
Experimental Categorization of SDN Controllers using
Open-Source Benchmarking Tools

By

Ghulam Bahoo

Fall-2020-MS-IT 00000329486 SEECS

Supervisor

Dr Salman Ghafoor

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of

Science in Information Technology (MS IT)

In

School of Electrical Engineering & Computer Science (SEECS) ,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(December 2023)

Approval

i

Thesis Acceptance Certificate

ii

03-Jan-2024

Dedication

This thesis is dedicated to all the deserving children who do not have access to quality education

especially young girls.

iii

Certificate of Originality

iv

Acknowledgments

I wish to express my profound gratitude to Allah Almighty for His continuous guidance and

blessings. I owe a debt of gratitude to my parents whose unwavering support and fervent

prayers have been the cornerstone of my achievements. I extend sincere appreciation to my

academic supervisor Dr Salman Abdul Ghafoor and the esteemed members of the Guidance

Committee for their invaluable guidance and scholarly input, which have significantly enriched

the quality of my research. Their expertise and commitment to academic excellence have been

instrumental in shaping the outcome of this work. Lastly, I acknowledge the supportive role

of my friend and colleague, Nimra Noreen, whose companionship and shared dedication to

scholarly pursuits have added a meaningful dimension to my academic journey. Each of these

entities has played a pivotal role in my academic success, and for their contributions, I am

sincerely thankful.

Ghulam Bahoo

v

Abstract

Software Defined Networking SDN has increased network programability and administrative

ease. SDN provides centralised and fine-grained network control; it has now become a trend

in industry and is being used in different fields of networking. Controllers are crucial to the

network’s stability and scalability in SDN, and their performance is critical. This research looks

at three SDN controllers: RYU, POX and NOX. Quality of Service QoS measures such as Flow

Setup Latency, Initial Ping Delay , Round Trip Time , Throughput, and TCP and UDP Band-

width are used to evaluate the controllers’ performance. Different sized networks are emulated

using the Mininet SDN simulator by adjusting the number of switches in linear and tree topolo-

gies and hosts in a single topology. In compared to POX and NOX, my research demonstrates

that RYU’s performance is quite consistent and exhibits little variation as the number of network

devices and network traffic increases.

vi

Contents

1 Introduction and Motivation 1

1.1 Tools for Simulation and Benchmarking . 3

1.2 Performance Parameters . 4

1.2.1 Custom Topologies . 5

1.2.2 Cbench Topology . 6

1.3 Problem Statement and Contribution . 6

1.3.1 Problem Statement . 6

1.3.2 Proposed Solution . 6

1.4 Aim and Objectives . 9

1.4.1 Aim . 9

1.4.2 Objectives . 9

1.5 Contributions . 10

1.6 Limitations . 10

1.7 Thesis Structure . 11

2 Literature Review 12

3 Methodology 27

3.1 Orgnization of Methodology . 27

3.2 Hardware and Software Setup . 27

3.2.1 Virtual Machine Orchestration . 28

vii

CONTENTS

3.2.2 SDN Controller Selection . 29

3.2.3 Mininet . 29

3.2.4 Mininet Installation . 30

3.2.5 Cbench . 30

3.2.6 Cbench Installation . 31

3.2.7 Iperf . 32

3.2.8 Iperf Installation . 32

3.2.9 Performance Parameters Selection . 32

3.2.10 Topology Scripts . 34

3.2.11 Single Topology . 34

3.2.12 Linear Topology . 35

3.2.13 Tree Topology . 35

3.3 Shell Scripts for Automation . 37

3.3.1 Mininet . 37

3.3.2 IPD . 39

3.3.3 Visualization of Results . 39

3.3.4 TCP Bandwidth . 39

3.3.5 UDP Bandwidth . 41

3.3.6 Initial Ping Delay . 42

3.3.7 Round Trip Time . 43

3.3.8 Jiiter . 45

4 Results 47

4.1 Flow Setup Latency . 47

4.1.1 Throughput . 48

4.1.2 Initial Ping Delay (IPD) . 50

4.1.3 Round Trip Time (RTT) . 51

4.1.4 Jitter . 52

viii

CONTENTS

5 Discussion 54

5.1 Flow Setup Latency . 54

5.2 Throughput . 55

5.3 TCP Bandwidth . 55

5.4 UDP Bandwidth . 55

5.5 Jitter . 56

5.6 Initial Ping Delay . 56

5.7 Round Trip Time . 56

5.8 Why RYU Performed best? . 57

5.8.1 Architecture . 57

5.8.2 FLow Management . 58

5.8.3 Packet Processing . 58

5.8.4 Low Overhead . 59

6 Conclusion 61

6.1 Conclusion . 61

6.2 Future Work . 62

7 Recommendations 64

7.1 Controller Selection . 64

7.2 Topology Specific Considerations . 64

7.3 Hardware Resource Planning . 65

7.4 Benchmarking and Profiling . 65

7.5 Monitoring and Upgrades . 65

A Achievements 69

B Appendix A 70

ix

List of Figures

1.1 SDN Architecture . 2

1.2 (a) Star Topology,(b)Linear Topology, (c)Tree Topology 4

3.1 Experimental Setup . 28

4.1 Flow Setup Latency of T_4 Topology . 48

4.2 Throughput for T_4 Topology in Cbench . 48

4.3 TCP Bandwidth for T_1, T_2, T_3 Topology 49

4.4 UDP Bandwidth for T_1, T_2, T_3 Topology 50

4.5 IPD Results for T_1, T_2, T_3 Topology . 51

4.6 RTT Results for T_1, T_2, T_3 Topology . 52

4.7 Jitter Results for T_1, T_2, T_3 Topology . 53

5.1 RYU Architechture . 57

x

List of Abbreviations and Symbols

Abbreviations

SDN Software Defined Networks

TCP Transmission Control Protocol

RTT Round-trip time

DCN Data Center Network

Cbnech Controller Benchmarking

UDP User Datagram Protocol

IPD Initial Ping Delay

API Application Programable Interface

CSV comma-separated values

OFDP OpenFlow Discovery Protocol

LLDP Link Layer Discovery Protocol

IETF Interfnet Engineering Task Force

NIC Network Interface Card

QoS Quality of Service

xi

CHAPTER 1

Introduction and Motivation

Software Defined Networks (SDN) is an approach to networking that separates the network’s

control plane and data plane operations in order to make networks more flexible, agile, and

programmable. Control (deciding how to manage traffic) and data forwarding (real data packet

movement) occur within the same device in classical networking.

SDN decouples these activities, concentrating network intelligence and control in software-

based controllers or applications, while the data plane continues to deliver traffic in accordance

with the controller’s instructions. This separation enables administrators to govern network be-

haviour through software, making it easier to optimise and manage traffic flow, enforce policies,

and adapt to changing network conditions. There are many SDN open-source controllers that

are available:

• NOX

• POX

• RYU

• Floodlight

• OpenDayLight

• ONOS

1

CHAPTER 1: INTRODUCTION AND MOTIVATION

The Data Plane also known as the forwarding plane, is in charge of forwarding data packets as

they pass through a network device. It evaluates the headers of incoming packets, decides where

these packets should be forwarded based on their destination addresses, and then transmits them

over the relevant output interfaces. The data plane, in essence, moves data packets according

to predetermined rules and configurations without engaging in complex decision-making pro-

cesses.

Control Plane The network device’s intelligence resides in the control plane. It is in charge

of deciding how data traffic should be routed through the device. This plane is in charge of

running routing protocols, obtaining network topology information, exchanging routing infor-

mation with other devices, determining best pathways for data transfer, and updating forwarding

tables utilised by the data plane. The control plane establishes the rules, policies, and configu-

rations that control the data plane’s behaviour. Elmoslemany, Mohamed M et al. [1] compared

Figure 1.1: SDN Architecture

using Cbench, ONOS, ODL, POX, and RYU throughput and latency. Ali, J. et al. [2] POX and

2

CHAPTER 1: INTRODUCTION AND MOTIVATION

RYU were tested in terms of Transmission Control Protocol (TCP) bandwidth and Round-trip

time (RTT) for single, linear, tree, and Data Center Network (DCN) topologies with a set number

of hosts and switches. Danijel et al.’s [3] study of POX and RYU’s RTT and total latency [4]

was carried out using tree topologies with 2, 4 and 8 switches. The authors of [5] compared

RTT and throughput for POX and Floodlight using built-in mininet topologies. Floodlight also

surpasses RYU in terms of throughput and latency, according to [6]. When ONOS, Floodlight,

and RYU were tested against open commercially available switches, ONOS fared the best in the

flow setup test, while RYU discovered the topology in the quickest amount of time, according

to [7]. The results reported in [8] show that OpenDaylight outperforms ONOS as workload

increases among distributed controllers, whereas RYU outperforms ONOS among centralised

controllers for large-scale network management. According to the data in [9], when utilising the

Cbench tool, the Beacon controller outperforms POX, RYU, NOX and Floodlight. The authors

of [10] thoroughly investigated numerous OpenFlow controllers in a detailed analysis. They

used benchmarking tools such as Cbench, PktBlaster, and OFNet to assess the performance

of nine controllers. The study found that distributed, multi-threaded controllers outperform

centralised, single-threaded controllers, but at the penalty of using more physical resources.

In this study, I thoroughly examined the performance of RYU, NOX and POX for a variety of

SDN network topologies using Mininet. To evaluate the performance of these controllers. I

evaluated seven metrics: throughput, flow setup latency, round-trip time , inter-packet delay,

jitter, and TCP/UDP bandwidth. CBench is used to evaluate SDN controller flow setup latency

and throughput. Ping, Iperf, and Mininet are used to investigate additional performance charac-

teristics. SHell scripts were used to automate the entire experimenting process, which improved

the performance of the controller. To the best of my knowledge, no other work has taken into

account as many topologies, performance parameters, and scripting techniques as I did in this

work.

1.1 Tools for Simulation and Benchmarking

Mininet [11] Mininet is an open-source emulator that allows you to create virtual networks

within a single computer system. Its principal function is to allow users to simulate and con-

struct software-defined networks (SDNs) without requiring actual hardware. This platform en-

ables the creation of virtualized network topologies, switches, hosts, and controllers, allowing

for experimentation, testing, and software development in a controlled, simulated network envi-

3

CHAPTER 1: INTRODUCTION AND MOTIVATION

ronment.

Controller Benchmarking (Cbnech) It is a specialised benchmarking tool designed to assess

the performance of Software-Defined Networking (SDN) controllers. This tool is intended to

assess how well an SDN controller manages OpenFlow messages and network management

duties under varying workloads and situations. Its major goal is to stress-test the controller by

creating a large number of OpenFlow messages and simulating various network traffic scenarios

in order to evaluate the controller’s responsiveness and efficiency.

Iperf IPerf is an open-source command-line application that generates Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) data streams between two endpoints to mea-

sure network performance. It aids in determining the maximum attainable bandwidth on IP net-

works and identifying potential network-related issues through the use of measurements such as

throughput, packet loss, delay, and jitter.

1.2 Performance Parameters

1. Flow Setup Latency [10]: The time it takes to establish and configure a communication

link or flow between two network devices within a network is referred to as flow setup

latency. It specifically refers to the time required to set up the necessary rules, policies,

or configurations in network devices (such as switches or routers) to handle a certain

flow of traffic in the context of Software-Defined Networking (SDN) or OpenFlow-based

networks.

(a) Single (b) Linear (c) Tree

Figure 1.2: (a) Star Topology,(b)Linear Topology, (c)Tree Topology

2. Throughput [1]: Throughput is the rate at which data is successfully transmitted or pro-

cessed over a communication channel or network in a given amount of time. It quantifies

4

CHAPTER 1: INTRODUCTION AND MOTIVATION

the quantity of data effectively transported between two places in a network or within

a system. Depending on the amount of data transfer, throughput in networking or data

communication is often stated in bits per second (bps).

3. TCP Bandwidth [2]: The maximum data transfer rate possible over a Transmission Con-

trol Protocol (TCP) connection between two endpoints is referred to as Transmission Con-

trol Protocol (TCP) bandwidth. It indicates the amount of data that can be transmitted

across the network per unit of time using Transmission Control Protocol (TCP), taking

into account network conditions, latency, packet loss, and protocol characteristics.

4. UDP Bandwidth: The maximum data transfer rate possible over a User Datagram Pro-

tocol (UDP) connection between two endpoints is referred to as UDP bandwidth. Unlike

TCP, UDP is a connectionless and unreliable protocol that lacks flow control, error cor-

rection, and congestion control techniques.

5. Initial Ping Delay (IPD): TThe term "initial ping delay" refers to how long it takes for

an initial ICMP (Internet Control Message Protocol) echo request, sometimes known as a

"ping," to reach its destination and obtain a response.

6. Round Trip Time (RTT) [2]: Round-trip time (RTT) is the amount of time it takes for a

signal or packet to go from a source to a destination and then back to the source. Round-

trip time (RTT) is a networking term that describes the time it takes for a packet to travel

from a sender to a receiver and then for an acknowledgment to travel back from the re-

ceiver to the sender.

7. Jitter: Jitter is the variance in the latency of received packets in a network, particularly in

packet-switched networks such as the internet. It depicts the difference in packet arrival

timings as they move through the network.

1.2.1 Custom Topologies

I developed three distinct topologies using Mininet’s Python API. Each topology is described

in depth below:

1. Single Topology (T1): In the T-1 topology, I changed the number of hosts devices linked

to a single switch from 2 to 64. Figure 1.2(a). depicts a single topology with four hosts.

5

CHAPTER 1: INTRODUCTION AND MOTIVATION

2. Linear Topology (T-2): I changed the number of linearly connected switches within the

T-2 topology, increasing it from 2 to 1024. In this topology, there are two hosts—one

connected to the initial switch and the other linked to the final switch. A linear topology

with 4 switches is shown in Figure 1.2(b).

3. Tree Topology (T-3): I changed the depth of the binary tree from 1 to 5 in T-3 topology.

A tree topology with depth 1 is shown in Figure 1.2(c)

1.2.2 Cbench Topology

Using bash scripts, I emulated Cbench topologies , which generated a set of topologies with two

hosts per switch and a total number of switches ranging from 2 to 1024, which were directly

connected to a distant SDN controller. T-4 topology is what I name these topologies.

1.3 Problem Statement and Contribution

1.3.1 Problem Statement

Based on the researcher’s experience there are still some research gaps such as:

• There is a need to analyze the response of several renowned SDN controllers when sub-

jected to extreme challenging conditions involving an exponential growth in the number

of host devices. The primary objective is to identify each controller’s behavior regarding

its maximum capacity in handling host devices under these varying topological setups.

• No scripting automation techniques are currently utilized in existing solutions.

• The current research in the domain of SDN controllers lacks a systematic classification

based on specific network scenarios.

• Study and testing of different performance parameters has not been done adequately . For

example Throughput, Latency, TCP/ UDP Bandwidth, Packet Loss etc.

1.3.2 Proposed Solution

Topology Generation

6

CHAPTER 1: INTRODUCTION AND MOTIVATION

A Python script will be created to leverage the Mininet API for dynamically generating virtual

topologies.

• Topologies Design: Custom mininet topology scripts will be used. This simulates com-

mon SDN deployment with edge switches connecting user devices.

• Host Scaling: The initial number of hosts will be set to 2 connected to the switch. For

each iteration, the number of hosts will be doubled - 4, 8, 16 and so on. The maximum

number of hosts will be 2048 to stress test at massive scales.

• Topology Object Creation: A Mininet topology object will be instantiated in each itera-

tion. The switch will be added along with the required number of host objects.

• Link Configuration: Links will be created to interconnect each host to the central switch.

TCP queues, link capacities etc. can be customized if needed.

• Application Programable Interface (API) Calls: Mininet API functions like addHost(),

addSwitch(),addLink() will be leveraged. net.addController() will attach the controller.

net.start() will initialize the emulated network.

•

This systematic doubling of hosts using Mininet APIs allows automatated generation of thou-

sands of unique topologies ranging from small to extremely large scales in an structured manner.

Automation using Shell Scripting

A bash shell script will be developed to automate the entire testing process from start to end.

The key steps involved are:

• Custom Topology The script will take the base number of hosts and an increment factor

as input. It will call the Python Mininet script in a loop, each iteration doubling the

number of hosts to generate the topologies.

• Controller Connection The IP/port of the controller to test will be passed as arguments

to the script. It will connect each topology sequentially to the controller using the Python

API.

• Performance Testing Cbench, Iperf and OFCProbe tests will be launched in parallel

processes for each topology. The script will monitor and wait for all child processes to

complete before proceeding.

7

CHAPTER 1: INTRODUCTION AND MOTIVATION

• Results Logging Output from all tools will be consolidated and important data fields

extracted. Results will be written to a JSON file with metadata liketopology details, test

timestamps etc.

• Report Generation Statistics will be computed from the CSV file and different visual

plots/charts will be generated for analysis. Summary logs and reports help compare per-

formance across tests.

This automation approach eliminates human errors and ensures consistent, repeatable execution

of thousands of test cases. The comma-separated values (CSV) output enables flexible post-

processing of large results datasets.

8

CHAPTER 1: INTRODUCTION AND MOTIVATION

1.4 Aim and Objectives

1.4.1 Aim

The key objective of this research is to implement an extensive and in-depth analysis of the

performance of SDN controllers, with a focus on RYU, POX, ONOS, and NOX. The purpose

of this evaluation is to provide a thorough overview of the controllers’ capabilities over a wide

range of important performance characteristics. Some of these metrics are throughput, latency,

TCP/UDP bandwidth, jitter, and initial ping delay IPD.

The primary goal of this research is to evaluate how the performance of these SDN controllers

changes when the network increases in terms of the number of hosts and switches connected to

it. This scalability study tries to shed light on how responsive and adaptive each controller is

to changing network conditions by analysing each controller’s maximum capacity while taking

into account real-world limitations and performance constraints.

This study will contribute to a better understanding of how these controllers behave in different

real-world circumstances by examining network configurations such as tree, linear and single

topologies along with number of parameters which have been underrepresented in earlier stud-

ies.

1.4.2 Objectives

The key Objectives of this study are:

1. Performance Evaluation: To completely analyze the performance of NOX, POX, and

RYU SDN controllers, with a focus on performance characteristics such as throughput

and latency.

2. Scalability Testing: To determine each SDN controller’s maximum capacity in terms of

the number of linked hosts and switches before they become unresponsive or suffer severe

performance deterioration.

3. Variation in Network Topologies: To evaluate how SDN controller performance differs

when subjected to varied network topologies, such as tree, linear, and single configura-

tions. This investigation of several topologies will provide insights into the adaptability

of the controllers.

9

CHAPTER 1: INTRODUCTION AND MOTIVATION

4. Identification of Performance Limitations: Identify and describe each SDN controller’s

restrictions and constraints when dealing with growing network size and complexity, pro-

viding to a better knowledge of their practical capabilities.

1.5 Contributions

This study makes an important scholarly contribution to topic of Software-Defined-Networking.

It includes a thorough examination of multiple well-known SDN controllers, including RYU,

POX, and NOX. Through rigorous performance evaluation in a variety of network scenarios,

the study gives an in-depth understanding of these controllers’ capabilities. It delves into their

practical limits, response, and scalability, all of which are critical details for network admin-

istrators and engineers. This study adds to our understanding of these controllers’ real-world

performance and offers important insights by analysing various network topologies such as tree,

linear, single, and star configurations. Furthermore, this study fills current research gaps and

improves theoretical and practical understanding of SDN. It provides researchers and network

experts with useful information to help them select and configure SDN controllers to satisfy

specific network requirements. The ultimate goals here are to improve network performance,

resource efficiency, and general network administration using SDN technology. This study sup-

ports the practical implementation of results in the dynamic field of network technology and

actively contributes to the ongoing discussion in academia.

1.6 Limitations

While the key objective of this study is to properly analyze the performance of multiple SDN

controllers, including NOX, POX, and RYU, there are certain inherent constraints to consider.

Although the Mininet simulation environment is valuable, it may not accurately replicate the

complexities of real-world networks, and resource constraints may restrict the size of network

situations. Furthermore, interactions in multiple network scenarios may be overlooked by the

study, which focuses solely on individual controller performance. Despite their diversity, the

chosen network topologies are still somewhat simplistic, and their lack of dynamic traffic pat-

terns may limit their application in real-world scenarios. Changes made to controllers over time

and differences in their settings may have an impact on performance. Finally, while outside the

scope of the study, external factors such as hardware limits or network maintenance can have an

10

CHAPTER 1: INTRODUCTION AND MOTIVATION

impact on outcomes. These limitations give important background for interpreting the research

findings and identify potential future research initiatives.

1.7 Thesis Structure

Chapter 1: Introduction

The first chapter is an introduction to the research, providing a thorough description of the

research problem, its significance, and the stated aims and objectives.It lays the groundwork for

the subsequent chapters and provides the study with a contextual framework.

Chapter 2: Literature Review

The second chapter conducts an in-depth examination of existing literature on SDN technology,

SDN controllers, and relevant performance evaluation metrics. This chapter seeks to identify

gaps in current research and to justify the study’s necessity.

Chapter 3: Methodology

The third chapter covers the research methodology, including the research design, data gath-

ering methods, and performance evaluation tools. It provides information about the network

topologies, variables, and experimental setting employed in the study.

Chapter 4: Results

The fourth chapter demonstrates the results of the selected SDN controllers’ performance eval-

uations across various network scenarios. Data, charts, and graphs are used to visually represent

the research findings.

Chapter 5: Discussion

The fifth chapter is devoted to the analysis the results collected in the previous chapter. It

assesses the implications of the results in light of the research objectives and prior literature,

while also highlighting the study’s flaws.

Chapter 6: Conclusion

The final chapter provides a thorough summary of the study, restating the objectives and signif-

icant findings. It emphasises the research’s significance and finishes with recommendations for

further research or practical applications in the field of SDN.

11

CHAPTER 2

Literature Review

This research provides a thorough investigation of two commonly used controller implementa-

tions, Ryu and POX, including a feature-based comparison as well as a performance evaluation.

This study examines how they perform in terms of throughput and latency across different net-

work topologies, such as Simple-Tree-Based, Fat-Tree Based, and regular IP networks. Their

findings show that the performance of Ryu and POX controllers is affected by a number of fac-

tors, such as the controller’s hardware configuration, control algorithm settings, the underlying

network infrastructure, OpenFlow switches, the number of connected hosts, threading configu-

ration, and others. In the majority of our simulation trials, they find that when the OpenFlow

protocol is enabled, both Ryu and POX controllers consistently beat traditional IP networks

in term of latency and throughput. Furthermore, their data show distinctions between the two

controllers. POX offers high throughput performance, excelling in particular at promptly com-

pleting requests in environments with complicated SDN traffic loads and increasing number of

OpenFlow switches. Ryu, on the other hand, excels in latency, making it a preferable choice for

delay-sensitive SDN applications and less sophisticated SDN network settings. [3]

The controller is an crucial part of the (SDN) framework, with the capacity to either strengthen

or weaken SDN systems. Because SDN controllers can be constructed using a number of open-

source and proprietary technologies, the controller used has a significant impact on total output.

As a result, there is an urgent need to conduct a full examination and comparison of existing

SDN controllers in both the commercial and research realms.

This research compares the performance of two prominent open-source SDN controllers, Open

Network Operating System (ONOS) and OpenDaylight (ODL). They install the most recent

stable versions, ODL-Nitrogen and ONOS-Nightingale, in a virtual test environment called

12

CHAPTER 2: LITERATURE REVIEW

Mininet.Within this controlled environment, they rigorously evaluate several critical perfor-

mance measures, such as IPD, RTT, and TCP capacity i.e. throughput, all of which vary de-

pending on the network architecture deployed in Mininet.

The following conclusions were drawn from the experimental results: When compared to ODL,

ONOS has better latency performance. In terms of flow-setup delay, however, ODL exceeds

ONOS. The analysis of jitter shows that ONOS is more relieable, resulting in a more reliable

network connection. ONOS outperforms ODL in terms of processing power based on measured

TCP bandwidth using iperf. In conclusion, this comprehensive investigation reveals that, in their

specific experimental environment, ONOS is a more resilient alternative than ODL. [12]

The goal of this article is to thoroughly evaluate ten main SDN controllers against a variety of

critical criteria, followed by an assessment of their scalability and performance across various

network topologies using Mininet an SDN network simulator. The following are the research’s

main contributions:

1. A complete list of important characteristics and capabilities that every SDN controller

should have has been compiled.

2. Python-based controllers may struggle to achieve high performance and low latency in

big networks, whereas Java and C-based controllers display greater scalability and per-

formance.

3. The Multi-factors Decision Making technique is used to decide on the best controller

based on many factors.

In essence, this research strives to provide a holistic assessment of SDN controllers, aiding stake-

holders in selecting the most suitable controller based on their specific needs and priorities.[13]

13

CHAPTER 2: LITERATURE REVIEW

The controller is the brain of every SDN network. As a result of the shift from traditional

networks to SDN, several controllers have emerged, including Beacon, Floodlight, RYU, Open-

DayLight, ONOS, NOX, and POX. Because of the wide range of SDN applications and con-

troller options, selecting the optimal controller has become a situation-specific decision. As a

result, the focus of this research is on determining the impact of various SDN controllers on SDN

QoS performance. POX and RYU controllers were evaluated, with TCP, UDP, and ICMP traffic

utilised to study their performance in terms of QoS parameters such as Throughput, Round-Trip

Time, and Jitter. The RYU controller outperformed the POX controller, according to the results.

In terms of average throughput, the RYU controller outscored the POX controller by 1.24 per-

cent to 5.35 percent. Furthermore, when compared to the POX controller, the RYU controller

had 0.5 to 1 ms less latency and around 0.02 ms less jitter.[14]

The paper presents the creation of an SDN architecture that analyses network traffic using the

open-source RYU SDN controller. This project’s purpose is to evaluate the performance of a

customised network architecture within the SDN framework, with a focus on node-to-node per-

formance parameters such as , throughput, bandwidth and RTT, among others. The results show

unequivocally that the proposed custom network topology outperforms the default network con-

figuration widely used in SDN.By utilising the open-source RYU controller for network traffic

analysis, this study adds to the enhancement of performance measurements in traffic routing in-

side the SDN environment. This has far-reaching implications for the future, as the network may

now be used to support a wide range of high-end applications. The primary purpose of this study

is to make traffic analysis easier by analysing the performance of the RYU controller within the

context of SDN. This assessment aims to improve resource utilisation, network performance,

data traffic management, reduce costs associated with existing solutions, and encourage field

innovation.[15]

The present study aims to conduct an in-depth examination of the complex query mechanism,

infrastructure, contributing elements, and numerous challenges encountered during the topology

finding process. This research also focuses on recent studies that have successfully addressed

and improved on these issues. It also invites open debate on these topics while identifying fu-

ture research directions. Topology finding services are a crucial challenge under discussion in

this work. The SDN controller is responsible of maintaining the network topology up to date in

the world of Software-Defined Networking (SDN). The OpenFlow Discovery Protocol (OFDP)

is used to find the connections linking SDN-Switches in the data plane. Nonetheless, this tech-

nique’s performance has significant limitations, particularly in large and dynamic network sit-

14

CHAPTER 2: LITERATURE REVIEW

uations. Furthermore, application layer applications rely on this underlying topology, empha-

sising the importance of addressing these constraints. This article examines the performance

constraints related with the link discovery protocol used in SDN networks, namely OFDP. This

method is intended to reduce stress on both components and, as a result, learning time. Fur-

thermore, identifying the right trade-off between SDN-Controller overhead and learning time

becomes crucial for proposals that determine the topology on a regular basis. This trade-off

should be tailored to the specific environment and topological change rate. For example, in situ-

ations with low and modest topological change rates, such as enterprise networks, the discovery

interval may be extended. In contrast, it is best to keep the discovery interval as short as possible

in dynamic and essential scenarios such as data centres and transportation networks.[16]

The document evaluates the OpenDaylight (ODL) and ONOS SDN controllers’ performance for

network topology identification and updating in response to changes. These are critical func-

tions for the SDN controller to do in order to maintain an accurate global view of the network

topology. The OpenFlow Discovery Protocol (OFDP), which is based on the Link Layer Dis-

covery Protocol (LLDP), is commonly used for topology discovery. OFDP works by having the

controller deliver LLDP packets to switches via Packet OUT messages, and the switches re-

spond with the received LLDP packets via Packet IN messages. This enables the controller to

detect switch links in both directions. The topology discovery time was measured in the experi-

ments by recording the timestamp of the first Packet OUT and last Packet IN for each topology

discovery cycle. Iperf was used to analyse throughput disruptions over end-to-end TCP connec-

tions when simulating link failures during network downtimes during modifications. Mininet

was used to build three distinct tree network topologies of increasing size in order to investigate

scalability. The results revealed that ODL beat ONOS in terms of topology discovery time for

both single-controller and cluster modes with multiple synchronised controllers, owing to the

implementation of an optimised version of OFDP that reduces the quantity of control messages

by up to 80% However, while simulating link failures, ONOS was able to recover traffic flows

in less than one second on average, compared to over five seconds for ODL, suggesting that it

is better suited for dynamic networks that require quick response to changes. In the emulated

network topologies, ONOS also achieved greater performance for packet processing tasks and

enabled higher maximum user data rates.[17]

This paper seeks to experimentally evaluate the scalability performance of several open source

SDN controllers available in accordance with the Internet Engineering Task Force (IETF) stan-

dards. It begins by looking at the history of SDN architecture and core technologies such as

15

CHAPTER 2: LITERATURE REVIEW

the OpenFlow protocol. Following that, it discusses common SDN controllers such as POX,

Ryu, Floodlight, OpenMUL, OpenDaylight (ODL), and ONOS. To install multiple Mininet-

generated network topologies and controller Docker images, the assessment approach created

an automated benchmarking tool. Asynchronous message processing time/rate using Cbench,

reactive path provisioning time, topology change detection time, and network discovery time/-

size are among the metrics evaluated.

According to the evaluation results, OpenMUL scored the lowest average latency of 12.5 mi-

croseconds for asynchronous processing. ONOS consistently displayed the highest asynchronous

rate. Ryu had the quickest discovery times, but he couldn’t manage repeated paths.

Interestingly, while being classified as high-performance, Floodlight had the slowest change

detection response times and failed some discovery tests due to non-compliance with the Open-

Flow 1.3 specifications.

Due to its learning switch behaviour, ODL demonstrated longer average timings than ONOS

or Ryu across discovery benchmarks. Across all scenarios, including isolated and redundant

topologies, ONOS remained functionally stable. According to the Interfnet Engineering Task

Force (IETF) methodology, this study provides comparatively analysed performance statistics

for major SDN controllers as a useful reference for the research community. However, ad-

ditional normalisation and clustering tests were suggested in order to reach more definitive

conclusions.[18]

Using a queueing model method, the document studies the performance of the control plane

in software defined networks. Its goal is to discover the appropriate number of controllers to

install in order to reduce flow setup time. More controllers can assist improve performance by

spreading the load across numerous controllers, but it also increases communication overhead

between controllers that must synchronise state in order to maintain a consistent network view.

Thus, the best number of controllers is determined by balancing the load distribution and co-

ordination overhead components. To investigate this, the document develops a queueing model

to assess controller reaction time. Controllers manage two categories of jobs: those that can

be completed within a single domain and those that require cooperation across domains and

take longer. These various task kinds are modelled as having variable service rates, which are

represented as PH distributions based on measurements from a prototype SDN controller. The

overall arrival rate at each controller and its reliance on the number of deployed controllers are

calculated using Poisson processes for flow arrivals from switches and synchronisation message

16

CHAPTER 2: LITERATURE REVIEW

arrivals between controllers. This results in an M/PH/1 queue reflecting each individual con-

troller’s action. Based on the arrival and service characteristics, an equation for the average flow

setup time is produced, and particle swarm optimisation is utilised to calculate the best number

of controllers that minimises this flow setup time.

The model is evaluated by first measuring the response-time of the proposed controller and

testing it according tp the PH distributions required for the model’s service rates. The queue-

ing analysis is then utilised to determine how the flow setup time changes when the number of

deployed controllers and the arrival rates of flows and synchronisation messages change. The

results reveal that there is an ideal number of controllers where adding more controllers ini-

tially improves but ultimately lowers performance due to increased synchronisation overhead

amongst multiple distributed controllers. Furthermore, it has been demonstrated that as the rate

of synchronisation messages between controllers increases, so does the rate of incoming flows.

Finally, the queueing modelling methodology provides a method for determining the appropri-

ate range of controllers to deploy by accounting for the effects of load distribution as well as

coordination overhead across dispersed controllers, thereby optimising the performance of the

SDN control plane.[19]

The objective of this paper is to compare the performance of two SDN controllers, Floodlight

and OpenDaylight, in an emulated network environment known as Ofnet. When processing

traffic in an Ofnet tree network topology, the controllers are evaluated using several metrics. The

document begins by describing related work in which various SDN controllers were evaluated

and compared in research studies utilising emulation tools. It then describes the system model

that was utilised for evaluation. In Ofnet, a tree topology comprised of switches and hosts is

built. There are additional instructions for configuring Floodlight and OpenDaylight controllers

in Ofnet.

The controllers’ performance is evaluated using five important parameters: fresh flow genera-

tion, average flow setup latency, OpenFlow communications to/from the controller, flow misses

to the controller, and CPU utilisation. The’snoop’ command results reveal that Floodlight works

better with reliable flow generation than OpenDaylight under heavy traffic loads for new flow

generation.

When analysing average flow setup latency by measuring host ping times, OpenDaylight out-

performs Floodlight. Floodlight has less message drops than OpenDaylight when it comes to

OpenFlow communications. For flow misses, both controllers performed equally. Floodlight

17

CHAPTER 2: LITERATURE REVIEW

has higher CPU use due to its faster response times. Floodlight also takes considerably less

memory space.

Finally, the report concludes that Floodlight and OpenDaylight perform well in most criteria.

Floodlight, on the other hand, outperforms OpenDaylight in terms of new flow generation, mes-

sage drops, CPU consumption, and memory size, making it more suited for networks with high

traffic loads. In terms of average flow delay, OpenDaylight outperforms. Some Ofnet environ-

ment constraints that may impair controller operation are also mentioned.

Based on the network scenario, this analysis assists researchers in evaluating and selecting the

suitable controller. More topologies, parameters, and different emulation methods can be con-

sidered in future work to better imitate real network situations. The comparison sheds light

on the relative performance of the Floodlight and OpenDaylight controllers for SDN network

design and administration.[20]

The objective of this article is to compare the performance of the SDN simulators Mininet and

OPNET for modelling tactical networks. A comparative analysis is performed to compare key

metrics between simulators.

The study begins with an overview of Mininet and OPNET. Mininet is commonly used for rapid

prototyping of SDN applications, however it lacks model diversity and performance analysis

capabilities. OPNET offers a variety of network architectures and collects performance mea-

surements, although SDN capability is new. Both tools have been used to investigate tactical

networks.

A comparative analysis model is presented with the following steps:

1. Convert Mininet topologies to OPNET XML format in each simulator.

2. Apply the same traffic model to the source and destination nodes using probability distri-

butions.

3. Import models and compare simulation results.

Simulated linear topologies with 5, 10, and 15 nodes. D-ITG in Mininet and OPNET’s Applica-

tion Demand model generates traffic using UDP packets at exponential rates up to the 10Mbps

link capacity. Throughput, end-to-end latency, jitter, and Round Trip Time (RTT) between

switches and controller are among the metrics examined.

The results demonstrate that OPNET has significantly better throughput, but the trend is similar,

18

CHAPTER 2: LITERATURE REVIEW

proving the traffic models correct. Regardless of topology size or load, Mininet exhibits consis-

tent end-to-end delay and jitter. OPNET, on the other hand, demonstrates realistic linear rises,

verifying its models. In OPNET, RTT between switches and controllers connected via SITL

increases with hop count as expected, although Mininet shows similar low values.

Finally, while Mininet is good for rapid prototyping, OPNET allows for realistic simulation of

various scenarios as well as confirmation of stability/reliability when modelling tactical SDN

networks. The method can be used to investigate controller placement issues as well as to

assess various tactical network conditions and metrics. This paper compares SDN simulation in

OPNET and Mininet for tactical networks for the first time.[21]

The purpose of this research is to empirically analyse the performance of the POX and Ryu

OpenFlow controllers. A hybrid SDN architecture is utilised, which combines centralised and

distributed control. It can be seen that when the number of concurrent flows grows, the overall

throughput gradually increases but begins to saturate at 16 flows for both controllers. This is

most likely due to higher control overhead caused by more flow rules that must be processed

and stored in the switches.

When compared to POX, the Ryu controller provides somewhat superior throughput perfor-

mance. Ryu achieves around 18% greater throughput for 16 concurrent flows, which can be

attributed to its highly optimised code and design. However, both controllers show a similar

pattern of throughput increasing with the number of flows at first and then saturation after a

certain threshold.

By transferring certain control logic and choices to the switches, the hybrid control technique

is thought to improve overall network throughput. This minimises the central controller’s

workload and communication delays, enabling for more concurrent flows to be managed un-

til throughput saturation occurs.

The findings provide illumination on the scalability and relative performance of several promi-

nent OpenFlow controllers under realistic network loads. Ryu appears to be better suited for

throughput-intensive workloads, but both perform well. The hybrid control approach has the

potential to improve network scalability and is worth investigating further for software defined

tactical networks.

Finally, the experimental evaluation aids in understanding the capabilities and limitations of the

POX and Ryu controllers, as well as validating the benefits of hybrid SDN systems. This can

help you choose the best control solution for your software-defined tactical network deployment.[22]

19

CHAPTER 2: LITERATURE REVIEW

Based on the findings, TopoGuard+’s tracking of connection latencies and secure generation of

LLDP packets has limits. Two vulnerabilities in particular were discovered:

The first flaw impacts the LLI module, which is used to measure inter-switch connection laten-

cies. The LLI module, on the other hand, is vulnerable to attacks that try to overload switches

in order to artificially increase link latencies. Adversaries can cause TopoGuard+ to detect false

links that do not exist by overloading switches. In relation to the initial vulnerability in the

LLI module, it was discovered that measuring link latencies is critical for TopoGuard+ to de-

tect relay-based fabrications. However, the method employed is vulnerable to manipulation by

switch overload.

The Switch Overload Attack operates in the following manner. To overload two switches whose

authentic connectivity TopoGuard+ is checking, artificial traffic is generated. This raises the

observed delay above the threshold intentionally. As a result, TopoGuard+ is unable to evaluate

whether a claimed new link between switches is genuine or bogus.

The second flaw involves the digital signing of LLDP packets in order to avoid packet forgery.

However, switches, not the controller, do signature verification. Adversaries can use this to

create erroneous LLDP packets that switches will still accept as valid. Malformed LLDP packets

enable new TopoGuard+ link fabrication attacks.

The key issue in the second vulnerability in LLDP packet creation is that signature verification

is performed by switches rather than the controller. While signatures prevent packet forgery,

packet validation is handled by switches.

The LLDP Injection Attack takes advantage of this flaw. Authenticated but malformed LLDP

packets are sent between switches that are not physically connected. Specifically, LLDP packets

are created with forged port information, which switches accept but jeopardise the controller’s

topology view.

Notably, these methods allow TopoGuard+’s security assurances to be undermined without di-

rectly compromising the switches or controller. They demonstrate the significance of carefully

building defences and taking indirect manipulation assaults into account.

The developers were notified and asked to assist in strengthening TopoGuard+ against such

vulnerabilities. The overarching goal of the investigation was to critically examine existing

defences and identify approaches to improve SDN topology security.

Two attacks were devised against TopoGuard+ to demonstrate the practical impact of these

20

CHAPTER 2: LITERATURE REVIEW

vulnerabilities:

The first assault involves creating false traffic to overload switch CPUs. This artificially raises

the observed latency of genuine links, fooling TopoGuard+ into thinking fraudulent links are

legitimate.

The second technique is sending faulty but authenticated LLDP packets across switches that

are not physically connected. Because switches undertake signature verification, TopoGuard+

acknowledges these packets as genuine, but the controller’s view of the topology remains cor-

rupted.

In summary, the attacks weakened TopoGuard+’s security promises by exploiting shortcomings

in detecting link latencies and securely creating LLDP packets. The TopoGuard+ developers

were made aware of these flaws in order to reinforce the solution.[23]

This study provides an SDN overlay approach for improving flexibility and control in wide area

networks that are experiencing failures. It aims to help emerging economies shift to SDN by

employing an overlay while preserving legacy infrastructure. The linked work examines prior

approaches to SDN overlay implementation, surveys hybrid SDN solutions, and investigates

optimal controller placement and enhancing cooperation across diverse overlays.

The proposed architecture includes a distributed SDN overlay with edge SDN devices on the

South African National Research Network topology. Virtualization would take place at network

edges, leaving the remaining L2/L3 networks untouched. Using encapsulation at hypervisor

vSwitches, an overlay is proposed to act as a mediator between the physical and application lay-

ers. This enables overlays to be deployed over existing systems without requiring modifications.

An experimental evaluation is carried out to assess the adaptability and dependability of the

proposed solution. The flexibility of ONOS, OpenDaylight, Ryu, and Floodlight controllers is

evaluated by comparing their throughput and latency under higher switches and MACs. Mininet

is used to deploy the topology, and pings and iperf tests are used to measure throughput. This

study looks into how edge versus non-edge SDN device placement affects propagation delay

and bottlenecking.

ONOS outperformed in flexibility testing, according to the data. Reliability studies revealed that

using three controllers with edge overlay placement reduced round-trip time to less than 0.2ms.

The paper finds that the SDN overlay technique is feasible for future WAN deployments in terms

of distributed control, edge location, and delay reduction. Future work is planned to investigate

the technoeconomic viability of SDN-driven wireless in WANs using overlays, optimise legacy-

21

CHAPTER 2: LITERATURE REVIEW

OpenFlow interfaces, and assess the energy efficiency and security of SDN-driven wireless in

WANs using overlays. [24]

This article compares and analyses the performance of three SDN controllers: Floodlight, Open-

Daylight, and POX. It investigates the packet transmission properties of these controllers using

factors such as bandwidth use, latency, and jitter in various network topologies.

The paper begins by describing SDN’s architecture and the functions of its three planes: appli-

cation, control, and data. It is stated that the controller serves as the brain of SDN and that its

performance is critical. Controller research is critical for both SDN research and commercial

adoption.

According to the methodology section, to generate the various topologies for example linear,

star, and tree - with varying numbers of nodes for each controller mininet was is used . Ping and

iperf tools are used to measure delay, bandwidth, and UDP packet delivery between client-server

hosts. Readings are saved for later analysis.

According to the data, Floodlight has the maximum average bandwidth of 387.977 Mbps in

the linear topology, whereas POX has the lowest average latency of 0.249ms. POX has the best

bandwidth of 909.973 Mbps in the star topology, and Floodlight has the lowest delay of 0.060ms.

Floodlight has the highest bandwidth of 645.783 Mbps and the shortest delay of 0.061ms for

trees.

In terms of jitter and packet loss, tree topology outperforms linear with an average jitter of

4.850ms and a packet loss of 2

According to the paper, SDN improves network programmability and flexibility. While sit-

uations have yet to be thoroughly explored, trends indicate that overlay techniques for WAN

deployments are realistic. Future work can optimise interfaces and assess the eco-viability of

solutions.

In summary, the article compares three software-defined network (SDN) controllers across lin-

ear, star, and tree topologies in terms of bandwidth, latency, jitter, and packet loss to establish

their performance characteristics for optimal selection in software-defined networks. [25]

The performance testing findings of two SDN controllers, Floodlight and ONOS, are discussed

in this article. The controller, which regulates the data stream of devices using flow tables, is a

key component in the SDN architecture. The goal of this study was to identify the throughput

and latency levels of each controller to be used as a basis for controller selection.

22

CHAPTER 2: LITERATURE REVIEW

The cbench tool was used for the testing, which simulated variable demands in the form of

the number of switches and hosts. According to the latency test findings, Floodlight was more

stable for 1-220 switches, but ONOS was only for 1-40 switches. Floodlight’s throughput test

also produced results that were proportional to the rising number of hosts.

The cbench tool was used for latency testing. It simulated growing workloads by raising the

number of switches from two to the maximum number of switches that each controller could

manage, with five hosts linked to each switch. For each switch count data point, testing was

carried out five times. Floodlight replied relatively consistently for up to 220 switches, according

to the data. However, at this threshold, its performance plummeted, indicating that its ideal

operating range was between 1 and 220 switches. ONOS, on the other hand, began to experience

latency issues when handling more than 40 switches. As a result, its optimal switching threshold

was discovered to be between 1 and 40 switches.

Cbench was used again for throughput testing, but this time the switches were set to the optimal

quantities determined during latency testing: 40 switches for Floodlight and 30 switches for

ONOS. Floodlight replies rose according to the number of host terminals added. In compari-

son, the throughput responses of ONOS varied considerably as the number of hosts increased.

However, given ONOS’ distributed architecture, the study concluded that cbench may not have

been the best testing tool. In the future, controller-specific measurement methodologies should

be investigated. Based on this evaluation, Floodlight showed superior throughput and latency

performance overall.[26]

The paper compares the performance of centralised versus distributed SDN controllers based on

topology. The SDN controller is first defined as an intermediary between the northbound and

southbound interfaces, converting network information between high and low-level languages.

The controller’s primary services are topology management, statistics collecting, flow program-

ming, host tracking, and switch management. Supporting legacy network changes, hardware

adaptability, single point of failure risks, performance degradation with large switch counts,

and potential bottlenecks are some of the issues for SDN controllers. Controller architectures

commonly incorporate the Northbound API, control logic, and data plane interface. NOX, POX,

Floodlight, OpenDaylight, and OpenContrail are some of the popular open-source controllers in-

vestigated. There is a comparison of their characteristics and programming languages. Mininet

simulations are used to evaluate the performance of the centralised Floodlight controller and

distributed OpenDaylight controller for various topologies such as single, linear, tree, and torus

23

CHAPTER 2: LITERATURE REVIEW

networks. Except for simple single and linear topologies, where OpenDaylight performed better

due to its lack of global vision, Floodlight displayed superior bandwidth and reduced latency.

However, as the complexity of topologies rose with tree and torus structures, OpenDaylight

performance decreased more than Floodlight, which could handle dispersed settings more effi-

ciently. In conclusion, with the exception of the most basic scenarios, Floodlight outperformed

OpenDaylight in the majority of simulated topologies. [27]

The paper compares the performance of SDN controllers when hosted locally versus in the

cloud, comparing three controllers: NOX as a C++-based quick option, POX for Python-based

research prototype, and Floodlight as an industrial-scale Java controller. Experiment A com-

pares end-to-end ping delay across network topologies such as a linear one with 32 switches

and a hierarchical 5-layer tree with 31 switches, showing that the tree outperforms the linear

structure. In the tree topology, the cloud-hosted controller has lower latency than the local con-

troller for NOX and Floodlight, however POX has higher delays, indicating weaker robustness

to network conditions. Experiment B employs Cbench to mimic flow requests and estimate

throughput by monitoring floodlight "flow-mod" messages in response to "packet-in" events for

each controller across 20 iterations after tweaking POX and Floodlight to minimise flooding

and throttling difficulties with Cbench. Reactive versus proactive flow-table techniques are also

explored, as are factors influencing latency, with the goal of offering insight into delivering sim-

ilar or superior performance for cloud-hosted SDN versus local implementations under varied

scenarios. There are two major sets of experiments mentioned. Experiment set (A) compares

the latency of three network topologies utilising three SDN controllers: NOX, POX, and Flood-

light. It discovers that topology has an effect on performance, with hierarchical tree topologies

outperforming linear topologies. Across topologies, POX experiences longer delays than NOX

and Floodlight. In the hierarchical tree architecture, the cloud-based controller has lower latency

than the local controller for NOX and Floodlight.

Experiment set (B) measures throughput using the Cbench tool to simulate flow requests. It

discovers that monitoring "flow-mod" messages in response to "packet-in" events can estimate

controller raw flow computation throughput. For each controller, testing is carried out over 20

iterations.

The findings can be used to compare the performance of cloud-hosted versus locally-hosted

SDN control planes. While higher latency for cloud controllers is to be expected, methods such

as optimised flow-table compilation assist compensate by lowering switch-controller connec-

24

CHAPTER 2: LITERATURE REVIEW

tions. Topologies have an impact on results as well. The study’s overall goal is to determine

whether cloud-based SDN can provide at least similar performance to local deployments.

In summary, the publication provides a quantitative assessment of the performance consequences

of putting SDN controllers in the cloud versus on-premises, with a focus on latency and through-

put metrics. It emphasises the importance of topology optimisation and controller characteristics

in mitigating the effects of cloud-based deployment. [28]

The performance of five open source SDN controllers is evaluated and compared in this paper:

libfluid, ONOS, OpenDaylight, POX, and Ryu. The Mininet network simulator with a linear

topology was used for the tests. To increase the stress on the controllers, the number of switches

in the topology was gradually increased. End-to-end throughput and delay between two end

hosts were two significant performance measures examined. Throughput was calculated using

iperf by running it between the two end hosts, and all controllers experienced a progressive

reduction as more switches were added. The average RTT was calculated using the ping com-

mand, with most controllers suffering delays of less than 4ms, except for libfluid, which saw

much larger delays under more workloads. Libfluid and POX initially had the best throughput,

but POX scaled better under greater loads, while OpenDaylight had the lowest. ONOS provided

the most consistent low delay across all workloads. The controllers were tested until overload

occurred, with libfluid and POX terminating at 1024 switches and the others terminating at 512

switches. Throughput was calculated using iperf by running it between the two end hosts, and

all controllers experienced a progressive reduction as more switches were added. The average

RTT was calculated using the ping command, with most controllers suffering delays of less

than 4ms, except for libfluid, which saw much larger delays under more workloads. Libfluid

and POX initially had the best throughput, but POX scaled better under greater loads, while

OpenDaylight had the lowest. ONOS provided the most consistent low delay across all work-

loads. The controllers were tested until overload occurred, with libfluid and POX terminating at

1024 switches and the others terminating at 512 switches. [29]

The fault tolerance capabilities of the ONOS and OpenDaylight SDN controllers are compared

in this article. The comparison focuses on how rapidly the controllers detect topological changes

and link failures in the data plane, as well as how successfully they can avoid faults by routing

traffic through alternate channels. To produce realistic fault situations over customisable net-

work topologies, a bespoke SDN simulation and fault injection module was developed. The

custom SDN simulation module, in particular, enables comprehensive customization of switch-

25

CHAPTER 2: LITERATURE REVIEW

controller and inter-switch connections, including single/redundant links and real-time node

addition. This allowed for fine-grained customization of test topologies. A fault injection mod-

ule was also developed and integrated with the controllers via the northbound API to remotely

inject errors such as link disconnections and introduce bandwidth impairments. Topologies of

increasing complexity were tested, including hosts, redundant links, and multiple controllers.

The findings revealed that ONOS could automatically update its GUI topology view in response

to changes, whereas OpenDaylight required a manual refresh to observe modifications. ONOS

was also faster at detecting big, complicated topologies than OpenDaylight, which occasion-

ally failed to recognise all pieces. Under single and multi-path fault scenarios, ONOS was able

to divert traffic to available alternative paths immediately to maintain service continuity. Both

controllers observed disrupted traffic for single path problems with no options.However, once

the link was restored, only ONOS recovered swiftly. ONOS switched traffic quickly for single

alternate path problems, however OpenDaylight was unable to respond and sustain service. In

multi-path circumstances, ONOS chose different default paths than OpenDaylight, yet all cases

tested successfully redirected. However, due to difficulties with its layer 2 forwarding module,

OpenDaylight was unable to respond to errors in some situations, resulting in service outages

even when redundant pathways existed.Finally, ONOS demonstrated higher fault tolerance by

responding to changes and problems more quicker through reactive traffic switching to assure

uninterrupted service. Beyond ONOS and OpenDaylight, further research could look into other

topologies, heterogeneous workloads, and comparisons with commercial controllers. The estab-

lished evaluation technique provides a framework for systematically testing the fault response

capabilities of SDN controllers under controlled situations. [30]

26

CHAPTER 3

Methodology

3.1 Orgnization of Methodology

The study technique was thoroughly planned and carried out in a systematic order. On VM2,

the SDN controller (NOX, POX, and RYU) was launched first, followed by the Mininet envi-

ronment on VM1. The following steps involved evaluating specific network topologies (T-1,

T-2, or T-3), configuring Iperf connections to test TCP and UDP bandwidth, and precisely col-

lecting the data acquired. A series of ping tests with varying packet counts were also performed

between the network’s farthest nodes to determine the RTT and Initial Ping Delay (IPD). After

carefully closing the Mininet simulation, Cbench was opened on VM1 in both throughput and

latency modes to evaluate SDN controller performance with the T4 topology. Over 100 test

iterations, these evaluations were carried out to ensure robust and reliable data collection. The

process culminated in the development of graphics based on the massive amount of data ob-

tained throughout the investigation. These graphs provided a visual platform for the subsequent

performance study of the SDN controller, allowing for a thorough review.

3.2 Hardware and Software Setup

The research technique used in this study was meticulously planned and precise, ensuring a

thorough assessment of the performance of SDN controllers. The powerful Dell Power Edge

R620 server that served as the core of our experimental architecture was carefully chosen to meet

the tough demands of our research. This server boasted two Intel(R) Xeon(R) CPU E5-2650

processors, aggregating sixteen physical CPU cores as shown in 3.1. The significant 128GB

27

CHAPTER 3: METHODOLOGY

of RAM was included to support sophisticated network simulations. In addition, four Network

Interface Card (NIC) and a large 2TB storage capacity were strategically arranged to improve

network connectivity and data management.

3.2.1 Virtual Machine Orchestration

In my investigation, the orchestration of virtual machines (VMs) was entrusted to VMware

ESXi-7.0U2, a dependable hypervisor capable of controlling the virtualization layer. We de-

ployed two critical virtual machines to satisfy distinct responsibilities within our research frame-

work.

• VM1: This virtual machine housed the Cbench tool and Mininet, which served as the

foundation for our network simulations and performance evaluations. On VM1, we

loaded Ubuntu 20.04 and configured it with 8 virtual CPUs, 48GB of RAM, and 150GB

of storage.

• VM2: VM2 was dedicated to executing multiple SDN controllers. It was provisioned with

8 virtual processors, 32GB of RAM, and 150GB of storage, all operating under Ubuntu

20.04.

Figure 3.1: Experimental Setup

28

CHAPTER 3: METHODOLOGY

3.2.2 SDN Controller Selection

Following the successful completion of the specifically built hardware configuration described

earlier, the focus shifts to the essential step of selecting an SDN controller for this research.

During this critical phase, careful consideration was given to the evaluation and incorporation

of open-source SDN controllers, specifically RYU, POX, and NOX. These controllers were

specifically chosen for their availability as downloadable resources from reliable web reposito-

ries because to their opensourceness and accessibility.

RYU, an open-source SDN controller, emerged as a standout alternatives due to its inherent

resilience and varied orchestration features for network activities. Its adaptable and expandable

architecture complements the larger study goals, which call for a thorough examination of SDN

topologies in order to assess performance and responsiveness.

similarly the inclusion of the POX SDN controller added another layer of complexity and di-

versity to the experimental setup. POX, as an open-source platform, combines a lightweight

architecture with strong features, making it appropriate for a variety of SDN scenarios. The ra-

tionale for its selection originates from the research’s goal of covering a wide range of controller

architectures and capabilities, hence contributing to a thorough and well-rounded assessment of

SDN controller performance.

The inclusion of the NOX controller, which is known for its reliability and stability, into the

study framework emphasises the strategic selection criterion even more. These three controllers,

RYU, POX, and NOX, were chosen specifically for their open-source nature, enabling accessible

for a wide range of researchers and practitioners. This careful selection of controllers, each with

distinct characteristics and capabilities, offers the framework for a thorough examination of how

different SDN controllers affects network behaviour and performance.

3.2.3 Mininet

Mininet is an open-source network emulation tool for creating virtual networks on a single

machine. It is frequently used for testing and development in the fields of software-defined

networking (SDN) and network function virtualization (NFV). Mininet emulates complicated

network topologies on a single computer, creating a realistic environment for testing and exper-

imenting with network applications, protocols, and SDN controllers.

29

CHAPTER 3: METHODOLOGY

3.2.4 Mininet Installation

Mininet is installed on a Linux machine, and the instructions provided are for Ubuntu, which is

a commonly used distribution for SDN experiments.

Prerequisites:

Make sure the following prerequisites installed on system:

1. Linux Distribution

Mininet works best on Ubuntu. Make sure to have a compatible version of Ubuntu in-

stalled on machine.

2. Python

Mininet requires Python. Most Linux distributions come with Python pre-installed.

3. Dependencies

Install Mininet dependencies:

1 sudo apt -get update

2 sudo apt -get install -y git net -tools

Clone Mininet GitHub Repository:

1 git clone git:// github.com/mininet/mininet

Run Mininet Install Script:

1 cd mininet

2 sudo util/install.sh -a

Verify Installation:

1 sudo mn --test pingall

3.2.5 Cbench

Cbench, which stands for Controller Benchmark, is a tool to evaluate the performance of SDN

(Software-Defined Networking) controllers. It is intended to analyse SDN controller skills by

30

CHAPTER 3: METHODOLOGY

analysing their responsiveness and efficiency in performing various network management ac-

tivities. Cbench’s main goal is to provide a standardised benchmarking platform for SDN con-

trollers, enabling uniform and comparable performance measurements.

3.2.6 Cbench Installation

Prerequisites:

1. Linux Environment

Cbench is typically used in Linux environments. Ensure that the systemm is running a

Linux distribution.

2. Dependencies

Install necessary dependencies such as build tools, libraries, and development headers.

1 sudo apt -get update

2 sudo apt -get install -y build -essential libtool automake

autoconf git

3. Clone Cbench Repository

1 git clone https :// github.com/mininet/oflops.git

4. Navigate to the Cbench Directory

1 cd oflops/cbench

5. Compile Cbench

1 autoreconf -i

2 ./boot.sh

3 ./ configure

4 make

6. Install Cbench

1 sudo make install

31

CHAPTER 3: METHODOLOGY

3.2.7 Iperf

Iperf is an open-source command-line tool that evaluates network link bandwidth and quality.

It is very used for evaluating network performance, such as monitoring the maximum TCP and

UDP throughput between two devices. Iperf is a comprehensive network tool that may be used

for a variety of network-related tasks, making it an invaluable tool for network administrators,

engineers, and researchers.

3.2.8 Iperf Installation

1. Update Package

1 sudo apt -get update

2. Install iperf

1 sudo apt -get install iperf

3. Verify Installation:

1 iperf --version

3.2.9 Performance Parameters Selection

This study included an in-depth review of SDN controller performance, with a particular focus

on significant players such as NOX, POX and RYU. The evaluation was done in two main

modes: throughput and latency. Notably, I deliberately configured the NOX controller to run

in a single-threaded mode to match the performance characteristics of single-threaded POX and

RYU controllers, assuring equitable and consistent evaluations.

1. Flow Setup Latency

One of the key performance characteristics being investigated is "Flow Setup Latency."

Flow Setup Latency is the time it takes for a controller to register a flow in switch’s flow

table. This delay is critical because it effects the network’s responsiveness to unknown

flows. When a switch gets the initial packet of an unknown flow that does not have a

matching entry in its flow table, it sends a "PACKET IN" message to the controller. The

32

CHAPTER 3: METHODOLOGY

controller then evaluates the packet and determines the best action for the flow, respond-

ing with a "PACKET OUT" message to establish a flow table entry. It is measured in

milliseconds.

2. Throughput

The highest possible data transfer rate possible over a UDP connection between two end-

points is referred to as UDP bandwidth. Unlike TCP, UDP is a connectionless and unreli-

able protocol that lacks flow control, error correction, and congestion control techniques.

3. TCP Bandwidth

Another essential performance parameters, "TCP Bandwidth" is important in determining

the network’s data transfer capacity. It is defined as the pace at which a TCP flow on an

IP network may transfer data between two separate end hosts, given in bits per second.

This value indicates the network’s ability to support data-intensive applications..

4. UDP Bandwidth

Similarly, "UDP Bandwidth" investigates a network’s data transfer capacity in the context

of User Datagram Protocol (UDP) flows. It expresses the rate at which a UDP flow can

transmit data between two different hosts in IP networks in bits per second.

5. Initial Ping Delay (IPD)

This parameter is useful for measuring the latency experienced by a flow’s first packet.

IPD is caused by a mix of factors, including flow setup latency, the ARP process, and path

provisioning from end-to end. IPD, which is measured in milliseconds, provides insight

into the network’s first latency difficulties.

6. Round Trip Time (RTT)

This performance metric is concerned with the time a host takes to send a ping message

and receive a response. RTT is the amount of time it takes for ping messages to travel

from one host (e.g., host1) to another (e.g., host2) and back. It is measured in milliseconds

and reflects network responsiveness.

7. Jitter

"Jitter" is an important parameter that highlights network stability and delay fluctuation.

Jitter was quantified by measuring the standard deviation of RTT values and presenting the

33

CHAPTER 3: METHODOLOGY

results in milliseconds. This indicator emphasises latency fluctuations and their possible

impact on network performance.

Each of these performance characteristics was thoroughly studied and assessed utilising stan-

dardised techniques in this study methodology. We were able to get extensive insights into the

performance of several SDN controllers thanks to the rigorous study of these criteria, which

contributed to a comprehensive grasp of their capabilities.

3.2.10 Topology Scripts

In addition, the research technique included the creation and use of custom scripts to automate

the process of connecting switches to controllers and hosts to switches. By constantly adjust-

ing the number of hosts and switches per controller, these scripts performed a critical role in

optimising the research outcomes. This dynamic modification was an important part of the pro-

cess for reducing latency and optimising performance evaluations. The scripts were designed

to be adaptable to different network conditions and topologies, ensuring that the research find-

ings were robust and representative of real-world scenarios. The scripts improved the research’s

efficiency and effectiveness by automating the procedure of altering the number of hosts and

switches per controller. This automation reduced response time and eliminated the need for

manual modifications, resulting in more accurate assessments of the controllers’ performance.

3.2.11 Single Topology

1 from mininet.topo import Topo

2 class MyTopo(Topo):

3 "Simple_topology_Example."

4 def build(self):

5 "Create_custom_topo."

6 # Add hosts and switches

7 leftHost = self.addHost(’h1’)

8 rightHost = self.addHost(’h2’)

9 CentreSwitch = self.addSwitch(’s1’)

10 # Add links

11 self.addLink(leftHost , CentreSwitch)

34

CHAPTER 3: METHODOLOGY

12 self.addLink(rightHost , CentreSwitch)

13 topos = { ’mytopo ’: (lambda: MyTopo ()) }

Listing 3.1: Single Topology

3.2.12 Linear Topology

1 from mininet.topo import Topo

2 class MyTopo(Topo):

3 "Simple␣topology␣example."

4 def build(self):

5 "Create_Linear_Topo."

6 # Add hosts and switches

7 Host1 = self.addHost(’h1’)

8 Host2 = self.addHost(’h2’)

9 Host3 = self.addHost(’h3’)

10 Host4 = self.addHost(’h4’)

11 SW1 = self.addSwitch(’s1’)

12 SW2 = self.addSwitch(’s2’)

13 # Add links

14 self.addLink(Host1 , SW1)

15 self.addLink(Host2 , SW1)

16 self.addLink(Host3 , SW2)

17 self.addLink(Host4 , SW2)

18 self.addLink(SW1 , SW2)

19 topos = { ’mytopo ’: (lambda: MyTopo ()) }

Listing 3.2: Linear Topology

3.2.13 Tree Topology

1 from mininet.topo import Topo

2 class MyTopo(Topo):

3 "Simple_Tree_Topology."

35

CHAPTER 3: METHODOLOGY

4 def build(self):

5 "Create␣custom␣topo."

6 # Add hosts and switches

7 h1 = self.addHost(’h1’)

8 h2 = self.addHost(’h2’)

9 s1 = self.addSwitch(’s1’)

10 s2 = self.addSwitch(’s2’)

11 s3 = self.addSwitch(’s3’)

12 s4 = self.addSwitch(’s4’)

13 s5 = self.addSwitch(’s5’)

14 s6 = self.addSwitch(’s6’)

15 s7 = self.addSwitch(’s7’)

16 # Add links

17 self.addLink(s1 , s2)

18 self.addLink(s1 , s3)

19 self.addLink(s2 , s4)

20 self.addLink(s2 , s5)

21 self.addLink(s3 , s6)

22 self.addLink(s3 , s7)

23 self.addLink(s6 , h1)

24 self.addLink(s7 , h2)

25 topos = { ’mytopo ’: (lambda: MyTopo ()) }

Listing 3.3: Tree Topology

36

CHAPTER 3: METHODOLOGY

3.3 Shell Scripts for Automation

Another script focuses on evaluating how well SDN controllers perform under various work-

loads using the Controller Benchmark (Cbench) tool.I also wrote a script which gives us in-

formation about how the network performs over time. A Wireshark script is also included to

capture and analyse network traffic during tests, providing precise packet-level information.

These scripts are critical for accurate and repeatable results.

3.3.1 Mininet

1 #! /bin/bash

2 s=1

3 for s in {1..1024}; do

4 (exec sudo mn --custom /home/gmvm/Documents/Scripts/Linear -

T2/2.py --topo mytopo --controller=remote ,ip =10.3.12.177 ,

port =6633)

5 ping -c 1 10.0.0.2 >> "/home/gmvm/Desktop/

NOX -Readings/RTT/Linear -T2/2. csv"

6 if [[$s -eq 1024]]; then

7 break

8 fi

9 done

Listing 3.4: MIninet Script

subsectionCbench and Wireshark

1 #! /bin/bash

2 M=2

3 s=2

4 cd "/home/gmvm/oflops/cbench"

5 for ((s=2; s <=1024; s=s*2))

6 do

7 for ((M=2; M <=1024; M=M*2))

8 do

37

CHAPTER 3: METHODOLOGY

9 sudo wireshark -i eth0 -k -a duration :60 -k -Y "

openflow_v1" -n -w > / home / gmvm /

Desktop / wireshark / sM . pcapng

10 dumpcap TCP@10 .3012.204:16910 -k -a duration :60 -w

>"/home/gmvm/Desktop/wireshark/$s.$M.pcapng"

11 cd "/home/gmvm/oflops/cbench"

12 sleep 2

13 ssh -l "gmvm" "10.3.12.174" "./ startmininet.sh"

14 sleep 2

15 (exec ./ cbench -c 10.3.12.174 -p 6653 -s $s -M $M -

m 300000 -l 20 -t) >> "/home/gmvm/Documents/

Readings/NOX/Cbench/Throughput/$sswitch.$MMacs.

csv"

16 sleep 2

17 ssh -l "gmvm" "10.3.12.174" "./ stopmininet.sh"

18 done

19 done

Listing 3.5: Wireshark & Cbench Script

38

CHAPTER 3: METHODOLOGY

3.3.2 IPD

1 #! /bin/bash

2 i=1

3 j=1

4 for ((i=1; i <=100; i=i+1))

5 do

6 ping -c 1 10.0.0.2 >> "/home/gmvm/Documents/ryu/IPD/Tree

/63. csv"

7 for ((j=1; j<=1; j=j+1))

8 do

9 ovs -ofctl del -flows s$j

10 done

11 done

Listing 3.6: IPD Script

3.3.3 Visualization of Results

For visualization of results I wrote scripts to plot grpahs of each parameters that I tested.

3.3.4 TCP Bandwidth

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5 #sns.set_theme(style =" darkgrid ")

6 csv = pd.read_csv("E:\\ Results\TCP␣Bandwidth.csv")

7

8 plt.figure(figsize =(3.5 ,2.7), dpi =1200)

9 sns.set(font_scale =0.75)

10 sns.set_style(’ticks’)

11 sns.set_context("paper")

12

39

CHAPTER 3: METHODOLOGY

13 p1 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T1",

color="red",marker=’D’,linewidth =1)

14 p2 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T1",

color="blue",marker=’d’, linewidth =1)

15 p3 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T1",

color="green",marker=’P’, linewidth =1)

16

17 p4 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T2",

color="grey",marker=’o’, linewidth =1)

18 p5 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T2",

color="black",marker=’v’, linewidth =1)

19 p6 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T2",

color="brown",marker=’s’, linewidth =1)

20

21 p7 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="NOX -T3"

, color="orange",marker=’p’, linewidth =1)

22 p8 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="POX -T3"

, color="pink",marker=’.’, linewidth =1)

23 p9 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="RYU -T3"

, color="indigo",marker=’H’, linewidth =1)

24

25 plt.ylabel (’TCP␣Bandwidth␣(Mbps)’, fontsize =7)

26 plt.xlabel (’No␣of␣Switches␣(No␣of␣Hosts␣for␣T1)’, fontsize

=7)

27

28 plt.legend(labels = [’NOX -T1’, ’POX -T1’, ’RYU -T1’, ’NOX -T2’

, ’POX -T2’, ’RYU -T2’, ’NOX -T3’, ’POX -T3’, ’RYU -T3’], loc=

’upper␣right’, fontsize =4.0, markerscale =0.75)

29

30 plt.savefig(’TCP␣Bandwidth.png’,bbox_inches=’tight ’)

Listing 3.7: Script for TCP Bandwidth Grpah

40

CHAPTER 3: METHODOLOGY

3.3.5 UDP Bandwidth

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5 #sns.set_theme(style =" darkgrid ")

6 csv = pd.read_csv("E:\\ Results\UPD␣Bandwidth.csv")

7

8 plt.figure(figsize =(3.5 ,2.75) , dpi =1200)

9 sns.set(font_scale =0.75)

10 sns.set_style(’ticks’)

11 sns.set_context("paper")

12

13 p1 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T1",

color="red",marker=’D’)

14 p2 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T1",

color="blue",marker=’d’)

15 p3 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T1",

color="green",marker=’P’)

16

17 p4 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T2",

color="grey",marker=’o’)

18 p5 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T2",

color="black",marker=’v’)

19 p6 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T2",

color="brown",marker=’s’)

20

21 p7 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="NOX -T3"

, color="orange",marker=’p’)

22 p8 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="POX -T3"

, color="pink",marker=’.’)

23 p9 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="RYU -T3"

, color="indigo",marker=’H’)

41

CHAPTER 3: METHODOLOGY

24

25 plt.ylabel (’UDP␣Bandwidth␣(Mbps)’)

26 plt.xlabel (’No␣of␣Switches␣(No␣of␣Hosts␣for␣T1)’)

27

28 plt.legend(labels = [’NOX -T1’, ’POX -T1’, ’RYU -T1’, ’NOX -T2’

, ’POX -T2’, ’RYU -T2’, ’NOX -T3’, ’POX -T3’, ’RYU -T3’], loc=

’upper␣right’, fontsize =7)

29

30 plt.savefig(’UDP␣Bandwidth.png’,bbox_inches=’tight ’)

Listing 3.8: Script for UDP Bandwidth Graph

3.3.6 Initial Ping Delay

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5 #sns.set_theme(style =" darkgrid ")

6 csv = pd.read_csv("E:\\ Results\IPD␣Readings.csv")

7

8 plt.figure(figsize =(3.5 ,2.75) , dpi =1200)

9 sns.set(font_scale =0.75)

10 sns.set_style(’ticks’)

11 sns.set_context("paper")

12

13 p1 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T1",

color="red",marker=’D’,linewidth =1)

14 p2 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T1",

color="blue",marker=’d’,linewidth =1)

15 p3 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T1",

color="green",marker=’P’,linewidth =1)

16

42

CHAPTER 3: METHODOLOGY

17 p4 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T2",

color="grey",marker=’o’,linewidth =1)

18 p5 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T2",

color="black",marker=’v’,linewidth =1)

19 p6 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T2",

color="brown",marker=’s’,linewidth =1)

20

21 p7 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="NOX -T3"

, color="orange",marker=’p’,linewidth =1)

22 p8 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="POX -T3"

, color="pink",marker=’.’,linewidth =1)

23 p9 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="RYU -T3"

, color="indigo",marker=’H’,linewidth =1)

24

25 plt.ylabel (’Initial␣Ping␣Delay␣(ms)␣[Logrithmic␣Scale]’,

fontsize =6)

26 plt.xlabel (’No␣of␣Switches␣(No␣of␣Hosts␣for␣T1)’, fontsize

=6)

27

28 plt.legend(labels = [’NOX -T1’, ’POX -T1’, ’RYU -T1’, ’NOX -T2’

, ’POX -T2’, ’RYU -T2’, ’NOX -T3’, ’POX -T3’, ’RYU -T3’], loc=

’upper␣left’, fontsize =4.0, markerscale =0.75)

29

30 plt.savefig(’Initial␣Ping␣Delay.png’,bbox_inches=’tight ’)

Listing 3.9: Script for IPD Grpah

3.3.7 Round Trip Time

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5

43

CHAPTER 3: METHODOLOGY

6 csv = pd.read_csv("E:\\ Results\RTT␣Readings.csv")

7

8 plt.figure(figsize =(3.5 ,2.75) , dpi =1200)

9 sns.set(font_scale =0.75)

10 sns.set_style(’ticks’)

11 sns.set_context("paper")

12

13 p1 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T1",

color="red",marker=’D’)

14 p2 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T1",

color="blue",marker=’d’)

15 p3 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T1",

color="green",marker=’P’)

16

17 p4 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T2",

color="grey",marker=’o’)

18 p5 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T2",

color="black",marker=’v’)

19 p6 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T2",

color="brown",marker=’s’)

20

21 p7 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="NOX -T3"

, color="orange",marker=’p’)

22 p8 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="POX -T3"

, color="pink",marker=’.’)

23 p9 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="RYU -T3"

, color="indigo",marker=’H’)

24

25 plt.ylabel (’RTT␣Readings␣(ms)’)

26 plt.xlabel (’No␣of␣Switches␣(No␣of␣Hosts␣for␣T1)’)

27

28 plt.legend(labels = [’NOX -T1’, ’POX -T1’, ’RYU -T1’, ’NOX -T2’

, ’POX -T2’, ’RYU -T2’, ’NOX -T3’, ’POX -T3’, ’RYU -T3’], loc=

44

CHAPTER 3: METHODOLOGY

’upper␣left’, fontsize =7)

29

30 plt.savefig(’RTT␣Graph.png’, bbox_inches=’tight ’)

Listing 3.10: Script for RTT Grpah

3.3.8 Jiiter

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5

6 csv = pd.read_csv("E:\\ Results\Jitter␣Readings.csv")

7

8 plt.figure(figsize =(3.25 ,2.7) , dpi =1200)

9 sns.set(font_scale =0.75)

10 sns.set_style(’ticks’)

11 sns.set_context("paper")

12

13 p1 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T1",

color="red",marker=’D’,linewidth =1)

14 p2 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T1",

color="blue",marker=’d’,linewidth =1)

15 p3 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T1",

color="green",marker=’P’,linewidth =1)

16

17 p4 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="NOX -T2",

color="grey",marker=’o’,linewidth =1)

18 p5 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="POX -T2",

color="black",marker=’v’,linewidth =1)

19 p6 = sns.lineplot(data=csv , x="No␣of␣Switche -1", y="RYU -T2",

color="brown",marker=’s’,linewidth =1)

20

45

CHAPTER 3: METHODOLOGY

21 p7 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="NOX -T3"

, color="orange",marker=’p’,linewidth =1)

22 p8 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="POX -T3"

, color="pink",marker=’.’,linewidth =1)

23 p9 = sns.lineplot(data=csv , x="No␣of␣Switches -2", y="RYU -T3"

, color="indigo",marker=’H’,linewidth =1)

24

25 plt.ylabel (’Jitter␣(ms)␣[Logrithmic␣Scale]’, fontsize =6)

26 plt.xlabel (’No␣of␣Switches␣(No␣of␣Hosts␣for␣T1)’, fontsize

=6)

27

28 plt.legend(labels = [’NOX -T1’, ’POX -T1’, ’RYU -T1’, ’NOX -T2’

, ’POX -T2’, ’RYU -T2’, ’NOX -T3’, ’POX -T3’, ’RYU -T3’], loc=

’upper␣left’, bbox_to_anchor =(1, 1.021) , fontsize=4,

markerscale =0.75)

29

30 plt.savefig(’Jitter␣Graph.png’, bbox_inches=’tight ’)

Listing 3.11: Script for Jitter Graph

46

CHAPTER 4

Results

In this section I’ll summarise and report the findings for each parameter . For the T_1 topol-

ogy,graphs of the T_2 and T_3 topologies are displayed against increasing numbers of hosts and

switches, respectively.

4.1 Flow Setup Latency

Figure 4.1 depicts the latency variation among the three SDN controllers (RYU, POX, and NOX)

inside the T_4 architecture. The latency numbers are related to the number of switches increas-

ing. Notably, because NOX measurements differ significantly from POX and RYU readings, the

findings are presented on a logarithmic scale for clarity and precision. The observations show

that as the number of switches increases, so does the flow setup delay for all three controllers.

When 512 switches are compared, NOX has the highest flow setup latency. Surprisingly, NOX

begins with a reasonably low latency number before experiencing a dramatic increase after 32

changes. Figure 4.1 shows that, regardless of the controller used, there is a significant lack

of scalability in terms of flow setup latency as the network size grows.This realization drives

deeper investigation into the intrinsic properties of each controller and raises concerns about

their capacity to manage bigger network configurations efficiently inside the T_4 architecture.

The logarithmic scale facilitates in distinguishing subtle patterns and nuances, providing a more

thorough view of observed latency trends across different network scales.The logarithmic scale

representation highlights this subtle behaviour. It can be seen form Figure 4.1 that all three

controllers are not scaling with the network size.

47

CHAPTER 4: RESULTS

Figure 4.1: Flow Setup Latency of T_4 Topology

4.1.1 Throughput

Figure 4.2 demonstrates the logarithmic throughput of NOX, POX, and RYU against a number

of switches in T_4 topology.

Figure 4.2: Throughput for T_4 Topology in Cbench

While NOX showed significant throughput variation, POX and RYU showed minimal fluctua-

tion. The very flat curves of the RYU and POX graphs enhance the associated latency graphs.

POX and RYU constantly respond to PACKET IN notifications, regardless of arrival rate. NOX’s

throughput dropped significantly after 32 changes from its initial high value. NOX uses the

Asynchronous I/O library, batch processing, and multiprocessor-aware malloc to reduce I/O

48

CHAPTER 4: RESULTS

overhead. Because dynamic buffer allocation works successfully for low traffic loads, very low

flow setup latency and very high throughput values are obtained, as demonstrated by Figure 4.1

and Figure 4.2. Under heavy loads, dynamic buffer allocation becomes a bottleneck, resulting

in increased latency and a significant drop in throughput. Because of their restricted processing

capacity for PACKET IN messages per second, POX and RYU demonstrate consistent through-

put regardless of the number of active switches. This led to higher delay for RYU and POX

under heavy traffic from Figure 4.1. With this in mind, I propose that using pre-allocated packet

buffers in conjunction with dynamic buffer allocation under heavy traffic and a fair batch size

selection for batch processing can improve POX, NOX, and RYU performance. UDP and TCP

Bandwidth Figure 4.3 shows TCP bandwidth and UDP bandwidth graphs are shown in Fig-

ure 4.4 .TCP bandwidth for linear T_2 topology drops sharply as compared to T_3 and T_1

topologies for all three controllers.

Figure 4.3: TCP Bandwidth for T_1, T_2, T_3 Topology

Total host between distant host and the present host is more essential in linear topology than in

tree topology. This is both evident and normal behaviour. Peak TCP bandwidth for 4 switches

in T2 is roughly 800 Mbps, while it is approximately 600 Mbps for 7 switches in T_3. For a

tree topology with seven switches, the maximum number of hops is five, which is nearly similar

to four switches. This is an intriguing statistic that helps to explain the jump in the T_2 and T_3

plots as well. As a result, with increasing number of switches , the TCP bandwidth increases

until there are approximately 4 hops between end hosts. Because of the flow setup latency and

reactive path provisioning time required by the controller to set up an end-to-end path for traffic

flow, TCP bandwidth performance diminishes after four hops. An efficient routing system that

49

CHAPTER 4: RESULTS

provides reactive pathways quickly can boost bandwidth. This field is still researching software-

defined networking.

Figure 4.4: UDP Bandwidth for T_1, T_2, T_3 Topology

In both T_1 and T_3 topologies, TCP bandwidth metrics tend to cluster together and exhibit

similar trends. UDP bandwidth graphs resemble TCP bandwidth graphs in T_1, T_2, and T_3

configurations. However, because UDP is a best-effort protocol, it lacks the increase seen in

TCP graphs.

4.1.2 Initial Ping Delay (IPD)

Figure 4.5 The first ping latency graphs are shown.NOX shares T_1 topology parameters with

RYU. POX outperforms NOX and RYU in terms of IPD for T_1 and T_2 topologies. When

compared to POX and NOX, RYU has the lowest overall IPD for T_1, T_2, and T_3. NOX has

IPD values for the T_2 topology that are equivalent to RYU and POX. IPD manifests itself as

processing delays, reactive path provisioning costs, and flow setup latency. NOX IPD values are

identical until hop count 4, at which point they begin to increase dramatically. The causes are

identical as those indicated in the TCP and UDP Bandwidth section, and they can be improved

by using an effective routing algorithm with timely access to reactive routes.

50

CHAPTER 4: RESULTS

Figure 4.5: IPD Results for T_1, T_2, T_3 Topology

4.1.3 Round Trip Time (RTT)

Figure 4.6 shows the comprehensive evaluation of Round-Trip Time (RTT) across different

topologies sheds light on the intricate performance dynamics of the three SDN controllers—RYU,

POX, and NOX.

In both the star topology (T_1) and the tree topology (T_3), NOX exhibits superior performance

compared to POX. However, RYU consistently outperforms the other controllers, showcasing

the lowest RTT values and maintaining higher stability across diverse network scenarios.

A notable observation surfaces in the linear T_2 topology, where NOX demonstrates the sharpest

slope in RTT. While NOX initially performs well, it encounters challenges stemming from the

rapid expiration of entries provisioned for reactive path establishment. This phenomenon dimin-

ishes its overall performance over time. Addressing this issue may necessitate adjustments to the

expiration time value within the NOX code for entries. This insight emphasizes the importance

of fine-tuning controller parameters to enhance responsiveness in specific network configura-

tions. The decision to omit initial ping delay data contributes to a more nuanced knowledge of

RTT, allowing for a more in-depth analysis of each controller’s performance over time. This

in-depth examination not only reveals the controllers’ relative strengths and shortcomings, but

also provides actionable ideas for optimising their behaviour based on unique network features.

The requirement for customised tweaks within the NOX code demonstrates the critical nature

of controller fine-tuning in real-world SDN implementations.

51

CHAPTER 4: RESULTS

Figure 4.6: RTT Results for T_1, T_2, T_3 Topology

4.1.4 Jitter

Figure 4.7 shows the Jitter results across the three SDN controllers—RYU, POX, and NOX—across

different network topologies (T_1, T_2, and T_3). The depicted Jitter values offer insights into

the stability and consistency of controller behaviors.

RYU’s behavior stands out for its relatively steady Jitter values, indicating a consistent perfor-

mance across the assessed topologies. Conversely, NOX exhibits low Jitter values for T_1 and

T_3 topologies but experiences an increase as the number of switches grows within the T_2

architecture. This behavior aligns with the earlier observation in the RTT section, emphasizing

that NOX-installed flow entries tend to expire quickly in certain network configurations.

The rationale mentioned previously concerning NOX’s flow entry expiration applies to the ob-

served increase in Jitter for the T_2 architecture. The intricacies of NOX’s behavior underline

the importance of considering topology-specific dynamics when evaluating SDN controller per-

formance.

52

CHAPTER 4: RESULTS

Figure 4.7: Jitter Results for T_1, T_2, T_3 Topology

For T_1, T_2, and T_3, POX emerges with the highest Jitter values, contributing to significant

variations in RTT values. This phenomenon is attributed to POX’s processing mechanism, which

involves a fixed rate of handling Packet In messages per second. Additionally, as POX relies on

both Python 2 and Python 3, it is susceptible to packet drops in larger topologies.

53

CHAPTER 5

Discussion

The findings reported in Chapter 4 provide crucial insights into the performance of SDN con-

trollers in a variety of network configurations. This chapter’s analysis explains the key findings

in accordance with the research objectives and reviewed literature. The limitations of the study

are also mentioned.

5.1 Flow Setup Latency

The results showed that as the number of switches rose in the T4 architecture tested with Cbench,

flow setup latency increased exponentially for all three controllers (NOX, POX, RYU). There

are several possible causes for this scaling problem:

For starters, as network size grows, so do the number of packet-in messages that must be handled

by controllers. This increased processing load results in longer latencies.

Second, larger topologies necessitate more time for controllers to compute reactive pathways

and install associated flow entries in switches. This path computation and installation overhead

leads to the observed longer latencies.

Third, NOX’s dynamic memory allocation functions well under low loads but bottlenecks under

high loads, resulting in dramatic increases in delay after 32 switches. NOX’s static buffer pre-

allocation could assist alleviate this scaling issue.

These findings support previous research that found controllers fail to grow linearly with net-

work expansion due to increasing control plane workload. Overall flow setup delay remains an

issue in controllers that needs to be improved in order to fulfil high performance expectations.

54

CHAPTER 5: DISCUSSION

5.2 Throughput

NOX performance changed significantly with network size, although POX and RYU throughput

stayed steady. This is due to NOX’s dynamic buffering method, which faces bottlenecks under

heavy loads, as opposed to POX and RYU, which handle a fixed amount of packet-ins via static

buffering.

Previous research has found that Python controllers may suffer with throughput when compared

to C/C++ equivalents such as NOX. However, the results show that by implementing optimi-

sations such as static buffering, Python controllers may deliver consistent performance as load

increases. Overall, controller optimisations have a significant impact on throughput capacities.

5.3 TCP Bandwidth

RYU obtained full 1 Gbps bandwidth even with 64 hosts for T1 topology (star), while NOX

gradually dropped to 600 Mbps and POX fell to less than 200 Mbps. RYU maintained 1 Gbps

up to 32 switches in T2 linear architecture. NOX also demonstrated a decline to 600 Mbps

for topologies with more than 16 switches. POX bandwidth dropped dramatically, even in tiny

topologies. In the binary tree T3 topology, RYU saw a less than 5% decrease in bandwidth from

1-5 tree depths, while NOX saw a 30-40% fall and POX had a more than 80% decrease. This

shows that RYU can handle flow rules and match packets efficiently even at huge sizes to give

full TCP performance, whereas NOX and POX struggle with flow management under heavy

loads.

5.4 UDP Bandwidth

Trends were nearly equal to TCP, with RYU offering consistent 1 Gbps speeds and minimal

scale dips. NOX bandwidth declined more dramatically than TCP bandwidth, falling by more

than 50% for bigger topologies. POX had serious UDP bandwidth deterioration after 4-8 switch-

es/hosts, rendering it unable to satisfy throughput requirements at scale.

55

CHAPTER 5: DISCUSSION

5.5 Jitter

For all testing, RYU maintained an exceptionally consistent jitter in the sub-millisecond range,

indicating consistent performance. NOX jitter remained low in small topologies but soared

above tolerable ranges of 5-10 ms in heavy loads. Even in mild tests, POX jitter was gener-

ally higher than RYU and NOX, increasing unpredictably over 50 ms at times under load. In

comparison to NOX and POX, this highlighted RYU’s optimised design for robust low-latency

packet handling.

5.6 Initial Ping Delay

RYU had the lowest IPD (<5ms) among all topologies, indicating efficient flow establishment.

NOX IPD was only marginally higher (<10ms) in small topologies but rapidly increased above

16 switches. POX IPD varied between 10-30ms depending on topology, resulting in uneven

delays. In tree topologies, RYU’s IPD gradually increased from 2-4ms with depth, whereas

NOX and POX tripled. This shows that RYU outperforms NOX and POX in terms of early flow

setup.

5.7 Round Trip Time

RYU regularly achieved ultra-low RTT of 1-2ms regardless of scale, emphasising its control

performance. NOX RTT was also low (<5ms) for small topologies but skyrocketed to over

50ms for large networks. POX showed greater variability, ranging from 5-20ms RTT depending

on the test, with no discernible trend. Linear topologies caused the greatest RTT volatility in

NOX and POX, but star/tree topologies performed better. RYU was unaffected by topology type

and performed well in all cases.

56

CHAPTER 5: DISCUSSION

5.8 Why RYU Performed best?

Here are the key reasons why RYU performed the best across all the parameters evaluated in

this study.

5.8.1 Architecture

To provide high performance SDN control activities, RYU employs a multi-threaded asyn-

chronous architecture. A thread pool controls a fixed number of worker threads at the core.

These worker threads execute independent event loops indefinitely to handle I/O asynchronously

and without blocking.

Figure 5.1: RYU Architechture

An incoming event, such as receiving a PacketIn message from the switch, is placed to a central

task queue. The worker threads poll this queue on a regular basis to retrieve and process jobs in

a non-blocking manner. This enables numerous tasks to run concurrently without waiting.

In RYU, each I/O action is implemented as a non-blocking coroutine utilising the Eventlet

coroutine library. Eventlet makes use of greenlets to simulate parallel execution even when

only one thread is active at any given time. When a thread performs an I/O call, such as send-

ing/receiving a message, it automatically yields to allow other threads to run.

This enables RYU to achieve levels of concurrency comparable to real multiprocessing. With

thousands of greenlets running concurrently, all I/O operations like as flow setups, packet han-

dling, and so on can occur in parallel without interfering with one another.

Non-blocking callbacks for completed operations are executed within the original thread’s green-

let context. This keeps the asynchronous nature while without interfering with task order-

ing. Even blocking functions like sleep are implemented collaboratively to prevent stalling

the thread.

RYU’s architecture scales inherently to distribute demand among CPU cores by distributing jobs

dynamically over the thread pool. It easily responds to changes in workload to maintain good

performance regardless of network size or traffic. As a result, it is a very stable and efficient

control plane solution.

57

CHAPTER 5: DISCUSSION

5.8.2 FLow Management

RYU uses high-performance Cuckoo hash tables for flow lookups and entries. Cuckoo hash-

ing enables fast O(1) lookup times on average by utilising numerous hash tables and collision

resolution algorithms. This fast solution ensures that incoming packets are quickly matched to

flows.

Interval trees are used in conjunction with Cuckoo hashes to handle wildcard and ranging IP pre-

fix matching quickly. Interval trees save IP prefix ranges in order to perform O(log n) lookups

for IP address-based matches. This expedites the processing of aggregated flows. RYU main-

tains an LRU cache of recently accessed flow items in memory. Before accessing the slower

hash tables, the cache is examined first on any flow table operation such as insert, remove, or

modify. This reduces average flow setup times by avoiding costly lookups.

When a fresh flow arrives, RYU prioritises its processing. This ensures that flow arrangements

have minimum delays even during peak traffic periods. For efficient transmission to switches,

several concurrent setup requests are also batched together.

Instead of serial individual updates, batching flows take advantage of the asynchronous architec-

ture by allowing several flow adjustments to be communicated concurrently in one transmission.

This significantly reduces the per-flow processing overhead.

These optimizations in RYU’s flow architecture allow it to constantly outperform rival con-

trollers in important measures such as average flow setup delay, jitter, and maximum sustained

flows-per-second, even under large workloads.

5.8.3 Packet Processing

When a controller receives a PacketIn message from switch, the packet is added to RYU’s central

task queue. The worker threads poll this queue on a regular basis to retrieve packets for parallel

processing without stalling.

Using non-blocking I/O calls, each PacketIn task is done individually. The worker thread will

examine the packet headers, look for the corresponding flow using concurrent hash table opera-

tions, and take the necessary forwarding actions, among other things.

While one thread is processing a packet, other threads are free to pick up additional PacketIn

tasks from the queue or do other Critical Control Plane operations such as installing new flows.

58

CHAPTER 5: DISCUSSION

This enables all packet handling processes to run in parallel rather than sequentially in queues.

Using simply the thread pool, RYU can reach line-rate packet processing speeds comparable to

multiprocessor systems.

Even during traffic surges, packets are not queued for long before being selected for concurrent

processing by a worker. This prevents dropped packets and minor queueing delays from entering

the data plane.

RYU can keep up with traffic demands even during flash crowds by automatically scaling the

thread pool based on workload. As packet rates increase, more threads are created to take

advantage of additional CPU cores.

This asynchronous packet processing is fundamental to RYU’s ability to deliver wire-speed

performance, perfect throughput, and sub-millisecond packet latencies in the face of enormous

packet loads and variable network conditions.

5.8.4 Low Overhead

1. CPU Overhead Asynchronous routes in RYU allow CPU-intensive processes like hash-

ing to use many logical cores concurrently without incurring significant context switching

penalties. To reduce per-packet processing expenses, operations are additionally batched,

pipelined, and cached where possible. In comparison to Python interpreters used in other

controllers, the framework itself has low looping/dispatching overhead.

2. Memory Overhead Unlike databases, flow table entries are stored in an efficient in-

memory hash structure that does not bloat. Instead of costly object creation/teardown,

packet buffers are pooled and reused via offsets. Object representation is optimised by

using primitives such as integers rather than Python objects.

3. I/O Overhead Async non-blocking calls are used for network I/O with switches to avoid

thread blocking. Streaming flow/config updates in a single transmission lowers socket/se-

rialization costs. Caching eliminates the need for repeated database lookups and message

encoding/decoding.

4. Latency Overhead To avoid stalls/waits, almost all operations are non-blocking. Priority

queuing and pipelining are two optimisations that reduce the amount of time spent in

lineups and processing steps. For consistent low latency, the async worker paradigm

scales intrinsically dependent on CPU capability.

59

CHAPTER 5: DISCUSSION

5. Scalability RYU’s asynchronous multi-threaded architecture is built from the ground up

to be extremely scalable. A thread pool in the core dynamically assigns worker threads

based on available CPU cores. This enables control plane processing to readily expand up

to hundreds of concurrent threads, allowing modern multicore servers to be fully utilised.

As more tasks occur as a result of rising traffic loads, new threads from the pool can be

promptly provisioned to meet the demand. Threads are also returned when loads are re-

duced. This elastic scaling ensures that processing throughput remains consistent even

when work volumes fluctuate dramatically over time. RYU’s non-blocking I/O and asyn-

chronous task-based design allow it to scale up its performance linearly with the number

of concurrent operations. Whereas increased parallelism in traditional threaded systems

would impair throughput owing to locking, RYU avoids all blocking to retain perfor-

mance advantages. Task-generated load is also carefully divided among threads via a

shared work queue. This ensures that no single thread becomes a bottleneck. Flow oper-

ations scale to maintain wire-speed performance regardless of table size when combined

with caching, optimised data structures, and batching. Furthermore, by decoupling com-

ponents such as the flow managers, RYU’s basic control system stays lightweight and

extremely adaptable. By distributing such components over numerous clustered servers,

horizontal scaling is facilitated. Effectively, RYU can scale out to control networks with

millions of flows and switches only limited by available hardware resources.

6. Stability Years of development and bug fixing has resulted in a robust and hardened

codebase. RYU delivered rock-solid, jitter-free performance throughout all tests.

60

CHAPTER 6

Conclusion

6.1 Conclusion

This research compared and evaluated the performance of three prominent SDN controllers:

NOX, POX, and RYU. Using sophisticated simulation tools, a diverse set of seven performance

parameters were examined across various network topologies and scales. The results provide

useful information about each controller’s capabilities and limits.

Overall, RYU demonstrated the most constant performance with minimal fluctuation as network

sizes and loads increased. It had low flow setup latencies, short packet delays, and consistent

bandwidth and throughput. When POX and NOX were subjected to larger topologies, their

latencies increased and their performance degraded.

In terms of scalability, RYU maintained responsiveness for networks with more than 512 switches

and 2048 hosts, indicating that it is well-suited for large-scale deployments. POX and NOX

ran into scalability concerns after reaching 64 and 32 hosts, respectively. Topology influenced

controller behaviour as well, with tree networks causing longer latencies than linear or star ar-

rangements. RYU, on the other hand, displayed good flexibility across all topologies evaluated.

As a result, our study confirms RYU as a high-performing and scalable SDN controller option

for both small and large operational networks. It offers network operators significant help in

picking the optimum controller based on deployment considerations.

61

CHAPTER 6: CONCLUSION

6.2 Future Work

There are several avenues for future work to build upon the insights from this study.

1. Distributed SDN Controllers

Using controllers such as ONOS and Opendaylight to compare the performance of dis-

tributed SDN architectures to that of centralised ones. How do they handle large networks

with thousands of nodes?

2. Dynamic Traffic Simulation

Injecting realistic Internet traffic patterns into emulated networks to analyse controller

behaviour under dynamic loads as opposed to static testing. What effect do burstiness and

traffic spikes have on performance?

3. Hardware Resource Utilization

CPU, memory, disc, and network use of controllers running on physical servers are pro-

filed. How effectively do they make use of computational resources?

4. Machine Learning Models

Using the metrics measured in this study, we are developing ML models to predict con-

troller performance for any given network topology and scale.

5. Software Upgrades

Portions of this evaluation will be repeated on a regular basis to evaluate the evolution of

controller codebases over time as new features are added and issues are corrected.

6. Hybrid Controller Models

To achieve optimal scalability, we are investigating hybrid/hierarchical SDN designs that

combine the best aspects of centralised and distributed techniques.

7. Mobile Networks

SDN controllers are being evaluated in the context of 5G networks that handle billions of

IoT devices. What effect do mobility, low-latency, and other 5G needs have on perfor-

mance?

62

CHAPTER 6: CONCLUSION

This thesis provided a foundational performance benchmark, and additional research is needed

to improve our understanding of SDN controllers and optimise their use in current networks.

The topics covered here can assist developers and network engineers in furthering the state of

the art in Software Defined Networking.

63

CHAPTER 7

Recommendations

7.1 Controller Selection

1. The selection of an SDN controller is significantly influenced by network size, topol-

ogy, traffic patterns, and expansion plans. Controllers having various topologies, such as

proactive, reactive, or hybrid, are appropriate for various use cases.

2. For networks up to 500 switches, single-threaded controllers like POX, NOX can be used

but their performance degrades significantly beyond that.

3. Event-driven controllers with highly flexible designs and support for bespoke application

development, such as RYU, are required for dynamically changing networks.

4. Critical infrastructure necessitates highly available and dependable controllers, such as

Ryu clusters, that can operate in active-standby or active-active mode.

7.2 Topology Specific Considerations

1. Because of MAC learning, ARP resolution, and hierarchical routing, tree topologies put

extra strain on the control plane. Controllers that have been optimised for these protocols

via specialist modules perform better.

2. Linear topologies provide low overheads, but scaling beyond tens of switches necessitates

distributed controllers to avoid controller bottlenecks.

3. Control traffic is concentrated at the central switch in star topologies. Controller burden

can be reduced by caching commonly used flows and transferring control to switches.

64

CHAPTER 7: RECOMMENDATIONS

7.3 Hardware Resource Planning

1. Multi-core CPU servers are required to maximise throughput in distributed controllers by

leveraging multi-threading.

2. SSDs outperform HDDs in terms of I/O performance for databases used by distributed

controllers.

3. Sufficient memory allows for larger flow tables to be maintained for faster lookups and

eliminates swapping. Based on test results, a minimum of 16GB RAM is suggested.

4. Network connections with dedicated high bandwidthTo improve Quality of Service (QoS),

separate control traffic from data traffic. Between switches and controllers, 10GbE or

greater is desirable.

7.4 Benchmarking and Profiling

1. Before deployment, benchmarking tools such as CBench, PktBlaster, and Ostinato should

be used to evaluate controllers under realistic workloads.

2. Cache hit ratios, flow setup durations, and thread contention all provide useful information

for optimisation. SQLite Analyzer and Java Mission Control are tools that help with low-

level performance analysis.

7.5 Monitoring and Upgrades

1. During the testing phase, baseline metrics must be developed. Trends in production de-

ployments must be closely monitored using technologies such as Telegraf and Influxdb.

2. Support lifespan is affected by community activity and the release cycle. Long-term sup-

port agreements are required for mission-critical deployments.

65

References

M. M. Elmoslemany, A. S. T. Eldien, and M. M. Selim, “Performance analysis in software de-

fined network controllers,” in 2020 15th International Conference on Computer Engineering

and Systems (ICCES), 2020, pp. 1–6.

J. Ali, S. Lee, and B.-h. Roh, “Performance analysis of pox and ryu with different sdn topolo-

gies,” April 2018, pp. 244–249.

M. A. Khan, M. A. Shah, F. Z. Raja, and H. A. Khattak, “A novel technique of dynamic resource

allocation in software defined network,” in 2019 15th International Conference on Emerging

Technologies (ICET), 2019, pp. 1–5.

I. Bholebawa and U. Dalal, “Performance analysis of sdn/openflow controllers: Pox versus

floodlight,” Wireless Personal Communications, vol. 98, January 2018.

Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P. Zhang, “Performance analysis of floodlight and

ryu sdn controllers under mininet simulator,” 2020 IEEE/CIC International Conference on

Communications in China (ICCC Workshops), 2020.

J. Silva, F. Silva, E. Neto, M. Lemos, and A. Venancio Neto, “Benchmarking of mainstream sdn

controllers over open off-the-shelf software-switches,” Internet Technology Letters, vol. 3,

p. e152, February 2020.

S. Mostafavi, V. Hakami, and F. Paydar, “Performance evaluation of software-defined network-

ing controllers: A comparative study,” vol. 2, pp. 63–73, October 2019.

N. H. Thanh, N. N. Tuan, D. A. Khoa, L. C. Tuan, N. T. Kien, N. X. Dung, N. Q. Thu,

and F. Wamser, “On profiling, benchmarking and behavioral analysis of sdn architecture

under ddos attacks,” J. Netw. Syst. Manage., vol. 31, no. 2, mar 2023. [Online]. Available:

https://doi.org/10.1007/s10922-023-09732-5

L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, and M. Guizani, “Sdn controllers: A com-

prehensive analysis and performance evaluation study,” ACM Computing Surveys, vol. 53,

66

https://doi.org/10.1007/s10922-023-09732-5

REFERENCES

pp. 1–40, December 2020.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for

software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot

Topics in Networks, ser. Hotnets-IX. New York, NY, USA: Association for Computing

Machinery, 2010. [Online]. Available: https://doi.org/10.1145/1868447.1868466

M. Dissanayake, W. A. L. Kumari, and A. Udunuwara, “Performance comparison of onos and

odl controllers in software defined networks under different network typologies,” 07 2021.

A. Shirvar and B. Goswami, “Performance comparison of software-defined network con-

trollers,” in 2021 International Conference on Advances in Electrical, Computing, Com-

munication and Sustainable Technologies (ICAECT), 2021, pp. 1–13.

S. Askar and F. Keti, “Performance evaluation of different sdn controllers: A review,” 05 2021.

S. Bhardwaj and S. Panda, “Performance evaluation using ryu sdn controller in software-defined

networking environment,” Wireless Personal Communications, vol. 122, 01 2022.

R. Wazirali, R. Ahmad, and S. Alhiyari, “Sdn-openflow topology discovery: An overview

of performance issues,” Applied Sciences, vol. 11, no. 15, 2021. [Online]. Available:

https://www.mdpi.com/2076-3417/11/15/6999

M. T.BAH, A. Azzouni, M. Nguyen, and G. Pujolle, “Topology discovery performance eval-

uation of opendaylight and onos controllers,” in 2019 22nd Conference on Innovation in

Clouds, Internet and Networks and Workshops (ICIN), 2019, pp. 285–291.

A. Tello and M. Abolhasan, “Sdn controllers scalability and performance study,” 12 2019, pp.

1–10.

S. Zhihao, H. Wu, and K. Wolter, “Performance evaluation of the control plane in software

defined networks,” 03 2019, pp. 171–174.

A. H. M. Hassan, A. M. Alhassan, and F. Izzeldean, “Performance evaluation of sdn controllers

in ofnet emulation environment,” in 2019 International Conference on Computer, Control,

Electrical, and Electronics Engineering (ICCCEEE), 2019, pp. 1–6.

S. Lee, J. Ali, and B.-h. Roh, “Performance comparison of software defined networking simula-

tors for tactical network: Mininet vs. opnet,” in 2019 International Conference on Comput-

ing, Networking and Communications (ICNC), 2019, pp. 197–202.

R. Kumaraswamy and A. Rajendra, Analysis of POX and Ryu Controllers Using Topology Based

Hybrid Software Defined Networks, 01 2020, pp. 49–56.

E. Marin, B. Nicola, and M. Conti, “An in-depth look into sdn topology discovery mechanisms:

Novel attacks and practical countermeasures,” 11 2019, pp. 1101–1114.

67

https://doi.org/10.1145/1868447.1868466
https://www.mdpi.com/2076-3417/11/15/6999

REFERENCES

T. Shozi, S. Dlamini, P. Mudali, and M. Adigun, “An sdn solution for performance improvement

in dedicated wide-area networks,” 03 2019, pp. 1–6.

N. Gupta, M. S. Maashi, S. Tanwar, S. Badotra, M. Aljebreen, and S. Bharany, “A comparative

study of software defined networking controllers using mininet,” Electronics, vol. 11,

no. 17, 2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/17/2715

P. J. Research and P. Raj, “Topology-based analysis of performance evaluation of centralized

vs. distributed sdn controller,” in 2018 IEEE International Conference on Current Trends in

Advanced Computing (ICCTAC), 2018, pp. 1–8.

K. Basu, M. Younas, and F. Ball, “Performance comparison of a sdn network between cloud-

based and locally hosted sdn controllers,” 03 2018.

M. Abdullah, N. Awad, and F. w. Hussein, “Performance evaluation and comparison of software

defined networks controllers,” International Journal of Computing Network Technology,

vol. 2, p. 45, 11 2018.

J. M. S. Vilchez and D. E. Sarmiento, “Fault tolerance comparison of onos and opendaylight

sdn controllers,” in 2018 4th IEEE Conference on Network Softwarization and Workshops

(NetSoft), 2018, pp. 277–282.

S. Moazzeni, M. Khayyambashi, N. Movahhedinia, and F. Callegati, “On reliability improve-

ment of software-defined networks,” Computer Networks, vol. 133, pp. 195–211, 03 2018.

68

https://www.mdpi.com/2079-9292/11/17/2715

APPENDIX A

Achievements

1. Rahman, H. M. U., Bahoo, G., Zafar, L., Al-Oqily, I., Khattak, H. A., Ahmad, A. (2023,

May). Empirical Performance Evaluation of Open Source SDN Controllers in different

Network Topologies. In NOMS 2023-2023 IEEE/IFIP Network Operations and Manage-

ment Symposium (pp. 1-6). IEEE.

69

APPENDIX B

Appendix A

The separate numbering of appendices is also supported by LaTeX. The appendix macro can

be used to indicate that following chapters are to be numbered as appendices. Only use the

appendix macro once for all appendices.

70

	Introduction and Motivation
	Tools for Simulation and Benchmarking
	Performance Parameters
	Custom Topologies
	Cbench Topology

	Problem Statement and Contribution
	Problem Statement
	Proposed Solution

	Aim and Objectives
	Aim
	Objectives

	Contributions
	Limitations
	Thesis Structure

	Literature Review
	Methodology
	Orgnization of Methodology
	Hardware and Software Setup
	Virtual Machine Orchestration
	SDN Controller Selection
	Mininet
	Mininet Installation
	Cbench
	Cbench Installation
	Iperf
	Iperf Installation
	Performance Parameters Selection
	Topology Scripts
	Single Topology
	Linear Topology
	Tree Topology

	 Shell Scripts for Automation
	Mininet
	IPD
	Visualization of Results
	TCP Bandwidth
	UDP Bandwidth
	Initial Ping Delay
	Round Trip Time
	Jiiter

	Results
	Flow Setup Latency
	Throughput
	Initial Ping Delay (IPD)
	Round Trip Time (RTT)
	Jitter

	Discussion
	Flow Setup Latency
	Throughput
	TCP Bandwidth
	UDP Bandwidth
	Jitter
	Initial Ping Delay
	Round Trip Time
	Why RYU Performed best?
	Architecture
	FLow Management
	Packet Processing
	Low Overhead

	Conclusion
	Conclusion
	Future Work

	Recommendations
	Controller Selection
	Topology Specific Considerations
	Hardware Resource Planning
	Benchmarking and Profiling
	Monitoring and Upgrades

	Achievements
	Appendix A

