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Abstract 

In this work, we utilized advanced exergy analysis in conjunction with an integrated framework 

that combines artificial neural network (ANN) with particle swarm optimization (PSO) and 

genetic algorithm (GA) to evaluate performance of heat exchangers within a crude oil 

distillation unit under uncertainty. At the beginning, we constructed an equilibrium-state Aspen 

model, which subsequently used to conduct both traditional and advanced exergy analyses. 

This exergy analysis enabled us to quantify exergy efficiency and the level of irreversibility 

within the heat exchanger network (HEN). Subsequently, we calculated four components of 

irreversibility—endogenous, exogenous, avoidable, and unavoidable—for the equipment 

exhibiting significant incompetence with advanced exergy analyses. The operational model 

was subsequently converted into a dynamic configuration by introducing ±10% fluctuation into 

system variables, such as temperature, and mass flow rate, resulting in the creation of a dataset 

comprising 600 samples. Five ANN models were developed using this dataset, each designed 

to predict various aspects, including overall exergy efficiency, exergy destruction, modified 

exergy efficiency, unavoidable exergy destruction and avoidable exergy destruction. ANN 

model served as a substitute within the PSO and GA environment to optimize HEN under 

uncertain condition. The optimized operational parameters obtained within the PSO and GA 

methods were further validated by feeding them into Aspen model for validation through cross-

referencing. The exergy analysis revealed that HEN had 66.16% exergy efficiency, and the 

exergy destruction was 5403.166 kW. Advanced exergy analysis further revealed that avoidable 

exergy destruction amounted to 1,759.80 kW, while unavoidable exergy destruction stood at 

3,643.35 kW. Seven heat exchangers, displaying the highest exergy destruction rates, were 

identified as priority candidates for intervention due to their significant impact on the network. 

The effectiveness of both the GA and PSO optimization methods exhibited similar results, and 

they notably enhanced the exergy performance of the facility when correlate to the standalone 

Aspen model of the process.   

Keywords: Heat Exchanger Network, CDU, Advanced Exergy Analysis, Uncertainty, 

Artificial Neural Network, Genetic Algorithm, Particle Swarm Optimization, Exergy 

Efficiency; Machine learning 
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Chapter 1  

Introduction 
 

1.1 Background  

 

The exhaustion of fossil fuel reserves, environmental concerns, increasing industrialization, 

and the corresponding global rise in energy demand and utilization have prompted the practical 

and sustainable use of energy [1, 2]. Energy is vital in today’s modern world, and the 

petrochemical sector is its cornerstone. The primary products of the petrochemical industry are 

consumer chemicals, specialized chemicals, and basic chemicals. They encompass a wide 

range of products across sectors including energy, buildings, transportation, pharmaceutical, 

electronics and telecommunication. As the largest sector with energy-intensive production 

processes, it contributed approximately 37% of global energy consumption and accounted for 

around 13% of worldwide greenhouse gas emissions (GHG). Moreover, a 40% increase in 

consumption is expect by the year 2040, as presented in Figure 1. 

 

 

Figure 1: Forecast of industrial energy demand by 2040 [3] 
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Within the spectrum of petrochemical industries, the petroleum refinery ranks among the most 

energy-consuming, accounting for 33% of total industrial energy consumption. Petroleum 

refineries consume energy amounting to 30349,01(104 GJ) due to the substantial heat required 

for oil fractionation [4, 5]. Due to this high energy consumption, energy minimization of 

refining processes is essential.  

To minimize the total energy usage in refining operations heat exchanger networks (HEN) are 

used [6]. These units are employed to integrate cold and hot streams in the process, harnessing 

the residual heat from hot streams. By employing HEN heat provided by an external source is 

reduced and overall process efficiency is increase. However, there are some elements such as 

fouling, aging, and oil components that influence the execution of heat exchangers. Due to the 

lower efficiency of heat exchangers due to these factors, energy requirement in the process 

increases, and consequently, the overall efficiency of the process decreases [7-9]. 

Conventionally, pinch and exergy analyses are utilized to improve the effectiveness of HEN. 

Pinch analysis is grounded in the first law of thermodynamics. However, it primarily identifies 

potential heat recovery and the lowest energy demand or highest energy retrieval from the 

processes. In contrast, exergy analysis combines the fundamental principles of 

thermodynamics to discern the genuine thermodynamic enhancement possibilities within the 

system [10]. However mutual dependencies among the components of the system cannot be 

assessed by the traditional exergy analysis and due to this its result could lead to some 

misinterpretation [11]. A recently developed technique, the advanced exergy analysis method 

can assess the interconnections among the components of the system by dividing the exergy 

destruction of each element into intrinsic and extrinsic components. Further subdividing the 

exergy destruction into preventable and inevitable segments provides a more realistic 

assessment of the potential for improvement [12].  

Together conventional and advanced exergy analysis are potential tools that can accurately 

identify the location, magnitude, cause of exergy destruction in the operation. Furthermore, it 

can analyse the interconnections among system components and offer a practical evaluation of 

potential to enhance the system components by dividing the exergy destruction. Enhancing 

processes through advanced exergy analysis promotes the efficient use of natural reserves and 

contributes to environmentally friendly practices. 

The use of advanced exergy analysis is broadly studied to optimize the performance and for 

the design of various industrial processes like chemical [13], milk [14], cement [15], coal 
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gasification [16], and petrochemical [17]. However, the advanced exergy analysis method 

encounters challenges in handling uncertainty in process conditions due to the difficulties of 

modelling undertakings and the extensive computational time required. This research aims to 

build a computational model that can efficiently be employed during the chemical industries' 

designing or operational stage to deal with uncertainty. This tool should be rigorous enough to 

handle the complicated calculations required for advanced exergy analysis while still being 

adaptable enough to be modified as needed. 

 

1.2 Objectives 

 

The following are the objectives of the thesis, 

• Advanced exergy analysis of the heat exchanger network.  

• Development of a machine learning model to estimate the exergy efficiency of the heat 

exchanger network under uncertainty. 

• Utilize a machine learning model as a surrogate within GA and PSO framework to 

optimize the exergy efficiency of the heat exchanger network beneath uncertain 

conditions. 

 

1.3 Thesis outline 

 

The thesis arrangement is as follows. Chapter 1 provides an overview of the background and 

outline the research objectives. Further a detailed literature review is discussed in chapter 2. 

Process description and flowsheet is presented in Chapter 3 along with methodology and 

theoretical background of Advanced Exergy Analysis, ANN, GA and PSO. Results are 

discussed in Chapter 4.  
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Chapter 2  

Literature Review 
 

2.1 Literature review  

 

Researchers have been focusing on streamlining petroleum refining processes to reduce energy 

consumption and optimize overall system performance. HEN play a key role in reducing 

overall anergy consumption during refining processes. Traditionally, pinch and exergy analysis 

have been employed to enhance HEN efficiency. Pinch analysis focuses on identifying 

potential heat recovery and minimum energy requirements within the processes, while exergy 

analysis unveils the true thermodynamic improvement potential within the system. However, 

conventional approaches have their limitations when it comes to assessing mutual 

interdependencies among system components, which can sometimes result in 

misinterpretation. A recently innovated method, advanced exergy analysis, overcomes this 

limitation by evaluating the mutual interdependencies among system components. This is 

achieved by dissecting the exergy destruction within every constituent into exogenous, 

endogenous, avoidable, and unavoidable segments. This comprehensive breakdown offers a 

more realistic assessment of the system’s potential for enhancement. 

Numerous studies, primarily grounded on the first principle of thermodynamics have been 

conducted to enhance the effectiveness of HEN. For example, BH Li et al [18]. employed a 

retrofit method centered on pinch analysis to minimize utility consumption in HEN by adopting 

the new minimum temperature approach, involving a minor capital investment. For 

demonstration of the effectiveness of this approach, they retrofit an industrial case, specifically 

a crude oil preheat train. This application of this approach led to an increase in energy savings 

ranging from 45% to 75%, surpassing previously reported values. Liang et al [19]. proposed 

an alternative HEN design by using the pinch and retrofit analysis which will save energy up 

to 7595 kW. The decrease in hot and cold utility consumption is 14.6% and 22.3% respectively. 

Ulyev et al [20]. also did retrofitting through pinch analysis which reduced the energy 

utilization up to 6.4MW and led to a decrease of 35.5% and 51.9% in hot and utility demand 

respectively. IH Alhajri et al [21]. used pinch analysis for the optimization of crude oil 

distillation operations by retrofitting an existing HEN. By using this approach about 10.4 MW 

of energy can be conserved in comparison to the current process, resulting in annual running 
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cost reductions of around MM2 and achieving a return on investment period of under twelve 

months. MA Gadalla et al [22]. Introduce a novel graphical method, grounded in pinch analysis, 

this study explores heat recovery systems, particularly their applicability to HEN retrofit. The 

innovative graphical representation simplifies the identification of key elements, including 

exchangers situated throughout the pinch point, the network pinch, matching pinches, and the 

inefficient distribution of fuel utilization. This graphical tool can also aid in pinpointing 

potential enhancements to boost energy efficiency. Application of this approach to a specific 

case study resulting in impressive reserves of around 17% in energy consumption and fuel 

usage. S Mrayed et al [23]. proposed a retrofitting design of the HEN of an existing CDU by 

using the pinch analysis for the improvement of HEN thermal efficiency. The maximum 

cooling and heating utility of around 67.5 MW can potentially be reclaimed, in contrast to the 

current utility demand of 148.6 MW. Babaqi et al [24]. reduced the utility demand by 16.20% 

by adding more heat exchanger surface to enhance energy recovery efficiency, achieved 

through the application of pinch analysis in conjunction with PSO. 

Numerous studies employing exergy analysis on HEN efficiency improvement have been 

documented in the existing literature. Like, C Yan et al [25]. proposed an optimization 

framework for the retrofitting of CDU system grounded on the exergy analysis. The improved 

manner saw a notable increase in exergy efficiency, rising from 28.9% to 41.4%. 

Simultaneously, the total annual consumption (TAC) witnessed a significant reduction of 

28.7%. These improvements were achieved while maintaining the same product features and 

flow rates. M Mehdizadeh et al [26]. perform the exergy analysis on estimating the distribution 

of irreversibility and the exergy destruction in a complex natural gas refinery’s HEN. The study 

findings revealed that the predominated sources of exergy destruction within the entire HEN 

of the plant stems from irreversibility due to heat transfer, contributing to approximately 84.2% 

of the total. Furthermore, the overall exergetic efficiency was determined to be 63.34%, 

indicating substantial room for improvement within the system. In [27]. authors established 

and optimized the heat exchanger network by employing the combined approach of exergy 

analysis and pinch method. 

Advanced exergy analysis, which incorporating both first and second principle of 

thermodynamics, is gaining considerable attention among researchers due to its capacity to 

evaluate the mutual interdependencies and enhancement potential of system components. 

Various research has been carried out on the assessment of HEN using advanced exergy 

analysis. For instance, M Mehdizadeh et al [28]. assess the unavoidable and avoidable exergy 
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destructions within the HENs of a complex natural gas refinery by using advanced exergy 

analysis. The objective of this study was only to improve the avoidable part of exergy 

destruction. From the results, it seems that exergy efficiency of the HEN in the process is 62.8% 

which could be improved up to 84.2%, and approximately 59% of the overall irreversibility 

within the system is preventable and thus, can be eradicated. F B¨ uhler et al [14]. perform an 

evaluation of the milk powder production facility. This analysis encompasses the utilization of 

various methods like energy, exergy, and advanced exergy methods. The energy assessment 

has determined that the capacity for integrating heat inside the facility is limited. The exergy 

analysis has identified that the gas burner and spray dryer are the major sources of exergy 

destruction, while the heaters exhibit low exergy efficiencies. The advanced exergy analysis 

has further revealed that the evaporators contribute significantly to avoidable exergy 

destruction within the facility. J Fajardo et al [29]. apply both conventional and advanced 

exergy analysis to the HEN of CDU. The aim was to identify the most economical periods for 

the performing maintenance tasks on the exchangers. The findings of the study have shown 

that approximately 63% of exergy destruction within the HEN can be prevented. Additionally, 

five heat exchangers were identified as critical, as they exhibited the highest rates of exergy 

destruction, making them a priority for maintenance activities. 

As the industry moves towards AI-driven smart manufacturing, also known as Industry 4.0, 

machines are becoming more independent and capable of communicating and working together 

on their own. Numerous studies have documented the uses of AI within process industries for 

predictive maintenance [30, 31], quality control [32, 33], real-time monitoring [34, 35], and 

energy efficiency [36, 37]. The integration of AI in the advanced exergy analysis for different 

operations have also been documented. O¨Ozkaraca et al [38]. conducted a study in which 

conventional exergy analysis, advanced exergy analysis, and artificial bee colony (ABC) 

methods were employed to investigate the thermodynamic operation of binary geothermal 

power plant. The study’s findings reveal that the total exergy efficiencies for these three 

approaches are 39.1% for conventional exergy analysis, 43.1% for advanced exergy analysis, 

and 42.8% for artificial bee colony method. FA Boyaghchi et al [39]. utilized advanced exergy 

analysis and optimization techniques for the parametric analysis of a real Combined Cycle 

Power Plant (CCPP) with duct burners (DB). In this work, the sensitivity of both CO2 emission 

and total avoidable exergy destruction were evaluated concerning variations in compressor 

pressure ratio, DB fuel mass flow rate, and turbine inlet temperature. Furthermore, the 

researchers employed NSGA-II for the optimization of CCPP. The optimal values for the CO2 
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emissions and total avoidable exergy destruction rate exhibited improvement of 8.3%, and 

10.6% respectively, compared to the source case. L Liu et al [40]. Conducted a study on a wind-

solar-hydrogen multi-energy supply (WSH-MES) system. The research utilized a multi-

objective optimization methodology to determine the optimal equilibrium between energy, 

exergy, advanced exergy, and economic factors. In another work, M Khan et al [41]. created 

straight run (SR), ANN models, GA to explore the effects of simulated variations in operational 

parameters and crude constituents on exergy efficiency.  
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Chapter 3  

Process Description and Methodology 
 

3.1 Process description 

 

Figure 2 illustrates a schematic overview of the atmospheric distillation segment within the 

plant, comprising three primary groups, the heat exchanger network, the furnace, and the 

distillation column. The model was constructed using Aspen HYSYS V.11 and subsequently 

adjusted to align with data from the existing literature [29, 42]. The CDU is operated at 150000 

barrels per day (150,000 BPD). In the production route, crude oil is flowing through the HEN 

before going towards the furnace. within the furnace, crude oil is subjected to heating, reaching 

a temperature of 371°C, which facilitates its fractionation into various products. These products 

include atmospheric gas oil (AGO), medium vacuum gas oil (MVGO), heavy diesel 

(HDIESEL), vacuum residue (VR), and heavy vacuum gas oil (HVGO).  

The temperature differential of oil between component’s inlet and temperature of the stream 

coming out from furnace is approximately 343 degrees, making it highly advantageous to 

utilize the preheat train (PHT) as an evolutionary process. By using preheat train plant energy 

efficiency will increase whereas the operating costs and environmental impact will be reduced. 

The PHT consists of twenty-five shell and tube heat exchangers, which are linked in series and 

parallel configurations. In PHT, the fractions derived through distillation transfer heat to oil 

(illustrated as the red lines in Fig. 2), which then enters furnace. As previously noted, that 

procedure has favourable effect on fuel utilization, leading to lower operational costs and 

reduced environmental effects. However, it also influences the operational expenses of 

products. If the heat exchanger network is not utilized, an alternative process would be 

necessary to lower their temperature before storing or transporting them. 
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Figure 2: Scheme of Preheat Train of the Crude Distillation Unit [42] 
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3.2 Thermodynamic properties 

 

The research begins with the crucial parameters, heat capacity at constant pressure (Cp), which 

forms the basis for deriving the other fluid properties. Various models are available for 

calculating Cp as a function of temperature in the case of crude oil. However, for this study, we 

opted for equation 1, as proposed by Polley [43]. This choice is grounded in its superior 

alignment with the operational data of the specific PTH under investigation [42]. 

 

 𝐶𝑃𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙  =  (3𝑇  +  1940)10−3 (1) 

 

The utilization of the  API standard, "Technical Data Book - Petroleum Refining" [44], 

employed in [45], [46] facilitates the calculation of Cp for fractions obtained through 

distillation. Equation (2) has been adapted from the API's original formula to work within the 

international system’s unit framework. 

 

𝐶𝑃𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 4.19 ∗ 10−3[𝐴1 + 𝐴2(1.8𝑇 + 491.67) + 𝐴3(1.8𝑇 + 491.67)2] (2) 

 

A1, A2, and A3 are the characteristic constants of the fractions. They are used to classify them 

according to their boiling point. These constants depend upon specific gravity (SG) and Watson 

characterization factor (Kw). For the calculation of these constants equations (3), (4), and (5) 

are employed. 

 

𝐴1 = −1.17126 + (0.023722 + 0.024907𝑆𝐺)𝐾𝑤 + (1.14982 − 0.046535𝐾𝑤)𝑆𝐺
−1 (3) 

 

𝐴2 = (10−4)(1 + 0.82463𝐾𝑤)(1.12172 − 0.27634𝑆𝐺−1) (4) 

 

𝐴3 = (−10−8)(1 + 0.82463𝐾𝑤)(2.9027 − 0.70958𝑆𝐺−1) (5) 

 

Corresponding to thermodynamic principles, the enthalpy and entropy connected with the i-th 

flow in its liquid state can be calculated using the following equation: 
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ℎ𝑖 ≈ 𝐶𝑃𝑖𝑇𝑖 (6) 

 

𝑠𝑖 − 𝑠𝑜 = ∫ 𝐶𝑃(𝑇)
𝑑𝑇

𝑇

𝑇𝑖

𝑇𝑜

≈ 𝐶𝑃𝑎𝑣𝑔𝑙𝑛
𝑇𝑖
𝑇𝑜

(7) 

 

3.3 Conventional exergy analysis 

 

Exergy is a fundamental concept in thermodynamics, representing the maximum work 

potential that a process, substance, or system can achieve when it reaches evenness with its 

surroundings [47, 48]. This measure encompasses the summation of various components, 

including kinetic, potential, physical, and chemical exergies [25].  

 

Ė𝐾 = Ė𝐾
𝑃𝑇 + Ė𝐾

𝐾𝑁 + Ė𝐾
𝑃𝐻 + Ė𝐾

𝐶𝐻 (8) 

 

The exergy change in HEX at any point is solely attributed to the physical alterations, with no 

chemical reactions taking place. Additionally, any fluctuations in potential and kinetic exergies 

are regarded as insignificant. The physical exergy of a particular stream is established by  

 

𝑒𝑃𝐻 = ℎ𝑖 − ℎ𝑜 − 𝑇𝑜(𝑆𝑖 − 𝑆𝑜) (9) 

 

In second-law studies, exergy is usually classified based on its role within a process. Exergy 

that serves as the desired output is classified as "products," and exergy that supplies the 

necessary inputs is denoted as "fuel" [49]. Exergy destruction represents potion of effective 

energy that fuel provided but was not accepted by the product. In the context of this study, the 

exergy contained within the crude oil is categorized as product exergy, while the exergy from 

the hot fluid is considered the fuel exergy.   

 

Ė𝐷𝐾 = Ė𝐹,𝐾 − Ė𝑃,𝐾 (10) 

 

In conventional analysis, the exergy indicators employed include exergy efficiency and exergy 

destruction ratio [50].  



12 
 

𝜀𝑘 =
Ė𝑃,𝑘

Ė𝐹,𝑘
(11) 

 

𝑌𝐾 =
Ė𝐷,𝐾

Ė𝐹,𝑇𝑜𝑡𝑎𝑙
(12) 

 

3.4 Advanced exergy analysis 

 

Lately, advanced exergy analysis has emerged as an innovative thermodynamic approach, 

greatly enhancing the abilities of exergy analysis in process evaluation. Pioneers in this field, 

such as Morosuk and Tsatsaronis [51, 52] have paved the way for advanced exergy analysis. 

Exergy analysis aids in recognizing the system elements with significant exergy destruction 

and the underlying activities causing it. While its’s possible to enhance a component’s 

efficiency by reducing its exergy destruction, there will always be some unavoidable exergy 

destruction due to technological constraints. Moreover, a portion of exergy destruction results 

from its accumulation in other system elements. This indicates that improving various 

components, not just the one with the ultimate exergy destruction, is essential. In advanced 

exergy analysis, exergy destruction,  Ė𝐷𝐾 , is separated into avoidable, Ė𝐷,𝐾
𝐴𝑉  , and unavoidable, 

Ė𝐷,𝐾
𝑈𝑁 , components as well as endogenous,Ė𝐷,𝐾

𝐸𝑁 , and exogenous,Ė𝐷,𝐾
𝐸𝑋 , components. This 

approach allows for the assessment of how component interactions and technological 

limitations impact a system’s efficiency. A comprehensive explanation of the methodology is 

available in references [53-55]. 

 

3.4.1 Splitting exergy destruction 

 

Exergy destruction inside an element can be dissected into two primary components. The initial 

portion is related to the inner inefficiencies of the element and is termed endogenous exergy 

destruction. The second part arises from inefficiencies that exist in other components but have 

an impact on the component under examination, this is referred to as exogenous exergy 

destruction. In count to distinguishing between endogenous and exogenous exergy destruction, 

it's also feasible to categorize the overall exergy destruction into two key aspects: unavoidable 

exergy destruction and avoidable exergy destruction. Avoidable exergy destruction can be 

mitigated by enhancing component's efficiency or through the development of new 
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technologies. However, it’s important to note that in each real element, there exist a portion of 

exergy destruction that cannot be realistically decreased, Figure 3.  provides a graphic depiction 

of this exergy distribution, which aids in comprehending the extent of exergy destruction 

values. 

  

 

Figure 3: Exergy destruction splitting of a component k [56] 

 

3.4.2 Avoidable and unavoidable exergy destruction 

 

As mentioned earlier, practical and economical constraints often create difficulties that render 

a portion of inefficiencies unavoidable. In terms of avoidable inefficiencies, the entire exergy 

destruction for Kth component of a procedure is characterized as follows [57]: 

 

Ė𝐷,𝐾 = Ė𝐷,𝐾
𝑈𝑁 + Ė𝐷,𝐾

𝐴𝑉 (13) 

 

For the calculation of unavoidable exergy destruction (Ė𝐷,𝐾
𝑈𝑁 ), the component of concern must 

be isolated from system, and it reasonable to assume in which it operates in accordance with 

most favourable circumstances, achieving its best possible performance. In this way, the 

quantity of specific unavoidable exergy destruction (
Ė𝐷

Ė𝑃
)
𝐾

𝑈𝑁

 is obtained. Then obtained value is 

then multiplied by product of constituent, resulting in the calculation of the unavoidable exergy 

destruction based on actual operational circumstances [58]. 
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Ė𝐷,𝐾
𝑈𝑁 = Ė𝑃,𝐾 (

Ė𝐷

Ė𝑃
)
𝐾

𝑈𝑁

(14) 

 

Ė𝐷,𝐾
𝐴𝑉 = Ė𝐷,𝐾 − Ė𝐷,𝐾

𝑈𝑁 (15) 

 

Once both the avoidable and unavoidable exergy destruction have been recognised, it is more 

practical to utilize an amendment of exergy efficiency ε𝑘
∗ . It will give precedence to the impact 

of avoidable exergy destruction on the utilization of the element under observation [58]. 

 

𝜀𝑘
∗ =

Ė𝑃,𝐾

Ė𝐹,𝐾 − Ė𝐷,𝐾
𝑈𝑁

(16) 

 

3.4.3 Endogenous and exogenous exergy destruction 

 

Endogenous exergy destruction signifies exergy lost inside an element due to its own 

inefficiency. This is computed maintaining all other apparatuses at their best states while 

evaluating components in question using its real operational conditions. Exogenous exergy 

destruction, on other hand, is associated with inefficiencies in other equipment throughout the 

system. The total exergy destruction is determined in following manner [52, 59]: 

 

Ė𝐷,𝐾 = Ė𝐷,𝐾
𝐸𝑁 + Ė𝐷,𝐾

𝐸𝑋 (17) 

 

The central focus of advanced exergy analysis pertains to endogenous irreversibility. Two 

primary techniques are applied to compute endogenous irreversibility of apparatus: 

thermodynamics and engineering methods. The engineering technique is employed to 

determine the endogenous irreversibility in this study. The engineering or graph approach was 

initially established by Kelly et al. [56] who delivered a comprehensive explanation of the 

methodology and its efficiency in assessing the endogenous irreversibility of apparatus. The 

fundamental concept of the graph method is illustrated in Figure 4. This figure depicts 

alterations in the overall irreversibilities of the process equipment’s in relation to the total 

irreversibilities of the process equipment, excluding equipment K. According to exergy balance 

equation, the vertical axis of graph equals total irreversibility of the procedure as below: 
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Ė𝐹,𝑡𝑜𝑡 − Ė𝐿,𝑡𝑜𝑡 − Ė𝑃,𝑡𝑜𝑡 = Ė𝐷,𝑡𝑜𝑡 (18) 

 

 

Figure 4: Line obtained by graphical method for endogenous exergy destruction [56] 

 

 

3.5 Artificial neural network  

 

Artificial neural network is a computational model compiled of multiple interconnected 

neurons designed to replicate human brain functionality, allowing for quantitative data 

interpretation through learning and training [60]. Neurons receive inputs in the form of 

variables and employ triggering function to compute outputs. Every input is associated with a 

related weight. As point out in Figure 5, neuron's output is determined through a nonlinear 

sequence of its inputs (x1, x2…,xn) and weights (w1, w2….,wn). During learning process, 

synaptic weights are adjusted. Learning is aimed at fine-tuning network applying a dataset in 

which mutually input, and output quantities are ascertainable. In the Figure 5, 'b' represents 

bias and 'f' denotes the activation function [61]. 
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Figure 5: General representation of weights and biases for ANN [61]    

 

An ANN typically contains three primary layers: input, hidden, and output. These layers 

contain interconnected neurons which enable the network to model complicated and nonlinear 

functions as illustrated in Figure 6. The input layer’s role is to receive information, features, 

from exterior environments. Neurons within hidden layers are tasked with getting information 

relevant to observed process. The neurons in the output layer have the responsibility of making 

and revealing final outputs of network. These outputs result from the computations carried out 

by neurons in the previous layer [62].  

 

Figure 6: General ANN architecture [62]   

 

 



17 
 

3.5.1 The Levenberg-Marquardt method  

 

The Levenberg-Marquardt technique is employed to resolve nonlinear programming 

challenges by minimizing sum of squared errors between the model function and the data 

points. It accomplishes this by iteratively updating a t sequence of parameters through a 

combination of gradient descent and the Gauss-Newton update, as indicated in equation (19). 

 

[𝐽𝑇𝑊𝐽 + 𝜆(𝐽𝑇𝑊𝐽)]ℎ𝑙𝑚 = 𝐽𝑇𝑊(𝑦 − ŷ) (19) 

 

The gradient descent method minimized the sum of squared errors by adjusting the parameters 

in steepest descent direction. The Gauss- Newton approach, on other hand, aims to reduce the 

total squared errors by pretending that least squares function is close by quadratic. The value 

of the damping parameter (𝜆) plays a crucial role in this process. If the dumping parameter 𝜆 is 

fixed to a modest value, the result is a Gauss-Newton update. Conversely, when 𝜆 is set to a 

large value, it leads to a gradient descent update. Initially, a large 𝜆 is chosen to ensure that first 

updates are short steps in steepest-descent path. As solution improves and the algorithm 

progresses, 𝜆 is minimized. This gradual reduction of 𝜆 moves the solution toward a local 

minimum, making the algorithm approach the Gauss-Newton method [63]. 

 

3.6 Genetic algorithm  

 

Genetic algorithm is a metaheuristic method employed for solving optimization problem based 

on the principle of natural selection. It operated as a population-based search algorithm that 

incorporates the concept of survival of fittest [64]. The algorithm constantly updated population 

of discrete results. During each iteration, genetic algorithm creates offspring for next 

production. This is achieved by randomly selecting individuals from current inhabitants to 

work as parents, and their offspring are determined through assessment of their fitness using a 

fitness function. The algorithm continues to run until specific objective criteria are met. If these 

criteria are not satisfied, the evaluation process recurs. Over time, inhabitants gradually 

progresses towards best result through various processes, including selection probabilities, 

mutation, and crossover, as illustrated in Figure 7[65]. 
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Figure 7: Schematic representation of Genetic Algorithm [66] 

3.6.1 Genetic operators 

 

Each genetic operator serves a specific function, which are as follows 

Population: An initial population group was randomly generated, and each potential solution 

is referred to as a chromosome, as demonstrated in Table 1.  

 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑝𝑜𝑝−𝑠𝑖𝑧𝑒} (20) 

 

𝒑𝒊 = [𝒑𝒊𝟏𝒑𝒊𝟐 … . 𝒑𝒊𝒋 …𝒑𝒊𝒏𝒐−𝒗𝒂𝒓𝒔] (21) 

 

𝒑𝒂𝒓𝒂𝒎𝒊𝒏
𝒋

≤ 𝒑𝒊𝒋 ≤ 𝒑𝒂𝒓𝒂𝒎𝒂𝒙
𝒋 (22) 

 

Table 1: Chromosomes representation of general GA [67]  

Chromosomes 1  1101100100110110 

Chromosomes 2 1101111000011110 
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Where 𝑝𝑝𝑜𝑝−𝑠𝑖𝑧𝑒 represent the total size of population, and no_vars represent the number of 

variables to be tuned, 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑗

 and 𝑝𝑎𝑟𝑎𝑚𝑎𝑥
𝑗

 are the minimum and maximum values parameter 

𝑝𝑖𝑗. 

Selection: In each successive generation, a subset of the current population is chosen for 

breeding the next generation. This selection process is based on fitness, where individual 

solutions are assessed for their suitability. Commonly used selection methods are roulette 

wheel, rank, stochastic universal sampling, and tournament. These methods help in identify 

feasibility of every result and ultimately select most favourable one [67]. 

The roulette wheel selection method, potential strings are drawn on a wheel, and a portion of 

the wheel’s space is assigned to string based on its fitness value. Then, the wheel is spun 

randomly to choose a specific solution that will participate in the formation of next creation, 

as illustrated in Figure 8. Rank selection is an evolution of the roulette wheel method. This 

approach evaluates individuals based on their ranking within the population rather than their 

fitness and also ensures that every individual get an equal chance of being selected for the next 

generation. 

 

Figure 8: Roulette wheel selection for the population [67] 

 

Stochastic universal sampling (SUS) is a method that select a new individual at regular spaced 

intervals, starting from a random point within a list of individuals from a particular generation. 
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This approach ensures that every individual has an equal chance of being selected. In 

tournament selection, individuals are selected through a stochastic roulette wheel based on their 

fitness values. The individual with the better fitness level is attached to pool of next creation, 

as depicted in Figure 9  [68]. 

 

 

Figure 9: Tournament selection in GA [68]  

Crossover: Childrens are generated by combining the genetic information of two parents from 

the previous generation. 

In a single-point crossover, a random point is chosen, and the genetic information preceding 

that point is exchanged between the two parents, as depicted in Figure 10. 

 

Figure 10: Single point crossover [68] 

 

In double point crossover, two random points are chosen, and genetic information is swapped 

segment by segment between the parents, as demonstrated in Figure 11. 
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Figure 11: Double point crossover [68] 

 

In the uniform crossover, each gene in parents is treated individually. Arbitrary decisions are 

made for each gene, determining whether it should be swapped with the corresponding gene in 

the other chromosomes, as illustrated in Figure 12 [69]. 

 

Figure 12: Uniform points crossover [68] 

In the over scattered crossover, a random chromosome is generated, and genes are selected 

based on whether the chromosome is 0 from second parent or 1from the first parent. These 

selected genes are then combined to form a child.  

Mutation: Mutation is crucial for preserving genetic diversity from one population to the next. 

It involves making changes to the genes within chromosomes. Consequently, the characteristic 

of chromosomes inherited from parents may undergoes alterations. The mutation procedure 

will generate three additional progeny [67].  

 

3.7 Particle swarm optimization  

 

Particle swarm optimization algorithm is based on population hunt outstanding by the 

collective behaviour of birds in a flock. This algorithm involves a collection of individuals 

known as particles that relocate iteratively around a defined area. During respective phase, 

algorithm evaluates the objective function for each particle. The particle is then attached to the 

best position it has encountered so far, either within its own trajectory or the best position 

discovered by any member of the swarm. After some steps, the swarm may converge to a single 
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location or disperse across several locations. After the estimation, the algorithm computes new 

velocities for every particle, and the algorithm is iteratively repeated as depicted in Figure 13. 

• The algorithm initiates by creating initial particles and assigning them their initial velocity.  

• The best location and function value are determined by evaluating the objective function at 

each particle’s location.  

• New particle velocities are selected based on combination of the current velocity, and best 

location of individual particle, and the best location among neighbouring particles.  

• The algorithm iteratively repeats the entire process until the specified objective criteria are 

satisfied. 

 

Figure 13: Workflow of particle swarm optimization  
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3.8 Surrogate model  

 

The surrogate model is an analytical approach used to establish statical relationships between 

the inputs and output behaviours of complex systems, it’s also referred to as a meta-model. 

Surrogate models are categorized into two types based on their approximation strategy: model-

driven and data-driven or black box. In model- driven surrogate models, often referred to as 

Reduce Order Model (ROM), computational costs are reduced by utilizing lower order 

equations to approximate the original ones. However, this approach typically requires access 

to the source code of the simulator, which can be challenging when working with commercial 

software. Conversely, in a data-driven surrogate model, the model is generated using input data 

and corresponding output responses, making it a versatile approach that does not rely on access 

to source code. 

The development of a surrogate model involves the following steps 

1. The design space is systematically sampled to determine the input parameters for data 

sets.  

2. The simulator is executed, or experiments are conducted to compute the outputs 

corresponding to the input parameters.  

3. A surrogate model is chosen and trained using training data, which consist of input-

output pairs. 

4. The model’s performance is assessed using test data. If the model’s accuracy is found 

to be unsatisfactory, the entire process repeats from step 1 [70]. 

 

3.9 Methodology  

 

A succinct overview of the research approach employed in this study is presented in Figure 14. 

The methodology comprises five primary steps, each of which is succinctly outlined below: 

 

3.9.1 Phase-I: Steady-state conventional and advanced exergy analysis  

 

The following assumptions and conditions were considered for the analysis: 

• All processes were evaluated in a steady state.  
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• Kinetic and potential exergies were considered insignificant. 

• The reduction in mass flow due to material accumulation on the exchanger walls was 

considered negligible.  

• Dead state conditions were assumed to have a temperature of 25 °C and a pressure of 

101.325 kPa. 

• For the unavoidable conditions, design energy efficiency was obtained from the 

datasheet. 

• Energy Efficiencies for the theoretical condition were calculated by increasing the 

values from the unavoidable condition by 20%, higher increments resulted in an 

excessive rise in the furnace inlet temperature. 

 

Table 2: Real, Unavoidable and Theoretical condition for each Heat Exchanger 

HEX Real 

η(%) 

Unavoidable 

η(%) 

Theoretical 

η(%) 

1-1/3 40.47 56.48 67.78 

1-2/4 53.47 60.72 72.87 

2-1/2 39.64 59.62 71.54 

3-1/3 37.36 57.96 69.55 

3-2/4 32.28 54.55 65.46 

4 19.17 26.97 32.36 

5-1/2 43.07 75.57 90.68 

5-3/5 29.23 35.03 42.03 

5-4/6 43.99 64.53 77.44 

6-1/3 40.59 48.85 58.62 

6-2/4 34.76 51.57 61.88 

6-5/7 40.42 51.76 62.11 

6-6/8 38.30 49.00 58.80 
 

The physical exergy of the steam streams was determined using the property data from Aspen 

Hysys V.11. Subsequently, with the values of physical exergy, the exergy destruction for every 

heat exchanger and for the overall network was determined using equation (10). Additionally, 

the exergy efficiency and exergy destruction ratio for each heat exchanger and the overall 

network were computed using equations (11) and (12). Furthermore, the exergy destruction 

was further categorized into avoidable, unavoidable, endogenous, and exogenous exergy 

destruction components. The endogenous exergy destruction was calculated using an 

engineering method with theoretical conditions, while for the calculation of exogenous exergy 
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destruction equation (17) was employed.  To calculate the avoidable and unavoidable exergy 

destruction, equations (14) and (15) were applied with unavoidable conditions. 

 

 

Figure 14: Methodology in this research   

 

 

3.9.2 Phase-II: Data generation  

 

A framework was created between MATLAB and Aspen HYSYS utilizing the COM actxserver 

to produce data samples. A dataset of 600 samples was created by transitioning the operational 

model to a dynamic mode and introducing ±10% variability in operational parameters, 

including temperature, and mass flow rate. Subsequently, the overall exergy destruction and 

exergy efficiency, along with unavoidable and avoidable exergy destruction, and modified 

exergy efficiency were computed for each data sample. 
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Table 3: Some Data Samples after uncertainty   

Process Conditions Data 

Sample 

1 

Data 

Sample 

2 

Data 

Sample 

3 

Data 

Sample 

4 

Data 

Sample 

5 

Data 

Sample 

6 

 

 

 

 

 

Temperature 

°C 

Crude Inlet 

Temp 28 29.762 30.560 29.000 29.091 30.068 

HDiesel 

Inlet Temp 293.55 271.650 311.17 307.82 319.98 296.47 

MVGO 

Inlet Temp 242.05 248.457 238.26 249.57 239.08 

259.14

0 

AGO Inlet 

Temp 329.55 314.950 348.80 343.13 347.05 319.72 

HVGO 

Inlet Temp 332.05 362.433 342.39 317.23 311.25 325.52 

VR Inlet 

Temp 332.85 310.057 356.09 306.03 329.22 315.53 

 

 

 

 

Mass Flow 

rate (Kg/hr)  

Crude Inlet 

Flowrate 396072 428216 394913 416488 381583 402385 

HDiesel 

Inlet 

Flowrate 127116 137625 118011 124376 115280 118089 

MVGO 

Inlet 

Flowrate 252108 231815 273070 235528 246136 258262 

AGO Inlet 

Flowrate 118692 119804 129599 107578 125699 119006 

HVGO 

Inlet 

Flowrate 173592 189732 157472 157835 173236 158870 

VR Inlet 

Flowrate 122328 133841 132945 130241 125907 113112 

 

 

3.9.3 Phase-III: ANN modelling 

 

An ANN model was built and validated in MATLAB 2023a. The modelling process involves 

three key steps: model selection, training, and validation. 

Model selection: A feed-forward neural network was chosen for modelling, employing the 

Levenberg-Marquardt backpropagation (trainlm) training algorithm. The dataset was 

partitioned in such a way that 70% of the samples were allocated for training, while the 

remaining 30% were evenly distributed between model validation and testing. 

Training and validation:  Model was validated by utilizing the root-mean-squared error 

(RMSE) and relation coefficient (R).  
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RMSE and R were computed based on equations (23) and (24) respectively.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖)
2

𝑛

𝑖

(23) 

𝑅 = 1 −
∑ (𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖)𝑛
𝑖=0

∑ (𝑌𝑖
𝑒𝑥𝑝

− 𝑌𝑎𝑣𝑔
𝑒𝑥𝑝

)𝑛
𝑖

(24) 

where n is the total number of samples, 𝑌𝑖
𝑒𝑥𝑝

represents the actual value of the output, and the 

predicted value is represented by 𝑌𝑖. 

 

3.9.4 Phase-IV: Optimization 

 

The ANN model served as a surrogate in a GA and PSO framework for optimization under 

uncertainty, with the objective function being exergy efficiency. Both GA and PSO were 

employed to identify the optimal parameter that maximize exergy efficiency. The GA algorithm 

steps are as follows, 

1. The algorithm commences by creating a set of random populations, each indicates an 

individual solution.  

2. Fitness evaluations are conducted for each individual within the population using a 

surrogate model and rank them according to their respective fitness values.  

3. Based on these fitness value, parents are selected for the purpose of generating offspring 

through the application of a crossover operator.  

4. Mutation operators are employed to both enhance solution quality and maintain genetic 

diversity in the succeeding generation.  

5. The algorithm proceeds until the criteria defined by the objective function are met. 

Otherwise, steps 2-4 are repeated until an optimal solution is attained.   

The PSO algorithm steps are as follows,  

1. The algorithm begins by generating initial particles and assigning them initial velocity.  

2. A surrogate model is employed to assess the particle’s position.  

3. If the current position is superior to the previous one, the new personal best is updated.  
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4. The updated personal best is then assign as the global best.  

5. The algorithm selects new particle velocities based on current velocity and best 

positions of individual and neighboring particles.  

6. Steps 2 to 5 are iteratively repeated until the stopping criterion is met.  

The efficiency of the proposed optimization was verified by running the Aspen HYSYS model 

with the optimized results and computing the absolute error. 
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Chapter 4  

Results and Discussion 
 

Segments 4.1 and 4.2 cover the steady-state conventional and advanced exergy assessment of 

preheat train in crude oil distillation column unit. Section 4.3 focuses on data-based modelling 

and while section 4.4 delves into the optimization using GA and PSO algorithms. Table 4 

provides the operational parameters and thermodynamic characteristics of every heat 

exchanger stream. 

Table 4: Characteristics for each state within the preheat train 

State  Substance  T(C)      m 
𝒌𝒈

𝒔
 

 

e 
𝒌𝑱

𝒌𝒈
 

 

Ė (kW) 

1 Crude 28 110.02 0.823 45.28 

2 Crude 82 110.02 11.45 630.3 

3 Crude 110.3 110.02 24.26 1334.92 

4 Crude 140.4 110.02 42.94 2362.55 

5 Crude 154.3 110.02 53.27 2930.506 

6 Crude 174.3 110.02 71.36 3925.93 

7 Crude 174.29 55.01 71.367 3925.933 

8 Crude 186.5 55.01 91.76 2524 

9 Crude 210.7 55.01 132.99 3658 

10 Crude 226.2 55.01 160.92 4426.29 

11 Crude 254.5 55.01 209.592 5764.84 

12 Crude 174.29 55.01 71.36 1962.96 

13 Crude 176.5 55.01 80.568 2216.034 

14 Crude 183.699 55.01 96.568 2656.116 

15 Crude 193.8 55.01 116.05 3191.96 

16 Crude 218.4 55.01 155.77 4284.48 

17 MVGO 242.05 35.015 185.73 6503.498 

18 MVGO 208.37 35.015 149.475 5233.86 

19 MVGO 185.549 35.015 127.27 4456.46 

20 MVGO 166.114 35.015 90.775 3178.518 

21 MVGO 126.183 35.015 35.53 1244.164 

22 HDiesel 293.55 17.65 218.54 3858.42 

23 HDiesel 217.72 17.65 117.48 2074.2 

24 AGO 329.55 32.97 276.51 9116.648 

25 AGO 298.67 32.97 226.99 7483.93 

26 HVGO 332.05 24.1 327.117 7886.79 

27 HVGO 305.68 24.1 255.54 6161.2 

28 HVGO 284.42 24.1 213.552 5148.75 

29 HVGO 247.319 24.1 154.384 3722.2 

30 VR 332.85 16.99 280.49 4765.54 

31 VR 274.63 16.99 189.99 3228.078 
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32 VR 242.68 16.99 146.81 2494.32 

33 VR 215.616 16.99 114.039 1937.52 

34 VR 199.628 16.99 96.39 1637.67 

 

 

4.1 Steady-state exergy analysis 

 

The preheat train incurs an exergy destruction of 5403.16 kW, resulting in an exergy efficiency 

of 66.16%. Notably, seven heat exchangers exhibit significantly higher exergy destruction rates 

compared to the others. These include HEX-1-1/3 (two in parallel), HEX-1-2/4 (two in 

parallel), HEX-2-1/2 (two in parallel), and HEX-4. These heat exchangers are situated between 

the states of the crude line 1-3, 3-4, and 7-8, as depicted in Figure 2. Detailed exergy destruction 

rates and traditional exergy statistics for all heat exchangers can be found in Table 5. Figure 15 

provides a breakdown of the exergy destruction contributions from each heat exchanger. 

Notably, HEX 1-2/4 and HEX-2-1/2 exhibit the greatest percentages of exergy destruction. In 

contrast, HX-6-6/8 and 6-5/7 contribute less than the average exergy destruction. Consequently, 

when ranking enhancement activities, targeting the latter four exchangers individually may not 

result in significant network performance enhancements. However, focusing on HEX-1-2/4 

and HEX-2-1/2 could lead to more substantial improvements in the system. 

 

Table 5: Exergy Destruction, Exergy Efficiency, and Exergy Destruction Ratio 

HEX Ė𝑫(kW) 𝛆𝒌(%) 𝒀𝑲(%) 

1-1/3 573.32 55.13 3.59 

1-2/4 1349.33 30.243 8.45 

2-1/2 756.559 57.59 4.73 

3-1/3 274.204 78.402 1.717 

3-2/4 209.435 73.059 1.311 

4 510.6 68.72 3.19 

5-1/2 387.038 77.57 2.423 

5-3/5 243.715 75.917 1.526 

5-4/6 292.54 79.49 1.832 

6-1/3 444.956 71.059 2.786 

6-2/4 197.89 73.029 1.239 

6-5/7 116.739 79.033 0.731 

6-6/8 46.787 84.3966 0.293 
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Figure 15: Exergy Destruction Percentage 

 

4.2 Steady-state advanced exergy analysis 

 

The assessment of avoidable and unavoidable exergy destruction revealed that only 33% of the 

exergy destruction is potentially recoverable. This destruction is primarily attributed to fouling 

inside the heat exchangers. To identify key heat exchangers, a criterion is applied, considering 

avoidable exergy destruction as both a selection criterion and a limit on the number of selected 

exchangers, which is set at 20% of the total. Exchangers whose irreversibilities affect the key 

heat exchangers are not classified as crucial, instead, they are recognized as contributors to the 

inefficiency of the key heat exchanger under examination. HEX-1-2/4 and HEX-2-1/2 stand 

out as the primary contributors to avoidable exergy destruction (as indicated in Figure 17), 

making them the key exchangers where improving operating conditions can lead to a reduction 

of 841.67 kW. This reduction is substantial when evaluated to the total avoidable exergy 

destruction across the entire network, which amounts to 1759.807 kW. Consequently, these 

four exchangers are designated as the key heat exchangers in the process. 
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Table 6: Avoidable and Unavoidable Exergy Destruction 

HEX 

 (
Ė𝑫

Ė𝑷
)

𝑼𝑵

 
Ė𝑷,𝑲   (KW) Ė𝑫,𝑲 (KW) Ė𝑫,𝑲

𝑼𝑵  (KW) Ė𝑫,𝑲
𝑨𝑽   (KW) 

1-1/3 0.619 704.622 573.32 436.381 136.94 

1-2/4 1.32 585.022 1349.332 772.308 577.024 

2-1/2 0.478 1027.628 756.559 491.9093 264.65 

3-1/3 0.2059 995.427 274.204 205.0478 69.156 

3-2/4 0.1377 567.968 209.435 78.265 131.1707 

4 0.35387 1122.079 510.634 397.079 113.554 

5-1/2 0.1685 1338.547 387.038 225.55 161.487 

5-3/5 0.2469 768.288 243.715 189.729 53.985 

5-4/6 0.1396 1134.001 292.543 158.337 134.205 

6-1/3 0.327 1092.514 444.956 358.119 86.837 

6-2/4 0.2648 535.853 197.896 141.9087 55.987 

6-5/7 0.2204 440.0598 116.739 97.015 19.724 

6-6/8 0.169 253.067 46.787 42.983 3.804 

 

 

 

Figure 16: Avoidable and Unavoidable Exergy Destruction  
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Figure 17: Avoidable Exergy Destruction of Heat Exchangers 

 

Evaluating both the avoidable and unavoidable exergy destruction offers valuable insights into 

the heat exchangers most susceptible to fouling. As depicted in figure 16, the larger the gap 

between unavoidable exergy destruction and avoidable exergy destruction, the more significant 

the fouling impact on the heat exchangers. To assess the influence of unavoidable exergy 

destruction on exchanger efficiency, a comparison is made between 𝜀𝑘 and 𝜀𝑘
∗  , as shown in 

Figure 18. 

 

Figure 18: Effect of Avoidable Exergy Destruction on Exergy Efficiency 
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Exogenous exergy destruction with negative values as depicted in Figure 19, suggest that 

operating the k-component at its theoretical conditions significantly enhanced its performance. 

HEX-2-1/2 and HEX-4 exhibit positive exogenous exergy destruction, with worth of 210.63 

kW and 123.25 kW, respectively. 

 

Table 7: Endogenous and Exogenous Exergy Destruction 

HEX Ė𝑫(kW) Ė𝑫,𝑲
𝑬𝑵  (kW) Ė𝑫,𝑲

𝑬𝑿  (kW) 

1-1/3 573.32 1394.3 -820.97 

1-2/4 1349.33 2374.2 -1024.86 

2-1/2 756.559 545.92 210.6397 

3-1/3 274.204 1036.8 -762.595 

3-2/4 209.435 608.3 -398.864 

4 510.6 387.38 123.254 

5-1/2 387.038 887.18 -500.14 

5-3/5 243.715 952.93 -709.214 

5-4/6 292.54 372.32 -79.776 

6-1/3 444.956 1264.1 -819.143 

6-2/4 197.89 481.67 -283.773 

6-5/7 116.739 236.29 -119.55 

6-6/8 46.787 109.43 -62.642 
 

 

Figure 19: Endogenous and Exogenous Exergy Destruction 
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4.3 Data based modelling 

 

The steady-state traditional and advanced exergy analysis was implemented in the previous 

section. However, in this section, uncertainty was introduced in process parameters, and 

various data samples were generated. For data samples, input was uncertainty in process 

parameters and outputs were exergy destruction, exergy efficiency, avoidable exergy 

destruction, unavoidable exergy destruction, and modified exergy efficiency. Subsequently, 

five ANN models were constructed using the generated data samples. Each of these ANN 

models predicts a specific output variable while employing the same set of input parameters. 

 

4.3.1 ANNs development 

 

There were five ANN models were built in MATLAB 2023a. For uncertainty, variations of 

+10% and -10% were introduced into 12 uncertain inlet flow rates and temperatures of the inlet 

streams of HEN. In total, 600 data samples were generated, with 336 utilized for model 

training, 72 for validation, and 72 for model testing. The ANN models were trained using the 

Levenberg-Marquardt backpropagation (trainlm) training algorithm, and the behaviour of the 

networks was regulated using the Tansig activation function. To evaluate their generalization, 

an additional set of 120 test samples was reserved, unbeknownst to the models. 

 

4.3.2 Exergy efficiency 

 

This ANN model predicts the overall exergy efficiency of HEN. The ANN model demonstrated 

an R value of 0.99635 during training phase and an R of 0.992 during the testing phase, as 

depicted in the figure below. 



36 
 

  

Figure 20: Predicted vs actual exergy efficiency of Heat Exchanger Network  

 

4.3.3 Exergy destruction 

 

This ANN model predicts the overall exergy destruction of HEN. The ANN demonstrated an 

R value of 0.99561 during the training phase and an R value of 0.99266 during the testing 

phase, as depicted in the figure below. 

  

Figure 21: Predicted vs actual exergy destruction of heat exchanger network 
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4.3.4 Avoidable exergy destruction 

 

This ANN model predicts the avoidable exergy destruction of HEN. The ANN model 

demonstrated an R value of 0.9964 during the training phase and an R value of 0.9829 during 

the testing phase as depicted in the figure below. 

  

Figure 22: Predicted vs actual avoidable exergy destruction of heat exchanger network  

 

4.3.5 Unavoidable exergy destruction 

 

This ANN model predicts the unavoidable exergy destruction of HEN. The ANN model 

demonstrated an R value of 0.99989 during the training phase and an R value of 0.99243 during 

the testing phase, as depicted in the figure below. 
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Figure 23: Predicted vs actual unavoidable exergy destruction of heat exchanger network 

 

4.3.6 Modified exergy efficiency 

 

This ANN model predicts the modified exergy destruction of HEN. The ANN model 

demonstrated an R value of 0.99651 during the training phase and an R value of 0.99135 during 

the testing phase as depicted in the figure below. 

  

Figure 24: Predicted vs actual modified exergy efficiency of heat exchanger network 
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4.4 Optimization 

 

Both the PSO and GA employ an ANN trained model as a substitute to optimize the exergy 

efficiency when faced with uncertain process conditions. Table 8 and Table 9 provide the 

parameters employed by GA and PSO for optimizing the process exergy efficiency. 

 

Table 8: Genetic algorithm parameters used to optimize the exergy efficiency 

GA Parameters  Heat Exchanger Network  

Initial Population 100 

Crossover Over Scatter 

Crossover Probability 0.8 

Elite Member 15 

Mutation Adapt Feasible 

Selection Tournament 
 

Table 9:PSO parameters used to optimize the exergy efficiency 

PSO Parameters Heat Exchanger Network  

Swarm Size 200 

Min Neighbours Fraction 0.25 

Self-Adjustment Weight 1.49 

Social Adjustment Weight 1.49 

Initial Swarm Span  2000 
 

4.4.1 Optimization of exergy efficiency of heat exchanger network:  

 

Table 10 provide a comparison of the process’s exergy efficiency across three different 

frameworks: standalone (SA), PSO and GA constructed frameworks. The unoptimized default 

Aspen’s model under uncertain conditions is referred to as SA model. In all test data samples, 

both the PSO and GA based frameworks demonstrated superior performance compared to the 

SA model in spans of exergy efficiency. For instance, in data sample 1, the SA model reveals 

an exergy efficiency of 67.76%, whereas the PSO and GA optimization improved it to 73.77% 

and 73.71%, respectively. Similarly, in data sample 2, the SA model achieved an exergy 

efficiency of 66.10%, but both the PSO and GA optimize it to 71.75% and 71.87%, 

respectively. 
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Table 10: Comparison of SA, GA, and PSO exergy efficiency of heat exchanger network 

SR No. SA exergy 

efficiency (%) 

GA optimize exergy 

efficiency (%) 

PSO optimize 

exergy efficiency 

(%) 

Data Sample 1 67.76 73.77 73.71 

Data Sample 2 66.10 71.75 71.87 

Data Sample 3 63.65 68.98 73.12 

Data Sample 4 64.06 68.55 70.19 

Data Sample 5 64.66 69.92 69.14 

Data Sample 6 64.39 69.45 68.67 

Data Sample 7 66.75 73.00 72.30 

Data Sample 8 65.11 70.18 69.93 

Data Sample 9 65.56 72.29 69.54 

Data Sample 10 64.64 70.69 70.81 

 

The framework’s performance was rigorously assessed by implementing the process conditions 

optimized through both the PSO and GA-based methods in the Aspen model and computing 

the absolute error. Table 14 is dedicated to comparing the execution of PSO and GA models. 

The results in Table 14 affirm that GA holds a slight advantage over PSO. To illustrate, in data 

sample 1, GA displays an absolute error of 1.12% whereas PSO records an absolute error of 

1.54%. Similarly, in data sample 2, GA exhibits an absolute error of -0.38% while PSO has an 

absolute error of -0.51%. 

 

Table 11: GA and PSO performance validation of heat exchanger network 

SR No. GA 

exergy 

efficiency 

(%) 

Aspen 

model 

validated 

exergy 

efficiency 

(%) 

Absolute 

error 

(%) 

PSO 

exergy 

efficiency 

(%) 

Aspen 

model 

validated 

exergy 

efficiency 

(%) 

Absolute 

error (%) 

Data Sample 

1 73.77 74.61 1.12 73.71 74.86 1.54 

Data Sample 

2 71.75 71.48 -0.38 71.87 71.50 -0.51 

Data Sample 

3 68.98 68.61 -0.54 73.12 72.68 -0.61 

Data Sample 

4 68.55 68.44 -0.16 70.19 69.15 -1.51 

Data Sample 

5 69.92 69.64 -0.40 69.14 68.70 -0.64 

Data Sample 

6 69.45 69.27 -0.27 68.67 68.65 -0.03 
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Data Sample 

7 73.00 72.65 -0.48 72.30 72.07 -0.32 

Data Sample 

8 70.18 69.93 -0.36 69.93 69.65 -0.40 

Data Sample 

9 72.29 72.06 -0.31 69.54 69.36 -0.26 

Data Sample 

10 70.69 70.50 -0.27 70.81 70.61 -0.28 
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Conclusion 

 

In this study, we employed together traditional and advanced exergy analysis alongside ANN 

models to assess and optimize the preheat system of a crude oil distillation unit, considering 

uncertainties. The study aims to achieve the following objectives: to evaluate the system’s 

improvement potential, identify critical areas, and optimize the system while accounting for 

uncertainties. The overall exergy destruction in HEN is 5403.166 KW, while the exergy 

efficiency is 66.16\%. Furthermore, avoidable exergy destruction is found to be 1759.80 KW, 

and unavoidable exergy destruction is 3643.35 KW. The seven heat exchangers with the highest 

exergy destruction rates are identified as priority equipment for intervention because of their 

substantial influence on the system. Taking steps to reduce avoidable destruction in all the 

exchangers within the preheat train leads to a substantial decrease of about 1759.80 KW in 

exergy destruction. This reduction leads to a higher inlet temperature at the furnace, 

subsequently lowering fuel consumption and environmental impacts. 

After conventional and advanced exergy analyses, we developed ANN models and employed 

them as substitute in PSO and GA frameworks to optimize exergy efficiency beneath uncertain 

conditions, with a focus on improving exergy efficiency. Our proposed framework surpassed 

the SA in achieving the superior exergy efficiency. We cross-validated the operation of both 

PSO and GA by applying the improved specifications to the Aspen model and assessing the 

absolute error. In conclusion, we found that the working of both PSO and GA exhibited similar 

results. The integration of ANN models for comprehensive system evaluation, encompassing 

both exergy and advanced exergy analysis perspectives, along with utilization of GA and PSO 

frameworks for optimization, not only results in time savings but also conserves valuable 

computational resources. This study serves as a foundational step toward simulating Refinery 

4.0, offering invaluable insights that will undoubtedly guide future initiatives aimed at 

optimizing energy usage and enhancing overall efficiency. 
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