependent variable u, and two independent variables
(x, t), solutions invariant under the Lie group Γ(ϵ), generated by

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
, (2.199)

satisfy the PDE

η − ξ
∂u

∂x
− τ

∂u

∂t
= 0. (2.200)

Usually eq.(2.200) is easier to solve than the original PDE. Also note that,
eq.(2.200) is only a necessary condition.
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Example 2.5.4

As an example [1] consider the PDE

∂2u

∂x∂t
= u. (2.201)

We will obtain group invariant solutions of eq.(2.201) with respect to the Lie
group

(x̂, t̂, û) = (xeϵ, te−ϵ, ueϵ), (2.202)

generated by

X = x
∂

∂x
− t

∂

∂t
+ u

∂

∂u
. (2.203)

eq.(2.200) becomes in this case

u− x
∂u

∂x
+ t

∂u

∂t
= 0. (2.204)

Solving eq.(2.204)
dx

x
=

dt

−t
=

du

u
. (2.205)

We obtain the first integrals

r = xt, v = ut. (2.206)

Therefore, the general solution of eq.(2.204) is

v = F (r), (2.207)

or

u =
1

t
F (xt), (2.208)

This solution will now be substituted in eq.(2.201) to determine F .

∂u

∂x
= F ′(r),

∂2u

∂t∂x
= xF ′′(r). (2.209)

xF ′′(r) =
1

t
F (r), (2.210)

F ′′(r)− 1

r
F (r) = 0. (2.211)

Solution of eq.(2.211) substituted in eq.(2.208) gives us the required group
invariant solutions.
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Chapter 3

Discrete Symmetries Analysis
of Korteweg de Vries Equation
and Related Exact Solutions

Korteweg de Vries (KdV) equation

∂3u

∂x3
+ 6u

∂u

∂x
+

∂u

∂t
= 0,

is a mathematical model of waves on shallow water surfaces. Many different
variations of the KdV equation have been studied. The mathematical theory
behind the KdV equation is a topic of active research. KdV equation was
first introduced by Boussinesq (1877) and rediscovered by Diederik Korteweg
and Gustav de Vries (1895).

The purpose of this chapter is to find all discrete symmetries of the KdV
equation. As an immediate application of discrete symmetries, group invari-
ant solutions of KdV equation corresponding to the basis vectors of the Lie
algebra will be investigated for further solutions under transformations due
to the discrete symmetries.

3.1 Discrete Symmetries Analysis

In this section we find all the discrete symmetries of the KdV equation.
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3.1.1 Infinitesimal Generators of (One-Parameter) Lie
Groups of Point Symmetries of the KdV Equa-
tion

Following are the infinitesimal generators of (one-parameter) Lie groups of
point symmetries of the KdV equation [12]

X1 =
∂

∂x
,

X2 = x
∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
,

X3 = 6t
∂

∂x
+

∂

∂u
,

X4 =
∂

∂t
.

3.1.2 Corresponding Lie Groups of Point Symmetries

Following are the (one-parameter) Lie groups of point symmetries of the KdV
equation

G1 (x̂, t̂, û) = (x+ ϵ, t, u),

G2 (x̂, t̂, û) = (eϵx, e3ϵt, e−2ϵu),

G3 (x̂, t̂, û) = (x+ 6tϵ, t, u+ ϵ),

G4 (x̂, t̂, û) = (x, t+ ϵ, u).

3.1.3 Nonzero Structure Constants

Following are the nonzero structure constants obtained after calculating the
commutators of the basis vectors of the Lie algebra

c112 = 1, c121 = −1, c323 = 2, c332 = −2,

c134 = 6, c143 = −6, c424 = −3, c442 = 3.

3.1.4 Nonlinear Constraints

We simplify now the matrix B = (bli). We substitute the above nonzero
structure constants in the respective nonlinear constraints

cnlmb
l
ib

m
j = ckijb

n
k , i, j, k, l,m, n = 1, · · · , 4 .
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For n = 2
c2lm = 0, l,m = 1, 2, 3, 4.

The constraints reduce to

0 = ckijb
2
k,

0 = c1ijb
2
1 + c2ijb

2
2 + c3ijb

2
3 + c4ijb

2
4.

When (i, j) = (1, 2)

0 = c112b
2
1 + c212b

2
2 + c312b

2
3 + c412b

2
4,

0 = (1)b21 + (0)b22 + (0)b23 + (0)b24,

0 = b21.

When (i, j) = (1, 3)

0 = c113b
2
1 + c213b

2
2 + c313b

2
3 + c413b

2
4,

0 = (0)(0) + (0)b22 + (0)b23 + (0)b24,

0 = 0.

When (i, j) = (1, 4)

0 = c114b
2
1 + c214b

2
2 + c314b

2
3 + c414b

2
4,

0 = (0)(0) + (0)b22 + (0)b23 + (0)b24,

0 = 0.

When (i, j) = (2, 3)

0 = c123b
2
1 + c223b

2
2 + c323b

2
3 + c423b

2
4,

0 = (0)(0) + (0)b22 + (2)b23 + (0)b24,

0 = b23.

When (i, j) = (2, 4)

0 = c124b
2
1 + c224b

2
2 + c324b

2
3 + c424b

2
4,

0 = (0)(0) + (0)b22 + (0)(0) + (−3)b24,

0 = b24.
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When (i, j) = (3, 4)

0 = c134b
2
1 + c234b

2
2 + c334b

2
3 + c434b

2
4,

0 = (6)(0) + (0)b22 + (0)(0) + (0)(0),

0 = 0.

For n = 3
c3lm = 0, (l,m) ̸= (2, 3), (3, 2).

The constraints reduce to

c323b
2
i b

3
j + c332b

3
i b

2
j = ckijb

3
k,

(2)b2i b
3
j + (−2)b3i b

2
j = c1ijb

3
1 + c2ijb

3
2 + c3ijb

3
3 + c4ijb

3
4.

When (i, j) = (1, 2)

(2)b21b
3
2 + (−2)b31b

2
2 = c112b

3
1 + c212b

3
2 + c312b

3
3 + c412b

3
4,

(2)(0)b32 + (−2)b31b
2
2 = (1)b31 + (0)b32 + (0)b33 + (0)b34,

0 = b31 + 2b31b
2
2.

When (i, j) = (1, 3)

(2)b21b
3
3 + (−2)b31b

2
3 = c113b

3
1 + c213b

3
2 + c313b

3
3 + c413b

3
4,

(2)(0)b33 + (−2)b31(0) = (0)b31 + (0)b32 + (0)b33 + (0)b34,

0 = 0.

When (i, j) = (1, 4)

(2)b21b
3
4 + (−2)b31b

2
4 = c114b

3
1 + c214b

3
2 + c314b

3
3 + c414b

3
4,

(2)(0)b34 + (−2)b31(0) = (0)b31 + (0)b32 + (0)b33 + (0)b34,

0 = 0.

When (i, j) = (2, 3)

(2)b22b
3
3 + (−2)b32b

2
3 = c123b

3
1 + c223b

3
2 + c323b

3
3 + c423b

3
4,

(2)b22b
3
3 + (−2)b32(0) = (0)b31 + (0)b32 + (2)b33 + (0)b34,

0 = b33 − b22b
3
3
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When (i, j) = (2, 4)

(2)b22b
3
4 + (−2)b32b

2
4 = c124b

3
1 + c224b

3
2 + c324b

3
3 + c424b

3
4,

(2)b22b
3
4 + (−2)b32(0) = (0)b31 + (0)b32 + (0)b33 + (−3)b34,

2b22b
3
4 + 3b34 = 0.

When (i, j) = (3, 4)

(2)b23b
3
4 + (−2)b33b

2
4 = c134b

3
1 + c234b

3
2 + c334b

3
3 + c434b

3
4,

(2)(0)b34 + (−2)b33(0) = (6)b31 + (0)b32 + (0)b33 + (0)b34,

0 = b31.

For n = 4
c4lm = 0, (l,m) ̸= (4, 2), (2, 4).

The constraints reduce to

c442b
4
i b

2
j + c424b

2
i b

4
j = ckijb

4
k,

(3)b4i b
2
j + (−3)b2i b

4
j = c1ijb

4
1 + c2ijb

4
2 + c3ijb

4
3 + c4ijb

4
4.

When (i, j) = (1, 2)

(3)b41b
2
2 + (−3)b21b

4
2 = c112b

4
1 + c212b

4
2 + c312b

4
3 + c412b

4
4,

(3)b41b
2
2 + (−3)(0)b42 = (1)b41 + (0)b42 + (0)b43 + (0)b44,

3b41b
2
2 − b41 = 0.

When (i, j) = (1, 3)

(3)b41b
2
3 + (−3)b21b

4
3 = c113b

4
1 + c213b

4
2 + c313b

4
3 + c413b

4
4,

(3)b41(0) + (−3)(0)b43 = (0)b41 + (0)b42 + (0)b43 + (0)b44,

0 = 0.

When (i, j) = (1, 4)

(3)b41b
2
4 + (−3)b21b

4
4 = c114b

4
1 + c214b

4
2 + c314b

4
3 + c414b

4
4,

(3)b41(0) + (−3)(0)b44 = (0)b41 + (0)b42 + (0)b43 + (0)b44,

0 = 0.
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When (i, j) = (2, 3)

(3)b42b
2
3 + (−3)b22b

4
3 = c123b

4
1 + c223b

4
2 + c323b

4
3 + c423b

4
4,

(3)b42(0) + (−3)b22b
4
3 = (0)b41 + (0)b42 + (2)b43 + (0)b44,

0 = 2b43 + 3b22b
4
3.

When (i, j) = (2, 4)

(3)b42b
2
4 + (−3)b22b

4
4 = c124b

4
1 + c224b

4
2 + c324b

4
3 + c424b

4
4,

(3)b42(0) + (−3)b22b
4
4 = (0)b41 + (0)b42 + (0)b43 + (−3)b44,

b22b
4
4 − b44 = 0.

When (i, j) = (3, 4)

(3)b43b
2
4 + (−3)b23b

4
4 = c134b

4
1 + c234b

4
2 + c334b

4
3 + c434b

4
4,

(3)b43(0) + (−3)(0)b44 = (6)b41 + (0)b42 + (0)b43 + (0)b44,

0 = b41.

For n = 1
c1lm = 0, (l,m) ̸= (1, 2), (2, 1), (3, 4), (4, 3).

The constraints reduce to

c112b
1
i b

2
j + c121b

2
i b

1
j + c134b

3
i b

4
j + c143b

4
i b

3
j = ckijb

1
k,

(1)b1i b
2
j + (−1)b2i b

1
j + (6)b3i b

4
j + (−6)b4i b

3
j = c1ijb

1
1 + c2ijb

1
2 + c3ijb

1
3 + c4ijb

1
4.

When (i, j) = (1, 2)

(1)b11b
2
2 + (−1)b21b

1
2 + (6)b31b

4
2 + (−6)b41b

3
2 = c112b

1
1 + c212b

1
2 + c312b

1
3 + c412b

1
4,

(1)b11b
2
2 + (−1)(0)b12 + (6)(0)b42 + (−6)(0)b32 = (1)b11 + (0)b12 + (0)b13 + (0)b14,

b11b
2
2 − b11 = 0.

When (i, j) = (1, 3)

(1)b11b
2
3 + (−1)b21b

1
3 + (6)b31b

4
3 + (−6)b41b

3
3 = c113b

1
1 + c213b

1
2 + c313b

1
3 + c413b

1
4,

(1)b11(0) + (−1)(0)b13 + (6)(0)b43 + (−6)(0)b33 = (0)b11 + (0)b12 + (0)b13 + (0)b14,

0 = 0.
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When (i, j) = (1, 4)

(1)b11b
2
4 + (−1)b21b

1
4 + (6)b31b

4
4 + (−6)b41b

3
4 = c114b

1
1 + c214b

1
2 + c314b

1
3 + c414b

1
4,

(1)b11(0) + (−1)(0)b14 + (6)(0)b44 + (−6)(0)b34 = (0)b11 + (0)b12 + (0)b13 + (0)b14,

0 = 0.

When (i, j) = (2, 3)

(1)b12b
2
3 + (−1)b22b

1
3 + (6)b32b

4
3 + (−6)b42b

3
3 = c123b

1
1 + c223b

1
2 + c323b

1
3 + c423b

1
4,

(1)b12(0) + (−1)b22b
1
3 + (6)b32b

4
3 + (−6)b42b

3
3 = (0)b11 + (0)b12 + (2)b13 + (0)b14,

−b22b
1
3 + 6b32b

4
3 − 6b42b

3
3 = 2b13.

When (i, j) = (2, 4)

(1)b12b
2
4 + (−1)b22b

1
4 + (6)b32b

4
4 + (−6)b42b

3
4 = c124b

1
1 + c224b

1
2 + c324b

1
3 + c424b

1
4,

(1)b12(0) + (−1)b22b
1
4 + (6)b32b

4
4 + (−6)b42b

3
4 = (0)b11 + (0)b12 + (0)b13 + (−3)b14,

−b22b
1
4 + 6b32b

4
4 − 6b42b

3
4 = −3b14.

When (i, j) = (3, 4)

(1)b13b
2
4 + (−1)b23b

1
4 + (6)b33b

4
4 + (−6)b43b

3
4 = c134b

1
1 + c234b

1
2 + c334b

1
3 + c434b

1
4,

(1)b13(0) + (−1)(0)b14 + (6)b33b
4
4 + (−6)b43b

3
4 = (6)b11 + (0)b12 + (0)b13 + (0)b14,

b33b
4
4 − b43b

3
4 = b11.

So far we have been able to simplyfy the system of nonlinear constraints as

0 = b21,

0 = b23,

0 = b24,

0 = b31 + 2b31b
2
2,

0 = b33 − b22b
3
3,

0 = 2b22b
3
4 + 3b34,

0 = b31,
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0 = 3b41b
2
2 − b41,

0 = 2b43 + 3b22b
4
3,

0 = b22b
4
4 − b44,

0 = b41,

0 = b11b
2
2 − b11,

2b13 = −b22b
1
3 + 6b32b

4
3 − 6b42b

3
3,

−3b14 = −b22b
1
4 + 6b32b

4
4 − 6b42b

3
4,

b11 = b33b
4
4 − b43b

3
4.

Since B = (bli) is nonsingular and all other elements of the first row of B
are zero, therefore b11 ̸= 0. Now from 0 = b11b

2
2 − b11 it follows that b22 = 1.

Substituting the value of b22 in respective equations we conclude that

B =


b11 0 0 0
b12 1 b32 b42
b13 0 b33 0
b14 0 0 b44

 ,

with further conditions

0 = b13 + 2b42b
3
3,

0 = b14 + 3b32b
4
4,

0 = b11 − b33b
4
4,

b11, b
3
3, b

4
4 ̸= 0.
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3.1.5 Inequivalent Symmetries

We recall from Theorem (2.3.6) that

(C(j))ki = ckij,

and

A(j, ϵ) = eϵC(j),

A(j, ϵ) =
∞∑
n=0

ϵn

n!
(C(j))n,

A(j, ϵ) = I +
ϵ

1!
(C(j)) +

ϵ2

2!
(C(j))2 +

ϵ3

3!
(C(j))3 + ...

Calculating matrices C(j)

C(1) =


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,

C(2) =


1 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 3

 ,

C(3) =


0 0 0 0
0 0 2 0
0 0 0 0
−6 0 0 0

 ,

C(4) =


0 0 0 0
0 0 0 −3
6 0 0 0
0 0 0 0

 .
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Calculating matrices A(j, ϵ)

(C(1))n = 0 for 2 ≤ n,

A(1, ϵ) = I + ϵ C(1) + 0,

A(1, ϵ) =


1 0 0 0
−ϵ 1 0 0
0 0 1 0
0 0 0 1

 .

A(2, ϵ) =


eϵ 0 0 0
0 1 0 0
0 0 e−2ϵ 0
0 0 0 e3ϵ

 ,

because C(2) is a digonal matrix.

(C(3))n = 0 for 2 ≤ n,

A(3, ϵ) = I + ϵ C(3) + 0,

A(3, ϵ) =


1 0 0 0
0 1 2ϵ 0
0 0 1 0

−6ϵ 0 0 1

 .

(C(4))n = 0 for 2 ≤ n,

A(4, ϵ) = I + ϵ C(4) + 0,

A(4, ϵ) =


1 0 0 0
0 1 0 −3ϵ
6ϵ 0 1 0
0 0 0 1

 .
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Now we calculate the inequivalent matrices

BA(3, ϵ) =


b11 0 0 0
b12 1 b32 b42
b13 0 b33 0
b14 0 0 b44




1 0 0 0
0 1 2ϵ 0
0 0 1 0

−6ϵ 0 0 1



=


b11 0 0 0

b12 − b426ϵ 1 2ϵ+ b32 b42
b13 0 b33 0

b14 − 6ϵb44 0 0 b44

 .

Choosing ϵ = ϵ3 = −1
2
b32,

b12 − b426ϵ = b12 − b426ϵ3 = b12 − b426(−
1

2
b32) = b12 + 3b42b

3
2,

2ϵ+ b32 = 2ϵ3 + b32 = 2(−1

2
b32) + b32 = 0,

b14 − 6ϵb44 = b14 − 6ϵ3b
4
4 = b14 − 6(−1

2
b32)b

4
4 = b14 + 3b32b

4
4 = 0,

so

BA(3, ϵ3) =


b11 0 0 0

b12 + 3b42b
3
2 1 0 b42

b13 0 b33 0
0 0 0 b44

 .

Now

BA(3, ϵ3))A(4, ϵ) =


b11 0 0 0

b12 + 3b42b
3
2 1 0 b42

b13 0 b33 0
0 0 0 b44



1 0 0 0
0 1 0 −3ϵ
6ϵ 0 1 0
0 0 0 1



=


b11 0 0 0

b12 + 3b42b
3
2 1 0 b42 − 3ϵ

b13 + 6ϵb33 0 b33 0
0 0 0 b44

 .
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Choosing ϵ = ϵ4 =
1
3
b42,

b42 − 3ϵ = b42 − 3ϵ4 = b42 − 3(
1

3
b42) = 0,

b13 + 6ϵb33 = b13 + 6ϵ4b
3
3 = b13 + 6(

1

3
b42)b

3
3 = b13 + 2b42b

3
3 = 0,

so

BA(3, ϵ3)A(4, ϵ4) =


b11 0 0 0

b12 + 3b42b
3
2 1 0 0

0 0 b33 0
0 0 0 b44

 .

Now

BA(3, ϵ3)A(4, ϵ4)A(1, ϵ) =


b11 0 0 0

b12 + 3b42b
3
2 1 0 0

0 0 b33 0
0 0 0 b44




1 0 0 0
−ϵ 1 0 0
0 0 1 0
0 0 0 1



=


b11 0 0 0

b12 + 3b42b
3
2 − ϵ 1 0 0

0 0 b33 0
0 0 0 b44

 .

Choosing ϵ = ϵ1 = b12 + 3b42b
3
2,

b12 + 3b42b
3
2 − ϵ = b12 + 3b42b

3
2 − ϵ1 = b12 + 3b42b

3
2 − (b12 + 3b42b

3
2) = 0,

so

BA(3, ϵ3)A(4, ϵ4)A(1, ϵ1) =


b11 0 0 0
0 1 0 0
0 0 b33 0
0 0 0 b44

 .
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Now

BA(3, ϵ3)A(4, ϵ4)A(1, ϵ1)A(2, ϵ) =


b11 0 0 0
0 1 0 0
0 0 b33 0
0 0 0 b44



eϵ 0 0 0
0 1 0 0
0 0 e−2ϵ 0
0 0 0 e3ϵ



=


b11e

ϵ 0 0 0
0 1 0 0
0 0 b33e

−2ϵ 0
0 0 0 b44e

3ϵ

 .

Choosing ϵ = ϵ2 = − ln |b11|,

b11e
ϵ = b11e

ϵ2 = b11e
− ln |b11| =

b11
|b11|

,

b33e
−2ϵ = b33e

−2ϵ2 = b33e
−2(− ln |b11|) = b33(b

1
1)

2,

b44e
3ϵ = b44e

3ϵ2 = b44e
3(− ln |b11|) =

b44
(|b11|)3

,

so

BA(3, ϵ3)A(4, ϵ4)A(1, ϵ1)A(2, ϵ2) =



b11
|b11|

0 0 0

0 1 0 0

0 0 b33(b
1
1)

2 0

0 0 0
b44

(|b11|)3

 .

Let B̃ = BA(3, ϵ3)A(4, ϵ4)A(1, ϵ1)A(2, ϵ2).

These are the required inequivalent matrices.
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3.1.6 Solution of the System of Determining Equations

Following is the system of determining equations with the inequivalent ma-
trices calculated in the previous section.


X1x̂ X1t̂ X1û
X2x̂ X2t̂ X2û
X3x̂ X3t̂ X3û
X4x̂ X4t̂ X4û

 =



b11
|b11|

0 0 0

0 1 0 0

0 0 b33(b
1
1)

2 0

0 0 0
b44

(|b11|)3



1 0 0
x̂ 3t̂ −2û
6t̂ 0 1
0 1 0

 .


X1x̂ X1t̂ X1û
X2x̂ X2t̂ X2û
X3x̂ X3t̂ X3û
X4x̂ X4t̂ X4û

 =



b11
|b11|

0 0

x̂ 3t̂ −2û

b33(b
1
1)

26t̂ 0 b33(b
1
1)

2

0
b44

(|b11|)3
0

 .

Now we solve the above system of determining equations and seek a solution
of the form

(x̂, t̂, û) = ( x̂(x, t, u), t̂(x, t, u), û(x, t, u)) .

We have

X1û = 0,

∂û

∂x
= 0,

û = A(t, u).

We also have

X4û = 0,

∂û

∂t
= 0,

∂û

∂t
=

∂A(t, u)

∂t
= 0.
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So

A(t, u) = A(u),

û = A(u).

Now

X3û = b33(b
1
1)

2,

6t
∂û

∂x
+

∂û

∂u
= b33(b

1
1)

2,

A′(u) = b33(b
1
1)

2,

A(u) = b33(b
1
1)

2u+ c1,

û = b33(b
1
1)

2u+ c1.

But we also have

X2û = −2û,

x
∂û

∂x
+ 3t

∂û

∂t
− 2u

∂û

∂u
= −2û,

uA′(u) = A(u),

ub33(b
1
1)

2 = b33(b
1
1)

2u+ c1,

0 = c1.

So
û = b33(b

1
1)

2u.

Next we have

X1t̂ = 0,

∂t̂

∂x
= 0,

t̂ = B(t, u).
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We also have

X3t̂ = 0,

6t
∂t̂

∂x
+

∂t̂

∂u
= 0,

∂B

∂u
= 0.

So

B(t, u) = B(t),

t̂ = B(t).

Now

X4t̂ =
b44

(|b11|)3
,

∂t̂

∂t
=

b44
(|b11|)3

,

B′(t) =
b44

(|b11|)3
,

B(t) =
b44

(|b11|)3
t+ c2,

t̂ =
b44

(|b11|)3
t+ c2.

But we also have

X2t̂ = 3t̂,

x
∂t̂

∂x
+ 3t

∂t̂

∂t
− 2u

∂t̂

∂u
= 3t̂,

tB′(t) = B(t),

t
b44

(|b11|)3
=

b44
(|b11|)3

t+ c2,

0 = c2.
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So

t̂ =
b44

(|b11|)3
t.

Next we have

X4x̂ = 0,

∂x̂

∂t
= 0,

x̂ = C(x, u).

We also have

X1x̂ =
b11
|b11|

,

∂x̂

∂x
=

b11
|b11|

,

∂C(x, u)

∂x
=

b11
|b11|

,

C(x, u) =
b11
|b11|

x+D(u).

So

x̂ =
b11
|b11|

x+D(u).

Now

X3x̂ = b33(b
1
1)

26t̂,

6t
∂x̂

∂x
+

∂x̂

∂u
= b33(b

1
1)

26t̂,

6t
b11
|b11|

+D′(u) = b33(b
1
1)

26
( b44
(|b11|)3

t
)
,

D′(u) = 6t
[b33b44
|b11|

− b11
|b11|

]
,

D′(u) = 6t
[ b11
|b11|

− b11
|b11|

]
, using (b11 = b33b

4
4),

D′(u) = 0,

D(u) = c3.
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So

x̂ =
b11
|b11|

x+ c3.

But we also have

X2x̂ = x̂,

x
∂x̂

∂x
+ 3t

∂x̂

∂t
− 2u

∂x̂

∂u
= x̂,

x
b11
|b11|

=
b11
|b11|

x+ c3,

0 = c3.

So

x̂ =
b11
|b11|

x.

Therefore, the general solution of the system of determining equations is

(x̂, t̂, û) = (
b11
|b11|

x,
b44

(|b11|)3
t, b33(b

1
1)

2u ).

3.1.7 Symmetry Condition

To apply the symmetry condition we find

∂û

∂t̂
=

∂(b33(b
1
1)

2u)

∂(
b44

(|b11|)3
t)

= (b33)
2(b11)

3|b11|
∂u

∂t
.

∂û

∂x̂
=

∂(b33(b
1
1)

2u)

∂(
b11
|b11|

x)
= b33(b

1
1)|b11|

∂u

∂x
.

∂2û

∂x̂2
=

∂

∂x̂

(∂û
∂x̂

)
=

∂

∂(
b11
|b11|

x)

(
b33(b

1
1)|b11|

∂u

∂x

)
= b33(b

1
1)

2∂
2u

∂x2
.
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∂3û

∂x̂3
=

∂

∂x̂

(∂2û

∂x̂2

)
=

∂

∂(
b11
|b11|

x)

(
b33(b

1
1)

2∂
2u

∂x2

)
= b33(b

1
1)|b11|

(∂3u

∂x3

)
.

So
∂3û

∂x̂3
+ 6û

∂û

∂x̂
+

∂û

∂t̂
= 0,

is

b33(b
1
1)|b11|

(∂3u

∂x3

)
+ 6(b33(b

1
1)

2u)b33(b
1
1)|b11|

∂u

∂x
+ (b33)

2(b11)
3|b11|

∂u

∂t
= 0.

It simplifies to (∂3u

∂x3

)
+ (b33(b

1
1)

2)6u
∂u

∂x
+ b33(b

1
1)

2∂u

∂t
= 0.

Which implies b33(b
1
1)

2 = 1, if the symmetry condition is to be satisfied.

Using
0 = b11 − b33b

4
4,

we can also deduce that
b44

(|b11|)3
=

b11
|b11|

.

So

(x̂, t̂, û) = (
b11
|b11|

x,
b11
|b11|

t, u ).

Therefore, the only discrete symmetry of the KdV equation up to equiva-
lence is

ΓD (x̂, t̂, û) = (−x, −t, u ).

This result is exhaustive. If ΓD is the discrete symmetry as above, then any
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other discrete symmetry, Γ̃D, of the KdV equation can be obtained as fol-
lowing

Γ̃D = eϵXΓD.

For example if we choose X = X3, then, e
ϵX3ΓD gives us

Γ̃D (x̂, t̂, û) = ( (−x) + 6(−t)ϵ, (−t), (u+ ϵ) )

= (−x− 6tϵ, −t, u+ ϵ ).

X could be any infinitesimal generator from the Lie algebra, L, of infinites-
imal generators of (one-parameter) Lie groups of point symmetries of the
equation.

Some other examples

eϵX1ΓD (x̂, t̂, û) = ((−x) + ϵ, (−t), (u))

= (−x+ ϵ, −t, u).

eϵX4ΓD (x̂, t̂, û) = ((−x), (−t) + ϵ, (u))

= (−x, −t+ ϵ, u).
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3.2 Related Exact Solutions

Any exact solution of a differential equation can be examined for new ex-
act solutions using discrete symmetries of the differential equation. In this
section it has been attempted to find the group invariant solutions of the
KdV equation due to the groups generated by Xi, the basis generators. The
group invariant solutions will then be transformed using the discrete symme-
tries obtained in the last section.

Solutions invariant under the group G, generated by

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
,

satisfy the PDE

η − ξ
∂u

∂x
− τ

∂u

∂t
= 0.

For X1 we have
ξ = 1, τ = 0, η = 0.

(0)− (1)
∂u

∂x
− (0)

∂u

∂t
= 0,

∂u

∂x
= 0,

u(x, t) = F (t).

This solution will now be substituted in KdV equation to determine F . Since

∂3u

∂x3
= 0, 6u

∂u

∂x
= 6F (t)(0) = 0,

∂u

∂t
= F ′(t),

we have

F ′(t) = 0,

F (t) = c,

u(x, t) = c.

It is trivial to transform u = c.
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For X2 we have
ξ = x, τ = 3t, η = −2u.

(−2u)− (x)
∂u

∂x
− (3t)

∂u

∂t
= 0,

−2u = x
∂u

∂x
+ 3t

∂u

∂t
,

dx

x
=

dt

3t
=

du

−2u
,

dx

x
=

dt

3t
,

dx

x
=

du

−2u
,

x3

t
= r. v = ux2.

General solution

v = F (r),

u =
1

x2
F (

x3

t
).

We now substitute this solution in KdV equation to determine F .

∂u

∂t
= − x

t2
F ′(r),

∂3u

∂x3
= −24

x5
F (r) +

24

x2t
F ′(r) +

27x4

t3
F ′′′(r),

6u
∂u

∂x
= −12

x5

(
F (r)

)2
+

18

x2t
F ′(r)F (r).

Substituting in KdV equation, we obtain

−24

x5
F (r)+

(24t− x3

x2t2

)
F ′(r)+

27x4

t3
F ′′′(r)− 12

x5

(
F (r)

)2
+

18

x2t
F ′(r)F (r) = 0.

This is a third order nonlinear ODE for F , which appears to be very difficult
to solve, if at all possible.
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For X4 we have
ξ = 0, τ = 1, η = 0.

(0)− (0)
∂u

∂x
− (1)

∂u

∂t
= 0,

∂u

∂t
= 0,

u(x, t) = F (x).

This solution will now be substituted in KdV equation to determine F . Since

∂3u

∂x3
= F ′′′(x), 6u

∂u

∂x
= 6F (x)F ′(x),

∂u

∂t
= 0,

we have
F ′′(x) + 3

(
F (x)

)2
+ c = 0.

This is a second order nonlinear ODE for F , which is again very difficult to
solve. The form of this equation tells us that its solutions are elliptic func-
tions.

For X3 we have
ξ = 6t, τ = 0, η = 1.

(1)− (6t)
∂u

∂x
− (0)

∂u

∂t
= 0

∂u

∂x
=

1

6t
,

u(x, t) =
x

6t
+ F (t).

We now substitute this solution in KdV equation to determine F .

∂u

∂t
= − x

6t2
+ F ′(t),

∂u

∂x
=

1

6t
,

∂3u

∂x3
= 0.
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Substituting in KdV equation, we obtain

6
( x

6t
+ F (t)

)( 1

6t

)
+
(
− x

6t2
+ F ′(t)

)
= 0,

tF ′(t) + F (t) = 0,

F (t) =
c

t
.

So

u(x, t) =
x

6t
+

c

t
, or

u(x, t) =
x+ k

6t
, where k = 6c.

This solution can now be transformed using discrete symmetries to obtain
more solutions of the KdV equation.

For instance using

eϵX4ΓD (x̂, t̂, û) = (−x, −t+ ϵ, u),

we obtain a two parameter family of solutions

û =
(−x̂) + k

6(−t̂+ ϵ)
.

Removing carets and rearranging, we have

u =
x− k

6(t− ϵ)
.
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Chapter 4

Discrete Symmetries Analysis
of a Particular Nonlinear
Filtration Equation

The class of equations
∂u

∂t
= D

(∂u
∂x

)∂2u

∂x2
,

is known as nonlinear filtration (NLF) equations, D is a function of ∂u
∂x
. These

equations describe the motion of a non-Newtonian, weakly compressible fluid
in a porous medium with a nonlinear filtration law

V = −
∫

D
(∂u
∂x

)
d
(∂u
∂x

)
,

where V is the speed of filtration and u is the pressure [14, 15]. The function
D
(
∂u/∂x

)
is known as filtration coefficient. In general the filtration coef-

ficient is not fixed. NLF equations have been solved for various filtration
coefficients [14, 15].

We choose

D
(∂u
∂x

)
=

(
1

1 +
(

∂u
∂x

)2
)
,

to find the discrete symmetries for the corresponding NLF equation. As
an immediate application of discrete symmetries, group invariant solutions
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of this NLF equation corresponding to the basis vectors of the Lie algebra
will be investigated for further solutions under transformations due to the
discrete symmetries.

4.1 Discrete Symmetries Analysis

In this section we find all the discrete symmetries of the following NLF equa-
tion.

∂u

∂t
=

(
1

1 +
(

∂u
∂x

)2
)
∂2u

∂x2
.

4.1.1 Infinitesimal Generators of (One-Parameter) Lie
Groups of Point Symmetries of the NLF Equa-
tion

Following are the infinitesimal generators of (one-parameter) Lie groups of
point symmetries of the NLF equation [1]

X1 =
∂

∂x
, X4 = x

∂

∂x
+ 2t

∂

∂t
+ u

∂

∂u
,

X2 =
∂

∂t
, X5 = u

∂

∂x
− x

∂

∂u
.

X3 =
∂

∂u
,

4.1.2 Corresponding Lie Groups of Point Symmetries

Following are the (one-parameter) Lie groups of point symmetries of the NLF
equation

G1 (x̂, t̂, û) = (x+ ϵ, t, u),

G2 (x̂, t̂, û) = (x, t+ ϵ, u),

G3 (x̂, t̂, û) = (x, t, u+ ϵ),

G4 (x̂, t̂, û) = (eϵx, e2ϵt, eϵu),

G5 (x̂, t̂, û) = (x cos ϵ+ u sin ϵ, t, −x sin ϵ+ u cos ϵ).
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4.1.3 Nonzero Structure Constants

Following are the nonzero structure constants obtained after calculating the
commutators of the basis vectors of the Lie algebra

c114 = 1, c141 = −1, c334 = 1, c343 = −1,

c135 = 1, c153 = −1, c315 = −1, c351 = 1,

c224 = 2, c242 = −2.

4.1.4 Nonlinear Constraints

We substitute the above nonzero structure constants in the respective non-
linear constraints to simplify the matrix B = (bli)

cnlmb
l
ib

m
j = ckijb

n
k , i, j, k, l,m, n = 1, · · · , 5 .

For n = 4
c4lm = 0, l,m = 1, 2, 3, 4, 5.

The constraints reduce to

0 = ckijb
4
k,

0 = c1ijb
4
1 + c2ijb

4
2 + c3ijb

4
3 + c4ijb

4
4 + c5ijb

4
5.

When (i, j) = (1, 2)

0 = c112b
4
1 + c212b

4
2 + c312b

4
3 + c412b

4
4 + c512b

4
5,

0 = (0)b41 + (0)b42 + (0)b43 + (0)b44 + (0)b45,

0 = 0.

When (i, j) = (1, 3)

0 = c113b
4
1 + c213b

4
2 + c313b

4
3 + c413b

4
4 + c513b

4
5,

0 = (0)b41 + (0)b42 + (0)b43 + (0)b44 + (0)b45,

0 = 0.

When (i, j) = (1, 4)

0 = c114b
4
1 + c214b

4
2 + c314b

4
3 + c414b

4
4 + c514b

4
5,

0 = (1)b41 + (0)b42 + (0)b43 + (0)b44 + (0)b45,

0 = b41.
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When (i, j) = (1, 5)

0 = c115b
4
1 + c215b

4
2 + c315b

4
3 + c415b

4
4 + c515b

4
5,

0 = (0)(0) + (0)b42 + (−1)b43 + (0)b44 + (0)b45,

0 = b43.

When (i, j) = (2, 3)

0 = c123b
4
1 + c223b

4
2 + c323b

4
3 + c423b

4
4 + c523b

4
5,

0 = (0)(0) + (0)b42 + (0)(0) + (0)b44 + (0)b45,

0 = 0.

When (i, j) = (2, 4)

0 = c124b
4
1 + c224b

4
2 + c324b

4
3 + c424b

4
4 + c524b

4
5,

0 = (0)(0) + (2)b42 + (0)(0) + (0)b44 + (0)b45,

0 = b42.

When (i, j) = (2, 5)

0 = c125b
4
1 + c225b

4
2 + c325b

4
3 + c425b

4
4 + c525b

4
5,

0 = (0)(0) + (0)(0) + (0)(0) + (0)b44 + (0)b45,

0 = 0.

When (i, j) = (3, 4)

0 = c134b
4
1 + c234b

4
2 + c334b

4
3 + c434b

4
4 + c534b

4
5,

0 = (0)(0) + (0)(0) + (1)(0) + (0)b44 + (0)b45,

0 = 0.

When (i, j) = (3, 5)

0 = c135b
4
1 + c235b

4
2 + c335b

4
3 + c435b

4
4 + c535b

4
5,

0 = (1)(0) + (0)(0) + (0)(0) + (0)b44 + (0)b45,

0 = 0.

When (i, j) = (4, 5)

0 = c145b
4
1 + c245b

4
2 + c345b

4
3 + c445b

4
4 + c545b

4
5,

0 = (0)(0) + (0)(0) + (0)(0) + (0)b44 + (0)b45,

0 = 0.
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For n = 5
c5lm = 0, l,m = 1, 2, 3, 4, 5.

The constraints reduce to

0 = ckijb
5
k,

0 = c1ijb
5
1 + c2ijb

5
2 + c3ijb

5
3 + c4ijb

5
4 + c5ijb

5
5.

When (i, j) = (1, 2)

0 = c112b
5
1 + c212b

5
2 + c312b

5
3 + c412b

5
4 + c512b

5
5,

0 = (0)b51 + (0)b52 + (0)b53 + (0)b54 + (0)b55,

0 = 0.

When (i, j) = (1, 3)

0 = c113b
5
1 + c213b

5
2 + c313b

5
3 + c413b

5
4 + c513b

5
5,

0 = (0)b51 + (0)b52 + (0)b53 + (0)b54 + (0)b55,

0 = 0.

When (i, j) = (1, 4)

0 = c114b
5
1 + c214b

5
2 + c314b

5
3 + c414b

5
4 + c514b

5
5,

0 = (1)b51 + (0)b52 + (0)b53 + (0)b54 + (0)b55,

0 = b51.

When (i, j) = (1, 5)

0 = c115b
5
1 + c215b

5
2 + c315b

5
3 + c415b

5
4 + c515b

5
5,

0 = (0)(0) + (0)b52 + (−1)b53 + (0)b54 + (0)b55,

0 = b53.

When (i, j) = (2, 3)

0 = c123b
5
1 + c223b

5
2 + c323b

5
3 + c423b

5
4 + c523b

5
5,

0 = (0)(0) + (0)b52 + (0)(0) + (0)b54 + (0)b55,

0 = 0.
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When (i, j) = (2, 4)

0 = c124b
5
1 + c224b

5
2 + c324b

5
3 + c424b

5
4 + c524b

5
5,

0 = (0)(0) + (2)b52 + (0)(0) + (0)b54 + (0)b55,

0 = b52.

When (i, j) = (2, 5)

0 = c125b
5
1 + c225b

5
2 + c325b

5
3 + c425b

5
4 + c525b

5
5,

0 = (0)(0) + (0)(0) + (0)(0) + (0)b54 + (0)b55,

0 = 0.

When (i, j) = (3, 4)

0 = c134b
5
1 + c234b

5
2 + c334b

5
3 + c434b

5
4 + c534b

5
5,

0 = (0)(0) + (0)(0) + (1)(0) + (0)b54 + (0)b55,

0 = 0.

When (i, j) = (3, 5)

0 = c135b
5
1 + c235b

5
2 + c335b

5
3 + c435b

5
4 + c535b

5
5,

0 = (1)(0) + (0)(0) + (0)(0) + (0)b54 + (0)b55,

0 = 0.

When (i, j) = (4, 5)

0 = c145b
5
1 + c245b

5
2 + c345b

5
3 + c445b

5
4 + c545b

5
5,

0 = (0)(0) + (0)(0) + (0)(0) + (0)b54 + (0)b55,

0 = 0.

For n = 2
c2lm = 0, (l,m) ̸= (2, 4), (4, 2).

The constraints reduce to

c224b
2
i b

4
j + c242b

4
i b

2
j = ckijb

2
k,

(2)b2i b
4
j + (−2)b4i b

2
j = c1ijb

2
1 + c2ijb

2
2 + c3ijb

2
3 + c4ijb

2
4 + c5ijb

2
5.

71



When (i, j) = (1, 2)

(2)b21b
4
2 + (−2)b41b

2
2 = c112b

2
1 + c212b

2
2 + c312b

2
3 + c412b

2
4 + c512b

2
5,

(2)b21(0) + (−2)(0)b22 = (0)b21 + (0)b22 + (0)b23 + (0)b24 + (0)b25,

0 = 0.

When (i, j) = (1, 3)

(2)b21b
4
3 + (−2)b41b

2
3 = c113b

2
1 + c213b

2
2 + c313b

2
3 + c413b

2
4 + c513b

2
5,

(2)b21(0) + (−2)(0)b23 = (0)b21 + (0)b22 + (0)b23 + (0)b24 + (0)b25,

0 = 0.

When (i, j) = (1, 4)

(2)b21b
4
4 + (−2)b41b

2
4 = c114b

2
1 + c214b

2
2 + c314b

2
3 + c414b

2
4 + c514b

2
5,

(2)b21b
4
4 + (−2)(0)b24 = (1)b21 + (0)b22 + (0)b23 + (0)b24 + (0)b25,

2b21b
4
4 = b21.

When (i, j) = (1, 5)

(2)b21b
4
5 + (−2)b41b

2
5 = c115b

2
1 + c215b

2
2 + c315b

2
3 + c415b

2
4 + c515b

2
5,

(2)b21b
4
5 + (−2)(0)b25 = (0)b21 + (0)b22 + (−1)b23 + (0)b24 + (0)b25,

2b21b
4
5 = −b23.

When (i, j) = (2, 3)

(2)b22b
4
3 + (−2)b42b

2
3 = c123b

2
1 + c223b

2
2 + c323b

2
3 + c423b

2
4 + c523b

2
5,

(2)b22(0) + (−2)(0)b23 = (0)b21 + (0)b22 + (0)b23 + (0)b24 + (0)b25,

0 = 0.

When (i, j) = (2, 4)

(2)b22b
4
4 + (−2)b42b

2
4 = c124b

2
1 + c224b

2
2 + c324b

2
3 + c424b

2
4 + c524b

2
5,

(2)b22b
4
4 + (−2)(0)b24 = (0)b21 + (2)b22 + (0)b23 + (0)b24 + (0)b25,

b22b
4
4 = b22.
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When (i, j) = (2, 5)

(2)b22b
4
5 + (−2)b42b

2
5 = c125b

2
1 + c225b

2
2 + c325b

2
3 + c425b

2
4 + c525b

2
5,

(2)b22b
4
5 + (−2)(0)b25 = (0)b21 + (0)b22 + (0)b23 + (0)b24 + (0)b25,

b22b
4
5 = 0.

When (i, j) = (3, 4)

(2)b23b
4
4 + (−2)b43b

2
4 = c134b

2
1 + c234b

2
2 + c334b

2
3 + c434b

2
4 + c534b

2
5,

(2)b23b
4
4 + (−2)(0)b24 = (0)b21 + (0)b22 + (1)b23 + (0)b24 + (0)b25,

2b23b
4
4 = b23.

When (i, j) = (3, 5)

(2)b23b
4
5 + (−2)b43b

2
5 = c135b

2
1 + c235b

2
2 + c335b

2
3 + c435b

2
4 + c535b

2
5,

(2)b23b
4
5 + (−2)(0)b25 = (1)b21 + (0)b22 + (0)b23 + (0)b24 + (0)b25,

2b23b
4
5 = b21.

When (i, j) = (4, 5)

(2)b24b
4
5 + (−2)b44b

2
5 = c145b

2
1 + c245b

2
2 + c345b

2
3 + c445b

2
4 + c545b

2
5,

(2)b24b
4
5 + (−2)b44b

2
5 = (0)b21 + (0)b22 + (0)b23 + (0)b24 + (0)b25,

b24b
4
5 = b44b

2
5.

For n = 1
c1lm = 0, (l,m) ̸= (1, 4), (4, 1), (3, 5), (5, 3).

The constraints reduce to

c114b
1
i b

4
j + c141b

4
i b

1
j + c135b

3
i b

5
j + c153b

5
i b

3
j = ckijb

1
k,

(1)b1i b
4
j + (−1)b4i b

1
j + (1)b3i b

5
j + (−1)b5i b

3
j = c1ijb

1
1 + c2ijb

1
2 + c3ijb

1
3 + c4ijb

1
4 + c5ijb

1
5.

When (i, j) = (1, 2)

(1)b11b
4
2 + (−1)b41b

1
2 + (1)b31b

5
2 + (−1)b51b

3
2 = c112b

1
1 + c212b

1
2 + c312b

1
3 + c412b

1
4 + c512b

1
5,

(1)b11(0) + (−1)(0)b12 + (1)b31(0) + (−1)(0)b32 = (0)b11 + (0)b12 + (0)b13 + (0)b14 + (0)b15,

0 = 0.
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When (i, j) = (1, 3)

(1)b11b
4
3 + (−1)b41b

1
3 + (1)b31b

5
3 + (−1)b51b

3
3 = c113b

1
1 + c213b

1
2 + c313b

1
3 + c413b

1
4 + c513b

1
5,

(1)b11(0) + (−1)(0)b13 + (1)b31(0) + (−1)(0)b33 = (0)b11 + (0)b12 + (0)b13 + (0)b14 + (0)b15,

0 = 0.

When (i, j) = (1, 4)

(1)b11b
4
4 + (−1)b41b

1
4 + (1)b31b

5
4 + (−1)b51b

3
4 = c114b

1
1 + c214b

1
2 + c314b

1
3 + c414b

1
4 + c514b

1
5,

(1)b11b
4
4 + (−1)(0)b14 + (1)b31b

5
4 + (−1)(0)b34 = (1)b11 + (0)b12 + (0)b13 + (0)b14 + (0)b15,

b11b
4
4 + b31b

5
4 = b11.

When (i, j) = (1, 5)

(1)b11b
4
5 + (−1)b41b

1
5 + (1)b31b

5
5 + (−1)b51b

3
5 = c115b

1
1 + c215b

1
2 + c315b

1
3 + c415b

1
4 + c515b

1
5,

(1)b11b
4
5 + (−1)(0)b15 + (1)b31b

5
5 + (−1)(0)b35 = (0)b11 + (0)b12 + (−1)b13 + (0)b14 + (0)b15,

b11b
4
5 + b31b

5
5 = −b13.

When (i, j) = (2, 3)

(1)b12b
4
3 + (−1)b42b

1
3 + (1)b32b

5
3 + (−1)b52b

3
3 = c123b

1
1 + c223b

1
2 + c323b

1
3 + c423b

1
4 + c523b

1
5,

(1)b12(0) + (−1)(0)b13 + (1)b32(0) + (−1)(0)b33 = (0)b11 + (0)b12 + (0)b13 + (0)b14 + (0)b15,

0 = 0.

When (i, j) = (2, 4)

(1)b12b
4
4 + (−1)b42b

1
4 + (1)b32b

5
4 + (−1)b52b

3
4 = c124b

1
1 + c224b

1
2 + c324b

1
3 + c424b

1
4 + c524b

1
5,

(1)b12b
4
4 + (−1)(0)b14 + (1)b32b

5
4 + (−1)(0)b34 = (0)b11 + (2)b12 + (0)b13 + (0)b14 + (0)b15,

b12b
4
4 + b32b

5
4 = 2b12.

When (i, j) = (2, 5)

(1)b12b
4
5 + (−1)b42b

1
5 + (1)b32b

5
5 + (−1)b52b

3
5 = c125b

1
1 + c225b

1
2 + c325b

1
3 + c425b

1
4 + c525b

1
5,

(1)b12b
4
5 + (−1)(0)b15 + (1)b32b

5
5 + (−1)(0)b35 = (0)b11 + (0)b12 + (0)b13 + (0)b14 + (0)b15,

b12b
4
5 + b32b

5
5 = 0.

When (i, j) = (3, 4)

(1)b13b
4
4 + (−1)b43b

1
4 + (1)b33b

5
4 + (−1)b53b

3
4 = c134b

1
1 + c234b

1
2 + c334b

1
3 + c434b

1
4 + c534b

1
5,

(1)b13b
4
4 + (−1)(0)b14 + (1)b33b

5
4 + (−1)(0)b34 = (0)b11 + (0)b12 + (1)b13 + (0)b14 + (0)b15,

b13b
4
4 + b33b

5
4 = b13.
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When (i, j) = (3, 5)

(1)b13b
4
5 + (−1)b43b

1
5 + (1)b33b

5
5 + (−1)b53b

3
5 = c135b

1
1 + c235b

1
2 + c335b

1
3 + c435b

1
4 + c535b

1
5,

(1)b13b
4
5 + (−1)(0)b15 + (1)b33b

5
5 + (−1)(0)b35 = (1)b11 + (0)b12 + (0)b13 + (0)b14 + (0)b15,

b13b
4
5 + b33b

5
5 = b11.

When (i, j) = (4, 5)

(1)b14b
4
5 + (−1)b44b

1
5 + (1)b34b

5
5 + (−1)b54b

3
5 = c145b

1
1 + c245b

1
2 + c345b

1
3 + c445b

1
4 + c545b

1
5,

(1)b14b
4
5 + (−1)b44b

1
5 + (1)b34b

5
5 + (−1)b54b

3
5 = (0)b11 + (0)b12 + (0)b13 + (0)b14 + (0)b15,

b14b
4
5 − b44b

1
5 + b34b

5
5 − b54b

3
5 = 0.

For n = 3
c3lm = 0, (l,m) ̸= (3, 4), (4, 3), (1, 5), (5, 1).

The constraints reduce to

c334b
3
i b

4
j + c343b

4
i b

3
j + c315b

1
i b

5
j + c351b

5
i b

1
j = ckijb

3
k,

(1)b3i b
4
j + (−1)b4i b

3
j + (−1)b1i b

5
j + (1)b5i b

1
j = c1ijb

3
1 + c2ijb

3
2 + c3ijb

3
3 + c4ijb

3
4 + c5ijb

3
5.

When (i, j) = (1, 2)

(1)b31b
4
2 + (−1)b41b

3
2 + (−1)b11b

5
2 + (1)b51b

1
2 = c112b

3
1 + c212b

3
2 + c312b

3
3 + c412b

3
4 + c512b

3
5,

(1)b31(0) + (−1)(0)b32 + (−1)b11(0) + (1)(0)b12 = (0)b31 + (0)b32 + (0)b33 + (0)b34 + (0)b35,

0 = 0.

When (i, j) = (1, 3)

(1)b31b
4
3 + (−1)b41b

3
3 + (−1)b11b

5
3 + (1)b51b

1
3 = c113b

3
1 + c213b

3
2 + c313b

3
3 + c413b

3
4 + c513b

3
5,

(1)b31(0) + (−1)(0)b33 + (−1)b11(0) + (1)(0)b13 = (0)b31 + (0)b32 + (0)b33 + (0)b34 + (0)b35,

0 = 0.

When (i, j) = (1, 4)

(1)b31b
4
4 + (−1)b41b

3
4 + (−1)b11b

5
4 + (1)b51b

1
4 = c114b

3
1 + c214b

3
2 + c314b

3
3 + c414b

3
4 + c514b

3
5,

(1)b31b
4
4 + (−1)(0)b34 + (−1)b11b

5
4 + (1)(0)b14 = (1)b31 + (0)b32 + (0)b33 + (0)b34 + (0)b35,

b31b
4
4 − b11b

5
4 = b31.
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When (i, j) = (1, 5)

(1)b31b
4
5 + (−1)b41b

3
5 + (−1)b11b

5
5 + (1)b51b

1
5 = c115b

3
1 + c215b

3
2 + c315b

3
3 + c415b

3
4 + c515b

3
5,

(1)b31b
4
5 + (−1)(0)b35 + (−1)b11b

5
5 + (1)(0)b15 = (0)b31 + (0)b32 + (−1)b33 + (0)b34 + (0)b35,

b31b
4
5 − b11b

5
5 = −b33.

When (i, j) = (2, 3)

(1)b32b
4
3 + (−1)b42b

3
3 + (−1)b12b

5
3 + (1)b52b

1
3 = c123b

3
1 + c223b

3
2 + c323b

3
3 + c423b

3
4 + c523b

3
5,

(1)b32(0) + (−1)(0)b33 + (−1)b12(0) + (1)(0)b13 = (0)b31 + (0)b32 + (0)b33 + (0)b34 + (0)b35,

0 = 0.

When (i, j) = (2, 4)

(1)b32b
4
4 + (−1)b42b

3
4 + (−1)b12b

5
4 + (1)b52b

1
4 = c124b

3
1 + c224b

3
2 + c324b

3
3 + c424b

3
4 + c524b

3
5,

(1)b32b
4
4 + (−1)(0)b34 + (−1)b12b

5
4 + (1)(0)b14 = (0)b31 + (2)b32 + (0)b33 + (0)b34 + (0)b35,

b32b
4
4 − b12b

5
4 = 2b32.

When (i, j) = (2, 5)

(1)b32b
4
5 + (−1)b42b

3
5 + (−1)b12b

5
5 + (1)b52b

1
5 = c125b

3
1 + c225b

3
2 + c325b

3
3 + c425b

3
4 + c525b

3
5,

(1)b32b
4
5 + (−1)(0)b35 + (−1)b12b

5
5 + (1)(0)b15 = (0)b31 + (0)b32 + (0)b33 + (0)b34 + (0)b35,

b32b
4
5 − b12b

5
5 = 0.

When (i, j) = (3, 4)

(1)b33b
4
4 + (−1)b43b

3
4 + (−1)b13b

5
4 + (1)b53b

1
4 = c134b

3
1 + c234b

3
2 + c334b

3
3 + c434b

3
4 + c534b

3
5,

(1)b33b
4
4 + (−1)(0)b34 + (−1)b13b

5
4 + (1)(0)b14 = (0)b31 + (0)b32 + (1)b33 + (0)b34 + (0)b35,

b33b
4
4 − b13b

5
4 = b33.

When (i, j) = (3, 5)

(1)b33b
4
5 + (−1)b43b

3
5 + (−1)b13b

5
5 + (1)b53b

1
5 = c135b

3
1 + c235b

3
2 + c335b

3
3 + c435b

3
4 + c535b

3
5,

(1)b33b
4
5 + (−1)(0)b35 + (−1)b13b

5
5 + (1)(0)b15 = (1)b31 + (0)b32 + (0)b33 + (0)b34 + (0)b35,

b33b
4
5 − b13b

5
5 = b31.

When (i, j) = (4, 5)

(1)b34b
4
5 + (−1)b44b

3
5 + (−1)b14b

5
5 + (1)b54b

1
5 = c145b

3
1 + c245b

3
2 + c345b

3
3 + c445b

3
4 + c545b

3
5,

(1)b34b
4
5 + (−1)b44b

3
5 + (−1)b14b

5
5 + (1)b54b

1
5 = (0)b31 + (0)b32 + (0)b33 + (0)b34 + (0)b35,

b34b
4
5 − b44b

3
5 − b14b

5
5 + b54b

1
5 = 0.
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The system of nonlinear constraints simplifies as

0 = b41, (4a) b11b
4
4 + b31b

5
4 = b11, (1a)

0 = b43, (4b) b11b
4
5 + b31b

5
5 = −b13, (1b)

0 = b42, (4c) b12b
4
4 + b32b

5
4 = 2b12, (1c)

b12b
4
5 + b32b

5
5 = 0, (1d)

0 = b51, (5a) b13b
4
4 + b33b

5
4 = b13, (1e)

0 = b53, (5b) b13b
4
5 + b33b

5
5 = b11, (1f)

0 = b52, (5c) b14b
4
5 + b34b

5
5 = b15b

4
4 + b35b

5
4, (1g)

2b21b
4
4 = b21, (2a) b31b

4
4 − b11b

5
4 = b31, (3a)

2b21b
4
5 = −b23, (2b) b31b

4
5 − b11b

5
5 = −b33, (3b)

b22b
4
4 = b22, (2c) b32b

4
4 − b12b

5
4 = 2b32, (3c)

b22b
4
5 = 0, (2d) b32b

4
5 − b12b

5
5 = 0, (3d)

2b23b
4
4 = b23, (2e) b33b

4
4 − b13b

5
4 = b33, (3e)

2b23b
4
5 = b21, (2f) b33b

4
5 − b13b

5
5 = b31, (3f)

b24b
4
5 = b44b

2
5, (2g) b34b

4
5 − b14b

5
5 = b35b

4
4 − b15b

5
4. (3g)

So far we have been able to simplyfy B = (bli) as

B =


b11 b21 b31 0 0
b12 b22 b32 0 0
b13 b23 b33 0 0
b14 b24 b34 b44 b54
b15 b25 b35 b45 b55

 .

Now we separate the matrices B according to b22 = 0 or b22 ̸= 0 and simplify
the above system further for both cases.

When b2
2 = 0

When b22 = 0 both b12 and b32 cannot be simultaneously zero because B is a
nonsingular matrix. That is (b12)

2 + (b32)
2 ̸= 0.
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Multiplying (1c) with b12 and (3c) with b32 and adding the two equations we
conclude that b44 = 2. Likewise from (1d) and (3d) we conclude that b45 = 0.
By substituting the values of b44 and b45 in the respective equations we further
conclude that

b21 = 0, b31b
5
4 = −b11, b11b

5
4 = b31,

b23 = 0, b31b
5
5 = −b13, b11b

5
5 = b33,

b25 = 0, b32b
5
4 = 0, b12b

5
4 = 0,

b32b
5
5 = 0, b12b

5
5 = 0,

b33b
5
4 = −b13, b13b

5
4 = b33,

b33b
5
5 = b11, −b13b

5
5 = b31,

b34b
5
5 = 2b15 + b35b

5
4, −b14b

5
5 = 2b35 − b15b

5
4.

Simplifying further we obtain

b31 = 0, b32b
5
4 = 0, b12b

5
4 = 0,

b13 = 0, b32b
5
5 = 0, b12b

5
5 = 0,

b11 = 0, b34b
5
5 = 2b15 + b35b

5
4, −b14b

5
5 = 2b35 − b15b

5
4.

b33 = 0,

So B = (bli) simplyfies as

B =


0 0 0 0 0
b12 0 b32 0 0
0 0 0 0 0
b14 b24 b34 2 b54
b15 0 b35 0 b55

 .

These are clearly singular matrices. We discard all such matrices because
they do not correspond to any automorphism of the Lie algebra.
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When b2
2 ̸= 0

When b22 ̸= 0 (2c) implies b44 = 1 and (2d) implies b45 = 0. By substituting
the values of b44 and b45 in the respective equations we further conclude that

b21 = 0, b11b
5
4 = 0,

b23 = 0, b11b
5
5 = b33,

b25 = 0, −b12b
5
4 = b32,

b12b
5
5 = 0,

b31b
5
4 = 0, b13b

5
4 = 0,

b31b
5
5 = −b13, −b13b

5
5 = b31,

b32b
5
4 = b12, −b35 − b14b

5
5 + b15b

5
4 = 0.

b32b
5
5 = 0,

b33b
5
4 = 0,

b33b
5
5 = b11,

−b15 + b34b
5
5 − b35b

5
4 = 0,

Simplifying further we obtain

b12 = 0, b11b
5
4 = 0,

b32 = 0, b11b
5
5 = b33,

b13b
5
4 = 0,

b31b
5
4 = 0, −b13b

5
5 = b31,

b31b
5
5 = −b13, −b35 − b14b

5
5 + b15b

5
4 = 0.

b33b
5
4 = 0,

b33b
5
5 = b11,

−b15 + b34b
5
5 − b35b

5
4 = 0,

It should be noted that any nonzero value of b54 will make b11 = b31 = 0 and
b13 = b33 = 0 thereby causing B to be singular. Therefore b54 = 0. Now b55
must be nonzero. Following a similar line of argument we further conclude
that b55 ± 1.
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So B = (bli) simplyfies as

B =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
b14 b24 b34 1 0
b15 0 b35 0 b55

 ,

with further conditions

b31b
5
5 = −b13,

b33b
5
5 = b11,

−b15 + b34b
5
5 = 0,

b11b
5
5 = b33,

−b13b
5
5 = b31,

b35 + b14b
5
5 = 0.

b22 ̸= 0, b55 = ±1.

4.1.5 Inequivalent Symmetries

We recall from Theorem (2.3.6) that

(C(j))ki = ckij,

and

A(j, ϵ) = eϵC(j),

A(j, ϵ) =
∞∑
n=0

ϵn

n!
(C(j))n,

A(j, ϵ) = I +
ϵ

1!
(C(j)) +

ϵ2

2!
(C(j))2 +

ϵ3

3!
(C(j))3 + ...
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Calculating matrices C(j)

C(1) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 1 0 0

 ,

C(2) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −2 0 0 0
0 0 0 0 0

 ,

C(3) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
−1 0 0 0 0

 ,

C(4) =


1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 ,

C(5) =


0 0 −1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

81



Calculating matrices A(j, ϵ)

(C(1))n = 0 for 2 ≤ n,

A(1, ϵ) = I + ϵ C(1) + 0,

A(1, ϵ) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−ϵ 0 0 1 0
0 0 ϵ 0 1

 .

(C(2))n = 0 for 2 ≤ n,

A(2, ϵ) = I + ϵ C(2) + 0,

A(2, ϵ) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 −2ϵ 0 1 0
0 0 0 0 1

 .

(C(3))n = 0 for 2 ≤ n,

A(3, ϵ) = I + ϵ C(3) + 0,

A(3, ϵ) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −ϵ 1 0
−ϵ 0 0 0 1

 .

A(4, ϵ) =


eϵ 0 0 0 0
0 e2ϵ 0 0 0
0 0 eϵ 0 0
0 0 0 1 0
0 0 0 0 1

 ,

because C(4) is a digonal matrix.
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A(5, ϵ) =


cos ϵ 0 − sin ϵ 0 0
0 1 0 0 0

sin ϵ 0 cos ϵ 0 0
0 0 0 1 0
0 0 0 0 1

 ,

because C(5) is a skew symmetric matrix. The details are following.

We show that

A(5, ϵ) = eϵC(5) = I + (sin ϵ)C(5) + (1− cos ϵ)(C(5))2.

It can be proved by induction that

(C(5))2m+1 = (−1)mC(5), (C(5))2m = (−1)m−1(C(5))2.

Now

A(5, ϵ) = eϵC(5)

=
∞∑
n=0

ϵn

n!
(C(5))n

= I +
∞∑

m=0

ϵ2m+1

(2m+ 1)!
(C(5))2m+1 +

∞∑
m=1

ϵ2m

(2m)!
(C(5))2m

= I +
∞∑

m=0

ϵ2m+1

(2m+ 1)!
(−1)mC(5) +

∞∑
m=1

ϵ2m

(2m)!
(−1)m−1(C(5))2

= I + (sin ϵ) C(5) + (1− cos ϵ) (C(5))2.

We substitute C(5) and (C(5))2 in the final equation and get A(5, ϵ).
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Now we calculate the inequivalent matrices

BA(2, ϵ) =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
b14 b24 b34 1 0
b15 0 b35 0 b55



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 −2ϵ 0 1 0
0 0 0 0 1



=


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
b14 b24 − 2ϵ b34 1 0
b15 0 b35 0 b55

 .

Choosing ϵ = ϵ2 =
1
2
b24,

b24 − 2ϵ = b24 − 2ϵ2 = b24 − 2
(1
2
b24
)
= 0,

so

BA(2, ϵ2) =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
b14 0 b34 1 0
b15 0 b35 0 b55

 .

Now

BA(2, ϵ2)A(1, ϵ) =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
b14 0 b34 1 0
b15 0 b35 0 b55




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−ϵ 0 0 1 0
0 0 ϵ 0 1



=


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0

b14 − ϵ 0 b34 1 0
b15 0 b35 + b55ϵ 0 b55

 .
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Choosing ϵ = ϵ1 = b14,

b14 − ϵ = b14 − ϵ1 = b14 − b14 = 0,

b35 + b55ϵ = b35 + b55ϵ1 = b35 + b55b
1
4 = 0,

so

BA(2, ϵ2)A(1, ϵ1) =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
0 0 b34 1 0
b15 0 0 0 b55

 .

Now

BA(2, ϵ2)A(1, ϵ1)A(3, ϵ) =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
0 0 b34 1 0
b15 0 0 0 b55




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −ϵ 1 0
−ϵ 0 0 0 1



=


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
0 0 b34 − ϵ 1 0

b15 − b55ϵ 0 0 0 b55

 .

Choosing ϵ = ϵ3 = b34,

b34 − ϵ = b34 − ϵ3 = b34 − b34 = 0,

b15 − b55ϵ = b15 − b55ϵ3 = b15 − b55b
3
4 = 0,

so

BA(2, ϵ2)A(1, ϵ1)A(3, ϵ3) =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
0 0 0 1 0
0 0 0 0 b55

 .
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Now

BA(2, ϵ2)A(1, ϵ1)A(3, ϵ3)A(5, ϵ) =


b11 0 b31 0 0
0 b22 0 0 0
b13 0 b33 0 0
0 0 0 1 0
0 0 0 0 b55



cos ϵ 0 − sin ϵ 0 0
0 1 0 0 0

sin ϵ 0 cos ϵ 0 0
0 0 0 1 0
0 0 0 0 1



=



b11 cos ϵ+ b31 sin ϵ 0 −b11 sin ϵ+ b31 cos ϵ 0 0

0 b22 0 0 0

b13 cos ϵ+ b33 sin ϵ 0 −b13 sin ϵ+ b33 cos ϵ 0 0

0 0 0 1 0

0 0 0 0 b55


.

Choosing ϵ = ϵ5 =
π
4
,

so

BA(2, ϵ2)A(1, ϵ1)A(3, ϵ3)A(5, ϵ5) =


b11+b31√

2
0

−b11+b31√
2

0 0

0 b22 0 0 0
b13+b33√

2
0

−b13+b33√
2

0 0

0 0 0 1 0
0 0 0 0 b55

 .

We know
b11 + b31√

2
=

(
−b13 + b33√

2

)
b55,

−b11 + b31√
2

= −
(
b13 + b33√

2

)
b55.
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So we have

BA(2, ϵ2)A(1, ϵ1)A(3, ϵ3)A(5, ϵ5) =



(
−b13+b33√

2

)
b55 0 −

(
b13+b33√

2

)
b55 0 0

0 b22 0 0 0
b13+b33√

2
0

−b13+b33√
2

0 0

0 0 0 1 0
0 0 0 0 b55

 .

Now

BA(2, ϵ2)A(1, ϵ1)A(3, ϵ3)A(5, ϵ5)A(4, ϵ)

=



(
−b13+b33√

2

)
b55 0 −

(
b13+b33√

2

)
b55 0 0

0 b22 0 0 0
b13+b33√

2
0

−b13+b33√
2

0 0

0 0 0 1 0
0 0 0 0 b55




eϵ 0 0 0 0
0 e2ϵ 0 0 0
0 0 eϵ 0 0
0 0 0 1 0
0 0 0 0 1



=



(
−b13+b33√

2

)
b55e

ϵ 0 −
(

b13+b33√
2

)
b55e

ϵ 0 0

0 b22e
2ϵ 0 0 0

b13+b33√
2
eϵ 0

−b13+b33√
2

eϵ 0 0

0 0 0 1 0
0 0 0 0 b55

 .

Choosing ϵ = ϵ4 = ln 1√
|b22|

,

so

BA(2, ϵ2)A(1, ϵ1)A(3, ϵ3)A(5, ϵ5)A(4, ϵ4) =



(
−b13+b33√

2 |b22|

)
b55 0 −

(
b13+b33√
2 |b22|

)
b55 0 0

0
b22
|b22|

0 0 0
b13+b33√
2 |b22|

0
−b13+b33√

2 |b22|
0 0

0 0 0 1 0
0 0 0 0 b55


.
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Let B̃ = BA(2, ϵ2)A(1, ϵ1)A(3, ϵ3)A(5, ϵ5)A(4, ϵ4).

These are the required inequivalent matrices.

4.1.6 Solution of the System of Determining Equations

Following is the system of determining equations with the inequivalent ma-
trices calculated in the previous section.


X1x̂ X1t̂ X1û
X2x̂ X2t̂ X2û
X3x̂ X3t̂ X3û
X4x̂ X4t̂ X4û
X5x̂ X5t̂ X5û

 =



(
−b13+b33√

2 |b22|

)
b55 0 −

(
b13+b33√
2 |b22|

)
b55 0 0

0
b22
|b22|

0 0 0
b13+b33√
2 |b22|

0
−b13+b33√

2 |b22|
0 0

0 0 0 1 0
0 0 0 0 b55




1 0 0
0 1 0
0 0 1
x̂ 2t̂ û
û 0 −x̂

 ,


X1x̂ X1t̂ X1û
X2x̂ X2t̂ X2û
X3x̂ X3t̂ X3û
X4x̂ X4t̂ X4û
X5x̂ X5t̂ X5û

 =



(
−b13+b33√

2 |b22|

)
b55 0 −

(
b13+b33√
2 |b22|

)
b55

0
b22
|b22|

0
b13+b33√
2 |b22|

0
−b13+b33√

2 |b22|

x̂ 2t̂ û
b55û 0 −b55x̂


.

Now we solve the above system of determining equations and seek a solution
of the form

(x̂, t̂, û) = ( x̂(x, t, u), t̂(x, t, u), û(x, t, u)) .

We have

X1t̂ = 0,

∂t̂

∂x
= 0,

t̂ = A(t, u).
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We also have

X3t̂ = 0,

∂t̂

∂u
= 0,

∂t̂

∂u
=

∂A(t, u)

∂u
= 0.

So

A(t, u) = A(t),

t̂ = A(t).

Now

X2t̂ =
b22
|b22|

,

∂t̂

∂t
=

b22
|b22|

,

A′(t) =
b22
|b22|

,

A(t) =
b22
|b22|

t+ c1,

t̂ =
b22
|b22|

t+ c1.

But we also have

X4t̂ = 2t̂,

x
∂t̂

∂x
+ 2t

∂t̂

∂t
+ u

∂t̂

∂u
= 2t̂,

2t
( b22
|b22|

)
= 2t

( b22
|b22|

)
+ 2c1,

0 = c1.

So

t̂ =
b22
|b22|

t.
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Also, t̂ just obtained satisfies

X5t̂ = 0,

u
∂t̂

∂x
− x

∂t̂

∂u
= 0,

u
∂

∂x

( b22
|b22|

t
)
− x

∂

∂u

( b22
|b22|

t
)
= 0,

0 = 0.

Next we have

X2û = 0,

∂û

∂t
= 0,

û = B(x, u).

We also have

X3û =
−b13 + b33√

2 |b22|
,

∂û

∂u
=

−b13 + b33√
2 |b22|

,

∂B(x, u)

∂u
=

−b13 + b33√
2 |b22|

,

B(x, u) =

(
−b13 + b33√

2 |b22|

)
u+ C(x),

û =

(
−b13 + b33√

2 |b22|

)
u+ C(x).

But we also have

X1û = −
(
b13 + b33√
2 |b22|

)
b55,

∂û

∂x
= −

(
b13 + b33√
2 |b22|

)
b55,
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C ′(x) = −
(
b13 + b33√
2 |b22|

)
b55,

C(x) = −
(
b13 + b33√
2 |b22|

)
b55 x+ c2.

û =

(
−b13 + b33√

2 |b22|

)
u−

(
b13 + b33√
2 |b22|

)
b55 x+ c2.

Now

X4û = û,

x
∂û

∂x
+ 2t

∂û

∂t
+ u

∂û

∂u
= û,

x
(
−
(
b13 + b33√
2 |b22|

)
b55

)
+ u

(
−b13 + b33√

2 |b22|

)
=

(
−b13 + b33√

2 |b22|

)
u−

(
b13 + b33√
2 |b22|

)
b55 x+ c2,

0 = c2.

So

û =

(
−b13 + b33√

2 |b22|

)
u−

(
b13 + b33√
2 |b22|

)
b55 x.

Next we have

X2x̂ = 0,

∂x̂

∂t
= 0,

x̂ = D(x, u).

We also have

X3x̂ =
b13 + b33√
2 |b22|

,

∂x̂

∂u
=

b13 + b33√
2 |b22|

,

∂D(x, u)

∂u
=

b13 + b33√
2 |b22|

,

D(x, u) =

(
b13 + b33√
2 |b22|

)
u+ E(x),

x̂ =

(
b13 + b33√
2 |b22|

)
u+ E(x).
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But we also have

X1x̂ =

(
−b13 + b33√

2 |b22|

)
b55,

∂x̂

∂x
=

(
−b13 + b33√

2 |b22|

)
b55,

E ′(x) =

(
−b13 + b33√

2 |b22|

)
b55,

E(x) =

(
−b13 + b33√

2 |b22|

)
b55 x+ c3.

x̂ =

(
b13 + b33√
2 |b22|

)
u+

(
−b13 + b33√

2 |b22|

)
b55 x+ c3.

Now

X4x̂ = x̂,

x
∂x̂

∂x
+ 2t

∂x̂

∂t
+ u

∂x̂

∂u
= x̂,

x

(
−b13 + b33√

2 |b22|

)
b55 + u

(
b13 + b33√
2 |b22|

)
=

(
b13 + b33√
2 |b22|

)
u+

(
−b13 + b33√

2 |b22|

)
b55 x+ c3,

0 = c3.

So

x̂ =

(
b13 + b33√
2 |b22|

)
u+

(
−b13 + b33√

2 |b22|

)
b55 x.

Now two equations still remain to be used

X5x̂ = b55û, X5û = −b55x̂.

X5x̂ = b55û,

u
∂x̂

∂x
− x

∂x̂

∂u
= b55û,
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u

(
−b13 + b33√

2 |b22|

)
b55 − x

(
b13 + b33√
2 |b22|

)
= b55

((−b13 + b33√
2 |b22|

)
u−

(
b13 + b33√
2 |b22|

)
b55 x

)
,

u

(
−b13 + b33√

2 |b22|

)
b55 − x

(
b13 + b33√
2 |b22|

)
=

(
−b13 + b33√

2 |b22|

)
b55u−

(
b13 + b33√
2 |b22|

)
(b55)

2 x,

0 = 0.

Since (b55)
2 = (±1)2 = 1.

X5û = −b55x̂,

u
∂û

∂x
− x

∂û

∂u
= −b55x̂,

u
(
−
(
b13 + b33√
2 |b22|

)
b55

)
− x

(
−b13 + b33√

2 |b22|

)
= −b55

(( b13 + b33√
2 |b22|

)
u+

(
−b13 + b33√

2 |b22|

)
b55 x

)
,

−u

(
b13 + b33√
2 |b22|

)
b55 − x

(
−b13 + b33√

2 |b22|

)
= −b55

(
b13 + b33√
2 |b22|

)
u−

(
−b13 + b33√

2 |b22|

)
(b55)

2 x,

0 = 0.

Since (b55)
2 = (±1)2 = 1.

Both equations are satisfied.

Therefore, the general solution of the system of determining equations is

x̂ =

(
b13 + b33√
2 |b22|

)
u+

(
−b13 + b33√

2 |b22|

)
b55 x.

t̂ =
b22
|b22|

t.

û =

(
−b13 + b33√

2 |b22|

)
u−

(
b13 + b33√
2 |b22|

)
b55 x.
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4.1.7 Symmetry Condition

To apply the symmetry condition we find

∂û

∂t̂
=

∂
((

−b13+b33√
2 |b22|

)
u−

(
b13+b33√
2 |b22|

)
b55 x

)
∂
(

b22
|b22|

t
)

=
|b22|√
2 |b22|

(−b13 + b33)

b22

∂u

∂t
.

∂û

∂x̂
=

∂
((

−b13+b33√
2 |b22|

)
u−

(
b13+b33√
2 |b22|

)
b55 x

)
∂
((

b13+b33√
2 |b22|

)
u+

(
−b13+b33√

2 |b22|

)
b55 x

)
=

(−b13 + b33)
∂u
∂x

− (b13 + b33)b
5
5

(b13 + b33)
∂u
∂x

+ (−b13 + b33)b
5
5

.

∂2û

∂x̂2
=

∂

∂x̂

(∂û
∂x̂

)
=

∂
(

(−b13+b33)
∂u
∂x

−(b13+b33)b
5
5

(b13+b33)
∂u
∂x

+(−b13+b33)b
5
5

)
∂
((

b13+b33√
2 |b22|

)
u+

(
−b13+b33√

2 |b22|

)
b55 x

)
=

(
√

2 |b22|)
(
(−b13 + b33)

2 − (b13 + b33)
2
)
b55

∂2u
∂x2(

(b13 + b33)
∂u
∂x

+ (−b13 + b33)b
5
5

)3 .

So
∂û

∂t̂
=

(
1

1 +
(

∂û
∂x̂

)2
)
∂2û

∂x̂2
,
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is

|b22|√
2 |b22|

(−b13 + b33)

b22

∂u

∂t
=

1

1 +
(

(−b13+b33)
∂u
∂x

−(b13+b33)b
5
5

(b13+b33)
∂u
∂x

+(−b13+b33)b
5
5

)2
(
(
√
2 |b22|)

(
(−b13 + b33)

2 − (b13 + b33)
2
)
b55

∂2u
∂x2(

(b13 + b33)
∂u
∂x

+ (−b13 + b33)b
5
5

)3
)
.

If the symmetry condition is to be satisfied, (b13+b33) = 0 and b33 ̸= 0 otherwise
the transformed equation will have ∂u

∂x
and ∂3u

∂x3 terms in it.

After simplification we have

∂u

∂t
=

1

1 +
(

∂u
∂x

)2( b22
2(b33)

2

)∂2u

∂x2
.

Therefore,
b22

2(b33)
2 must be equal to 1. So

(x̂, t̂, û) = (
b33
|b33|

b55 x, t,
b33
|b33|

u ).

Since b55±1, these are essentially four symmetries one of which is the identity.

Therefore, the only discrete symmetries of the Nonlinear Filtration Equation
up to equivalence are

ΓD1 (x̂, t̂, û) = (−x, t, −u ),

ΓD2 (x̂, t̂, û) = ( x, t, −u ),

ΓD3 (x̂, t̂, û) = (−x, t, u ).

This result is exhaustive. If ΓDi is any discrete symmetry from the above
three, then any other discrete symmetry, Γ̃D, of the Nonlinear Filtration
Equation can be obtained as

Γ̃D = eϵXΓDi.
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For example, if we choose X = X1, and i = 1, then, eϵX1ΓD1 gives us

Γ̃D (x̂, t̂, û) = ( (−x) + ϵ, (t), (−u) )

= (−x+ ϵ, t, −u ).

X could be any infinitesimal generator from the Lie Algebra, L, of infinites-
imal generators of (one-parameter) Lie groups of point symmetries of the
equation.

Some other examples

eϵX5ΓD1 (x̂, t̂, û) = ((−x) cos ϵ+ (−u) sin ϵ, (t), −(−x) sin ϵ+ (−u) cos ϵ)

= (−x cos ϵ− u sin ϵ, t, x sin ϵ− u cos ϵ).

eϵX4ΓD2 (x̂, t̂, û) = (eϵ(x), e2ϵ(t), eϵ(−u))

= (eϵx, e2ϵt, −eϵu).

eϵX2ΓD1 (x̂, t̂, û) = ((−x), (t+ ϵ), (−u))

= (−x, t+ ϵ, −u).
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4.2 Related Exact Solutions

Any exact solution of a differential equation can be examined for new ex-
act solutions using discrete symmetries of the differential equation. In this
section it has been attempted to find the group invariant solutions of the
NLF equation due to the groups generated by Xi, the basis generators. The
group invariant solutions will then be transformed using the discrete symme-
tries obtained in the last section.

Solutions invariant under the group G, generated by

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
,

satisfy the PDE

η − ξ
∂u

∂x
− τ

∂u

∂t
= 0.

For X1

ξ = 1, τ = 0, η = 0.

(0)− (1)
∂u

∂x
− (0)

∂u

∂t
= 0,

∂u

∂x
= 0,

u(x, t) = F (t).

This solution will now be substituted in NLF equation to determine F . Since

∂u

∂t
= F ′(t),

∂u

∂x
= 0,

∂2u

∂x2
= 0,

we have

F ′(t) = 0,

F (t) = c,

u(x, t) = c.

It is trivial to transform u = c.
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For X2

ξ = 0, τ = 1, η = 0.

(0)− (0)
∂u

∂x
− (1)

∂u

∂t
= 0,

∂u

∂t
= 0,

u(x, t) = F (x).

We now substitute this solution in NLF equation to determine F .

∂u

∂t
= 0,

∂u

∂x
= F ′(x),

∂2u

∂x2
= F ′′(x).

Substituting in NLF equation, we obtain

0 = F ′′(x),

F ′′(x) = c1x+ c2,

u(x, t) = c1x+ c2.

Trying all discrete symmetries of the form eϵXjΓDi shows, that atleast such
symmetries do not transform the above two parameter family of solutions to
any new family of solutions.

For instance, using

eϵX5ΓD1 (x̂, t̂, û) = (−x cos ϵ− u sin ϵ, t, x sin ϵ− u cos ϵ),

we obtain

(−x̂ sin ϵ− û cos ϵ) = c1(−x̂ cos ϵ+ û sin ϵ) + c2.

Removing carets and rearranging

u =
c1 cos ϵ− sin ϵ

cos ϵ+ c1 sin ϵ
x− c2

cos ϵ+ c1 sin ϵ
.
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For X3

ξ = 0, τ = 0, η = 1.

(1)− (0)
∂u

∂x
− (0)

∂u

∂t
= 0,

1 = 0.

Therefore, no group invariant solutions due to X3.

For X4

ξ = x, τ = 2t, η = u.

(u)− (x)
∂u

∂x
− (2t)

∂u

∂t
= 0,

x
∂u

∂x
+ 2t

∂u

∂t
= u,

dx

x
=

dt

2t
=

du

u
,

dx

x
=

dt

2t
,

x√
t
= r.

Likewise
v =

u√
t
.

General solution

v = F (r),

u =
√
tF (

x√
t
).

This solution will now be substituted in NLF equation to determine F .
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Since

∂u

∂x
= F ′(r),

∂2u

∂x2
=

1√
t
F ′′(r),

∂u

∂t
=

1

2
√
t
F (r)− x

2(
√
t)2

F ′(r),

we have

2F ′′(r) = F (r)− rF ′(r) +
(
F ′(r)

)2
F (r)− r

(
F ′(r)

)3
.

This is a second order nonlinear ODE for F , which appears to be very diffi-
cult to solve, if at all possible.

For X5

ξ = u, τ = 0, η = −x.

(−x)− (u)
∂u

∂x
− (0)

∂u

∂t
= 0,

u
∂u

∂x
= −x,

dx

u
=

dt

0
=

du

−x
,

dx

u
=

dt

x
,

xdx = −udu,

v = u2 + x2,

and
t = r.

General solution

v = F (r),

u2 + x2 = F (t),

u = ±
√

F (t)− x2.

We now substitute this solution in NLF equation to determine F .
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∂u

∂t
=

1

2
√

F (t)− x2
F ′(t) ,

∂u

∂x
=

−x√
F (t)− x2

,

∂2u

∂x2
=

−F (t)

(F (t)− x2)
√

F (t)− x2
.

Substituting in NLF equation, we obtain

F (t) = −2t+ c.

So
u(x, t) =

√
c1 − 2t− x2,

and
u(x, t) = −

√
c2 − 2t− x2.

These solutions can now be transformed using discrete symmetries to obtain
more solutions of the NLF equation.

For instance, using

eϵX1ΓD1 (x̂, t̂, û) = (−x+ ϵ, t, −u),

to transform
u(x, t) =

√
c1 − 2t− x2,

we obtain a two parameter family of solutions

(−û) =

√
c1 − 2t̂− (−x̂+ ϵ)2 .

Removing carets and rearranging, we have

u = −
√

c1 − 2t− (x− ϵ)2 .
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Summary

Peter H. Hydon’s method calculates discrete symmetries of differential equa-
tions, having a finite dimensional Lie algebra of infinitesimal generators of
its (one-parameter) Lie groups of point symmetries. His method is based
on the observation that every point symmetry yields an automorphism of
the Lie algebra of the Lie point symmetry generators. The method not only
results in an easier system of determining equations, uncoupled, but it is also
exhaustive, that is, all discrete symmetries are obtained.

The method in its basic form has two stages, solving the system of deter-
mining equations and application of symmetry condition on the solution of
this system.

Little improvements in the method can be made when the Lie algebra of
Lie point symmetry generators is abelian. In this case we can use canonical
coordinates. This way at least one generator in the basis is simplified.

Two further improvements can be made when the Lie algebra of Lie point
symmetry generators is non-abelian, the use of the nonlinear constraints and
solving the system of determining equations for only the inequivalent matrices
B. Although these two improvements are theoretically independent of each
other but they are almost always employed simultaneously.

All the discrete symmetries of KdV and NLF equations are calculated. As
an immediate application of discrete symmetries, group invariant solutions
of the equations, corresponding to the basis vectors of the Lie algebra, are
investigated for further solutions under transformations due to the discrete
symmetries.
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Appendix

This appendix discusses some prerequisite definitions and concepts.

Group

A group G is a set of elements with a binary operation ϕ on G such that
the following conditions are satisfied

(1) ϕ(a, b) ∈ G, for all a, b ∈ G.

(2) ϕ(a, ϕ(b, c)) = ϕ(ϕ(a, b), c), for all a, b, c ∈ G.

(3) There exists a unique element e ∈ G such that,
ϕ(e, a) = ϕ(a, e) = a, for all a ∈ G.

(4) For every a ∈ G there exist a unique a−1 ∈ G such that,
ϕ(a−1, a) = ϕ(a, a−1) = e.

A group is abelian if ϕ(a, b) = ϕ(b, a), for all a, b ∈ G.

Topological Space

A topological space is a pair (S, T ) where S is a set and T is a class of
subsets of S such that

(1) S and ∅ belong to T .
(2) The union of any number of sets in T belongs to T .
(3) The intersection of any two sets in T belongs to T .
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T is called a topology on S and elements of T are called open sets. A
collection B of open sets of S is a basis for the topology of S if every open
set is the union of sets of B. If S has a countable basis it is said to be second
countable.

A topological space is a Hausdorff space if any two distinct points have
disjoint open neighbourhoods.

Let A and B be topological spaces. A map f : A −→ B is continuous
if the inverse image of any open set in B is an open set in A. The map f is
a homeomorphism if it is bijective and both f and f−1 are continuous, in
which case U ⊂ A is open if and only if f(U) ⊂ B is open.

Manifold

An n-dimensional topological manifold is a Hausdorff space M with a
countible basis such that every point p ∈ M has a open neighbourhood U
which is homeomorphic with an open subset of Rn.

A chart for a topological manifold is the pair (U, h), where U is an open
subset of M and h : U −→ V is a homeomorphism, with V open in Rn.

An atlas on an n-dimensional topological manifold is a collection of charts
{(Uα, hα) : α ∈ I}, where I is a countable index set, such that M =

∪
α∈I Uα.

An n-dimensional smooth manifold M is an n-dimensional topological
manifold which satisfy the following conditions

(1) There exists an atlas on M.

(2) On the overlap of any pair of charts Uα ∩ Uβ the following composite
map is smooth,

hβ ◦ h−1
α : hα(Uα ∩ Uβ) −→ hβ(Uα ∩ Uβ).
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