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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we recall some basic de�nitions and known results which are necessary to

establish the existence of multiple solutions of the nonlinear three-point boundary value problem

(BVP)

u00(t) = f(t; u(t)); t 2 (0; 1); (1.1)

u(0) = �u0(0); u(1) = �u(�);

where f : [0; 1]�R! R is a continuous function and � 2 [0;1); � 2 (0;1); � 2 (0; 1) are given

constants with non-resonance condition �(1 + �) = � + �.

The winding number, degree theory and the method of lower and upper solutions are dis-

cussed in detail. The existence of a solution of the given problem is proved by the method

of upper and lower solutions. The basic idea of the method is to modify the given problem

suitably and then employ Leray-Schauder theory or some known results together with the the-

ory of di¤erential and integral inequalities to establish existence of a solution. The function

f is modi�ed in such a way that solutions of the modi�ed problem lie in a region where f is

unmodi�ed and hence are solutions of the original BVP.

2



1.2 Some basic de�nitions and notions

We need the following de�nitions for our work. For details see [21].

De�nition: A point set  in the complex plane is said to be a curve if it is the range of some

complex-valued function z = z(t) 2 C; a � t � b; where a; b 2 R:

De�nition: A curve  is called simple, if it does not cross itself, except possibly at its initial

and terminal points in which case it is called closed.

De�nition: A simple closed curve is called Jordan curve.

De�nition: A point set  in the complex plan is said to be smooth curve, if it is the range of

some continuous complex-valued function z(t) de�ne on the interval [a; b] such that z(t) satis�es

the following conditions

(i) z(t) = x(t) + iy(t) has a continuous derivative on [a; b];

(ii) z0(t) never vanishes on [a; b];

(iii) z(t) is one to one on [a; b]:

Moreover, it is a smooth close curve if z(a) = z(b): Consequently a smooth curve has no corners

or cusps.

De�nition: A contour (path) � is either a single point z0 or a �nite sequence of directed

smooth curves, 1; 2; :::; n; such that the terminal point of k coincides with the initial point

of k+1 for each k = 1; 2; 3; ::::; n� 1:

De�nition: A set is connected if any two points in it can be connected by an unbroken curve.

An open connected set is called a domain.

De�nition: Any domain D with a property that every loop (closed contour) in D can be

continuously deformed to a single point, is called a simply connected domain (roughly speaking,

a simply connected domain can�t have a hole).

De�nition: A complex-valued function f(z) is said to be analytic on an open set G; if it has

a derivative at every point of G. If f(z) is analytic on the whole complex plane, it is said to be

entire. For example, all polynomial functions of z are entire. Analytic functions are also called

holomorphic or regular.

De�nition: A homotopy H; between two functions f and g from a space X to a space Y is
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a continuous mapping H : [0; 1]�X ! Y such that

H(0; x) = f(x);

H(1; x) = g(x):

De�nition: For given r;R with 0 � r < R; the annulus centered at z0 with radii r and R is

de�ned by

A(z0; r; R) = fz : r < jz � z0j < Rg :

De�nition: An open disc D with center at z0 and radius R is de�ned by

DR(z0) = fz : jz � z0j < Rg :

De�nition: The disc D�R(z0) with center at z0 and radius R de�ned by

D�R(z0) = fz : 0 < jz � z0j < Rg ;

is known as the punctured disc.

De�nition: If f(z) is analytic at z0, then the Taylor�s series is de�ned as

f(z) =

1X
k=0

f (k)(z0)

k!
(z � z0)k; for all z 2 DR(z0):

De�nition: Let f be analytic within the punctured disc D�R(z0), then the series

f(z) =
1X
�1

ck(z � z0)k =
1X
k=1

c�k(z � z0)�k +
1X
k=0

ck(z � z0)k;

is known as the Laurent series.

De�nition: A point p is called a singular point of the complex-valued function f; if f is not

analytic at the point p and every neighborhood DR(p) of p contains at least one point at which

f is analytic. For example, z = 1 is singular point of f(z) = 1
1�z . Moreover, the origin and
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each points of the negative real axis are singularities of the following function

f(z) = Logz:

De�nition: A point p is called an isolated singularity of f; if f is not analytic at the point

p but f is analytic everywhere in the punctured disk D�R(p): For example, z = 1 is isolated

singularity of f(z) = 1
1�z ; while z = 0 is not an isolated singularity of f(z) = Logz:

Classi�cation of singularities

Let p be the isolated singularity of f with Laurent series

f(z) =

1X
�1

cn(z � p)n; for all z 2 A(p; 0; R);

then,

(i) p is a removable singularity of f if cn = 0; for n = �1;�2;�3; :::

(ii) p is a pole of order k > 0; if c�k 6= 0; but cn = 0 for n < �k:

(iii) p is called an essential singularity of f; if cn 6= 0 for in�nitely many negative integers n.

De�nition: A point p is called a zero of the function f if and only if f is analytic in DR(p)

and f (n)(p) = 0 for each n = 0; 1; 2; :::; k�1; but f (k)(p) 6= 0: A zero of order 1 is called a simple

zero.

De�nition: If f has an isolated singularity at the point z0, then the coe¢ cient c�1 of 1
(z�z0) in

the Laurent series for f around z0 is called the residue of f at z0 and is denoted by Res(f ; z0):

De�nition: A function f is called meromorphic in a domain D if it is either analytic or has

a pole at every point of D.

De�nition: A function is called smooth, if it has continuous derivatives up to some desired

order over some domain.

De�nition: A function f : [0; 1]� R! R is called caratheodory if

(i) t! f(t; x) is measurable for each x 2 R;

(ii) x! f(t; x) is continuous almost everywhere for each t 2 [0; 1]:

Further f is called L1�caratheodory if

(iii) for each real number r > 0, there exist a function hr 2 L1(I;R) such that jf(t; x)j � hr(t; x)

for all x 2 R with kxk � r:
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De�nition: A solution xM (t) of an equation is said to be a maximal solution if x(t) � xM (t);

t 2 I for any other solution of that equation. Similarly a solution xm(t) is said to be a minimal

solution if xm � x(t); t 2 I for any other solution of that equation.

De�nition: A subset S of R is compact if and only if it is closed and bounded.

De�nition: A set S in a vector space over R is called convex, if the line segment joining any

pair of points lies entirely in S.

De�nition: Let X be a linear normed space with norm k:k and T : X ! X be an operator.

The operator T is said to be compact if T (S) is compact for any bounded subset S of X: The

operator T is said to be completely continuous, if it is compact and continuous on X. T is called

totally bounded, if for any bounded subset S of X; T (S) is a totally bounded subset of X: Note

that every compact operator is totally bounded but the converse may not be true. However,

these two notions are equivalent on bounded subsets of Banach space X:

De�nition: A family ff(x)g of functions de�ned on some closed interval I is said to be

uniformly bounded , if there exist a number M � 0 such that

jf(x)j < M for all x 2 I and for all f belonging to the given family:

De�nition: A family ff(x)g of functions is said to be equi-continuous, if for given � > 0,

there is a � > 0 such that

jf(x1)� f(x2)j < � whenever jx1 � x2j < �:

1.2.1 Green�s function:

Let L be a linear di¤erential operator and consider a nonhomogeneous problem with an inho-

mogeneity acting as the source term

Lu(t) = f(t; u(t)); t 2 I; (i)
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subject to some two point homogeneous boundary conditions (BCs); where u(t) is the �eld

quantity and f(t; u(t)) is the source �eld. Corresponding homogeneous equation is

Lu(t) = 0: (ii)

Let the inhomogeneity be delta function �; then the �eld generated by the delta function � is

called a Green�s function, denoted by G(t; s): If the delta function � act at a point s; the Green�s

function G(t; s) satis�es

LG(t; s) = �(s� t); s; t 2 I: (iii)

Multiplying equation (iii) by f(s; u(s)) and integrating over I, it gives

Z
I
LG(t; s)f(s; u(s))ds =

Z
I
�(s� t)f(s; u(s))ds

L

Z
I
G(t; s)f(s; u(s))ds = f(t; u(t)); by shifting property of �. (iv)

Comparing (i) and (iv), gives

u(t) =

Z
I
G(t; s)f(s; u(s))ds; (v)

which is the solution of inhomogeneous equation (i): General solution of (i) is

u(t) =

Z
I
G(t; s)f(s; u(s))ds+ uh(t); (vi)

where uh(t) is solution of homogeneous equation (ii):

The importance of the Green�s function G is that, we convert the di¤erential equation into

integral equation and then we study integral operator which is easy to handle than to solve

di¤erential equation:

In simple words, the e¤ect of a force is called Green�s function.

Properties of the Green,s function:

Green�s function has the following properties:

(i) Symmetry: G(t; s) = G(s; t); for all (s; t) 2 I � I;

(ii) Continuity: G(s+; s) = G(s�; s); s 2 I;
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(iii) Jump discontinuity of the derivative: Gt(s+; s)�Gt(s�; s) = �1:

We state the following theorems without proofs.

Theorem:(1:1)(Arzela-Ascoli) A necessary and su¢ cient condition that a family of contin-

uous functions de�ned on a closed interval I be compact in C(I) is that this family be uniformly

bounded and equi-continuous. For the proof see [16]:

Theorem:(1:2)(Schauder�s �xed) Let M be a closed, bounded and convex set in a Banach

space X and f :M !M be compact. Then f has a �xed point. For the proof see [15]:

Theorem:(1:3) If f has a pole of order m at z0; then

Res(f ; z0) = lim
z!z0

1

(m� 1)!
dm�1

dzm�1
[(z � z0)mf(z)]:

For the proof, see [21]:

Theorem:(1:4)(Cauchy�s Residue theorem) If � is a simple closed positively oriented

contour and f is analytic inside and on � except at the points z1;z2;:::; zn inside �; then

Z
�
f(z)dz = 2�{

nX
j=1

Res(f; zj):

For the proof, see [21]:

1.2.2 Winding number:

Theorem:(1.5)(Argument Principle) Suppose that f is meromorphic inside the simply

connected domain D and that  is a simple closed positively oriented contour in D such that f

is nonzero and analytic for z 2 ; then

1

2�{

Z


f 0(z)
f(z)

dz = N0(f)�Np(f);

where N0(f) is number of zeros of f that lie inside  and Np(f) is the number of poles of f

that lie inside : For the proof, see [21]:

Corollary:(1:6) Let f be analytic in the simply connected domain D: If  is a simple closed
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positively oriented contour in D such that f(z) 6= 0; for z 2 , then

1

2��

Z


f 0(z)

f(z)
dz = N0(f).

where N0(f) is number of zeros of f that lie inside :

Example: The image of the circle C2(0) under f(z) = z2 + z is the curve

f(x; y) = (4 cos 2t+ 2 cos t; 4 sin 2t+ 2 sin t) : 0 < t < 2�g:

Note that the image curve f(C2(0)) winds twice around the origin. Now, we compute, 12��
R
c+2 (0)

f 0(z)
f(z) dz =

1
2�{

R
c+2 (0)

2z+1
z2+z

dz; the number of zeros of f that lie inside :Clearly, the zeros of f(z) are 0;�1

lying inside C2(0) and f has no poles inside C2(0).The residues of the integrand are at 0 and

�1: Thus, by Cauchy residue theorem

1

2��

Z
c+2 (0)

f 0(z)

f(z)
dz =

1

2�{

Z
c+2 (0)

2z + 1

z2 + z
dz = Res

�
2z + 1

z (z + 1)
; 0

�
+ Res

�
2z + 1

z (z + 1)
;�1

�
= 1 + 1 = 2 = N0(f);

hence, winding number of the curve f(C2(0)) around the origin is equal to the number of zeros

inside the circle C2(0).�

Winding numbers: Suppose that f is meromorphic in the simply connected domain D. If

 is a simple closed positively oriented contour in D such that f(z) 6= 0 and f(z) 6=1; for all

z 2 ; then

W (f(); z0) =
1

2��

Z


f 0(z)

f(z)� z0
dz; (1.2)

known as the winding number of f() about z0; counts the number of times the curve f()

winds around the point z0: If z0 = 0; the integral counts the number of times the curve f()

winds around the origin. Hence winding number W (f(); z0) counts the number of zeros of f

inside D:

Remark: Letting f(z) = z in (1.2); gives

W (; z0) =
1

2��

Z


1

z � z0
dz =

8<: 1 if z0 lies inside ;

0 if z0 lies outside ;
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which counts the number of times  winds around the point z0:

If  is not a simple closed curve, but crosses itself several times, then computation of winding

number is not so easy. In this case, the Rouche�s theorem will be used to deduce some infor-

mations about the location of zeros of a complicated analytic function f by comparing it with

an analytic function g whose zeros are known.

Theorem:(1:7)(Rouche�s theorem) Suppose f and g are meromorphic functions de�ned on

a simply connected domain D and  is a simple closed contour in D: Moreover f and g have

no zeros or poles for z 2 . If the strict inequality

jf(z) + g(z)j < jf(z)j+ jg(z)j ; (1.3)

holds for all z 2 ; then

N0(f)�Np(f) = N0(g)�Np(g);

where N0(f) is the number of zeros of f and Np(f) is the number of poles of f inside D:

Similarly N0(g) and Np(g) is number of zeros and poles of g respectively inside D. For the

proof, see [21]

Corollary:(1:8) Suppose that f and g are analytic functions de�ned in the simply connected

domain D, that  is a simple closed contour in D; and that f and g have no zeros for z 2 . If

the strict inequality

jf(z) + g(z)j < jf(z)j+ jg(z)j ;

holds for all z 2 ; then

N0(f) = N0(g):

Rouche�s theorem was improved by Irving Glicksberg [8] by replacing the condition (1:3) by

the following weaker condition

jf(z) + g(z)j < jg(z)j ; for all z 2 :

Example: Consider the polynomial

f(z) = z4 � 7z � 1;
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and the disk D2(0) = fz : jzj < 2g with C2 as its boundary

Take

g(z) = �z4:

Then, for all z 2 C2,

jf(z) + g(z)j � j�7zj+ j�1j = 7(2) + 1 < 16 = jg(z)j :

Hence by Rouche�s theorem,

N0(f) = N0(g);

that is, f and g have the same number of zeros inside D2(0): Consequently, f has four zero

inside D2(0) as g has a zero of order 4 at the origin.�

For a complicated path ; one can use the concept of homotopy to overcome the di¢ culties,

that is, one needs to �nd a mapping g for which w(g(); 0) can be easily computed and a

homotopy H : [0; 1]�  ! Cnf0g between f and g such that

H(0; z) = g(z);

H(1; z) = f(z), 8 z 2 :

Then, by Rouches theorem, it follows that

w(f(); 0) = w(g(); 0):

To explain it more fully, let us consider the problem of �nding the number of zeros of the

function f(z) = 1
2z
6 + z � 1

3 inside the unit circle.

In fact, it is required to �nd a function g such that w(g(; 0)) can be easily computed and

a homotopy

H : [0; 1]�  ! Cnf0g;
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such that

H(0; z) = g(z);

H(1; z) = f(z); for z 2  = fz 2 C : jzj = 1g:

Let g(z) = �z; and H be de�ned by

H(t; z) = (1� t)g(z) + tf(z); Then

jf(z) + g(z)j =
����12z6 + z � 13 � z

���� = ����12z6 � 13
���� < ����12z6

����+ 13 < 1 = jg(z)j on ;
which implies that

H(t; z) 6= 0 on [0; 1]� :

Hence f(z) has one zero inside the circle .

For a smooth domain U , which is enclosed by a Jordan curve @U , de�ne the Z valued

function d by

d(f; U; z0) = w(f(@U); z0) = w(f(@U)� z0; 0) 2 Z:

The function d measures the number of solutions of the equation

f(z) = z0 inside U;

and is known as the degree of f at z0: The invariance of d with respect to certain deformations

of f allowed us to compute deg(f; U; z0) even in more complicated cases.

1.2.3 Degree theory:

The oldest notion of the degree of a smooth function f from S1 into S1; where S1 is a unit circle,

counts �how many times f covers its range taking into account the algebraic multiplicity�, that

is, the winding number. More generally, a smooth function f : S1 ! C(complex plane) such
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that f 6= 0 on S1 has a degree given by

deg(f; S1) =
1

2�i

Z
S1

f 0

f
dz:

If instead of S1; one have a simple curve � in R2 and f : � ! S1 is a smooth mapping, then

deg(f;�) =
1

2�

Z
�
f � f�dz;

where f� is the tangential derivative of f along the curve �.

At the end of the 19th century, the notion of the degree was generalized to higher dimensional

spaces. For a smooth mapping f : X ! Y , where X and Y are n-dimensional manifolds, the

degree of f is a measure of the number of solutions of the equation

f(x) = y,

that is

deg(f) =
X

sign det Jf (xi):

In 1912; Brouwer realized that the smoothness assumption on f is not necessary to de�ne a

degree, only continuity of f is su¢ cient assumption.

Let X be an n-dimensional space and f : D � X ! X be a mapping, where D is open

bounded subset of X: Generally, �nding all solutions of the equation

f(x) = p; x 2 D: (1.4)

analytically is impossible. Degree theory was found to be a useful tool in such investigations.

In applications, not only existence of solutions of an equation is of interest but their number is

also signi�cant. This is the case in bifurcation theory, for example, where values of a parameter

� are to be sought such that the number of solutions of an equation of the form

f(x; �) = 0;

changes. The degree d(f;D; p) of f at a point p relative to D is a measure of the number of
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solutions of (1:4) in the subset D of X. In particular, (1:4) will have a solution in D whenever

d(f;D; p) 6= 0: The integer d(f;D; p) has such properties as invariance under small changes

in f and p: The Brouwer degree was extended by Leray and Schauder in the thirties to cover

certain mappings de�ned on in�nite dimensional normed spaces. Since then, the scope of the

theory has been steadily extended. The development of the degree theory is a continuous e¤ort

to de�ne a degree in more general situations.

Properties of degree theory:

Let � be a collection of open, bounded subsets of X. and M(D) be a set of continuous

mappings D ! X for all D 2 �: For T 2 M(D) and p =2 T (@D) (p is not an image of the

boundary of D), a topological degree d(T;D; p) has the following properties.

(1) Normalization: d(I;D; p) = 1; where I is the identity function.

(2) Additivity: For disjoint open subsets D1; D2 of D with p =2 T (Dn(D1 [D2));

d(T;D; p) = d(T;D1; p) + d(T;D2; p):

(3) Homotopy Invariance: Suppose Ht is a family of mappings in M(D) depending contin-

uously on t 2 [0; 1] ; and

p =2 Ht(@D); 0 � t � 1;

then d(Ht; D; p) is independent of t:

(4) Translation:

d(T;D; p) = d(T � p;D; 0):

(5) Boundary dependence: If f and g 2 M(D) such that f j@D= g j@D; and p =2 f(@D) \

g(@D); then

d(f;D; p) = d(g;D; p):

(6) Existence:

d(f;D; p) 6= 0;

implies that there exist x 2 D such that f(x) = p has a solution in D:
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(7) Excision property: For every open set D1 � D such that p =2 T (DnD1)

deg(T;D; p) = deg(T;D1; p):

The condition p =2 T (@D) is essential, for otherwise the degree would chang by small changes

in T or p and the whole theory would collapse.

The Leray-Schauder degree is an extension of the Brouwer�s degree to the case of in�nite

dimensional spaces. Particularly, mapping of the type I � T; where T is compact (i.e. T (D)

is compact whenever D is bounded set). The above properties also hold for Leray-Schauder

degree.

1.2.4 Method of lower and upper solutions for BVPs:

The method of lower and upper solutions for BVPs deals with the existence and uniqueness of

solutions for boundary value problems. The basic idea is to modify a given problem suitably

with respect to upper and lower solutions and then employ known results of the modi�ed

problem together with the theory of di¤erential inequalities to establish existence of solution of

the original BVP.

It is well known that one of the most important tools for dealing with existence results for

nonlinear problems is the method of upper and lower solutions. The method of upper and lower

solutions has a long history and some of its ideas can be traced back to Picard [24]. The method

of upper and lower solutions was established by Scorza Dragoni [5]: Since then, many authors

have developed existence results for nonlinear problems using the method of upper and lower

solutions. For an overview of the method of upper and lower solutions of ordinary di¤erential

equations, the reader is referred to [4]:

Consider the BVP

u00(t) = f(t; u(t)); t 2 [a; b]; (1.5)

a1u(a)� a2u0(a) = A; b1u(b) + b2u0(b) = B;

where A, B, a1; b1 2 R; a2; b2 2 R+; a21 + a22 > 0 and b21 + b
2
2 > 0 and f is continuous. This
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problem is called separated boundary value problem and it contains the Drichlet problem

u00(t) = f(t; u(t));

u(a) = 0; u(b) = 0

and the Neumann problem

u00(t) = f(t; u(t));

u0(a) = 0; u0(b) = 0;

as special cases.

De�nition: A function � 2 C[a; b] is a C2�lower solution of (1:5); if � satis�es the following

conditions:

(a) For any t0 2 (a; b); either D��(t0) < D+�(t0) or there exist an open interval I0 � (a; b)

with t0 2 I0 and a function �0 2 C1(I0) such that:

(i) �(t0) = �0(t0) and �(t) � �0(t) for all t 2 I0,

(ii) �000(t0) exists and �
00
0(t0) � f(t0; �0(t0));

(b)

a1�(a)� a2D+�(a) � A; b1�(b) + b2D��(b) � B:

De�nition: A function � 2 C[a; b] is a C2�upper solution of (1:5); if � satis�es the following

conditions:

(a) For any t0 2 (a; b); either D��(t0) > D+�(t0) or there exist an open interval I0 � (a; b)

with t0 2 I0 and a function �0 2 C1(I0) such that

(i) �(t0) = �0(t0) and �(t) � �0(t) for all t 2 I0
(ii) �000(t0) exists and �

00
0(t0) � f(t0; �0(t0));

(b)

a1�(a)� a2D+�(a) � A; b1�(b) + b2D��(b) � B:

If the inequalities in (a) or (b) are strict, then �; � are called C2�strict lower respectively upper
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solutions of the BVP (1:5).

Geometrically, if the inequalities (ii) are assumed to be strict, graphs of � and � are then

curves such that solutions can not be tangent to a lower solution from above or to an upper

solution from below. The C2�lower and C2�upper solutions can also be constructed from the

maximum of lower solutions and minimum of upper solutions.

Remark:(1:9) Let �i 2 C[a; b] (i = 1; 2; :::; n) be lower solutions of (1:5), then the function

�(t) = max
1�i�n

�i(t); t 2 [a; b];

is a C2�lower solution of (1:5).

Similarly, if �j 2 C[a; b] (j = 1; 2; :::;m) are upper solutions of (1:5), then the function

�(t) = min
1�j�m

�j(t); t 2 [a; b];

is a C2�upper solution of (1:5).

A �rst existence result for solutions of (1:5) is presented in the following theorem.

Theorem:(1:10) Assume � and � 2 C[a; b] are C2�lower solutions and C2�upper solutions

of BVP (1:5) such that � � � on [a; b] and assume f : [a; b]�R! R is continuous and bounded,

then BVP (1:5) has at least one solution u 2 C2[a; b] such that

�(t) � u(t) � �(t); t 2 [a; b]:

Proof: Consider the modi�ed boundary value problem

u00 � u = f(t; (t; u))� (t; u);

u(a)� a2u0(a) = A+ (1� a1)(a; u(a));

u(b) + b2u
0(b) = B + (1� b1)(b; u(b)); (1.7)

where (t; u) = maxf�(t);min(u; �(t))g: (1.8)
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De�ne a linear operator L : C[a; b]! C[a; b] by

(Lu)(t) = u00(t)� u(t); t 2 [a; b]

and a nonlinear operator N : C[a; b]! C[a; b] by

(Nu)(t) = f(t; (t; u))� (t; u) :

The BVP (1:7) is equivalent to the operator equation

Lu = Nu;

where Lu = (u00 � u; u(a)� a2u0(a); u(b) + b2u0(b))

and

Nu = (f(t; (t; u))� (t; u); A+ (1� a1)(a; u(a)); B + (1� b1)(b; u(b))):

The operator L is invertible. Hence the problem (1:7) is equivalent to

u = L�1Nu;

since f is continuous and bounded, the operator L�1N is compact and by Schauder�s �xed

point theorem L�1N has a �xed point, which implies (1:7) has a solution.

It is required to show that

�(t) � u(t) � �(t); for all t 2 [a; b]: (1.9)

Assume on the contrary that u(t) � �(t) has a negative minimum at some point t0 2 [a; b]: If

t0 2 (a; b); then

D��(t0) � D+�(t0)

and using the de�nition of lower solution, it follows that

0 � u00(t0)� �00(t0) = f(t0; �0(t0)) + u(t0)� �0(t0)� �000(t0) < 0;
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which is a contradiction.

In case t0 = a (a similar argument holds for t0 = b), the BCs imply that

u0(a)�D+�(a) � 0

and

0 = A+ (1� a1)(a; u(a))� u(a) + a2u0(a);

> A� a1�(a) + a2D+�(a);

� 0;

a contradiction. Hence u(t) � �(t) on [a; b]: Similarly, it is not di¢ cult to show that u(t) � �(t)

on [a; b]:�

Conclusion: The equation (1:7) has a solution which satisfy (1:9) and therefore is a solution

of (1:5).

Example: Consider the two point BV P of the type

x00 = �t+ xex; t 2 [0; 1]

x(0) = 0; x(1) = 1:

Take � = 0; then � is a lower solution because

f(t; �(t)) = �t � 0 = �00(t); t 2 [0; 1]

and

�(0) = 0; �(1) = 0:

Similarly, � = t; satis�es

f(t; �) = �t+ tet;

= t(et � 1) � 0 = �00; t 2 [0; 1]
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and

�(0) = 0; �(1) = 1 > 0:

Hence � is an upper solution.�

Example: In the following example, consider some three point boundary value problem

x00 = x� g(t) = f(t; x);

x(0) = 0; x(1) = �x(�);

where � 2 (0; 1) and g(t) is non-negative continuous function such that g(t) � at; a > 0;

t 2 [0; 1]:

Solution: Choose � = 0; then

�0 = 0; �00 = 0:

Hence,

f(t; �) = �g(t) � 0 = �00; t 2 [0; 1]

and

�(0) = 0; �(1) = 0 = ��(�);

which implies that � = 0 is lower solution.

Take � = at; then

�0 = 0; �00 = 0; t 2 [0; 1]:

Hence,

f(t; �) = at� g(t) � 0 = �00; t 2 [0; 1]

and

�(0) = 0;

�(1)� ��(�) = a� �a� = a(1� ��) � 0; as �� < 1;

that is,

�(1) � ��(�);

20



which implies that � = at is an upper solution.�

Modi�ed function:

Let �; � 2 C2(I) be the lower and upper solutions of a di¤erential equation

u00(t) = f(t; u(t));

such that

�(t) � �(t) on I:

De�ne a function F as follows:

F (t; u) =

8>>><>>>:
f(t; �(t)); u > �(t)

f(t; u); �(t) � u � �(t)

f(t; �(t)); u < �(t):

The function F (t; u) is called a modi�cation of f(t; u) associated with � and �: Clearly the

modi�ed function F (t; u) is bounded on I � R and is continuous on I � R, provided f is

continuous on I � R. Hence there exists a constant M > 0 such that

jF (t; u)j < M on I � R;

where M = maxfjf(t; u)j : t 2 I; � � u � �g+max
t2I

j�(t)j+max
t2I

j�(t)j+ 1:

Example: consider the following function

f(t; x) = at2 + bx3;

For simplicity, choose

�(t) = �d and �(t) = d; where d is a constant.
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The modi�cation F of f with respect to d and �d is de�ned as follows

F (t; x) =

8>>><>>>:
at2 + bd3; if x > d;

at2 + bx3; if � d � x � d;

at2 � bd3; if x < �d:

Clearly F is continuous and bounded on I � R:�

Existence of solution:

In order to discuss the existence of a solution of a given problem by the method of upper

and lower solutions, consider a two point BV P of the type

u00(t) = f(t; u(t)); t 2 [0; 1]; (1.10)

u(0) = 0; u(1) = 0;

where f : I � R! R is continuous and also the corresponding modi�ed problem

u00(t) = F (t; u(t)); t 2 [0; 1];

u(0) = 0; u(1) = 0:

Recall the concept of lower and upper solutions for the BVP (1:10):

De�nition: � 2 C2(I) is a lower solution of (1:10) if

�00(t) � f(t; �(t)); t 2 I;

�(0) � 0; �(1) � 0:

Similarly � 2 C2(I) is an upper solution of (1:10) if

�00(t) � f(t; �(t)); t 2 I;

�(0) � 0; �(1) � 0:

Theorem:(1:11) Suppose that �; � 2 C2(I) are lower and upper solution for (1:10), respec-
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tively, such that

�(t) � �(t) for every t 2 I;

then there exist at least one solution u of (1:10) such that �(t) � u(t) � �(t); for every t 2 I:

Proof: Consider the modi�ed problem

u00(t) = F (t; u(t)); t 2 I (1.11)

u(0) = u(1) = 0:

where F (t; u(t)) =

8>>><>>>:
f(t; �(t)) + u��(t)

1+ju��j ; u > �(t);

f(t; u(t)); �(t) � u � �(t);

f(t; �(t)) + u��(t)
1+ju��j ; u < �(t):

���������
Since F is continuous and bounded, hence by theorem (1:2) the modi�ed problem has a solution.

Let u be a solution of (1:11). It is required to show that �(t) � u(t) � �(t); t 2 I: De�ne

V : I ! R by

V (t) = u(t)� �(t);

then V 2 C2(I) and the BCs imply

V (0) � 0; V (1) � 0: (1.12)

Assume that V (t) � 0 for every t 2 I: Then V (t) has a negative minimum at some t0 2 I: From

the BCs, it is clear that t0 2 (0; 1): Hence

V (t0) < 0; V
0(t0) = 0 and V 00(t0) � 0: (1.13)
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On the other hand, the de�nition of F and that of lower solution implies that

V 00(t0) = u00(t0)� �00(t0)

� F (t0; u(t0))� f(t0; �(t0))

=

�
f(t0; �(t0)) +

V (t0)

1 + jV (t0)j

�
� f(t0; �(t0)); since u(t0) < �(t0)

=
V (t0)

1 + jV (t0)j
< 0;

which contradicts (1:13). Hence �(t) � u(t); t 2 I: Similarly, it can be proved that u(t) � �(t);

for t 2 I: Hence � � u � � in [a; b] and consequently u is a solution of (1:10):�

In general lower solutions may not always be less than the upper solutions, that is they may

not always be well ordered. The following theorem establishes the situation where lower and

upper solutions are well ordered.

Theorem:(1:12) Assume that �; � 2 C2(I) are lower and upper solutions of (1:10). If f(t; u)

is strictly increasing in u for each t 2 I; then

�(t) � �(t); t 2 I:

Proof: Let v : I ! R be de�ned by

v(t) = �(t)� �(t); t 2 I;

then v 2 C2(I) and the BCs imply that

v(0) � 0; v(1) � 0:

It is required to show that v(t) � 0; for every t 2 I. Suppose on the contrary that v(t) � 0 for

every t 2 I. Then v(t) has a +ve maximum at some t0 2 I; that is,

v(t0) = maxfv(t) : t 2 [0; 1]g > 0 for some t0 2 [0; 1]:

From the BCs, it is clear that t0 2 (0; 1): Hence v(t0) > 0; v0(t0) = 0 and v00(t0) � 0: However,
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the increasing property of f(t; u) in u yields

v00(t0) = �
00(t0)� �00(t0) � f(t0; �(t0))� f(t0; �(t0)) > 0;

a contradiction. Hence �(t) � �(t); t 2 I:�
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Chapter 2

Existence of at least one solution for

three-point boundary value

problems at resonance

In this chapter, existence of at least one solution of the BVP (1:1) under a resonance condition

�(� + �) = 1 + � is discussed. Since the homogeneous boundary value problem

u00(t) = 0; t 2 (0; 1); (2.1)

u(0) = �u0(0); u(1) = �u(�);

has non-trivial solutions u(t) = c(t + �); where c 2 R is an arbitrary constant. Therefore, the

problem (1:1) is at resonance. Existence of at least one solution in the presence of lower and

upper solutions under the resonance condition �(� + �) = 1 + � has been studied in [1]: Almost

all of the material of this chapter is taken from the work of II�in [14]. The study of multi-

point boundary value problems was initiated by II�in and Moiseev [14]. Recently Gupta [9]

studied existence of at least one solution for some three point boundary value problems under

some non-resonance conditions. Since then more general non-linear multi-point boundary value

problems have been studied by many authors in non-resonance cases [2; 9; 19] and resonance

cases [7; 10; 11]. More recently, Ma [19] studied an existence result for the following boundary
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value problem

u00(t) = f(t; u(t)); t 2 (0; 1); (2.2)

u(0) = u0(0); u(1) = �u(�);

under the resonance condition �� = 1 in the presence of well-ordered upper and lower solutions.

Note that (2:2) is a special case of (1:1) with � = 1 The methods of lower and upper solution are

based on the connectivity properties of the solution sets of parameterized families of compact

vector �elds.

The following theorem is from Mawhin [22; Lemma 2:3]:

Theorem:(2:1) Let E be a Banach space and C be a non-empty, bounded, closed and convex

subset of E: Suppose that T : [a; b]� C ! C is completely continuous, then the set

S = f(�; x) : T (�; x) = x; � 2 [a; b]g;

contains a closed connected subset
P
which connects fag � C to fbg � C:

The following notations are used throughout this work. X = C[0; 1] denotes the Ba-

nach space with norm kxk1 and Y = C2[0; 1] denotes the Banach space with norm kyky =

maxfkyk1 ; ky0k1 ; ky00k1g.

De�ne a linear di¤erential operator L by setting

D(L) = fu 2 C2[0; 1] : u(0) = �u0(0); u(1) = �u(�)g

and for u 2 D(L);

Lu = u00: (2.3)

2.1 Some Basic Lemmas:

Lemma:(2:2) The kernel of L denoted by Ker(L) and image of L denoted by Im(L) are given

by

Ker(L) = fc(t+ �) : c 2 Rg (2.4)
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and

Im(L) = fy 2 X :

1Z
0

(1� s)y(s)ds = �
Z �

0
(� � s)y(s)dsg or (2.5)

Im(L) = fy 2 X :

Z 1

0
Y (t)dt = ��

Z 1

0
Y (�t)dtg;

where Y (t) =
Z t

0
y(s)ds:

Proof: By de�nition of Ker(L), it follows that

Ker(L) = fu 2 D(L) : Lu = 0 on Ig

= fu 2 D(L) : u00 = 0 on Ig

= fc(t+ �) : c 2 Rg:

Let y 2 Im(L); then there exists u 2 D(L) such that

Lu = y on I; that is,

y(t) = u00(t):

In view of the BCs, it follows that

Z 1

0
Y (t)dt =

Z 1

0
dt

Z t

0
y(s)ds =

Z 1

0
dt

Z t

0
u00(s)ds

=

Z 1

0
[u0(t)� u0(0)]dt = u(1)� u(0)� u0(0)

= �u(�)� �u0(0)� u0(0) = �u(�)� (1 + �)u0(0)
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and

��

Z 1

0
Y (�t)dt = ��

Z 1

0
dt

Z �t

0
y(s)ds = ��

Z 1

0
dt

Z �t

0
u00(s)ds

= ��

Z 1

0
[u0(�t)� u0(0)]dt = ��[ 1

�

Z 1

0
u0(�t)d(�t)�

Z 1

0
u0(0)dt]

= ��[
1

�

Z �

0
u0(s)ds�

Z 1

0
u0(0)dt] = ��[

1

�
(u(�)� u(0))� u0(0)]

= �u(�)� �u(0)� ��u0(0) = �u(�)� �(�+ �)u0(0);

= �u(�)� (1 + �)u0(0):

Consequently, Z 1

0
Y (t)dt = ��

Z 1

0
Y (�t)dt:

On the other hand, let y 2 X such that

Z 1

0
Y (t)dt = ��

Z 1

0
Y (�t)dt:

It is required to show that y 2 Im(L); that is, there exist u 2 D(L) such that

Lu = y; or u00 = y:

Let u(t) =
R t
0 Y (s)ds; then

u(t) =

Z t

0
ds

Z s

0
y(t)dt = t

Z s

0
y(t)dt:

Hence,

u0(t) =

Z t

0
y(t)dt;

which implies that

u00(t) = y(t):

Consequently, y(t) 2 Im(L):�
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De�ne Q : C[0; 1]! R by

Qy = �0
�Z 1

0
Y (t)dt� ��

Z 1

0
Y (�t)dt

�
; where �0 =

2

1� ��2 > 0:

Lemma:(2:3) For every y 2 X; y(t)�Qy 2 Im(L):

Proof: Take

y1(t) = y(t)�Qy; then

Y1(t) =

Z t

0
y1(s)ds =

Z t

0
(y(s)�Qy)ds =

Z t

0
y(s)ds� (Qy)t (2.6)

and

Y1(�t) =

Z �t

0
y1(s)ds =

Z �t

0
(y(s)�Qy)ds =

Z �t

0
y(s)ds� (Qy)�t: (2.7)

Integrating (2:6) and (2:7) from 0 to 1; it follows that

Z 1

0
Y1(t)dt =

Z 1

0
[

Z t

0
y(s)ds� (Qy)t]dt =

Z 1

0
Y (t)dt� Qy

2
(2.7�)

and

��

Z 1

0
Y1(�t)dt = ��

Z 1

0
[

Z �t

0
y(s)ds� (Qy)�t]dt = ��

Z 1

0
Y (�t)dt�Qy��

2

2
: (2.8)

Now, from

Qy = �0
�Z 1

0
Y (t)dt� ��

Z 1

0
Y (�t)dt

�
;

it follows that
1� ��2
2

Qy =

Z 1

0
Y (t)dt� ��

Z 1

0
Y (�t)dt:

Hence,
Qy

2
�Qy��

2

2
=

Z 1

0
Y (t)dt� ��

Z 1

0
Y (�t)dt;

which leads to

��

Z 1

0
Y (�t)dt�Qy��

2

2
=

Z 1

0
Y (t)dt� Qy

2
:

Substituting (2:7�) and (2:8); in the last equation it follows that

��

Z 1

0
Y1(�t)dt =

Z 1

0
Y1(t)dt:
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Hence, by lemma (2:2), y1 2 Im(L):�

Remark:(2:4) The space X = C[0; 1] is the direct sum of Im(L) and R; that is,

X = Im(L)� R

Proof: By lemma (2:3), for every y 2 X, y(t)�Qy 2 Im(L): Let

y(t)�Qy = z; where z 2 Im(L); then

y(t) = z +Qy:

This implies that every y 2 X, can be expressed as z + Qy, where z 2 Im(L) and Qy 2 R:

Hence

X = Im(L) + R:

Now, it remains to show that

Im(L) \ R = f0g:

Let y 2 Im(L) \ R; then y 2 Im(L) where y 2 R: By lemma (2:2), it follows that

1Z
0

(1� s)yds = �
Z �

0
(� � s)yds;

which implies that

y

�
s� s

2

2

����1
0

= �y

�
�s� s

2

2

�����
0

:

Consequently,
y

2
(1� ��2) = 0;

which implies y = 0 as 1 6= ��2: Hence,

Im(L) \ R = f0g:

Thus,

X = Im(L)� R:�
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Remark:(2:5) Let P : Y ! Ker(L) be de�ned as

(Pu)(t) = u0(0)(t+ �);

then,

Y = Ker(P )�Ker(L):

Proof: For any y 2 Y , (Py)(t) 2 Ker(L), that is,

(Py)(t) = y0(0)(t+ �) = c(t+ �);

which implies that

y0(0) = c:

Now, let

w(t) = y(t)� c(t+ �);

then

(Pw)(t) = (y0(0)� c)(t+ �) = 0;

which implies w 2 Ker(P ): Hence y(t) 2 Ker(L) +Ker(P ): Consequently

Y = Ker(L) +Ker(P ):

Moreover, let u 2 Ker(L) \Ker(P ); then

u(t) = c(t+ �) and u0(0) = 0;

which implies

u = 0 on [0; 1]:

Hence,

Ker(L) \Ker(P ) = f0g:
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Thus,

Y = Ker(L)�Ker(P ):�

Remark:(2:6) Let Lp = L jD(L)\Ker(P ); then Lp : D(L) \ Ker(P ) ! Im(L) is one to one

operator.

Proof: Let, y1; y2 2 D(L) \Ker(P ) such that

(LP y1)(t) = (LP y2)(t), t 2 [0; 1]; then

(Ly1)(t) = (Ly2)(t); t 2 [0; 1];

that is,

y001(t) = y002(t);

(y001 � y002)(t) = 0;

(y1 � y2)00(t) = 0:

Integrating and using the conditions

y01(0) = y
0
2(0) = 0;

it follows that

(y1 � y2)0(t) = 0; t 2 [0; 1]:

Integrating again, and using the BCs,

y1(0)� y2(0) = �(y01(0)� y02(0)) = 0;

it follows that

y1(t) = y2(t):

Hence, LP is one to one.�
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Remark:(2:7) Let

KpQ = L
�1
P (I �Q);

and N : X ! X, a non-linear operator de�ned by

(Nu)(t) = f(t; u(t)); t 2 [0; 1]; (2.9)

then KpQN : X ! X is completely continuous and (1:1) is equivalent to the system

!(t) = KpQN(�(t+ �) + !(t)); (2.10)

QN(�(t+ �) + !(t)) = 0:

Proof : By remark (2:5), for every u 2 Y; the unique decomposition of u is

u(t) = �(t+ �) + !(t); � 2 R and ! 2 Ker(P ):

Since

w = KpQNu = L
�1
P (1�Q)Nu;

which implies that

Lpw = (1�Q)Nu:

Hence,

Lpu = (1�Q)Nu = Nu�QNu;

= Nu i¤ QNu = 0;

thus,

u00 = f(t; u(t)) i¤ QNu = 0;

that is, 8<: w(t) = KpQN(�(t+ �) + !(t));

QN(�(t+ �) + !(t)) = 0:

9=;
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Hence (1:1) is equivalent to (2:10):�

2.2 Existence of at least one solution:

Consider the BVP (1:1): Let � be a strict upper solution and � be a strict lower solution of

(1:1) such that �(t) � �(t); t 2 [0; 1]: De�ne D = f(t; u) : �(t) � u � �(t); t 2 [0; 1]g and the

modi�cation f� : [0; 1]� R! R by

f�(t; u) =

8>>><>>>:
f(t; �(t)), if u > �(t); t 2 I;

f(t; u), if � � u � �; t 2 I;

f(t; �(t)), if u < �(t); t 2 I:

Clearly f� is continuous and bounded. Consider the modi�ed problem

u00(t) = f�(t; u(t)); t 2 I; (2.11)

u(0) = �u0(0); u(1) = �u(�); � > 0:

Lemma:(2:8) If the modi�ed problem (2:11) has a solution u, then �(t) � u � �(t); t 2 [0; 1]:

In other words u is solution of (1:1).

Proof: Assume that (2:11) has a solution u. It is required to show that

�(t) � u � �(t); t 2 [0; 1]:

Let

v(t) = u(t)� �(t); t 2 [0; 1]; (2.12)

then v 2 C2[0; 1] and the BCs imply

v(0) � �v0(0); v(1) � �v(�): (2.13)

Suppose on the contrary that

maxfv(t); t 2 [0; 1]g = v(t0) > 0; for some t0 2 [0; 1]:
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If t0 = 0; then v(0) > 0 and from the BCs (2:13); it follows that v0(0) > 0: That is, v is

an increasing in the neighborhood (0; �) of 0 for small � > 0: This contradicts v(0) being the

maximum value of v on [0; 1]: Hence t0 6= 0. If t0 2 (0; 1), then

v(t0) > 0; v
0(t0) = 0 and v00(t0) � 0: (2.14)

On the other hand, the de�nition of f� and the fact that � is strict upper solution, imply that

u00(t0) = f
�(t0;u(t0)); = f(t0;�(t0)) > �

00(t0);

which implies that

v00(t0) = u
00(t0)� �00(t0) > 0;

a contradiction to (2:14). Hence v(t) has no +ve local maximum for t 2 (0; 1). If t0 = 1; then

v(1) > 0: There are two possible cases to be discussed.

Case (I) v(0) > 0 : From (2:13) and the fact that v(0) > 0; it follows that

v0(0) > 0:

This implies that v(t) is an increasing function on (0; �) and since v(t) has no +ve local maxi-

mum, hence v(t) > 0 on [0; 1], that is,

u(t) > �(t); for all t 2 [0; 1]:

Consequently, the de�nition of f� and the fact that � is strict upper solution, imply that

v00(t) = u00(t)� �00(t) > f�(t; u(t))� f(t; �(t)) (2.15)

= f(t; �(t))� f(t; �(t)) = 0; t 2 [0; 1]:

Hence the graph of v is convex on (0; 1); that is,

v(�)� v(0)
�

<
v(1)� v(0)

1
: (2.16)
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However, by the BCs (2:13); it follows that

v(1) = u(1)� �(1) � �u(�)� ��(�) = �[u(�)� �(�)] � �v(�);
v(1)

1
� 1 + �

� + �
v(�) or (2.17)

v(1)� � v(�) + �(v(1)� v(�)) � 0: (2.18)

By Mean value theorem, there exist � 2 (�; 1) such that

v(1)� v(�)
1� � = v0(�): (2.19)

From (2:15); v00(t) > 0 on (0; 1); implies v0(t) is strictly increasing on (0; 1): Hence v0(0) < v0(�);

which in view of (2:19) implies that

v0(0) <
v(1)� v(�)
1� � :

Hence,

�v0(0)(1� �) < �[v(1)� v(�)] or

(1� �)v(0) < �[v(1)� v(�)]; since v(0) � �v0(0) by (2:13): (2.20)

Combining (2:18) with (2:20); we obtain

v(1)� � v(�) + (1� �)v(0) < 0;

which implies that
v(�)� v(0)

�
>
v(1)� v(0)

1
; (2.21)

a contradiction to (2:16).

Case (II) v(0) � 0 : From the BCs and the fact that v(1) > 0; it follows that

v(�) = u(�)� �(�) � 1

�
[u(1)� �(1)] � 1

�
v(1) > 0:
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Hence there exist � 2 [0; 1) such that

v(�) = 0 and v(t) > 0; for all t 2 (� ; 1]:

If � 2 (�; 1); then there exist t1 2 (0; �) such that

maxfv(t) : t 2 [0; � ]g = v(t1) � v(�) > 0;

which implies

v0(t1) = 0 and v00(t1) � 0: (2.22)

But the de�nition of f� and the fact that � is strict upper solution, imply that

u00(t1) = f
�(t1; u(t1)) = f(t1; �(t1)) > �

00(t1);

that is,

v00(t1) = u
00(t1)� �00(t1) > 0;

which is a contradiction to (2:22):

If � 2 [0; �]; then for all t 2 (� ; 1]; v(t) > 0; and by the de�nition of f� and the fact that � is

strict upper solution, it follows that

u00(t) = f�(t; u(t)) = f(t; �(t)) > �00(t); t 2 (� ; 1];

that is,

v00(t) = u00(t)� �00(t) > 0; t 2 (� ; 1]:

So there exist two numbers t2; t3 such that

v(�)

�
<
v(�)� v(�)
� � � = v0(t2); for t2 2 (� ; �);

and
v(1)� v(�)
1� � = v0(t3); for t3 2 (�; 1):
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Since v00(t) > 0 on (� ; 1], therefore,

v(�)

�
< v0(t2) < v

0(t3) =
v(1)� v(�)
1� � ;

v(�)(1� �) < �v(1)� �v(�);

v(�) < �v(1);

v(�)

�
<

v(1)

1
: (2.23)

However, from (2:17) we obtain

v(1)

1
� 1 + �

� + �
v(�) <

v(�)

�
;

which contradicts (2:23). Hence, the assumption that v(t0) > 0 for some t0 2 [0; 1] is not true.

Thus v(t) � 0 for all t 2 [0; 1]:

Similarly,

u(t) � �(t); for t 2 [0; 1]:�

Theorem:(2:9) Let f : [0; 1] � R ! R be continuous. Assume that � and � are strict upper

and lower solutions of (1:1) respectively, such that

�(t) � �(t); t 2 [0; 1];

then the BVP (1:1) has a solution u 2 D:

Proof: Consider the modi�ed problem

u00(t) = f�(t; u(t)); t 2 (0; 1); (2.24)

u(0) = �u0(0); u(1) = �u(�);

It is equivalent to the system

w(t) = KPQN
�(�(t+ �) + w(t));

QN�(�(t+ �) + w(t)) = 0; (2.25)
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where KPQN� : X ! X is completely continuous.

Since f� is bounded, we know from (2:25) and the Schauder �xed point theorem that for

every � 2 R; the set

W (�) = fw 2 eY : (�;w) satis�es (2:25)g 6= 0:
Moreover, by Theorem (2:1), the set

S = f(�;w) 2 R� eY : (�;w) satis�es (2:25)g; (2.26)

contains a connected subset
P
which joins fag �W (a) and fbg �W (b) for every a,b 2 R with

a < b: Put

W = fw 2 eY : (�;w) 2 Sg:
Then, by (2:25), there exists a constant M > 0 independent of �; such that

maxfkwk1 ;
w01g �M; for all w 2W:

Choose �1 2 R so large that for all w 2W

�1(t+ �) + w(t) > �(t); for t 2 [0; 1];

this implies that f�(t; �1(t + �) + w(t)) � f(t; �(t)) and W (�1) reduces to the single-point set

fKPQf(t; �(t))g: Moreover, for every w 2W (�1); we have

QN�(�1(t+ �) + w(t)) = �0[

Z 1

0
(

Z t

0
f�(s; �1(s+ �) + w(s))ds)dt

���
Z 1

0
(

Z �t

0
f�(s; �1(s+ �) + w(s))ds)dt]

= �0[

Z 1

0
dt

Z t

0
f(s; �(s))ds� ��

Z 1

0
dt

Z �t

0
f(s; �(s))ds]: (2.27)

De�ne

d =

Z 1

0
dt

Z t

0
f(s; �(s))ds� ��

Z 1

0
dt

Z �t

0
f(s; �(s))ds;
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and

e =

Z 1

0
dt

Z t

0
�00(s)ds� ��

Z 1

0
dt

Z �t

0
�00(s)ds:

From the fact that �00(t) < f(t; �(t)) on (0; 1) and �� < 1; it is claimed that d > e: Because

d� e =

Z 1

0
dt

Z t

0
f(s; �(s))ds� ��

Z 1

0
dt

Z �t

0
f(s; �(s))ds

�
Z 1

0
dt

Z t

0
�00(s)ds+ ��

Z 1

0
dt

Z �t

0
�00(s)ds;

=

Z 1

0
dt

Z t

0
(f(s; �(s))� �00(s))ds

���
Z 1

0
dt[

Z �t

0
(f(s; �(s))� �00(s))ds];

>

Z 1

0
dt

Z t

0
(f(s; �(s))� �00(s))ds�

Z 1

0
dt[

Z �t

0
(f(s; �(s))� �00(s))ds];

=

Z 1

0
dt

Z t

�t
(f(s; �(s))� �00(s))ds > 0: (2.28)

Combining (2:27) with (2:28), we get

QN�(�1(t+ �) + w(t)) > �0[

Z 1

0
dt

Z t

0
�00(s))ds� ��

Z 1

0
dt

Z �t

0
�00(s)ds]

= �0[

Z 1

0
(�0(t)� �0(0))dt� ��

Z 1

0
(�0(�t)� �0(0)dt]

= �0f(�(1)� �(0)� �0(0)� ��[��1(�(�)� �(0)� �0(0)]g

= �0

�
�(1)� ��(�) + 1� �

� + �
[�(0)� ��0(0)]

�
� 0:

Choose �2 2 R such that for all w 2W

�2(t+ �) + w(t) < �(t); for t 2 [0; 1];

this implies that f�(t; �2(t + �) + w(t)) � f(t; �(t)) and W (�2) reduces to the single-point set
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fKPQf(t; �(t))g: Moreover, for every w 2W (�2); we have

QN�(�2(t+ �) + w(t)) = �0[

Z 1

0
(

Z 1

0
f�(s; �2(s+ �) + w(s))ds)dt)

���
Z 1

0
(

Z �t

0
f�(s; �2(s+ �) + w(s))ds)dt];

= �0[

Z 1

0
dt

Z t

0
f(s; �(s))ds� ��

Z 1

0
dt

Z �t

0
f(s; �(s))ds]: (2.29)

De�ne

d =

Z 1

0
dt

Z t

0
f(s; �(s))ds� ��

Z 1

0
dt

Z �t

0
f(s; �(s))ds;

and

e =

Z 1

0
dt

Z t

0
�00(s)ds� ��

Z 1

0
dt

Z �t

0
�00(s)ds:

From the fact that �00(t) > f(t; �(t) on (0; 1) and �� < 1; it follows that d < e: In fact,

d� e =

Z 1

0
dt

Z t

0
f(s; �(s))ds� ��

Z 1

0
dt

Z �t

0
f(s; �(s))ds

�
Z 1

0
dt

Z t

0
�00(s)ds+ ��

Z 1

0
dt

Z �t

0
a00(s)ds;

=

Z 1

0
dt

Z t

0
(f(s; �(s))� �00(s))ds

���
Z 1

0
dt[

Z �t

0
(f(s; �(s))� �00(s))ds];

<

Z 1

0
dt

Z t

0
(f(s; �(s))� �00(s))ds�

Z 1

0
dt[

Z �t

0
(f(s; �(s))� �00(s))ds];

=

Z 1

0
dt

Z t

�t
(f(s; �(s))� �00(s))ds < 0: (2.30)

Combining (2:29) with (2:30), we get

QN�(�2(t+ �) + w(t)) < �0[

Z 1

0
dt

Z t

0
�00(s))ds� ��

Z 1

0
dt

Z �t

0
�00(s)ds]

= �0[

Z 1

0
(�0(t)� �0(0))dt� ��

Z 1

0
(�0(�t)� �0(0)dt]

= �0f(�(1)� �(0)� �0(0)� ��[��1(�(�)� �(0)� �0(0)]g

= �0

�
�(1)� ��(�) + 1� �

� + �
[�(0)� ��0(0)]

�
� 0:
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Therefore, by the connectivity of
P
; there must exist some �0 2 (�2; �1) and w(�0) 2 W (�0)

such that (�0; w(�0)) 2
P
and (2:26) holds. Thus �0(t+ �) + w(�0) is a solution of (2:25):�

Example: Consider the following BVP

u00(t) = (u(t)� 2t� 3�)l + t
l

2
cosk(u(t)); t 2 (0; 1); (2.31)

u(0) = �u0(0); u(1) =
1 + �

� + �
u(�);

where k 2 N and l = 2n� 1; n 2 N:

Solution: Take,

�(t) = t+ � and �(t) = 3(t+ �):

Clearly,

�00(t) = 0 and

f(t; �) = (3t+ 3�� 2t� 3�)l + t
l

2
cosk(3t+ 3�);

= tl +
tl

2
cosk(3t+ 3�) > 0 on [0; 1]:

Hence,

�00(t) < f(t; �); t 2 I:

Moreover, BCs imply

�(0) = ��0(0); �(1) =
1 + �

� + �
�(�);

thus, � is an upper solution.

Now,

�00(t) = 0 and
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f(t; �) = (t+ �� 2t� 3�)l + t
l

2
cosk(t+ �);

= �(t+ 2�)l + t
l

2
cosk(t+ �);

= �[tl +
�
l

1

�
tl�1(2�) +

�
l

2

�
tl�2(2�)2 +

�
l

3

�
tl�3(2�)3 + :::+

�
l

m

�
tl�m(2�)m + (2�)l +

tl

2
cosk(t+ �)];

= �[tl +
lX

m=1

�
l

m

�
tl�m(2�)m] +

tl

2
cosk(t+ �);

= �tl[1� 1
2
cosk(t+ �)]�

lX
m=1

�
l

m

�
tl�m(2�)m < 0; t 2 I;

�
l

m

�
=

l!

m!(l �m)! :

Hence,

�00(t) > f(t; �); t 2 I:

Moreover, BCs imply

�(0) = ��0(0); �(1) =
1 + �

� + �
�(�);

thus, � is a lower solution. Clearly, �(t) � �(t) on [0; 1]: Hence by Theorem (2:9), the BVP

(2:31) has a solution u such that t+ � � u(t) � 3(t+ �); t 2 [0; 1]:�
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Chapter 3

Multiplicity results of three point

boundary value problems at

non-resonance:

The study of existence of solutions of multi-point boundary value problems for linear second

order ordinary di¤erential equations was initiated by II�in and Moiseev [14]. Then Gupta [9]

investigated three-point boundary value problems for nonlinear ordinary di¤erential equations

at non-resonance. Since then, more general nonlinear multi-point BVPs have been studied by

several authors with the theory of �xed point index, coincidence degree theory, Leray-Schauder

continuation theorems and �xed point theorems in cones. We refer the readers to [19] for

non-resonance cases and to [7; 10; 11] for resonance cases.

Boundary value problems for ordinary di¤erential equations play an important role in a

variety of di¤erent areas of applied mathematics and physics. Various applications of boundary

value problems to physical, biological and chemical process are well documented in the litera-

ture; for example, the classic books of love [18], Prescott [24] and Timoshenko [25] on elasticity,

the works of Mans�eld [20] on deformation of structures, and the monograph of Dulacska [6]

on the e¤ects of soil settlement are good sources of such applications. Moreover, multi-point

boundary value problems can arise in, for example,

(1) the vibrations of a guy wire of uniform cross-section and composed of N parts of di¤erent
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densities can be set as a multi-point BVPs (see [23]);

(2) the study of the steady states of a heated bar with a thermostat, where a controller at

t = 1 adds or dissipates heat according to the temperature detected by a sensor at t = �, while

the left end of the bar is maintained at a �xed temperature,

(3) the bending of a beam where conditions may be imposed at the ends of the beam, as

well as at an interior point to improve stability or for other reasons (see [3]):

In this chapter existence of at least three solutions of the BVP (1:1) is investigated by using

properties of degree theory. We prove that in the presence of two lower and two upper solutions,

the BVP has at least three solutions. The results of this chapter are the original work of the

author and his supervisor.

3.1 Basic idea:

In chapter 2 , existence of solution for the second-order three point BVP of the type

u00(t) = f(t; u(t)); t 2 (0; 1);

u(0) = �u0(0); u(1) = �u(�);

is discussed. The function f : [0; 1] � R ! R is assumed to be continuous and � 2 [0;1); � 2

(0;1); � 2 (0; 1) are given constants such that �(�+ �) = 1+ �: This problem happens to be at

resonance in the sense that the associated linear homogeneous boundary value problem

u00(t) = 0; t 2 (0; 1);

u(0) = �u0(0); u(1) = �u(�);

has u(t) = c(t+ �); c 2 R; as non-trivial solutions.

We study the BVP under the non-resonance condition

� =
� + �

1 + �
:
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Hence by choosing � = �+�
1+� the BVP problem

u00(t) = f(t; u(t)); t 2 (0; 1); (3.1)

u(0) = �u0(0); u(1) = �u(�);

is at non-resonance, because the associated linear homogeneous boundary value problem

u00(t) = 0; t 2 (0; 1); (3.2)

u(0) = �u0(0); u(1) = �u(�);

has a trivial solution only. In this case, the kernel of the di¤erential operator L = d2

dt2
is the set

f0g; which implies that L is invertible. Hence the BVP (3:1) is equivalent to integral equation

u(t) =

1Z
0

G(t; s)f(s; u(s))ds; (3.3)

where G(t; s) is a Green�s function for the associated problem (3:2). De�ne an integral operator

T : C[0; 1]! C[0; 1] by

(Tu)(t) =

1Z
0

G(t; s)f(s; u(s))ds:

Then solutions of the integral equation (3:3) means solutions of the operator equation

(Tu)(t) = u(t); t 2 [0; 1];

that is, �xed points of T:

Since our work depends on the nature of the Green�s function, we need to get its explicit

form.
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3.2 Explicit form of Green�s function:

We use properties of the Green�s function G(t; s) to construct its explicit form. we discuss two

cases; that is, � � s and � � s: Assume � � s and take

G1(t; s) =

8<: A+Bt; 0 � t � s � 1;

C +Dt; 0 � s � t � 1;
� � s;

������ (3.4)

where A; B; C; and D are constant to be determined. The boundary condition

G1(0; s) = �
@

@t
G1(0; s);

implies that

A = �B;

and the second BC,

G1(1; s) = �G1(�; s);

yields

C +D = �(A+B�);

which implies

C = �(A+B�)�D:

Putting the values of A and C in (3:4), we have

G1(t; s) =

8<: (�+ t)B; 0 � t � s � 1;

�(�+ �)B + (t� 1)D; 0 � s � t � 1; � � s:

������
The continuity of a Green�s function at s, that is

G1(s
+; s) = G1(s

�; s);

yields

B =
(s� 1)D

[(�+ s)� �(�+ �)] ;
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which implies

G1(t; s) =

8<: (�+ t) (s�1)
[(�+s)��(�+�)]D; 0 � t � s � 1;

�(�+�)(s�t)+(t�1)(�+s)
(�+s)��(�+�) D; 0 � s � t � 1;

� � s:

������
Taking the derivative with respect to t, we get

@

@t
G1(t; s) =

8<: s�1
(�+s)��(�+�)D; 0 � t � s � 1;
�+s��(�+�)
(�+s)��(�+�)D; 0 � s � t � 1;

� � s:

������
Using the jump-discontinuity property of the derivative of G1; that is,

@

@t
G1(s

+; s)� @

@t
G1(s

�; s) = �1;

we get

D =
�(�+ �)� (s+ �)
�(�+ �)� (1 + �) :

Hence,

G1(t; s) =

8<:
(s�1)(t+�)
�(�+�)�(1+�) ; 0 � t � s � 1;
�(�+�)(s�t)+(1�t)(�+s)

�(�+�)�(1+�) ; 0 � s � t � 1;
� � s;

������
is a Green�s function of homogeneous problem (3:2).

In the case , when � � s, let the Green�s function be

G2(t; s) =

8<: A+Bt; 0 � t � s � 1;

C +Dt; 0 � s � t � 1;
� � s:

������ (3.5)

Using the boundary condition

G2(0; s) = �
@

@t
G2(0; s);

we get

A = �B

and the BC

G2(1; s) = �G2(�; s);
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gives

C =
�� � 1
1� � D:

Putting the values of A and C in (3:5), we have

G2(t; s) =

8<: (�+ t)B; 0 � t � s � 1;
���1+(1��)t

1�� D; 0 � s � t � 1 �
� � s;

������ :
Using the continuity of a Green�s function at s, that is

G2(s
+; s) = G2(s

�; s);

we get

B =
�� � 1 + (1� �)t
(�+ s)(1� �) D;

which gives

G2(t; s) =

8<: (�+ t) ���1+(1��)t(�+s)(1��) D; 0 � t � s � 1;
���1+(1��)t

1�� D; 0 � s � t � 1;
� � s:

������
Taking the derivative with respect to t, we get

@

@t
G2(t; s) =

8<: [ �+t�+s +
���1+(1��)t
(�+s)(1��) ]D; 0 � t � s � 1;

D; 0 � s � t � 1;
� � s:

������
Using the jump-discontinuity property of the derivative of G2; that is

@

@t
G2(s

+; s)� @

@t
G2(s

�; s) = �1;

we get

D =
(�+ s)(� � 1)

�� � 1 + (1� �)s:

Hence

G2(t; s) =

8<: �(�+ t) ���1+(1��)t���1+(1��)s ; 0 � t � s � 1;

�(�+ s) [���1+(1��)t]���1+(1��)s ; 0 � s � t � 1;
� � s;

������
is a Green�s function of the homogenous three point BVP (3:2):�
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Theorem:(3:1) Let f be continuous and bounded on I � R: Then BVP (1:1) has a solution.

Proof: Choose M to be the bound for f on I � R and de�ne a mapping T : C[0; 1]! C[0; 1]

by

(Tu)(t) =

Z 1

0
G(t; s)f(s; u(s))ds;

where the Banach space is C[0; 1] with norm de�ned by

kuk = max
t2I

ju(t)j

and G(t; s) is a Green�s function. Since G(t; s) is continuous and bounded, there exists N > 0

such that

jG(t; s)j < N on I � I:

Hence,

jTu(t)j � NM; t 2 I;

which implies that Tu(t) is uniformly bounded and equi-continuous on I. Hence, by Arzela-

Ascoli theorem T is compact. Let


 = fu 2 C(I) : ju(t)j � NM; t 2 Ig:

Clearly, this is closed, bounded and convex subset of C(I): Moreover, for any u 2 
; we have

k(Tu)(t)k �
1Z
0

jG(t; s)f(s; u(s))j ds �
1Z
0

NMds = NM;

which implies that (Tu)(t) 2 
 for every u 2 
: Consequently, T (
) � 
; that is T maps

closed, bounded and convex set


 = fu 2 C(I) : kuk � NMg;

into itself. Hence by Schauder�s �xed point theorem, T has a �xed point, that is, there exist
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u 2 
 such that

Tu = u;

which implies that the BVP (1:1) has a solution in 
:�

The following result is known.

Theorem:(3:2) Let 
 be an open bounded subset of a normed space X and let T : 
 ! X

be compact. For y 2 X such that y =2 (I � T )(@
); and the degree d(I � �T;
; y) is de�ned

for all � 2 [0; 1]; then

d(I � T;
; y) =

8<: 1; for y 2 
;

0; for y =2 
:

������
For the proof of this result, see [17]:

3.3 Existence of at least three solutions:

In this section, we develop the method of upper and lower solutions for the existence of at

least three solutions of the BVP (1:1). We use some topology degree theory arguments to

get multiplicity results. We show that in the presence of two lower solutions and two upper

solutions, the BVP (1:1) has at least three solutions. Moreover, we do not require f to be

bounded.

Theorem:(3:3) Assume that the following hold:

(1) �; �1 2 C2(I) are two lower solutions and �; �1 2 C2(I) are two upper solutions of the

BVP (1:1) such that

� � �1 � �; � � �1 � � and �1 � �1 on I,

(2) �1 ; �1 are strict lower and upper solutions of BVP (1:1).

Then, the BVP (1:1) has at least three solutions ui; i = 1; 2; 3 such that

� � u1 � �1; �1 � u2 � �; u3 � �1 and u3 � �1 on I.
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Proof: De�ne the modi�cation F of f with respect to �; � as follows

F (t; u(t)) =

8>>><>>>:
f(t; �(t)) + u��(t)

1+ju��j ; u � �(t),

f(t; u(t)); �(t) � u � �(t);

f(t; �(t)) + �(t)�u(t)
1+j��uj ; u � �(t):

���������
Clearly F is continuous and bounded on I � R, it follows that the modi�ed BVP

u00(t) = F (t; u(t)); t 2 [0; 1]; (3.6)

u(0) = �u0(0); u(1) = �u(�); � =
� + �

1 + �
;

has a solution. Using the de�nition of F and that of lower and upper solutions, we obtain

F (t; �(t)) = f(t; �(t)) � �00(t); t 2 I

and

F (t; �(t)) = f(t; �(t)) � �00(t); t 2 I;

which implies that �; � are lower and upper solutions of (3:6). Moreover, any solution u of the

modi�ed problem (3:6) such that

�(t) � u(t) � �(t); t 2 I;

is a solution of problem (1:1). Hence, it is su¢ cient to show that the modi�ed problem (3:6)

has at least three solutions ui such that

�(t) � ui � �(t); i = 1; 2; 3; t 2 I:

De�ne an integral operator L�� : C1(I)! C1(I) by

(L��u)(t) =

1Z
0

G(t; s)F��(s; u(s))ds: (3.7)
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Di¤erentiating(3:7) with respect to t, we get

(L��u)
0(t)) =

1Z
0

Gt(t; s)F��(s; u(s))ds: (3.8)

Since F�� is continuous and bounded on I � R; there exists M1 > 0 such that

jF��(t; u(t))j �M1 on I � R:

Also G(t; s) is continuous and bounded on I � I; hence there exists M2 > 0 such that

jG(t; s)j �M2 on I � I:

Gt(t; s) is discontinuous at t = s; but is bounded on I � I: Hence there exists M3 > 0 such that

jGt(t; s)j �M3 on I � I:

Now from (3:7) and (3:8), it follows that

j(L��u)(t)j �
1Z
0

jG(t; s)F��(s; u(s))j ds �M2M1 (3.9)

and ��(L��u)0(t)�� � 1Z
0

jGt(t; s)F��(s; u(s))j ds �M3M1; (3.10)

which imply that the sequence f(L��u)(t)g is uniformly bounded and equi-continuous on I.

Hence by the Arzela-Ascoli theorem, L�� is compact.

Choose,

M > max fM2M1; M3M1g :

Then, by (3:9) and (3:10), we get

j(L��u)(t)j < M and
��(L��u)0(t)�� < M; for every u 2 C1(I):
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Let


 = fu 2 C1(I) : kuk < Mg;

where kuk =maxfu(t) : t 2 Ig is the usual norm. Clearly 
 is bounded and open subset of

C1(I): Further, for u; v 2 
, we have

k�u+ (1� �)vk � k�uk+ (1� �) kvk

= � kuk+ (1� �) kvk

= �M + (1� �)M =M;

which implies that 
 is convex. Moreover, for any u 2 
; we have

kL��uk = k(L��u)(t)k �
1Z
0

jG(t; s)F��(s; u(s))j ds

�
1Z
0

M1M2ds =M1M2 < M;

which implies that (L��u)(t) 2 
 for every u 2 
: Consequently, L��(
) � 
; that is L�� :


! 
 maps open, bounded and convex set


 = fu 2 C1(I) : kuk < Mg;

into itself. Hence by Schauder�s �xed point theorem, L�� has a �xed point, that is, the BVP

(1:1) has a solution in 
:

Now, for u 2 @
 and � 2 [0; 1]; we have �L��u 6= u; that is

(I � �L��)u 6= 0; for � 2 [0; 1] and for every u 2 @
:

Hence by theorem (3:2); it follows that

deg(I � �L�� ;
; 0) = 1; for � 2 [0; 1].
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By the homotopy invariance property of degree, we get

deg(I � L�� ;
; 0) = 1:

Consider the following open bounded sets of 
 :


�1 = fu 2 
 : u > �1 on Ig

and


�1 = fu 2 
 : u < �1 on Ig:

Clearly, 
�1 \
�1 = ; and since �1 
 �1 on I; therefore the set 
 n(
�1 [
�1) 6= ;: Moreover,

there are no solutions of (3:6) on @
�1 [ @
�1 : Because, if u is a solution of (3:6) such that

u 2 @
�1 [ @
�1 ;

then u 2 @
�1 or u 2; @
�1 which implies that

u = �1 or u = �1 on I

which is impossible as �1 and �1 are strict lower and upper solutions.

By the additive property of degree, we have

1 = deg(I�L�� ;
; 0) = deg(I�L�� ;
�1 ; 0)+deg(I�L�� ;
�1 ; 0)+deg(I�L�� ;
n(
�1[
�1); 0):

(3.11)

It is required to show that

deg(I � L�� ;
�1 ; 0) = deg(I � L�� ;
�1 ; 0) = 1;

then

deg(I � L�� ;
n(
�1 [ 
�1); 0) = �1

will follow from (3:11):
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De�ne the modi�cation F ��1� of f with respect to �1; �; as follows

F ��1�(t; u) =

8>>><>>>:
f(t; �(t)) + u��(t)

1+ju��j ; u � �(t)

f(t; u(t)); �1 � u � �(t)

f(t; �1(t)) +
�1�u

1+j�1�uj ; u � �1(t):

���������
Note that F ��1� = F�� on 
�1 :

Consider the modi�ed BVP

u00(t) = F ��1�(t; u(t)); t 2 I; (3.12)

u(0) = �u0(0); u(1) = �u(�):

This is equivalent to the integral operator equation

(I � L�1�)u = 0;

where

(L�1�u)(t) =

1Z
0

G(t; s)F ��1�(s; u(s))ds;

is a compact operator.

By lemma 2:8, any solution u of modi�ed problem (3:12) satis�es �1 � u on I and since �1
is strict lower solution of (1:1), this implies that u 6= �1 on (0; 1) and hence u 2 
�1 : It follows

that the BVP (3:12) has no solution in 
n
�1 ; which implies that

deg(I � L�� ;
n
�1 ; 0) = 0: (3.13)

Moreover, since L��(
) � 
; hence

deg(I � L�1�;
; 0) = 1: (3.14)
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Equations (3:13) and (3:14) implies that

deg(I � L�1� ;
�1 ; 0) = 1: (3.15)

Since L�1� = L�� on 
�1 ; so by the property of degree

deg(I � L�� ;
�1 ; 0) = 1: (3.16)

Similarly, we can show that

deg(I � L�� ;
�1 ; 0) = 1:

Thus, from (3:11)

deg(I � L�� ;
n(
�1 [ 
�1); 0) = �1

Hence there are at least three solutions one in each of the sets 
�1 ;
�1 and 
n(
�1 [ 
�1):

Thus, if there are two lower and two upper solutions in some speci�c region , then the BVP

(1:1) has at least three solutions.
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