
Enhancing Web Security using Client-Side Web
Assembly based Web Application Firewall

(WAF)

MCS

by

Umar Mahboob

A thesis submitted to the faculty of Information Security Department, Military

College of Signals, National University of Sciences and Technology, Rawalpindi in

partial fulfillment of the requirements for the degree of MS in Information Security

(Nov 2023)

i

Declaration

I hereby declare that no portion of the work presented in this thesis has been submitted

in support of another ward or qualification either at this institution or elsewhere.

Signature:

Umar Mahboob

MS Student

ii

Dedication

To my parents, whose love, encouragement, and sacrifices have made all my achievements

possible. Your unwavering belief in me has been a constant source of inspiration. This

thesis is dedicated to the people who have been my guiding lights and unwavering

support throughout my academic pursuit.

To my dear wife and child, for their understanding, patience, and unending encourage-

ment. Their love and support have been my rock during the challenging times of this

journey.

To my mentor and advisor, Dr. Waleed Bin Shahid, for his wisdom, guidance, and faith

in my abilities. His mentorship has shaped me into a better researcher.

To my friends, who have supported me and brought me joy during my academic journey,

thank you. Your friendship has made this experience truly unforgettable.

iii

Acknowledgements

Above all, I am extremely grateful to Almighty Allah, the Most Gracious and the Most

Merciful, for granting me health, knowledge, wisdom, and the ability to communicate

naturally. I owe my supervisor a great deal for his invaluable supervision, encourage-

ment, and direction, which allowed me to work on this project and finish my research in

this field. I sincerely appreciate my peers’ help, notably that of Awais Bin Riaz, whose

assistance was invaluable to my research. I also want to express my gratitude to my

parents, wife, and child for their support, encouragement, love, and devotion in getting

me through my challenges and finishing my research work.

iv

Abstract

JavaScript has been a popular and the most widely used language for web applications.

However, it has some limitations especially related to performance while running com-

putationally intensive tasks which hinders usage of such applications through the web.

To resolve the issue of performance, a new low-level assembly-like language Web As-

sembly “also referred to as WASM” has been developed to run in the browser and to

complement the usage of JavaScript rather than replacing it. WASM is designed keep-

ing the security features in mind. However, being a new technology, it still has some

security flaws which can be exploited to compromise different applications. Mining cryp-

tocurrency is a lucrative opportunity due to its increased usage. One of the illegitimate

ways of mining is through deploying cryptojacking malware within web browsers. Web

Assembly has provided malicious actors with a new avenue for utilizing cryptojacking

malware given its performance gains. This resulted in development of different systems

for detection of Wasm-based cryptojacking, using both static and dynamic analysis. In

this paper, we provide an overview of Web Assembly (WASM) and a comprehensive

review of different cryptojacking detection techniques. Furthermore, we propose a novel

framework which is based on AI-driven WebAssembly analysis engine designed to detect

WebAssembly-based cryptojacking attacks. Our evaluation of the framework shows an

accuracy rate of 98.5% with only 0.78% FN rate in detecting cryptojacking WASM ap-

plications. In the end, we carried out a comparative analysis of our proposed framework

with two malware detection tools: VirusTotal and Malwarebytes.

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 6

1.3 Problem Statement . 6

1.4 Research Objectives . 7

1.5 Contributions . 7

1.6 Thesis Outline . 8

2 Literature Review 9

2.1 JavaScript . 9

2.1.1 Usage of JavaScript . 9

2.1.2 Advantages of JavaScript . 10

2.1.3 Dis-Advantages of JavaScript . 10

2.2 WebAssembly . 11

2.3 Cryptocurrency . 12

2.4 Cryptojacking . 13

2.4.1 Coinhive and Monero . 14

2.4.2 CryptoNight Algorithm . 15

2.4.3 Cryptojacking through Web Applications 16

2.5 Analysis (Static vs Dynamic analysis) . 17

2.5.1 Static Analysis . 17

vi

Contents

2.5.2 Dynamic Analysis . 17

2.6 Review of WebAssembly . 17

2.7 Work Related to Cryptojacking . 19

3 Methodology 22

3.1 Intrinsic Characteristics of Cryptojacking Malware 22

3.1.1 Semantic Signature Matching . 22

3.1.2 Strings & Pattern Matching . 24

3.1.3 Call Flow Graph . 25

3.1.4 Cryptographic Primitives . 25

3.2 Architecture of Proposed Framework . 29

3.2.1 Wasm Binary Collector . 29

3.2.2 Wasm to WAT conversion . 30

3.2.3 Processing and Static Analysis . 30

3.2.4 Detection Classifier . 31

3.2.5 Alertify . 33

4 Result And Performance Evaluation 35

4.1 Preparation of Dataset . 35

4.2 Selection of Machine Learning Classifier . 36

4.2.1 Linear Support Vector Machine (SVM) 36

4.2.2 Random Forest (RF) . 36

4.3 Results . 37

4.3.1 Application of Linear Support Vector Machine (SVM) 40

4.3.2 Application of Random Forest (RF) 42

4.4 Comparative Analysis . 47

4.4.1 Comparison with Other Tools . 48

4.4.2 Comparison with VirusTotal & Malware Bytes 49

vii

Contents

5 Discussion and Future Work 53

5.1 Discussion . 53

5.1.1 Strengths . 53

5.1.2 Limitations . 54

5.2 Future Work . 54

6 Conclusion 55

viii

List of Figures

1.1 Web Assembly Working . 2

1.2 How Browser-based Cryotojacking Works . 3

2.1 Working of Blockchain Technology . 13

3.1 Comparison of Instructions between Crypto and Benign WASM 23

3.2 Word Cloud of Strings and Keywords . 24

3.3 Call Flow Graph - Standard CryptoNight . 26

3.4 Call Flow Graph - Obfuscated CryptoNight Implementation 26

3.5 Call Flow Graph - Benign Application . 27

3.6 Crypto Primitives Fingerprinting in WASM Binaries 28

3.7 Overview of Framework . 29

3.8 Detailed Work Flow of Framework . 34

4.1 Performance Metrics of Linear SVM (80-20 Split) 41

4.2 Confusion Matrix – Linear SVM (80-20 Split) 42

4.3 Performance Metrics of Linear SVM (70-30 Split) 42

4.4 Confusion Matrix – Linear SVM (70-30 Split) 43

4.5 Performance Metrics of Random Forest (80-20 Split) 44

4.6 Confusion Matrix – Random Forest (80-20 Split) 44

4.7 Performance Metrics of Random Forest (70-30 Split) 45

4.8 Confusion Matrix – Random Forest (70-30 Split) 46

ix

List of Figures

4.9 Accuracy Achieved in Applying Random Forest Model 46

4.10 Loss Observed in Applying Random Forest Model 47

4.11 Result of VirusTotal (False Negatives) . 51

4.12 Result of MalwareBytes-1 (False Negatives) 51

4.13 Result of MalwareBytes-2 (False Negatives) 52

x

List of Tables

2.1 Comparison of Static and Dynamic Analysis 18

2.2 Summary of WebAssembly-Based Cryptojacking Detection Tools 20

4.1 Comparison of Characteristics . 48

4.2 Comparison of Results . 49

xi

Chapter 1

Introduction

1.1 Background

JavaScript is the most widely adopted web language (98.3% of all Web) since its creation

in 1995. It is an interpreted, high-level language used to create dynamic and interactive

web applications. It is preferred by developers because of its compatibility, versatility,

large ecosystem and ease of use. While being popular, JavaScript has some limitations

[1]:-

• Being an interpreted language, it is slower in performing computationally intensive

tasks such as Virtual and Augmented Reality, 3D games, image/video editing and

other domains requiring high performance.

• JavaScript can have compatibility issues as it can behave differently in different

browsers.

• Debugging complex JavaScript applications is challenging.

• It can be vulnerable to security threats. Since the code is visible to users, it can

be used for malicious purposes.

• Codes written in other programming languages such as C, C++, or Rust can pro-

vide better performance and more control over system resources than JavaScript

but cannot be executed directly in a web browser. Also, integration of JavaScript

with other programming languages is difficult.

1

Chapter 1: Introduction

Figure 1.1: Web Assembly Working

Web Assembly, also known as "WASM” provides a solution to all these problems. WASM

is the fourth and only precompiled language to be run in web browsers after HTML,

JavaScript, and CSS. It is like a assembly language with a compact binary format

providing many new features and high performance gains by running at near native

speed [2]. All of the main web browsers, including Microsoft Edge, Mozilla Firefox,

Google Chrome, Apple Safari, and Chrome; mobile browsers, such as Chrome, iOS

Safari, and Firefox for Android, support this open standard, which was created by the

World Wide Web Consortium (W3C) [3] [4] [5]. Web Assembly is becoming increasingly

popular and is used by many websites and web applications such as Figma, Google

Earth, AutoCAD Web, WhatsApp, Dropbox and many more.

WASM is not meant to be written directly rather it is as a compilation target for high-

level languages like C/C++, C# [6], and Rust; thus, developers can work with their

preferred language without having to learn a new one. It is also not created to replace

JavaScript but runs alongside allowing both to work together. Web Assembly can also

run outside the browser environment such as mobile agents, server-side applications and

IoT devices using Web Assembly System Interface (WASI), a WASM code interpreter

outside the browser, such as WASMtime and WAMR (Web Assembly Micro Runtime)

[7]. Some of the features of WASM include [6]:-

• A portable language that is fast, efficient, and compact.

• Human-readable and debuggable so that the code can be written, viewed, and

debugged.

• Keeping the security in mind (running in a safe, sandboxed execution environ-

ment).

• Works well with other existing web technologies.

2

Chapter 1: Introduction

Figure 1.2: How Browser-based Cryotojacking Works

WASM has been developed with the particular focus of making it secure. The secu-

rity model of WASM is centred around (1) protecting users from applications which

are malicious or have bugs (2) equipping developers with useful tools to develop safe

applications and mitigating such issues. WASM provides the following features [8] [9]

which comply with the security model:-

• WASM applications run in a secure and sandboxed environment, which means that

they cannot directly access other system resources. This protects against security

vulnerabilities and prevents malicious code from accessing sensitive information.

• The WASM compiler creates a Control Flow Graph (CFG) during compilation

which guarantees the Control-Flow integrity at runtime for all types of function

calls. Therefore, the application will fail if it calls a function that is not expected.

• Developers can define the resources including memory, network and files that are

required to be accessed by a module. This restricts the capabilities of a module

preventing it from accessing unauthorized resources.

• Developers can define the resources including memory, network and files that are

required to be accessed by a module. This restricts the capabilities of a module

preventing it from accessing unauthorized resources.

• Indirect function calls are checked at runtime to make sure the correct function is

3

Chapter 1: Introduction

called. It is not possible to overwrite a return pointer, so the call stack is protected

and invulnerable to buffer overflow which ensures safe function returns.

• WASM only accesses a linear memory implemented in managed buffers in a limited

area where all reading and writing of data is done. Bounds of accessing the linear

memory are checked at the regional level.

• Traps are generated in case of any abnormal behaviour which are used to end the

application execution and intimate execution environment about the issue.

• Being a statically typed language, any type of errors are caught at compile time

rather than runtime reducing the risk of vulnerabilities such as buffer overflows

and memory leaks.

WASM also has some potential security issues, given its early days of inception:-

• Even though WASM runs in a sandboxed environment and has access to its linear

memory, still supports certain type-unsafe language i.e. WASM binaries suffer

from different memory bugs like buffer overflows due to C/C++ [10].

• Malicious WASM code/ binaries generated from malicious high-level code in the

first place to steal resources i.e. cryptojackers (cryptomining malware) [10] [11],

which is further complicated by the use of WASM code obfuscation techniques.

• There are no inherent ways to check the integrity of WASM binaries [12] which

could result in the execution of tampered or corrupted WASM applications if

remain unchecked.

Since the Bitcoin white paper published by Satoshi Nakamoto [13], cryptocurrencies

have revolutionized the modern economy by offering alternate ways for financial trans-

actions and investments. Major cryptocurrencies like Bitcoin require special hardware

for efficiently solving hash puzzles and minting cryptocurrency. Monero (XMR) cryp-

tocurrency, launched in 2014, was designed to provide enhanced privacy and anonymity

for its users with the promise of untraceable transactions [14]. Monero is based on the

CryptoNight hashing algorithm. The algorithm allows cryptomining to run on limited

resources of CPU and GPU instead of using specially designed ASICs. Coinhive is a

cryptocurrency mining service that relies on a small chunk of code designed to be in-

stalled on websites [15]. It provided Web Assembly/JavaScript-based code that websites

4

Chapter 1: Introduction

could incorporate to make visitors’ machines mine Monero. Like with any other emerg-

ing technology, the increase in usage and value of cryptocurrencies has also attracted

malicious actors to illicit gains through cryptojacking. Cryptojacking, also sometimes

referred to as drive-by or malicious cryptomining, involves unauthorized and stealthy

use of computing resources to mine cryptocurrencies, often without the permission or

knowledge of the users as most cryptojacking software is designed to stay hidden from

users. WebAssembly (Wasm) has provided a new platform for cryptojacking attacks,

enabling adversaries to deploy stealthy and resource-efficient use of victim resources [16]

for mining operations within web browsers especially due to its performance gains over

traditional JavaScript as it allows execution of code at near-native speed. Therefore,

Wasm-based mining is the most used technique for cryptojacking attacks. These ma-

licious activities consume substantial processing resources of users’ devices leading to

reduced system performance, increased electrical consumption and potential financial

losses for victims. Fig.2 explains a working mechanism of browser-based cryptojacking.

Similarly, Coinhive’s code was quickly abused: mining script is frequently used by mal-

ware authors to mine Monero using the user’s CPU resources without their knowledge

and consent [17] [18]. This misuse of Coinhive scripts by malicious entities led to its clo-

sure in March 2019 [19]. Even though it is not being maintained, cryptojacking malware

is still in use.

The potential for exploiting Wasm for illegal crypto mining continues to grow with

the increase in its adoption for web application development. Detecting and mitigat-

ing these attacks is essential for preserving user trust and confidence in web browsing

experiences. This has led to the development of various tools and mechanisms which

apply different techniques for the detection of cryptojacking. In this research we have

carried out a comprehensive review of existing cryptojacking detection techniques that

particularly focus on WebAssembly, duly highlighting the gaps and challenges posed by

them. Details of these mechanisms are discussed in Section 2. Furthermore, we intro-

duce a novel framework; an AI-driven WebAssembly analysis engine designed to detect

WebAssembly-based cryptojacking. The core of the proposed framework is based on

static analysis of Wasm binaries that distinguish malicious cryptojacking from benign

ones.

5

Chapter 1: Introduction

1.2 Motivation

Research is being carried out to find innovative and accurate techniques for detection

of malicious cryptojacking WASM binaries. Some tools exist for the detection of same

however, they face certain challenges.

• Many techniques are prone to code obfuscation techniques.

• Tools do not cover all intrinsic characteristics of Wasm binaries which may result

in false negative results.

• Many of the proposed solutions tend to suffer from more computational overhead

and require administrator privileges to run.

• Keeping in view the challenges posed by previous techniques, there exists a consid-

erable margin for improvement in Web Assembly based cryptojacking detection.

1.3 Problem Statement

Cryptojacking malware is an ever-evolving field. The adversary can take different ac-

tions such as code obfuscation, changing strings and function names [16], using encrypted

communication [20] etc to evade any detection mechanisms which makes their detection

even more difficult. Static code analysis depending on a single detection mechanism has

been prone to code obfuscation techniques [16]. Two more research works have inves-

tigated the possibility of evading detection techniques by cryptojacking WebAssembly.

Bhansali et al. [11], studied different source code obfuscation techniques for both benign

and malicious (cryptojacking malware) WASM applications, compiled from C language

only, which were found to be very effective. They fed both un-obfuscated and obfus-

cated versions of applications to “MINOS” which showed the least promising results in

detecting obfuscated applications, having an 18.75% success rate as well as producing

7.7% false positives. J. Arteaga et al. [21], carried out automatic binary diversification

and byte code transformations at Wasm level using WASM-mutate of 33 WebAssembly

cryptojacking binaries to evade cryptojacking detectors. The evasion technique was eval-

uated against two malware detectors: VirusTotal and MINOS. The variants of WASM

cryptojacking were able to evade in 90% of cases for VirusTotal and 100% for MINOS.

Both the research works showed promising results and that detection evasion is very

6

Chapter 1: Introduction

much possible through source code obfuscation or byte code level diversification. Dy-

namic analysis-based detection systems usually tend to suffer from more computational

overhead, require administrator privileges and more time to run [20]. They also have less

accuracy due to interference from other running processes and comparatively higher false

positive rates. Also, dynamic analysis running may affect user experience. Similarly,

a lot of other mechanisms used only a single technique for the detection of malicious

Wasm binaries which can sometimes be evaded and may generate false negative results.

1.4 Research Objectives

The main objectives unfolding our research comprise of following objectives:-

• Performing thorough survey of Web Assembly (WASM) by analyzing its advan-

tages, weaknesses, and security issues.

• A framework for detection of Web Assembly based cryptojacking using static anal-

ysis.

• Comparative analysis of the proposed framework in relatio to other tools to mea-

sure its efficacy.

1.5 Contributions

The principal contributions of the research work are enumerated below:-

• A novel unified framework has been proposed which combines static analysis and

AI for detecting Wasm-based cryptojacking.

• Preparation of own dataset using WASM binaries collected from open source which

is subsequently used to train and evaluate the framework for detection accuracy.

• Address the gaps in existing tools as well as improve the accuracy of detecting

malicious Wasm binaries through the proposed framework.

• The proposed framework gives a detection accuracy of 98.5% with only 0.78% FN

rate.

7

Chapter 1: Introduction

• A comparative analysis of the proposed framework with other tools and most

specifically two malware detection tools: VirusTotal and Malwarebytes.

1.6 Thesis Outline

The following chapters comprise the distribution and organization of the research work:-

• Chapter 1: A brief introduction is mentioned, followed by the problem statement.

Then motivation/reason for doing this research is mentioned. Research objectives

are highlighted and in the end, contributions we intend to make through this

research are duly listed.

• Chapter 2: Presents a brief literature review of web assembly and related work

on Wasm-based cryptojacking detection tools.

• Chapter 3: Outlines the proposed framework’s implementation methodology.

• Chapter 4: Presents the results and performance metrics for evaluation of the

proposed framework along with its comparative analysis with other tools and two

general-purpose malware detection platforms:VirusTotal and MalwareBytes.

• Chapter 5: Mentions the strengths and limitation of the framework as well as

offers future research works and avenues for further improvements in the area of

research.

• Chapter 6: This chapter summarizes the research with the conclusion drawn.

8

Chapter 2

Literature Review

2.1 JavaScript

JavaScript, often referred to as the "language of the web," is a versatile programming

language that plays an important for development of web. JavaScript, initially developed

by Netscape, has become a widely used and robust scripting language. It is primarily

known for its compatibility with web browsers to create dynamic as well as interactive

web pages. JavaScript is a lightweight language which is interpreted during runtime and

based on object orientation. It is compatible with imperative, functional, and event-

driven programming paradigms. JavaScript is often employed for client-side scripting,

enhancing user experience by allowing developers to create responsive interfaces. Over

the years, the language has expanded in addition to the web browser environment as

it can also be used for development of server-side applications through Node.js, mobile

apps through React Native, Ionic, and even in Internet of Things (IoT) related projects.

2.1.1 Usage of JavaScript

JavaScript is used to create dynamic as well as interactive web pages. It is com-

monly used to perform tasks such as form validation, DOM manipulation, asynchronous

communication (AJAX), and animation. JavaScript frameworks and libraries, such as

jQuery, Angular, and React, have gained popularity, simplified the development process,

and fostered the creation of sophisticated web applications. Moreover, developers can

also use JavaScript for both client and server-side development using Node.js, which is

JavaScript’s server-side counterpart. Node.js, allows developers to use the same language

9

Chapter 2: Literature Review

for both client and server-side development. This unification streamlines the develop-

ment process, enhancing code re-usability and facilitating the creation of scalable and

efficient applications.

2.1.2 Advantages of JavaScript

• Versatility. JavaScript’s versatility is a key strength. It is not limited to web

development and can be used across various platforms and environments.

• Ease of Learning. JavaScript’s syntax is relatively straightforward, making it

accessible to both novice and experienced developers. Its ubiquity in web devel-

opment also means a vast pool of resources for learning and problem-solving.

• Interactivity. JavaScript enables the creation of dynamic and interactive user

interfaces, providing a more engaging user experience.

• Community Support. JavaScript boasts a large and active community. This

fosters collaboration, knowledge sharing, and the continuous improvement of the

language through the development of new frameworks, libraries, and tools.

2.1.3 Dis-Advantages of JavaScript

• Browser Compatibility. JavaScript behaviour may vary across different browsers,

requiring developers to implement browser-specific solutions to ensure consistent

performance.

• Security Concerns. As a client-side scripting language, JavaScript is susceptible

to security vulnerabilities, such as cross-site scripting (XSS) attacks. Developers

must implement proper security measures to mitigate these risks.

• Single-threaded Execution. JavaScript’s single-threaded nature can lead to

performance bottlenecks in computationally intensive tasks. This limitation can

be addressed through techniques like asynchronous programming and the use of

web workers.

10

Chapter 2: Literature Review

2.2 WebAssembly

WebAssembly (Wasm) is a binary instruction format that aims to complement JavaScript

by providing a low-level, efficient programming language for the web. While JavaScript

excels in certain areas, it has inherent performance limitations, especially in tasks re-

quiring extensive computational power. WebAssembly addresses this gap by allowing

developers to write performance-critical code in languages like C, C++, and Rust and

then compile it to run in the browser. The need for WebAssembly (Wasm) arises from

the evolving landscape of web development, where the demand for more complex and

performance-intensive applications has outpaced the capabilities of traditional web tech-

nologies, including JavaScript. Below are several key reasons that highlight the growing

need for WebAssembly:

• Performance Optimization. Modern web applications often involve resource-

intensive tasks such as complex calculations, data processing, and graphics ren-

dering. As an interpreted language, it can sometimes struggle to deliver opti-

mal performance in these scenarios. WebAssembly allows developers to write

performance-critical code in other programming languages like Rust, C or C++,

which can then be compiled to a binary format that runs at near-native speed.

This is particularly beneficial for applications requiring real-time processing, sim-

ulations, games, and other computationally intensive tasks.

• Language Diversity and Code Reusability. Multiple programming languages

are supported by WebAssembly, giving developers the freedom to select the lan-

guage that best suits their level of experience or the demands of a particular

task. This enables the integration of existing code bases, allowing developers to

leverage legacy code or utilize languages that are better suited for certain tasks.

By supporting a variety of languages, WebAssembly facilitates the reuse of code

across different platforms, fostering a more efficient development process. Devel-

opers can use the same codebase for both web and non-web applications, reducing

redundancy and maintenance efforts.

• Improved Loading Times and Efficiency. WebAssembly binaries are typically

smaller and load faster than equivalent JavaScript files. This is particularly advan-

tageous in scenarios where quick loading times are critical for user experience, such

11

Chapter 2: Literature Review

as in online games, multimedia applications, and interactive simulations. Smaller

file sizes mean reduced bandwidth requirements, which is beneficial for users with

slower internet connections or those accessing applications on mobile devices.

• Security Enhancements. WebAssembly operates in a sandboxed environment,

isolating its execution from the rest of the web page. This isolation enhances se-

curity by preventing unauthorized access to sensitive resources, mitigating certain

types of security vulnerabilities such as those associated with traditional JavaScript

code execution. WebAssembly is designed to work seamlessly with JavaScript, al-

lowing developers to integrate Wasm modules into existing web applications. This

interoperability ensures a smooth transition for developers who want to enhance

specific parts of their applications with WebAssembly without abandoning their

existing code base. WebAssembly is supported by all major web browsers, ensur-

ing cross-browser consistency. This broad support enables developers to deploy

WebAssembly-powered applications without concerns about compatibility issues.

• Platform-Independent. WebAssembly is designed to be platform-independent,

enabling developers to write code that runs consistently across different operat-

ing systems and architectures. This platform neutrality is crucial for ensuring a

uniform experience for users accessing web applications from various devices and

environments.

2.3 Cryptocurrency

Cryptocurrency is a type of virtual or digital money that runs on decentralised networks

built on blockchain technology and employs encryption for security. Cryptocurrencies

rely on a distributed ledger system for transaction recording and verification in contrast

to conventional currencies issued by governments and central banks. The creation of

Bitcoin in 2009 by an unidentified person known by the alias “Satoshi Nakamoto” sig-

nalled the beginning of cryptocurrencies and opened the door for a wide range of digital

assets. The underlying technology of cryptocurrencies is "Blockchain" which is an im-

mutable, decentralised ledger that keeps track of every transaction made via a computer

network. Transparency, security, and fraud resistance are therefore guaranteed. Each

transaction is grouped into a block, and these blocks are linked sequentially, forming a

12

Chapter 2: Literature Review

Figure 2.1: Working of Blockchain Technology

chain.

In addition to Bitcoin, a plethora of other cryptocurrencies have surfaced, each with

distinct characteristics and objectives. For example, Ethereum introduced smart con-

tracts, which are self-executing contracts with the conditions of the agreement clearly

encoded into code. Whereas “Litecoin” prioritises faster transaction confirmation times

and “Ripple” concentrates on enabling speedy and affordable cross-border payments.

Cryptocurrencies are based on P2P (peer-to-peer) network therefore intermediaries like

banks are not required. Transactions are verified through a process called mining or

consensus mechanisms, depending on the cryptocurrency. Mining involves solving com-

plex mathematical problems, while consensus mechanisms like proof-of-stake rely on

validators who hold a stake in the currency.

The market demand, changes in regulations, and breakthroughs in technology can all

have an impact on the value of cryptocurrencies. Despite obstacles, cryptocurrencies

have become widely accepted, leading to financial technology innovation, and eliminating

the dependency on conventional system of money and banking structures.

2.4 Cryptojacking

Cryptojacking, short for cryptocurrency mining hijacking, refers to the unauthorized

use of computing resources to mine cryptocurrencies. In this malicious practice, perpe-

13

Chapter 2: Literature Review

trators exploit the processing power of computers, servers, or other devices without the

knowledge or consent of the owners. The primary goal is to mine cryptocurrencies like

Bitcoin, Monero, or Ethereum, utilizing the computational power of victims’ machines

to perform the complex calculations required for validating and adding transactions to

the blockchain. As cryptocurrencies gained popularity, so did the methods employed by

cybercriminals to acquire them illicitly. Cryptojacking emerged as a stealthy and finan-

cially motivated form of cyber attack that targets both individuals and organizations.

Unlike traditional cyber threats such as ransomware, which directly demand payment

from victims, cryptojacking operates covertly by harnessing the computational resources

of compromised devices.

The typical scenario involves injecting malicious code, often in the form of JavaScript,

into websites, online ads, or email attachments. Users unknowingly execute these scripts

when visiting compromised websites or interacting with infected content. Once acti-

vated, the scripts initiate the mining process in the background, utilizing the victims’

computing power to solve cryptographic puzzles and mine cryptocurrency. The appeal

of cryptojacking for attackers lies in its subtlety; it can go unnoticed for extended pe-

riods, allowing perpetrators to accumulate cryptocurrency without raising immediate

alarms. The impact on victims includes degraded system performance, increased energy

consumption, and potential hardware wear and tear.

2.4.1 Coinhive and Monero

Coinhive was a JavaScript-based cryptocurrency mining service that gained notoriety

for its controversial use in browser-based mining of Monero (XMR) cryptocurrency.

Launched in 2017, Coinhive provided a simple way for website owners to monetize their

platforms by utilizing the processing power of visitors’ computers to mine Monero.

Monero, known for its privacy-focused features, became the preferred choice for browser

mining due to its efficient mining algorithm, CryptoNight. Unlike Bitcoin, Monero’s

privacy-centric design obscures transaction details, making it well-suited for discreet

browser-based mining. Coinhive’s script, when embedded in a website, would execute

on visitors’ browsers, harnessing their CPU power for cryptocurrency mining without

explicit consent. However, the practice of in-browser cryptocurrency mining without

user consent garnered significant criticism. Many users considered it a violation of their

14

Chapter 2: Literature Review

computer resources and privacy, leading to negative perceptions of both Coinhive and

Monero.

In response to growing backlash, major web browsers implemented measures to block

or restrict Coinhive’s scripts, and antivirus software flagged them as potentially un-

wanted applications. Coinhive eventually shut down its services in early 2019, citing

economic inviability and the negative impact on Monero’s reputation. While Mon-

ero itself is a legitimate privacy-focused cryptocurrency with robust security features,

Coinhive’s association with unauthorized and intrusive mining practices underscored

the ethical challenges surrounding cryptocurrency usage. The incident highlighted the

importance of responsible and transparent implementation of cryptocurrency-related

services to maintain user trust and uphold ethical standards in the evolving landscape

of digital currencies.

2.4.2 CryptoNight Algorithm

CryptoNight is the hashing algorithm employed by Monero (XMR), a privacy-focused

cryptocurrency. Introduced in 2013 by an anonymous user known as "Bytecoin," Cryp-

toNight is designed to be ASIC-resistant, meaning it resists efficient mining by spe-

cialized hardware (Application-Specific Integrated Circuits), promoting a more decen-

tralized network and inclusive mining opportunities for individuals. The significance of

the CryptoNight algorithm in Monero lies in its focus on privacy and security. Unlike

Bitcoin, where transactions are transparent and traceable on the blockchain, Monero

utilizes features like ring signatures, confidential transactions, and stealth addresses.

CryptoNight supports these privacy features by obfuscating transaction details, making

it difficult to trace the sender, recipient, and transaction amount.

CryptoNight’s ASIC resistance also aligns with Monero’s commitment to decentraliza-

tion. By preventing the dominance of specialized mining hardware, it encourages a

broader range of individuals to participate in the mining process, promoting a more

democratic distribution of mining power. It is essential to note that the landscape of

cryptocurrency mining is dynamic, and efforts to maintain ASIC resistance have led

to periodic updates and adjustments to the CryptoNight algorithm. Overall, Cryp-

toNight’s significance in Monero is rooted in its contribution to privacy, security, and

the ethos of decentralized mining within the cryptocurrency ecosystem.

15

Chapter 2: Literature Review

2.4.3 Cryptojacking through Web Applications

Cryptojacking through web applications has emerged as a significant cybersecurity

threat, exploiting unsuspecting users’ computing resources to mine cryptocurrencies

without their knowledge or consent. This malicious activity involves embedding cryp-

tocurrency mining scripts into websites, which are then executed on visitors’ browsers,

leveraging their processing power to mine digital currencies. The perpetrators of cryp-

tojacking seek to capitalize on the increasing popularity of cryptocurrencies and the

rising value of coins like Bitcoin and Monero. They discreetly inject JavaScript or other

scripting languages into compromised websites or through malicious ads, exploiting vul-

nerabilities in poorly secured web applications. When users visit these compromised

sites, the embedded scripts activate, utilizing the visitors’ device resources to perform

the complex mathematical calculations required for cryptocurrency mining.

The impact of cryptojacking on web application users can be profound. It can lead to

sluggish performance, increased energy consumption, and potential hardware damage,

as the mining process strains the CPU and other components. Additionally, users may

experience reduced battery life on mobile devices. Preventing and mitigating crypto-

jacking involves implementing robust security measures for web applications. Regular

security audits, patching known vulnerabilities, and employing content security policies

are crucial steps. Website owners can also use specialized tools to detect and block

cryptojacking scripts. Furthermore, end-users can protect themselves by using browser

extensions that block known mining scripts and keep their software and security tools

updated.

As the cryptocurrency landscape continues to evolve, vigilance against cryptojacking

remains essential. In addition, individuals and organizations must implement robust

cybersecurity measures, including regular software updates, network monitoring, and

the use of security tools that can detect and block malicious mining scripts. As the

threat landscape continues to evolve, awareness and proactive defenses are crucial to

safeguarding against the stealthy menace of cryptojacking.

16

Chapter 2: Literature Review

2.5 Analysis (Static vs Dynamic analysis)

Analysis is essential to gain insightful knowledge and making calculated informed de-

cisions in many fields of work. Two fundamental types of analysis, static and dynamic

analysis, differ in their approaches and objectives.

2.5.1 Static Analysis

Static analysis is a method that examines software, code, or data without executing it.

It is a process of inspecting and evaluating a program’s source code or artifacts to iden-

tify potential issues, vulnerabilities, or compliance violations. Common static analysis

techniques include code reviews, syntax checking, and automated tools that analyze the

code structure. Static analysis is valuable for identifying issues early in the development

process, enhancing code quality, and ensuring compliance with coding standards. It

is particularly useful for security assessments, as it can uncover vulnerabilities without

running the code.

2.5.2 Dynamic Analysis

Dynamic analysis, in contrast, involves the evaluation of software or systems while they

are running or in operation. It includes techniques such as testing, monitoring, and

profiling to assess the program’s behaviour, performance, and interactions with its en-

vironment. Dynamic analysis is well-suited for detecting runtime issues, memory leaks,

and performance bottlenecks. Common dynamic analysis methods include penetration

testing, runtime code instrumentation, and behaviour monitoring. This type of analysis

provides insights into the actual execution of the system, making it valuable for assessing

real-world performance and functionality.

In the succeeding paras we give a comprehensive review of WebAssembly as well the

cryptojacking detection.

2.6 Review of WebAssembly

Even though relatively new technology, a fair amount of research has been carried out to

date on Web Assembly. Vili-Petteri Niemela [7] carried out a basic study on WASM pro-

17

Chapter 2: Literature Review

Table 2.1: Comparison of Static and Dynamic Analysis
Aspect Static Analysis Dynamic Analysis

Timing Performed before runtime. Performed during runtime.

Execution Carry out analysis without executing. Evaluates code while it is running or in operation.

Scope Focuses on code/ binary structure and artifacts. Assesses behaviour, performance, and interactions.

Purpose Identifies potential issues early in development. Detects runtime issues, performance bottlenecks.

Examples Code reviews, syntax checking, automated tools. Testing, monitoring, profiling, runtime instrumentation.

Use Cases Security assessments, compliance checks. Performance analysis, debugging, real-world behaviour.

Advantages Early issue detection, compliance assurance. Real-world insights, performance evaluation.

Limitations Limited to static code analysis. May miss issues not encountered during runtime.

Complementarity Provides a foundation for early issue detection. Offers insights into runtime behavior and performance.

Common Techniques Code review, syntax analysis, automated tools. Testing, profiling, runtime code instrumentation.

viding a general introduction of WASM along with its applications and security features.

It also gives examples of converting a couple of high-level language (RUST) programs to

WASM: one was a simple Hello World and the other was a basic QR code reader appli-

cation. M. Kim et al. [10] surveyed security enhancement techniques of WASM binaries

with a quantitative and qualitative analysis as well as limitations of each technique.

They focused more on the deployment of WASM in a cloud-native environment. The

survey divided the security techniques into 2 types (1) detection of malicious WASM

binaries and (2) protecting WASM binaries including their vulnerability analysis.

Tushar and Biju R Mohan [22] carried out a comparative analysis of JavaScript and

WASM. They used 2 types of programs, a recursive Fibonacci function and an iterative

function to check a prime number, in JS and WASM (compiled from C, Rust & GO).

They measured the resources (CPU and memory usage) utilized and time taken by

running the programs in 2 different types of browsers i.e., Mozilla and Firefox. The

results show that while JavaScript outperforms WASM when computations are easy but

WASM is far superior in handling large calculations. According to the results, WASM

is better than JavaScript in handling large calculations but JavaScript outperformed

WASM when the computations are easy.

Y. Yan et al. [23], conducted a study regarding the performance of WebAssembly

applications and compared it with JavaScript. They performed measurements on three

different sets of programs with diverse settings. Findings include:-

• The performance of Wasm is dependent on compiler and runtime environment.

• The limited effect of JIT and compiler optimizations on Wasm.

18

Chapter 2: Literature Review

• More memory utilization by Wasm as compared to JavaScript.

Ghafari et al. [24], investigated whether porting C programs to WASM affects the

security of programs or not. They compiled 17802 programs, deterministic and termi-

nating, having common vulnerabilities to 64-bit x86 native code and WASM binaries.

They concluded that the running 4911 binaries produced varied results and that was

due to 3 different root causes (1) different standards of libraries implementations (2)

low security measures in Web Assembly (3) different semantics of the execution envi-

ronments. B. Litzer [25] suggested an in-place interpreter for WASM rather than using

optimized compilers or baseline compilers for creating WASM binaries. He carried out a

comparative analysis of binaries created using optimizing compilers, baseline compilers,

rewriting interpreter and using his interpreter which produced better results in terms of

processing time and space overhead utilized.

2.7 Work Related to Cryptojacking

There has been a huge amount of work undertaken for the detection of web-based/

in-browser cryptojacking malware. However, here we mention only those related to

Wasm-based cryptojacking, further categorized as per type of analysis:

• Static Analysis. Naseem et al. [20], proposed a lightweight and fast static

analysis-based mechanism, MINOS, that uses deep learning (an image-based clas-

sification technique) to detect cryptojacking Wasm with a detection accuracy of

98.97%. Similarly, Konoth et al. [26] suggested MineSweeper, which is based on

the knowledge of intrinsic components, hashing function execution, of cryptomin-

ing algorithm (CryptoNight). It also deals with evasion techniques by utilizing

an obfuscation-resilient approach of monitoring CPU cache events at run time to

identify crypto miners based on suspicious memory access patterns.

• Dynamic Analysis. Wang et al. [16] proposed SEISMIC, which carries out dy-

namic analyses of Wasm binaries by instrumenting them to profile specific cryp-

tomining instructions i.e., XOR instructions during runtime. It achieved 98% ac-

curacy in detecting crptomining Wasm with negligible false positives. Bian et al.

[27] introduced MineThrottle, which also used a similar approach of instrumenting

Wasm modules for counting specific instructions, achieving 0% false positive and

19

Chapter 2: Literature Review

1.83% false negative. Both SEISMIC and MineThrottle also use machine learning

models for the classification of Wasm modules as benign or malicious. Romano et

al. [28] proposed MinerRay, which identifies Wasm-based cryptojacking by dynam-

ically analyzing their control flow graph during execution and detecting specific

cryptographic patterns usually associated with cryptojacking.

• Hybrid Analysis. Kharraz et al. [29] proposed a method which used seven dis-

tinct features relevant to cryptojacking to train a Support Vector Machine (SVM)

model along with searching for cryptomining function names to detect cryptojack-

ing, achieving 97.9% TPR and 1.1% FPR. Lehmann et al. [30] proposed a general-

purpose framework, Wasabi, for dynamically analyzing WebAssembly modules. It

is based on binary instrumentation of Wasm modules and provides high-level API,

written in JavaScript, to carry out different types of dynamic analysis i.e., log

analysis, call graph extraction, taint analysis etc.

Table 1 provides a summary of all detection tools for cryptojacking based on Wasm.

Table 2.2: Summary of WebAssembly-Based Cryptojacking Detection Tools

Year

Tool

Name
Type Brief Overview of Working Dataset Results

Training Evaluation

2018

Mine-

Sweeper

[26]
Static

· Based on the knowledge of

intrinsic components of cryp-

tomining algorithm (Cryp-

toNight).

· Can also deal with eva-

sion techniques (obfuscation)

by observing events caches in

CPU during running.

Crawled Alexa

TOP 1M web-

sites to collect

40 unique

Wasm Binaries

No False

positive

20

Chapter 2: Literature Review

2021

MINOS

[20]

· Converts Wasm binaries to

greyscale images.

· Implements a Convolu-

tional Neural Network (CNN)

classifier to distinguish be-

tween cryptojacking or benign

images.

150 mali-

cious and

benign

binaries

each.

Compiled from

PublicWWW

and Tranco

·

98.97%

success

rate

· Low

TNR

and

FPR

2018

SEIS-

MIC

[16]

Dy-

namic

· Instrumenting Wasm

binaries profile-specific cryp-

tographic instructions i.e.,

XOR.

· Use machine learning mod-

els for classification

12 applications

(5 mining and

7 non-mining)

· 98%

· Neg-

ligible

FPR

2020
MineThrot-

tle [27]

· Block-level instrumentation

of Wasm

· Use machine learning mod-

els for classification

Alexa TOP 1M

websites

· 0%

FPR

· 1.83%

FNR

2020

Min-

erRay

[28]

· Analyses Cryptojacking

Wasm modules’ control

flow graph during execu-

tion and detecting specific

cryptographic patterns

Alexa TOP 1M

websites
N/A

2019

Out-

guard

[29]

Hy-

brid

· Used seven distinct features

relevant to cryptojacking to

train a Support Vector Ma-

chine (SVM) model

Alexa Top 1M

websites

· 97.9%

TPR

· 1.1%

FPR

21

Chapter 3

Methodology

3.1 Intrinsic Characteristics of Cryptojacking Malware

All types of cryptojacking malware have some peculiar features which make them dis-

tinctive from other benign applications. The authors of cryptojacking malware have

to implement optimized proof-of-work (PoW) schemes that use less computational re-

sources. As depicted by previous studies, almost all malicious cryptojacking implemen-

tations have similar intrinsic structures based on some encryption algorithms and the

core features remain the same which are essential for cryptomining operations [17, 25].

i.e., hash calculations, utilizing high computational resources, opening communication

channels with the mining pool through web sockets, generating web workers threads

etc. Furthermore, the size of cryptojacking wasm binaries is usually small as compared

to benign applications (games and graphics) which usually have iterative functions. In

the proposed framework, we have focused on the following important features of cryp-

tojacking malware, especially used in the CryptoNight algorithm, which are essential to

perform any detection through static analysis:

3.1.1 Semantic Signature Matching

Semantics refers to the meaning or interpretation of language, focusing on how words,

phrases, and symbols convey significance within a given context. In computing and

information technology, semantics is crucial for understanding the intent and function

of data or programming languages. Semantic Signature Matching is a method used in

cybersecurity to identify and detect patterns associated with malicious code or threats.

22

Chapter 3: Methodology

It involves creating unique semantic signatures that capture the behavioural aspects

and characteristics of specific malware or attack patterns. These signatures go beyond

traditional static signatures and instead focus on understanding the intent and actions

of the code. By employing Semantic Signature Matching, cybersecurity systems can

proactively recognize and thwart sophisticated threats, enhancing the overall resilience

and responsiveness of security measures in the ever-evolving landscape of digital threats.

Cryptojacking Malware have distinctive computation semantics whereby they have a

higher percentage of typical cryptographic instructions as compared to benign applica-

tions. Cryptocurrency mining algorithms usually have iterative or repetitive instruc-

tions. Moreover, only a few blocks of code use the majority of CPU time and hashing

code also has certain specific cryptographic operations (rotate, shift, and XOR opera-

tions). Moreover, the semantics are somewhat difficult, not impossible, to obfuscate as

they are intrinsic to cryptojacking functionality but at the cost of performance. The

five most executed specific operations in applications are identified [20] i.e. i32.shl,

i32.add, i32.shr_u, i32.and, and i32.xor. In semantic signature matching, profiling of

the above-mentioned instructions is done which shows a distinctive pattern of crypto-

mining malware. Fig 3.1 clearly shows a higher percentage of rotate, shift, and XOR

operations in crypto-based applications as compared to the benign ones (first three are

crypto applications and next three are benign).

Figure 3.1: Comparison of Instructions between Crypto and Benign WASM

23

Chapter 3: Methodology

Figure 3.2: Word Cloud of Strings and Keywords

3.1.2 Strings & Pattern Matching

In computer science, strings are sequences of characters, typically used to represent text

or data. String manipulation is a fundamental operation in programming, involving

tasks such as searching, modifying, and extracting information from these character

sequences. Pattern matching is a powerful concept within string manipulation, en-

abling the identification of specific patterns or sequences of characters within a larger

text. Pattern matching involves searching for a defined sequence or structure within a

string, making it essential for tasks like text search algorithms, data parsing, and regular

expressions. Algorithms like the Knuth-Morris-Pratt and Boyer-Moore are commonly

employed for efficient string pattern matching. This capability is crucial in various

applications, including text processing, data validation, and information retrieval, con-

tributing to the efficiency and functionality of algorithms and software systems that deal

with textual data.

Cryptominig codes contain certain function names and strings, if not obfuscated, which

are only specific to them i.e. cryptonight_hash, cryptonight_create, cryptonight_destroy,

etc. A list of relevant strings and keywords is curated after analyzing different crypto-

mining applications. Even though strings and names can be easily obfuscated they do

provide some insight into distinguishing malicious Web Assembly Binaries.

24

Chapter 3: Methodology

3.1.3 Call Flow Graph

A Call Flow Graph (CFG) is a visual representation that illustrates the sequence of

function calls and the flow of control within a software program. It is a valuable tool

in software analysis and debugging, providing insights into the program’s structure and

the interactions between different functions or procedures. In a Call Flow Graph, nodes

represent functions or methods, and directed edges depict the flow of control between

them. The graph reflects the order in which functions are called during the execution of

the program, creating a visual map of the program’s execution paths. This visualization

aids developers in understanding the program’s architecture, identifying potential issues,

and optimizing code.

CFGs are particularly useful in security analysis, software testing, and debugging. They

assist in identifying vulnerabilities, analyzing code coverage, and comprehending the

impact of code changes. Security analysts often use CFGs to trace the flow of sensitive

information or identify potential entry points for security exploits. By providing a clear

and concise representation of a program’s execution, Call Flow Graphs enhance devel-

opers’ ability to comprehend complex software systems, facilitating effective problem-

solving, debugging, and optimization processes. They serve as a valuable visual aid in

software engineering and play a crucial role in enhancing the overall understanding of

program behaviour.

As mentioned earlier that a lot of cryptojacking malware is based on Coinhive’s Cryp-

toNight algorithm as this is the most optimized and lightweight algorithm which can

run on reduced resources. Any application of the CryptoNight algorithm or its variant

will have a similar call graph structure whereas benign applications will be the least

similar. A visual depiction of similarity and difference between CryptoNight and benign

applications is shown in subsequent diagrams.

3.1.4 Cryptographic Primitives

Cryptographic primitives are fundamental building blocks in the field of cryptography,

serving as the basic components for constructing secure communication and information

protection systems. These primitives are mathematical algorithms or protocols designed

to provide essential security services, such as confidentiality, integrity, authentication,

and non-repudiation. Some common cryptographic primitives include:-

25

Chapter 3: Methodology

Figure 3.3: Call Flow Graph - Standard CryptoNight

Figure 3.4: Call Flow Graph - Obfuscated CryptoNight Implementation

26

Chapter 3: Methodology

Figure 3.5: Call Flow Graph - Benign Application

27

Chapter 3: Methodology

Figure 3.6: Crypto Primitives Fingerprinting in WASM Binaries

• Symmetric Encryption. Involves using only one secret key for both encryption

and decryption. Popular algorithms include DES (Data Encryption Standard) and

AES (Advanced Encryption Standard).

• Asymmetric Encryption. Carries out encryption and decryption using a pair

of keys, known as private and public keys. Examples of asymmetric algorithms

include ECC (Elliptic Curve Cryptography) and RSA (Rivest-Shamir-Adleman)

and which are most popular.

• Hash Functions. Transform data into fixed-length strings of characters, known

as message digest or hash values. Hash functions such as SHA-256, SHA-512

(Secure Hash Algorithm) are crucial for ensuring data integrity. Other examples

of hash functions include Keccak, Groestl, Blake, Skein etc.

• Digital Signatures. Integrity and authenticity of digital messages are provided

by digital signatures. Algorithms like RSA and DSA (Digital Signature Algorithm)

are commonly used for generating such signatures.

• Key Exchange Protocols. Facilitate secure communication by allowing par-

ties to establish shared secret keys over insecure channels i.e. Diffie-Hellman and

Elliptic Curve Diffie-Hellman (ECDH).

Cryptographic primitives form the foundation of secure communication, data protection,

and authentication in various applications, including secure messaging, online banking,

and e-commerce. Robust and well-established cryptographic primitives are essential

for building secure systems that can fend off sophisticated attacks and guarantee the

confidentiality and integrity of sensitive data.

28

Chapter 3: Methodology

Figure 3.7: Overview of Framework

The CryptoNight algorithm employs certain cryptographic functions which are essential

for its working. Algorithms such as AES, Keccak, Groestl, BLAKE, Skein are predom-

inantly found in crypto-based applications and all variants of CryptoNight use these

functions for required calculations.

3.2 Architecture of Proposed Framework

Figure 3.3 gives an overview of the proposed framework components. The technical

details of the proposed framework are outlined in this section. The framework is imple-

mented in Pyhton3 with PowerShell scripts for automation. The core components and

functionalities of the framework are mentioned below:-

3.2.1 Wasm Binary Collector

The WebAssembly (Wasm) Binary Collector is a feature in our proposed framework

that facilitates the efficient handling and management of WebAssembly binary code. It

acts as a collector for these binary modules and optimizing their retrieval. This module

automatically collects Wasm binaries from the sites visited by the user and saves the

29

Chapter 3: Methodology

Wasm binaries to local directory.

3.2.2 Wasm to WAT conversion

The wat2wasm tool is part of the WebAssembly Binary Toolkit (wabt), a suite of tools

for working with WebAssembly. Specifically, wat2wasm converts WebAssembly Text

Format (WAT) to the binary format (Wasm). WAT is a human-readable representation

of WebAssembly, whereas Wasm is the compact, binary format that browsers and run-

times execute. WebAssembly (Wasm) to WebAssembly Text Format (WAT) conversion

is the reverse process, allowing developers to convert the binary Wasm code back to

the human-readable WAT format. This conversion can be useful for debugging, un-

derstanding code structure, and making manual modifications before recompiling and

deploying the WebAssembly code. The collected binaries are then converted to WAT

using the wasm2wat tool of The WebAssembly Binary Toolkit (WABT) [31] for further

evaluation.

3.2.3 Processing and Static Analysis

Moser et al. [32] explained that combining multiple independent techniques can effec-

tively detect a wide range of malware and have greater detection efficacy as compared

to using a single one. Therefore, our framework will mainly carry out static analysis

based on the following techniques:-

• Individual Crypto Instructions Profiling. This module counts the overall

number of specific cryptographic operations executed in the application. Crypto-

mining applications have a higher count of rotate, shift and XOR operations as

compared to benign applications.

• Pattern Matching using Yara Rule. YARA rules are a set of syntax-based

patterns used in the YARA tool for identifying and classifying malware or spe-

cific patterns within files or data streams. YARA is an open-source pattern or

string-matching tool that enables cybersecurity professionals, and analysts to cre-

ate customized unique rules for detecting and categorizing malicious code based

on features such as strings, regular expressions, and binary patterns. The signifi-

cance of YARA rules lies in their ability to enhance threat detection and response

30

Chapter 3: Methodology

capabilities. Security experts can create YARA rules tailored to the unique sig-

natures and behaviours of known malware or suspicious patterns. When applied

to a system or network, YARA rules can efficiently identify and flag potential

threats, aiding in the early detection of malicious activity. This makes YARA

rules a valuable asset in the arsenal of cybersecurity tools, empowering analysts to

proactively identify and mitigate security risks through effective pattern match-

ing and signature-based detection. The Yara rule is used to find the presence of

crypto-related keywords. A carefully curated list of patterns and strings is pre-

pared which is used in the rule to carry out pattern/ string matching and find the

sum of several matches in the Wasm binaries.

• Block Function Crypto Instructions Profiling. In this module, a profile of

functions used in a reference CryptoNight Wasm is prepared based on the ratio of

specific cryptographic operations. The same is calculated for other Wasm binaries

and then compared with the reference profile to find the presence of matching

cryptographic functions.

• Call Flow Graph Similarity. Dot files are generated from the Wasm binaries

which are compared with a standard CryptoNight dot file to calculate a similarity

score (1-0) based on nodes, edges, and overall graph structure. A score of 1 means

a perfect match whereas 0 shows the least similar result.

• Cryptographic Primitives Detection. The presence of these cryptographic

primitives is calculated in any Wasm binary using fingerprinting which is defined

for each primitive based on a certain cryptographic operations count in functions.

The total count of primitives is then noted distinguishing a cryptomining Wasm

from a benign one. A higher count relates to a crypto application.

3.2.4 Detection Classifier

Machine learning is a field of artificial intelligence that empowers computers to discern

patterns and render decisions on their own without explicit programming. In the context

of machine learning, binary classification is a prevalent task wherein the objective is to

categorize input data into one of two classes, commonly denoted as positive (1) or

negative (0). Various classifiers are employed for binary classification tasks, each with

its strengths and applications. Some of the types of classifiers are mentioned below:-

31

Chapter 3: Methodology

• Logistic Regression. It is a linear model used for binary classification which

simulates the chances that a sample belongs to a particular class.

• Support Vector Machines (SVM). SVM aims to find a hyperplane that best

separates data into two classes. It is effective in high-dimensional spaces.

• Decision Trees. Decision trees recursively split data based on feature values,

forming a tree-like structure. They can capture very complex relationships and

are interpretable.

• Random Forest. The Random Forest is a collective technique that constructs

numerous decision trees and amalgamates their predictions to improve accuracy

and resilience.

• Naive Bayes. Naive Bayes are based on Bayes’ theorem and assume independence

among characteristics making them effective for tasks like text classification and

spam filtering.

• K-Nearest Neighbours (KNN). KNN categorizes data by considering the pre-

dominant class among its k-nearest neighbours, making it a simple and effective

algorithm.

• Neural Networks. Deep learning models, particularly neural networks, can be

employed for binary classification tasks, leveraging multiple layers to learn complex

representations.

It is essential to comprehend each classifier’s details to choose the best model for a

given situation. Factors such as dataset size, feature space, interoperability, and com-

putational efficiency influence the choice of classifier in machine learning applications.

Experimentation, understanding the strengths and weaknesses of each algorithm and

iterative refinement are common practices in achieving optimal model performance in

binary classification scenarios.

In this module, the output of all static analysis techniques is combined and fed into

the AI-driven Detection engine, a Random Forest (RF) based classifier. The model is

pre-trained on a dataset of 191 benign and 163 malicious binaries. The result of the

processor is input to the trained model which classifies the binary as either malicious or

benign.

32

Chapter 3: Methodology

3.2.5 Alertify

In case of detection of cryptojacking Wasm binary based on the results of the classifier,

it will provide alerts and notify the user to terminate the program. Users can continue

performing the task as usual if the application is termed as a benign one.

33

Chapter 3: Methodology

Figure 3.8: Detailed Work Flow of Framework

34

Chapter 4

Result And Performance

Evaluation

This section provides details about the dataset gathered to train the framework and the

selection of a machine learning classifier. In addition, the performance of the framework

is also evaluated in detail along with a comparative analysis of own results gathered with

all the tools and specifically two general-purpose malware detection tools: VirusTotal

and Malwarebytes.

4.1 Preparation of Dataset

One of the main challenges of this research was to create a meticulously curated dataset

for the machine learning task to get the maximum performance out of the model. First,

the Web Assembly binaries of both benign and crypto applications were collected from

different sources i.e. research papers, GitHub repositories and visiting Web pages. A

portion of the binaries was collected from MineSweeper [26], SEISMIC [16], Yara [33] and

Musch et al. [34] who have already classified the binaries as malicious and benign. For

the remaining, MinerRay [28] and WasmBench were used, both of which contained 162

and 8448 wasm binaries respectively. WasmBench is one of the largest datasets of Wasm

binaries to date. The wasm binaries of both MinerRay and WasmBench were evaluated

through VirusTotal to further distinguish between benign and cryptojacking binaries

(marked as malicious by either 2 or more engines of VirusTotal). After the collection of

binaries, they were then processed to extract the desired features as already discussed

35

Chapter 4: Result And Performance Evaluation

previously. The final dataset consists of 427 binaries with a binary label of benign and

crypto. The resulting dataset, stored in a CSV file, is imbalanced (255 benign and 172

crypto entries), well-structured, and comparatively small. The first column of the CSV

is the label, and the remaining columns contain a numerical representation of different

extracted features. This dataset is then used to train the framework’s Classifier which

is split into a ratio of 70:30 for training the model and subsequently evaluation.

4.2 Selection of Machine Learning Classifier

Given the nature of the compiled dataset, 2x machine learning classifiers, Linear Support

Vector Machine (SVM) and Random Forest (RF), were shortlisted for training on the

dataset. The main reasons for selecting these classifiers are being lightweight, fast, and

best suited for our dataset:-

4.2.1 Linear Support Vector Machine (SVM)

Support Vector Machine is a type of supervised learning algorithm used for classification

and regression tasks. SVM tried to locate n hyperplane in an n-dimensional space and

distinctly classifies dataset into classes. SVM can aslo deal with both linear and non-

linear data. Linear Support Vector Machine (Linear SVM) is a special case of SVM

where the decision boundary is a linear combination of input features and is especially

used for linearly separable data. Some of its advantages are listed below:-

• A powerful machine learning model commonly used for binary classification tasks.

• Simpler and faster as it is memory efficient, providing a balance between perfor-

mance, computational efficiency and interoperability.

• Good for datasets with a low number of features.

• Is accurate and robust.

4.2.2 Random Forest (RF)

Random Forest is an ensemble learning technique which means combining the predictions

of several models to improve the accuracy and robustness of the results. It uses multiple

36

Chapter 4: Result And Performance Evaluation

decision trees to perform classification tasks and each tree is constructed by selecting

a random subset of the training data, which is called bootstrapping or bagging and

a random subset of features, which is called feature bagging or the random subspace

method. The final prediction is typically the mode (classification) or mean or median

(regression) of the outputs of individual trees. Some of its advantages are listed below:-

• Provides high accuracy in both training and testing datasets.

• Optimally handle categorical and numerical data as well as imbalanced datasets

effectively.

• Less sensitive to outliers or anomalies in the dataset due to aggregation of predic-

tions.

• Less prone to overfitting compared to individual decision trees.

4.3 Results

This section of the study aims to present the outcome of the research and implementation

of the framework conducted to evaluate the effectiveness of detecting malicious crypto-

jacking wasm binaries. It will provide details of the performance accuracy achieved to

demonstrate the efficacy and usability of the proposed framework. Both Linear SVM

and Random Forrest classifiers were then applied to our compiled dataset. A 70:30 ratio

split was used, 70% of the data (298 values) was utilized for training the model and the

remaining 30% (129 values) for testing the performance. The dataset used for training

and evaluation consisted numerical representation of different extracted features of Web

Assembly binaries. Performance of a classification model in machine learning is eval-

uated using several metrics, each with a specific purpose. Accuracy, recall, precision,

and F1 score are commonly used measures to provide insights into different aspects of

a model’s effectiveness which are defined and calculated as follows:-

• Accuracy. Accuracy is the main metric that measures the overall correctness and

efficiency of any model. It is calculated by dividing the number of correctly pre-

dicted instances, that includes both true positives and true negatives, by the total

number of instances. While accuracy offers a general overview of a model’s per-

formance, it can sometimes be misleading in the presence of imbalanced datasets

37

Chapter 4: Result And Performance Evaluation

in which one class is significantly more the other.

Accrcy = (TP + TN)/TP + TN + FP + FN (4.3.1)

• Precision. Precision evaluates the precision of positive predictions which is

calculated as the ratio of true positives to the aggregation of false positives and

true positives. Precision becomes paramount when the expense of false positives

is significant, as seen in detection of fraud or diagnoses of medical issues. A high

precision value signifies the model’s precision in identifying positive instances.

Precson = TP/TP + FP (4.3.2)

• Recall. Recall, also sometimes called as sensitivity, is defined as the ability

of a model to capture all pertinent instances of a positive class. Calculated by

dividing true positives by the sum of false negatives and true positives, recall is

important in scenarios where the expense of false negatives is considerable, like in

disease detection. A high recall value indicates the model’s efficacy in capturing a

substantial large portion of positive instances.

Rec = TP/TP + FN (4.3.3)

• F1 Score. The F1 score offers a fair evaluation of model’s performance and is

measured as harmonic mean of recall and precision. It is significantly important in

scenarios with imbalanced class distributions. The F1 score spans from 0 to 1, with

1 denoting flawless recall and precision. It helps strike a balance between recall

and precision, providing a comprehensive assessment of a model’s effectiveness

across both aspects.

F1 − Score = 2PrecsonRec/Precson + Rec (4.3.4)

• Precision and recall often have an inverse relationship; improving one may lead to

a decline in the other. The F1 score becomes especially important when there is a

need to find a balance between precision and recall, ensuring a well-rounded eval-

uation of the model’s performance, particularly in situations where false positives

or false negatives carry far more significant impacts. These metrics collectively

contribute to a nuanced understanding of a model’s strengths and weaknesses,

guiding practitioners in refining and optimizing their machine learning models.

38

Chapter 4: Result And Performance Evaluation

In addition, results are also depicted in terms of following graphs:

• Confusion Matrix. A confusion matrix is a fundamental tool in machine

learning for assessing the performance of classification models. It provides a com-

prehensive summary of the model’s predictions by comparing them against the

actual outcomes. The matrix is a square table with rows representing the actual

classes and columns representing the predicted classes. In the confusion matrix,

the main diagonal contains the true positive (TP) and true negative (TN) values,

representing the instances correctly classified. Off-diagonal elements include false

positives (FP) and false negatives (FN), indicating instances misclassified by the

model. These metrics form the basis for calculating performance metrics such as

precision, recall, and the F1 score. The confusion matrix is invaluable for gaining

insights into a model’s strengths and weaknesses, particularly in identifying specific

types of errors. Analyzing its components aids in refining models and optimizing

their performance by addressing the challenges posed by misclassifications.

• Training and Validation Accuracy . Training and validation accuracy play

pivotal roles in assessing the performance of models. Training accuracy is a mea-

sure of how well a model performs on the dataset it was trained on. It reflects the

proportion of correctly classified instances within the training set, showcasing the

model’s ability to learn and memorize patterns present in the training data. On

the other hand, validation accuracy gauges the model’s generalization capability

to new, unseen data. This metric is crucial in evaluating whether the model can

effectively apply its learned knowledge to previously unseen instances. During

the training process, a separate portion of the dataset, not used for training, is

reserved for validation. The model’s performance on this validation set provides

insights into its ability to make accurate predictions on real-world, unfamiliar data.

The ideal scenario is to achieve high training accuracy along with high validation

accuracy, signifying a model that not only learns well from the training data but

also generalizes effectively to new situations. Discrepancies between training and

validation accuracy may indicate overfitting, where the model becomes too special-

ized in the training data and struggles to generalize to new data. Balancing and

optimizing both training and validation accuracy are essential steps in developing

robust machine learning models.

39

Chapter 4: Result And Performance Evaluation

• Training and Validation Loss . Training and validation loss are critical met-

rics used to evaluate the performance and generalization capabilities of a model.

During the training process, the model learns to minimize its training loss, which

measures the difference between the predicted outcomes and the actual labels in

the training dataset. Lower training loss indicates that the model is effectively

capturing patterns in the training data. Validation loss assesses the model’s abil-

ity to generalize to new, unseen data. It measures the disparity between predicted

and actual outcomes in a separate dataset that the model has not encountered dur-

ing training. The goal is to achieve low validation loss, indicating that the model

can make accurate predictions on novel instances. Monitoring both training and

validation loss is crucial for preventing overfitting, a situation where the model

becomes excessively tailored to the training data but performs poorly on new

data. A widening gap between training and validation loss may signify overfitting,

highlighting the need for adjustments in the model’s complexity or regulariza-

tion techniques. Balancing the minimization of training loss and the optimization

of validation loss is a delicate task. Striking this balance ensures that the model

learns from the training data while maintaining the ability to generalize effectively

to diverse and unseen instances, fostering the development of robust and reliable

machine learning models.

The results of both techniques are discussed in the subsequent paras:-

4.3.1 Application of Linear Support Vector Machine (SVM)

Linear SVM model was applied to the same dataset with different ratios of training and

testing: one for 80-20 split and other for 70-30 split.

80-20 Training/ Testing Split

Linear SVM achieved an overall accuracy of 97.7% with a 1.16% FN rate (1x malicious

samples wrongly identified as benign). Details of results are mentioned below:-

• Total number of binaries in Test Dataset: 86

• Benign binaries: 55

40

Chapter 4: Result And Performance Evaluation

Figure 4.1: Performance Metrics of Linear SVM (80-20 Split)

• Crypto binaries: 31

• Correctly Identified benign binaries (TN) : 54/55 (98.18%)

• Correctly Identified crypto binaries (TP): 30/31 (96.77%)

• Binaries identified incorrectly as crypto (FP): 1/86 (1.16%)

• Binaries identified incorrectly as benign (FN): 1/86 (1.16%)

Fig 4.1 depicts the overall details of the performance metrics whereas Fig 4.2 shows the

Confusion Matrix.

70-30 Training/ Testing Split

Linear SVM achieved an overall accuracy of 97.7% with a 1.5% FN rate (2x malicious

samples wrongly identified as benign). Details of results are mentioned below:-

• Total number of binaries in Test Dataset: 129

• Benign binaries: 80

• Crypto binaries: 49

• Correctly Identified benign binaries (TN) : 79/80 (98.75%)

• Correctly Identified crypto binaries (TP): 47/49 (95.92%)

• Binaries identified incorrectly as crypto (FP): 1/129 (0.78%)

• Binaries identified incorrectly as benign (FN): 2/129 (1.55%)

41

Chapter 4: Result And Performance Evaluation

Figure 4.2: Confusion Matrix – Linear SVM (80-20 Split)

Fig 4.3 depicts the overall details of the performance metrics whereas Fig 4.4 shows the

Confusion Matrix.

4.3.2 Application of Random Forest (RF)

Similarly, Random Forest was applied to the same dataset with different ratios of training

and testing: one for 80-20 split and other for 70-30 split.

Figure 4.3: Performance Metrics of Linear SVM (70-30 Split)

42

Chapter 4: Result And Performance Evaluation

Figure 4.4: Confusion Matrix – Linear SVM (70-30 Split)

80-20 Training/ Testing Split

Random Forest achieved an overall accuracy of 97.7% with a 1.16% FN rate (1x

malicious samples wrongly identified as benign). Details of results are mentioned below:-

• Total number of binaries in Test Dataset: 86

• Benign binaries: 55

• Crypto binaries: 31

• Correctly Identified benign binaries (TN) : 54/55 (98.18%)

• Correctly Identified crypto binaries (TP): 30/31 (96.77%)

• Binaries identified incorrectly as crypto (FP): 1/86 (1.16%)

• Binaries identified incorrectly as benign (FN): 1/86 (1.16%)

So the results were almost similar to Linear SVM with 8-20 split. Fig 4.5 depicts the

overall details of the performance metrics whereas Fig 4.6 shows the Confusion Matrix.

43

Chapter 4: Result And Performance Evaluation

Figure 4.5: Performance Metrics of Random Forest (80-20 Split)

Figure 4.6: Confusion Matrix – Random Forest (80-20 Split)

44

Chapter 4: Result And Performance Evaluation

Figure 4.7: Performance Metrics of Random Forest (70-30 Split)

70-30 Training/ Testing Split

Random Forest achieved an accuracy of 98.5% with only a 0.78% FN rate (1x malicious

sample wrongly identified as benign) which is very negligible. Details of results are

mentioned below:-

• Total number of binaries in Test Dataset: 129

• Benign binaries: 80

• Crypto binaries: 49

• Correctly Identified benign binaries (TN) : 79/80 (98.75%)

• Correctly Identified crypto binaries (TP): 48/49 (97.96%)

• Binaries identified incorrectly as crypto (FP): 1/129 (0.78%)

• Binaries identified incorrectly as benign (FN): 1/129 (0.78%)

Overall details of the performance metrics are depicted in Fig 4.7. Fig 4.8 shows the

Confusion Matrix. Moreover, Fig 4.9 depicts the overall accuracy achieved while using

the RF algorithm, whereas Fig 4.10 elaborates on the loss observed while achieving the

accuracy.

The Random Forest Algorithm yielded much better results and accuracy as compared

to Linear SVM and therefore was selected as the classifier for our framework. As per

our belief, the following factors contributed to the better results achieved by Random

Forest:-

45

Chapter 4: Result And Performance Evaluation

Figure 4.8: Confusion Matrix – Random Forest (70-30 Split)

Figure 4.9: Accuracy Achieved in Applying Random Forest Model

46

Chapter 4: Result And Performance Evaluation

Figure 4.10: Loss Observed in Applying Random Forest Model

• The Random Forest model is better equipped to optimally handle categorical and

numerical data.

• It also deals with imbalanced datasets effectively. Since our dataset is imbalanced,

having more entries for benign as compared to crypto, so RF model was more

suited.

• The Random Forest algorithm is also less sensitive to outliers or anomalies in the

dataset due to aggregation of predictions. We also had some very peculiar outlier

features result in our dataset which would have been overlooked by Linear SVM

Model. Provides high accuracy in both training and testing datasets.

4.4 Comparative Analysis

Comparative analysis involves evaluating and contrasting different elements, such as

products, systems, or strategies, to discern similarities, differences, and performance.

This method focuses on strengths, weaknesses, opportunities, and threats, facilitating

informed decision-making. In business, comparative analysis is pivotal for market re-

47

Chapter 4: Result And Performance Evaluation

Table 4.1: Comparison of Characteristics
Semantics

Tool Name Individual Instructions

Profiling

Block Level

Instrumentation

Strings/ Pattern

Matching

Call Flow

Graph
Cryptographic Primitives

MineSweeper Y N N N N

MINOS Y Y N N N

SEISMIC Y N N N N

MineThrottle N Y N N N

MinerRay N N N Y N

Proposed Framework Y Y Y Y Y

search, competitive intelligence, and strategic planning. By examining various options

side by side, organizations can identify optimal solutions, improve efficiency, and gain a

comprehensive understanding of the factors influencing success in a given context.

This portion of the study aims to present the outcome of the research and evaluate the

effectiveness of the framework by comparing the performance metrics, such as detection

accuracy and false positive rates. A comparative analysis of our framework is done with

other previous tools results as well as with two general-purpose malware detection tools

i.e. VirusTotal and Malware Bytes.

4.4.1 Comparison with Other Tools

Feature comparison is a method of assessing and contrasting the characteristics and

functionalities of different products, services, or solutions. This analysis helps users or

decision-makers make informed choices by highlighting the strengths and weaknesses of

each option. Whether evaluating software, gadgets, or services, a feature comparison

allows for a side-by-side examination, aiding in the identification of specific attributes

that align with individual needs or preferences. This approach streamlines decision-

making processes, ensuring that users can prioritize and select offerings that best meet

their requirements based on a comprehensive understanding of available features.

• Comparison of Features. Most of the tools and research have relied on single

or at max two features for detection of malicious cryptojacking binaries. As men-

tioned earlier, depending on single feature can lead to false negative results and

even prone to obfuscation techniques. In MinerWatch we have covered maximum

possible features to carry out the static analysis. Comparison is reflected in table

4.1.

48

Chapter 4: Result And Performance Evaluation

Table 4.2: Comparison of Results

Tool Name Accuracy FPR FNR

MineSweeper N/A None N/A

MINOS 98.97% Low Low

SEISMIC 98% Negligible N/A

MineThrottle N/A 0% 1.83%

MinerRay N/A N/A N/A

Outguard 97.9% 1.1% N/A

Proposed Framework 98.5% 0.78% 0.78%

• Comparison of Results. Detailed results are not shown by all research authors

however we compared our result with whatsoever data was available. Comparison

is reflected in table 4.2.

4.4.2 Comparison with VirusTotal & Malware Bytes

• VirusTotal. VirusTotal is a widely used and popular online tool that provides a

thorough and free of cost analysis of different URLs and files to detect malware as

well as other security threats. Developed by Hispasec Sistemas, VirusTotal aggre-

gates antivirus scan engines, threat intelligence services, and various security tools

to deliver a holistic assessment of submitted files or links. Users can submit files

or URLs to the VirusTotal platform, and it scans the content using over 70 an-

tivirus engines and multiple threat detection tools. The results provide a detailed

report on the potential threats detected, including information on the specific an-

tivirus engines flagging the file and additional context such as behavioural analysis.

VirusTotal is a valuable resource for individuals, security researchers, and organi-

zations seeking to assess the safety of files before downloading or executing them.

The platform facilitates threat intelligence sharing and collaboration within the

cybersecurity community. Additionally, VirusTotal offers premium services for en-

terprises, providing advanced features such as private analysis and custom threat

feeds. While VirusTotal enhances cybersecurity efforts, its results should not be

totally relied on as false positives or negatives may occur. It is best used as part

of a comprehensive security strategy alongside other tools and practices. Over-

49

Chapter 4: Result And Performance Evaluation

all, VirusTotal contributes significantly to the collective defence against evolving

cyber threats.

• MalwareBytes. Malwarebytes is a prominent cybersecurity company spe-

cializing in developing anti-malware and endpoint protection solutions. Founded

in 2008, Malwarebytes has become a key player in the fight against malware,

ransomware, and other cybersecurity threats. The company’s flagship product,

Malwarebytes Anti-Malware, employs advanced heuristic detection and behaviour-

based analysis to identify and remove malicious software. Malwarebytes provides

both free and premium versions of its software, catering to individual users, busi-

nesses, and enterprises. The premium version offers real-time protection, sched-

uled scanning, and a broader range of threat detection capabilities. The company

has expanded its product line to include solutions for endpoint security, incident

response, and threat intelligence. Known for its effectiveness in detecting and

eliminating a wide range of cyber threats, Malwarebytes is trusted by millions of

users globally. Its commitment to continuous innovation and adaptation to emerg-

ing threats reinforces its position as a reliable cybersecurity solution for users and

organizations seeking robust protection against evolving malware landscapes.

Several Web Assemble binaries collected from different sources were scanned using Virus-

Total and MalwareBytes for the detection of cryptojacking. Both tools returned con-

siderable FN results, 7x cryptojacking wasm binaries were wrongly identified as Benign

by these renowned platforms. The same binaries were also made part of our dataset

and then evaluated using our framework, which only failed to identify only 1 binary as

malicious leading to negligible False Negative Rate (FNR) in our results.

The above comparison clearly shows the superiority of our proposed framework and that

it will further improve the detection of malicious Web Assembly-based cryptojacking

applications and prevent such attacks.

50

Chapter 4: Result And Performance Evaluation

Figure 4.11: Result of VirusTotal (False Negatives)

Figure 4.12: Result of MalwareBytes-1 (False Negatives)

51

Chapter 4: Result And Performance Evaluation

Figure 4.13: Result of MalwareBytes-2 (False Negatives)

52

Chapter 5

Discussion and Future Work

5.1 Discussion

In this section, we throw some light on the strengths and the limitations of our framework

in comparison to related works. Furthermore, we also discuss some future works that

could improve the efficiency of the framework.

5.1.1 Strengths

Some of the strong points of our framework which make it more efficient are mentioned

below:-

• Our framework takes into consideration the intrinsic semantics of Web Assembly

binaries which are essential to cryptojacking malware and are difficult to obfuscate,

therefore resulting in better results.

• The detection engine is based on multiple static analysis techniques, not only one.

Hence, it should cover all possible scenarios and work better against any evasion

mechanisms.

• The framework relies on simple calculations/ resources and is not required to be

run for longer times as in the case of any dynamic analysis hence incurs little

computational overhead.

• A Wasm binary can be detected as either malicious or benign and can be done in

a fairly short time.

53

Chapter 5: Discussion and Future Work

• It does not require any administrative rights to run and therefore a user with any

privilege level can perform the operations.

• It is platform agnostic and therefore can be implemented across any platform.

5.1.2 Limitations

The framework also has some limitations:-

• The framework is purely based on static analysis and does not involve any run-time

or dynamic properties of binaries which may result in false negatives.

• For calculating block instructions profiling and call graph similarity, the framework

compares the input Wasm binaries against the standard CryptoNight algorithm

which is used as a reference. This approach will cover all variants of CryptoNight

but might struggle to detect completely different and new cryptojacking imple-

mentations.

5.2 Future Work

As future work, following avenues can be explored for further advancements in crypto-

jacking detection:-

• A combination of both static and dynamic analysis may offer a more effective

approach. Therefore, dynamic analysis to cater for high resource (memory/ CPU)

utilization, the opening of Web Sockets for communication with the mining pool

and the creation of Web Workers threads can be used in conjunction with static

analysis techniques for increased efficacy.

• Instead of depending on a single algorithm for detection, different existing algo-

rithms used for cryptomining can be incorporated into the framework to detect all

possible variants of cryptomining.

54

Chapter 6

Conclusion

With the increase in usage of web applications and the value of cryptocurrency, crypto-

jacking has become a prominent threat to be used by malicious actors. The development

of Web Assembly has further increased the potency of this threat. In our research, we

have tried to propose a novel AI-driven Web Assembly analysis framework to effectively

detect cryptojacking attacks. The core of the framework is based on static analysis of

Web Assembly binaries that distinguish malicious cryptojacking from benign ones af-

ter taking into consideration multiple inherent characteristics of cryptojacking malware.

We started our research by carrying out a comprehensive survey of Web Assembly and

different tools developed to detect cryptojacking. We then identified key features that

would distinguish crypto-based Wasm binaries from benign ones. We also created our

own dataset having a numerical representation of extracted features. Two different Ma-

chine Learning classifiers were applied to the dataset and the Random Forest algorithm

was selected based on the results achieved. Furthermore, in addition to presenting the

framework’s strengths and limitations, we have also discussed potential future enhance-

ments and research directions for further advancements in cryptojacking detection. The

framework showed more promising results when compared with other cryptojacking

analysis tools. The results establish that the detection of cryptojacking Web Assembly

binaries can be significantly improved to ensure secure web usage and protect against

unauthorized cryptocurrency mining. In the end, web security can be enhanced by de-

ploying our proposed framework in a Client-Side Web Application Firewall (WAF) to

filter and block cryptojacking Wasm.

55

Bibliography

[1] May 2022. url: https://www.becomebetterprogrammer.com/why- people-

hate-javascript-and-why-you-might-hate-it-too/.

[2] Serdar Yegulalp. What is webassembly? the next-generation web platform explained.

May 2023. url: https://www.infoworld.com/article/3291780/what- is-

webassembly-the-next-generation-web-platform-explained.html.

[3] Feb. 2023. url: https://www.lambdatest.com/web-technologies/wasm.

[4] url: https://caniuse.com/wasm.

[5] Uno Platform Team. The state of webassembly - 2020 and 2021. June 2023. url:

https://platform.uno/blog/the-state-of-webassembly-2020-and-2021/.

[6] url: https://webassembly.org/.

[7] Vili-Petteri Niemelä. “WebAssembly, Fourth Language in the Web”. In: (2021).

[8] url: https://webassembly.org/docs/security.

[9] Oct. 2023. url: https://www.forcepoint.com/blog/x-labs/webassembly-

potentials-and-pitfalls.

[10] Minseo Kim, Hyerean Jang, and Youngjoo Shin. “Avengers, assemble! Survey of

WebAssembly security solutions”. In: 2022 IEEE 15th International Conference

on Cloud Computing (CLOUD). IEEE. 2022, pp. 543–553.

[11] Shrenik Bhansali et al. “A first look at code obfuscation for webassembly”. In:

Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and

Mobile Networks. 2022, pp. 140–145.

[12] Shuki Levy. 6 security risks to consider with WebAssembly. May 2023. url: https:

//thenewstack.io/6-security-risks-to-consider-with-webassembly/.

[13] Nakamoto S Bitcoin. Bitcoin: A peer-to-peer electronic cash system. 2008.

56

https://www.becomebetterprogrammer.com/why-people-hate-javascript-and-why-you-might-hate-it-too/
https://www.becomebetterprogrammer.com/why-people-hate-javascript-and-why-you-might-hate-it-too/
https://www.infoworld.com/article/3291780/what-is-webassembly-the-next-generation-web-platform-explained.html
https://www.infoworld.com/article/3291780/what-is-webassembly-the-next-generation-web-platform-explained.html
https://www.lambdatest.com/web-technologies/wasm
https://caniuse.com/wasm
https://platform.uno/blog/the-state-of-webassembly-2020-and-2021/
https://webassembly.org/
https://webassembly.org/docs/security
https://www.forcepoint.com/blog/x-labs/webassembly-potentials-and-pitfalls
https://www.forcepoint.com/blog/x-labs/webassembly-potentials-and-pitfalls
https://thenewstack.io/6-security-risks-to-consider-with-webassembly/
https://thenewstack.io/6-security-risks-to-consider-with-webassembly/

Bibliography

[14] Oct. 2023. url: https://en.wikipedia.org/wiki/Monero.

[15] Mar. 2018. url: https://krebsonsecurity.com/2018/03/who-and-what-is-

coinhive/.

[16] Wenhao Wang et al. “Seismic: Secure in-lined script monitors for interrupting

cryptojacks”. In: Computer Security: 23rd European Symposium on Research in

Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Pro-

ceedings, Part II 23. Springer. 2018, pp. 122–142.

[17] Kaspersky. What is cryptojacking and how does it work? May 2023. url: https://

usa.kaspersky.com/resource-center/definitions/what-is-cryptojacking.

[18] Catalin Cimpanu. Coinhive is rapidly becoming a favorite tool among malware

DEVS. Oct. 2017. url: https://www.bleepingcomputer.com/news/security/

coinhive-is-rapidly-becoming-a-favorite-tool-among-malware-devs/.

[19] Said Varlioglu et al. “Is cryptojacking dead after coinhive shutdown?” In: 2020 3rd

International Conference on Information and Computer Technologies (ICICT).

IEEE. 2020, pp. 385–389.

[20] Faraz Naseem Naseem et al. “MINOS: A Lightweight Real-Time Cryptojacking

Detection System.” In: NDSS. 2021.

[21] Javier Cabrera-Arteaga et al. “WebAssembly diversification for malware evasion”.

In: Computers & Security 131 (2023), p. 103296.

[22] Biju R Mohan et al. “Comparative Analysis Of JavaScript And WebAssembly In

The Browser Environment”. In: 2022 IEEE 10th Region 10 Humanitarian Tech-

nology Conference (R10-HTC). IEEE. 2022, pp. 232–237.

[23] Yutian Yan et al. “Understanding the performance of webassembly applications”.

In: Proceedings of the 21st ACM Internet Measurement Conference. 2021, pp. 533–

549.

[24] Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. “Security risks of

porting c programs to WebAssembly”. In: Proceedings of the 37th ACM/SIGAPP

Symposium on Applied Computing. 2022, pp. 1713–1722.

[25] Ben L Titzer. “A fast in-place interpreter for WebAssembly”. In: Proceedings of

the ACM on Programming Languages 6.OOPSLA2 (2022), pp. 646–672.

57

https://en.wikipedia.org/wiki/Monero
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://usa.kaspersky.com/resource-center/definitions/what-is-cryptojacking
https://usa.kaspersky.com/resource-center/definitions/what-is-cryptojacking
https://www.bleepingcomputer.com/news/security/coinhive-is-rapidly-becoming-a-favorite-tool-among-malware-devs/
https://www.bleepingcomputer.com/news/security/coinhive-is-rapidly-becoming-a-favorite-tool-among-malware-devs/

Bibliography

[26] Radhesh Krishnan Konoth et al. “Minesweeper: An in-depth look into drive-by

cryptocurrency mining and its defense”. In: Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security. 2018, pp. 1714–1730.

[27] Weikang Bian, Wei Meng, and Mingxue Zhang. “Minethrottle: Defending against

wasm in-browser cryptojacking”. In: Proceedings of The Web Conference 2020.

2020, pp. 3112–3118.

[28] Alan Romano, Yunhui Zheng, and Weihang Wang. “Minerray: Semantics-aware

analysis for ever-evolving cryptojacking detection”. In: Proceedings of the 35th

IEEE/ACM International Conference on Automated Software Engineering. 2020,

pp. 1129–1140.

[29] Amin Kharraz et al. “Outguard: Detecting in-browser covert cryptocurrency min-

ing in the wild”. In: The World Wide Web Conference. 2019, pp. 840–852.

[30] Daniel Lehmann and Michael Pradel. “Wasabi: A framework for dynamically ana-

lyzing webassembly”. In: Proceedings of the Twenty-Fourth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems.

2019, pp. 1045–1058.

[31] WABT: The WebAssembly Binary ToolKit. url: https://github.com/WebAssembly/

wabt.

[32] Andreas Moser, Christopher Kruegel, and Engin Kirda. “Limits of static analysis

for malware detection”. In: Twenty-third annual computer security applications

conference (ACSAC 2007). IEEE. 2007, pp. 421–430.

[33] YARA - Pattern Matching. url: https://github.com/davbo/yara-rs/tree/

master/sample-miners.

[34] Marius Musch et al. “New Kid on the Web: A Study on the Prevalence of We-

bAssembly in the Wild”. In: Detection of Intrusions and Malware, and Vulnerabil-

ity Assessment: 16th International Conference, DIMVA 2019, Gothenburg, Swe-

den, June 19–20, 2019, Proceedings 16. Springer. 2019, pp. 23–42.

https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/wabt
https://github.com/davbo/yara-rs/tree/master/sample-miners
https://github.com/davbo/yara-rs/tree/master/sample-miners

	Introduction
	Background
	Motivation
	Problem Statement
	Research Objectives
	Contributions
	Thesis Outline

	Literature Review
	JavaScript
	Usage of JavaScript
	Advantages of JavaScript
	Dis-Advantages of JavaScript

	WebAssembly
	Cryptocurrency
	Cryptojacking
	Coinhive and Monero
	CryptoNight Algorithm
	Cryptojacking through Web Applications

	Analysis (Static vs Dynamic analysis)
	Static Analysis
	Dynamic Analysis

	Review of WebAssembly
	Work Related to Cryptojacking

	Methodology
	Intrinsic Characteristics of Cryptojacking Malware
	Semantic Signature Matching
	Strings & Pattern Matching
	Call Flow Graph
	Cryptographic Primitives

	Architecture of Proposed Framework
	Wasm Binary Collector
	Wasm to WAT conversion
	Processing and Static Analysis
	Detection Classifier
	Alertify

	Result And Performance Evaluation
	Preparation of Dataset
	Selection of Machine Learning Classifier
	Linear Support Vector Machine (SVM)
	Random Forest (RF)

	Results
	Application of Linear Support Vector Machine (SVM)
	Application of Random Forest (RF)

	Comparative Analysis
	Comparison with Other Tools
	Comparison with VirusTotal & Malware Bytes

	Discussion and Future Work
	Discussion
	Strengths
	Limitations

	Future Work

	Conclusion

