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Abstract

In this dissertation, heat transfer and entropy of an unsteady non-Newtonian Maxwell

nanofluid flow is studied. The fluid is positioned over a flat stretching sheet being

stretched with non-uniform velocity. The study of nanofluid flow and heat transfer

is presented under the influence of partial slip and convective boundary conditions.

The effects of thermal radiation and viscous dissipation along with magnetohydro-

dynamics are considered. The governing partial differential equations for current

model are obtained by using boundary layer approximations, reduced into ordinary

differential equations using similarity transformation and then the numerical results

of ordinary differential equations are computed for Copper water and Titanium wa-

ter nanofluids by using Keller box method. The effects of various governing flow

parameters on fluid movement, temperature difference, entropy of system, skin fric-

tion and nusselt number near the boundary are discussed.

iii



Contents

Abstract iii

1 Introduction 1

2 Basic definitions 5

2.1 Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fluid flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Steady flow and Unsteady flow . . . . . . . . . . . . . . . . . 6

2.2.2 Laminar flow and turbulent flow . . . . . . . . . . . . . . . . . 6

2.2.3 Compressible flow and incompressible flow . . . . . . . . . . . 6

2.2.4 Uniform flow and non-uniform flow . . . . . . . . . . . . . . . 7

2.3 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Newtonian and non-Newtonian Fluids . . . . . . . . . . . . . . . . . . 8

2.5 Maxwell Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.2 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.3 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



2.7.1 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.2 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.3 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Viscous dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 Boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.12 Nanofluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.13 Physical properties of nanofluid . . . . . . . . . . . . . . . . . . . . . 15

2.13.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.13.2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.13.3 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.13.4 Thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . 17

2.14 Entropy of a system . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.15 Dimensionless numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.15.1 Skin friction coefficient . . . . . . . . . . . . . . . . . . . . . . 17

2.15.2 Nusselt number Nu . . . . . . . . . . . . . . . . . . . . . . . . 18

2.15.3 Eckert number Ec . . . . . . . . . . . . . . . . . . . . . . . . 18

2.15.4 Prandtl number Pr . . . . . . . . . . . . . . . . . . . . . . . . 19

2.16 Similarity transformation . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.17 Keller Box Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Thermal and Entropy Analysis of Maxwell Nanofluid with Slip

Conditions, Thermal Radiations and Variable Thermal Conduc-

tivity 21

v



3.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Similarity Transformation . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Finding Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Influence of Maxwell parameter β . . . . . . . . . . . . . . . . 38

3.4.2 Influence of unsteadiness parameter A . . . . . . . . . . . . . 40

3.4.3 Influence of magnetic parameter M . . . . . . . . . . . . . . . 42

3.4.4 Influence of porous parameter K . . . . . . . . . . . . . . . . 44

3.4.5 Influence of volume concentration parameter Φ . . . . . . . . . 46

3.4.6 Influence of slip parameter Λ . . . . . . . . . . . . . . . . . . 48

3.4.7 Influence of the Brinkmann number Br and Reynolds number

Re on the entropy of system . . . . . . . . . . . . . . . . . . . 50

3.4.8 Effect of flow parameters on Skin friction and Nusselt number 52

4 Heat Transfer and Entropy Analysis of Maxwell Nanofluid Flow

over a Stretching Flat Surface 54

4.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Similarity Transformation . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Finding Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Verification of numerical results . . . . . . . . . . . . . . . . . . . . . 68

4.5 Results with Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Influence of Maxwell parameter β . . . . . . . . . . . . . . . . 70

4.5.2 Influence of unsteadiness parameter A . . . . . . . . . . . . . 72

4.5.3 Influence of magnetic parameter M . . . . . . . . . . . . . . . 73

4.5.4 Influence of nanoparticle volume concentration parameter Φ . 75

vi



4.5.5 Effect of velocity slip Λ . . . . . . . . . . . . . . . . . . . . . . 77

4.5.6 Effect of Biot Number Bi . . . . . . . . . . . . . . . . . . . . 79

4.5.7 Influence of thermal radiation parameter Nr . . . . . . . . . 81

4.5.8 Influence of suction parameter S . . . . . . . . . . . . . . . . 82

4.5.9 Effect of Eckert number Ec . . . . . . . . . . . . . . . . . . . 84

4.5.10 Influence of Brinkmann number Br and Reynolds number Re

the entropy generation profiles . . . . . . . . . . . . . . . . . . 86

4.5.11 Effect of flow governing parameters on skin friction coefficient

and Nusselt Number . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Conclusion and Future Work 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



Chapter 1

Introduction

The study of nanofluid flow and heat transfer has gained importance in current era

due to its significant importance in engineering applications. Nanofluids are used

in many processes, nanofluids act as coolant in many industrial cooling applications

and used in oil extraction process, computer processors, thermal solar collectors,

radiator etc. Nanofluids are obtained by the dispersion of nanoparticles in base fluid.

Nanofluids enhanced the heat transfer characteristics of ordinary fluids. Choi and

Eastman [1]- [3] at first introduce the idea of dispersion of nanoparticles in base fluid

to enhance the thermal conductivity. Different materials such as metals (Al;Cu),

carbides (SiC) or oxides (Al2O3) are used as nanoparticles and usually a conductive

fluid such as water and ethylene glycol is used as a base fluid. Experimental study

revealed that the thermal conductivity of nanofluids varies as concentration, size,

shape and material of the nanoparticles changes (Lomascolo et al. [4]). Enhancement

of thermal conductivity is in fact based on nanoparticles but the enhancement and

effectiveness of heat transfer depends upon the material type and shape of particles

dispersed.
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The study of nanofluids over stretching surface is an interesting part of dis-

cussion. The idea of boundary layer flow over a stretching surface was initiated

by Sakiadis [5]. The study of natural convective flow has been receiving a great

attention in recent years based on various applications in many fields of engineer-

ing including cooling devices, thermoelastic damping, thermal flow in boiler tubes

etc. The connection of normal convection with thermal radiation is expanded in-

credibly in the most recent decade because of its significance in numerous handy

contributions. Thermal radiation perform a vital role in nuclear power plants, aero-

thermodynamics and furnace operations. The analysis of effects of heat absorption

and generation is very important in cooling processes. Navier-Stokes equations are

used to study Newtonian fluids but some of the fluids in the industry have different

rheological properties like toothpaste, paint, alloys etc. It is important to mention

here that some practical applications where the significant temperature distribution

between the surface of the body and the temperature at infinity exists. There may

be some buoyancy forces due to natural convection and the heat transfer distribu-

tion determined by two setups namely, the movement of stretching sheet and the

gravitational effects. The thermal buoyancy is produced due to the heating cooling

of a vertical movement of stretching sheet that has large influence on the flow and

heat transfer mechanism.

An unsteady MHD flow, heat and mass transfer over a horizontal stretching sheet

in the presence of heat generation/absorption was discussed by Mukhopadhyay [6].

By applying the uniform stress, the sheet bears an incompressible flow which was

first studied by Crane [7]. Ishak et al. [8] discussed the MHD flow through a stretched

sheet by using the Keller box method. The slip effect was firstly introduced by Dor-

repaal [9]. Noghrehabadi et al. [10] investigated the effect of partial slip condition
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on heat transfer rate of nanofluids over a stretching sheet. Sharma et al. [11] investi-

gated the slip effect of a CuO- water nanofluid on heat transfer rate over stretching

sheet. Although, the effects of viscous dissipation are negligible sometimes, but its

effects are more significant when the fluid viscosity is very high. Magnetohydrody-

namics (MHD) is the sequence of Navier-stokes equations and Maxwell equations

of electromagnetism are discussed by Chakraborty et al. [12]. Entropy is a thermo-

dynamic property, it can be viewed as a measure of disorder. A. Aziz et. al [13]

examined the impact of partial slip and convective conditions on Maxwell nanofluid

over a stretching sheet by using Keller box Method. The entropy generation is corre-

lated to a heat transfer, magnetic field, viscous dissipation, heat and mass transfer.

Researchers used the second law of thermodynamics in different problems [14]- [16].

The main purpose of present analysis is to study the unsteady two-dimensional

boundary layer flow of Maxwell nanofluid due to non-uniform velocity of stretching

sheet. In this reference the findings of the work done by A. Aziz et al. [13] have

been reproduced. Main fundamental partial differential equations are attained and

transformed into non-linear and coupled ordinary differential equations by using

a similarity transformation and in the end Keller box method is used to find the

numerical solution of problem. Same model is then discussed under the effect of vis-

cous dissipation and constant thermal conductivity but excluding porosity factor.

The resulting equations are again transformed by means of similarity transformation

and then solved numerically by Keller box numerical scheme. The effects of applied

magnetic field are also included in this analysis. The main aim of this analysis is to

numerically study the entropy generation thermal models of non-Newtonian nanoflu-

ids by taking convective conditions into account. Results are presented graphically

and discussed qualitatively to illustrate the solution.
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This thesis comprises of five chapters. Chapter 2 contains some important def-

initions and concepts which are used in subsequent chapters. Chapter 3 presents

detailed numerical observation for two-dimensional, incompressible, laminar and un-

steady flow of reviewed work. The numerical results are obtained, compared and

found an excellent agreement with the published results of [13]. In Chapter 4, the

nanofluid motion and temperature are analyzed for unsteady laminar flow under

the effects of viscous dissipation and thermal radiation but neglecting the porosity

effects. This chapter consists of partial differential equations governing the extended

model, development of numerical solution and discussion of results. Dimensionless

velocity and temperature gradient (Skin friction coefficient and Russell numbers) are

also calculated at the boundary. Chapter 5 concludes the entire work and suggests

the possible future work.
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Chapter 2

Basic definitions

This Chapter covers, some basic laws, definitions, terminologies, and some classical

methods for solving nonlinear pdes and odes would be described, which will be useful

for the understanding of the subsequent chapters. The detailed discussion on basic

law and definitions is given in [17].

2.1 Fluid

Fluid is a material which has no fixed shape and easily deforms when shear stress

is applied.

2.2 Fluid flow

The random motion of a fluid is known as flow. Different flow types are given as

follows.
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2.2.1 Steady flow and Unsteady flow

In steady flow, fluid’s properties does not alter with time. For such flows, one can

write
dζ

dt
= 0, (2.1)

But if fluid at a particular time changes its properties is known as unsteady flow.

Then
dζ

dt
6= 0, (2.2)

where t is time and ζ is used to represent any fluid property.

2.2.2 Laminar flow and turbulent flow

Ordered movement of fluid particles in form of laminas or parallel smooth layers is

knowm as laminar flow. This flow usually occurs while dealing with low Reynolds

number. While in turbulent flow, the fluid particles movement is irregular and

the path lines are the erratic curves. This type of flow occurs with high Reynolds

number.

2.2.3 Compressible flow and incompressible flow

If in a fluid flow the density (ρ) with respect to the substance does not remains

constant is said to be a compressible flow. Mathematically, it is expressed by

Dρ

Dt
6= 0. (2.3)
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But if density remains constant, is said to be an incompressible flow i.e.

Dρ

Dt
= 0. (2.4)

Here, D
Dt

represents material derivative.

2.2.4 Uniform flow and non-uniform flow

Uniform flow has constant magnitude and direction throughout the motion of a

fluid.
dV

ds
= 0, (2.5)

Whereas in non-uniform flow, magnitude and direction changes during the motion

of a fluid.
dV

ds
6= 0, (2.6)

where V and s represent velocity and displacement respectively.

2.3 Stress

Stress is defined as the force (F ) acting on the surface of the unit area (A) with in

the distortable body. Mathematical expression of stress is

τ =
F

A
. (2.7)

where, τ is representation of stress.
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2.4 Newtonian and non-Newtonian Fluids

The fluid is said to be Newtonian fluid if the stress arising from every point of flow

is linearly proportional to the strain rate. The fluids for which the shear stress of

the fluid varies directly and linearly as the deformation rate, are called Newtonian

fluids. In other words, all those fluids which obey the Newton’s law of viscosity are

known as Newtonian fluids. Mathematically,

τ = µ
du

dy
, (2.8)

Where µ presents viscosity, τ is the stress tensor, du
dy

denotes the deformation rate.

Fluids are said to be non-Newtonian fluids for which the shear stress is not linearly

proportional to the deformation rate. All those fluids which do not obey the New-

ton’s law of viscosity are known as non-Newtonian fluids. For non-Newtonian fluids

the relation between the shear stress and deformation rate of fluid is not linear.

Mathematically,

τxy = µ

[
du

dy

]m
,m 6= 1. (2.9)

where µ is the apparent viscosity, m is the index of flow performance. where τxy is

the shear stress, u denotes the velocity. Gasoline and water are particular examples

of Newtonian fluids whereas toothpaste, blood, ketchup, drilling muds, biological

fluids etc are non-Newtonian fluids.

2.5 Maxwell Fluid

Maxwell model proposed by James Clerk Maxwell in 1867. A Maxwell fluid is a

viscoelastic material having the properties of both elasticity and viscosity.
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2.6 Basic Equations

2.6.1 Continuity Equation

The continuity equation is based on law of conservation of mass which states that

mass never changes inside the fixed control system. Mathematically, it is defined as

∂ρ

∂t
+∇ · (ρV) = 0. (2.10)

For constant density, above equation reduces into

∇ ·V = 0. (2.11)

For two-dimensional incompressible flow continuity equation has form

(
∂

∂x
î+

∂

∂y
ĵ

)
· (uî+ vĵ) = 0;

∇ ·V =

(
∂u

∂x
+
∂v

∂y

)
= 0. (2.12)

2.6.2 Momentum Equation

For fluid particles, the equation of generalized linear momentum is observed from

the Newton’s second law of motion. It is stated as "The net force F is equal to

the rate of change of linear momentum with time" . Newton’s second law can be

written as

m
DV
Dt

= F ; (2.13)
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The differential equation for this flow of the fluid is known as Navier-Strokes equation

and has the form

ρ
DV
Dt

= ∇ · τ + ρb; (2.14)

where ρb denotes net body force, ∇·τ∗ denotes surface forces and τ∗ denotes Cauchy

stress tensor.

For Navier-Stokes equation

τ∗ = −pI + µA;

where,

A1 = (gradV ) + (gradV )T

In the above equations, D
Dt

denotes the total derivative, V denotes velocity field, ρ

denotes density, b the body forces, p is the pressure and µ the dynamic viscosity.

The stress tensor τ is expressed in the matrix form as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz


where σxx, σyy and σzz are normal stresses. For two-dimensional flow, we have

V = [u(x, y, 0); v(x, y, 0); 0] and thus

grad V =


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0


∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

[
∂2u

∂x2
+
∂2u

∂y2

]
10



Similarly, we repeat the above process for Y component as follows:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

[
∂2v

∂x2
+
∂2v

∂y2

]
.

Derivation of momentum equation for unsteady, non-Newtonian Maxwell nanofluid

flow is given by

ρa = ∇ · τ∗, (2.15)

where τ∗ = −pI + S, where p is pressure and S is extra stress tensor of Maxwell

fluid which satisfies the relation

ρa = ∇(−pI + µA), (2.16)

ρa = −∇pI +∇ · µA, (2.17)

and S + λDS
Dt

= µA satisfies the relation,

ρ

[
a+ λ

Da

Dt

]
= ∇ · (µA), (2.18)

ρ

[
a+ λ

Da

Dt

]
= µ∇ · A, (2.19)

For the velocity flow of the form −→v = [v1(x, y), v2(x, y)] and A = (∇.V ) + (∇.V )T ,

A =

 2∂v1
∂x

∂v1
∂y

+ ∂v2
∂y

∂v1
∂y

+ ∂v2
∂x

2∂v2
∂y

 (2.20)

(∇ · A)x = 2
∂2v1

∂x2
+
∂2v1

∂y2
+
∂2v2

∂x∂y
, (2.21)
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(∇ · A)y =
∂2v2

∂x2
+ 2

∂2v2

∂y2
+
∂2v1

∂x∂y
. (2.22)

[
Dax
Dt

]
= (v1)2∂

2v1

∂x2
+2v1v2

∂2v1

∂y∂x
+(v2)2∂

2v1

∂y2
−v1

(
∂v1

∂x

)2

−v2
∂v1

∂x

∂v1

∂y
−v1

∂v2

∂x

∂v1

∂y
−v2

(
∂v2

∂y

)2

,

(2.23)[
Day
Dt

]
= (v1)2∂

2v2

∂x2
+2v1v2

∂2v2

∂y∂x
+v2∂

2v2

∂y2
−u∂v1

∂x

∂v2

∂x
−v2

∂v1

∂y

∂v2

∂x
−v1

∂v2

∂x

∂v

∂y
−v2

(
∂v2

∂y

)2

,

(2.24)

Boundary layer approximation yields,

∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
+λ
[
(v1)2∂

2v1

∂x2
+ (v2)2∂

2v1

∂y2
+ 2v1v2

∂2v1

∂y∂x

]
=
µ

ρ

[
∂2v1

∂y2

]
, (2.25)

∂v2

∂t
+ v1

∂v2

∂x
+ v2

∂v2

∂y
+λ
[
(v1)2∂

2v2

∂x2
+ (v2)2∂

2v2

∂y2
+ 2v1v2

∂2v2

∂y∂x

]
=
µ

ρ

[
∂2v2

∂y2

]
. (2.26)

2.6.3 Energy Equation

According to the law of conservation of energy, total energy involved in a given

closed system remains unchanged except the change of form. The equation of energy

conservation can be composed as

ρCp
DT
Dt

= ∇ · (k∇T ) + f ·V. (2.27)

In the above expression, Cp is specific heat capacity, κ is thermal conductivity and

f is surface or body force.
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2.7 Heat transfer

It is a process in which thermal energy transfers due to temperature differences

between the physical systems. Different ways of heat transfer are discussed under.

2.7.1 Conduction

The flow of heat through a solid or liquid by the intersection of free electrons and

molecules is said to be conduction. In other words, the heat transfer from one body

to another due to the molecular agitation with a material without any motion of

the material as whole is called conduction. Mathematical form of the law is

q = −kA4T
4n

, (2.28)

where q represents heat flow rate, A is cross-sectional area, k and 4T
4n denotes the

constant of thermal conductivity and gradient of temperature respectively.

2.7.2 Convection

It is defined as heat transfer in fluids from a part with high temperature to a part

where temperature is comparatively low.

2.7.3 Radiation

The emission of energy in the form of waves or particles is known as radiation. For

example, if we place a material object ( e.g, a piece of steel) under the sun rays, after

a few moments, we observe that the material object is heated. Such phenomenon
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takes place due to radiation. Mathematically, it can be formulated as

Q = σ · T 4, (2.29)

where σ, T and Q are the constant of Stephan-Boltzmann (5.670× 10−8 W
m2K4 ), the

temperature and the amount of heat transfered respectively.

2.8 Thermal diffusivity

Thermal diffusivity is a material property for unsteady heat conduction. Thermal

diffusivity can be defined as the ratio of thermal conductivity to the density and

specific heat capacity at constant pressure. It tells us that how much potential

the material has for conducting thermal energy as compared to store it. Thermal

diffusivity is usually denoted by α and expressed as

α =
κ

ρCp
, (2.30)

where Cp is the specific heat capacity, κ is thermal conductivity of material and ρ

is the density.

2.9 Viscous dissipation

The process in which the work done by fluid is converted into heat is called viscous

dissipation.
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2.10 Boundary conditions

Boundary conditions are constraints which are necessary for boundary value problem

and these must be satisfied at all or in a region in which system of differential

equations has to be solved.

2.11 Boundary layer

The idea of boundary layer was first introduced by Ludwig Prandtl . Ludwig Prandtl

gave the basic idea of the boundary layer for moving fluid over a surface [18]. It is the

close layer of fluid flow near solid region where the viscosity effects are significant.

The flow in this layer is usually laminar. The boundary layer thickness is the measure

of the distance apart from the surface.

2.12 Nanofluids

A special class of liquids containing nanometer-size particles is the material which

alters contained particles is called nanofluid. Nanofluid, is a term used to describe

special class of fluids in which nanometer-sized particles are dispersed in water and

base fluids.

2.13 Physical properties of nanofluid

Some of the physical parameters used in the discussion of nanofluids are mentioned

below.
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2.13.1 Viscosity

Nanofluids viscosity defined by Brinkman [19] is given as

µnf =
µf

(1− Φ)2.5
. (2.31)

In the above equation, φ gives nanoparticle volume fraction coefficient while µf

denotes dynamic viscosity of base fluid.

2.13.2 Density

Khanafer et al. [20] expressed the density of nanofluid as

ρnf = (1− Φ)ρf + Φρs, (2.32)

where ρf and ρs represents the density of base fluid and solid nanoparticles respec-

tively.

2.13.3 Specific heat

Specific heat of nanofluid has the relation given as

(ρCp)nf = (1− Φ)(ρCp)f + Φ(ρCp)s, (2.33)

where (Cp)s denotes specific heat of the solid nanoparticle and (Cp)f denotes specific

heat capacity of base fluid.
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2.13.4 Thermal conductivity

It is given by Maxwell as

knf = kf

[
ks + 2kf − 2Φ(kf − ks)
ks + 2kf + Φ(kf − ks)

]
, (2.34)

where ks and kf denotes thermal conductivity of both nanoparticle and base fluid.

2.14 Entropy of a system

Entropy is a function of a quantity of heat which shows the possibility of conversion

of that heat into work. Entropy is a thermodynamic property; it can be viewed as

a measure of disorder.

2.15 Dimensionless numbers

2.15.1 Skin friction coefficient

Skin friction coefficient represents the value of friction which occurs when fluid moves

across the surface. The skin friction coefficient Abel et al. [21] can be defined as

Cf =
τw

ρUw
2 . (2.35)
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2.15.2 Nusselt number Nu

It is defined as the ratio between transfer of heat by convection (h) and heat trans-

port by conduction (k) in the direction normal to the boundary.

Nu =
hL

k
, (2.36)

L stands for characteristics length. In this thesis, we are taking Nu as

Nux =
xqw

kf (Tw − T∞)
, (2.37)

with wall heat flux qw as qw = −knf
(

1 + 16σ∗T 3
∞

3k∗kf

)(
∂T
∂y

)
y=0

2.15.3 Eckert number Ec

Eckert number relates the kinetic energy to the enthalpy (∇T ) of fluid and it is used

to characterized the effect of self heating of a fluid as an outcome of heat dissipation.

It is mathematically expressed as

Ec =
U2
w

Cp(Tw − T∞
. (2.38)

where Cp is specific heat capacity Uw denotes the free stream velocity, Tw is wall

temperature and T∞ is temperature far away from wall.
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2.15.4 Prandtl number Pr

It gives the quantitative relation between the momentum diffusion ν rate and ther-

mal diffusion α rate.

Pr =
momentum diffusivity
thermal diffusivity

=
νf
αf

(2.39)

where αf =
κf

(ρCp)f
is the thermal diffusivity parameter. The relative thickness of

thermal and momentum boundary layer is controlled by Prandtal number. For small

Pr, heat distributed rapidly corresponds to the momentum.

2.16 Similarity transformation

Similarity transformation is a tool used in mathematics, which helps in transfor-

mation of partial differential equations, which occurs in a problem, into ordinary

differential equations. Similarity transformation reduces the number of independent

variables of partial differential equation. It can be stated in a way that it is a rule

which combines the two independent variable to get a new one.

2.17 Keller Box Method

Keller-box method was first reported by Keller in 1970. Which has become popular

for obtaining approximate solutions for boundary layer problems. This method

has second order convergence. Keller box method has been extensively applied

on laminar boundary layer flows. This method results more efficiently then other

methods. We first write the governing differential equations into a first order system.
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After reduction of odes to first order system, domain is discretized which allows to

calculate the approximate solution over each sub domain rather then over entire

domain. To get finite difference equations with a second order truncation error,

simple backward-difference derivatives and average of the midpoints of net rectangles

are used. The resulting algebraic equations are then linearized by using Newton’s

method as Keller [22] elaborated. And, write them in matrix-vector form. A block

tridiagonal matrix is basically a tridiagonal matrix but has sub matrices in places of

scalars. It has super diagonal, diagonal and sub diagonal square matrices (blocks)

in place of upper, main and lower diagonal entries respectively. And all other blocks

are zero matrices. Finally LU decomposition is used to obtain the final result.
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Chapter 3

Thermal and Entropy Analysis of

Maxwell Nanofluid with Slip

Conditions, Thermal Radiations and

Variable Thermal Conductivity

This chapter provides a detailed review of work presented by A. Aziz et al. [13].

The mathematical model study the flow and heat transfer characteristics of Maxwell

nanofluid over a non-uniform porous stretching surface in a uniform porous medium.

The problem is considered with partial slip and convective conditions at the sur-

face. Thermal radiation, MHD and variable thermal conductivity are also taken

into account. The governing pdes are first modeled and then reduced into a set

of odes by using suitable similarity transformations. The resulting odes are then

solved numerically by Keller box method. The features and characteristics of fluid

flow are discussed for different values of governing flow parameters. The numerical
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computations are also performed to calculate the skin friction coefficient and the

local Nusselt number. The results are computed for Copper water and Titanium

water nanofluids.

The governing partial differential equations are presented in Section 3.1. Simi-

larity transformations and reduction of governing pdes to system of non-linear odes

are given in Section 3.2. Section 3.3 provided details of Keller box method and the

numerical computations, finally Section 3.4 comprises the discussion of numerical

results.

3.1 Mathematical model

Let us assume an incompressible non-Newtonian Maxwell nanofluid with heat trans-

fer characteristics. The two-dimensional unsteady and laminar flow is considered

over the porous stretching sheet of non-uniform velocity Uw(x, t) = ax
1−ξt where a is

an initial stretching rate with dimension [T−1] and ξ < 1
t
. Insulated sheet temper-

ature is Tw(x, t) = T∞ + ax
1−ξt and for convenience it is assumed to be fixed at x=0,

where Tw and T∞ represent the temperature of wall and surroundings respectively.

Partial slip and convective conditions are also considered at the boundary. Uniform

magnetic field is applied in normal direction to the flow and strength of magnetic

field is given by B(t) = B0√
1−ξt .

The continuity, momentum, energy and entropy equations described in [17] mod-

ified for the unsteady two-dimensional Maxwell nanofluid flow under usual boundary

layer approximations along with thermal radiation and variable thermal conductiv-

ity are
∂v1

∂x
+
∂v2

∂y
= 0, (3.1)
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∂v1

∂t
+v1

∂v1

∂x
+v2

∂v1

∂y
=
µnf
ρnf

∂2v1

∂y2
−λ
[
v2

1

∂2v1

∂x2
+v2

2

∂2v1

∂y2
+2v1v2

∂2v1

∂x∂y

]
−σnfB

2(t)v1

ρnf
−µnfv1

ρnfk
,

(3.2)

∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
=

1

(ρCp)nf

[ ∂
∂y

(κ?nf (T ))
∂T

∂y

]
− 1

(ρCp)nf

(∂qr
∂y

)
, (3.3)

EG =
knf

T 2
∞

{(
∂T

∂y

)2

+
16σ∗T 3

∞
3k∗

(
∂T

∂y

)2
}

+
µnf
T∞

(
∂v1

∂y

)2

+
σnfB

2(t)v2
1

T∞
+
µnfv

2
1

T∞k
.

(3.4)

The following boundary conditions are assumed

v1(x, 0, t) = Uw +W1µnf

(∂v1

∂y

)
, v2(x, 0, t) = Vw, − κ(

∂T

∂y
) = hf (Tw − T ), (3.5)

v1 −→ 0, T −→ T∞ as y −→∞ . (3.6)

Here the velocity of the flow is of the form −→v = [v1(x, y, t), v2(x, y, t), 0]. Time is

represented by t, T is a temperature of the fluid and k denotes porosity factor. Elas-

ticity stress parameter is given by λ = λ0(1− ξt) with λ0 a constant. The porosity

of the stretching surface is represented by Vw and the velocity slip factor is given by

W1 = W0

√
1− ξt with an initial slip value (W0). κ∗nf (T ) = knf

[
1 + ε T−T∞

Tw−T∞

]
is the

variable thermal conductivity.

In non-Newtonian Maxwell nanofluid radiation only travel a short distance due to

thickness of fluid. Due to this phenomenon, Rosseland approximation for radiation

[23] is used in equation (3.3) and it is given ∂qr
∂y

= −16T 3
∞σ
∗

3k∗
∂2T
∂y2

. The dimensionless

entropy generation (NG) is given by NG = T 2
∞a

2EG

κf (Tw−T∞)2
(See Das et al. [24]).
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3.2 Similarity Transformation

To solve the boundary value problem (BVP) (3.1) - (3.6) similarity technique is

used to transform governing partial differential equations into ordinary differential

equations. Introducing stream functions ψ of the form

v1 =
∂ψ

∂y
, v2 = −∂ψ

∂x
, (3.7)

and similarity variables as

χ(x, y, t) =

√
a

vf (1− ξt)
)y, ψ(x, y, t) =

√
vfa

(1− ξt)
xg(χ), γ (χ) =

T − T∞
Tw − T∞

,

(3.8)

Calculating derivatives in order to determine the equations for the similarity solution

of the problem.

Letting,

v1 =
∂ψ

∂y
, (3.9)

v1 =
∂ψ

∂χ
.
∂χ

∂y
, (3.10)

χ(x, y, t) =

√
a

νf (1− ξt)
y, (3.11)

Differentiating w. r. t. ’y’,
∂χ

∂y
=

√
a

νf (1− ξt)
, (3.12)

ψ(x, y, t) =

√
νfa

(1− ξt)
xf(χ), (3.13)

∂ψ

∂y
=

√
νfa

(1− ξt)
xg′(χ)

(
∂χ

∂y

)
, (3.14)
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∂ψ

∂y
=

ax

(1− ξt)
g′(χ), (3.15)

which gives,

v1 =
ax

(1− ξt)
g′(χ). (3.16)

Now, we aim to find,
∂v1

∂x
=

a

(1− ξt)
g′(χ). (3.17)

Calculating v2,

v2 = −∂ψ
∂x

, (3.18)

Differentiating w. r. t. ’x’,

∂ψ

∂x
=

√
νfa

(1− ξt)
g(χ), (3.19)

we get expression for v2,

v2 = −
√

νfa

(1− ξt)
f(χ). (3.20)

∂v2

∂y
= −

√
νfa

(1− ξt)
g′(χ)

(
∂χ

∂y

)
, (3.21)

∂v2

∂y
= − a

(1− ξt)
f ′(χ), (3.22)

∂v1

∂x
+
∂v2

∂y
=

a

(1− ξt)
g′(χ)− a

(1− ξt)
g′(χ) = 0. (3.23)

∂v1

∂t
=

∂

∂t

(
ax

(1− ξt)
g′(χ)

)
, (3.24)

∂v1

∂t
=

ax

(1− ξt)2

[
ξg′ +

ξg′′

2

]
, (3.25)
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∂v1

∂x
=

a

(1− ξt)
g′(χ), (3.26)

v1
∂v1

∂x
=

ax

(1− ξt)
g′(χ)

(
a

(1− ξt)
g′(χ)

)
, (3.27)

v1
∂v1

∂x
=

a2x

(1− ξt)2
g′2(χ), (3.28)

∂v1

∂y
=
axg′′(χ)

(1− ξt)

√
a

νf (1− ξt)
, (3.29)

v2
∂v1

∂y
= −

√
νfa

(1− ξt)
g(χ)

(
axg′′(χ)

√
a

νf (1− ξt)
y

)
, (3.30)

v2
∂v1

∂y
= −a

2xg(χ)g′′(χ)

(1− ξt)2
. (3.31)

∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
=

a2xg

(1− ξt)2

[
A(g′ +

χ

2
g′′ + g′2 − gg′′)

]
. (3.32)

where A = ξ
a
. Now, solving the following term from equation (3.2).

= λ

[
(v1)2∂

2v1

∂x2
+ (v2)2∂

2v1

∂y2
+ 2v1v2

∂2v1

∂x∂y

]
, (3.33)

Calculating derivatives in sequence,

∂2v1

∂y2
=

∂

∂y

(
axg′′(χ)

(1− ξt)

√
a

νf (1− ξt)

)
, (3.34)

∂2v1

∂y2
=

(
axg′′′(χ)

(1− ξt)

√
a

νf (1− ξt)

)
∂χ

∂y
, (3.35)

∂2v1

∂y2
=

(
a2xg′′′(χ)

(1− ξt)2νf

)
, (3.36)
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∂2v1

∂x2
= 0, (3.37)

∂2v1

∂x∂y
=

(
ag′′(χ)

(1− ξt)

√
a

νf (1− ξt)

)
(3.38)

2v1v2 = 2

(
ax

(1− ξt)
g′(χ)

)(
−
√

νfa

(1− ξt)
g(χ)

)
, (3.39)

2v1v2

(
∂2v1

∂x∂y

)
=
−2a3gg′g′′x

(1− ξt)3
, (3.40)

(v1)2 =
a2x2g′2(χ)

(1− ξt)2
, (3.41)

(v1)2

(
∂2v1

∂x2

)
= 0, (3.42)

(v2)2 =
νfag

2(χ)

(1− ξt)
, (3.43)

(v2)2∂
2v1

∂y2
=
xa3g2(χ)g′′′(χ)

(1− ξt)3
, (3.44)

λ

[
(v1)2∂

2(v1)

∂x2
+ (v1)2∂

2v1

∂y2
+ 2v1v2

∂2v1

∂x∂y

]
= λ

[
0 +

xa3g2(χ)g′′′(χ)

(1− ξt)3
− 2a3gg′g′′x

(1− ξt)3

]
,

(3.45)

λ

[
(v1)2∂

2v1

∂x2
+ (v2)2∂

2v1

∂y2
+ 2v1v2

∂2v1

∂x∂y

]
= − λoa

3x

(1− ξt)2

(
g2g′′′ − 2gg′g′′

)
. (3.46)

Now solving remaining terms of equation (3.2)

=
µnf
ρnf

(
∂2v1

∂y2

)
− σnfB

2(t)v1

ρnf
− µnf
ρnfk

v1, (3.47)

=
µnf
ρnf

((
a2xg′′′(χ)

(1− ξt)2νf

))
− σnfB

2(t)

ρnf

(
ax

(1− ξt)
g′(χ)

)
− µnf
ρnfk

(
ax

(1− ξt)
g′(χ)

)
,

(3.48)

=
a2x

(1− ξt)2

[
µfg

′′′

ρfΦ1Φ2νf
− σfΦ4B

2
og
′

ρfΦ2

a− µfg
′(1− ξt)

ρfΦ1Φ2ak

]
, (3.49)
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µnf
ρnf

(
∂2u

∂y2

)
− σnfB

2(t)u

ρnf
− µnf
ρnfk

u =
a2x

(1− ξt)2

[
g′′′

Φ1Φ2

− Φ4

Φ2

Mf ′ − Kg′

Φ1Φ2

]
, (3.50)

Inserting (3.32), (3.46) and (3.50) in (3.2), yields the ODE

A
(χ

2
g′′ + g′

)
+ g′2 − gg′′ − g′′′

Φ1Φ2

+ β
(
g2g′′′ − 2gg′g′′

)
+

Φ4

Φ2

Mg′ +
1

Φ1Φ2

Kg′ = 0.

(3.51)

Using the next transformation,

γ(χ) =
T − T∞
Tw − T∞

(3.52)

Tw − T∞ =
ax

(1− ξt)
(3.53)

γ(χ)
ax

(1− ξt)
= (T − T∞) (3.54)

T = T∞ +
ax

(1− ξt)
γ(χ) (3.55)

Differentiating above expression w. r. t. ’x’, ’y’ and ’t’,

∂T

∂x
=

a

(1− ξt)
γ(χ), (3.56)

v1

(
∂T

∂x

)
=

(
ax

(1− ξt)
g′(χ)

)
a

(1− ξt)
γ(χ), (3.57)

∂T

∂y
=

ax

(1− ξt)
γ′(χ)

(
∂χ

∂y

)
(3.58)
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∂T

∂y
=

ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)
, (3.59)

v2

(
∂T

∂y

)
=

(
−
√

νfa

(1− ξt)
g(χ)

)
ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)
(3.60)

∂T

∂t
=

ξax

(1− ξt)2
+

ax

(1− ξt)
γ′(χ)

(
∂χ

∂t

)
(3.61)

∂T

∂t
=

ξax

(1− ξt)2
+

ax

(1− ξt)
γ′(χ)

(√
1

νf (1− ξt)
y

(
ξ

1− ξt
1

2

))
(3.62)

∂T

∂t
=

ξax

(1− ξt)2
+

ξax

2(1− ξt)2
γ′(χ), (3.63)

∂T

∂t
=

ξax

(1− ξt)2

(
γ(χ) +

χ

2
γ′(χ)

)
, (3.64)

∂T

∂t
=

ξa2x

a(1− ξt)2

(
γ(χ) +

χ

2
γ′(χ)

)
, (3.65)

∂T

∂t
=

a2x

(1− ξt)2
A
(
γ(χ) +

χ

2
γ′(χ)

)
, (3.66)

∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
=

a2x

(1− ξt)2
A
(
γ(χ) +

χ

2
γ′(χ)

)
+

(
ax

(1− ξt)
g′(χ)

)
a

(1− ξt)
γ(χ)

−
(√

νfa

(1− ξt)
g(χ)

)
ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)
.

(3.67)
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Left hand side of equation (3.3) is given by,

∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
=

a2x

(1− ξt)2

[
A(γ +

χ

2
γ′) + γg′ − γ′g

]
. (3.68)

Now, solving the other side of equation (3.3)

=
1

(ρCp)nf

[
∂

∂y

(
knf

[
1 + ε

T − T∞
Tw − T∞

](
ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)

))]
, (3.69)

=
1

(ρCp)nf

[
∂

∂y

(
knf [1 + εγ]

(
ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)

))]
, (3.70)

1

(ρCp)nf

[
∂

∂y
(κ∗nf (T )

∂T

∂y
)

]
=

knf
(ρCp)nf

[(
ax

(1− ξt)

√
a

νf (1− ξt)

)
∂

∂y
(1 + εγ(χ))γ′

]
,

(3.71)

1

(ρCp)nf

[
∂

∂y
(κ∗nf (T )

∂T

∂y
)

]
=

knf
(ρCp)nf

a2x

(1− ξt2)

[
εγ2 + (1 + εγ)γ′′

]
, (3.72)

1

(ρCp)nf

[
∂

∂y
(κ∗nf (T )

∂T

∂y
)

]
=

Φ5kf
Φ3(ρCp)f

a2x

(1− ξt)2

[
εγ2 + (1 + εγ)γ′′

]
, (3.73)

1

(ρCp)nf

[
∂

∂y
(κ∗nf (T )

∂T

∂y
)

]
=

Φ5

Φ3

αf
νf

a2x

(1− ξt)2

[
εγ2 + (1 + εγ)γ′′

]
, (3.74)
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1

(ρCp)nf

[
∂

∂y
(κ∗nf (T )

∂T

∂y
)

]
=

Φ5

Φ3

1

Pr

a2x

(1− ξt)2

[
εγ2 + (1 + εγ)γ′′

]
, (3.75)

− 1

(ρCp)nf

[
∂qr
∂y

]
= − 1

(ρCp)nf

−16σ∗T 3

3k∗

(
∂2T

∂y2

)
, (3.76)

(
∂2T

∂y2

)
=

a2x

νf (1− ξt)2
, (3.77)

1

(ρCp)nf

[
∂qr
∂y

]
=

a2x

νf (1− ξt)2

[
16σ∗T 3

3k∗νfρCp)f

γ′′

Φ3

]
, (3.78)

1

(ρCp)nf

[
∂qr
∂y

]
=

a2x

(1− ξt)2

[
Nrγ′′

Φ3

]
. (3.79)

[
A(γ +

χ

2
γ′) + γg′ − γ′g

]
− Φ5

Φ3

1

Pr

[
εγ2 + (1 + εγ)γ′′

]
−
[
Nrγ′′

Φ3

]
, (3.80)

Inserting (3.68), (3.75) and (3.79) in (3.3), yields the following ODE

γ′′
(

1 + εγ +
1

Φ5

PrNr

)
+ εγ′2 + Pr

Φ3

Φ5

[
gγ′ − g′γ − A(γ +

χ

2
γ′)
]

= 0. (3.81)

The transformed ODE of entropy is given as under

NG = Re
[
Φ5(1 +Nr)γ′2 +

Br

Φ5Ω

(
g′′2 + Φ1Φ4Mg′2 +Kg′2

)]
. (3.82)

with

g(0) = S, g′(0) = 1 +
Λ

Φ1

g′′(0), γ′(0) = −Bi(1− γ(0)), (3.83)

g′(χ) −→ 0, γ(χ) −→ 0 as χ −→∞, (3.84)
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where Φ′is, 1 6 i 6 5 in above equations represents the following thermo physical

properties for the Maxwell nanoluid

Φ1 = (1− Φ)2.5 , Φ2 =

(
1− Φ + Φ

ρs
ρf

)
, Φ3 =

(
1− Φ + Φ

(ρCp)s
(ρCp)f

)
, (3.85)

Φ4 =

(
1 +

3( σs
σf
− 1)Φ

( σs
σf

+ 2)− ( σs
σf
− 1)Φ

)
, Φ5 =

(
(ks + 2kf )− 2Φ(kf − ks)
(ks + 2kf ) + Φ(kf − ks)

)
. (3.86)

Unsteadiness, Maxwell, magnetic and porous medium parameters are defined here

by A = ξ
a

, β = aλ0, M =
σfB

2
o

aρf
and K =

νf (1−ξt)
ak

respectively. Pr =
νf
αf

is

the Prandtl number. Thermal diffusivity parameter, mass transfer parameter and

thermal radiation parameter are given by αf =
κf

(ρCp)f
, S = −Vw

√
1−ξt
νf a

and Nr =

16
3

σ∗T 3
∞

κ∗νf (ρCp)f
respectively. Λ = W0

√
a
νf
µf is the velocity slip parameter and Bi =

hf
kf

√
νf (1−ξt)

a
is the Biot number. Re and Br in equation (3.82) represents Reynolds

and Brinkmann number respectively. Dimensionless temperature gradient is given

by Ω = Tw−T∞
T∞

.

After applying the non-dimensional transformations (3.7) on reduced skin friction

(Cf ) and Nusselt numbers (Nux) explained in Chapter [2], the following equations

are obtained

CfRe
1/2
x = − g′′(0)

(1− Φ)2.5
, NuxRe

1/2
x =

κnf
κf

(1 +Nr)γ′(0), (3.87)

Rex = Uwx
νf

is the local Reynolds number which depends on initial stretching velocity

Uw.
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3.3 Finding Solution

Numerical solution of equations (3.51), (3.81) and (3.82) with subject to conditions

(3.83) - (3.84) is found by implementation of Keller-box numerical scheme. In order

to apply the Keller-box numerical scheme, it is necessary to write equations (3.51),

(3.81) and (3.82) into a first-order system with some new introduced variables.

v1 = g′, (3.88)

v2 = v′1, (3.89)

t = γ′, (3.90)

A
(χ

2
v2 +v1

)
+v2

1−gv2−
v′2

Φ1Φ2

+β(g2v2−2gv1v2)+
Φ4

Φ2

Mv1 +
1

Φ1Φ2

κv1 = 0, (3.91)

t′(1 + εγ + 1Φ5PrNr) + εt2 + Pr
Φ3

Φ5

[gt− v1γ − A(γ +
χ

2
t)] = 0, (3.92)

NG = Re
[
Φ5(1 +Nr)t2 +

Br

Φ5Ω

(
v1
′2 + Φ1Φ4Mv2

1 +Kv2
1

)]
(3.93)

and conditions are

g(0) = S, v1(0) = 1 +
Λ

Φ1

v2(0), t(0) = −Bi(1− γ(0)), (3.94)

v1(∞) −→ 0, γ(∞) −→ 0. (3.95)

After obtaining first-order system, discritize the domain which allows to calculate

the approximate solution over each sub domain rather then over entire domain.

χ0 = 0; χn = χn−1 + h, n = 1, 2, 3, ..., N − 1; χN = χ∞.
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Then difference equations are obtained using backward differences. Functions are

replaced with their mean averages. The system of ODEs (3.88)-(3.93) is then con-

verted into the following algebraic equations.

(v1)n + (v1)n−1

2
=
gn − gn−1

h
, (3.96)

(v2)n + (v2)n−1

2
=

(v1)n − (v1)n−1

h
, (3.97)

tn + tn−1

2
=
γn − γn−1

h
, (3.98)

A

{(
(v1)n + (v1)n−1

2

)
+
χ

2

}
+

(
(v1)n + (v1)n−1

2

)2

−(
gn + gn−1

2

)(
(v2)n + (v2)n−1

2

)
− 1

Φ1Φ2

(
(v2)n − (v2)n−1

h

)
+ β((

gn + gn−1

2

)2(
(v2)n − (v2)n−1

h

)
− 2

(
gn + gn−1

2

)(
(v1)n + (v1)n−1

2

)
(

(v2)n + (v2)n−1

2

)
+

Φ4

Φ2

M

(
(v1)n + (v1)n−1

2

)
+

1

Φ1Φ2

K

(
(v1)n + (v1)n−1

2

)
= 0,

(3.99)(
tn − tn−1

2

)(
1 + ε

(
γn + γn−1

2

)
+

1

Φ5

PrNr

)
+ ε

(
tn + tn−1

2

)2

+

Pr
Φ3

Φ5

[(
gn + gn−1

2

)(
tn + tn−1

2

)]
+ Pr

Φ3

Φ5[
−
(

(v1)n + (v1)n−1

2

)(
γn + γn−1

2

)
− A

{(
γn + γn−1

2

)
+
χ

2(
tn + tn−1

2

)
= 0.

(3.100)
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NG = Re

[
Φ5(1 +Nr)

(
tn − tn−1

2

)2

+
Br

Φ5Ω

(
(v1)n + (v1)n−1

2

′2

+ Φ1Φ4Mv2
1

+K

(
(v1)n + (v1)n−1

2

′2
)

(3.101)

Above non-linear equations are then linearized by using Newton’s method. The

(i+ 1)th iterate for above equations can be written as

()(i+1)
n = ()(i)

n + δ()(i)
n , (3.102)

by substituting of (3.102) in equations (3.96)-(3.100) and ignoring O(δin) > 2, a

linear system is obtained as

δgn − δhn−1 −
1

2
h(δ(v1)n + δ(v1)n−1) = (r1)n− 1

2
, (3.103)

δ(v1)n − δ(v1)n−1 −
1

2
h(δ(v2)n + δ(v2)n−1) = (r2)n− 1

2
, (3.104)

δγn − δγn−1 −
1

2
h(δtn + δtn−1) = (r3)n− 1

2
, (3.105)

(r4)n− 1
2

= (c1)nδgj+(c2)nδgn−1+(c3)jδ(v1)n+(c4)nδ(v1)n−1+(c4)nδ(v1)n−1+(c5)nδ(v2)n (3.106)

+(c6)nδ(v2)n−1 + (c7)nδγn + (c8)nδγn−1 + (c9)nδtn + (c10)nδtn−1,

(r5)n− 1
2

= (d1)nδgn + (d2)nδgn−1 + (d3)nδ(v1)n + (d4)nδ(v1)n−1 + (d5)nδ(v2)n(3.107)

+(d6)nδ(v2)n−1 + (d7)jδγn + (d8)nδγn−1 + (d9)nδtn + (d10)nδtn−1,
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where

(r1)n− 1
2

= −gn + gn−1 +
h

2
((v1)n + (v1)n−1), (3.108)

(r2)n− 1
2

= −(v1)n + (v1)n−1 +
h

2
((v2)n + (v2)n−1), (3.109)

(r3)n− 1
2

= −γn + γn−1 +
h

2
(tn + tn−1), (3.110)

(r4)n− 1
2

= −h

[
− A

(
(v1)n + (v1)n−1

2
+ χ

(v2)n − (v2)n−1

4

)
+

(
(v1)n + (v1)n−1

2

)2

−
(
gn + gn−1

2

)(
(v2)n + (v2)n−1

2

)]
− h

[
− 1

Φ1Φ2

(
(v2)n − (v2)n−1

h

)

+β

((
gn + gn−1

2

)2(
(v2)n − (v2)n−1

h

)
− 2

(
gn + gn−1

2

)(
(v1)n + (v1)n−1

2

)
(

(v2)n + (v2)n−1

2

)]
− h

[
Φ4

Φ2

M

(
(v1)n + (v1)n−1

2

)
+

1

Φ1Φ2

K

(
(v1)n + (v1)n−1

2

)]
,

(3.112)

(r5)n− 1
2

= −h

[
(tn − tn−1)

(
1 + ε

(
γn+γn−1

2

)
+ 1

Φ5
PrNr

)
h

+ ε

(
tn + tn−1

2

)2

−

Φ3

Φ5

PrA

(
γn + γn−1

2
+ χ

tn + tn−1

2

)]
− hΦ3

Φ5

Pr

[(
(gn + gn−1)(tn + tn−1)

4

)

−
(

(γn + γn−1)((v1)n + (v1)n−1)

4

)]
, (3.113)
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and boundary conditions are

δg0 = 0, (δv1)0 = 0, δt0 = 0, δ(v1)N = 0, δγN = 0. (3.114)

Finally, the coefficient matrix which is known as block tridiagonal matrix is obtained

from linearized finite-difference equations. Equations (3.103)-(3.107) can be written

as,

Aδ = b, (3.115)

A =



A1 C1

B2 A2 C2

. . . . . . . . .

BN−1 AN−1 CN−1

BN AN


, δ =



δ1

δ2

...

δn−1

δn


, b =



(r1)n− 1
2

(r2)n− 1
2

...

(rN−1)n− 1
2

(rN)n− 1
2


.

(3.116)

Where A is block tridiagonal matrix of order N × N with each block size of 5 ×

5. Whereas δ and b are column matrices with N rows. δ is determined by LU

factorization [9].

3.4 Results and discussion

Numerical results with discussion are presented in this section in form of graphs and

tables. The significant effects of flow governing parameters on fluid motion, temper-

ature and entropy generation profiles are discussed for Cu−water and TiO2−water

nanofluids. Thermo physical properties of Cu and TiO2 water based nanofluids are
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also listed in Table (3.1). Table (3.2) consist of some values of skin friction coefficient

and Nusselt number calculated for flow governing parameters at the boundary. All

of these results are produced for β = 0.3, ε = 0.1, A = 0.6,M = 0.6, K = 0.6,Φ =

0.2,Λ = 0.1, Nr = 0.2, P r = 6.2, Br = 5, Re = 5,Ω = 1, S = 0.2. In graphs,

the behavior of Cu−water nanofluid is presented by blue color and the behavior of

TiO2 − water is shown by red color.

Table 3.1: Thermophysical properties

Thermo physical ρ cp k

properties

Pure water (H2O) 997.1 4179 0.6130

Copper (Cu) 8933 385.0 401.00

Titanium oxide (TiO2) 4250 686.2 8.9538

3.4.1 Influence of Maxwell parameter β

Figures (3.1) and (3.2) demonstrated the effects of parameter β on velocity and

temperature distribution profiles respectively. Computations are performed for

β = 0.01, 0.3, 0.5 for water based non-Newtonian Maxwell nanofluids. The decay

in velocity profile can be seen with increment in β and this reduces the momentum

boundary layer thickness. The resistance in fluid is responsible for the decreased

fluid motion. Whereas with an increment in Maxwell parameter thermal bound-

ary layer expands, temperature rises due to increase in elasticity stress parameter.

Moreover, Figure (3.1) clarifies that the thickness of momentum boundary layer of

TiO2-water is comparatively more than the Cu−water nanofluid. Nusselt number

for Cu − water and TiO2 − water decreases in this case. Entropy of system rises
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(see Figure 3.3) with increasing values of β.
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Figure 3.3: Entropy distribution against Maxwell parameter β

3.4.2 Influence of unsteadiness parameter A

Figures (3.4)-(3.5) displayed the nature of velocity and temperature distribution for

Maxwell nanofluid. It is noticed that the fluid flows slowly and the temperature

decreases with ascending values of A. Reduction in the thermal and momentum

boundary layer thickness is noticed for variation in A. Figure (3.4) demonstrated

that the momentum boundary layer thickness of TiO2-water is comparatively more

than Cu−water nanofluid but the thermal boundary layer of Cu−water is wider

than TiO2-water nanofluid. Entropy profile showed cross over point at χ = 0.3 ,

entropy increases before χ = 0.3 and after χ = 0.3 entropy starts decreasing (see

Figure (3.6)). It can be claimed that the boundary layer energy is absorbed due to

unsteadiness (where the fluid properties are changed with change in time). Finally,

the increase in values of the skin friction and the Nusselt numbers is observed for

A = 0.2, 0.6, 1.6 at the boundary.

40



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

g
’(
χ)

χ

A = 0.2, 0.6, 1.6

Cu−water, A=0.2

Cu−water, A=0.6

Cu−water, A=1.6

TiO
2
−water, A=0.2

TiO
2
−water, A=0.6

TiO
2
−water, A=1.6

Figure 3.4: Velocity distribution for unsteady parameter A

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

γ(
χ)

χ

A = 0.2, 0.6, 1.6

Cu−water, A=0.2

Cu−water, A=0.6

Cu−water, A=1.6

TiO
2
−water, A=0.2

TiO
2
−water, A=0.6

TiO
2
−water, A=1.6

Figure 3.5: Temperature distribution against unsteady parameter A

41



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

450

N
G

χ

0.080.10.12

225

230

235

N
G

χ

A = 0.2, 0.6, 1.6

Cu−water, A=0.2

Cu−water, A=0.6

Cu−water, A=1.6

TiO
2
−water, A=0.2

TiO
2
−water, A=0.6

TiO
2
−water, A=1.6

Figure 3.6: Entropy distribution against unsteady parameter A

3.4.3 Influence of magnetic parameter M

The impact of magnetic strength on the nanofluid velocity, temperature and entropy

generation profiles are displayed in Figures (3.7)-(3.9) respectively. The decreasing

trend in the velocity profile for nanofluid is observed with increasing strength of M ,

hence the thickness of the momentum boundary layer decreases. The physical reason

behind reduction in momentum boundary layer thickness is that; the Lorentz force

appears when normally applied magnetic field interacts with electrically conducting

nanofluids. As strength of applied magnetic field increases the strength of Lorentz

force also increases and acts opposite to fluid motion within the boundary layer

and thus the resulting resistance in fluid reduces the thickness of the momentum

boundary layer. M is inversely proportional to the density of the nanofluid, so

increasing M results in a rise of temperature within boundary layer. Table (3.2)

showed that the Nusselt number decreases but the skin friction coefficient increases
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by variation of M . Entropy of system increases by increasing magnetic parameter

strength.
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3.4.4 Influence of porous parameter K

The change in the behaviors of nanofluid velocity and temperature profile are ex-

hibited in Figures (3.10) and (3.11) respectively. These figures are quite similar to

the impact of parameter M . Increasing permeability decreases the magnitude of

the resistive Darcian body force, therefore a continuous less drag is faced by fluid

and the flow reduces so the velocity tends to zero within the boundary layer. The

parameter K effects the density of nanofluid directly hence as the permeability of

medium is decreased the temperature of fluid within the boundary layer increases,

this results in thickness of momentum boundary layer. The temperature also rises

within the boundary layer. Entropy of system also rises in this case. Increment in

parameter K decreases the heat transfer rate.
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3.4.5 Influence of volume concentration parameter Φ

Figures (3.13) and (3.14) displayed the plots of the fluid motion and temperature

distribution corresponding to variation in the parameter Φ. Velocity is observed to

be decreasing by increasing parameter Φ which results in reduction of momentum

boundary layer thickness. The thinning of momentum boundary layer is due to

heavy nanoparticle volume fraction. In fact, the thermal conductivity of nanofluids

is enhanced due to an increase in the volume of nanoparticles. Thus the momentum

boundary layer is shrinked due to an increase in the thermal conductivity. Whereas

opposite behavior is observed for temperature profile, thermal boundary layer ex-

pands as temperature and thermal conductivity of nanofluid increases. The velocity

and temperature gradient at the boundary corresponding to parameter Φ are shown

in Table (3.2). Figure (3.15) depicted that the entropy of the system increases by

increasing parameter Φ.
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Figure 3.13: Velocity profile for various Φ
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Figure 3.15: Entropy distribution against parameter Φ

3.4.6 Influence of slip parameter Λ

Figures (3.16)-(3.18) demonstrated the influence of variation of slip parameter on

fluid motion, temperature distribution and entropy generation profiles for Maxwell

nanofluids. Decreasing behavior in velocity profile is observed for slip parameter

Λ, it is clear because increase in slip effect retards the fluid flow which slows down

the fluid movement. It effects the temperature of fluid oppositely as temperature of

nanofluid rises with increase in parameter Λ. The skin friction coefficient decreases

due to the fact that slip effects reduces the friction at solid interface of fluid. Here

it is significant to distinguish that by increasing the slip velocity the entropy of the

system decreases as shown in Figure (3.18).
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Figure 3.18: Entropy distribution against parameter Λ

3.4.7 Influence of the Brinkmann number Br and Reynolds

number Re on the entropy of system

The influence of the Brinkman number (Br) and Reynolds number (Re) on the

entropy of the system are presented in Figures (3.19) and (3.20) respectively. It is

noticed that the entropy of the system increases rapidly when Reynolds numbers are

increased. The physical reason behind this is; at higher Reynolds number the viscous

forces are dominated by inertial forces thus system’s entropy rises. It is found that

the overall entropy of system increases with increment in Brinkman number.
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Figure 3.19: Entropy distribution against Re

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

N
G

χ

Br = 05, 10, 15

Cu−water, Br=5

Cu−water, Br=10

Cu−water, Br=15

TiO
2
−water, Br=5

TiO
2
−water, Br=10

TiO
2
−water, Br=15

Figure 3.20: Entropy distribution against Br
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3.4.8 Effect of flow parameters on Skin friction and Nusselt

number

For fixed values of ε = 0.1, Nr = 0.2, Bi = 0.1, S = 0.2 and Pr = 6.2 some values

of the Skin friction and the Nusselt numbers are listed in the following table.

52



Table 3.2: Calculation of CfRe
1
2
x and NuRe

−1
2
x

β A M K Φ Λ CfRe
1
2
x CfRe

1
2
x NuRe

−1
2
x NuRe

−1
2
x

Cu −

water

TiO2 −

water

Cu −

water

TiO2 −

water

0.01 0.6 0.6 0.6 0.2 0.1 2.4702 2.2194 0.0650 0.0718

0.3 2.5859 2.3025 0.0649 0.0716

0.5 2.6656 2.3592 0.0648 0.0715

0.3 0.2 2.4713 2.2125 0.0644 0.0711

0.6 2.5859 2.3025 0.0649 0.0716

1.6 2.8408 2.5061 0.0657 0.0723

0.6 2.5859 2.3025 0.0649 0.0716

1.6 2.8225 2.5862 0.0648 0.0714

2.6 3.0215 2.8159 0.0647 0.0713

0.6 2.5859 2.3025 0.0649 0.0716

1.6 2.8221 2.5858 0.0648 0.0714

2.6 3.0290 2.8152 0.0647 0.0713

0.1 2.0461 1.8795 0.0857 0.0901

0.2 2.5859 2.3025 0.0649 0.0716

0.4 2.8253 3.4338 0.0373 0.0455

0.0 3.7682 3.1669 0.0652 0.0718

0.1 2.5859 2.3025 0.0649 0.0716

0.2 1.9998 1.8309 0.0647 0.0713
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Chapter 4

Heat Transfer and Entropy Analysis

of Maxwell Nanofluid Flow over a

Stretching Flat Surface

In this chapter, the work presented in the previous Chapter has been extended by

including the viscous dissipation effects in the model. The current work deals with

the non-Newtonian Maxwell nanofluid flow on stretching sheet. Suitable similarity

transformation are employed to transform nonlinear partial differential equations

of conservation of mass, momentum, energy and entropy into ordinary differential

equations. The solution of transformed ordinary differential equations is acquired

by using the Keller-box method. The numerical computations are performed to

calculate the skin-friction coefficient and the local Nusselt number for Copper and

Titanium water based nanofluids. Finally, the numerical results are presented along

with discussion for the significant effect of different governing flow parameters on

velocity, temperature and entropy generation profiles of considered nanofluid.
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The physical model and governing partial differential equations are presented in

Section 4.1. Similarity transformations and reduction of governing partial differen-

tial equations to a system of non-linear ordinary differential equations are given in

Section 4.2. Section 4.3 is about the details of numerical method that we have used

for the numerical computations. Finally, the numerically computed results and their

discussion in the form of graphs and tables are presented in Section 4.4 .

4.1 Mathematical model

In present work, an unsteady, two-dimensional laminar flow of a Maxwell nanofluid

with heat transfer characteristics is considered over the porous stretching sheet.

The incompressible electrically conducting flow is taken under the effects of viscous

dissipation and constant thermal conductivity. Stretching velocity, wall temperature

and magnetic field are considered same as in previous Chapter.
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Figure 4.1: Schematic diagram of fluid flow

The continuity, momentum, energy and entropy equations described in [17] are

modified for the unsteady two-dimensional laminar flow with thermal constant ther-

mal conductivity, viscous dissipation and MHD effects are given as

∂v1

∂x
+
∂v2

∂y
= 0, (4.1)

∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
=
µnf
ρnf

∂2v1

∂y2
− λ
[
v2

1

∂2v1

∂x2
+ v2

2

∂2v1

∂y2
+ 2v1v2

∂2v1

∂x∂y

]
− σnfB

2(t)v1

ρnf
,

(4.2)
∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
=

κnf
(ρCp)nf

[∂2T

∂y2

]
− 1

(ρCp)nf

(∂qr
∂y

)
+

µnf
(ρCp)nf

(∂v1

∂y

)2

, (4.3)

EG =
knf

T 2
∞

{(
∂T

∂y

)2

+
16σ∗T 3

∞
3k∗

(
∂T

∂y

)2
}

+
µnf
T∞

(
∂v1

∂y

)2

+
σnfB

2
o(t)v

2
1

T∞
. (4.4)
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The following boundary conditions are assumed for the investigated problem

v1(x, 0, t) = Uw +W1µnf

(∂v1

∂y

)
, v2(x, 0, t) = Vw, − κf (

∂T

∂y
) = hf (Tw − T ), (4.5)

v1 −→ 0, T −→ T∞ as y −→∞ . (4.6)

Variables appearing in above equations are already defined in Chapter 3.

4.2 Similarity Transformation

In order to find the solution of boundary value problem (BVP) (4.1) - (4.6) , initially

similarity technique is employed to transform governing governing partial differen-

tial equations into ordinary differential equations. Using similarity transformation

defined in equations (3.7) - (3.8) into equations (4.1) - (4.6). The similarity trans-

formation eliminates the continuity equation and reduce the other equations into

odes. Calculating derivatives in order to determine the equations for the similarity

solution of the problem.

Letting,

v1 =
∂ψ

∂y
, (4.7)

v1 =
∂ψ

∂χ
.
∂χ

∂y
, (4.8)

χ(x, y, t) =

√
a

νf (1− ξt)
y, (4.9)

Differentiating w. r. t. ’y’,
∂χ

∂y
=

√
a

νf (1− ξt)
, (4.10)
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ψ(x, y, t) =

√
νfa

(1− ξt)
xf(χ), (4.11)

∂ψ

∂y
=

√
νfa

(1− ξt)
xg′(χ)

(
∂χ

∂y

)
, (4.12)

∂ψ

∂y
=

ax

(1− ξt)
g′(χ), (4.13)

which gives,

v1 =
ax

(1− ξt)
g′(χ). (4.14)

Now, we aim to find,
∂v1

∂x
=

a

(1− ξt)
g′(χ). (4.15)

Calculating v2,

v2 = −∂ψ
∂x

, (4.16)

Differentiating w. r. t. ’x’,

∂ψ

∂x
=

√
νfa

(1− ξt)
g(χ), (4.17)

we get expression for v2,

v2 = −
√

νfa

(1− ξt)
f(χ). (4.18)

∂v2

∂y
= −

√
νfa

(1− ξt)
g′(χ)

(
∂χ

∂y

)
, (4.19)

∂v2

∂y
= − a

(1− ξt)
f ′(χ), (4.20)

∂v1

∂x
+
∂v2

∂y
=

a

(1− ξt)
g′(χ)− a

(1− ξt)
g′(χ) = 0. (4.21)
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∂v1

∂t
=

∂

∂t

(
ax

(1− ξt)
g′(χ)

)
, (4.22)

∂v1

∂t
=

ax

(1− ξt)2

[
ξg′ +

ξg′′

2

]
, (4.23)

∂v1

∂x
=

a

(1− ξt)
g′(χ), (4.24)

v1
∂v1

∂x
=

ax

(1− ξt)
g′(χ)

(
a

(1− ξt)
g′(χ)

)
, (4.25)

v1
∂v1

∂x
=

a2x

(1− ξt)2
g′2(χ), (4.26)

∂v1

∂y
=
axg′′(χ)

(1− ξt)

√
a

νf (1− ξt)
, (4.27)

v2
∂v1

∂y
= −

√
νfa

(1− ξt)
g(χ)

(
axg′′(χ)

√
a

νf (1− ξt)
y

)
, (4.28)

v2
∂v1

∂y
= −a

2xg(χ)g′′(χ)

(1− ξt)2
. (4.29)

∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
=

a2xg

(1− ξt)2

[
A(g′ +

χ

2
g′′ + g′2 − gg′′)

]
. (4.30)

where A = ξ
a
. Now, solving the following term from equation (4.2).

= λ

[
(v1)2∂

2v1

∂x2
+ (v2)2∂

2v1

∂y2
+ 2v1v2

∂2v1

∂x∂y

]
, (4.31)
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Calculating derivatives in sequence,

∂2v1

∂y2
=

∂

∂y

(
axg′′(χ)

(1− ξt)

√
a

νf (1− ξt)

)
, (4.32)

∂2v1

∂y2
=

(
axg′′′(χ)

(1− ξt)

√
a

νf (1− ξt)

)
∂χ

∂y
, (4.33)

∂2v1

∂y2
=

(
a2xg′′′(χ)

(1− ξt)2νf

)
, (4.34)

∂2v1

∂x2
= 0, (4.35)

∂2v1

∂x∂y
=

(
ag′′(χ)

(1− ξt)

√
a

νf (1− ξt)

)
(4.36)

2v1v2 = 2

(
ax

(1− ξt)
g′(χ)

)(
−
√

νfa

(1− ξt)
g(χ)

)
, (4.37)

2v1v2

(
∂2v1

∂x∂y

)
=
−2a3gg′g′′x

(1− ξt)3
, (4.38)

(v1)2 =
a2x2g′2(χ)

(1− ξt)2
, (4.39)

(v1)2

(
∂2v1

∂x2

)
= 0, (4.40)

(v2)2 =
νfag

2(χ)

(1− ξt)
, (4.41)

(v2)2∂
2v1

∂y2
=
xa3g2(χ)g′′′(χ)

(1− ξt)3
, (4.42)

λ

[
(v1)2∂

2(v1)

∂x2
+ (v1)2∂

2v1

∂y2
+ 2v1v2

∂2v1

∂x∂y

]
= λ

[
0 +

xa3g2(χ)g′′′(χ)

(1− ξt)3
− 2a3gg′g′′x

(1− ξt)3

]
,

(4.43)

λ

[
(v1)2∂

2v1

∂x2
+ (v2)2∂

2v1

∂y2
+ 2v1v2

∂2v1

∂x∂y

]
= − λoa

3x

(1− ξt)2

(
g2g′′′ − 2gg′g′′

)
. (4.44)
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Now solving remaining terms of equation (4.2)

=
µnf
ρnf

(
∂2v1

∂y2

)
− σnfB

2(t)v1

ρnf
, (4.45)

=
µnf
ρnf

((
a2xg′′′(χ)

(1− ξt)2νf

))
− σnfB

2(t)

ρnf

(
ax

(1− ξt)
g′(χ)

)
, (4.46)

=
a2x

(1− ξt)2

[
µfg

′′′

ρfΦ1Φ2νf
− σfΦ4B

2
og
′

ρfΦ2

a], (4.47)

µnf
ρnf

(
∂2u

∂y2

)
− σnfB

2(t)u

ρnf
− µnf
ρnfk

u =
a2x

(1− ξt)2

[
g′′′

Φ1Φ2

− Φ4

Φ2

Mg′
]
, (4.48)

Inserting (4.30), (4.44) and (4.48) in (4.2), yields the ODE

A
(χ

2
g′′ + g′

)
+ g′2 − gg′′ − g′′′

Φ1Φ2

+ β
(
g2g′′′ − 2gg′g′′

)
+

Φ4

Φ2

Mg′ = 0. (4.49)

Using the next transformation,

γ(χ) =
T − T∞
Tw − T∞

(4.50)

Tw − T∞ =
ax

(1− ξt)
(4.51)

γ(χ)
ax

(1− ξt)
= (T − T∞) (4.52)

T = T∞ +
ax

(1− ξt)
γ(χ) (4.53)
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Differentiating above expression w. r. t. ’x’, ’y’ and ’t’,

∂T

∂x
=

a

(1− ξt)
γ(χ), (4.54)

v1

(
∂T

∂x

)
=

(
ax

(1− ξt)
g′(χ)

)
a

(1− ξt)
γ(χ), (4.55)

∂T

∂y
=

ax

(1− ξt)
γ′(χ)

(
∂χ

∂y

)
(4.56)

∂T

∂y
=

ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)
, (4.57)

v2

(
∂T

∂y

)
=

(
−
√

νfa

(1− ξt)
g(χ)

)
ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)
(4.58)

∂T

∂t
=

ξax

(1− ξt)2
+

ax

(1− ξt)
γ′(χ)

(
∂χ

∂t

)
(4.59)

∂T

∂t
=

ξax

(1− ξt)2
+

ax

(1− ξt)
γ′(χ)

(√
1

νf (1− ξt)
y

(
ξ

1− ξt
1

2

))
(4.60)

∂T

∂t
=

ξax

(1− ξt)2
+

ξax

2(1− ξt)2
γ′(χ), (4.61)

∂T

∂t
=

ξax

(1− ξt)2

(
γ(χ) +

χ

2
γ′(χ)

)
(4.62)
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∂T

∂t
=

ξa2x

a(1− ξt)2

(
γ(χ) +

χ

2
γ′(χ)

)
(4.63)

∂T

∂t
=

a2x

(1− ξt)2
A
(
γ(χ) +

χ

2
γ′(χ)

)
(4.64)

∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
=

a2x

(1− ξt)2
A
(
γ(χ) +

χ

2
γ′(χ)

)
+

(
ax

(1− ξt)
g′(χ)

)
a

(1− ξt)
γ(χ)

−
(√

νfa

(1− ξt)
g(χ)

)
ax

(1− ξt)
γ′(χ)

√
a

νf (1− ξt)
(4.65)

Left hand side of equation (4.3) is given by,

∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
=

a2x

(1− ξt)2

[
A(γ +

χ

2
γ′) + γg′ − γ′g

]
. (4.66)

Now, solving the other side of equation (4.3)

µnf
(ρCp)nf

(∂v1

∂y

)2

=
Φ1

Φ5

Ecg
′′2, (4.67)

1

(ρCp)nf

(
∂2T

∂y2

)
=

1

(ρCp)nf

a2x

νf (1− ξt)2
, (4.68)

− 1

(ρCp)nf

[
∂qr
∂y

]
= − 1

(ρCp)nf

−16σ∗T 3

3k∗

(
∂2T

∂y2

)
, (4.69)

(
∂2T

∂y2

)
=

a2x

νf (1− ξt)2
, (4.70)

1

(ρCp)nf

[
∂qr
∂y

]
=

a2x

νf (1− ξt)2

[
16σ∗T 3

3k∗νfρCp)f

γ′′

Φ3

]
, (4.71)
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1

(ρCp)nf

[
∂qr
∂y

]
=

a2x

(1− ξt)2

[
Nrγ′′

Φ3

]
. (4.72)

[
A(γ +

χ

2
γ′) + γg′ − γ′g

]
− Φ5

Φ3

1

Pr

[
1 + γ′′ +

Φ1

Φ5

Ecg
′′
2

]
−
[
Nrγ′′

Φ3

]
, (4.73)

Inserting (4.66), (??) and (4.72) in (4.3), yields the following ODE

γ′′
(

1 +
1

Φ5

PrNr

)
+ Pr

Φ3

Φ5

[
gγ′ − g′γ − A(γ +

χ

2
γ′) +

Φ1

Φ3

Ecg
′′
2 ] = 0. (4.74)

NG = Re
[
Φ5(1 +Nr)γ′2 +

Br

Φ5ω

(
g′′2 + Φ1Φ4Mg′2

)]
. (4.75)

with

g(0) = S, g′(0) = 1 +
Λ

Φ1

g′′(0), γ′(0) = −Bi(1− γ(0)), (4.76)

g′(χ) −→ 0, γ(χ) −→ 0 as χ −→∞. (4.77)

Where Ec =
U2
W

(Cp)f (Tw−T∞)
is the Eckert number and all other governing parameters

are given in Chapter 3.

4.3 Finding Numerical Solution

Non-similar solution of equations (4.49),(4.74) and (4.75) with subject to condi-

tions, (4.76)-(4.77) is found by Keller-box method. In order to apply the Keller-box

method first write the equations (4.49), (4.74) and (4.77) as a system of six first-

order ordinary differential equations with some newly introduced variables, reduced

equations are

v1 = g′, (4.78)
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v2 = v′1, (4.79)

t = γ′, (4.80)

A
(χ

2
v2 + v1

)
+ v2

1 − gv2 −
v′2

Φ1Φ2

+ β(g2v2 − 2gv1v2) +
Φ4

Φ2

Mv1 = 0, (4.81)

t′(1 +
1

Φ5

PrNr) + Pr
Φ3

Φ5

[
gt− v1γ − A(γ +

χ

2
t) +

Φ1

Φ3

Ecv
2
2

]
= 0, (4.82)

NG = Re
[
Φ5(1 +Nr)t2 +

Br

Φ5Ω

(
v1
′2 + Φ1Φ4Mv2

1

)]
(4.83)

and conditions are

g(0) = S, v1(0) = 1 +
Λ

φ1

v2(0), t(0) = −Bi(1− γ(0)), (4.84)

v1(∞) −→ 0, γ(∞) −→ 0. (4.85)

After obtaining first-order system, discretize the domain which allows to calculate

the approximate solution over each sub domain rather then over entire domain.

χ0 = 0; χn = χn−1 + h, n = 1, 2, 3, ..., N − 1; χN = χ∞.

Then difference equations are obtained using backward differences. Functions are

replaced with their mean averages. The system of ordinary differential (??)-(4.75)

is then converted into the following non-linear algebraic equations.

(v1)n + (v1)n−1

2
=
gn − gn−1

h
, (4.86)

(v2)n + (v2)n−1

2
=

(v1)n − (v1)n−1

h
, (4.87)

tn + tn−1

2
=
γn − γn−1

h
, (4.88)

65



A

{(
(v1)n + (v1)n−1

2

)
+
χ

2

(
(v2)n + (v2)n−1

2

)}
+

(
(v1)n + (v1)n−1

2

)2

−(
gn + gn−1

2

)(
(v2)n + (v2)n−1

2

)
− 1

Φ1Φ2

(
(v2)n − (v2)n−1

h

)
+

β

((
gn + gn−1

2

)2(
(v2)n − (v2)n−1

h

)
− 2

(
gn + gn−1

2

)(
(v1)n + (v1)n−1

2

)
(

(v2)n + (v2)n−1

2

)
+

Φ4

Φ2

M

(
(v1)n + (v1)n−1

2

)
= 0,

(4.89)

(
tn − tn−1

h

)
+

1

Φ5

PrNr + Pr
Φ3

Φ5

[(
gn + gn−1

2

)(
tn + tn−1

2

)]
+Pr

Φ3

Φ5

[
−
(

(v1)n + (v1)n−1

2

)(
γn + γn−1

2

)
− A

{(
γn + γn−1

2

)
+
χ

2

(
tn + tn−1

2

)
= 0.

(4.90)

NG = Re

[
Φ5(1 +Nr)

(
tn − tn−1

2

)2

+
Br

Φ5Ω

(
(v1)n + (v1)n−1

2

′2

+ Φ1Φ4Mv2
1

+K

(
(v1)n + (v1)n−1

2

′2
)
(4.91)

The resulting non-linear algebraic equations are then linearized by using Newton’s

method. For above equations, the (i+ 1)th iterate can be written as

()(i+1)
n = ()(i)

n + δ()(i)
n , (4.92)

by substitution of (4.92) into (4.86)-(4.91) and ignoring O(δin) > 2), a linear tri-

diagonal system is obtained as

δgn − δhn−1 −
1

2
h(δ(v1)n + δ(v1)n−1) = (r1)n− 1

2
, (4.93)

δ(v1)n − δ(v1)n−1 −
1

2
h(δ(v2)n + δ(v2)n−1) = (r2)n− 1

2
, (4.94)
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δγn − δγn−1 −
1

2
h(δtn + δtn−1) = (r3)n− 1

2
, (4.95)

(r4)n− 1
2

= (c1)nδgj+(c2)nδgn−1+(c3)jδ(v1)n+(c4)nδ(v1)n−1+(c4)nδ(v1)n−1+(c5)nδ(v2)n (4.96)

+(c6)nδ(v2)n−1 + (c7)nδγn + (c8)nδγn−1 + (c9)nδtn + (c10)nδtn−1,

(r5)n− 1
2

= (d1)nδgn + (d2)nδgn−1 + (d3)nδ(v1)n + (d4)nδ(v1)n−1 + (d5)nδ(v2)n(4.97)

+(d6)nδ(v2)n−1 + (d7)jδγn + (d8)nδγn−1 + (d9)nδtn + (d10)nδtn−1,

where

(r1)n− 1
2

= −gn + gn−1 +
h

2
((v1)n + (v1)n−1), (4.98)

(r2)n− 1
2

= −(v1)n + (v1)n−1 +
h

2
((v2)n + (v2)n−1), (4.99)

(r3)n− 1
2

= −γn + γn−1 +
h

2
(tn + tn−1), (4.100)

(r4)n− 1
2

= −h

[
− A

(
(v1)n + (v1)n−1

2
+ χ

(v2)n − (v2)n−1

4

)
+

(
(v1)n + (v1)n−1

2

)2

−
(
gn + gn−1

2

)(
(v2)n + (v2)n−1

2

)]
− h

[
− 1

Φ1Φ2

(
(v2)n − (v2)n−1

h

)

+β

((
gn + gn−1

2

)2(
(v2)n − (v2)n−1

h

)
− 2

(
gn + gn−1

2

)(
(v1)n + (v1)n−1

2

)
(

(v2)n + (v2)n−1

2

)]
− h

[
Φ4

Φ2

M

(
(v1)n + (v1)n−1

2

)]
,
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(4.102)

(r5)n− 1
2

= −h

[
(tn − tn−1)

(
1 + 1

Φ5
PrNr

)
h

+
Φ3

φ5

PrA

(
γn + γn−1

2
+ χ

tn + tn−1

2

)]

−hΦ3

Φ5

Pr

[(
(gn + gn−1)(tn + tn−1)

4

)(
(γj + γn−1)((v1)n + (v1)n−1)

4

)]
.

and boundary conditions are

δg0 = 0, (δv1)0 = 0, δt0 = 0, δ(v1)N = 0, δγN = 0. (4.103)

and the resulting matrix form is given in (3.116).

4.4 Verification of numerical results

To ensure the accuracy of our calculations we compare our results to those already

available in the literature [26] as the especial case for our study. The test case is

MHD flow and heat transfer over permeable stretching sheet with slip conditions.

Results are verified for β = 0, K = 0 Φ = 0, λ = 0, and Ec = 0. The comparison

shown in Table (4.1) are found to be in excellent agreement. Thus, we are sure

about the accuracy of our results.
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Table 4.1: Comparison of Skin friction coefficient

Λ A M S Pr Nr Bi Andersson T.Hayat Present

Results [25] Results [26] Results

0 0 0 0 0.7 0.2 1.0 1.0000 1.0000 1.0000

0.1 0.8721 0.872082 0.8271

0.2 0.7764 0.776377 0.7764

0.5 0.5912 0.591195 0.5912

0 0.3 - 1.372527 1.3711

1.5 - 2.0724 2.0748

1.5 1.0 - 1.756433 1.7560

4.5 Results with Discussion

The numerical results of investigated problem are presented with discussion. The

significant effects of physical parameters of Maxwell nanofluid on the velocity, tem-

perature and entropy generation profiles are major part of this discussion. The

calculations are performed for Cu and TiO2 water based nanofluids. In Table (4.2)

some values of the skin friction coefficient and the Nusselt number corresponding to

flow governing parameters computed at the boundary are tabulated. All of these re-

sults are produced for β = 0.3, A = 0.6,M = 0.6,Φ = 0.2,Λ = 0.1, Nr = 0.2, P r =

6.2, Br = 5, Re = 5,Ω = 1, S = 0.2, Ec = 0.2. In graphs, the behavior of Cu−water

nanofluid is presented in blue color and the behavior of TiO2 − water is shown by

red color.
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4.5.1 Influence of Maxwell parameter β

Figures (4.2) and (4.3) demonstrated the effects of β on nanofluid velocity and tem-

perature profile respectively. Computations are performed for β = 0.01, 0.2, 0.3 for

water based non-Newtonian Maxwell nanofluids. The velocity profile tends to decay

with increment in β and this caused the reduction in momentum boundary layer.

The resistance in fluid is responsible for decay in velocity profile. Whereas with an

increment in Maxwell parameter thermal boundary layer expands. Moreover, Fig-

ure (4.2) clarifies that thickness of TiO2-water momentum boundary layer is more

than Cu−water nanofluid. Whereas with an increment in Maxwell parameter ther-

mal boundary layer expands, and this happens due to increase in elasticity stress

parameter. Entropy profile shows cross over point near χ = 0.4 , entropy increases

before χ = 0.4 and after χ = 0.4 entropy starts decreasing (see Figure (4.4)). It is

also observed from Table (4.2) the velocity and temperature gradient for Cu-water

and TiO2-water nanofluids decreases.
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Figure 4.2: Velocity distribution against Maxwell parameter β
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Figure 4.4: Entropy generation against Maxwell parameter β
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4.5.2 Influence of unsteadiness parameter A

Figures (4.5) and (4.6) displayed the nature of fluid motion and temperature distri-

bution for Maxwell nanofluid. It is noticed that fluid flows slowly and temperature

decreases with increasing values of A. Momentum and thermal boundary layer de-

creases with increment in A. Temperature profile depicts that the boundary layer

thickness of TiO2-water nanofluid is comparatively more than Cu−water nanofluid.

Entropy generation profile shows cross over point at χ = 0.3, entropy increases be-

fore χ = 0.3 and after χ = 0.3 entropy starts decreasing (see Fig (4.7)). Because

boundary layer energy is absorbed due to unsteadiness. Finally, the increase in val-

ues of the skin friction and Nusselt numbers is observed for A = 0.2, 0.6, 1.6 at the

boundary.
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Figure 4.5: Velocity profile for unsteady parameter A

Figure 4.6: Temperature distribution against unsteady parameter A
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Figure 4.7: Entropy generation against unsteady parameter A.

4.5.3 Influence of magnetic parameter M

The impact of parameterM on the nanofluid motion, temperature and entropy gen-

eration profiles are displayed in Figures (4.8)-(4.10) respectively. Computations per-

formed forM = 0.2, 0.6, 1.6 showed that the velocity of nanofluids tends to decrease

and hence the thickness of momentum boundary layer decreases. The physical rea-

son behind reduction in thickness of momentum boundary layer is that; the Lorentz

force which is a resistive force appears when transverse magnetic field is applied and

it interacts with the electrically conducting nanofluids. As the strength of applied

magnetic field is increased the strength of Lorentz force is also increased and acts

opposite to fluid movement within the boundary layer. M is inversely proportional

to the density of nanofluid, so increasing M results in a rise of temperature within

the boundary layer. Table (4.2) showed that the Nusselt number decreases but the

skin friction coefficient increases by variation of M . Entropy of a system rises in
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this case.
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Figure 4.8: Velocity distribution against magnetic parameter M
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Figure 4.10: Entropy generation against magnetic parameter M .

4.5.4 Influence of nanoparticle volume concentration param-

eter Φ

Figures (4.11) and (4.12) displayed the plots of the fluid motion and temperature

distribution corresponding to variation in the parameter φ. Velocity is observed to

decrease with the increasing parameter φ which results in the reduction of the mo-

mentum boundary layer thickness. The thinning of the momentum boundary layer

is due to heavy nanoparticle volume fraction. In reality the thermal conductivity of

nanofluids is enhanced due to increase in volume of nanoparticles. Whereas opposite

behavior is observed for temperature profile, the thermal boundary layer expands

as the temperature and the thermal conductivity of the nanofluid increases. The

increasing trends in both velocity and heat transfer at the boundary corresponding

to Φ are shown in Table (4.2). Figure (4.13) depicted the influence of parameter
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Φ on entropy of system. Increasing the temperature of the nanofluid compels the

entropy of system to rise.
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Figure 4.11: Velocity distribution against parameter Φ.
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Figure 4.13: Entropy generation against parameter Φ.

4.5.5 Effect of velocity slip Λ

The nature of the fluid motion and temperature are shown for the particular values

of slip parameter Λ in Figures (4.14) and (4.15) respectively. Results are calculated

for Λ = 0.0, 0.1, 0.2. Decrease in behavior of velocity profile is observed for the slip

parameter Λ, it is obvious because increase in the slipperiness retards the fluid flow

which slows down the fluid motion. Temperature of the nanofluid decreases with

increase in parameter Λ. Moreover, the thickness of the thermal boundary layer

of Cu-water nanofluid is relatively more than the TiO2-water nanofluid. Here it

is important to distinguish that the entropy of the system decreases by increasing

the slip parameter as shown in Figure (4.16). The increase in the slip parameter

decreases the skin friction coefficient whereas the heat transfer rate increases.
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Figure 4.14: Velocity profile for slip effect Λ
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4.5.6 Effect of Biot Number Bi

Figures (4.17) and (4.18) displayed the plots of the nanofluid temperature and en-

tropy generation respectively. Figure (4.17) demonstrated that the temperature of

the nanofluids rises due to increase in Biot number. The thermal boundary layer

expands due to rise in temperature of the nanofluids. The increase in Biot number

causes the larger amount of heat transfer from sheet to the fluid which tends to

increase the thermal boundary layer. Whereas, there are no effects of convection

parameter (Biot number) on velocity profile of the nanofluid. Entropy in this case

increases because of heat transfer.
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Figure 4.18: Entropy generation against parameter Bi
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4.5.7 Influence of thermal radiation parameter Nr

Figure (4.19) presents the effects of thermal radiation parameter Nr on temperature

distribution profile of Maxwell nanofluids, which shows that the temperature of

nanofluid decreases for ascending values of Nr = 0.0, 0.2, 0.4. The thickness of the

thermal boundary layer decreases with fall in temperature. Figure (4.20) displayes

the effect of the parameter Nr on entropy profile for water based nanofluids. There

is no change in velocity profile but entropy of nanofluids slows down by variating

Nr. Furthermore, it is observed from Table (4.2) that the Nusselt number at the

boundary increases for both Cu-water and TiO2-water whereas the velocity gradient

remains constant.
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Figure 4.19: Temperature distribution against parameter Nr
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Figure 4.20: Entropy profile for Nr

4.5.8 Influence of suction parameter S

Figures (4.21)-(4.23) presented the effect of parameter S on fluid motion, temper-

ature distribution and entropy generation profiles respectively. By increasing the

suction parameter the decreasing trend in velocity and temperature profile can be

seen and this leads in contraction of momentum and thermal boundary layer thick-

ness. Since applying suction leads to draw the amount of fluid particles into the

wall that’s why increase in S caused decrease in velocity of the nanofluid. Imposi-

tion of the suction on the surface caused reduction in the thermal boundary layer

thickness. The velocity and temperature gradient both are observed to be increased

for increasing values of S and presented in Table (4.2). By increasing the suction

effect the entropy of system is increased.
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Figure 4.21: Velocity profile for suction parameter S.
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Figure 4.22: Temperature distribution against the parameter S.
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Figure 4.23: Entropy generation distribution against the parameter S.

4.5.9 Effect of Eckert number Ec

Figure (4.24) demonstrates the influence of Eckert Number on temperature distri-

bution. There is increas in temperature profile with rise in values of Eckert number

and thermal boundary layer is also enhanced. The physical reason behind this;

an increment in dissipation enhances the thermal conductivity of the fluid which

also enhances thermal boundary layer. It can be claimed that the presence of vis-

cous dissipation in considered Maxwell nanofluid model increases the temperature

distribution and hence the entropy generation, but velocity remains unaltered.
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Figure 4.24: Temperature distribution against the parameter Ec.
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Figure 4.25: Entropy generation against the parameter Ec.
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4.5.10 Influence of Brinkmann number Br and Reynolds num-

ber Re the entropy generation profiles

Figure (4.26) illustrates the impact of Br on entropy of the system. Entropy of

system is found to be increased by increasing the values of Br. Figure (4.27) demon-

strated the same behavior of Reynolds number on the entropy of the system. The

viscous forces are dominated by the inertial forces at higher Reynolds number, thus

the entropy of system increases.
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Figure 4.26: Entropy profile for Br.
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Figure 4.27: Entropy view for Re.

4.5.11 Effect of flow governing parameters on skin friction

coefficient and Nusselt Number

The effect of flow governing parameters on the Skin friction (Cf ) and the local

Nusselt number (Nux) is given in the following table.
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Table 4.2: Calculation of Skin friction = CfRe
1
2
x and Nusselt number = NuRe

−1
2
x for

Pr = 6.2

β A M Φ Λ Bi Nr S Ec CfRe
1
2
x CfRe

1
2
x NuRe

−1
2
x NuRe

−1
2
x

Cu −

water

TiO2−

water

Cu −

water

TiO2−

water

0.01 0.2 0.6 0.2 0.1 0.1 0.2 0.2 0.2 2.1473 1.8825 0.1625 0.1534

0.2 2.2395 1.9493 0.1595 0.1515

0.3 2.2866 1.9843 0.1580 0.1504

0.3 0.2 2.2866 1.9843 0.1580 0.1504

0.6 2.4187 2.0923 0.1640 0.1548

1.6 2.7077 2.3336 0.1727 0.1615

0.6 2.2866 1.9843 0.1580 0.1504

1.6 2.5818 2.3433 0.1495 0.1413

2.6 2.8177 2.6181 0.1426 0.1340

0.1 1.7950 1.6203 0.1275 0.1246

0.2 2.2866 1.9843 0.1580 0.1504

0.3 3.3695 2.9171 0.2456 0.2155

0.0 3.2574 2.6597 0.1294 0.1339

0.1 2.2866 1.9843 0.1580 0.1504

0.2 1.7932 1.6041 0.1704 0.1586

0.1 2.2866 1.9843 0.1580 0.1504

0.2 2.2866 1.9843 0.3030 0.2885

0.6 2.2866 1.9843 0.7808 0.7431

0.0 2.2866 1.9843 0.1297 0.1241

0.2 2.2866 1.9843 0.1580 0.1504

0.4 2.2866 1.9843 0.1854 0.1760

0.0 2.0355 1.8145 0.1572 0.1490

0.1 2.1551 1.8957 0.1575 0.1497

0.2 2.2866 1.9843 0.1580 0.1504

0.2 2.2866 1.9843 0.1580 0.1504

0.4 2.2866 1.9843 0.1154 0.1185

0.6 2.2866 1.9843 0.0728 0.0866
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4.6 Conclusion

• Decrease in the velocity profile is observed for an increment in Maxwell and

volume fraction parameter.

• Nanoparticles are mainly used in fluids to boost up thermal behavior of fluids.

Therefore increase in nanoparticles concentration enhances the temperature of

nanofluid and also the thickness of thermal boundary layer.

• The temperature increases with increase in the Eckert number whereas Nusselt

numbers decreases.

• Increase in magnetic parameter decreases the momentum boundary layer thick-

ness whereas increases temperature and entropy profile.

• Increase in convection parameter increases temperature profile.

• Increase in thermal radiation increases the temperature and concentration pro-

file.

• As slipperiness retards the fluid flow and causes to decreases the velocity and

temperature profile but it is significant to observe that entropy of system

decreases by increasing slip parameter.
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Chapter 5

Conclusion and Future Work

In this thesis, we have presented the numerical analysis of the non-Newtonian

Maxwell nanofluid in presense of slip and convective conditions. Heat transfer is

analyzed for unsteady, incompressible two dimensional laminar flow with viscous

dissipation and constant thermal conductivity past a porous medium. The gov-

erning nonlinear partial differential equations of momentum, energy and entropy

generation are changed into ODEs by utilizing a proper similarity transformation.

By using the Keller box method, numerical solution of ordinary differential equa-

tions is obtained. Distinctive physical parameters are examined, w.r.t dimensionless

velocity, temperature and entropy generation profile.

Increase in some parameters such as, β, M and φ increases the temperature

distribution and also the thickness of thermal boundary layer. This increases the

overall entropy of the system. The unsteadiness and velocity slip parameter at the

boundary reduces the thickness of the thermal boundary layer and increases the rate

of heat transfer at the surface. An increment in viscous dissipation also enhances the

thermal conductivity of the nanofluid which also enhances thermal boundary layer
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and entropy of system. By increasing values of unsteadiness parameter A, Reynolds

number Re, Brinkmann number Br the entropy of system enhances. The entropy

of system reduces by variating velocity slip parameter Λ.

This model has bring out valuable outcomes which leads to emphasize on slip

effects to reduce the entropy of a system. In future, the present analysis can be

extended to include the effects of porosity, variable viscosity and variable ther-

mal conductivity. Furthermore, above mentioned effects can be included in Casson

nanofluid model to investigate their effects. There is always an option to conduct

experimental studies of such theoretical studies.
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