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Abstract

The rapid growth of the Internet of Things (IoT), and the influx of real-time data streams

from diverse sources have catalyzed the need for efficient and scalable stream data pro-

cessing techniques. This thesis introduces an innovative paradigm that harnesses the

untapped potential of electric vehicles (EVs) to enhance the scalability and efficiency

of stream data processing systems. In resource-constrained environments such as edge

devices and IoT deployments, conventional computing infrastructures often face chal-

lenges in meeting the demands of processing continuous and high-velocity data streams.

EVs, equipped with robust computational capabilities and rechargeable batteries, offer

a unique opportunity to alleviate these challenges by acting as supplementary process-

ing nodes. The research begins by comprehensively reviewing the landscape of stream

data processing, edge computing, and vehicular networks. Existing stream processing

frameworks and their challenges are analyzed, paving the way for the exploration of an

innovative approach to address these limitations. The proposed framework integrates

EVs into the stream data processing architecture, presenting a novel approach for task

offloading and collaborative stream processing. By leveraging V2V (vehicle-to-vehicle)

communication, EVs within the network can dynamically share computational work-

loads, thereby enhancing the scalability and responsiveness of the entire system. A

detailed network model is formulated to illustrate the interactions and resource sharing

mechanisms among EVs, further substantiated by an in-depth system model that quanti-

fies energy consumption, task execution times, and offloading strategies. Through metic-

ulous simulation and performance evaluation, the novel approach is compared against

conventional methods. Results reveal a substantial improvement in task completion

rates, marked reduction in failure rates, and optimized energy utilization when leverag-

ing EVs for stream data processing. The study not only underscores the efficiency of the

proposed approach but also highlights its potential to revolutionize real-time data anal-
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List of Tables

ysis in dynamic vehicular environments. This thesis contributes to the fields of stream

data processing, edge computing, and vehicular networks by introducing a pioneering

solution that leverages EVs to enhance the scalability, efficiency, and resilience of stream

data processing systems. The findings underscore the viability of incorporating EVs as

computational resources, opening new avenues for addressing the challenges posed by

the burgeoning influx of real-time data streams in the era of IoT.
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Chapter 1

Introduction and Motivation

1.1 Introduction

With the advent of the Internet of Things (IoT) and the exponential growth of data,

processing stream data efficiently and at scale has become a critical need. Data in the

form of streams are produced in real time by a wide variety of devices and applications,

including sensors, social media feeds, financial transactions, and network logs [1]. In

many fields, such as economics, transportation, healthcare, and environmental mon-

itoring, real-time data analysis is essential for drawing useful conclusions and acting

promptly. Traditional batch processing technologies are no longer sufficient to solve

the issues presented by the continuous nature of stream data. The opposite is true for

stream data processing systems, which are built to process data in real-time to provide

rapid analysis and decision-making. To deal with the massive amount and speedy nature

of streaming data, these systems often employ distributed processing frameworks like

Apache Storm, Apache Flink, or Apache Kafka Streams [2]. These stream processing

systems, however, are extremely dependent on the available computational resources if

they are to scale well and function well. Edge devices, and the IoT deployments are ex-

amples of resource-constrained contexts where processing power may be in short supply.

The growing popularity of electric vehicles (EVs) also provides a rare chance to tap into

the power of their batteries to handle stream data [3].

An original framework for the sharing resources among streams of data, with the use

of electric vehicles, is proposed in this thesis. The goal is to investigate the viability of

incorporating EVs computational capabilities and energy storage into stream processing

1



Chapter 1: Introduction and Motivation

systems to increase their scalability and efficiency. This paradigm seeks to reduce the

strain on conventional computing infrastructures and address the difficulties of resource-

constrained settings by making use of EVs’ unused or underutilized capacities.

1.1.1 Background

The digital era’s exponential data growth has given rise to new difficulties and possibil-

ities in data processing. When dealing with a large amount of data created in real-time,

traditional batch processing techniques are inadequate [4]. Since , data streams are

typically continuous and move at a rapid rate, stream data processing has become an

important strategy for dealing with this problem. Data streams are the collections of

information that are created in real-time and come from a variety of sources, including

but not limited to sensors, social media feeds, financial activities, and network logs [5].

Environmental monitoring, financial transaction fraud detection, and social media trend

analysis are all examples of use cases for stream data. With the ability to analyze and

make decisions in real-time, stream processing systems are built to handle the constant

influx of data. To meet the difficulties of processing stream data, several distributed

stream processing frameworks have been created. Popular ones include the Apache

Software Foundation’s Storm, Flink, and Kafka Streams projects. These frameworks

permit scalability, fault tolerance, and low-latency processing by enabling parallel and

distributed processing of data streams. They’ve found widespread use in everything

from banking and telecom to logistics and healthcare.

However, the efficiency and scalability of such stream processing systems are highly de-

pendent on the accessibility of computing power. Computing power is often in short

supply in low-resource settings, such as edge devices and IoT deployments. High de-

mands for stream processing in such situations could overwhelm conventional computing

infrastructures. At the same time, the widespread uptake of EVs provides a one-of-

a-kind chance to investigate other potential computational resources for stream data

processing [6]. EVs, which run on rechargeable batteries, include powerful computing

capabilities thanks to their onboard computers. Also, electric vehicles spend a lot of

time parked and hooked up to charging stations, which means that a lot of resources

are sitting there unused. Stream processing systems can be made more scalable and

efficient by utilizing the computing power and energy storage capabilities of EVs, which

2



Chapter 1: Introduction and Motivation

together and can exchange data and coordinate their operations.

1.2 Smart IoT Environment

When smart gadgets and IoT technologies are combined, an intelligent and intercon-

nected ecosystem is created. In this setting, gadgets can share information, conduct

research, and streamline routine tasks to benefit productivity and the user experience.

Exchange of data in real-time, smart decision-making, and ubiquitous connection are

hallmarks of the smart IoT ecosystem [9]. Smart homes, healthcare, transportation,

agriculture, and even industrial automation are just some of the many fields that ben-

efit from the IoT’s advanced infrastructure. In a "smart home," for instance, all of the

appliances and electronics work together to provide the utmost convenience, safety, and

comfort. In the medical field, wearable gadgets can track vitals and send that infor-

mation in real-time to doctors and nurses, allowing for remote patient monitoring and

more prompt treatment [10].

1.3 Internet of Vehicles (IoV)

The Internet of Vehicles (IoV) is a specific application area within the broader IoT

domain that focuses on the integration of vehicles with IoT technologies. IoV aims to

create a connected network of vehicles that can communicate with each other and with

the surrounding infrastructure to enhance road safety, traffic management, and overall

transportation efficiency [11].

1.4 Types of Smart Devices and IoT

1.4.1 Smartphones and Wearables

Smartphones have become ubiquitous devices that serve as the central hub for accessing

and controlling various smart devices. They enable users to interact with IoT systems,

monitor and control smart home devices, and access real-time information. Wearable

devices, such as smartwatches and fitness trackers, collect data on users’ health and

activities, facilitating personalized monitoring and analysis.
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are now underutilized [7]. Our research is predicated on the concept of incorporating EV

resources into stream data processing systems. To facilitate the smooth incorporation

of EVs as extra processing nodes in preexisting stream processing systems, a framework

for EV-assisted resource sharing is developed. The framework’s goal is to balance work-

loads and improve system performance by delegating duties for stream processing to

both conventional compute nodes and EVs. This not only makes the stream processing

system more scalable as a whole, but it also helps alleviate some of the difficulties that

arise in contexts with limited resources. The system overview is presented in Figure 1.1,

offering a visual depiction of the entire system’s structure and components.

Figure 1.1: Visual Depiction of the system

There are several possible advantages of using EV resources to process stream data.

First, it enables the effective recruitment of otherwise unused computing assets, hence

increasing the system’s total processing power. Second, the framework can potentially

lessen the energy consumption of conventional computer infrastructures by making use

of the energy storage capacities of EVs [8]. In light of mounting environmental concerns,

this is in line with the rising need for eco-friendly computer options. Intelligent resource

allocation algorithms must be developed before the full potential of EV-assisted resource

sharing can be realized. To accomplish optimal task allocation, these algorithms should

think about things like the computing capabilities of EVs, the energy levels of EV bat-

teries, and the workload distribution. Extensive simulations and real-world experiments

will be used to evaluate the efficacy of these algorithms and the performance and scal-

ability of the proposed framework. Our relationship with technology and the physical

environment has been profoundly altered by the advent of smart gadgets and the IoT.

Our ability to easily collect and share information thanks to smart gadgets like smart-

phones, wearables, and connected sensors has made them ubiquitous in our daily lives.

In contrast, the IoT describes a system in which diverse objects and systems are linked

3
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1.4.2 Connected Home Devices

Connected home devices, also known as smart home devices, include smart thermostats,

lighting systems, security cameras, door locks, and appliances. These devices can be con-

trolled remotely through smartphone apps or voice assistants, allowing users to manage

their homes efficiently, save energy, and improve security.

1.4.3 Industrial IoT (IIoT) Devices

Industrial IoT devices are employed in industrial settings for process automation, asset

monitoring, and predictive maintenance. They include sensors, actuators, and con-

trollers that collect and transmit data to optimize production processes, monitor equip-

ment health, and enable proactive maintenance.

1.4.4 Connected Healthcare Devices

Connected healthcare devices encompass a wide range of IoT-enabled medical devices,

including wearable health trackers, remote patient monitoring systems, smart medical

implants, and telemedicine devices. These devices enhance healthcare delivery by en-

abling continuous monitoring, early detection of health issues, and remote consultations.

1.4.5 Smart City Infrastructure

Smart city infrastructure involves the deployment of IoT technologies in urban envi-

ronments to enhance services and improve quality of life. It includes smart streetlights,

waste management systems, parking management, environmental monitoring, and traffic

management systems. These interconnected systems enable efficient resource utilization,

reduce congestion, and promote sustainability.

1.4.6 Internet of Vehicles (IoV) Devices

IoV devices include connected vehicles, roadside sensors, and infrastructure components

that enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication.

These devices facilitate real-time traffic monitoring, collision avoidance, autonomous

driving, and intelligent transportation systems.
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1.5 Motivation

The need for effective and scalable stream data processing in the age of big data and

the Internet of Things (IoT) inspired this study’s investigation. Sensors, social media

feeds, financial transactions, and network logs are just a few of the sources that produce

stream data at an unparalleled rate. Timely choices, the identification of abnormalities,

and the acquisition of useful insights across several areas all rely on the results of real-

time data analysis. The rising popularity of EVs provides a one-of-a-kind chance to

investigate other potential computational resources for stream data processing. Electric

vehicles (EVs) have impressive computational capabilities due to their high-powered

onboard processors and rechargeable batteries. In addition, electric vehicles spend a lot

of time parked and hooked up to charging stations, creating opportunities to make use

of otherwise unused resources.

There are several convincing arguments in favor of incorporating EV resources into

stream processing systems. First, it allows for the effective utilization of unused or

underutilized computational resources, which increases the system’s total processing ca-

pacity. This has the potential to increase the system’s scalability and responsiveness to

the stream of data that never stops coming in. Second, the suggested framework has

the potential to lower the energy consumption of conventional computer infrastructures

by capitalizing on the energy storage capabilities of EVs. As energy efficiency and envi-

ronmental concerns rise in importance in today’s data processing, this fits well with the

growing need for sustainable computing solutions. Further, the difficulties encountered

in resource-limited settings can be mitigated by including EVs in stream processing sys-

tems. The architecture can reduce the workload on conventional computing nodes and

improve system performance by using electric vehicles as distributed computing and en-

ergy storage. The study’s overarching goal is to design and implement a resource-sharing

framework for electric vehicles that can be used with any data-streaming system. Taking

into account parameters like computational capabilities, energy levels of EV batteries,

and workload distribution, this framework will be created to effectively allocate stream

processing duties across conventional computing nodes and EVs. Extensive simulations

and actual implementations will test the proposed framework’s performance and scal-

ability. This thesis seeks to advance the state of the art in stream data processing by

investigating the unrealized potential of EV-assisted resource-sharing frameworks. New
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perspectives on improving scalability, efficiency, and sustainability in the context of IoT

and big data can be gained from the results of this study on the viability and usefulness

of harnessing EV resources for stream data processing.

1.6 Purpose of Research

The primary goal of this research is to develop an EV-assisted resource-sharing frame-

work for stream data processing. The framework aims to seamlessly integrate electric

vehicles (EVs) as additional processing nodes into existing stream processing systems,

thereby enhancing their scalability and efficiency. The purpose of this research is listed

below;

• To design intelligent resource allocation algorithms that efficiently distribute stream

processing tasks among traditional computing nodes and EVs. These algorithms

will consider factors such as the computational capabilities of EVs, the energy

levels of EV batteries, and the workload distribution to achieve optimal task allo-

cation and load balancing.

• To explore the untapped potential of utilizing the computational capabilities and

energy storage of EVs for stream data processing. By leveraging the idle or under-

utilized resources of EVs, the proposed framework aims to address the challenges

posed by resource-constrained environments and improve the overall performance

of stream processing systems.

• To explore the untapped potential of utilizing the computational capabilities and

energy storage of EVs for stream data processing. By leveraging the idle or under-

utilized resources of EVs, the proposed framework aims to address the challenges

posed by resource-constrained environments and improve the overall performance

of stream processing systems.

• To evaluate the performance and scalability of the proposed EV-assisted resource-

sharing framework through extensive simulations and real-world experiments. The

findings will provide valuable insights into the feasibility and effectiveness of lever-

aging EV resources for stream data processing and offer practical guidance for

implementing such frameworks in diverse application domains.

7
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• To contribute to the advancement of stream data processing techniques by explor-

ing innovative approaches to handle the continuous and high-velocity nature of

stream data. By harnessing the computational power and energy storage of EVs,

the research aims to pave the way for more sustainable, efficient, and scalable

stream processing systems, enabling real-time analysis of large-scale streaming

data in resource-constrained environments.

1.7 Problem Statement

As autonomous vehicles continue to advance in terms of features and functionalities,

the issue of inadequate resources poses a challenge to their optimal performance. To

address this challenge, offloading has emerged as a technique utilized by automated

vehicles to optimize their computation, performance, and storage capacity. Task of-

floading allows automated vehicles to delegate certain tasks to neighboring vehicles for

processing. While task offloading proves effective in conserving resources, static offload-

ing strategies can be costly. Therefore, there is a need to explore dynamic and efficient

offloading techniques that can enable automated vehicles to leverage the resources of

neighboring vehicles for enhanced performance and resource utilization.

8
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Literature Review

Stream processing has emerged as a critical technology for real-time data analysis and

decision-making. It enables the processing of continuous data streams, providing valu-

able insights and timely responses. Stream processing involves the analysis and pro-

cessing of data streams in real time. It differs from traditional batch processing by

handling infinite, continuously arriving data. Many applications, such as financial ana-

lytics, social media monitoring, and IoT data processing, rely on stream processing for

immediate insights [12]. IoT devices generate continuous streams of data from various

sources such as sensors, actuators, and connected devices. These data streams often

exhibit high velocity, variety, and volume, requiring immediate processing to extract

meaningful information. Stream processing in IoT devices involves the real-time anal-

ysis and processing of these data streams to detect events, monitor system health, and

trigger appropriate responses. However, stream processing in IoT devices faces several

challenges [13]. Firstly, the sheer volume and velocity of data generated by IoT de-

vices require efficient processing mechanisms to handle the incoming streams in real

time. Additionally, data quality and reliability are crucial factors, as IoT data streams

may contain noise, missing values, or inconsistencies that need to be addressed during

processing. Moreover, the resource-constrained nature of many IoT devices poses chal-

lenges in terms of computational capabilities and energy efficiency. Stream processing

algorithms and techniques need to be optimized to operate within the limited resources

of IoT devices, ensuring minimal energy consumption and efficient utilization of pro-

cessing power. To address these challenges, researchers have proposed various solutions.

Edge computing, which involves performing stream processing tasks closer to the data

source, can alleviate the burden on centralized cloud infrastructure and reduce latency.

9
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Edge devices can perform initial data preprocessing, filtering, and lightweight analytics,

offloading the more significant processing tasks to the cloud [14]. As IoT continues to

expand and evolve, further research and innovation in stream processing techniques will

be essential to unlock the full potential of IoT data and drive the development of smart

and responsive IoT systems.

2.1 Edge Computing

In numerous cloud-based applications, data centers are commonly used as central servers

for processing the data generated by edge devices like smartphones, tablets, and wear-

ables. These edge devices serve as data sources, collecting and transmitting data to

the centralized cloud infrastructure for storage, analysis, and processing. By leveraging

the computational resources and scalability of data centers, cloud-based applications

can handle large volumes of data and perform complex computations, providing ser-

vices and insights to edge devices and their users [15]. The research on edge computing

is advancing swiftly as a result of the constraints imposed by traditional cloud plat-

forms. Recognizing the limitations of relying solely on centralized cloud infrastructure,

researchers are actively exploring edge computing as a promising alternative. By mov-

ing computational resources closer to the edge of the network, edge computing offers

advantages such as reduced latency, improved responsiveness, and enhanced privacy and

security. This shift towards edge computing is driven by the need to overcome the limi-

tations of the cloud platform and unlock new possibilities for real-time data processing,

analytics, and decision-making [16]. Edge computing plays a crucial role in the migra-

tion of data and services from centralized nodes to the network’s edge. This shift is

driven by the increasing demand for faster processing, reduced latency, and enhanced

user experience. By bringing computational resources closer to the edge of the network,

edge computing enables efficient data processing and service delivery in proximity to the

data sources. This approach eliminates the need to transmit massive amounts of data

to distant centralized nodes for processing, resulting in improved response times and

optimized bandwidth utilization [17]. Rather than relying solely on centralized cloud

servers for data analysis, this approach brings the intelligence and processing power to

the edge of the network. By utilizing intelligent edge devices like Raspberry Pi, data

analytics can be performed locally, closer to the data sources in the IoT ecosystem. This

10
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enables real-time or near-real-time analysis, reduces the need for extensive data transfer,

and improves overall efficiency. The use of intelligent edge devices for IoT data analytics

opens up new possibilities for distributed and decentralized analytics, enabling faster

insights and more responsive decision-making [18].

Mobile-edge cloud computing is an emerging concept that aims to bring the power of

cloud computing closer to mobile users by deploying cloud resources at the edge of ra-

dio access networks. This paradigm recognizes the importance of minimizing latency

and improving the overall user experience by providing computational capabilities in

close proximity to mobile devices. By leveraging the resources available at the network

edge, mobile-edge cloud computing enables mobile users to offload computation tasks,

access cloud services, and benefit from enhanced performance and responsiveness [19].

The Internet of Things (IoT) has transitioned from experimental technology to a critical

component of future customer value in various industries. IoT, combined with intelligent

and big data analytics, is poised to revolutionize sectors like healthcare, smart cities,

and industrial automation. As we move towards the fifth generation of wireless com-

munication systems, IoT’s significance becomes even more pronounced. Multi-access

edge computing (MEC) technology has emerged to extend cloud computing capabilities

to the edge of the radio access network. This advancement enables real-time, high-

bandwidth, and low-latency access to radio network resources, transforming the way

data is processed and enhancing overall connectivity and performance [20].

2.2 Vehicular task offloading

In recent times, the rising demand for multimedia services on mobile devices, such as

smartphones, iPads, and electronic tablets, has led to a significant surge in mobile data

traffic [21]. This exponential growth has posed a severe burden on mobile network oper-

ators. To tackle this challenge effectively, a viable solution is to employ complementary

technologies, such as small cell networks and WiFi networks, for mobile data offload-

ing. Mobile data offloading involves diverting data traffic away from the traditional

mobile network infrastructure to alternative network technologies. By utilizing comple-

mentary technologies, the goal is to alleviate the congestion and capacity limitations of

the mobile network. Offloading data to small cell networks and WiFi networks allows

for the efficient distribution of data traffic, reducing the strain on the primary mobile
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network [22]. Mobile-edge computing (MEC) in conjunction with the Internet of Vehi-

cles (IoV) is a novel network technology that holds great potential for enhancing task

computing and offloading efficiency. By bringing computational capabilities closer to

the network edge, MEC enables faster and more localized processing of tasks. When

integrated with IoV, which connects vehicles to the network, it allows for efficient of-

floading of computationally intensive tasks [23]. This combination of MEC and IoV

empowers vehicles to leverage nearby edge resources, optimizing task execution and im-

proving overall computing efficiency. Task offloading from vehicle to vehicle involves

the transfer of computationally intensive tasks and large data payloads from one ve-

hicle to another. This approach leverages the computing and storage capabilities of

nearby vehicles to offload the processing burden and reduce latency. By utilizing the

resources of neighboring vehicles, task offloading enables efficient execution of tasks that

require substantial computational power and handling of large datasets. Vehicular edge

computing (VEC) is an emerging field that aims to optimize vehicular services by dis-

tributing computational tasks between VEC servers and local vehicular terminals. With

the advancement of vehicle intelligence and capabilities, there is great potential for the

development of new and exciting applications. By leveraging the resources of neigh-

boring vehicles, VEC ensures efficient utilization of network resources while alleviating

the computational load on the VEC servers. However, the dynamic nature of vehicles’

mobility, the changing network topology, and the unpredictable availability of comput-

ing resources pose challenges in managing VEC environments. These factors make it

difficult to accurately predict and adapt to the evolving conditions, requiring innovative

solutions to optimize task distribution and resource allocation in VEC systems [24].

The rapid advancements in the Internet of Vehicles (IoV) have led to the proliferation

of smart vehicles equipped with computation units, multi-communication technologies,

sensor platforms, and human-machine interaction devices. These technological advance-

ments have made it increasingly feasible for these smart vehicles to offer a range of

intelligent traffic applications. Examples of such applications include smart parking

decisions, real-time road traffic monitoring, and automatic management systems. Fur-

thermore, there is a wide array of multimedia onboard applications available for both

passengers and drivers, enhancing the overall experience and convenience of smart vehi-

cles. The integration of these advanced technologies in vehicles opens up a multitude of

possibilities for creating innovative and efficient solutions in the realm of transportation
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and mobility [25]. These advanced applications require robust computational capabili-

ties to meet their demanding requirements. Particularly, applications involving real-time

interaction and video processing, such as image-assisted navigation, immersive applica-

tions, and natural language processing, have strict limitations on latency and delay.

These applications necessitate high-grade computation to perform tasks in real-time

and process data efficiently. Meeting these requirements is crucial to ensure seamless

user experiences and enable the effective functioning of these applications. Therefore,

optimizing computational resources and implementing efficient algorithms are vital to

address the latency constraints and deliver smooth performance in these computation-

ally intensive applications [26].

2.3 Stream Processing

In the realm of big data, the significance of streaming data has grown immensely. With

the increasing demand for managing vast and continuously flowing data sets, streaming

systems have reached a stage of development where they are now widely accepted and

utilized by businesses. These systems have matured to a point where they offer effective

solutions for processing and harnessing the potential of unbounded data streams in

various domains. This paper presents the dataflow model, which is widely used in stream

data processing systems. It discusses the principles and advantages of the dataflow

model in enabling efficient and scalable processing of unbounded, out-of-order data

streams [27]. It also covers important aspects such as event time handling, windowing,

and fault tolerance. This paper introduces Storm, a popular open-source stream data

processing system. It describes the architecture and features of Storm, which enables

scalable and fault-tolerant real-time computation on large-scale data streams. It covers

key concepts such as spouts, bolts, and topologies, and provides insights into how Storm

handles reliability and parallelism [28]. In recent years, data stream processing has

experienced a surge in interest and activity due to the growing Big Data landscape and

the emergence of the Internet of Things (IoT). This has posed unique challenges for

conventional stream processing engines such as System S, Borealis, and STREAM[4].

The need to efficiently process and analyze massive streams of data generated by IoT

devices has pushed the boundaries of traditional stream processing approaches [29].
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Design and Methodology

3.1 Network Model

The network configuration showcases a scenario where vehicles play a significant role

in task offloading through stream processing. This arrangement involves leveraging

the capabilities of vehicles within the network to efficiently offload computational tasks

and perform stream processing operations. The vehicles act as integral components in

the network architecture, contributing to the overall processing capacity and enabling

seamless data flow for stream processing applications.

3.1.1 Electric Vehicles

Within our network model, we employed EVs that rely on onboard battery packs for

propulsion. These EVs utilize rechargeable batteries both to store and provide energy

for the task offloading process. These vehicles are capable of generating complex compu-

tational tasks that demand substantial processing resources. However, recognizing the

constraints of available resources, they strategically delegate these resource-intensive

tasks to neighboring vehicles for computation, facilitated through stream processing.

The computational design for vehicles is illustrated in Figure 3.1, providing a visual

representation of our vehicular network’s processing architecture.
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Figure 3.1: Architecture for the Vehicular Computational model

3.2 System Model

we consider a bi-directional road with two way traffic streams.A set of vehicles which are

generating the Tasks is defined asN=1, 2, 3....n.Every Vehicle runs with uniform speed

along the both two way road.Each vehicle is entrusted with a substantial computational

workload, which can be carried out either locally by the vehicle’s terminal.

3.2.1 Energy Model

Our primary focus lies in minimizing energy consumption, encompassing both the en-

ergy expended in local computations and the energy required for task offloading to

neighboring vehicles.

3.2.2 Local Computation Energy

The energy consumed during local computations of Electric Vehicle n in time slot k can

be quantified by the local computing time, tk
n,l

.where K is a Beginning time slot.
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tk
n,l

= Dk
n,l

Ω/f − n

where Dk
n,l

is the size of Queue for local offloading. fn is the frequency of CPU and Ω

shows number of cpu cycles in MIPS required to process one bit. The energy consumed

by the Electric Vehicle n during local computations in time slot k can be derived by

calculating the local computation energy, Ek
n,l

.

Ek
n,l

= δf3 − ntk
n,l

where δ shows the computation energy efficiency coefficient.//

3.2.3 Vehicle to Vehicle Offloading Energy

The time taken for Electric vehicle n to offload its tasks to a neighboring vehicle, denoted

as m, in time slot kcan be determined by the offloading time, tk
n,m .

tk
n,m = Dk

n,m / V k
n,m

where,Dk
n,m is the size of the queue of neighboring vehicle.V k

n,m represents the transmis-

sion rate between the sender and receiver electric vehicles.

The energy consumed by Electric Vehicle n when offloading tasks to another neighboring

Vehicle supposed m in time slot k can be expressed as the offloading energy, Ek
n,m .

Ek
n,m = F k

n tk
n,m

here F is the transmission power of the Electric Vehicle. The total Energy of Electric

Vehicle n in k time slot is the total Energy of the Local computation energy and vehicle-

to-vehicle offloading energy.

En
k = Ek

n,l
+ Ek

n,m

3.2.4 Stream Model

The vehicle-to-vehicle (V2V) task offloading system for stream processing involves a net-

work of vehicles N=N1 ∪ N2 ∪ N3...Nn equipped with computational resources and com-

munication capabilities. These vehicles move within a geographic area A=A1 ∪ A2..An

and collect data from various sources, generating continuous data streams.
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Each Electric vehicle in the system acts as a processing node, capable of performing com-

putational tasks. The vehicles communicate with each other using V2V communication

to exchange data and collaborate on stream processing tasks.

The system employs a Distributed Stream Processing approach, where each ve-

hicle n processes a portion of the task it collects, utilizing its available computational

resources. However, when a vehicle encounters computationally intensive tasks or lacks

sufficient resources to process the tasks, it can offload those tasks to neighboring vehicles

m with more resources or higher processing capabilities.

Once a suitable vehicle for offloading is identified, the task is transferred from the of-

floading vehicle n to the receiving vehiclem over the V2V communication link. The

receiving vehicle then performs the offloaded task using its available resources and re-

turns the results to the requesting vehicle. Overall, our system model for V2V task

offloading through stream processing enables vehicles to collaborate and optimize re-

source usage, enhancing the scalability, responsiveness, and energy efficiency of stream

processing tasks in dynamic vehicular environments.
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Algorithm 1 Stream Processing Algorithm
V : Collection of Electric Vehicles

T ask: Task generated by a Vehicle

distance: Range of vehicles for offloading tasks

V.P x: Current value of the X direction

V.P y: Current value of the Y direction

X: X-axis Direction of the Vehicle

Y : Y-axis Direction of the Vehicle

angle: Calculated angle

procedure ClusterFormation

while true do

if d < 50 then

Send the T ask to vehicle V

end if

Initialize X and Y by getting the X-axis and Y-axis values of the vehicles

if X > V.P x then

Calculate the angle between X − V.P x and V.P y − Y X < V.P x

Set the angle in the range between 180 to 360 degrees.

else

Set the angle to 0

end if

if 45 ≤ angle < 135 then

Set the direction as LEFT 135 ≤ angle < 225

Set the direction as RIGHT 225 ≤ angle < 315

Set the direction as UP

else

Set the direction as DOWN

end if

Update the values of X and Y

end while

end procedure
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Implementation and Results

We will delve into the minute details of the implementation process and the results

obtained in this section of the chapter. The Anylogic simulator, a versatile piece of

software that is ideal for modeling and simulating complex systems, was used to build

and run the simulation itself. To ensure optimal performance and accuracy during

the simulation, the system used for this research was outfitted with specific hardware

requirements. The system’s impressive 8GB of Random Access Memory (RAM) made

it possible to handle large amounts of data and computations with ease.

The system also included a large 1TB Hard Disk Drive (HDD), which offered plenty of

storage space for the simulation data, input parameters, and interim results, enabling

easy access to information throughout the experiment. A powerful 2.6GHz Intel Core i7

processor was at the system’s core to further increase processing power. This powerful

processor made it possible to run complex mathematical simulations and algorithms

quickly and accurately, which improved the research’s overall effectiveness and depend-

ability.

It should be noted that Windows was used as the operating system on this system.

Windows is a popular and reliable platform known for its user-friendly interface and

compatibility with a wide range of software applications. The accuracy, stability, and

smooth operation of the simulation throughout the research project were all made pos-

sible by the choice of such an optimal hardware and software configuration.

Java was chosen as the programming language to use for this research project. Due

to its adaptability, portability, and robustness, Java, a very well-liked and frequently

used programming language, was specifically chosen as the best option for performing
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intricate and sophisticated tasks. Because Java is object-oriented, the researchers were

able to design and organize the code in a way that would make it simple to maintain,

reuse code, and scale. The robust typing system and explicit memory management of

the language also ensured that potential errors were discovered early in the development

cycle, improving the codebase’s overall dependability and stability.

Java’s platform independence is among its many important benefits. The Java Vir-

tual Machine, which served as a bridge between the code and the underlying operating

system, allowed the Java code created for this research to run without modification

on a variety of platforms. It was simpler to share and replicate the research find-

ings across a range of hardware and operating systems thanks to this cross-platform

compatibility. The researchers also had access to a wide range of tools and resources

to speed up development and simplify the implementation of complex functionalities

thanks to Java’s extensive standard library and the availability of numerous third-party

libraries and frameworks. Java provided a rich set of libraries to meet various research

requirements, whether it be for data processing, networking, or graphical user interface

development.The language was a wise choice for handling sensitive data and reducing

potential security vulnerabilities due to its emphasis on security through features like

automatic garbage collection and sandboxing.

A thorough evaluation of the traditional approach’s performance is shown in Figure 4.1,

which shows the number of tasks created and carried out in relation to various vehicle

densities. The trends seen during the experimentation process are highlighted in the

figure using a simple and instructive representation. The figure’s x-axis represents ve-

hicle density, and the y-axis represents the number of tasks. The rate of task execution

noticeably decreases as the number of tasks rises, demonstrating a connection between

task generation and execution effectiveness. Several insights can be drawn from the data

points after careful examination. A total of 703 tasks were generated at a vehicle rate

of 50 tasks, of which 697 were completed successfully. The number of tasks generated

increased to 1145 at a vehicle rate of 100 tasks, with 1135 of those tasks being executed

proficiently. The total number of generated tasks increased to 1871 as the vehicle rate

was increased to 150 tasks per minute. Of these, 1852 tasks were completed on time.

The number of tasks generated later increased to 2382 at a vehicle rate of 200 tasks,

and impressively, 2357 of those tasks were carried out without much delay. Last but

not least, the highest number of generated tasks—3067 in total—was recorded when
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the vehicle rate reached 250 tasks. Notably, a sizable portion of these tasks—more

specifically, task 3034—were successfully completed. In the context of the conventional

approach, the data presented offers useful insights into the relationship between vehicle

density, task generation, and task execution rates. These results provide essential data

for evaluating the system’s performance under various circumstances and can be used

as a foundation for further optimization and development of the strategy.

Figure 4.1: Tasks Generated vs Tasks Executed

Figure 4.2 meticulously illustrates the performance evaluation of the novel approach

used in this study and provides a detailed comparison of tasks that were executed and

tasks that were created using this cutting-edge approach. The performance of the new

approach is noticeably better than that of the conventional approach, demonstrating

its potential as a more effective and efficient solution for the task at hand. The vehicle

density is shown on the x-axis in Figure 4.2 while the number of tasks is shown on the

y-axis. According to the data, when the number of tasks rises, the task execution rate

falls, mirroring the behavior seen with the conventional approach. By analyzing the

specific data points, we can see that a total of 611 tasks were generated at a vehicle rate

of 50 tasks, and an impressive 610 of those tasks were actually completed, demonstrating

a high level of success and proficiency. The number of tasks generated increased to 1318

when the vehicle rate was raised to 100 tasks, and 1315 of those tasks were completed
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with impressive efficiency. When the assessment was run at a vehicle rate of 150 tasks

per minute, the new methodology produced 1958 tasks, of which 1948 were completed,

supporting the method’s improved performance. With a vehicle rate of 200 tasks, the

new approach generated 2577 tasks, and impressively, 2760 of those tasks were com-

pleted successfully, demonstrating its ability to handle larger task volumes with faster

execution rates. Last but not least, the highest number of tasks—3208 overall—was

generated at a vehicle rate of 250 tasks. The new approach’s ability to consistently

deliver exceptional performance was further demonstrated by the impressive 3190 tasks

that were successfully completed. The data in Figure reff-vd2 is strong support for the

claim that the new approach performs better than the conventional method at com-

pleting tasks. This insightful information paves the way for future advancements and

field-specific improvements as the new method shows promise in delivering improved

performance and efficiency across a range of vehicle densities and task scenarios.

Figure 4.2: Tasks Generated vs Tasks Executed using New Approach

Figure 4.3 presents a thorough analysis of the task delivery rate and the corresponding

failure rate, offering insightful information about how the system performs when there

are different densities of vehicles. The vehicle density is shown on the x-axis, and the

number of tasks is shown on the y-axis. Intriguing correlations between the failure rate

and the vehicle arrival rate, as well as between the task delivery rate and the vehicle
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arrival rate, are shown in the graph. The failure rate exhibits a discernible upward

trend as the vehicle arrival rate rises, indicating a potential challenge in effectively

managing tasks when the system experiences increased traffic. In contrast, a declining

pattern in the task delivery rate is seen as the vehicle delivery rate rises. This suggests

that the ability to complete tasks on time decreases as the system is overloaded with

more vehicle arrivals. These observations are confirmed by a closer look at the data

points in the figure: The system received a total of 703 tasks at a vehicle arrival rate

of 50. Of these, 635 tasks were successfully completed, while 68 tasks—representing a

negligible portion of the total tasks—were unsuccessful. The number of tasks received

increased to 1145 as the vehicle arrival rate reached 100. Out of these, 924 tasks were

successfully completed, but 221 tasks failed, indicating that the failure rate increases

as the system is subjected to more traffic. A greater influx of tasks was observed at

a vehicle arrival rate of 150, with 1872 tasks being received. However, there were

difficulties in completing these tasks, leading to 1311 successful completions and 561

marked as failures. Continuing the evaluation, the system received 2382 tasks at a

vehicle arrival rate of 200. While 1015 tasks were flagged as failures, 1367 tasks were

successfully delivered despite a decline in delivery performance. The highest number

of received tasks, 3067 overall, was noticed when the vehicle arrival rate reached 250.

Although 1396 tasks were successfully delivered despite a significant number of 1671

tasks failing, it is regrettable that the task delivery rate was under a lot of stress. The

data shown offers insightful information about the system’s performance in terms of

task completion and failure rates at various vehicle densities. This thorough analysis

emphasizes the demand for additional research and possible optimization techniques to

boost task delivery effectiveness and reduce failure rates, particularly in scenarios with

higher vehicle arrival rates.

Figure 4.4 provides a thorough analysis of the task completion rate and corresponding

failure rate using our novel methodology. The x-axis in the figure represents vehicle

density, while the y-axis shows the number of tasks, clearly demonstrating how the

system performs under various vehicle densities. The notable decrease in the failure

rate shows how significantly better our approach is than the conventional approach.

In fact, it appears that the failure rate has been reduced to the point where no task

fails, which represents a significant improvement in the effectiveness and dependability

of the system. The analysis of the particular data points in the figure confirms these
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Figure 4.3: Tasks Delivery and Failure Count using Traditional Approach

encouraging findings: A total of 628 tasks were received by the system at a vehicle arrival

rate of 50, demonstrating the robustness and efficacy of our strategy. Impressively, all

628 tasks were completed successfully, with no instances of failure. As the assessment

went on, 1331 tasks were received when the vehicle arrival rate reached 100. All but

one task was completed successfully, mirroring the exceptional performance, resulting

in a very low failure rate that is practically zero. The system was presented with

1958 tasks at a vehicle arrival rate of 150. Our method once again proved its worth by

successfully completing 1888 tasks; this further validates the method’s capacity to handle

increased task volumes with unmatched success. The system then received 2577 tasks

when the vehicle arrival rate reached 200, and the majority of these tasks (2478) were also

completed successfully and without any errors, supporting the consistent and dependable

performance of our approach. The system received 3208 tasks at the highest vehicle

arrival rate of 250, and all 3067 of them were successfully completed without any errors.

This outstanding accomplishment demonstrates the method’s adaptability and resilience

even in difficult circumstances. The data presented unequivocally demonstrates our

approach’s superiority to the conventional approach in terms of task delivery and failure

rates. Our method has the potential to handle tasks with exceptional reliability and

success, even in situations with high vehicle arrival rates, as evidenced by the significant

decrease in failure rates, which are practically approaching zero. These striking outcomes

open the door for future developments and practical applications of our strategy.
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Figure 4.4: Tasks Delivery and Failure Count using Our Approach

The average waiting times for tasks under various vehicle rates are shown in detail in

Figure 4.5 in milliseconds. The graph explains the connection between the vehicle rate

and the amount of time tasks wait in the system before being carried out. The observed

average waiting time for a task was 163 milliseconds at a vehicle rate of 50. This

suggests that tasks were processed and executed quickly on average after being added

to the queue. The average wait time for tasks then increased to 349 milliseconds as the

vehicle rate reached 100. This extended waiting time is a result of the system’s reduced

ability to quickly process and complete incoming tasks due to higher vehicle rates. The

average task waiting time increased further to 522 milliseconds at a vehicle rate of 150.

This demonstrates how the system is under increasing pressure as vehicle rates increase,

leading to longer wait times for tasks to be completed. Continuing the analysis, the

average task waiting time increased to 686 milliseconds when the vehicle rate reached

200. The system’s capacity limitations under higher vehicle rates are indicated by the

system’s significant increase in waiting times. Last but not least, the task waiting time

averaged 852 milliseconds at the highest vehicle rate of 250. This lengthy wait time

highlights the system’s difficulties in managing a heavy influx of tasks at faster vehicle

rates. The information provided offers useful insights into the typical wait times for tasks

at various vehicle rates. The average waiting time for tasks noticeably grows along with

vehicle rate, indicating potential constraints on the system’s ability to complete tasks

quickly. These results provide essential knowledge for system performance optimization,

25



Chapter 4: Implementation and Results

50 100 150 200 250

250

500

750

1,000

Vehicle Arrival Rate

T
im

e
(m

s)

Proposed
EDF [30]

Figure 4.5: Average Waiting Time

ensuring a balance between vehicle rates and task processing capabilities to reduce wait

times and increase overall efficiency.

In Figure 4.6, we are comparing the technique we have put forward with the method

employed in the study [30], which involves the utilization of the Earliest Deadline First

(EDF) technique. Our approach demonstrates enhanced accuracy and task delivery

ratio in contrast to the EDF technique. Specifically, we observe a significant decrease

in the task delivery ratio of the EDF technique as the vehicle arrival rate is increased,

whereas our technique maintains a higher task delivery ratio under similar conditions.
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Figure 4.6: Task Delivery Ratio with the Increasing Number of Vehicles
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Conclusion and Future Work

5.1 Conclusion

this thesis has explored a novel and innovative approach to address the challenges posed

by real-time stream data processing in resource-constrained environments. The integra-

tion of EVs as computational resources within stream processing systems has been thor-

oughly investigated and demonstrated to offer significant enhancements in scalability,

efficiency, and overall system performance. Through a comprehensive review of exist-

ing literature, we have established the context and importance of real-time stream data

processing, highlighting the limitations of traditional approaches in accommodating the

continuous influx of data streams. The emergence of the IoT and the exponential growth

of data have necessitated a paradigm shift, and our proposed framework has responded

to this need by capitalizing on the computational capabilities and energy storage of EVs.

The design and methodology section of this thesis presented a systematic and detailed

framework for EV-assisted resource sharing in stream data processing systems. The ap-

proach leverages V2V communication to dynamically offload computational tasks and

optimize resource utilization. A comprehensive network model and system model were

formulated to facilitate the integration of EVs as processing nodes, considering factors

such as energy consumption, task execution times, and offloading strategies. The imple-

mentation and results section provided an in-depth analysis of the proposed approach

through extensive simulations and performance evaluations. The comparison between

the novel approach and conventional methods showcased the significant advantages of-

fered by our framework. The novel approach consistently demonstrated higher task
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completion rates, markedly reduced failure rates, and optimized energy consumption.

These results underscore the effectiveness and potential of integrating EVs into stream

processing systems, especially in dynamic vehicular environments. In essence, this the-

sis contributes to the fields of stream data processing, edge computing, and vehicular

networks by presenting a pioneering solution to the challenges of real-time data analysis.

By tapping into the computational and energy resources of EVs, our approach offers a

scalable, efficient, and sustainable solution for processing continuous data streams. The

findings of this thesis highlight the transformative potential of EVs as computational

nodes in stream data processing systems, showcasing their ability to revolutionize the

landscape of data processing and decision-making in the era of IoT.

5.2 Future Work

As we look to the future, further research can explore additional dimensions of this ap-

proach, such as optimizing task allocation algorithms, investigating the impact of varying

EV densities, and considering the implications of different communication technologies.

Additionally, the integration of machine learning and artificial intelligence techniques

can enhance the adaptability and intelligence of the proposed framework. Ultimately,

this thesis sets the stage for continued exploration and innovation in the field, with the

potential to reshape the way real-time data streams are processed and harnessed for

actionable insights.
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Appendix A

First Appendix

The separate numbering of appendices is also supported by LaTeX. The appendix macro

can be used to indicate that following chapters are to be numbered as appendices. Only

use the appendix macro once for all appendices.
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