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Abstract

Let G be a connected graph with edge set E(G) and vertex set V (G). The distance

between a vertex v ∈ V (G) and a set Q ⊆ V (G) is defined by d(v,Q) = min{d(v, u) |

u ∈ Q}. For t-partition Π = {Q1, . . . , Qt} of V (G), which is an ordered partition,

the representation of a vertex v ∈ V (G) with respect to Π is the t-vector r(v|Π) =

(d(v,Q1), . . . , d(v,Qt)). The partition Π is a resolving partition if r(u|Π) 6= r(v|Π), for

each pair of distinct vertices u, v ∈ V (G). The smallest t for which there is a resolving

t-partition of V (G) is the partition dimension of G. A vertex w ∈ V (G) strongly resolves

two distinct vertices u, v ∈ V (G) if u belongs to a shortest v − w path or v belongs to

a shortest u − w path. The set W = {w1, . . . , wk} ⊆ V (G) is a strong resolving ordered

set for G if for every two unique vertices u and v of G ∃ w ∈ W that strongly resolves u

and v. A strong metric basis of G is a strong resolving set of smallest cardinality. The

cardinality of a strong metric basis is called strong metric dimension of G. In this thesis,

we survey some results from partition dimension and strong metric dimension. We also

determine the partition dimension of a chain cycle constructed by even cycles and a chain

cycle constructed by odd cycles. We also calculate the strong metric dimension of a chain

cycle constructed by even cycles.
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Chapter 1

Introduction to graph theory

In this chapter, we discuss some preliminary concepts of graph theory with examples. Our

goal is to make the reader familiar with basic concepts and applications of graph theory.

1.1 Brief history

Euclid, the father of geometry, primarily introduced some basic concepts of geometry

regarding point, line and plane. This geometry was very simple unlike that of today. He

mostly discussed flat spaces whereas today we understand curved spaces and advanced

mathematical concepts. This was the beginning of discrete mathematics but we realized it

after many centuries. Euclid postulated some results for construction of geometry and one

of them was to draw a straight line from one point to an other. A Swiss mathematician

Leonhard Euler developed graph theory after almost 2000 years of Euclid by redrawing

Euclid’s geometry in an abstract way.

In 17th century, the work of Pascal and De Moivre [21, 26] gave rise to the idea

of combinatorics. In 18th century, with continuation of their work, Euler solved the

Königsberg’s bridge problem [9] which lead to new branch of mathematics called graph

theory. The city of Königsberg, situated in Russia, comprised of four sectors connected by

seven bridges. The bridge problem entailed the traversal of all seven bridges exactly once
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in a single round trip. Euler studied the model and proved that no such route exist. It was

the first problem of graph theory that opened a new world. He also worked on partitioning

and its enumeration. His interest in latin squares further lead to combinatorics [8, 13].

Figure 1.1: The seven bridges

There are some problems of practical interest which can be answered by constructing

the corresponding graph models. Here we list few such problems. How can we assign tasks

to construction companies to link all the roads from countryside to cities with minimum

cost? What is the shortest route for trains from national capital to each state’s capital?

How can government provide jobs to its citizens with optimal total utility? How can

a salesman save his fuel by choosing shortest path from warehouse to different shops in

city? How can we differentiate countries on world map by choosing different and minimum

colors for neighboring countries?

In the real world, we can easily explain these problems by diagrams made of points and

lines joining these points. These points could represent number of robots in an industry,

number of people in a party or communication towers and lines may represent set of

commands, pairs of friends or links between towers, respectively. Such mathematical

abstraction of situations give rise to the idea of a graph.

2



1.2 Basics of graph

A graph G = (V (G), E(G)) containing a finite set of vertices V (G) and a set of edges

E(G). The total number of edges and vertices in a graph is called its size and order,

respectively. For a, b ∈ V (G), an edge with end-points a and b is denoted by ab or ba.

In a graph G, if the vertex v ∈ V (G) is the end-vertex of some edge e ∈ E(G) then e is

said to be incident on v. A vertex which has exactly one edge incident on it is called a

leaf. For v ∈ V (G), the set of all vertices adjacent to v is called open neighbourhood or

simply neighbourhood of the vertex v, denoted by N(v). The degree of a vertex v in G

is defined as the cardinality of its neighbourhood |N(v)|, denoted by deg(v). The closed

neighborhood of v is defined as N [v] = N(v) ∪ {v}. The maximum and minimum degree

of some vertex in G is denoted by ∆(G) and δ(G), respectively. A loop is defined as

the end-vertices of an edge are same. A loop adds 2 to the degree of its end-vertex. An

isolated vertex has degree zero. If there are two or more edges between any two vertices

then such edges are called multiple edges. If G does not have any loop or multiple edges

then it is called a simple graph. If δ(G) = ∆(G) = k then every vertex in G has same

degree and the graph is called k-regular. For example, a cubic graph is 3-regular.

Let G is a graph with V (G) = {v1, . . . , vn}. The matrix of adjacency of G is the n×n

defined as aij = 1 iff vi and vj are adjacent, otherwise aij = 0, denoted by An×n. In Figure

1.2, we give an example of adjacency matrix of a graph with ten vertices.

Example 1.1. The graph G = (V (G), E(G)), where E(G) = {g, h, i, j, k, l,m, n} and

V (G) = {p, q, r, s, t} as shown in Figure 1.3. The incidence function ψG is defined by

ψG(g) = pq, ψG(h) = pp, ψG(i) = qr, ψG(j) = rt,

ψG(k) = qs, ψG(l) = rs, ψG(m) = ps, ψG(n) = st.

In the graph shown in Figure 1.3, the vertex p has degree 4 and the edge h is a loop on

vertex p. The edges l and j are multiple edges and t is a leaf. In G, we have δ(G) = 1

and ∆(G) = 5. The neighborhood of q is N(q) = {p, r, s}.

3



v1 v2 

v3 v4 
v5 

v6 
v7 

v8 

v9 v10 
(a) 

0 1 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 0 0 0 0 

1 0 0 1 0 1 1 0 0 0 

1 0 1 0 1 1 1 1 0 0 

0 1 0 1 0 0 1 1 0 1 
1 0 1 1 0 0 1 0 1 0 

1 0 1 1 1 1 0 0 1 0 

0 0 0 1 1 0 0 0 0 1 

0 0 0 0 0 1 1 0 0 1 

0 0 0 0 1 0 0 1 1 0 

(b)

Figure 1.2: (a) A simple graph, (b) The adjacency matrix of graph in (a)

p q

t

s r

j

l

i
m

k

g

h

n

Figure 1.3: A graph G

A walk is a finite alternating list v0e1v1e2v2 . . . envn of vertices and edges such that,

for 1 ≤ i ≤ n, the end-points of ei are vi−1 and vi. A (v, w)-walk is a walk with v and w

as its first and last vertices. The edges and vertices in a walk are not necessarily distinct.

If the edges e1, . . . , en of a walk are distinct, then the walk is said to be a trail and a trail

without repetition of its vertices is called a path. A path containing n vertices is denoted

by Pn. A (v, w)-path can be defined analogously. A trail whose first and last vertices are

same is a closed trail and is called a circuit. Moreover, a cycle containing n vertices is a

closed path, we denote it Cn. If G has a (v, w)-path ∀v, w ∈ V (G) then it is connected

graph.
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Example 1.2. Paths P4, P6 and cycle C8 are shown in Figure 1.4.

P
6

P
4

C
8

Figure 1.4: Paths P4, P6 and cycle C8

If V (G) = {y1, . . . , ym} then the sequence {d(y1), d(y2), . . . , d(ym)} is called the degree

sequence of G. We usually arrange vertex degrees in monotone decreasing or increasing

order. Since every edge has two vertices as its ends, thus the entirety of degrees of all

vertices is double the quantity of edges in it. That is

m∑
i=1

d(yi) = 2e(G),

which shows that the sum of degrees of G is even.

The above equation is called handshaking lemma which states: At any gathering, the

quantity of individuals who shake hands an odd number of times is even.

Corollary 1.3. For a graph G, the vertices of that has odd degree are in even numbers.

Theorem 1.4 (Chartrand and Zhang [7]). If the vertices of graph G has at least degree

2. Then G will have a cycle.

Example 1.5. In Figure 1.6, we represent graph G by deleting a vertex and an edge from

G, where e is a bridge and v is a cut-vertex.

1.2.1 Distances

We define the notion of distance between vertices in a graph. Moreover, we give results

related to radius, diameter and eccentricity.
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v1
v2

v3v4

v7

e1

e2

e4

e5

e8

v1
v2

v3v4

v5 v6

v7

e1

e2e3

e4

e5

e6 e7

e8

Graph G A subgraph of G

Figure 1.5: Example of subgraph

v

G -{e}

e

v

G

e

G -{v}

Figure 1.6: Edge and vertex-deleted subgraphs of a graph G

Definition 1.6. The eccentricity of vertex x of graph(connected) G can be defined as

the distance from x to a vertex furthest from x. It is denoted by e(x). That is e(x) =

max{d(x, y) | y ∈ V (G)}.

Definition 1.7. The largest eccentricity between every vertices of graph G is known as

diameter of graph. That is, diam(G) = max{e(z) : z ∈ V (G)}.

Definition 1.8. The smallest eccentricity between every vertices of graph G is known as

radius of graph and denoted by rad(G). That is, rad(G) = min{e(z) | z ∈ V }.

Example 1.9. Let G be graph as shown in Figure 1.7. The eccentricities of vertices are

6



given as e(b) = e(d) = e(f) = e(h) = 3, e(a) = e(c) = e(g) = e(i) = 4 and e(e) = 2. We

can see that 2rad(H) = diam(H). In graph G, the eccentricity of every vertex is 3. We

see that rad(G) = diam(G).

a b c

d e f

g h i
G H

Figure 1.7: Two simple graphs

1.2.2 Coloring

Vertex coloring is a process of assigning colors to each vertex in a graph. A coloring is

called proper if any adjacent vertex do not share same color in graph. We find smallest

integer r, then G has a r-coloring.

Example 1.10. Figure 1.8 shows that graph of ten vertices and twenty one edges. Here,

we can see that this coloring is proper as all pairs of vertices have been alloted unlike

colors.

1.2.3 Operations on graphs

Consider two graphs G and H, where |V (G)| = m1 and |V (H)| = m2, with V (G) =

{x1, x2, . . . , xn}. The graph acquired from G and H by choosing single replica of G and

7



Colour 

1 

2 

3 

4 

5 

Figure 1.8: (a) Simple graph, (b) 5-coloring graph

v1

v2

v3 v4

v5

x1

x1x2x3

y1

y1

y2

y2y3 y3y4

y5

(c)b( )(a)

Figure 1.9: (a)Star graph , (b) K3,3 (c) K5

m1 replicas of H and connecting by an edge every vertex from the jth-replica of H with

the jth-vertex of G is called corona product G�H. The join G+H of graphs G and H

can be defined as the graph acquired by taking disjoint union of G and H and adding all

edges pq such that p ∈ V (G) and q ∈ V (H).

1.3 Some applications

We discuss some important applications of bipartite graphs and coloring of graphs. We

will see how graph theory help us in real world problems.
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K3P3 K3+P3

Figure 1.10: Join of K3 and P3

1.3.1 Bipartite graphs in real world

Query-document pair and bipartite graphs : [1] In the modern world, E-commerce business

is current trend and bipartite graphs have major role in online world particularly in

advertising and e-commerce. Search engines like Google, Bing, etc can track record when

we click any document for our queries.

These search engines use query-document pair for their business models. In a system

there is data of millions query-document pair per day. It is not necessary that user always

find relevant result but at-least user decides to click the document. A click graph consists

of a document (advertise) as one partition, queries as the other partition and set of edges

connect a document node to querry node that represents clicks, is also a bipartite graph.

We use this graph like clustering to find alike advertisers and related queries.

Two queries are similar if users click on the same documents. We consider an example.

A click graph on very small scale is shown in Figure 1.11. We have not considered the

weight of edges for convenience and simplicity. An edge demonstrates that no less than a

single click from a query to document. For the graph, the queries ‘laptop’ and ‘notebook’

are attached by a common document hence they must be considered similar. Now, we

can see that queries ‘notebook’ and ‘printer’ are attached through two same documents,

since they can be taken similar. In disparity, ‘laptop’ and ‘fax’ are not attached by

any document. However both ‘laptop’ and ‘fax’ are attached by document with queries

9



‘notebook’ and ‘printer’ as we have already seen that they are similar.

Queries Documents

Laptop

Notebook

Printer

Fax

Tree

dell.com

daraz.pk

thetreecenter.com

naturehills.com

Figure 1.11: A click graph

Now we have a small amount of authentication that somehow ‘laptop’ and ‘fax’ are

similar, because they bring the user on same documents by clicks. In last, let us consider

the queries ‘Fax’ and ‘tree’. There does not exist any path that connects these two queries

in the click graph and hence we found that these queries are not similar.

1.3.2 Coloring problem

Scheduling Cabs : [20] In real-world problem, we use graph coloring vastly. These type

of problems arise when we deal with scheduling of task such that every task has start

and finish time. Let us suppose a scenario that cab company has received m number

of reservations in a day. Each cab has starting time indicating that when the cab will

depart and each have finish time signifying that when the cab is anticipated that would

return. How can we allot m reservations to cabs such that smallest number of cabs is

needed. We explain it by a diagram. In the Figure 1.12, we have ten reservations for

cabs. For explanatory purpose to reader, they are in order according to their start time

10



from top to bottom. It can easily be seen from the Figure 1.12, that booking 3 covers

with reservation 1, 2 and 4; thus any cab accomplishing reservation 3 would not allow to

work for reservation 1, 2 and 4.

From the given data, we can build a graph such that choosing single vertex for all

reservation and now we add edges between any vertex pair for overlapping reservations.

A graph of 3-colouring is given in Figure 1.12(b), and the corresponding task of the

reservation to 3 cabs (the smallest color have been used), see Figure 1.12 (c).

(a) 

v1 

v2 

v3 

v8 v9 

v4 

v5 v6 v7 

v10 

1 5 8 10

2 4 6 9

3 7

Taxi 1 

Taxi 2 

Taxi 3 

1

2
3

4
5

7
6

8
9

10

(b) (c) 

Time  

Time  

Figure 1.12: (a) Set of cab travel over time, (b) 3-coloring graph with corresponding

interval, and (c) the analogous task of traveling with cabs
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1.4 Overview

The arrangement of this exposition is as follows:

In Chapter 2, we survey some fundamental results associated with resolvability of

graphs. These results have been obtained from [2,5, 18,27].

In Chapter 3, We find the partition dimension of a chain cycle constructed by even

cycles and a chain cycle constructed by odd cycles. We also calculate the strong metric

dimension of a chain cycle constructed by even cycles.
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Chapter 2

Resolvability and metric dimension

This chapter includes discussion on the concepts and applications of resolvability. It

also discusses basic results from metric dimension. Moreover, the concept of partition

dimension and strong metric dimension is also discussed.

2.1 Introduction to resolvability

The length of a shortest (x, y)-path in graph(connected) G is the distance between 2

vertices x, y ∈ G. Let W = {x1, x2, . . . , xk} ⊆ V (G) be ordered set and v ∈ G, we denote

the k-vector rW (z) defined by

rW (z) = (d(z, x1), d(z, x2), . . . , d(z, xk))

as the code of v with respect to W . If distinct vertices have distinct codes then set W

is called a resolving set. A resolving set of smallest cardinality for a graph G is called a

basis for G. Metric dimension is the number of vertices in basis is denoted by dim(G).

Melter and Harary [12] solo introduced the metric dimension of a graph in 1970s, and

also by Slater [32]. Resolvability of digraphs was first researched by Chartrand et al. [3]

in 2000 and further in [4]. For more detail see [2, 12, 14, 17, 35]. Fehr et al. [10] studied

the resolvability of Cayley digraphs. The idea of locating set was introduced by Slater

13



and he used the term locating set, which is now called resolving set. Slater mentioned to

cardinality of smallest resolving set as its locating number denoted by loc(G). He [31] ex-

plained the practicality of these concepts while working with coast guard LORAN stations

and U.S. sonar. Metric dimension is a framework that has seemed in many applications,

with complicated as network problems and verification, combinatorial optimization, meth-

ods for mastermind program, molecular chemistry and so on. It is shown in literature

that calculating the metric dimension is an NP-complete problem. For understanding of

NP-complete, NP-hard and other decision problems, the reader is referred to [11]. The

motivation for these concepts is derived from chemistry. When we study chemical struc-

tures a basic problem arises of mathematical classification of chemical compounds. In

this scenario, the compounds are modeled through mathematical tools and compound are

studied by means of these mathematical object. We can study chemical structures easily

by doing research on classification of compounds. We can represent chemical compound

by graphs naturally. Vertex represents atoms of the molecule and edges of graph represent

the valence bond between pair of atoms.

Let us consider an example of ethane of formula C2H6, where C2 indicates two carbon

atoms and H6 indicate six hydrogen atoms. An ethane molecule can be shown by graph

in Figure 2.1.

H H

H

HH

H
C C

Figure 2.1: Ethane

If a molecule has different arrangements and same number of atoms is called isomer.

For example, both ethanol and methoxymethane have the same atomic formula C2H6O

14



(O represents oxygen atom) and they have different chemical properties. The graphs of

these compounds are shown in Figure 2.2.

Figure 2.2: Ethanol and Methoxymethane

For further explanation, we consider an example from a doctoral thesis [33]. Assume

a hotel that has five sections S1, S2, S3, S4, S5 on ground floor as shown in Figure 2.3. The

space from S2 and S4 is 2m and from S1 and S3 is also 2m. The distance betwixt all

other set of two distinct section is 1m. The distance betwixt a section and itself is 0m.

Assume that a green fire alarm is placed in any arbitrary section. If a fire should take

place in that section, then the alarm can check the distance from section with the alarm

to section that has fire. For better understanding, assume that the alarm is placed in S1.

If a fire occurs in S3, then the alarm warns us that a fire has taken place in a section

at distance 2m from S1. Then the fire is in S3, now S3 is the only section at distance

2m from S1. If fire occurs in S1, when alarm shows that fire has been occurred in hotel

section at distance 0m from S1. Then fire takes place in S1. However, if fire occurs in

the other 3 sections. Then alarm shows us that, fire takes place in a room at distance

1m from S1. Resultantly, we cannot tell precisely in which section the fire has been take

place. Actually, no section exist where alarm can be placed to distinguish the precise

position of a fire. Furthermore, if we set the green fire alarm in S1 and a red fire alarm in

S2, and a fire has been occurred in S4, then the green alarm in S1 indicate us that there

is a fire in a section at distance 1m from S1, at the same time red alarm indicate us that

the fire is in a section at distance 2m from S2, that is, S4 has the code (1, 2). Hence the

representations are distinct for each of section. The smallest number of alarms required

to check the precise position of any fire is two. Although 2m is the answer. We have to

15



S
1

S
2

S
3

S
4

S
5

Figure 2.3: Hotel with five sections

care, where the two alarms are placed. For example, we cannot place alarms in S1 and

S3 since, in this case, the representation of S2, S4, and S5 are all same, and we cannot

identify the exact location of the fire.

S
1

S
2

S
3 S

4

S
5

Figure 2.4: Graph representing hotel with five sections

For checking a subset(ordered) W ⊂ V (G) is a resolving set, only we need to check

with V (G) \W set. Hence, for graph G and ∀ v ∈ G, the V (G) and V (G) − {v} are

resolving set. Let G is connected graph with |V (G)| = n ≥ 2. Then we have this

inequality 1 ≤ dim(G) ≤ n − 1. Contrastingly, if diameter of G is known then one can

easily get an better lower bound as well as upper bound in general for metric dimension.

Choose arbitrary positive integers b and n, we can interpret g(n, b) is the smallest positive

integer k, this inequality holds k + bk ≥ n.

Theorem 2.1 (Chartrand et al. [2]). Let H is graph(connected), where |V (H)| = n ≥ 2

and diameter d1. Then we have g(n, d1) ≤ dim(H) ≤ n− d1.

Metric dimension of path can be explained from this theorem.
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Theorem 2.2 (Chartrand et al. [2]). If G is a graph(connected), where |V (G)| = n. Then

we have G = Pn iff dim(G) = 1.

We have observed in Theorem 2.2 that if G ∼= Pn then metric dimension will always

be 1 and an end-vertex of path makes a basis. Paths are only graphs of metric dimension

1 [2]. In contrast, let G be complete graph denoted by Kn, where n ≥ 2. If W is a basis

for G and u /∈ W , now each coordinate of r(u|W ) is one. Hence, each resolving set for

G must have each vertex of G except one, we can conclude that dim(Kn) = n − 1. The

following theorem gives a classification of graph with dim(G) = n− 2.

Theorem 2.3 (Chartrand et al. [2]). If G is graph(connected), where |V (G)| = n ≥ 4.

Then G = Kp + (Kq ∪Kp)(p, q ≥ 1) or G = Kp,q (p, q ≥ 1), G = Kp + Kq(p ≥ 1, p ≥ 2)

iff dim(G) = n− 2.

Furthermore, the lower bound in Theorem 2.1 is only attainable for graphs of diameter

2 or 3. We now see a result for strong lower bound for metric dimension in terms of its

maximum degree, thus bounds can be improved further.

Theorem 2.4 (Chartrand et al. [6]). For any graph(connected) H, where |V (H)| ≥ 2.

Then we have dlog3(∆(H) + 1)e ≤ dim(H) ≤ n− diam(H).

2.2 Partition dimension of graphs

In this section, we discuss few fundamental concepts of partition dimension. We will also

survey some results, given by Chartrand, Salehi and Zhang [5].

Assume that G is graph, which is also connected. Consider a subset X ⊆ V (G) and a

vertex y ∈ G. Then we can define distance d(y,X) between y and X is given by equation

d(y,X) = min{d(y, z) | z ∈ S}

Consider an k-partition (ordered) Π = {X1, X2, . . . , Xk} ⊆ V (G) and a vertex y ∈ G.

Then we define the characterization of y with respect to Π from the k-vector

r(y|Π) = (d(y,X1), d(y,X2), . . . , d(y,Xk)).
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We call Π a resolving partition, if the k-vectors r(y|Π) are distinct, ∀y ∈ V (G). The

smallest k for that we have resolving k-partition of V (G) is called partition dimension of

graph G. We denote it by pd(G). See [5, 15,24,28,34] for more results.

It is obvious that the metric and partition dimension are associated with each other.

For graph G, we have Theorem 2.5, which explains the relationship betwixt metric and

partition dimension.

Theorem 2.5 (Chartrand et al. [5]). Let G is graph(connected). Then we have

pd(G) ≤ dim(G) + 1.

Theorem 2.6 (Chartrand et al. [5]). For each pair c, d ∈ Z+. For this dd
2
e+1 ≤ c ≤ d+1,

there exists a graph G, which is connected, such that dim(G) = d and pd(G) = c.

Theorem 2.6 raises a question. Could this inequality be true pd(G) ≥ dim(G)
2

+ 1

for every connected graph G? We also know that finding the metric dimension is an

NP-complete problem in graph theory.

Proposition 2.7 (Chartrand et al. [5]). For a graph(connected) G, where |V (G)| = n ≥ 2.

Then we have G = Pn if and only if pd(G) = 2.

Contrastingly, there is single graph which has n order, ∀ n ≥ 2, with partition dimen-

sion n. Following lemma is established before the next Proposition 2.8.

Proposition 2.8 (Chartrand et al. [5]). Let G is graph(connected), where |V (G)| = n.

Then G = Kn iff pd(G) = n.

If G is graph and its order is greater than 3, then from Proposition ?? and 2.8 which

is neither complete graph nor path, then this inequality is true 3 ≤ pd(G) ≤ n− 1. It is

seen from Proposition 2.7 that if G is not taken as path where pd(G) = 3. Hence, it is

enough to show the occurrence of a resolving 3-partition for V (G). We could check the

partition dimension of the Petersen graph and n-cycle is 4 and 3, respectively.
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Theorem 2.9 (Chartrand et al. [5]). For graph G where G is connected bipartite graph.

That has 2 sets Y1 and Y2 where p and q are cardinalities, respectively. Then G is complete

bipartite iff

1. pd(G) ≤ max{p, q}, if p 6= q, and

2. pd(G) ≤ p+ 1, if p = q.

Furthermore, equality holds in 2 or 1.

For n, d ∈ Z such that n > d ≥ 2, we say that g(n, d) is the smallest positive integer

k where (d+ 1)k ≥ n.

Theorem 2.10 (Chartrand et al. [5]). Let G is a graph, where |V (G)| = n ≥ 3 and

diameter d. Then we have g(n, d) ≤ pd(G) ≤ n− d+ 1.

2.3 Strong metric dimension of graphs

A set S ⊆ V (G) such that every edge of graph G has not less than one of member of S

as an endpoint is known as vertex cover. The vertex set of a graph is also called a vertex

cover. The minimum vertex cover for a graph G is called smallest vertex covering and

cardinality of set is called the vertex covering number which is denoted by α(G). For

more detail, see [16,19,27,29].

Suppose G is a graph, which is connected. Consider x, y are vertices of G. The interval

IG[x, y] betwixt x and y can be defined as the collection of each of vertex that belongs to

smallest (x, y)-path. A vertex z is resolved strongly if y ∈ IG[x, z] or x ∈ IG[y, z] . If each

of 2 vertices of G are strongly resolved by arbitrary vertex of S then set X of vertices

in a graph G is a strong resolving set. The strong resolving set of smallest cardinality is

called a strong metric basis of G and the cardinality of that set is called its strong metric

dimension, denoted by dims(G).

The number of vertices in a largest clique in G denoted by Ω(G). If NG[u1] = NG[u2]

then 2 distinct vertices u1, u2 are called true twins. If the induced subgraph from Y ⊂ V
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is clique and we have for each u1, u2 in Y such that NG[u1] 6= NG[u2] then Y is twin-free

clique. The largest size between all twin-free cliques is denoted by Ω(G). So, Ω(G) ≤

Ω(G). [18]

Theorem 2.11 (Kuziak et al. [18]). If H is graph(connected), where |V (H)| = k ≥ 2.

Then

dims(H) ≤ k − Ω(H).

Furthermore, if diam(H) is 2, then

dims(H) = k − Ω(H).

Lemma 2.12 (Kuziak et al. [18]). Consider two graphs(connected) G and H, where

|V (G)| = n1 ≥ 2 and |V (H)| = n2 ≥ 2, and maximum degree are given by ∆1(G) and

∆2(G), respectively.

1. If ∆1(G) 6= n1 − 1 or ∆2(G) 6= n2 − 1, then

Ω(G+H) = Ω(G) + Ω(H).

2. If ∆1(G) = n1 − 1 and ∆2(G) = n2 − 1, then

Ω(G+H) = Ω(G) + Ω(H)− 1.

Consider two complete graphs G and H where order of G is p and order of H is q,

respectively, then G + H = Kp+q and dims(G + H) = dims(Kp+q) = p + q − 1. From

Theorem 2.11 and Lemma 2.12, following results are obtained.

Theorem 2.13 (Kuziak et al. [18]). Consider two graphs(connected) H and G, where

|V (H)| = p ≥ 2 and |V (G)| = q ≥ 2, and maximum degree are given by ∆1(H) and

∆2(H), respectively.

1. If ∆1(H) 6= p− 1 or ∆2(H) 6= q − 1, then we have

dims(H +G) = p+ q − Ω(H)− Ω(G) ≥ dims(H) + dims(G).
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2. If H and G are graphs, where diam(H) = diam(G) = 2 & Ω1 6= P−1 or Ω2 6= q−1,

then we have

dims(H +G) = dims(H) + dims(G).

3. If Ω1 = p− 1 and Ω2 = q − 1, then we have

dims(H +G) = dims(H) + dims(G) + 1.

Corollary 2.14 (Kuziak et al. [18]). Let G is graph(connected), where |V (G)| = n,

dims(G�K1) = n− 1.

Theorem 2.15 (Kuziak et al. [18]). Let G is graph(connected), |V (G)| = q. Consider

another graph H, where |V (H)| = p and ∆(G) is largest degree.

1. If ∆(G) = p− 1, then dims(K1 +H) = p+ 1− Ω(H).

2. If ∆(G) ≤ p− 2 or q ≥ 2, then dims(G�H) = qp− Ω(H).

Corollary 2.16 (Kuziak et al. [18]). If G is graph(connected), |V (G)| = n1. If H is

a triangle free graph |V (H)| = n2 ≥ 3 & ∆(G) is the largest degree. Let n1 ≥ 2 or

∆(G) ≤ n2 − 2. Then

dims(G�H) = n1n2 − 2.
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Chapter 3

Resolvability of chain cycle

In this chapter, we compute the partition dimension of a chain cycle constructed by even

cycles and a chain cycle constructed by odd cycles. We also calculate the strong metric

dimension of a chain cycle constructed by even cycles.

3.1 Introduction

Let G be a finite connected and simple graph. In this section, the diameter of a graph is

denoted by d(G). A cycle of lenght n is denoted by Cn.

A vertex u ∈ V (G) is maximally distant from v ∈ V (G) which is denoted by uMDv,

if ∀ w ∈ N(u) we have this inequality dG(v, w) ≤ dG(u, v). If u is maximally distant

from v and vice versa, then we say that u and v are mutually maximally distant and is

denoted by uMMDv. The strong resolving graph of G is a graph GSR whose vertex set

is V (G) and two vertices u, v ∈ V (G) are adjacent in GSR iff uMMDv. Oellermann and

Peters-Fransen [27] proved that determining the strong metric dimension of a graph G is

analogous to determining the vertex cover number of GSR.

Theorem 3.1 (Oellermann and Peters-Fransen [27]). Let G is graph(connected). Then

dims(G) = α(GSR).
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We will use Theorem 3.1 for solving our problem. We identify mutually maximally

distant vertices for particular class of graph, then we generate a strong resolving graph

GSR from mutually maximally distant vertices V (GSR). Lastly, we find the vertex cover

α(GSR) of graph.

Let {Gi}mi=1 be finite set of disjoint simple connected graphs occuring in pairs. The

chain graph

C(G1, G2, . . . , Gm) = C(G1, G2, ..., Gm;x1, w1, x2, w2, . . . , xm, wm)

of {Gi}mi=1 with respect to the vertices {xi, wi ∈ V (Gi) | i = 1, 2, . . . ,m} is the graph

acquired from the graphs G1, . . . , Gm by identifying the vertex wi and the vertex xi+1, as

shown in Figure 3.1, for all i ∈ {1, 2, . . . ,m− 1}. For more results and detail about chain

graph, see [22,25].

G G G G G1 2 3 m-1 m

1

2

2

3 4

3 m-1m-2

x
m-1

m

w w ww w

x x x x

Figure 3.1: A chain graph

Let {Cni
}mi=1 be finite set of disjoint simple cycles occuring in pairs. Let V (Cni

) = {vij |

j ≡ 1, 2, . . . , ni}, where i ∈ {1, 2, . . . ,m}. Assume that ni is even for each i = 1, 2, . . . ,m.

We consider a chain cycle of {Cni
}mi=1 given by

C(Cn1 , Cn2 , . . . , Cnm) = C
(
Cn1 , Cn2 , . . . , Cnm ; v11, v

2
1, v

1
n1
2
+1
, v31, v

2
n2
2
+1
, . . . , vm1 , v

m−1
nm−1

2
+1
, vmnm

2
+1

)
with respect to the vertices {vini

2
+1
, vi+1

1 | i = 1, 2, . . . ,m−1}. A chain cycle of {C8, C10, C8}

with respect to vertices {v15, v21, v26v31} is shown in Figure 3.2.

Now, assume that ni is odd for each i = 1, 2, . . . ,m. We consider a chain cycle of

{Cni
}mi=1 given by

C(Cn1 , Cn2 , . . . , Cnm) = C
(
Cn1 , Cn2 , . . . , Cnm ; v11, v

2
1, v

1
n1+1

2
+1
, v31, v

2
n2+1

2
+1
, . . . , vm1 , v

m−1
nm−1+1

2
+1
, vmnm+1

2
+1

)
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with respect to the vertices {vini+1

2
+1
, vi+1

1 | i = 1, 2, . . . ,m − 1}. A chain cycle of

{C5, C7, C5} with respect to vertices {v14, v21, v25, v31} is shown in Figure 3.3.

Through out the chapter, we denote the edge set and the vertex set of chain cycle by

E(C) & V (C) instead of E(Cn1 , Cn2 , . . . , Cnm) & V (Cn1 , Cn2 , . . . , Cnm), respectively.

3.2 Partition dimension of chain cycles

In this section, we find the partition dimension of chain cycle constructed by even cycles

and chain cycle constructed by odd cycles. Theorem 2.5 and Proposition 2.7 are important

tools for proving our results.

In the Theorem 3.2, we compute the partition dimension of chain cycle constructed

by even cycles.

Theorem 3.2. The partition dimension of chain cycle constructed by even cycles C(Cn1 , Cn2 ,

. . . , Cnm) = C
(
Cn1 , Cn2 , . . . , Cnm ; v11, v

2
1, v

1
n1
2
+1
, v31, v

2
n2
2
+1
, . . . , vm1 , v

m−1
nm−1

2
+1
, vmnm

2
+1

)
is 3.

Proof. Let Π = {Q1, Q2, Q3}, whereQ1 = {v11, . . . , v1n1
2
−1, v

1
n1
2
+2
, . . . , v1n1

}, Q2 = {v2n2
2
+3
, v2n2

2
+4
,

. . . , v2n2
, v3n3

2
+3
, v3n3

2
+4
, . . . , v3n3

, . . . , vm−1nm−1
2

+3
, vm−1nm−1

2
+4
, . . . , vm−1nm−1

} ∪ {vmnm
} and Q3 = V (C) \

{Q1 ∪Q2} be a partition of V (C). We show that Π is a resolving partition of V (C) with

smallest cardinality. The representation of each vertex of V (C) with respect to Π is given

as:

r(v1n1
2
|Π) = (1, 2, 0), r(v1n1

2
+1
|Π) = (1, 1, 0), r(vmnm

|Π) =

(
m∑
k=2

nk

2
+ 2, 0, 1

)
.

r(v1j |Π) =

 (0, n1 − j − 1, n1 − j − 3) if 1 ≤ j ≤ n1

2
− 1

(0, j − n1

2
, j − n1

2
− 1) if n1

2
+ 2 ≤ j ≤ n1,

r(vij|Π) =

 (j, j, 0) if 1 ≤ j ≤ dn2

4
e

(j, n2

2
− j + 2, 0) if dn2

4
e+ 1 ≤ j ≤ n2

2
,

r(vij|Π) =


(

m∑
k=3

nk

2
+ j, j, 0

)
if 1 ≤ j ≤ dni

4
e, 3 ≤ i ≤ m(

m∑
k=3

nk

2
+ j, ni

2
− j + 2, 0

)
if dni

4
e+ 1 ≤ j ≤ ni

2
, 3 ≤ i ≤ m,
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r(vini
2
+j|Π) =


(

m−1∑
k=2

nk

2
, 1, 0

)
if 2 ≤ i ≤ m− 1, j = 2(

m−1∑
k=2

nk

2
+ nm − j + 2, ni − j, 0

)
if i = m, ni

2
+ 1 ≤ j ≤ ni − 1,

r(vij|Π) =

 (ni + 2− j, 0 , j − ni

2
− 2) if n2

2
+ 3 ≤ j ≤ d3n2

4
e+ 1

(ni + 2− j, 0 , ni + 1− j) if d3n2

4
e+ 2 ≤ j ≤ n2,

r(vij|Π) =


(

m∑
k=3

nk

2
+ ni − j, 0 , j − ni

2
− 2

)
if ni

2
+ 3 ≤ j ≤ d3ni

4
e+ 1, 3 ≤ i ≤ m(

m∑
k=3

nk

2
+ ni − j, 0 , ni + 1− j

)
if d3ni

4
e+ 2 ≤ j ≤ ni, 3 ≤ i ≤ m.

It is easily seen that the presentation of each vertex with respect to Π is distinct. This

shows that Π is a resolving partition of C(Cn1 , Cn2 , . . . , Cnm). Thus pd(C(Cn1 , Cn2 , . . . , Cnm))

≤ 3.

On the other hand, by Proposition 2.7 it follows that pd(C(Cn1 , Cn2 , . . . , Cnm)) ≥ 3.

Hence pd(C(Cn1 , Cn2 , . . . , Cnm)) = 3.

In the Example 3.3, we find the partition dimension of a chain cycle constructed by

C8, C10 and C8.

Example 3.3. Let m = 3 and n1 = 8, n2 = 10 and n3 = 8. The chain cycle constructed

by C8, C10 and C8 with respect to the vertices {v15, v21, v26v31} is denoted by C(C8, C10, C8) =

C(C8, C10, C8; v
1
1, v

2
1, v

1
5, v

3
1, v

2
6, v

3
5) and is given in Figure 3.2.

Using Theorem 3.2, we construct a resolving partition of C(C8, C10, C8) as Υ = {Q1, Q2,

Q3}, whereQ1 = {v11, v12, v13, v16, v17, v18}, Q2 = {v28, v29, v210, v38} andQ3 = {v14, v25, v15, v23, v22, v24,

v26, v
2
7, v

3
2, v

3
3, v

3
5, v

3
4, v

3
7, v

3
6}. Again by Theorem 3.2, we note that each vertex of C(C8, C10,

C8) has distinct representation with respect to Υ, as shown in Table 1. Hence pd(C(C8, C10,

C8)) = 3.

In Theorem 3.4, we compute the partition dimension of chain cycle constructed by

odd cycles.
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Figure 3.2: Chain cycles of C8, C10 and C8

s(v11|Υ) = (0, 5, 3) s(v22|Υ) = (2, 2, 0) s(v210|Υ) = (2, 0, 1)

s(v12|Υ) = (0, 4, 2) s(v23|Υ) = (3, 3, 0) s(v32|Υ) = (7, 2, 0)

s(v13|Υ) = (0, 3, 1) s(v24|Υ) = (4, 3, 0) s(v33|Υ) = (8, 3, 0)

s(v14|Υ) = (1, 2, 0) s(v25|Υ) = (5, 2, 0) s(v34|Υ) = (9, 4, 0)

s(v15|Υ) = (1, 1, 0) s(v26|Υ) = (6, 1, 0) s(v35|Υ) = (10, 3, 0)

s(v16|Υ) = (0, 2, 1) s(v27|Υ) = (5, 1, 0) s(v36|Υ) = (9, 2, 0)

s(v17|Υ) = (0, 3, 2) s(v28|Υ) = (4, 0, 1) s(v37|Υ) = (8, 1, 0)

s(v18|Υ) = (0, 4, 3) s(v29|Υ) = (3, 0, 2) s(v38|Υ) = (7, 0, 1)

Table 3.1: Representation of vij with respect to Υ

Theorem 3.4. The partition dimension of chain cycle constructed by odd cycles C(Cn1 , Cn2 ,

. . . , Cnm) = C
(
Cn1 , Cn2 , . . . , Cnm ; v11, v

2
1, v

1
n1+1

2
+1
, v31, v

2
n2+1

2
+1
, . . . , vm1 , v

m−1
nm−1+1

2
+1
, vmnm+1

2
+1

)
is 3.

Proof. Let Π = {Q1, Q2, Q3}, whereQ1 = {v11, . . . , v1dn1
2
e−1, v

1
dn1

2
e+2
, . . . , v1n1

}, Q2 = {v2dn2
2
e+3
,

v2dn2
2
e+4
, . . . , v2n2

, v3dn3
2
e+3
, v3dn3

2
e+4
, . . . , v3n3

, . . . , vm−1
dnm−1

2
e+3
, vm−1
dnm−1

2
e+4
, . . . , vm−1nm−1

}∪{vmnm
} and

Q3 = V (C) \ {Q1 ∪ Q2} be a partition of V (C). We show that Π is a resolving partition

of V (C) with smallest cardinality. The representation of each vertex of V (C) with respect
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to Π is given as:

r(v1dn1
2
e|Π) = (1, 2, 0), r(v1dn1

2
e+1
|Π) = (1, 1, 0), r(vmnm

|Π) =

(
m∑
k=2

bnk

2
c+ 2, 0, 1

)
.

r(v1j |Π) =


(0, n1 − bn1

2
c, n1 − bn1

2
c − 1) if j=1

(0, n1 − j − 1, n1 − j − 3) if 2 ≤ j ≤ dn1

2
e − 1

(0, j − dn1

2
e, j − dn1

2
e − 1) if dn1

2
e+ 2 ≤ j ≤ n1,

r(vij|Π) =

 (j, j, 0) if 1 ≤ j ≤ dn2

4
e+ 1

(j, dn2

2
e − j + 3, 0) if dn2

4
e+ 2 ≤ j ≤ dn2

2
e+ 1,

r(vij|Π) =


(

m∑
k=3

bnk

2
c+ j, j, 0

)
if 1 ≤ j ≤ dni

4
e+ 1, 3 ≤ i ≤ m(

m∑
k=3

bnk

2
c+ j, dni

2
e − j + 3, 0

)
if dni

4
e+ 2 ≤ j ≤ dni

2
e+ 1, 3 ≤ i ≤ m,

r(vini
2
+j|Π) =


(

m−1∑
k=2

bnk

2
c, 1, 0

)
if 2 ≤ i ≤ m− 1, j = 2(

m−1∑
k=2

bnk

2
c+ nm − j + 2, ni − j, 0

)
if i = m, dni

2
e+ 2 ≤ j ≤ ni − 1,

r(vij|Π) =

 (ni + 2− j, 0, j − dni

2
e − 2) if dn2

2
e+ 3 ≤ j ≤ d3n2

4
e+ 1

(ni + 2− j, 0, ni + 1− j) if d3n2

4
e+ 2 ≤ j ≤ n2,

r(vij|Π) =


(

m∑
k=3

dnk

2
e+ ni − j, 0 , j − dni

2
e − 2

)
if dni

2
e+ 3 ≤ j ≤ d3ni

4
e+ 1, 3 ≤ i ≤ m(

m∑
k=3

dnk

2
e+ ni − j, 0 , ni + 1− j

)
if d3ni

4
e+ 2 ≤ j ≤ ni, 3 ≤ i ≤ m.

It is easily seen that the presentation of each vertex with respect to Π is distinct. This

shows that Π is a resolving partition of C(Cn1 , Cn2 , . . . , Cnm). Thus pd(C(Cn1 , Cn2 , . . . , Cnm))

≤ 3.

On the other hand, by Proposition 2.7 it follows that pd(C(Cn1 , Cn2 , . . . , Cnm)) ≥ 3.

Hence pd(C(Cn1 , Cn2 , . . . , Cnm)) = 3.

In the Example 3.5, we compute the partition dimension of the chain cycle constructed

by C5, C7 and C5.
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s(v11|Υ) = (0, 3, 2) s(v25|Υ) = (4, 1, 0)

s(v12|Υ) = (0, 3, 1) s(v26|Υ) = (3, 1, 0)

s(v13|Υ) = (1, 2, 0) s(v27|Υ) = (2, 0, 1)

s(v14|Υ) = (1, 1, 0) s(v32|Υ) = (5, 2, 0)

s(v15|Υ) = (0, 2, 1) s(v33|Υ) = (6, 2, 0)

s(v22|Υ) = (2, 2, 0) s(v34|Υ) = (6, 1, 0)

s(v23|Υ) = (3, 3, 0) s(v35|Υ) = (5, 0, 1)

s(v24|Υ) = (4, 2, 0)

Table 3.2: Representation of vij with respect to Υ

Example 3.5. Let m = 3 and n1 = 5, n2 = 7 and n3 = 5. The chain cycle constructed

by C5, C7 and C5 with respect to vertices {v14, v21, v25, v31} is denoted by C(C5, C7, C5) =

C(C5, C7, C5; v
1
1, v

2
1, v

1
4, v

3
1, v

2
5, v

3
4) and is given in Figure 3.3.
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Figure 3.3: Chain cycles of C5, C7 and C5

Using Theorem 3.4, we construct a resolving partition of C(C5, C7, C5) as Υ = {Q1, Q2, Q3},

where Q1 = {v11, v12, v15}, Q2 = {v27, v35} and Q3 = {v13, v14, v22, v23, v24, v25, v26, v32, v33, v34}. Again

by Theorem 3.4, we note that each vertex of C(C5, C7, C5) has distinct representation with

respect to Υ, as shown in Table 2. Hence pd(C(C5, C7, C5)) = 3.
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3.3 Strong metric dimension of chain cycle

In this section, we find the strong metric dimension of chain cycle C(Cn1 , Cn2 , . . . , Cnm),

with each ni is even, with respect to the vertices {vini
2
+1
, vi+1

1 | i = 1, 2, . . . ,m − 1}.

Let V1 = {v21, v31, . . . , vm1 } and V2 = V (C) \ V1. Furthermore, we denote U1(Cni
) =

{vi1, vi2, . . . , vini
2

} and U2(Cni
) = {vini

2
+1
, vini

2
+2
, . . . , vini

}, i ∈ {1, 2, . . . ,m}. Through out

the section, we denote the strong resolving graph of a chain cycle C(Cn1 , Cn2 , . . . , Cnm)

by CSR(Cn1 , Cn2 , . . . , Cnm). Furthermore, we identify the edge set and the vertex set of

the strong resolving graph of a chain cycle C(Cn1 , Cn2 , . . . , Cnm) by E(CSR) and V (CSR),

respectively.

Lemma 3.6 and Lemma 3.7 are easy observations from the structure of a cycle Cn and

a chain cycle constructed by even cycles, respectively.

Lemma 3.6. Let Cn be a cycle. Then for two distinct vertices vi, vj ∈ V (Cn) we have

viMMDvj if and only if d(vi, vj) = d(Cn).

Proof. Let vi, vj ∈ V (Cn) such that d(vi, vj) = d(Cn). Then it is clear that viMMDvj.

Conversely, let viMMDvj. Note that, the set of neighbors of vi and vj are N(vi) =

{vi−1, vi+1} and N(vj) = {vj−1, vj+1}, respectively. Then by definition

d(vi−1, vj) ≤ d(vi, vj) and d(vi+1, vj) ≤ d(vi, vj),

and

d(vi, vj−1) ≤ d(vi, vj) and d(vi, vj+1) ≤ d(vi, vj).

We show that d(vi, vj) = d(Cn). On contrary, suppose that d(ui, uj) = l < d(Cn).

Consider a shortest path P = vivi−1 . . . vj+1vj from vi to vj. Then from N(vi), N(vj) and

P , we have d(vi, vj) < d(vi+1, vj). Thus vi is not MD from vj and hence are not MMD,

which is a contradiction to our supposition.

Lemma 3.7. Let x ∈ V1 and y ∈ V (C). Then x and y are not mutually maximally

distant.
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Proof. Assume that x ∈ V1 and y ∈ V (C). Then x and y are not MMD. We discuss two

cases.

Case 1: Let x, y ∈ V1, say x = vk
′

1 and y = vk1 where k 6= k
′ ∈ {1, 2, . . . ,m − 1} and

k
′
< k. Then, N(vk1)={vk2 , vknk

, vk+1
nk+1

2

, vk+1
nk+1

2
+2
} and N(vk

′

1 )={vk
′

2 , v
k
′

n
k
′ , v

k
′
+1

n
k
′
+1
2

, vk
′
+1

n
k
′
+1
2

+2
} be

the set of neighbors of vk1 and vk
′

1 respectively. Consider a shortest path P = vk1v
k
2 . . . v

k
′

n
k
′
+1
2

vn
k
′
+2
2

+1
from vk1 to vk

′

1 . Then from N(vk1), N(vk
′

1 ) and P , we have d(vk+1
nk+1

2

, vk
′

1 ) > d(vk
′

1 , v
k
1)

and d(vk+1
nk+1

2
+2
, vk

′

1 ) > d(vk
′

1 , v
k
1). Thus vk1 and vk

′

1 are not maximally distant. Hence vk1

and vk
′

1 are not mutually maximally distant.

Case 2: Let x ∈ V1 and y ∈ V (C) \ V1, say x = vk
′

i and y = vk1 where i ∈ {2, 3, . . . nk′}

and k 6= k
′ ∈ {1, 2, . . . ,m − 1} and k

′
< k. Since N(vk1)={v12, vknk

, vk+1
nk+1

2

, vk+1
nk+1

2
+2
} and

N(vk
′

i ) = {vk
′

i−1, v
k
′

i+1}.

Subcase 2.1: Let vk
′

i ∈ U2(Cni
). Then P = vk1v

k
nk
. . . vk

′

i−1v
k
′

i be the shortest path from

vk1 to vk
′

i . Then from P , we have d(vknk+1
2

, vk
′

i ) > d(vk1 , v
k
′

i ) and d(vk+1
nk+1

2
+2
, vk

′

i ) > d(vk1 , v
k
′

i ).

Thus vk1 and vk
′

i are not maximally distant. Hence vk1 and vk
′

i are not MMD.

Subcase 2.2: Let vk
′

i ∈ U1(Cni
). Then P = vk1v

k
2 . . . v

k
′

i+1v
k
′

i be the shortest path from

vk1 to vk
′

i . Then from P , we have d(vknk+1
2

, vk
′

i ) > d(vk1 , v
k
′

i ) and d(vk+1
nk+1

2
+2
, vk

′

i ) > d(vk1 , v
k
′

i ).

Thus vk1 and vk
′

i are not maximally distant. Hence vk1 and vk
′

i are not MMD.

In the next theorem, we find the MMD vertices in chain cycle C(Cn1 , Cn2 , . . . , Cnm),

with each ni is even, with respect to the vertices {vini
2
+1
, vi+1

1 | i = 1, 2, . . . ,m− 1}.

Theorem 3.8. Let vij, v
k
l ∈ V2, where i, k ∈ {1, 2, . . . ,m}, in a chain cycle C(Cn1 , Cn2 , . . . ,

Cnm) constructed by even cycles with respect to the vertices {vini
2
+1
, vi+1

1 | i = 1, 2, . . . ,m−

1}.

(a). Let i = k. Then vijMMDvil if and only if d(vij, v
i
l) = d(Cni

).

(b). Let i 6= k. Then vijMMDvkl if and only if d(vij, v
k
l ) = d(C(Cn1 , Cn2 , . . . , Cnm)).

Proof. (a). Let d(vij, v
i
l) = d(Cni

). Then from Lemma 3.6, we have vijMMDvil .
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Conversely, let vijMMDvil and j < l. On contrary, assume that d(vij, v
i
l) < d(Cni

).

Since N(vij) = {vij−1, vij+1} and N(vil) = {vil−1, vil+1}. Note that either vijv
i
j+1 . . . v

i
l or

vijv
i
j−1 . . . v

i
1v

i
ni
. . . vil is a shortest path from vij to vil . This shows that vij and vil are not

mutually maximally distant which contradicts to our supposition that vijMMDvil .

(b). Let d(vij, v
k
l ) = d(C(Cn1 , Cn2 , . . . , Cnm)). Then clearly vijMMDvkl .

Conversely, let uijMMDukl and let d(vij, v
k
l ) < d(C(Cn1 , Cn2 , . . . , Cnm)). Since N(vij) =

{vij−1, vij+1} and N(vkl ) = {vkl−1, ukl+1}. If vij ∈ U1(Cni
) and vkl ∈ U1(Cnk

), then P1 =

vijv
i
j+1 . . . v

i+1
1 vi+1

2 . . . vk1v
k
2 . . . v

k
l is a shortest path from vij to vkl . This clearly shows that vij

is not mutually maximally distant to vkl . Similarly, if vij ∈ U2(Cni
) and vkl ∈ U2(Cnk

), then

P2 = vijv
i
j−1 . . . v

i+1
1 vi+1

ni+1
. . . vk1 v

k
nk
. . . vkl is a shortest path from vij to vkl . This shows that

vij is not mutually maximally distant to vkl . Moreover, If vij ∈ U1(Cni
) and vkl ∈ U2(Cnk

),

then R1 = vijv
i
j+1 . . . v

i+1
1 vi+1

2 . . . vk1 , v
k
nk
. . . vkl is a shortest path from vij to vkl . This clearly

shows that vij is not mutually maximally distant to vkl . Similarly, if vij ∈ U2(Cni
) and

vkl ∈ U1(Cnk
), then R2 = vijv

i
j−1 . . . v

i+1
1 vi+1

2 . . . vk1 , v
k
2 . . . v

k
l is a shortest path from vij to

vkl , which shows that vij is not mutually maximally distant to vkl .

For each i ∈ {1, 2, . . . ,m}, Theorem 3.8 (a) implies

A = {vijvij+ni
2
| j = 2, 3, . . . ,

ni

2
,
ni

2
+ 2,

ni

2
+ 3, . . . , ni} ⊆ E(CSR), (3.1)

where j+ ni

2
are integers modulo ni. Similarly, Theorem 3.8 (b) implies v11v

m
nm
2

+1 ∈ E(CSR).

Thus E(CSR) = A ∪ {v11vmnm
2

+1}.

Lemma 3.9. Let C(Cn1 , Cn2 , . . . , Cnm) ba a chain cycle constructed by even cycles with

respect to the vertices {vini
2
+1
, vi+1

1 | i = 1, 2, . . . ,m − 1} and each ni ≥ 4. Then

α(CSR(Cn1 , Cn2 , . . . , Cnm) = 1 +
∑m

i=1
ni−2
2

.

Proof. We construct a vertex cover of strong resolving graph of C(Cn1 , Cn2 , . . . , Cnm) with

minimum cardinality. From (3.1), we note that the vertices {vij, vij+ni
2

| j = 2, 3, . . . , ni

2
, ni

2
+

2, ni

2
+ 3, . . . , ni}, for each i ∈ {1, 2, . . . ,m}, form

∑m
i=1

ni−2
2

copies of K2. Thus, the∑m
i=1

ni−2
2

vertices {vij | j = 2, 3, . . . , ni

2
, ni

2
+2, ni

2
+3, . . . , ni}, for each i ∈ {1, 2, . . . ,m}, are
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minimum number of vertices to conver the edges of A. Let S = {vij | j = 2, 3, . . . , ni

2
, ni

2
+

2, ni

2
+ 3, . . . , ni}. Furthermore, since v11v

m
nm
2

+1 ∈ E(CSR). Thus, the vertex cover of the

strong resolving graph of chain cycle C(Cn1 , Cn2 , . . . , Cnm) with minimum cardinality is

S := S ∪ {v11}. Hence α(CSR(Cn1 , Cn2 , . . . , Cnm)) = 1 +
∑m

i=1
ni−2
2

.

Theorem 3.10. Let {Cni
}mi=1 be m disjoint cycles with each ni is even and ni ≥ 4, then

dims(C (Cn1 , . . . , Cnm)) = 1 +
∑m

i=1
ni−2
2

.

Proof. The proof follows from Lemma 3.9 and Theorem 3.1.

In the Example 3.11, we find the strong metric dimension of a chain cycle constructed

by C8, C10 and C8.

Example 3.11. Let m = 3 and n1 = 8, n2 = 10 and n3 = 8. The chain cycle constructed

by C8, C10 and C8 with respect to the vertices {v15, v21, v26v31} is denoted by C(C8, C10, C8) =

C(C8, C10, C8; v
1
1, v

2
1, v

1
5, v

3
1, v

2
6, v

3
5) and is given in Figure 3.4.
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Figure 3.4: Chain cycles of C8, C10 and C8

From Theorem 3.10 we have,

dims(C (Cn1 , . . . , Cnm)) = 1 +
∑m

i=1
ni−2
2

where dims(C (Cn1 , . . . , Cnm)) = 1 + 3 + 4 + 3 = 11.
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Conclusion

One can build chain graph from a collection of connected graphs out of them. In the

chemistry world, there are many applications of graph theory as we have already discussed

in the introduction of Chapter 2 of this thesis. We study atoms and group of atoms

(molecule) in chemistry. The concept of chain graph also comes from the mixing of

these molecules or atoms. Mathematicians develop theories and chemist use those for the

welfare of human being, that can also improve efficiency of medicine. For our reader, we

explain the definition of chain in perspective of chemists. The group of atoms combine

a part of essential structure of a chain. Spiro-chain is well known example for chemists.

Spiro-chain comprising of an continuous sequence of rings, where adjacent rings have only

single atom in common. Mansour and Schork, in [23], have given examples of Spiro-chain.

They have calculated Wiener, hyper-detour, detour and hyper-Wiener indices for chain

and bridge graphs. In 2017, D. Nilanjan calculated Hyper Zagreb Index of chain and

bridge Grpahs in [25]. These results help chemists for making improved medicines and

this is also a positive contribution in the world.

We calculated partition dimension and strong metric dimension of chain cycle in this

thesis. Further, we can find the metric dimension and strong partition dimension of chain

cycle. We can also study the partition and strong metric dimension for more general case,

where even and odd cycles are mixed together. Furthermore, we can also calculate the

metric dimension, partition and strong partition dimension of chain of different classes of

graphs which has direct relation in chemical industry. The outcome of this research adds

to a growing understanding of the resolvability problems. It is also emphasized here that
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the purpose for solving this problem is to understand that how resolvability of any graph

can be calculated and proved for a general case. It also opens an new area of research as

resolvability of many chain graphs are still to be determined.
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