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Abstract

An attempt to prove the conjecture of Penrose, that in a closed Universe
the black hole singularity and final singularity are simultaneous, Qadir and
Wheeler constructed a Suture model by connecting two sections of Friedmann
Universes using a Schwarzschild suture. Since the open (or flat) Universe
has no final singularity it has to be compactified to test the conjecture. This
extension has been done in this thesis for the open and flat models.
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Preliminaries

There once was a lady named bright
who traveled much faster than light
She left home one day
in a relative way
and returned the previous night

The above limerick refers to a remarkable result of Einstein’s special the-
ory of relativity that anything traveling faster than the speed of light expe-
riences time travel. To develop a better understanding of this result, I will
explain this theory and the consequences thoroughly in this thesis. Here, I
will start my discussion by giving a brief review of Newtonian physics. Gen-
erally, this term can be applied to all the physics up until the development
of Relativity by Einstein. Newtonian physics involves all kind of problems
related to the motions, speeds and forces etc experienced by a particle. The
fundamental assumption of Newtonian physics about space and time was
that the time is a universal constant and it does not change with the relative
motion of the observers. No doubt, Newtonian physics has its own charm
in a sense that it leads us to the industrial revolution, developed a better
understanding of the modern world, predicted and led to the discovery of
Uranus, Neptune, Pluto and other astronomical bodies, but Einstein had
tried a very different approach. He actually was interested in chasing a beam
of light and exploring about the mysteries of the Universe. In 1905, he gave
a revolutionary theory which explains the relative motion of the observers
and the consistency of the speed of light. In the first chapter of this thesis,
I shall briefly explain about the Special theory of relativity, consequences
of this theory in detail, the transformations and notations applied to this
theory. Since the motion of a particle is not restricted to one direction at a
constant speed, therefore to study accelerated motion, Einstein generalized
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his Special theory of relativity to the General theory by including gravity.
I shall explain this theory in detail but to explain the concept of General
relativity, it is necessary to give a brief review of differential geometry and
a little about tensor notation. General relativity basically opened a gate-
way to the mysteries of the Universe. It enlighted the scientific world with
many interesting phenomena including gravitational lensing, perihelion shift
of Mercury, black holes and sciences like Astrophysics and Cosmology.

In the second chapter, I shall explain black holes in detail along with
their singularities and the coordinates used to remove these singularities.
This chapter involves all the basics of black holes necessary to develop an
understanding of my research work. In the 3rd chapter, I shall review the work
of Qadir and Wheeler on the Suture model for a closed Friedmann Universe.
Before discussing this model, I shall explain some terminology and present
other cosmological models. This chapter also includes the dynamics of the
Suture Model, its boundary conditions and the evaluation of mass of black
hole observed from the junction between the closed Friedmann Universe and
the Schwarzschild geometry during the whole expansion of the model. At
the end of the chapter, I shall give an idea about foliation of Suture Model.
Although my research work is not related to the foliation but to arrive at the
conclusion, it is necessary to mention about it. In the fourth chapter, I shall
explain my research work in detail which is related to the extension of the
Suture Model, to the open and flat Friedmann Universe. The basic point is
that the open and flat Universe is limitless, therefore, in order to construct a
model, I need to compactify it first. I will explain compactification, followed
by the transformation of coordinates. The last chapter will consist of the
conclusion of my thesis.
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Chapter 1

Introduction

In the history of scientific revolution, many philosophers and scientists held
different views regarding the concept of space and time. Aristotelian physics
[1] introduced the concept of relativeness. Aristotle believed that space is
relative to its matter content and time to the chronology of events. In the 17th

century, Newtonian mechanics [2] brought in a new concept of absoluteness
of space and time. From the 17th to the 20th century, space and time were
thought to be absolute quantities. Space was considered as a stage where
events unfold and the location of a point was defined by a set of three co-
ordinates (x, y, z). Time, according to the Newtonian concept, was believed
to be a universal entity that flows equally for all observers in the Universe,
irrespective of their motion. Until the 19th century, space and time were two
unconnected entities and there was no concept of defining them as a single
entity, spacetime.

1.1 The Special Theory of Relativity

In 1905, Albert Einstein proposed a revolutionary theory that modified the
Newtonian concept of space and time. Einstein’s view was that space and
time are not absolute quantities but they depend on the motion of the ob-
servers. He believed that the Universe can be visualized as a 4 dimensional
continuum with 3 spatial and 1 time coordinate. Einstein’s special theory of
relativity (SR) is based on the following two principles:
(1) The laws of physics are the same for all observers moving in an inertial
frame of reference;
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(2) The speed of light in a vacuum is constant for all observers regardless of
their motion relative to the light source.

The frame of reference in which Newton’s second law of motion holds is
called an inertial or non-accelerated frame of reference. As SR deals with
uniform motion, it is also known as the “restricted theory of relativity”.

1.1.1 Galilean and Lorentz Transformations

Before discussing the consequences of SR, it is necessary to mention Galilean
and Lorentz transformations. In classical physics, Galilean transformations
are used to transform the coordinates from one inertial frame of reference
to another. Suppose that there are two frames of reference O(t, x, y, z) and
O′(t′, x′, y′, z′) such that O′(t, x′, y′, z′) is moving with a velocity v in the x-
direction relative to O(t, x, y, z). The equations that relate these two frames
are:

t′ = t, x′ = x− vt, y′ = y, z′ = z. (1.1)

The Lorentz transformations are linear coordinate transformations that re-
late two coordinate frames moving at constant velocity relative to each other.
To derive them, let us consider two frames of reference i.e O(t, x, y, z) and
O′(t′, x′, y′, z′) such that at t = t′ = 0, their origins coincide. At this instant,
suppose that two light signals are sent by the observers in their respective
frames which travels in both positive and negative x-axis at the same time
[3]. The light signal proceeding along the positive x-axis for an observer in
O(t, x, y, z) is transmitted according to the equation

ct− x = 0, (1.2)

while for an observer O′(t′, x′, y′, z′), the equation will be of the form

ct′ − x′ = 0. (1.3)

Since the speed of light is same for all observers, Eq.(1.2) and Eq.(1.3) can
be related as

ct′ − x′ = λ(ct− x). (1.4)

Similarly, by applying the same considerations to the light rays which are
being transmitted along negative x-axis, we get

ct′ + x′ = µ(ct+ x), (1.5)
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where λ and µ are the constants of proportionality. Adding Eq.(1.4) and
(1.5) and dividing by 2 we get,

ct′ = (
λ+ µ

2
)ct− (

λ+ µ

2
)x, (1.6)

where,

a =
λ+ µ

2
; b =

λ− µ
2

, (1.7)

hence, Eq.(1.6) becomes
ct′ = act− bx. (1.8)

Subtracting Eq.(1.4) and Eq.(1.5) and dividing by 2

x′ = −bct+ ax. (1.9)

Now, to find the solution of Eq.(1.8) and Eq.(1.9), we need to determine the
value of a and b. The position of O′(t′, x′, y′, z′) according to O(t, x, y, z) is
x = vt while for O′(t′, x′, y′, z′), x′ = 0. Putting this value in Eq.(1.9), we get

b = av/c. (1.10)

We can rewrite Eq.(1.8) and Eq.(1.9) in terms of b as

ct′ = a(ct− v

c
x), (1.11)

x′ = a(x− v

c
ct). (1.12)

To proceed further, all we have to do is to determine the value of a. Since
at the beginning of time, both the observer are at rest position. For this
purpose, let x = x0 at t = 0, such that the Eq.(1.12) becomes

x0
x′

=
1

a
. (1.13)

Similarly for t′ = 0, consider x′ as x0 and put it in Eq.(1.11) to get

ct =
v

c
x. (1.14)

Putting the value of ct in Eq.(1.12), we have

x′0 = a(x− v2

c2
x). (1.15)
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After solving the above equation, we get

x′0
x

= a(1− v2

c2
). (1.16)

The first principle of SR implies that

x0
x′

=
x′0
x
, (1.17)

which can be further written as

x0
x′

= a(1− v2

c2
). (1.18)

Inserting this value in Eq.(1.13), we get

a =
1√

1− v2

c2

. (1.19)

Putting the values of a, b in Eq.(1.11) and Eq.(1.12), we get

t′ = γ(t− vx/c2), x′ = γ(x− vt), y′ = y, z′ = z, (1.20)

where,

a = γ =
1√

1− β2
; β = v/c.

Galileon transformation are not much effective if the speed of an object be-
come very large such that it approaches to the speed of light while in classical
limit, Lorentz transformation reduces to Galilean transformation.

1.2 The Consequences of SR

SR includes the following consequences which had been tested and verified
experimentally:

1.2.1 Time Dilation

Let δt be the time interval as measured by an observer in a rest frame
O(x, y, z, t) where the position of an observer remains the same i.e x2 = x1.
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Figure 1.1: The time dilation phenomenon measured for stationary and mov-
ing photon clocks.

The time interval measured in a moving frame O′(x′, y′, z′, t′) can be calcu-
lated by using Eq.(1.20).

t′1 = γ(t1 −
vx1
c2

), (1.21)

t′2 = γ(t2 −
vx2
c2

), (1.22)

δt′ = t′1 − t′2 = γδt. (1.23)

The above equation expresses the fact that the units of measurement of a
time interval for a moving frame is larger than that of a stationary frame.
In other words, a moving clock ticks slower as compared to a stationary
clock, so we can say that the time dilates for a moving observer. The time
dilation effect is more significant for relativistic motions such that the flow
of time ceases completely for the particles moving with the speed of light
(classically impossible). The following experiment explains this phenomenon
in an elegant way [4].

Let us consider a photon clock consisting of two mirrors attached on the
top and bottom of it, separated by a distance L. In a fixed frame, a beam
of light moves from the lower to the top mirror, reflected and returns back
to the lower mirror. The time taken by the light beam is ∆t = 2L

c
where ∆t

is called the proper time as measured by an observer at rest with respect to
the clock. Now suppose that this observer starts moving at velocity v with
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respect to a stationary observer. The light beam, in this case, will follow a
triangular path as it moves from lower to the top mirror as depicted in Figure
1.1. The time measured by a stationary observer between the two mirror is
∆t′

2
. According to the second observer, light ray travels a distance of c∆t′

2
and

meanwhile, the clock moves a forward distance of v∆t′

2
. Using Pythagora’s

theorem, we get

(
c∆t

2
)2 + (

v∆t′

2
)2 = (

c∆t′

2
)2. (1.24)

Solving for ∆t′, we get
∆t′ = γ∆t. (1.25)

The above relation is called the time dilation formula.

1.2.2 Length Contraction

Another interesting consequence predicted by SR is the difference between
measurement of length of an object with respect to a stationary and moving
observer. Let δL be the proper length of a rod measured by an observer in a
rest frame. Now consider that the observer takes the rod and start running,
then the length of a rod measured by a stationary observer seems shorter
which can be calculated by using Eq.(1.20). As the time interval in a moving
frame is not changing therefore t′1 − t′2 = 0.

t1 − t2 =
v

c2
(L1 − L2). (1.26)

Therefore,
δL′ = L′1 − L′2, (1.27)

δL′ = γ((L1 − L2)− v(t1 − t2)), (1.28)

δL′ = γδL(1− v2

c2
), (1.29)

δL′ =
δL

γ
. (1.30)

This relation is known as the length contraction formula which states that
the length of a moving object appears shorter than its original length from
the perspective of a stationary observer.
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1.2.3 Simultaneity

Simultaneity is an important concept in SR which states that inertial ob-
servers in relative motion disagree on the timing of events occurring at dif-
ferent places, i.e. if an event occurring at two different points x1 and x2
appears simultaneous to an observer O(t, x, y, z), it is not necessarily simul-
taneous for another observer O′(t′, x′, y′, z′) which is moving relative to the
first. This fact can be illustrated by the following thought experiment. Con-
sider a man standing at the midpoint of a platform observing a flash of light
hitting the ground at either side of him. Let the left side of a man be labeled
A and the right side B. According to the man, light hits the ground at the
same time, i.e, the two events happened simultaneously. Now consider, there
is a lady sitting on a train which is moving relative to the platform along with
its length. From the perspective of the lady, the platform moves rapidly in
a direction from A towards B. If we observe the above phenomenon with re-
spect to that lady, light strikes at A earlier than B. Thus the two events that
appeared simultaneous to a man on the platform did not occur at the same
time according to a lady sitting in the train. Mathematically, this effect can
be formulated by considering two events happening at two different locations
x1 and x2. Suppose that the two event appears simultaneous to an observer
O(t, x, y, z) i.e, t1 = t2. According to another observer, O′(t′, x′, y′, z′) moving
relative to O(t, x, y, z), the event occurs at

t′1 = γ(t1 −
v

c2
x1), (1.31)

t′2 = γ(t2 −
v

c2
x2), (1.32)

since t1 = t2 = t, this implies

t′1 − t′2 = γ
v

c2
(x2 − x1). (1.33)

As x2 6= x1, this implies that simultaneity is not absolute rather it is relative.
The most general misconception about Special Theory of Relativity is the
belief that according to this theory, everything is relative but it is just the
motion and simultaneity that is taken to be relative [5].

1.2.4 Mass Variation

According to SR, the mass of an object in a stationary frame, called the rest
mass denoted by mo is not a constant quantity with respect to an observer in
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a moving frame of reference. To derive a relation between rest mass mo and
the relativistic mass m (mass in a moving frame), let us consider two inertial
frames of reference O and O′. O is stationary while O′ is moving relative to
O in x−direction. Consider two masses m1 and m2 in a O′ moving with same
velocity towards each other i.e u and −u. According to the velocity-addition
theorem

u1 =
u+ v

1 + uv
c2

. (1.34)

Similarly, for mass m2 , the velocity will be

u2 =
−u+ v

1− uv
c2

. (1.35)

Now, both the masses approaches to each other, collide and after collision,
they move apart. Applying law of conservation of momentum, i.e.

Momentum before collision = Momentum after collision

m1u1 +m2u2 = (m1 +m2)v. (1.36)

Substituting Eq.(1.34) and Eq.(1.35) in above equation, we get

m1[
u+ v

1 + uv
c2

] +m2[
−u+ v

1− uv
c2

] = (m1 +m2)v. (1.37)

Combining m1 and m2 terms, we get

m1[
u+ v

1 + uv
c2

− v] = m2[v −
−u+ v

1− uv
c2

]. (1.38)

After simplifying the above equation, we get

m1[
c2u− uv2

c2 + uv
] = m2[

c2u− uv2

c2 − uv
]. (1.39)

Re-arranging the above equation, we get

m1

m2

=
[ c

2u−uv2
c2+uv

]

[ c
2u−uv2
c2−uv ]

. (1.40)

Simplifying, we get
m1

m2

=
1 + uv

c2

1− uv
c2

. (1.41)
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Now, squaring Eq.(1.34), dividing by c2 and adding 1 on both sides, we get

u21
c2

+ 1 = (
u+ v

c2(1 + uv
c2

)
)2 + 1, (1.42)

the above equation can also be written as

1− u21
c2

= 1− (
u+ v

c2(1 + uv
c2

)
)2. (1.43)

Simplifying the right side of the above equation, we get

1− u21
c2

=
(1− v2

c2
)(1− v2

c2
)

(1 + uv
c2

)2
. (1.44)

Similarly, for m2, the relation is given by

1− u22
c2

=
(1− v2

c2
)(1− v2

c2
)

(1− uv
c2

)2
. (1.45)

Dividing Eq.(1.44) and Eq.(1.45), we get

1− u22
c2

1− u21
c2

=
(1 + uv

c2
)2

(1− uv
c2

)2
. (1.46)

Taking square root and comparing it with Eq.(1.41), we get

m1

m2

=

√
1− u22

c2√
1− u21

c2

. (1.47)

The above equation can be written as

m1

√
1− u22

c2
= m2

√
1− u21

c2
= mo. (1.48)

Therefore,

m1

√
1− u22

c2
= mo. (1.49)

Replacing m1 with m and u1 with v, we get

m =
mo√
1− v2

c2

. (1.50)

The above relation is the mass variation relation which shows that mass of
an object changes with the velocity, hence it is not a constant quantity.
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1.2.5 Energy-Mass Equivalence

Another revolutionary consequence of SR includes the famous Einstein’s mass
energy equation E = mc2, which states that the mass and energy are inter-
convertible. The body moving faster appears to gain weight and become
heavier, as it approaches to the speed of light it converts in to energy. This
relation can be derived by taking square on both sides of Eq.(1.50), we get

m2 =
m2
o

(1− v2

c2
)
. (1.51)

Simplifying the above equation, we get

m2c2 −m2v2 = m2
oc

2. (1.52)

Taking the differentials on both sides, we get

2mc2dm− 2mv2dm− 2vm2dv = 0. (1.53)

Simplifying further, we get

c2dm = v2dm+mvdv. (1.54)

Now, the change in kinetic energy is equal to the change in the work done
which is equal to the product of force and displacement, i.e,

dK = dW = Fds. (1.55)

According to the Newton’s second law of motion,

F =
dP

dt
, (1.56)

where, momentum is equal to the product of mass and velocity. Putting
value of P in Eq.(1.56), we get

F =
d

dt
(mv), (1.57)

F = m
dv

dt
+ v

dm

dt
. (1.58)
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Putting value of F in Eq.(1.55), we get

dK = m
dv

dt
.ds+ v

dm

dt
.ds. (1.59)

The above equation can be written as

dK = m
ds

dt
dv + v

ds

dt
dm. (1.60)

As, ds
dt

= v, therefore Eq.(1.60) reduces to

dK = mvdv + v2dm. (1.61)

Comparing Eq.(1.54) and Eq.(1.61), we get

dK = c2dm. (1.62)

Taking integrals on both sides with the limits 0 to K for dK and mo to m
for dm, we get

K = mc2 −moc
2, (1.63)

which can be re-written as

K +moc
2 = mc2, (1.64)

where, the term on left side represents the total energy of a particle, therefore,
we get

E = mc2. (1.65)

Hence, we can conclude that the mass and energy are basically the same
aspects of two different approaches.

1.3 The Four-vector Formulation

In 1907, Hermann Minkowski realized that SR, proposed by his former stu-
dent, Albert Einstein, could be reformulated in a more mathematical way
by using four-vectors. Einstein at first considered Minkowski’s treatment
merely as a mathematical trick, but later he realized that a geometrical view
of spacetime is necessary for generalizing SR. A four-vector is a vector that
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describes the position of an event in Minkowski spacetime. It is represented
by xµ consisting of 1 time and 3 space components.

xµ = (x0, x1, x2, x3).

To make the time component dimensionally consistent with the space com-
ponent, we put x0 = ct, such that

xµ = (ct, x, y, z).

A four-vector is invariant under the Lorentz transformations. Let us consider
the two frames of reference O and O′. The coordinates measured in O are
(ct, x, y, z) while the coordinates measured in O′ are (ct′, x′, y′, z′) where,
O′ is moving with the velocity v in x-direction relative to I. The Lorentz
transformations in four-vector notation is given by,

x′0 = γ(x0−βx1) , x′1 = γ(x1−βx0) , x′2 = x2 , x′3 = x3. (1.66)

In martix form 
x
′0

x
′1

x
′2

x
′3

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3

 . (1.67)

The above equation can be written in tensor notation as

x′µ =
3∑

υ=0

Λµ
υx

υ, (1.68)

where,

Λµ
υ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 .
This relation can be written by using Einstein’s summation convention as

x′µ = Λµ
υx

υ. (1.69)
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Figure 1.2: The space-time diagram of a null cone representing time-like,
light-like and space-like regions.

1.4 The Null Cone Structure

The null cone, also known as a light cone, is a surface that describes the
path of a flash of light originating from a single event and traveling in all
directions through spacetime. A null cone structure divides the Four-vector
dxµ into three regions depending on the value of line element ds2 as

ds2 = gµυdx
µdxυ. (1.70)

There exist three kinds of vectors corresponding to the value of ds2, i.e.

ds2 = c2dt2 − dx.dx > 0; (1.71)

ds2 = c2dt2 − dx.dx = 0; (1.72)

ds2 = c2dt2 − dx.dx < 0. (1.73)

A four dimensional region which represents the interior of the null cone is
given by the Eq.(1.71). All the vectors that lie inside this region are called
time-like vectors, which represents the actual geodesics of a physical object
traveling through spacetime. This region can be further divided into future-
directed (dx0 > 0) and past-directed (dx0 < 0) subregions. Similarly a three
dimensional surface representing the boundary of a null cone is given by
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the Eq.(1.72) and the vectors lying in this region are called null, or light-
like, vectors. Null vectors represent the path of an object traveling at the
speed of light. Like time-like vectors, they are also subdivided in to future-
directed and past-directed null vectors. The external structure of a null cone
which consists of all the vectors that lie outside of a null cone representing
the geodesic of a physical object traveling greater than the speed of light
is given by the Eq.(1.73) and these vectors are known as space-like vectors.
Time-like, space-like and null or light-like vectors are invariant under Lorentz
transformations. The regions consisting of these vectors are shown in Figure
1.2.

1.5 The General Theory of Relativity

After presenting SR, which describes the uniform linear motion of an object
restricted to the inertial frame of reference, Albert Einstein started working
for the general case which involves the arbitrary motion of an object. It
took Einstein ten years to include acceleration and generalize the special, or
restricted theory from uniform linear motion to the arbitrary motion. This
new theory of space, time and gravitation is known as the General Theory
of Relativity (GR).

GR, published in 1915, is a geometric theory which propose that space-
time is not a flat structure, but it can be distorted by the presence of massive
objects that produces the curvature in spacetime. GR replaces the Newto-
nian gravitational force by the curvature of spacetime. In the 17th century
Issac Newton proposed the law of Universal gravitation stated as: Every
object in the Universe attracts every other object with a force F which is
directly proportional to the product of their masses and inversely propor-
tional to the square of distance r between them [6]. Mathematically, it can
be expressed as

F = −GMm

r2
r̂, (1.74)

where, F is the force, M and m are the masses of the first and second object,
G is the gravitational constant and r is the distance between the center of
their masses. GR is based on the following principles:
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1.5.1 The Principle of Equivalence

In November 1907, a thought broke into Einstein’s mind which he later called
“the happiest thought of his life”. By imagining a man standing in an eleva-
tor freely falling under gravity, he realized that there must be some relation
between inertia and gravitation. He concluded that the experiments per-
formed in a uniformly accelerated frame of reference with acceleration a are
consistent with the experiments performed in a non-accelerated frame of ref-
erence situated in a gravitational field with the acceleration of gravity g=-a,
i.e. acceleration is equivalent to the gravitation. In simple words, being sta-
tionary in a gravitational field or accelerating upward are the same things.
The principle of equivalence is stated as

For an observer in free fall in a gravitational field, the results of all local
experiments are independent of the magnitude of the gravitational field.

1.5.2 The Principle of General covariance

The principle of general covariance states that
The general laws of physics in a gravitational field are to be expressed by

the equations that are invariant under any set of transformations [7]. These
physical equations also hold in the absence of gravity.

1.6 The Curvature Tensors and Scalar

Before going in to the discussion of curvature tensors and scalar, it is neces-
sary to mention about the covariant derivative. The coordinatization of the
tensor, T, obtained by acting on a contravariant vector, X, with the affine
connection is called the covariant derivative of X, given by

T ab = Xa
;b = Xa

,b + Γab cX
c, (1.75)

The covariant derivative of a covariant vector is evaluated by the following
formula

Xa;b = Xa,b − Γcb aXc. (1.76)

Gauss invariant intrinsic curvature of a surface can be generalized to a higher
dimensional space by carrying a basis vector along two opposite directions in
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opposite order and taking difference of the two results [8]. This can be done
by using a covariant derivative.

Xa
;c;d −Xa

;d;c = (Xa
, c + Γab cX

b);d − (Xa
, d + Γad bX

b);c, (1.77)

Xa
;c;d −Xa

;d;c = (Γab c,d − Γad b,c)X
b + (Γac fΓ

f
d b − Γad fΓ

f
c b)X

b, (1.78)

Xa
;c;d −Xa

;d;c = Γab c,d − Γad b,c + Γac fΓ
f
d b − Γad fΓ

f
c b, (1.79)

Xa
;c;d −Xa

;d;c = Ra
bcdX

b, (1.80)

where,
Ra
bcd = Γab c,d − Γad b,c + Γac fΓ

f
d b − Γad fΓ

f
c b, (1.81)

is called the Riemann curvature tensor that measures the curvature of space-
time. If Ra

bcd = 0, it represents the Minkowski spacetime or we can say it
is locally flat in some regions. The Christoffel symbol used in the above
expression is given by the following formula

Γab c =
1

2
gad(gbd,c + gcd,b − gbc,d). (1.82)

The Riemann curvature tensor possesses the following properties:
1. Rabcd is skew-symmetric in the first two and last two indices, i.e.

Rabcd = −Rbacd = −Rabdc, (1.83)

2. If both pairs of indices are interchanged, then it is symmetric

Rabcd = Rcdab. (1.84)

3. It satisfies the first and second Bianchi identities given by

Rabcd +Racdb +Radcb = 0, (1.85)

Ra
bcd;e +Ra

bec;d +Ra
bde;c = 0. (1.86)

Contracting the first and third indices of Riemann curvature tensor yields
the Ricci tensor while contracting Ricci tensor, we get Ricci scalar

Rbd = Ra
bad, (1.87)

R = gbdRbd. (1.88)
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The Riemann tensor also determines the type of singularity present in space-
time. From the geometric point of view, the singularities are points where
the metric becomes infinite and the geodesic becomes incomplete. There are
generally two types of singularities in GR. Essential singularity, also known
as the physical or spacetime singularity, arises when the curvature of space-
time becomes infinite. It is a region in spacetime where the gravitational
field of an object is infinite to an extent that does not require any coordinate
system. If a singularity can be removed by changing the coordinate system,
then this kind of singularity is known as a coordinate singularity, which arises
because of a bad choice of coordinates. The nature of singularity can also be
found by the following four curvature invariants:

R1 = R,

R2 = Rab
cdR

cd
ab,

R3 = Rab
cdR

cd
efR

ef
ab ,

R4 = Rab
cdR

cd
efR

ef
ghR

gh
ab . (1.89)

If all the above curvature invariants are finite, then the singularity is coordi-
nate, otherwise it is essential.

1.7 The Geodesic Equation

On a curved space, the shortest path between two points is called a geodesic.
In Minkowski spacetime, the shortest distance between two points is the
straight line. Using the Euler-Lagrange equations, the shortest path between
two points can be found as

SAB =

∫ B

A

ds, (1.90)

SAB =

∫ B

A

1.ds, (1.91)

where S is the arc length between two points A and B.

SAB =

∫ B

A

L[xa, ẋa]ds. (1.92)
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where, L, is a Lagrangian function that describes the state of a dynamic
system in terms of position coordinates and their time derivatives and is equal
to the difference of the kinetic and potential energy. The Euler-Lagrange
equations are given by

∂L

∂xc
− d

ds
(
∂L

∂ẋc
) = 0, (1.93)

where,
∂L

∂xc
= gab,cẋaẋb, (1.94)

∂L

∂ẋc
= gcbẋb + gacẋa, (1.95)

d

ds
(
∂L

∂ẋc
) = (gac,dẋa + gcb,dẋb)ẋd + gdcẍd + gcdẍd. (1.96)

Putting the above values in Euler-Lagrange equation, we get

gab,cẋaẋb + (gac,dẋa + gcb,dẋb)ẋd + 2gcdẍd = 0. (1.97)

Replacing the dummy index “d” by “b” in the second term and “d” by “a”
in the third term, we get

2gcdẍd + (gac,b + gbc,a + gab,c)ẋaẋb = 0, (1.98)

gcdẍd +
1

2
(gac,b + gbc,a + gab,c)ẋaẋb = 0, (1.99)

ẍd + Γab cẋ
aẋb = 0. (1.100)

The above equation is known as the geodesic equation and solution of this
equation is called a geodesic.

Lie Derivative

In differential geometry, there are two ways of taking derivative of a tensor
along a curve, which are invariant under the coordinate transformations.
One is to ignore the effect of the coordinatization on the tensor and apply
the derivation to the tensor. This is called the intrinsic derivative. The other
way is to pull out the effect of the coordinatization of the tensor and compute
the effect of the derivation on the tensor in the manifold. This is called the
Lie derivative.
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For a general tensor with components Xa.....c
d.....f , the Lie derivative is given

by
(LtX)a.....c d.....f = tpXa.....c

d.....f,p −X
p.....c

d.....f t
a
,p − .....

−Xa.....p
d.....f t

c
,p +Xa.....c

p.....f t
p
,d +Xa.....c

d.....pt
p
,f . (1.101)

Lie and Parallel Transport

If the tensor is displaced parallely in the coordinate system. This is called
the parallel transport, instead, if the tensor is displaced along the curve on
the manifold by using a Lie derivative. This is called Lie transport.

1.8 Geodesic Deviation

Let us consider two neighboring geodesics connected by the separation vector
v while the tangent vectors along their geodesics are t. For a separation
vector v to be transported parallel along the curve, it is necessary that

Ltva = 0, (1.102)

where L is a Lie derivative along the curve. Using the definition of Lie
derivative, we get

tdva;d − vdta;d = 0, (1.103)

tdva;d = vdta;d. (1.104)

Geodesic deviation is given by the acceleration vector A, as

Aa =
d2va

ds2
, (1.105)

Aa = tc[tdva;d];c. (1.106)

By using Eq.(1.104), we get

Aa = tc[vdta;d];c, (1.107)

Aa = tcvd;ct
a
;d + tcvdta;d;c, (1.108)

Aa = vctd;ct
a
;d + tcvdta;d;c, (1.109)

Aa = vc(tdta;d) ;c − vctdta;d;c + tcvdta;d;c, (1.110)
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Simplifying the above equation, we get

Aa = tcvdta;d;c + vctdta;d;c. (1.111)

Interchanging “c” and “d” in the first term, we get

Aa = tdvcta;c;d + vctdta;d;c, (1.112)

Aa = Ra
bcdt

bvctd. (1.113)

The above equation represents that acceleration arises due to the curvature
of spacetime.

1.9 The Einstein Field Equations

The Einstein field equations are the set of 10 non-linear partial differential
equations which represents the relationship between curvature and matter
distribution of spacetime. GR deals with the gravitational fields depending
on the distribution of matter and its evolution [8]. All the stresses, energy
and momentum in spacetime can be represented mathematically by a tensor
known as the Stress-energy momentum tensor, T ab given by

T ab = ρuaubσijδai δ
b
j , (1.114)

where, ρ is the density ua is the four-velocity and σij is called the stress-
tensor. The relationship between matter (or energy) and curvature is given
by

εab[gαβ, R
α
βrs] = κT ab, (1.115)

where, εab is a tensor function of metric and the curvature tensor, κ is the
constant of proportionality. We can derive Einstein field equations by using
Eq.(1.86) as

Rbd;e +Rbe;d +Ra
bde;c = 0. (1.116)

Multiplying by gad, the above equation reduces to

R;e + 2Ra
e;a = 0. (1.117)

After simplification,

(Rab − 1

2
gabR);a = 0. (1.118)
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For a four dimensional continuum, the linear, symmetric and divergence free
function of the curvature is

εab = Rab − 1

2
Rgab, (1.119)

where, εab is called the Einstein tensor. Putting value of εab in Eq.(1.115),
we get

Rab − 1

2
Rgab = κT ab. (1.120)

The above equation is known as the Einstein field equations.

1.10 Cosmology

The term cosmology is derived from two Greek words, cosmos, “the Universe”
and logos, “study”, therefore the scientific study of large scale properties of
the Universe as a whole is called cosmology. It includes the origin, evolution
and the ultimate fate of the Universe. From the beginning, it had been the
fundamental quest of mankind to explore and understand the Universe and
its matter content. The history of cosmology starts approximately 4000 years
ago from the Babylonians who predicted the apparent motion of the Moon,
stars, planets and the Sun in the sky. In the 4th century BC, the ancient
Greeks built the first cosmological model which represents the motion of the
Sun, the Moon and the planets around the spherical Earth every 24 hours.
Further developments had been made regarding this model in the following
centuries. In the 16th century, Nicolaus Copernicus proposed a heliocentric
theory and constructed a model in which Earth, together with the other
planets revolved in circular orbits around the Sun. In the same century, Ty-
cho Brahe proposed that if the Earth orbits the Sun, then the nearby stars
should periodically change their positions as viewed from different parts of
the Earth. This shift in the position of the stars was known as the Stellar
Parallax. Unfortunately, there was no practical evidence of this parallax. In
the 17th century, when the first known telescope to be used as a scientific in-
strument had been invented by Galileo Galilei, he discovered moons orbiting
the planet Jupiter, which revealed the fact that if moons could orbit another
planet, why could not the planets orbit the Sun? In the same century, Tycho
Brahe’s assistant, Johannes Kepler provided the foundation for our present
conception of the Solar system with the laws that explained elliptical orbits
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of the planets around the Sun. Later, Isaac Newton showed that the ellipti-
cal motion could be explained by his inverse-square law for the gravitational
force. Within the 17th century, thousands of new stars were discovered and
the cosmos seemed to be a vast sea of stars. In the 18th century, Immaneul
Kant introduced the concept of Island Universes which refers to the location
and description of nebulae. In 1785 William Herschel proposed the central
position of our sun in the Milky Way. In the 19th century, the astronomer
and mathematician Friedrich Bessel measured the distance of the Earth to
the stars. The nearest star turned out to be about 25 × 106 million miles
away.

The 20th century brought further insights in unlocking the mysteries of
the Universe. GR played a significant role in the history of cosmology and
the Einstein field equations given in this theory first predicted the expansion
of the Universe. Later, in 1922, Alexander Friedmann gave the first solution
of Einstein field equations predicting the expansion of the Universe which
was confirmed by Edwin Hubble in 1929 by measuring the redshift of distant
galaxies. He examined a linear relationship between the distance and redshift
of galaxies which was later named as Hubble law. The various solutions of
the Einstein Field Equations made the scientists and astronomers think that
the Universe had been created at just one instant about some 10 Billion years
ago and the galaxies were traveling away from us which creates expansion
of the Universe. The British astronomer Fred Hoyle named that instant as
Big Bang. In 1948, Herman Bondi, Thomas Gold and Fred Hoyle published
some papers on the alternative theory of Big Bang known as the Steady state
theory which explains that although the Universe is expanding, the matter
content in it is continuously created to maintain the density of the Universe.
This model also opposes the fact that the Universe has a beginning and an
end. Steady state model had been rejected by many cosmologists, as the
observational evidence favors for the Big Bang model. In 1949 Ralph Asher
Alpher and Robert Hermann predicted the faint afterglow of the intense
radiation of a hot Big Bang, which is later in 1965 confirmed by the discovery
of Cosmic Microwave Background radiations (CMB). Since 1970 almost all
cosmologists had accepted the Big Bang model and was still finding answers
regarding the Universe.

Over decades, many cosmological models had been presented to evolved
the humanity’s understanding of the Universe but our main point of concern
is with the Friedmann cosmological model.
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1.10.1 The Friedmann Models of the Universe

In 1922, Alexander Friedmann who was famous for his ideas of expanding
Universe gave a solution to Einstein field equations. His model describes the
expansion as well as the geometry of the Universe within the context of GR.
Two basic assumptions of this model are homogeneity and isotropy which
are collectively known as the Cosmological principle [9]. Homogeneity means
that the matter distribution in the Universe is same for all observers. Like-
wise, isotropy mean that the Universe appears same if it can be viewed from
different directions. Friedmann model of Universe is given by the following
metric.

ds2 = c2dt2 − a2k(t)[dχ2 + f 2
k (χ)dΩ2], (1.121)

where,
dΩ2 = dθ2 + sin2 θdφ2, (1.122)

and ak(t) is the expansion factor which measures the rate of expansion of the
Universe. It is convenient to convert the cosmic time into conformal time
t = t(η) such that

cdt = ak(η)dη. (1.123)

Here t is the original time variable. It gives directly the proper time elapsed
since the start of the expansion. Integrating the above equation, we get

t =
1

c

∫
ak(η)dη. (1.124)

The metric in terms of conformal time is given by

ds2 = a2k(η)[dη2 − dχ2 − f 2
k (χ)(dθ2 + sin2 θdφ2)]. (1.125)

Depending on the value of curvature parameter k and fk(χ), there exist three
possibilities.

1.10.2 Closed Friedmann Universe

In this case, Friedmann model starts from the Big Bang at η = 0 , expands to
its maximum size, then shrinks and collapse to a Big crunch at η = 2π. Big
Crunch is a possible scenario for the ultimate fate of the Universe, in which
metric expansion of space eventually reverses and the Universe recollapses,
ultimately ending as a black hole singularity or causing a reformation of the
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Universe starting with another Big Bang.
For k = 1,

f1(χ) = sinχ ; (0 ≤ χ ≤ π).

Putting f1(χ) into the metric given in Eq.(1.121), we get

ds2 = a21(η)[dη2 − dχ2 − sin2 χ(dθ2 + sin2 θdφ2). (1.126)

Solving the above metric into Einstein field equations gives two independent
Friedmann equations which represents the cycloid equations. Solution of
these equations for the closed Universe is given by

a1(η) =
a0
2

(1− cos η) ; (0 ≤ η ≤ 2π), (1.127)

t1(η) =
a0
2c

(η − sin η) ; (0 ≤ η ≤ 2π). (1.128)

For k=1, the geometry of spacetime corresponds to 3-sphere or S3.

1.10.3 Flat Friedmann Universe

In this case, Friedmann model starts from the Big Bang at η = 0 and repre-
sents an eternal Universe that expands forever without limit.
For k = 0,

f0(χ) = χ ; (0 ≤ χ <∞).

Putting f0(χ) into the metric given in Eq.(1.121), we get

ds2 = a20(η)[dη2 − dχ2 − χ2(dθ2 + sin2 θdφ2)]. (1.129)

Solving the above metric into Einstein field equations, we get

a0(η) =
a0
2
η2 ; (0 ≤ η <∞), (1.130)

t0(η) =
a0
6c
η3 ; (0 ≤ η <∞). (1.131)

For k = 0, the spacetime geometry corresponds to 3-cone (Hyper cone). In
this case, we have flat space, not flat spacetime.
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1.10.4 Open Friedmann Universe

In the case of open Friedmann Universe, model starts from the Big bang at
η = 0 and does not have an end as in the case of flat Universe.
For k=-1,

f−1(χ) = sinhχ ; (0 ≤ χ ≤ ∞).

Putting f−1(χ) into the metric (1.90), we get

ds2 = a2−1(η)[dη2 − dχ2 − sinh2 χ(dθ2 + sin2 θdφ2)]. (1.132)

Solving the above metric into the Einstein field equations, we get

a−1(η) =
a0
2

[cosh η − 1] ; (0 ≤ η <∞), (1.133)

t−1(η) =
a0
2c

[sinh η − η] ; (0 ≤ η <∞). (1.134)

For k=-1, the geometry of spacetime corresponds to 3-Hyperboloid or H3.
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Chapter 2

Black Holes and Their
Singularities

The existence of invisible objects which pull things in is a generic predic-
tion of GR that attracted both the scientific world and general public. The
possibility of the existence of such compact objects was first proposed by
John Michell in a letter published in 1783. He named these objects “dark
stars”[10]. In 1967, John Archibald Wheeler first used the term “black holes”
for these dark stars during his lecture at the Princeton University and the
name stuck. A black hole can be defined as a region of spacetime possessing
such a strong gravitational field that matter, radiation and not even light can
escape from its surface. In classical physics, a black hole is an object consist-
ing of particles on its surface whose escape velocity is greater than or equal
to the speed of light such that the light did not reflect back due to which
it becomes invisible and because of gravitational attraction, everything falls
into it.

vo =

√
2Gm

r
,

where vo is the escape velocity, m is the mass of that object, G is the gravi-
tational constant and r is the radial distance from the center of mass of an
object [8].

A black hole is formed when a massive star collapses onto itself under
the force of gravity. A nuclear fusion reaction occurring inside the core of
the star provides it with sufficient energy to overcome the gravitational pres-
sure. The fusion process burns hydrogen into helium which is converted into
carbon, eventually ending up with the formation of iron. Lacking fuel for
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further fusion, the gravitational pressure overcomes the internal pressure of
a star due to which it collapses onto itself blowing the surface out under a
massive supernova explosion producing shock waves in the fabric of space-
time. A star collapses completely into an infinite energy density called the
singularity where the curvature of spacetime becomes infinite, the laws of
physics, including GR, fail and even spacetime itself become meaningless.
Another important feature of a black hole which covers the singularity is a
surface at which the escape velocity is greater than or equal to the speed
of light. This surface is known as an “event horizon” of a black hole and it
can be defined as a null hypersurface which acts as a boundary between two
regions of the spacetime, the exterior and interior of a black hole, clothing
the singularity [11]. Any event that happened inside an event horizon do not
affect the outside observer. On the basis of mass distribution, black holes
can be characterized as
Stellar black holes ∼ 101/2to 102 M�
Intermediate black holes ∼ 103 to 105 M�
Supermassive black holes ∼ 106 to 109 M�
where M� is taken as the mass of the Sun. Stellar black holes are usually
dense and smaller in size. There are an enormous number of stellar black
holes in the Universe. These black holes consume the dust and gas around
them and grow in size. The proper evidence of Intermediate black hole is not
provided yet, but in 2014, it had been observed that a black hole is found
in the arm of the spiral galaxy which appeared to be an Intermediate black
hole. The most mysterious black holes found in the Universe are Supermas-
sive black holes. They are often called “the monsters of the Universe”. They
are very huge in size and formed when hundreds and thousands of Stellar
and Intermediate black holes merge together. They are located at the cen-
ter of each galaxy due to their enormous size and are growing day by day.
A Supermassive black hole “Sagittarius A” is present at the center of our
galaxy. Beside them, there is another kind of black hole which is not discov-
ered yet, but they are considered to be formed after the Big Bang about 13.7
billion years ago. They are very small in size and known as “Primordial or
miniature” black holes.
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2.1 The Schwarzschild Black Hole

The Schwarzschild black hole is a static, spherically symmetric black hole
of mass M with zero charge and angular momentum. The Einstein field
equations (1.89) are highly non-linear second order PDE’s which are too
complicated to solve directly, therefore some assumptions had been made
about spacetime symmetries of the solution. In 1916, Karl Schwarzschild
presented a vacuum solution to Einstein field equations which described the
gravitational field outside a spherical mass. The most general spherically
symmetric and static metric in spherical polar coordinates (t, r, θ, φ) is given
by

ds2 = eυ(t,r)dt2 − eλ(t,r)dr2 −R2(t, r)dΩ2, (2.1)

where υ, λ and R are functions of time t and radial r coordinates, where

dΩ2 = dθ2 + sin2θdφ2. (2.2)

Since spacetime is considered to be static, the gravitational field for a point
mass does not vary with time, therefore the above metric reduces to

ds2 = eυ(r)dt2 − eλ(r)dr2 −R2(r)dΩ2. (2.3)

Without the loss of generality, R2(r) is taken as r2 instead of a constant
function, therefore the metric given in Eq.(2.3) becomes

ds2 = eυ(r)dt2 − eλ(r)dr2 − r2dΩ2. (2.4)

The metric tensor and its inverse is given by

gab =


eυ(r) 0 0 0

0 −eλ(r) 0 0
0 0 −r2 0
0 0 0 −r2sin2θ

 , (2.5)

gab =


e−υ(r) 0 0 0

0 −e−λ(r) 0 0
0 0 − 1

r2
0

0 0 0 − 1

r2sin2θ

 . (2.6)
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The non-zero Christoffel symbols are

Γ0
0 1 =

1

2
υ′, Γ1

0 0 =
1

2
υ′eυ−λ, Γ1

1 1 =
1

2λ′
,

Γ1
2 2 = −re−λ, Γ1

3 3 = −r sin2 θe−λ, Γ2
1 2 =

1

r
= Γ3

1 3,

Γ2
3 3 = − sin θ cos θ, Γ3

2 3 = cot θ. (2.7)

For vacuum solution, the Einstein field equations reduces to

Rab = 0. (2.8)

The surviving components are

Roo = υ′′ +
1

2υ′
(υ′ − λ′ + 2υ′

r
) = 0, (2.9)

R11 = −υ′′ − 1

2υ′
(υ′ − λ′ − 2λ′

r
) = 0, (2.10)

R22 = 1− e−λ +
1

2r
(λ′ − υ′)e−λ = 0, (2.11)

R33 = R22sin
2θ = 0. (2.12)

Adding Eq.(2.9) and (2.10), we get

2υ′

r
+

2λ′

r
= 0, (2.13)

υ′ + λ′ = 0. (2.14)

Integrating the above equation yields

υ + λ = constant. (2.15)

Absorbing the constant in to the units of measurement of time, we have

υ(r) = −λ(r). (2.16)

Putting value of υ(r) in Eq.(2.11)

(−re−λ)′ + 1 = 0. (2.17)

33



Integrating the above equation and dividing by r, we get

eυ(r) = 1 +
α

r
, (2.18)

since, υ = −λ, so we have

e−λ(r) = 1 +
α

r
, (2.19)

where, α = −−2Gm

c2
[8]. Therefore Eq.(2.18) and (2.19) becomes

eυ(r) = 1− 2Gm

c2r
, (2.20)

e−λ(r) = 1− 2Gm

c2r
. (2.21)

Putting the value of eυ(r) and e−λ in Eq.(2.4), we get

ds2 = c2(1− 2Gm

c2r
)dt2 − (1− 2Gm

c2r
)−1dr2 − r2dΩ2. (2.22)

The boundary rs =
2Gm

c2
is called an event horizon of the Schwarzschild

black hole. As r →∞, the metric reduces to Minkowski spacetime.

2.1.1 Singularities of the Schwarzschild Black Hole

There are two type of singularities in the Schwarzschild metric which can be
determined by the following curvature invariants

R1 = 0, (2.23)

R2 =
48G2m2

c4r6
, (2.24)

R3 =
64G3m3

c6r6
. (2.25)

Clearly, the singularity located at r = 0 is essential while coordinate singu-
larity appears at r = rs. Since the metric is singular at r = rs, it does not
give any physical information for r < rs.
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2.1.2 Eddington-Finkelstein Coordinates

The Schwarzschild coordinates fail to give information about any physical
feature present at and beyond the event horizon r = rs, therefore a new set of
coordinates must be required for r ≤ rs. Arthur Eddington [12] constructed
a new coordinate system which was then rediscovered by David Finkelstein
[13]. These null coordinates are given by

υ =
1√
2

(ct+ r), (2.26)

u =
1√
2

(ct− r), (2.27)

where υ and u are called advanced and retarded time. To remove singularity
at r = rs, they had defined a new radial coordinate as

r∗ =

∫
dr

1− 2Gm/c2r
, (2.28)

r∗ = r + rsln|
r

rs
− 1|, (2.29)

the constant of integration is taken to make the argument of the logarithm
dimensionless. Redefining the advance and retarded time in terms of r∗, we
get

dυ =
1√
2

(cdt+
dr

1− rs/r
), (2.30)

du =
1√
2

(cdt− dr

1− rs/r
). (2.31)

The Schwarzschild metric in terms of advanced and retarded coordinates is
given by

ds2 = 2(1− rs/r)dυ2 − 2
√

2dυdr − r2dΩ2, (2.32)

ds2 = 2(1− rs/r)du2 + 2
√

2dudr − r2dΩ2. (2.33)

Putting r = rs in Eq.(2.32) and Eq.(2.33), we get g00 = 0. Moreover the value
of determinant g is finite, therefore the singularity at r = rs has been removed
by using advanced and retarded time coordinates. These coordinates are
known as Eddington-Finkelstein coordinates. The metrics given in Eq.(2.32)
is purely in terms of advance time while the metric given in Eq.(2.33) is in
terms of retarded time. Both the metrics are independent of each other. The
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singularity is removed by using these coordinates, however, if we want to
solve a metric for both the advanced and retarded coordinates, we can use
them simultaneously. Adding Eq.(2.30) and Eq.(2.31), we get

dt =
1√
2c

(dυ + du). (2.34)

Subtracting Eq.(2.30) and Eq.(2.31), we get

dr

1− rs/r
=

1√
2

(dυ − du). (2.35)

Taking square of Eq.(2.34) and Eq.(2.35) and substituting the value in Eq.(2.22),
we get

ds2 = 2(1− rs/r)dudυ − r2dΩ2. (2.36)

Eddington-Finkelstein coordinates are good enough to study at r ≥ rs but
not consistent for r < rs, therefore a more convenient coordinates must be
required to study the properties of Schwarzschild black hole beyond that
point.

2.1.3 Kruskal Coordinates

To describe the properties of the Schwarzschild black hole at r = rs, Martin
Kruskal exponentiated the Eddington-Finkelstein coordinates and two new
constants α and β were introduced to cover the entire manifold of the max-
imally extended Schwarzschild solution by a single patch of coordinates [8].
The Kruskal coordinates are defined as

V = αeυ/β, (2.37)

U = −αe−u/β. (2.38)

Multiplying Eq.(2.37) and Eq.(2.38), we get

V U = −α2e(υ−u)/β, (2.39)

The above equation can be rewritten in terms of new radial coordinate r∗ as

V U = −α2e
√
2r∗/β. (2.40)
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Using Eq.(2.29), we get

V U = −α2| r
rs
− 1|

√
2rs/β. (2.41)

Taking differentials of Eq.(2.37) and Eq.(2.38) and multiplying the results,
we get

dudυ = 2(
rs
α

)2(
r

rs
− 1)−1e−r/rsdUdV. (2.42)

Inserting this value in Eq.(2.36), we get

ds2 =
4r2s
α2r

e−r/rsdUdV − r2dΩ2. (2.43)

Putting r = rs in the above metric requires no singularity as g 6= 0. Normally
α is chosen to be unity, but for U , V to have units of length, α can be taken
as 2rs in which case g01 = rs = g10.

2.1.4 Kruskal-Szekeres Coordinates

A convenient coordinate system which can be obtained from the Kruskal
coordinates are called the Kruskal-Szekeres coordinates. It has a time-like T
and a space-like coordinate R defined as,

T =
1√
2

(V − U), (2.44)

R =
1√
2

(V + U), (2.45)

with α = 1, taking the differentials of Eq.(2.44) and Eq.(2.45), we get

dT =
1√
2

(dV − dU), (2.46)

dR =
1√
2

(dV + dU). (2.47)

Adding and subtracting Eq.(2.46) and Eq.(2.47)

dV =
1√
2

(dT + dR), (2.48)
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dU = − 1√
2

(dT − dR). (2.49)

Multiplying Eq.(2.48) and Eq.(2.49), we get

dV dU = −1

2
(dT 2 − dR2). (2.50)

Inserting this value in the metric given in Eq.(2.43), we get

ds2 = 2
rs
r
e−r/rs(dT 2 − dR2)− r2dΩ2, (2.51)

where,
R2 − T 2 = 2(r/rs)e

r/rs ,

and
T/R = tan(t/2rs). (2.52)

Here T varies from −∞ to ∞ and R from 0 to ∞.

2.1.5 The Compactified Kruskal-Szekeres Coordinates

Kruskal coordinates (V, U) and Kruskal-Szekeres coordinates (T,R) can be
compactified to obtain a new set of coordinate having finite range of values.
This new set of coordinate is called the compactified Kruskal-Szekeres co-
ordinates. The transformation of Kruskal coordinates into the compactified
Kruskal coordinates is given by

M = tan−1 V, (2.53)

N = tan−1 U, (2.54)

where the ranges (−∞,∞) mapped on to (−π
2
, π
2
). Using Eq.(2.53) and

Eq.(2.54) in Eq.(2.51)

ds2 =
4r3se

−r/rs

r cos2M cos2N
dMdN − r2dΩ2. (2.55)

Now clearly, the above metric is singular at r = 0, while (M,N) = (−π
2
, π
2
)

at r = rs. The Kruskal-Szekeres coordinates can be compactified by using
the following transformations

Φ = tan−1(T +R) + tan−1(T −R), (2.56)
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Figure 2.1: The Carter-Penrose diagram for maximally extended
Schwarzschild solution.

Ψ = tan−1(T +R) + tan−1(T −R). (2.57)

Figure 2.1 represents the Schwarzschild spacetime in compactified Kruskal-
Szekeres coordinates. This diagram is known as the Carter-Penrose diagram,
developed by Brandon Carter and Roger Penrose so that spacetime structure
can be visualized in a two dimensional plane.

2.2 Reissner-Nördstrom Black Hole

Reissner-Nördstrom (RN) black hole is a static, spherically symmetric black
hole of mass M possessing an electric charge Q with zero angular momentum
[11]. Hans Reissner and Gunnar Nördstrom gave a gravitational solution to
the Einstein-Maxwell field equations. We will start with the same spher-
ically symmetric and static metric along with the Christofell symbols and
Ricci scalars given in Eq.(2.7), Eq.(2.9) and Eq.(2.10). The difference arises
due to the presence of a charge Q which involves electromagnetism. The elec-
tromagnetic four-vector potential for source-free Maxwell equations coupled
with gravity is given by

Aa = (Q/cr, 0).
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Now the Maxwell tensor, which gives the electromagnetic field is

F = d ∧ A,

which implies
Fab = −Fab = 2 δ0[aδ

1
b] Q/cr

2. (2.58)

The stress-energy tensor for the electric field is given by

T ab =
1

4π
(F acF b

c −
1

4
gabF cdFcd). (2.59)

Putting this value in Eq.(2.58), stress-energy tensor in mixed form is given
by

T 0
0 = T 1

1 = −T 2
2 = −T 3

3 = Q2e−(υ+λ)/8πc
2r4 ,

T ab = 0 ; a 6= b. (2.60)

Since the solution is assumed to be static and spherically symmetric so Tab =
0 and T 0

0 = T 1
1 . Using Eq.(2.9) and Eq.(2.10), we get

υ′(r) + λ′(r) = 0, (2.61)

Integrating the above equation, we get

υ(r) + λ(r) = 0, (2.62)

where, R22 = κT 2
2 . Using Eq.(2.11), we get

− 1

r2
[(−re−λ)′ + 1] = −8πG

c2
Q2

8πc2r4
. (2.63)

Solving the above equation, we get

eυ(r) = e−λ(r) = 1 +
α

r
+
GQ2

c4r2
, (2.64)

where,

α = −2Gm

c2
.

Putting value of ev(r), e−λ(r) and α in the metric given in Eq.(2.4), we get

ds2 = (1− 2Gm

c2r
+
GQ2

c4r2
)c2dt2 − (1− 2Gm

c2r
+
GQ2

c4r2
)−1dr2 − r2dΩ2. (2.65)
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The above metric is known as RN metric. If we put Q = 0 in the above
metric, it will lead to the Schwarzschild exterior solution. Also consider
the case when Q = 0 and Q2 = Gm2. If Q = 0, RN metric reduces to
Schwarzschild metric as rs = r+ + r− so the outer horizon r+ becomes the
Schwarzschild event horizon whereas inner horizon (r−) collapses to essential
singularity. If Q2 = Gm2, then according to Eq.(2.69) and Eq.(2.70) we are
left with rs = 2r+ = 2r−. The solution in this case is called the Extreme RN
solution.

2.3 Kerr Black Hole

In 1963, a New Zealand mathematician Roy Patrick Kerr discovered a solu-
tion to the Einstein field equations that describes the gravitational field of
a rotating, uncharged and axially symmetric body of mass M with angular
momentum J . The standard Kerr metric in Boyer-Lindquist coordinates is
given by

ds2 = (1− 2Gmr

c2ρ2
)c2dt2 − (

ρ2

∆
)dr2 − ρ2dθ2 − [(r2 +

a2

c2
) sin2 θ

+
2Gmra2

ρ2c2
sin4 θ]dφ2 + (

2Gmra sin2 θ

ρ2c2
)dtdφ, (2.66)

where,

ρ2 = r2 +
a2 cos2 θ

c2
, (2.67)

∆ = r2 − 2Gmr

c2
+
a2

c2
. (2.68)

Due to the spin angular momentum of a gravitational source, the inertial
frames are dragged along with the rotation. Like the Schwarzschild and RN
metric, they are also solution of the vacuum Einstein field equations.

2.4 Kerr-Newmann Black Hole

Kerr Newmann black hole is the generalization of RN black hole, also known
as the charged Kerr black holes as it describes the gravitational field of a
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rotating, axisymmetric, charged body of mass M with angular momentum
J . Kerr-Newmann metric is given as

ds2 = [1−
(2Gmr

c2
− GQ2

c4
)

ρ2
]c2dt2 − (

ρ2

∆
)dr2 − ρ2dθ2 − [(r2 +

a2

c2
) sin2 θ

+
2Gmra2 sin2 θ

ρ2c4
]dφ2 + (

2Gmrasin2θ

ρc2
)dtdφ, (2.69)

where,

ρ2 = r2 + a2
cos2 θ

c2
, (2.70)

∆ = r2 − 2Gmr

c2
+
Gθ2

c4
+
a2

c2
. (2.71)

Now consider, if we put a = 0 in the above metric it reduces to RN metric.
Similarly, putting Q = 0 the metric reduces to Kerr solution. In Kerr metric
given in Eq.(2.97) if we put a = 0 it yields Schwarzschild metric.
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Chapter 3

The Suture Model

In the first chapter, a brief discussion about the closed Friedmann Universe
had been provided. In this chapter, I will review the Suture Model for the
case of a closed Friedmann Universe including its boundary conditions and
the evaluation of mass of a black hole, observed from the boundary between
the interior Friedmann and exterior Schwarzschild regions. To understand
the dynamics of Suture Model, it is necessary to define some terms first,
which are given below.

Mean Extrinsic Curvature

In the context of GR, the curvature of spacetime is expressed by the
Einstein tensor in the Einstein field equations. In order to understand the
implications of Einstein field equations on the hypersurface, Ra

bcd must be
decomposed into its spatial parts. This decomposition can be done by a ten-
sor, which measures the intrinsic curvature of the hypersurface. The intrinsic
curvature tensor does not provide any information about the hypersurface,
therefore a purely spatial and symmetric curvature tensor is defined for the
hypersurfaces, known as the extrinsic curvature tensor. It is defined as the
projection of the spacetime covariant derivative of the normal to the hyper-
surface. The extrinsic curvature tensor measures how a normal vector to the
hypersurface changes from one point to another. But, in any case

Ka
b = na; b. (3.1)

The mean extrinsic curvature measures the fractional change in the 3 dimen-
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sional volume along the normal na, defined by the following formula:

K = −∇.n, (3.2)

Foliation of Spacetime

In the context of GR, foliation is the splitting of a 4-dimensional space-
time back into 3-dimensional space and 1-dimensional time. In other words,
foliation is a procedure by which spacetime can be expressed as a series of
spatial slices which evolves in time. The purpose of foliating a spacetime is to
study its dynamics and to understand its geometry more precisely. A space-
time can be foliated by hypersurfaces which are characterized as time-like,
light-like and space-like depending on the value of line element

ds2 = gabdx
adxb. (3.3)

For all dxa lying in the hypersurface,
if gabdx

adxb > 0, then it is time-like;
if gabdx

adxb = 0, then it is light-like;
if gabdx

adxb < 0, then it is space-like.

Maximal Slicing

A hypersurface for which mean extrinsic curvature tensor is zero every-
where is called a maximal hypersurface. It encloses maximum volume for a
particular given area. If the foliation is done by the maximal hypersurfaces,
then this type of foliation is called maximal foliation or maximal slicing.
Therefore, Eq.(3.2) can be used for maximal foliation as K = 0.

York-Time

If the spacetime is foliated by a sequence of space-like hypersurfaces whose
mean extrinsic curvature is constant, then it is called K-slicing or York slic-
ing. In this case, each spacetime event lies on a unique space-like hypersurface
at a specific value of time. A time parameter is provided to hypersurfaces
such that its value varies from one slice to another but constant at each slice
throughout. This time parameter is known as the York time .

Penrose’s Conjecture
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Figure 3.1: Penrose picture showing the roof of a cave as the final singularity
while the stalactites as the black hole singularities [15].

Penrose conjectured that in a closed Universe, it may be possible to regard
the black hole singularity as a part of the final cosmological singularity while
for an open Universe, as a part of compactification of spacetime. Penrose
explained this conjecture by considering an example of a cave whose roof
consisted of a large number of stalactites, the roof corresponds to the final
singularity while the stalactites to the black hole singularities as shown in
Figure 3.1. He argued that by some conformal transformation, it should
be possible to straighten out the roof and have it appear smooth, i.e, there
should exist a foliation of spacetime by a sequence of space-like hypersurfaces
which would approach the singularity smoothly without cutting it anywhere,
thus the entire spacetime would be foliated.

In order to investigate the conjecture of Penrose, various inhomogeneous
cosmological models had been proposed. The Schwarzschild lattice Universe
and the Suture Model are the two most consistent and concise models of
closed Universe presented by Qadir and Wheeler. The former is described
in the following section while the latter shows the formation of a black hole
due to the evolution of two closed Friedmann Universes. The behavior in the
last stages of crunch (the final singularity) had been investigated by foliating
these models by the sequence of space-like hypersurfaces of constant mean
extrinsic curvature.

45



3.1 The Schwarzschild Lattice Universe

Schwarzschild lattice Universe was the simplest model which was constructed
to study the dynamics of the closed Universe and its behavior at the final
singularity. First attempt to make a closed Universe was made by consid-
ering polytopes with the number of faces 4, 6, 8 or 12. The possible com-
bination for tetrahedra could be made by using 5, 16 or 600 faces but it
gave the worse approximation to the topology of a sphere, therefore a better
approximation was made by considering the cubes, octahedra and dodeca-
hedra. The inaccuracy was further improved by taking 120 cells of identical
masses and enclosed them in a regular lattice which possesses the topol-
ogy of a 3-sphere as shown in Figure 3.2. To obtain the appearance of a
Friedmann Universe, they had joined these cells in such a way that each cell
contained pure empty-space Schwarzschild geometry, hence we can say that
many Schwarzschild zones were fitted together to make a closed Universe
[16]. This was a Schwarzschild lattice Universe model, in which the cells
possess the features of Schwarzschild geometry while the space between cells
follows a Friedmann evolution. The interface between the two lattice cell
is specified by the motion of test particle falling towards the Schwarzschild
singularity. This fact can be explained by considering the behavior of a test
particle at the interface between two of the Schwarzschild black holes. Due
to the gravitational forces of Schwarzschild black holes, the test particle first
rises at the same time and then falls back which makes the two centers oscil-
late. In this way, the lattice Universe expands and contracts which arose the
features of Friedmann Universe in it although, it does not involve the Fried-
mann geometry [16]. As my point of concern is the Suture Model, therefore
I am not going into the mathematics of the Schwarzschild lattice Universe
but will give a brief review on foliation of it.

3.1.1 Foliation of Schwarzschild Lattice Universe

This model was K-foliated by a sequence of space-like hypersurfaces by treat-
ing each cell independently as a Schwarzschild geometry and requiring that
the mean extrinsic curvature of the foliating hypersurfaces have zero deriva-
tives on the boundary B. For the solution to be unique, conditions were
provided at the boundary and center of the cell [16]. Since the singularity
of a black hole is located at the center and the space-like hypersurface is
non-singular everywhere, so the treatment had to be made at the center.
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Figure 3.2: The Schwarzschild lattice Universe [16].

However, by requiring that the extrinsic curvature and hence the York time
becomes infinite at the singularity, no hypersurface of finite mean extrinsic
curvature would hit the singularity. This foliation covers the initial singular-
ity like many one-finger gloves applied one over the other to a finger such that
no glove except the last one would touch the finger. This fact is illustrated
in Figure 3.3. This implies that none of the sequences of space-like hypersur-
faces touches the singularity but their limit coincides with the Schwarzschild
singularity located at r = 0. Since the foliation runs smoothly with no prob-
lem anywhere, thus Brill, Cavallo and Isenberg [19] noticed that the K-slicing
is more appropriate foliation procedure than the maximal slicing.

3.1.2 Modification of Schwarzschild Lattice Universe

If we fit this model in accordance with the picture of a cave presented by
Penrose, it comes out that there would be no stalactites on the roof of the
cave. More precisely, the problem was that the black holes were already
present in the lattice cell, they did not formed during the evolution of the
whole model. The purpose was to construct a model in which a black hole
should be formed and observed during the evolution of the model. This
problem was solved when one of the lattice cells was replaced by a thin shell
of dust in such a way that its exterior geometry was Schwarzschild while the
interior one was that of Minkowski [17]. The distribution of mass inside the
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Figure 3.3: Schematic picture of the gloving of a black hole singularity by a
sequence of space-like hypersurfaces of increasing mean extrinsic curvature
[16].

shell itself can be compared to the sprinkling of stars in the plane of a galaxy
[18]. The geometry of such a thin shell of dust in an asymptotically flat
spacetime had been studied by Israel [19]. This replacement did not disturb
the rest of the lattice Universe. A suitable boundary condition was used to
connect the Minkowski geometry with the Schwarzschild outside the shell.
The same foliation procedure was followed in this case and again proceeded
without facing any problem. However, this model still lacked physical clarity
as the black holes were not formed, they were already present in the model.
Moreover, the basic drawback in the models mentioned above was that if we
extrapolate backward in time, they were unable to provide any information
about the beginning of the Universe, so there was a need to construct a model
which should be consistent with the whole geometry of a 3-sphere and would
able to collapse in to the Big Bang. For this purpose, Qadir and Wheeler
constructed a Suture Model which contained a clear message about the final
stages of crunch. The dynamics and a brief description about this model is
given in the following section.

48



Figure 3.4: The cut and paste view of the Suture Model with two dimensions
suppressed The denser Friedmann Universe contains the hyperspherical angle
χs as the radial parameter, whereas χl is the hyperspherical angle for the rarer
Universe [20].

3.2 The Suture Model

The Suture Model was constructed by the well-understood geometries of
two closed Friedmann Universes and Schwarzschild spacetime which I had
explained in chapters 1 and 2. Since the Friedmann Universe is homogeneous,
a cut and paste method was used to introduce the inhomogeneity. Two purely
matter filled Friedmann Universes of different densities at the phase of their
maximum expansion were considered. The denser Friedmann Universe was
labeled as region A, the rarer one as B and the Schwarzschild region as region
C. A section of 1/N of its volume had been cut out from the rarer Universe
and replaced by the section of denser one in such a way that the mass of
the model remains unchanged as shown in Figure 3.4. These two regions
were then joined together by the Schwarzschild geometry provided that, if
we extrapolate backward in time, all the three regions merge together and
no cracks or gaps should appear in the limit at their junction. Since the
Schwarzschild geometry sandwiched between the two Friedmann Universes,
it is also known as the Sandwich Model. The cut and paste view of Suture
Model is given in Figure 3.5.
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3.2.1 Features of Suture Model

This model could be distinguished from the lattice Universe in a sense that
it was required to possess the following features:
1. This model must contain matter distribution;
2. During the whole expansion of the Friedmann Universe, a black hole must
be formed;
3. There must be an apparent asymmetry between the Big Bang and Big
Crunch;
4. There should be a smooth evolution of a black hole and the Universe from
Big Bang to Big Crunch.

Since the densities of the two Friedmann Universes are not the same,
the denser Universe expands, goes to its maximum expansion and begin to
contract while the rarer one is still expanding, due to which the crunch
appears earlier in the denser region. Therefore the denser region collapses at
a faster rate than the rarer region. As a result, a black hole is created in the
denser region and can be seen by an observer in the rarer region. Meanwhile
the rarer region is still expanding. This well defined model is known as the
Suture Model. The dynamics of this model had been investigated by foliating
it with the space-like hypersurfaces of constant mean extrinsic curvature. The
entire 3-geometry ultimately collapses in to a space-like singularity.

3.2.2 Parameters of Suture Model

The space-like hypersurfaces are spherically symmetric and independent of
the angles θ and φ. Therefore, the Friedmann region can be purely described
in terms of two parameters, i.e the Friedmann time parameter η and the
hyperspherical angle χ. Similarly, the Schwarzschild region is described in
terms of its radial r and time t parameters in the usual Schwarzschild coordi-
nates. From the point of view of an observer located in the denser Friedmann
region whose geometry is given by the following metric, the evolution proceed
normally.

ds2 = a2(η)[dη2 − dχ2
s − sin2 χs(dθ

2 + sin2 θdφ2)], (3.4)

where,

a(η) =
a0s
2

(1− cos η), (3.5)
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Figure 3.5: The cut and paste view of the Suture Model with two dimension
suppressed [20].
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η, being the time parameter for the denser Friedmann region going from 0
at the Big Bang, through π at the phase of maximum expansion, to 2π at
the Big Crunch, where a0s is the radius of the denser Friedmann Universe at
the phase of maximum expansion. The radial parameter χs, goes from 0 at
the center of the region to some χM at the junction with the Schwarzschild
region. For the section of denser Friedmann region to remain unchanged,
χs has to be constant over the entire evolution of the model. Similarly, for
an observer in the rarer Friedmann region given by the following metric, the
evolution proceeds normally

ds2 = a2(η)[dη2 − dχ2
l − sin2 χl(dθ

2 + sin2 θdφ2)], (3.6)

where,

a(η) =
a0l
2

(1− cos η), (3.7)

η and χl are the time and radial parameters and a0l is the radius of the
rarer Friedmann Universe at the phase of maximum expansion. The radial
parameter χl goes from χp to π as shown in the Figure 3.6.

3.2.3 Boundary Conditions of Suture Model

The solution measured purely in terms of time parameter, η and the hyper-
spherical angle, χ, is homogeneous and isotropic everywhere in the interior
of the Friedmann region but this condition breaks at the boundary which
lies at some radius χ = χs. Therefore, suitable matching conditions should
be defined so that the interior Friedmann geometry must match smoothly on
to exterior Schwarzschild geometry. The boundary conditions for the three
regions are given below

Boundary Between Region A and C

The circumference relation at the boundary between Friedmann region
and the Schwarzschild region is given by

Cs = 2πRs, (3.8)

where, Rs is the r value of the Schwarzschild region at the boundary between
the regions A and C. By comparing Eq.(2.22) and Eq.(3.4), the expansion
factor (a) is related to Rs as

Rs = a sinχs. (3.9)
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Figure 3.6: The CP diagram for the Suture Model. For region A, the time
parameter η goes from 0 to 2π, while χs varies from 0 to χM . In region B,
variation of η is same while χl varies from χp to π. In region C, the time
parameter Φ goes from −π/2 to π/2 corresponding to the initial singularity
to the final singularity at r = 0. The York time K goes from −∞ to ∞ for
these singularities [20].
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Substituting this value in Eq.(3.8), we get

Cs = 2πa sinχs. (3.10)

Using Eq.(3.5), we get

Cs = π[a0s sinχs(1− cos η)]. (3.11)

Boundary Between Region B and C

At the boundary between region B and C, the similar equation holds with
Rl as the r value of Schwarzschild region, i.e

Cl = 2πRl, (3.12)

where, the expansion factor (a) is related to Rl as

Rl = a sinχl. (3.13)

Substituting Eq.(3.7) in the above equation, we get

Cl = π[a0l sinχl(1− cos η)]. (3.14)

Generally, the match is possible for the boundaries between all the three
region for all values of η, if

Rk = a sinχk, (3.15)

where,

a =
a0k
2

(1− cos η). (3.16)

Putting this value in Eq.(3.15), we get

Rk =
a0k
2

sinχk(1− cos η). (3.17)

Therefore, in general
Ck = 2πRk, (3.18)

Ck = π[a0k sinχk(1− cos η)]. (3.19)

Comparing Eq.(3.18) and Eq.(3.19), we get

Rk =
a0k
2

sinχk(1− cos η), (3.20)

1− cos η =
2Rk

a0k sinχk
. (3.21)
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3.2.4 Calculation of the Mass Discrepancy of Suture
Model

As discussed earlier, due to the difference of densities of the two Friedmann
Universes, the rate of their evolution is different, as a result, the denser Fried-
mann Universe collapses to a black hole and can be viewed by an observer
at the boundary of region B and C. At the phase of maximum expansion,
the density of region A is taken to be 4 times the density of region B. By
integrating this density, the mass of both the regions can be calculated, but
due to the curvature of Friedmann geometry, there would be some difference
between the mass obtained by integrating the density and the mass as a
gravitational source of denser Friedmann region. The boundary conditions
can be used to calculate the mass of a black hole observed from the boundary
between the region B and C. Consider a purely spatial metric for a sphere and
space-like section of Schwarzschild section embedded in a Euclidean space,
where w is the embedding parameter, i.e. r = r(w) and w = w(σ). The
metric is given by

ds2 = dσ2 +R2(σ)[dθ2 + sin2 θdφ2]. (3.22)

The relation between σ and w is given by the following equation

dw2 = dσ2 − dR2, (3.23)

Comparing the above metric with the space-like section of Friedmann metric,
we get

dσ2 = a2dχ2 ; R2 = a2 sin2 χdχ2. (3.24)

Substituting values of dσ and dR in Eq.(3.23), we get

dw = a sinχdχ. (3.25)

Slope of simultaneity associated with the world line of a particle in Friedmann
geometry is given by

dw

dR
=

R√
a2 −R2

. (3.26)

Similarly, comparing the metric given in Eq.(3.22) with the space-like section
of the Schwarzschild metric, we get

dσ2 =
dR2

1− 2Gm
c2R

. (3.27)
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Substituting value of dσ in Eq.(3.23), we get

dw =
dR√
c2R
2Gm
− 1

. (3.28)

Slope of simultaneity associated with the world line of a particle in Schwarzschild
geometry is given by

dw

dR
=

1√
c2R

2Gm
− 1

. (3.29)

Comparing Eq.(3.26) and Eq.(3.28), we get

a2

R2
=

c2R

2Gm
. (3.30)

Therefore, in general the mass of a denser Friedmann region which collapses
in to a black hole as observed from the boundary between region B and C is
given by

m =
c2

2G
a sin3 χl. (3.31)

The mass as seen from the surface of a black hole can be find out by inte-
grating the density of Friedmann region over volume of a black hole. The
density of Friedmann region at the phase of maximum expansion is given by

ρs =
3

8πa2
. (3.32)

Integrating this density over the volume, we get

ms =
3

4
(χs −

1

2
sin 2χs)a. (3.33)

Substituting the value of a from Eq.(3.31), we get

ms =
3G

2c2
(χs −

1

2
sin 2χs) csc3 χlm. (3.34)

Now, from Eq.(3.31) and Eq.(3.34), it is clear that ms 6= m. Thus there is
a difference of mass as seen from the surface of black hole and the mass as
seen from the boundary of rarer Friedmann and Schwarzschild region, i.e.

δm

m
=
m−ms

m
. (3.35)

Substituting values of m and ms, we get

δm

m
= 1− 3G

2c2
(χs −

1

2
sin 2χs) csc3 χl. (3.36)
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3.2.5 Foliation of Suture Model

After defining the boundary conditions for the Suture Model, it was K-
foliated with the guess value of η chosen at χ = 0 in region A. After foliating
this model, it was observed that the size of the Universe varies with the value
of K as shown in the Figure 3.7. The diagram starts with the York time at
−∞, where both the closed Friedmann Universes completely merges in to
each other showing the time of Big Bang at η = 0. After that, they started
expanding and the Schwarzschild region starts appearing. As, the denser
Friedmann region contracts, the rarer one will first expands but by the time
the black hole had formed, the rarer Friedmann region started its collapse.
With the passage of York time, the distance between the regions increases
while the volume starts shrinking, both regions more or less disappears while
the Schwarzschild region only contributes and it seems as a corridor between
two regions. This result is discussed in detail in the conclusion.
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Figure 3.7: The variation of the size of Universe during the evolution of
Suture Model from Big Bang to Big Crunch [17].
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Chapter 4

The Extended Suture Models

In the previous chapter, the dynamics of the Suture Model was explained
where two closed Friedman Universes were considered and during the course
of their evolution, the behavior of the model was studied. Now, considering
the Universe to be open or flat, the Suture Model can be extended to the
two cases:
(1) Open Suture Model
(2) Flat Suture Model

Since, the flat and the open Friedmann Universe have no final singularity
(section 1.11.3 and 1.11.4), i.e. their time-like (η) and the angle-like (χ)
parameters are infinite. Therefore, to construct a model in general for both
the cases, they must be limited to some finite value. For this purpose, I
have defined the transformations which compactify these infinite Universes
separately. In topological terms, compactification is a method of converting
an infinite topological space in to a compact space. A compact space is
generally a closed and bounded space. The Universes under consideration are
non-compact or infinite, therefore it is not possible to study the formation of
a black hole during their evolution. In order to study the dynamics of a non-
compact Universe, we first need to convert it into a compact or finite space.
This could be done by transforming the coordinates in which the Universe
is defined. The new finite coordinates are called compactified coordinates
which mapped the infinity to a finite value.
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4.1 Open Suture Model

The open Suture Model is constructed by considering a denser closed Fried-
mann Universe and a rarer compactified open Friedmann Universe of the
same volume. A section of 1/N of the volume of denser Friedmann Universe
is cut out and replaced by the rarer compactified open Friedmann Universe
such that the mass of the model remains the same as shown in Figure 4.1.
Both the regions are then joined together by the Schwarzschild geometry.
The open Suture Model follows the same requirements and the geometry as
the Suture Model (section 3.2.1) except for the region B which corresponds
to the 3-Hyperboloid structure for an open Friedmann Universe. The cut
and paste view of open Suture Model is given in Figure 4.2. Since, η and
χ go to infinity, therefore I have defined new parameters η′ and χ′ as the
inverse tangent function of η and χ which mapped them to a finite value π

2
.

The transformations are defined as

χ
′
= tan−1 χ, 0 ≤ χ ≤ ∞ (4.1)

η
′
= tan−1 η. 0 ≤ η ≤ ∞ (4.2)

where, 0 ≤ χ
′ ≤ π

2
; 0 ≤ η

′ ≤ π
2
. The Friedmann metric in compactified

coordinates becomes

ds2 = a2(η
′
)[sec2 η

′
dη
′2 − sec2 χ

′

sdχ
′2
s − sinh2(tanχ

′

s)dΩ2], (4.3)

where,
dΩ2 = dθ2 + sin2 θdφ2. (4.4)

The expansion factor and the cosmic time in terms of compactified coordi-
nates is given by

a(η
′
) =

a0
2

[cosh(tan η
′
)− 1], (4.5)

t(η
′
) =

a0
2

[sinh(tan η
′
)− tan η

′
]. (4.6)

At η
′

= 0, a(η
′
) = 0 and t(η

′
) = 0 while at η

′
= π

2
, a(η

′
) and t(η

′
) becomes

infinite. From the point of view of an observer located in the closed Fried-
mann region, the evolution would proceed normally in the open Friedmann
region. The metric for the closed Friedmann region is given by

ds2 = a2(η)[dη2 − dχ2
s′ − sin2 χs′(dθ

2 + sin2 θdφ2)], (4.7)
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Figure 4.1: The cut and paste view of the open Suture Model with two
dimension suppressed. The denser closed Friedmann Universe contains the
hyperspherical angle χs′ , as the radial parameter, whereas χl′ , is the hyper-
spherical angle for the rarer open Friedmann Universe.
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Figure 4.2: The cut and paste view of the open Suture Model with two
dimension suppressed.
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where, the variations of parameters would be same as mentioned in the sec-
tion (3.2.2). The metric for an open Friedmann region in compactified coor-
dinates is given by

ds2 = a2(η
′
)[sec2 η

′
dη
′2 − sec2 χ

′

ldχ
′2
l − sinh2(tanχ

′

l)dΩ2]. (4.8)

where,
dΩ2 = dθ2 + sin2 θdφ2. (4.9)

The radial parameter χs′ goes from 0 at the center of region A to some χM ′
at the junction with the Schwarzschild region. For region A, χs′ has to be
constant over the entire evolution. The parameter for region B varies from
some χ

′

l to π
2

as shown in the Figure 4.3.

4.1.1 Boundary Conditions for the Open Suture Model

The solution measured in terms of compactified coordinates, η
′

and the hy-
perspherical angle, χ

′
, is homogeneous and isotropic everywhere in the in-

terior of both of the Friedmann regions but this condition breaks at the
boundary, which lies at some radius χ′ = χ′s′ . Therefore, suitable matching
conditions should be defined so that the interior Friedmann geometry must
match smoothly on to the exterior Schwarzschild geometry.

Boundary Between Region A and C

The circumference relation at the boundary between Friedmann region
and the Schwarzschild region is given by

Cs′ = 2πRs′ , (4.10)

where, Rs′ is the r value of the Schwarzschild region at the boundary between
the regions A and C. The expansion factor (a) is related to Rs′ as

Rs′ = a sinχs′ . (4.11)

Substituting this value in Eq.(4.10), we get

Cs′ = 2πa sinχs′ . (4.12)

Using Eq.(3.7) for denser Friedmann region, we get

Cs′ = π[a0s′ sinχs′(1− cos η)]. (4.13)
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Figure 4.3: The CP diagram for the open Suture Model. For region A, the
time parameter η goes from 0 to 2π, while χs varies from 0 to χM . In region
B, η′ varies from 0 to π

2
while χl′ varies from χp′ to π

2
. In region C, the time

parameter Φ goes from −π/2 to π/2 corresponding to the initial singularity
to the final singularity at r = 0. The York time K goes from −∞ to ∞ for
these singularities [20].
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Boundary Between Region B and C

The relation between the circumference and the radius of the Schwarzschild
region at the boundary between open Friedmann Universe and the Schwarzschild
region is given by

Cl′ = 2πRl′ , (4.14)

where, Rl′ is the r value of the Schwarzschild region at the boundary between
region B and C and the expansion factor (a) is related to Rl′ as

Rl′ = a(η′) sinh(tanχl′ ). ; 0 ≤ χl′ ≤
π

2
(4.15)

Substituting Eq.(4.5) in Eq.(4.15), we get

Rl′ =
a0l′
2

[cosh(tan η′)− 1] sinh(tanχ′l). (4.16)

Therefore, Eq.(4.14) becomes

Cl′ = a0l′π[(cosh(tan η′)− 1] sinh(tanχ′l). (4.17)

4.1.2 Calculation of the Mass Discrepancy of the Open
Suture Model

As discussed in section (3.2.4), in the case of Suture Model, the density of
region A was taken to be 4 times the density of region B at the phase of
maximum expansion. Since both the Friedmann regions were closed, there-
fore they had same variations of η and χ. Now, for the open Suture Model,
as the variations of η and χ for both the Friedmann regions are not same,
therefore for definiteness, the density of the closed denser region is taken to
be 4 times the density of the compactified open rarer region at the phase of
their maximum expansion. Since, in this case, the phase of maximum ex-
pansion of both the Friedmann regions are not same, therefore their density
ratio is arbitrarily chosen for a definite value. Similar to the previous work,
there are two types of mases to be work out, one by integrating the den-
sity and the other by using the boundary conditions. Comparing the metric
given in Eq.(3.22) with the space-like section of open Friedmann metric in
compactified coordinates, we get

dσ2 = a2(η′) sec2 χ′dχ′2 ; R2(η′) = a2(η′) sin2 h(tanχ′). (4.18)
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Substituting the value of dσ and dR in Eq.(3.22), we get

dw = −a(η′) secχ′dχ′ sinh(tanχ′). (4.19)

Slope of simultaneity associated with the world line of a particle in Friedmann
compactified geometry is given by

dw

dR
= − 1√

a2(η′)
R2(η′)

+ 1
. (4.20)

Comparing Eq.(3.29) and Eq.(4.20), we get

a2(η′)

R2
=

c2R

2Gm
. (4.21)

Therefore, the mass of a black hole as observed from the boundary between
region B and C in an open Suture Model is given by

m =
a(η′)c2

2G
sinh3(tanχ′l′). (4.22)

The mass as seen from the surface of a black hole is calculated in the section
(3.2.4). It would be the same except for the notation, I have used for the
denser closed Friedmann region, i.e.

ms′ =
3

4
(χs′ −

1

2
sin 2χs′)a(η). (4.23)

The mass expression obtained in Eq.(4.22) is in compactified coordinate while
the mass expression in Eq.(4.23) is in terms of the original coordinates. In
terms of the original time and angle coordinates, Eq.(4.31) becomes

m =
a(η)c2

2G
[cosh η − 1] sinh3 χl′ . (4.24)

Now, it is clear from the above equation that the mass as seen from the
boundary of open Friedmann region and the Schwarzschild region is depen-
dent on η and χ which are the function of η′ and χ′ respectively, as given in
Eq.(4.1) and Eq.(4.2). At η′ = 0, the value of η becomes zero according to
the transformation defined in Eq.(4.1). Putting η = η′ = 0 in Eq.(4.23) and
Eq.(4.24) implies the time of Big Bang where all the three regions merges
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together to a single point. Similarly, at χ′ = 0, the value of χ becomes zero
according to the Eq.(4.2). Putting χ = χ′ = 0 in Eq.(4.23) and Eq.(4.24),
we get ms′ = m = 0. The difference between both the masses is significant
when I match the upper limits of η and χ. At η′ = π

2
, the value of η becomes

infinite. Putting this value in Eq.(4.24), the mass seen from the boundary
between open Friedmann and the Schwarzschild region would be infinite.
Same will be the case with χ′ = π

2
. So, their is a clear difference of the mass

as seen from the surface and the mass as seen from the boundary of region
A and C in case of the open Suture Model. To find the mass discrepancy,
for definiteness, I have chosen η = π

2
for both the Friedmann regions. The

expansion factor for the region A would be a0
2

at η = π
2
. Therefore Eq.(4.23)

becomes

ms′ =
3

4
(χs′ −

1

2
sin 2χs′)

a0
2
. (4.25)

The expansion factor in terms of original coordinates for the region B at
η = π

2
is given by

a(η) =
a0
2

(6.1020× 1038). (4.26)

Substituting Eq.(4.26) in Eq.(4.24) and rearranging, we get

a0
2

= (3.28× 10−39)
Gm

c2
csch3χl′ . (4.27)

Substituting Eq.(4.27) in Eq.(4.25), we get

ms′ = (3.28× 10−39)
3G

4c2
[χs′ −

1

2
sin 2χs′ ] csch3χl′m. (4.28)

Thus, the mass discrepancy for an open Suture Model is given by

δm

m
= 1− [(3.28× 10−39)

3G

4c2
(χs′ −

1

2
sin 2χs′) csch3χl′ ]. (4.29)

The open Suture Model can be foliated by the sequence of space-like hyper-
surfaces of constant mean extrinsic curvature. This work is not yet done,
however, we can assume the possibility that the open Suture Model will be-
have likewise the Suture Model, i.e, the distance between the two regions
increases to infinity as the York time proceeds while the volume shrinks to
zero. The rough sketch of the expected behavior of the model during the
whole evolution is given in Fig 4.4.
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Figure 4.4: The variation of the size of Universe during the evolution of open
Suture Model from Big Bang to Big Crunch.
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4.2 Flat Suture Model

The flat Suture Model is constructed by considering a denser closed Fried-
mann Universe and a rarer compactified flat Friedmann Universe of same
volume. A section of 1/N of the volume of denser Friedmann Universe is cut
out and replaced by the rarer compactified flat Friedmann Universe such that
the mass of the model remains the same. Both the regions are then joined
together by the Schwarzschild geometry. The cut and paste view of the flat
Suture Model is given in Figure 4.5 and 4.6. The flat Suture Model would
follows the same requirements and the geometry as the Suture Model (section
3.2.1) except for the region B which corresponds to the hyper-cone structure
for the flat Friedmann Universe. To limit the parameters, the transforma-
tions are given in Eq.(4.1) and Eq.(4.2). The metric for the flat Friedmann
Universe in the compactified coordinates is given by

ds2 = a2(η′)[sec2 η′dη
′2 − sec2 χ′dχ

′2 − tan2 χ′(dθ2 + sin2 θdφ2)]. (4.30)

The scale factor and the cosmic time in terms of compactified coordinates
are

a(η′) =
ao
2

tan2 η′, (4.31)

t(η′) =
ao
6c

tan3 η′. (4.32)

At η
′

= 0, a(η
′
) = 0 and t(η

′
) = 0 while at η

′
= π

2
, a(η

′
) and t(η

′
) becomes

infinite. From the point of an observer located in the region B, the evolution
proceed normally for denser closed Friedmann Universe (region A) given by

ds2 = a2(η)[dη2 − dχ2
s′′ − sin2 χs′′(dθ

2 + sin2 θdφ2)], (4.33)

where, χs′′ represents the hyperspherical angle for this smaller region, varies
from 0 to π, while η varies from 0 to 2π. The metric for the rarer flat
Friedmann region in compactified coordinates is given by

ds2 = a2(η′)[sec2 η′dη
′2 − sec2 χ

′

l′dχ
′2
l′ − tan2 χ′l′(dθ

2 + sin2 θdφ2)]. (4.34)

The radial parameter χs′′ goes from 0 at the center of region A to some χR
at the junction with the Schwarzschild region. At the boundary χs′′ has to
be constant over the entire evolution. The radial parameter χ′l′ varies from
some χ′T at the junction with the Schwarzschild region to π

2
while the time

parameter η′ varies from 0 to π
2

as shown in Figure 4.7.
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Figure 4.5: The cut and paste view of the flat Suture Model with two di-
mension suppressed. The denser closed Friedmann Universe contains the
hyperspherical angle χs′′ , as the radial parameter, whereas χl′′ , is the hyper-
spherical angle for the rarer flat Friedmann Universe.
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Figure 4.6: The cut and paste view of the flat Suture Model with two dimen-
sion suppressed.
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Both the region start at the same time where η = 0, due to the difference
in the densities of two Friedmann regions, the denser region evolves at a
faster rate than the rarer one. Region A reached its phase of maximum
expansion at η = π earlier than region B, hence region A starts collapsing
while region B is still expanding. Region B reaches its phase of maximum
expansion at η = π

4
, any observer at the boundary between region B and C

can view region A as shrinking in size and collapsing in to a black hole and
the rate of collapse actually slow downs near the Big Crunch. The mass of
black hole formed is calculated and discussed in the following section.

4.2.1 Boundary Conditions for the Flat Suture Model

For the smooth evolution of the flat Suture Model from Big Bang to com-
pactified end at η′ = π

2
, the boundary conditions as given below should be

well defined for region A, B and C.

Boundary between Region A and C

The relation between the circumference and the radius of the Schwarzschild
region at the boundary between region A and C is given by

Cs′′ = 2πRs′′ , (4.35)

where, Rs′′ is the r value of the Schwarzschild region at the boundary between
the regions A and C. The relation between the expansion factor and the
Schwarzschild radius at the boundary between region A and C is given as

Rs′′ = a sinχs′′ . (4.36)

Substituting this value in Eq.(4.35), we get

Cs′′ = 2πa sinχs′′ . (4.37)

where,

a =
a0s′′

2
(1− cos η), (4.38)

Using Eq.(4.37), we get

Cs′′ = π[a0s′′ sinχs(1− cos η)]. (4.39)
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Figure 4.7: The CP diagram for the flat Suture Model. For region A, the
time parameter η goes from 0 to 2π, while χs′′ varies from 0 to χR. In region
B, η′ varies from 0 to π/2 while χl′′ varies from χ′T to π/2. In region C,
the time parameter Φ goes from −π/2 to π/2 corresponding to the initial
singularity to the final singularity at r = 0. The York time K goes from −∞
to ∞ for these singularities.
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Boundary between Region B and C

The relation between the circumference and the radius of the Schwarzschild
region at the boundary between region B and C is given by

Cl′′ = 2πRl′′ . (4.40)

By the direct comparison of Schwarzschild and compactified flat Friedmann
metric, the relation between the expansion factor and the Schwarzschild ra-
dius is given by

Rl′′ = a(η′) tanχ′l′′ ; 0 ≤ χ′l′′ ≤
π

2
. (4.41)

Substituting value of Rl′′ in Eq.(4.40), we get

Cl′′ = 2πa(η′) tanχ′l′′ , (4.42)

since,

a(η′) =
a0l′′
2

tan2 η′, (4.43)

therefore Eq.(4.42) becomes

Cl′′ = πa0l′′ tan2 η′ tanχ′l′′ . (4.44)

4.2.2 Calculation of the Mass Discrepancy of the Flat
Suture Model

Same assumption would be followed for the flat Suture Model. For definite-
ness, the density of the closed Friedmann region is taken to be 4 times the
density of the compactified flat Friedmann region. The mass as seen from
the boundary between region B and C can be calculated by using the bound-
ary conditions. Comparing the metric given in Eq.(3.22) with the space-like
section of flat Friedmann metric in compactified coordinates, we get

dσ2 = a2(η′) sec2 χ′dχ′2 ; R(η′) = a(η′) tanχ′. (4.45)

Substituting the value of dσ and dR in Eq.(3.23), we get

dw2 = 0. (4.46)
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Slope of simultaneity associated with the world line of a particle in flat com-
pactified Friedmann geometry is given by

dw

dR
= 0. (4.47)

Comparing Eq.(4.47) with Eq.(3.29), we get

c2R

2Gm
= 1. (4.48)

Therefore, the mass of a black hole as observed from the boundary between
region B and C in flat Suture Model is given by

m =
c2a(η′)

2G
tanχ′l′′ . (4.49)

The mass as seen from the surface of a black hole is calculated in the section
(3.2.4). It would be the same except for the notation, I have used for the
denser closed Friedmann region, i.e.

ms′′ =
3

4
(χs′′ −

1

2
sin 2χs′′)a(η). (4.50)

The mass expression obtained in Eq.(4.49) is in compactified coordinate while
the mass expression in Eq.(4.50) is in terms of the original coordinates. In
terms of the original time and angle coordinates, Eq.(4.49) becomes

m =
a(η)c2

2G
η2χl′′ . (4.51)

Now, it is clear from the above equation that the mass as seen from the
boundary of flat Friedmann region and the Schwarzschild region is dependent
on η and χ which are the function of η′ and χ′ respectively, as given in
Eq.(4.1) and Eq.(4.2). At η′ = 0, the value of η becomes zero according to
the transformation defined in Eq.(4.1).Putting η = η′ = 0 in Eq.(4.50) and
Eq.(4.51) implies the time of Big Bang where all the three regions merges
together to a single point. Similarly, at χ′ = 0, the value of χ becomes zero
according to the Eq.(4.2). Putting χ = χ′ = 0 in Eq.(4.60) and Eq.(4.51),
we get ms′ = m = 0. The difference between both the masses is significant
when I match the upper limits of η and χ. At η′ = π

2
, the value of η becomes

infinite. Putting this value in Eq.(4.51), the mass seen from the boundary
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between flat Friedmann and the Schwarzschild region would be infinite. Same
will be the case with χ′ = π

2
. So, their is a clear difference of the mass as seen

from the surface and the mass as seen from the boundary of region A and C
in case of the flat Suture Model. Similar to the assumption I have made in
open Suture Model, the mass discrepancy can be find out at a specific value,
i.e. η = π

2
. Therefore, Eq.(4.50) becomes

ms′′ =
3

4
(χs′′ −

1

2
sin 2χs′′)

a0
2
. (4.52)

The expansion factor in terms of original coordinates at η = π
2

is given by

a(η) =
a0π

2

8
. (4.53)

Substituting Eq.(4.53) in Eq.(4.51) and rearranging, we get

a0
2

=
8mG

π2c2χl′′
. (4.54)

Substituting Eq.(4.54) in Eq.(4.52), we get

ms′′ =
3G

c2π2χl′′
(2χs′′ − sin 2χs′′)m. (4.55)

Thus, the mass discrepancy for flat Suture Model is given by

δm

m
= 1− 3G

c2π2χl′′
(2χs′′ − sin 2χs′′). (4.56)
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Chapter 5

Conclusion

In Chapter 3, there is a discussion about the physical and mathematical as-
pects of the Suture Model, its behavior during the last stages of crunch, the
derivation of the expression for the mass of a black hole formed during the
whole evolution of the model. The basic purpose of construction of the Su-
ture Model was to investigate two things, the conjecture of Penrose and the
behavior of the Friedmann Universes towards the final singularity. For this
purpose, the Suture Model was K-foliated and the result was observed for
different values of York-time. The variation of K was from −∞ to +∞. It
had been observed that as K varies between the given limit, the distance be-
tween the two closed Friedmann regions increases and they started separating
off. As a result, the proper distance between the two regions after expanding
and then collapsing goes to infinity while the volume shrinks to zero. The
suture, possessing the topology of the 2-sphere times a finite line segment
develops into an ever-lengthening corridor in the final stages of crunch. This
corridor typically lacks the geometric symmetry of a 2-sphere and dominates
the crunch. Hence the conjecture was verified that the black hole singularity
and the Big Crunch singularity are not different but basically, they are the
same aspect of a big singularity. In other words, the black hole singularity
is a part of a final cosmological singularity. Fig 3.8 illustrates the fact that
as the model is K-foliated, the distance between the two regions increases.
At K = −∞, the model starts as a point (Big Bang) and develops into 2
regions joined by a small empty space (corridor). As K increases, the cor-
ridor rapidly increases in length K = ∞ the two regions collapses to two
points while the length of the corridor becomes infinite. The second part of
Penrose’s Conjecture was that the simultaneity of the black hole singularity
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and the conformal end of the Universe can also be imagined in a suitably con-
formally transformed open Universe. Following this part of the conjecture,
I have tried to extend the Suture Model to the open and flat Suture Model
by considering the geometries of flat and open Friedmann Universes. After
reviewing the Suture Model thoroughly, I have followed the same procedure
and developed the boundary conditions for the Extended Suture Models,
which demonstrate the fact that the match is possible for all the values of
η for both the boundaries between the 3 regions. It is assumed that both
the Friedmann regions (closed and compactified open) started at η = 0 = η′

and start expanding. The denser closed Friedmann region reaches its phase
of maximum expansion at η = π/2 while the rarer compactified open or flat
Friedmann Universe at η′ = π/4. Due to the difference of density, the closed
Friedmann Universe collapses at a faster rate than the open compactified
Friedmann Universe. Therefore, region A begins to collapse while region B
is still expanding, ultimately region A collapses to a black hole and can be
observed, if viewed from the boundary between Schwarzschild region and the
compactified Friedmann Universe. The mass of this nascent black hole is
evaluated in chapter 4 by using the boundary conditions for both the cases,
which shows that there is a difference of mass as appear from the surface of
black hole and from the boundary between region B and C. The difference is
calculated in section (4.1.2) and (4.2.2) which depends on the value of χ for
both the cases. It can be concluded that the mass discrepancy in the closed
Suture Model is defined at the value of χ at the boundary between region
B and C and the value of η at the phase of maximum expansion, therefore
it is a constant. For the Extended Suture Models, since the phase of maxi-
mum expansion is not the same for region A and B, therefore this is not a
possible choice for η, but the mass discrepancy is defined at the value of χ
at the boundary. The point is that the mass discrepancy is not constant but
depends on the value of η. For both the cases, the phase of their maximum
expansion is not the same, i.e. it does not satisfy on a specific value of η so
for definiteness, η is taken to be π/2 to find the mass discrepancy.

To verify the conjecture and to observe the behavior of the Extended
Suture Model at the end of compactified spacetime, it must be foliated by
the sequence of space-like hypersurfaces of constant mean extrinsic curva-
ture. This work is not done yet, but it could be observed that like-wise the
foliation of Suture Model, the variation of the Extended Suture Model might
be observed at different values of York-time. Since this Foliation involves
much effort and time, therefore I have limited my dissertation to the bound-
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Figure 5.1: The plot between the TrK as it varies from -∞ to ∞ and the
distance is shown vertically depending on the crunch time.
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ary conditions and the mass evaluation. It is assumed that the Extended
Suture Model will behave like-wise the Suture Model, therefore we can make
a hypothesis about the final stages, i.e. as the Extended Suture Model is K-
Foliated with York time varying from −∞ to ∞, the distance between the
two Friedmann regions increases while the volume decreases. At η = 2π and
η′ = π/2 with K =∞, the distance approaches infinity while volume shrinks
to zero and the Schwarzschild region dominates over both the Friedmann
regions, developing in to an ever-lengthening corridor.
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