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Abstract

This thesis comprises of bounds for the depth and Stanley depth of edge ideal of three

different types of trees and some other graphs containing cycles which turns out to be

sharper than the existing one. General but a weaker bound, as compared to our, for

the depth and Stanley depth of power of edge ideal of any graph is given by Morey and

Fouiza. Their bound depends on the number of components of the graph q, power p

of the edge ideal and total number of vertices of the graph. Our work presents a much

sharper bound for the depth and Stanley depth of powers of edge ideal associated to

some classes of caterpillar graph. This bound being dependent on the power p and

number of the pendant vertices becomes much sharper than the previous one.
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Preface

In the field of commutative algebra two totally different invariants gained much focus

and a conjecture linking the two was studied by many mathematicians. First one is the

depth of a module, an algebraic invariant, which gives the bound for other algebraic

invariants. Depth of a module N over a ring R is the length of maximal m-sequence

in N . Second one is the Stanley depth of a graded module over a graded ring, named

after R. P. Stanley who defined it in 1982. Stanley depth of a module N is defined to

be the maximum of Stanley depth of all possible Stanley decompositions of module N .

Our goal is to investigate the values and bounds for the depth and Stanley depth

of some powers of edge ideals associated to caterpillar graph and other graphs.

This thesis consists of four chapters. The first chapter has three sections. The

first section covers the ring theory where ring R is taken to be commutative ring

with unity. Second section covers the module theory with N as an R- module. Third

section covers the basic definitions and concepts of graph theory required for the further

understanding of this thesis.

Second chapter is the literature review. In this chapter we have defined the concept

of depth and Stanley depth of a module. Some useful results from papers [1],[7] and

[11] are reviewed. In this chapter we have seen that for a graph H with q connected

components and edge ideal L = L(H), depthU/Lp ≥ d l−3
3
e + q − 1 where l is the

diameter of the graph. Using some lemmas from paper by Morey we have analyzed the

bounds for the depth and Stanley depth given by Alipour for L the edge ideal of the

special type star graph defined by him.

In chapter three we have worked on the depth and Stanley depth of different types

of trees and other graphs containing one cycle.
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The last chapter includes the determination of bound for the depth and Stanley

depth of U/Lp where L is edge ideal corresponding to subclass of caterpillar graph.

The bound depends on the order of path in the graph, number of pendent vertices and

power p ≥ 1.
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Chapter 1

Preliminaries

In this chapter we will recall some basic definitions and results from ring theory, module

theory and graph theory.

1.1 Ring Theory

Definition 1.1.1. A set R together with two binary operations of ′+′ and ′×′ called
addition and multiplication satisfying the following axioms is called a ring

1. (R,+) is an abelian group,

2. ′×′ is associative i.e, for all n1, n2, n3 ∈ R

n1 × (n2 × n3) = (n1 × n2)× n3,

3. distributive law holds i,e: for all n1, n2, n3 ∈ R

(n1+n2)×n3 = (n1×n3)+ (n2×n3) n1× (n2+n3) = (n1×n2)+ (n1×n3).

1.1.1 Polynomial Rings

Definition 1.1.2. The polynomial ring T [x] in an indeterminate x with coefficients

from the field T is a set of all the formal sums of the form amx
m + am−1x

m−1 + · · · +

4



a1x + a0 with m ≥ 0 and each aj ∈ T . Addition in the polynomial ring is defined

component wise that is

m∑
j=0

ajx
j +

m∑
j=0

bjx
j =

m∑
j=0

(aj + bj)x
j

and multiplication is defined as

( m∑
j=0

ajx
j
)
×
( n∑
j=0

bjx
j
)
=

m+n∑
i=0

( i∑
j=0

ajbi−j

)
xi.

The polynomial ring T [x1][x2] is ring of polynomials with coefficients from T [x1] and

inderterminate x2. That is

T [x1][x2] = T [x1, x2].

So polynomial ring can be defined in any number of indeterminates as

T [x1, x2, . . . , xm−1][xm] = T [x1, x2, . . . , xm−1, xm].

Let U := T [x1, x2, . . . , xm] be the polynomial ring with m indeterminates and coef-

ficients from the field T . For all nonnegative integers ai, any product of the form

xa11 x
a2
2 . . . xamm is called a monomial.

Definition 1.1.3. An subring J of the ring R is called an ideal of R if we have xJ ⊂ J

for all x ∈ R. An ideal in a polynomial ring U which is generated by monomials is

called a monomial ideal.

For example U = T [x1, x2, x3] be the polynomial ring then L = (x21, x
2
2, x

2
3), L =

(x21, x2x3) are some monomial ideals of U with generating sets {x21, x22, x23} and {x21, x2x3}
respectively. Similarly for U = R[x1, x2, . . . , xm] some of its monomial ideals are

L = (x1), L = (x1, x2, x3), L = (x1, x2, . . . , xm).

Definition 1.1.1. For the ring R, the intersection of all maximal ideals of R is called

Jacobson radical of ring R denoted by R.
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1.1.2 Operations on Ideal

The operation of sum, product and intersection of ideals are commutative and associa-

tive.

1. Sum of ideals

Let L and L′ be the ideals of the ring R, then L+L′ is the set of all the elements

of the form l + l′ where l ∈ L and l′ ∈ L′. The set L + L′ is an ideal and is

the smallest ideal which contains L and L′. Sum of any number of ideals can be

defined in the same way. For the family of ideals {Li} where i ∈ I, their sum∑
i∈I Li consists of the elements of the form

∑
i∈I xi with xi ∈ Li with only finite

many x′is nonzero.

2. Product of ideals

Product of two ideals L and L′ of the ring R is an ideal LL′ which is generated

by all products of the form ll′, where l ∈ L and l′ ∈ L′. The ideal LL′ is the set

of all finite sums
∑
lkl
′
k with each lk ∈ L and l′k ∈ L′. Product of finite number

of ideals can also be defined. In particular for (n > 0), the ideal Ln is generated

by all products l1l2 . . . ln with each li ∈ L. Conventionally we take L0 = (1).

3. Intersection of ideals

Intersection of ideals is again an ideal. For example for the two ideals 6Z and

10Z, 6Z ∩ 10Z = 30Z.

4. Colon of ideals

For the ideals L and L′ of ring R, their colon is again an ideal and is defined to

be the following subset of R,

(L : L′) = {x ∈ R | xL′ ⊆ L}.

6



For example for the ring R = Z and ideals L = (16) and L′ = (4) we have

(L : L′) = {x ∈ Z : x(4) ⊆ (16)}

= (4).

(0 : L) is an ideal called the annihilator of L denoted by Ann(L) given by

Ann(L) = {x ∈ R | xL = 0}.

5. Radical of an ideal

For ideal L of the ring R, radical of L is again an ideal of R given by

√
L = {x ∈ R | xn ∈ L, for some n > 0}.

If
√
L = L, where R is a commutative ring, then L is called radical ideal. Also all

squarefree Prime ideals of a ring are radical ideals. Radical of an ideal is whole

ring if and only if ideal itself is a ring. We also have a result which says that
√
L

is the intersection of all primes ideals containing L.

Direct product and direct sum of family of rings:

Let R1, R2, . . . be the family of rings. The direct product of the family of rings

R =
∏
i

Ri,

is the set of all sequences r = (r1, r2, . . . ) where ri ∈ Ri with componentwise addition

and multiplication. Direct product of rings is again a ring. The direct sum

R′ =
⊕

Ri ⊆
∏
i

Ri

consists of elements of the form r = (r1, r2, . . . , ) where finite many r′is are non-zero.

When the number of rings is finite then
⊕

Ri =
∏
Ri.

7



1.1.3 Primary Decomposition and Primary Ideals

Let L ⊂ U be a monomial ideal. Then for each Ki having generating set consisting of

pure powers of variables that is Ki is of the form (xa11 , x
a2
2 , . . . , x

am
m ) we have,

L =
n⋂
i=1

Ki.

The presentation of ideal L in the form of intersection of these primary ideals is unique.

If a monomial ideal is already generated by the pure power of variables then the ideal

L is irreducible that is it cannot be expressed as a proper intersection of two other

monomial ideals. For a squarefree monomial ideal L, these K ′is are the monomial

prime ideal of L. A prime ideal P containing L with no prime ideal containing L

properly contained in P is called minimal prime ideal of L. Set of minimal prime ideals

of L is denoted by Min(L). For a squarefree monomial ideal L we have

L =
⋂

P∈Min(L)

P

and each P is monomial prime ideal. Let U be a Noetherian ring and N be a finitely

generated U -module. If there exists an element a ∈ N such that Ann(a) = P where P

is a prime ideal of U then this P is called associated prime ideal of N. The set of all

associated prime ideals of N is denoted by Ass(N). Following is an example of primary

decomposition of square free monomial ideal L.

Example 1. Let L = (x1x2, x3x5, x2x3, x2x4, x3x4, x1x4) be an ideal, then

L = (x1x2, x3x5, x2x3, x2x4, x3x4, x1x4)

= (x2, x4, x5) ∩ (x3, x1x2, x2x4, x1x4)

= (x2, x4, x5) ∩ (x1, x3, x2) ∩ (x1x2, x3, x4)

= (x2, x4, x5) ∩ (x2, x4, x3) ∩ (x1, x3, x4) ∩ (x1, x2, x3)

= (x2, x4, x5) ∩ (x1, x3, x4) ∩ (x2, x4, x3) ∩ (x1, x2, x3).

Since L is a squarefree monomial ideal so it can be seen that (x2, x4, x5), (x1, x3, x4),

(x1, x2, x3) and (x2, x4, x3) are minimal prime ideals of L.
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The primary decomposition is known as irredundant primary decomposition if none of

the K ′is can be omitted in this intersection and for all i 6= j we have Pi 6= Pj where

Ass(Ki) = {Pi}. If L = ∩ni=1Ki is an irredundant primary decomposition of L then the

Ki is known as the Pi-primary component of L and Ass(L) = {P1, P2, . . . , Pn}. One may

not always have a decomposition of an ideal which is also irredundant decomposition.

However in such a situation one can construct an irredundant primary decomposition by

letting P -primary components of L be the intersection of all K ′is with Ass(Ki) = {P}.
For example for ideal L = (x31, x

3
3, x

2
1x

2
2, x1x3x

2
2, x

2
2x

2
3) the primary decomposition is as

follows

L = (x31, x
2
2, x

3
3) ∩ (x21, x3) ∩ (x1, x

2
3).

As Ass(x21, x3) = Ass(x1, x
2
3) = {(x1, x3)}, so intersecting (x21, x3) and (x1, x

2
3) we get

(x21, x1x3, x
2
3). So the irredundant primary decomposition is

L = (x31, x
2
2, x

3
3) ∩ (x21, x1x3, x

2
3).

1.1.4 Dimension and Height of a Ring

Dimension of a ring is commonly known as Krull dimension after Wolfgang Krull.

Consider the chain of prime ideal with respect to inclusion

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pm.

The supremum of lengths of chains of prime ideals is called the Krull dimension of R. If

there is no upper bound for such chains in R then we have dim(R) =∞. All the PIDs

have dimension one since all ideals are principle in PIDs. All fields have dimension

equal to zero. The polynomial ring U has dimension m for the chain of prime ideals

(x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂ . . . ⊂ (x1, x2, . . . , xm).

For the polynomial ring with infinite many indeterminates the dimension of the ring

is infinity. Height of a prime ideal P is defined to be the maximum of lengths of

chains of prime ideals contained in P with respect to inclusion. The height of any

9



ideal L is the minimum of the heights of prime ideals containing L. For the ideal L =

(x1x2, x2x3, x3x4, x4x5, x1x3, x2x4, x3x5), we have the following primary decomposition

L = (x1, x2, x3, x4) ∩ (x1, x2, x3, x5) ∩ (x1, x2, x4, x5),

then ht (L) = 4.

1.1.5 H-Grading

Let H be an abelian group and R a commutative ring. A family {Rh}h∈H of abelain

subgroups of (R,+) satisfying the following conditions for all h, f ∈ H :

1. R =
⊕

h∈H Rh,

2. RhRf ⊆ Rh+f ,

is called H-grading of R. The elements of Rh are known as homogeneous elements of

degree h. If a ∈ Rh we write the degree of a as deg(a) = h or |a|= h. Every ring is a

graded ring by letting R0 = R and Ri = 0 for all i 6= 0.

For example if H = Z, U = T [x] then for h ∈ Z, we have

Uh =

{
Txh, if h ≥ 0;

0, if h < 0.

This is an Z-grading.

1.2 Module Theory

In this section, we will define another algebraic structure called module. We will give

some of its properties and results. We will also see their behavior in exact sequences.

1.2.1 Modules

An abelian group N is called R-module, where R is a commutative ring, if there is a

map

? : R×N −→ N

10



defined as

x ? n = xn, for x ∈ R, n ∈ N

such that the following conditions are satisfied for all x, y ∈ R and n, n1, n2 ∈ N

1. x(n1 + n2) = xn1 + xn2,

2. (x+ y)n = xn+ yn,

3. (xy)n = x(yn),

4. 1n = n.

Set of integers is an example of R-module. Every ring R is also a module over itself.

For the ring R and ideal L , R/L is an R-module.

A multiplicatively closed (by the elements of R) subgroup N ′ of additive group N is

called submodule of N . The dimension of an R-module N is defined in the following

way

dim(N) = dim(R/ann(N)).

Let N be an R-module and B ⊆ N . The module N is called free module on B if

for 0 6= n ∈ N there exists unique elements x1, x2, . . . , xn in N and unique elements

b1, b2, . . . , bn in B such that

n = x1b1 + x2b2 + · · ·+ xnbn, for some n ∈ Z+.

In this case B is called the basis set or set of free generators for N .

Lemma 1.2.1. (Nakayama′s Lemma.) Let R be a ring and let N be a finitely

generated R-module. Suppose that L is an ideal of R such that L ⊆ R where R denotes

the Jacobson radical. If LN = N then N = 0.

1.2.2 Graded Module

Let H be an abelian group, R be a graded ring with R =
⊕

h∈H Rh and N be an

R-module. N is called graded R-module if there exist subgroups Nh of N for all h ∈ H

11



such that N =
⊕

h∈H Nh and RhNf ⊆ Nh+f for all h, f ∈ H. Clearly each Nh is an

R0-module since R0Nh ⊆ Nh. Also R is graded R-module. For example if U = T [x, y],

H = Z , then

U = T ⊕ (Tx+ Ty)⊕ (Tx2 + Txy + Ty2)⊕ (Tx3 + Tx2y + Txy2 + Ty3)⊕ . . . .

1.2.3 Exact Sequences

A sequence of R-homomorphisms and R-modules

. . .
gi−1−−→ Bi−1

gi−→ Bi
gi+1−−→ Bi+1

gi+2−−→ . . .

is said to be exact at Bi if,

Im(gi) = Ker(gi+1).

The sequence

0 −→ B′
g′−→ B

is called exact sequence at B′ iff g′ is injective and the sequence. The sequence

B
g′′−→ B′′ −→ 0

is called exact sequence at B′′ iff g′′ is surjective. The sequence

0 −→ B
g−→ B′

g′−→ B′′ −→ 0,

is called short exact sequence iff

Ker(g′) = Im(g).

Let B = Z and B′′ = Z/nZ are Z-modules,

0 −→ Z i−→ Z⊕ Z/nZ π−→ Z/nZ −→ 0,

where i is inclusion map defined as i(a) = (a, 0) and π is projection map defined as

π(a, b) = b. Then the above sequence is a short exact sequence.
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1.2.4 Noetherian Ring

Let
∑

be a poset with respect to ≤ . Then the following two conditions are equivalent

1. Every increasing sequence

a1 ≤ a2 ≤ . . . ≤ an ≤ . . . ,

in
∑

is stationary that is there exists n ∈ N such that an = am for all m ≥ n,

2. All the nonempty subsets of
∑

have a maximal element.

For the case when
∑

is a set of submodules of N with relation of containment, then

first condition mentioned above is called ascending chain condition and the second one

is called the maximal condition.

Definition 1.2.2. If every ascending chain of R-submodules of R-module N is sta-

tionary then N is called Noetherian. Ring R is called Noetherian if R is Noetherian as

an R-module.

Theorem 1.2.3. (Hilbert Basis Theorem.)

If R is Noetherian ring, then R[x] is also Noetherian.

Following is an immediate corollary that follows from the above theorem.

Corollary 1.2.4. If R is Noetherian, then so does the ring R[x1, x2, . . . , xm].

Proposition 1.2.5. Let 0 −→ B
g−→ B′

g′−→ B′′ −→ 0, be a short exact sequence, then

B′ is Noetherain ⇐⇒ B and B′′ are Noetherian.

Corollary 1.2.6. [2, Corollary 6.4] If N1, N2, . . . , Nn are Noetherian R-modules, then⊕n
k=1Nk is Noetherian.
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1.3 Graph Theory

A graph H is a pair of sets (V,E) where V = {v1, v2, . . . , vn} is th set of vertices

and E is the set of edges. For example for V = {v1, v2, v3, v4, v5, v6, v7} and E =

{(v1, v1), (v1, v2), (v2, v3), (v3, v4), (v3, v4), (v3, v5), (v4, v5),
(v5, v6)} we have the following graph.

v
1

v
2

v
3

v
5

v
4

v
6

v
7

Figure 1.1: Graph H

Order of a graph is the cardinality of the vertex set of the graph whereas size of a

graph is the cardinality of the edge set of the graph. Degree of a vertex v in a graph,

denoted by deg(v), is number of the edges incident on it. For example in the above

graph H, order of H is 7, size is 8, deg(v1) = 3, deg(v2) = 2 and so on. Loop is an

edge which connects a vertex to itself for example, {v1, v1} is the loop in the above

graph H. Leaf is a vertex which is adjacent to only one vertex. In the above graph

v6 is the leaf. Isolated vertex is the one which is not adjacent to another vertex of

the graph. In the graph H, v7 is the isolated vertex. Neighborhood of a vertex v is a

set of vertices adjacent to it in the graph denoted by N(v). For example in the above

graph N(v2) = {v1, v3}, N(v5) = {v3, v4, v6}. A graph is said to be connected if every

vertex of it is reachable from every other vertex. Graph H is disconnected since v7 is
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not reachable from any other vertex of the graph.

1.3.1 Subgraphs

A graph H1 = (V1, E1) is said to be the subgraph of H = (V,E) if

1. V1 ⊆ V,

2. Every edge of H1 is also an edge of H.

For example, below given graphs H1 and H2 are two subgraphs of H.

v
2

v
3

v
5

v
4

v
6

v
7

Figure 1.2: Graph H1

v
3

v
5

v
4

v
6

Figure 1.3: Graph H2

1.3.2 Components of a Graph

A component H ′ of graph H is its subgraph such that

15



1. H ′ is connected and

2. Either H ′ is an induced graph from those edges of H which have an end vertex

in H ′ or H ′ is an isolated vertex of H.

Following graphs H ′ and H ′′ are the components of graph H.

v
1

v
2

v
3

v
5

v
4

v
6

v
7

H'

H''

Figure 1.4: Graph H ′ and H ′′ are components of H

1.3.3 Minor of Graph

A subgraph of the graph H which is formed by successive deletion of edges is called

the minor of graph H. For example following is a minor of the graph H given above

v
1

v
2

v
3

v
5

v
4

v
6

v
7

Figure 1.5: minor of H

1.3.4 Some common graphs

Here we will define some of the common graphs in graph theory.
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Path graph

Path graph Pn = (V,E) is a finite sequence of the form

v1e1v2e2 . . . ej−1vj . . . en−1vn,

where n is the order of graph Pn with v′is ∈ V and e′is ∈ E.

v1 v2 v3
v4 v5

v6 v7
v8

Figure 1.6: P8 Path on 8 vertices

Cycle graph

Cycle graph Cn = (V,E) is a finite sequence of the form

v1e1v2e2 . . . ej−1vj . . . en−1vnenv1,

where n is the order of graph Cn with v′is ∈ V and e′is ∈ E.

v1

v2

v3

v4

v5

v6

v7

v8

Figure 1.7: C8 Cycle on 8 vertices
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Bipartite graph

If the vertex set V of the graph can be partitioned into two subsets V1 and V2 such that

each edge has one end in V1 and other in V2, then such a partition (V1, V2) is called

the bipartition of graph. V1 and V2 are known as partite sets of the graph. Bipartite

graph have a special property which is that it contains no odd cycle. Following is an

example of bipartite graph.

v1

v2

v3

v4

v5

Figure 1.8: (3, 2)− bigraph

Tree

Tree is a connected graph with no cycle. Since tree has no cycle so it is also a bipartite

graph. The vertices in the tree with degree equal to one are called leaves or pendant

vertices. Following is an example of tree graph.

Figure 1.9: Tree graph
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Caterpillar graph

A caterpillar graph is a tree in which the removal of all pendant vertices results in a

chordless path, Pn.

Figure 1.10: caterpillar

Star graph

A complete bipartite graph with one partite set having cardinality 1 is called a star

graph. Star graph on n vertices is denoted by Sn.

Figure 1.11: S9 Star on 9 vertices.

Complete graph

A simple graph in which every vertex is adjacent to every other vertex is called a

complete graph. Kn represents a complete graph on n vertices.
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Figure 1.12: K3 and K4 on 3 and 4 vertices respectively.
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Chapter 2

Depth and Stanley depth of Zn-
graded modules.

2.1 Depth and Stanley depth

Corresponding to the graph H with the vertex set V = {1, 2, . . . ,m} and edge set E,

we define edge ideal L to be an ideal generated by the monomials of the form xixj such

that {i, j} ∈ E.

Definition 2.1.1. Let R be a ring and N be a module over R. Then an element x 6= 0

of R is called a zero divisor of module N if xn = 0 for some nonzero n. An element

which is not a zero divisor is called a regular element.

Definition 2.1.2. A sequence x = x1, x2, . . . , xm of elements of R satisfying the fol-

lowing conditions:

1. xi is N/(x1, x2, . . . , xi−1)N regular for any i,

2. N 6= (x)N,

is called N -regular sequence or N -sequence where N is a R-module.

Since our ring is local noetherain ring so has unique maximal ideal thus Jacobson

radical R is the maximal ideal. So by Nakayama’s lemma since N 6= 0 thus N 6= (x)N .

Thus the second condition for sequence to be regular is always satisfied in our case.
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For the polynomial ring U and N = U the sequence x1, x2, . . . , xm is N - regular. Now

we define what is depth of a module

Let R be a local Noetherian ring with unique maximal ideal m and N be a finitely

generated R-module. The common length of all maximal N -sequences in m is called

the depth of N and is denoted by depth(N). For example depth of ring R over itself as

an R-module is equal to the dimension of the ring. A striking conjecture was proposed

by Richard Stanley in 1982 in his article [17] giving an upper bound in terms of an

invariant for the depth of multigraded module. This invariant is known as Stanley

depth of a module.

Let U br the ring, N be a finitely generated Zn-graded U -module, w a homogeneous

element in N and Z ⊂ {x1, x2, . . . , xm}. Here wT [Z] denotes the T -subspace of N

generated by monomials of the form wv where v is a monomial in T [Z]. Then T -

subspace wT [Z] is called a Stanley space of dimension |Z| if it is free T [Z]-module.

A Stanley decomposition of N is a presentation of T -vector space N as a finite direct

sum of Stanley spaces

D : N =
s⊕
i=1

wiT [Zi].

The Stanley depth of a decomposition D is

sdepthD = min{|Zi|, i = 1, . . . , s}.

The Stanley depth of N is

sdepth(N) = max{sdepthD : D is the Stanley decomposition of N}.

For example, the Stanley decomposition of the module T [x, y]/(xy, y2) = T [x]
⊕

yT ,

thus sdepth(T [x, y]/(xy, y2)) = 0. Since a module can have infinite many decomposi-

tions which obviously makes the determination of Stanley depth almost impossible in

general. However Herzog et al. in [9] shortened the problem to find a partition of a

finite ordered set. In [16] Rinaldo gave a computer implementation for this algorithm,

in a computer algebra system CoCoA.
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2.2 Computation of Stanley Depth of monomial ideal

An algorithm was given by Herzog, et al. in [9] to compute the Stanley depth of module

L/I where I ⊂ L ⊂ U are monomial ideals of U . In this case L/I is a Zn-graded U -
module. For this they fixed an integer vector g ∈ Zn with the property that a ≤ g for

all a ∈ Zn with va ∈ L/I, where ≤ represents partial order in Z given by component

wise comparison. With this data they defined characteristic poset P g
L/I of L/I with

respect to g,

P g
L/I = {a ∈ Zn : va ∈ L/I, a ≤ g}.

They showed that the partition of this poset induces a Stanley decomposition of the

module L/I. They also showed that corresponding to any Stanley decomposition of

L/I there exists one induced by the partition of P g
L/I whose Stanley depth is greater

than or equal to the actual one. This method is usually quite laborious as one cannot

find all possible decompositions of a module. Consider the following graph

x1
x2

x3
x4

x5

Figure 2.1: H

with the corresponding edge ideal L = L(H) = (x1x2, x3x5, x2x3, x2x4, x3x4, x1x4) and

I = (0), then we get the following poset P g
U/L

P g
U/L = {(0, 0, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 1, 0, 0, 1), (0, 0, 1, 0, 0),

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 1), (1, 0, 0, 0, 1)}.

There are many partitions possible corresponding to this poset. One of the partition

P of P g
U/L is given by

[00000, 10100] ∪ [01000, 01001] ∪ [00010, 00011] ∪ [00001, 10001].
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Corresponding Stanley Decomposition is

U/L = T [x1, x3]
⊕

x1T [x1, x2]
⊕

x2T [x2, x5]
⊕

x4T [x4, x5]
⊕

x5T [x1, x5],

hence

sdepth(U/L) = 2.

Using CoCoA we get

sdepth(U/L) = 2.

So above given partition is one which gives the Stanley depth of U/L. Another exam-

ples for a non-squarefree monomial ideal is given below.

L = (x21x
2
2, x1x

2
2x3, x1x

2
2x5, x1x2x3x4, x

2
2x

2
3, x

2
2x3x5, x2x

2
3x4, x

2
2x

2
5, x2x3x4x5, x

2
3x

2
4) and I =

(0) then following is the partition P of corresponding poset

[00000, 20200] ∪ [01000, 02020] ∪ [00010, 20020] ∪ [00001, 20002]

∪ [11000, 21200] ∪ [01100, 02120] ∪ [01001, 21002] ∪ [00110, 20210]

∪ [00101, 00202] ∪ [00011, 00022] ∪ [12000, 12020] ∪ [11010, 21020]

∪ [10101, 20201] ∪ [10011, 20021] ∪ [02001, 02021] ∪ [01200, 01202]

∪ [01101, 21102] ∪ [01011, 01022] ∪ [00120, 20120] ∪ [00111, 00212]

∪ [11011, 21021] ∪ [10111, 20211] ∪ [10102, 20102] ∪ [10012, 20012]

∪ [00121, 00122] ∪ [11201, 21201] ∪ [11012, 21012] ∪ [10112, 20112].
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Corresponding Stanley decomposition is

U/L =T [x21, x
2
3]
⊕

x2T [x
2
2, x

2
4]
⊕

x4T [x
2
1, x

2
4]
⊕

x5T [x
2
1, x

2
5]⊕

x1x2T [x
2
1, x2, x

2
3]
⊕

x2x3T [x
2
2, x3, x

2
4]
⊕

x2x5T [x
2
1, x2, x

2
5]⊕

x3x4T [x
2
1, x

2
3, x4]

⊕
x3x5T [x

2
3, x

2
5]
⊕

x4x5T [x
2
4, x

2
5]⊕

x1x
2
2T [x1, x

2
2, x

2
4]
⊕

x1x2x4T [x
2
1, x2, x4]

⊕
x1x3x5T [x

2
1, x

2
3, x5]⊕

x1x4x5T [x
2
1, x

2
4, x5]

⊕
x22x5T [x

2
2, x

2
4, x5]

⊕
x2x

2
3T [x1, x

2
2, x

2
5]⊕

x2x3x5T [x
2
1, x2, x3, x

2
5]
⊕

x2x4x5T [x2, x
2
4, x

2
5]
⊕

x3x
2
4T [x

2
1, x3, x

2
4]⊕

x3x4x5T [x
2
3, x4, x

2
5]
⊕

x1x2x4x5T [x
2
1, x2, x

2
4, x5]

⊕
x1x3x4x5T [x

2
1, x

2
3, x4, x5]⊕

x1x3x
2
5T [x

2
1, x3, x

2
4]
⊕

x1x4x
2
5T [x

2
1, x4, x

2
5]
⊕

x3x
2
4x5T [x3, x

2
4, x

2
5]⊕

x1x2x
2
3x5T [x

2
1, x2, x

2
3, x5]

⊕
x1x2x4x

2
5T [x

2
1, x2, x4, x

2
5]⊕

x1x3x4x
2
5T [x

2
1, x3, x4, x

2
5].

So by method given by Herzog we get sdepth(U/L) = 2. The above decomposition is

one of the all possible decompositions of the module U/L.

Following is another example for the monomial ideal

L = (x2x3x6, x
2
2x5, x1x2x4, x1x2x3, x

2
2x3, x1x

2
2, x

2
3x

2
6, x1x3x4x6, x1x

2
3x6, x

2
1x

2
4, x

2
1x3x4, x

2
1x

2
3).

and I = (0), then we get the following partition P of corresponding poset

[000000, 200010] ∪ [010000, 210010] ∪ [001000, 002010] ∪ [000100, 000210]

∪ [000001, 000012] ∪ [101000, 201010] ∪ [100100, 200110] ∪ [100001, 200011]

∪ [020000, 020200] ∪ [011000, 012010] ∪ [010100, 010210] ∪ [010001, 020002]

∪ [001100, 002200] ∪ [001001, 002011] ∪ [000101, 000211] ∪ [110001, 210011]

∪ [012000, 102010] ∪ [101100, 102200] ∪ [101001, 201011] ∪ [100200, 100210]

∪ [100101, 200111] ∪ [100002, 200002] ∪ [011100, 012200] ∪ [010101, 020201]

∪ [010011, 010012] ∪ [001110, 002110] ∪ [001101, 002201] ∪ [001002, 001012]

∪ [000102, 000202] ∪ [110002, 210002] ∪ [101110, 102110] ∪ [101002, 201002]

∪ [100201, 100211] ∪ [100102, 200102] ∪ [011110, 012110] ∪ [010111, 010211]

∪ [010102, 020102] ∪ [001111, 002111] ∪ [001102, 001202].
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Corresponding Stanley decomposition is

U/L =T [x21, x5]
⊕

x2T [x
2
1, x2, x4]

⊕
x3T [x

2
3, x5]

⊕
x4T [x

2
4, x5]⊕

x6T [x5, x
2
6]
⊕

x1x3T [x
2
1, x3, x5]

⊕
x1x4T [x

2
1, x4, x5]⊕

x1x6T [x
2
1, x5, x6]

⊕
x22T [x

2
2, x

2
4]
⊕

x2x3T [x2, x
2
3, x5]⊕

x2x4T [x2, x
2
4, x5]

⊕
x2x6T [x

2
2, x

2
6]
⊕

x3x4T [x
2
3, x

2
4]⊕

x3x6T [x
2
3, x5, x6]

⊕
x4x6T [x

2
4, x6, x5]

⊕
x1x2x6T [x

2
1, x2, x5, x6]⊕

x2x
2
3T [x1, x

2
3, x5]

⊕
x1x3x4T [x1, x

2
3, x

2
4]
⊕

x1x3x6T [x
2
1, x3, x5, x6]⊕

x1x
2
4T [x1, x

2
4, x5]

⊕
x1x4x6T [x

2
1, x4, x5, x6]

⊕
x1x

2
6T [x

2
1, x

2
6]⊕

x2x3x4T [x2, x
2
3, x

2
4]
⊕

x2x4x6T [x
2
2, x

2
4, x6]

⊕
x2x5x6T [x2, x5, x

2
6]⊕

x3x4x5T [x
2
3, x4, x5]

⊕
x3x4x6T [x

2
3, x

2
4, x6]⊕

x3x
2
6T [x3, x5, x

2
6]
⊕

x4x
2
6T [x

2
4, x

2
6]
⊕

x1x2x
2
6T [x

2
1, x2, x6]⊕

x1x3x4x5T [x1, x
2
3, x4, x5]

⊕
x1x3x6T [x

2
1, x3, x

2
6]⊕

x1x
2
4x6T [x1, x

2
4, x5, x6]

⊕
x1x4x6T [x

2
1, x4, x

2
6]
⊕

x2x3x4x5T [x2, x
2
3, x4, x5]⊕

x2x4x5x6T [x2, x
2
4, x5, x6]

⊕
x2x4x

2
6T [x

2
1, x4, x

2
6]
⊕

x3x4x5x6T [x
2
3, x4, x5, x6]⊕

x3x4x
2
6T [x3, x

2
4, x

2
6].

Thus by the Herzog’s method we get sdepth(U/L) = 2. The above decomposition

is one of the all possible decompositions of the module U/L which gives the Stanley

depth.

As we have to find all possible Stanley decompositions of the module which is obviously

a tiring work and even sometime impossible to determine all so the method given by

Herzog is not sufficient. Bounds determined for the depth and Stanley depth thus

have an importance in the field. Many mathematicians worked on bounds for the two

invariants. Following are the two lemmas which are widely used in the literature.

Lemma 2.2.1. [1, Lemma 2.2](Depth Lemma)

If

0 −→ X1 −→ X2 −→ X3 −→ 0,

is a short exact sequence of Zn-graded R-module, then
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1. depthX2 ≥ min{depthX1, depthX3},

2. depthX1 ≥ min{depthX2, depthX3 + 1},

3. depthX3 ≥ min{depthX2, depthX1 − 1}.

and a similar lemma for Stanley depth.

Lemma 2.2.2. [1, Lemma 2.4] Let

0 −→ X1 −→ X2 −→ X3 −→ 0,

is a short exact sequence of Zn-graded R-module, then

sdepthX2 ≥ min{sdepthX1, sdepthX3}.

2.3 Stanley’s Conjecture

The conjecture proposed by Stanley giving the upper bound for the depth of a mod-

ule gained much importance due to its property of comparing two totally different

invariants.

Conjecture 2.3.1. (Stanley Conjecture.) Let U be a polynomial ring over the

field T and N be the finitely generated Zn-graded U-module then Stanley conjectured

that

sdepth(N) ≥ depth(N).

Apel was the first person, upto known information, who studied this conjecture in detail

and also proved it in some cases in 2003. Popescu in [13] gave a far reaching result in

this direction that R/L satisfies the conjecture for the polynomial ring in atmost five

variable. Cimpoeas gave an affirmative answer to the conjecture for L and R/L, where

L is the monomial ideal generated by atmost 3 elements. Later a counterexample for

the conjecture was given by Duval, Klivans, Goechneker and Martine in 2015.
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2.4 Some important results

In [4, Corrollary 1.8], by Cimpeaos we see that if the ideals L and I satisfy the Stanley’s

conjecture then so does their intersection. Similarly he also showed that if for ideals

L ⊂ U ′ and I ⊂ U ′′ with U ′ = T [x1, x2, . . . , xt] and U ′′ = T [xt+1, . . . , xm], modules

U ′/L and U ′′/I satisfy the Stanley’s conjecture then so does the module U/(LU ′+IU ′′).

In the same paper Cimpeaos showed that for L ⊂ U a monomial ideal and x ∈ U a

monomial, then

1. sdepth(L ∩ (x)) ≥ sdepth(L),

2. sdepth(L, x) ≥ min{sdepth(L), sdepth(U/L)},

3. sdepth(U/(L, x)) ≥ sdepth(U/L)− 1,

4. sdepth(U/(L ∩ (x))) ≥ sdepth(U/L).

In the same paper he gave following important proposition.

Proposition 2.4.1. For a monomial ideal L in U and x ∈ U a monomial such that

x /∈ L then

sdepth(U/(L : x)) ≥ sdepth(U/L).

A similar proposition was given by D.Popescu in [13] which is,

Proposition 2.4.2. For a monomial ideal L in U and x ∈ U a monomial such that

x /∈ L then

sdepth(L : x) ≥ sdepth(L).

For the depth Asia Rauf in [15] gave the following result,

Proposition 2.4.3. For a monomial ideal L in U and x ∈ U a monomial such that

x /∈ L then

depth(U/(L : x)) ≥ depth(U/L).

L. Fouli and S. Morey, in [7] gave the following lemma,
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Lemma 2.4.4. [7, Lemma 2.2] Let U be a polynomial ring and L be its ideal. Let x

be an indeterminant over ring U and U ′ = U [x]. Then

depth(U ′/LU ′) = depth(U/L) + 1.

Lemma 2.4.5. [9, Lemma 3.6] Let U be a polynomial ring and L be its ideal. Let x

be an indeterminant over ring U and U ′ = U [x]. Then

sdepth(U ′/LU ′) = sdepth(U/L) + 1.

2.5 Bounds for the depth and Stanley depth.

We will review two papers, one by A. Alipour [1] and the other by L. Fouli [7]. In [1],

Alipour covers the bounds for depth and Stanley depth of modules U/Lp with p greater

than equals to 1 and L the edge ideal of the special type of star graph defined by him

whereas in [7] L. Fouli and Morey covers the bounds for the depth and Stanley depth

of modules U/Lp with p greater than equals to 1 and L the edge ideal of any graph H.

These bounds depend upon the variants like power of edge ideal, number of variables

and number of components of the graph. Some terms which we will use in the text are

defined below,

1. For H be a graph and x ∈ V (H), deleting x from H yields a minor of H with edge

ideal denoted by Lx. Given a collection of vertices s1, s2, . . . , sl, define L0 = L

and we define minor Li of L where 1 ≤ i ≤ l which we get as a result of deletion

of vertices s1, s2, . . . , si.,

2. We define Ui as Ui = U/(s1, s2, . . . , si),

3. When a vertex x is fixed in graph H, the connected component of H containing

x is denoted by xH. Thus for the edge ideal L and fixed x in H, diameter of

xH(L) is denoted by d(xH(L)),

4. L(H) denotes the number of leaves in H.
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First we will see the bounds for the depth and Stanley depth of the module U/L that

is for the first power.

Theorem 2.5.1. [11, Theorem 3.1] Let H be a connected graph and L(H) be the edge

ideal. For u, v ∈ V (H) with d(u, v) = l, then

depthU/L ≥
⌈ l + 1

3

⌉
.

Proof. We will prove this result by induction on the total number of variables m in

graph H. It is clear that for any fixed l we have m ≥ l + 1.

Now since L is squarefree so m /∈ Ass(U/L), hence the depth(U/L) ≥ 1. Now if l ≤ 2

then we have depth(U/L) ≥ 1, hence the result is true for l ≤ 2. Now assume that

l ≥ 3. We have two cases:

Case 1: When

m = l + 1.

In this case graph is a path graph and we have

depth(U/L) ≥
⌈ l + 1

3

⌉
=

⌈m
3

⌉
,

hence the result is true by [27 lemma 2.8].

Case 2: When

m > l + 1 ≥ 4.

Let us consider a short exact sequence for a ∈ V (H)

0 −→ U/(L : a) −→ U/L −→ U/(L, a) −→ 0.

For this let a ∈ N(v) such that a lies on the path between u and v which has length

l. Notice that (L : a) = (I,N(a)), where I is an edge ideal of the minor of H formed

as a result of deletion of the variable in N(a). As l ≥ 3 so there exist z ∈ V (H)
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such that d(u, z) = l − 3. Also since no generator of (I,N(a)) is a multiple of a, thus

(I,N(a)) ⊂ U ′[N(a)] where U ′ = U\(a ∪N(a)). So we have

depth(U/L : a) = depth(U ′[a,N(a)]/(I,N(a))

= depth(U ′[a]/I).

By using Lemma 2.4.4 we have

depth(U/L : a) = depth(U ′/I) + 1

≥
⌈ l − 3 + 1

3

⌉
+ 1,

then by induction on m we have

depth(U/(L : a)) =
⌈ l + 1

3

⌉
.

Now consider (L, a), we can see that (L, a) = (K, a). Here K is an edge ideal of the

minor of H formed as a result of deletion of a. Now there are two cases:

Case 1: H ′′ is connected.

In this case after deletion of a if H ′′ is connected, then we can say that

d(u, v) ≥ l.

Then by induction on m we have,

depth(U/(L, a)) = depth(U/(K, a))

≥
⌈ l + 1

3

⌉
.

Case 2: H ′′ is not connected.

If deletion of a from H yields a disconnected graph, then there is a vertex z ∈ uH
′′

with d(u, z) ≥ l− 2 and v /∈ uH
′′. Now if v is an isolated vertex, then by using Lemma

2.4.4 and by induction on m we get

depth(U/(K, a)) ≥
⌈ l − 2 + 1

3

⌉
+ 1

≥
⌈ l + 1

3

⌉
.
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Otherwise if v is not an isolated vertex, then v is in a connected component of H ′′. This

component is also squarefree hence has depth atleast one. So we have by [36 lemma

6.2.7]

depth(U/(K, a)) ≥
⌈ l − 2 + 1

3

⌉
+ 1

≥
⌈ l + 1

3

⌉
.

Thus in both the cases

depth(U/(L, a)) ≥
⌈ l + 1

3

⌉
.

Corollary 2.5.2. [11, Corollary 3.4] Let H be a graph and let L = L(H) and fix

u ∈ V (H). Let e ∈ V (H) and d(u, e) = t for some 0 ≤ t. Then

depth(U/(L : e)) ≥
⌈t+ 2

3

⌉
.

Proof. Let e ∈ V (H) such that d(u, e) = t. Clearly (L : e) = (I,N(e)) where J is an

edge ideal corresponding to the minor of H formed by deleting variables in N(e). For

U ′ = U\(e ∪N(e)), we have

depth(U/(L : e)) = depth(U ′[e,N(e)]/(I,N(e)).

Then by using Lemma 2.4.4 we have

depth(U/(L : e)) = depth(U ′/I) + 1.

Now if t < 2 then the result holds as in this case depth(U/(L : e)) ≥ 1. So we will

assume that t ≥ 2. Since deletion of variables in N(e) may result in change of diameter

of H ′ such that d(H ′) ≥ t− 2, then by applying Theorem 2.5.1 we have

depth(U ′/L) + 1 ≥
⌈t− 2 + 1

3

⌉
+ 1

=
⌈t+ 2

3

⌉
.

Therefore we have

depth(U ′/(L : e)) =
⌈t+ 2

3

⌉
.
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Corollary 2.5.3. [11, Corollary 3.2] For a connected graph H with diameter l ≥ 1

and L = L(H) we have depthU/L ≥
⌈
l+1
3

⌉
.

Corollary 2.5.4. [11, Corollary 3.3] For the graph H with q connected components,

L = L(H). Let li be the diameter of ith connected component. Then depthU/L ≥∑q
i=1

⌈
l1+1
3

⌉
. In particular , depthU/L ≥

⌈
l+1
3

⌉
+ q − 1.

Proposition 2.5.5. [11, Proposition 3.5] For connected graph H with loops and let

L = L(H). If there exists x ∈ V (H) and d(x, u) ≥ t for all u such that {u, u} ∈ E(H),

then

depthU/L ≥
⌈t− 1

3

⌉
.

Proof. If t = 1, then depthU/L ≥ 0, which is a trivial bound, Now assume that t ≥ 2.

we will use induction on the number of loops in the graph. Let {u, u} ∈ E(H) i.e there

is loop on vertex u. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L, u) −→ 0.

Clearly

(L : u) = (I,N(u)),

where I is the edge ideal of the minor of H formed as a result of deletion of variables in

N(u). As u ∈ N(u) so the graph induced by edge ideal ideal I i.e H ′ has less number

of loops then H(L). Since all the vertices in N(u) are atleast t− 1 distant apart from

x, so

d(xH
′(I)) ≥ t− 2,

with d(x, v) ≥ t for all loops at v. Now if xH ′(I) is loopless, then by theorem 3.1

depthU/(L : u) ≥
⌈d(H ′) + 1

3

⌉
which implies,

depthU/(L : u) ≥
⌈(t− 2) + 1

3

⌉
=
⌈t− 1

3

⌉
.

Otherwise if xH ′(I) has a loop at f , then by supposition

d(x, f) ≥ t.
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So by induction on the number of loops we have

depthU/(L : u) ≥
⌈t− 1

3

⌉
.

Clearly (L, u) = (K, u), with K is the edge ideal of minor of H formed as a result of

deletion of u. Then d(xH ′′) ≥ t− 1. Now if xH ′′ is loopless, then by using theorem 3.1

depthU/(L, u) ≥
⌈ t
3

⌉
≥
⌈t− 1

3

⌉
and if there is a loop in xH

′′, then by induction

depthU/(L : u) ≥
⌈t− 1

3

⌉
.

Hence by depth lemma we have

depthU/L ≥
⌈t− 1

3

⌉
.

Similarly for Stanley depth we have the following proposition,

Proposition 2.5.6. Let we have a graph H which is connected having loops and let

L = L(H). If there exists x ∈ V (H) and d(x, u) ≥ t for all u such that {u, u} ∈ E(H),

then

sdepthU/L ≥
⌈t− 1

3

⌉
.

Following is the star defined by Alipour and Tehranian in [1].

Definition 2.5.7. Consider that t,m1,m2, . . . ,mt be positive integers. Let U =

T [x, xi,j : 1 ≤ i ≤ mj, 1 ≤ j ≤ t] be a polynomial ring over T . For every j with

1 ≤ j ≤ t, let Pmj+1 be a path of lengths mj and

Lj = (xx1,j, xi,jxi+1,j : 1 ≤ i ≤ mj − 1)

be the edge edge ideal of this path in U . Let

L =
t∑

j=1

Lj.

A graph H with vertices as variables from polynomial ring U and edge ideal L is called

(t;m1,m2, . . . ,mt)− star graph.
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Figure 2.2: (5; 2, 1, 2, 3, 3)− star graph

Theorem 2.5.8. [1, Theorem 2.7] Let H be a (t;m1,m2, . . . ,mt)-star graph and L =

L(H) be its edge ideal.

1. If mj ≡ 0 or 2 (mod 3) for all 1 ≤ j ≤ t, then

t∑
j=1

⌈mj

3

⌉
≤ depth(U/L) ≤ 1 +

t∑
j=1

⌈mj

3

⌉
.

2. If mj ≡ 1(mod 3) for some 1 ≤ j ≤ t, then

depth(U/L) = 1 +
t∑

j=1

⌈mj − 1

3

⌉
.

Theorem 2.5.9. [1, Theorem 2.6] Let H be a (t;m1,m2, . . . ,mt)-star graph and L =

L(H) be its edge ideal.

1. If mj ≡ 0 or 2 (mod 3) for all 1 ≤ j ≤ t, then

t∑
j=1

⌈mj

3

⌉
≤ sdepth(U/L) ≤ 1 +

t∑
j=1

⌈mj

3

⌉
.

2. If mj ≡ 1(mod 3) for some 1 ≤ j ≤ t, then

sdepth(U/L) = 1 +
t∑

j=1

⌈mj − 1

3

⌉
.
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Now stepping forward to the bounds for the depth and Stanley depth of cyclic module

U/Lp for p > 1. For this we need some other results given in [11].

Lemma 2.5.10. [7, Lemma 2.5] Let N and L be a monomial and an ideal in a poly-

nomial ring U respectively. If we have a variable that z does not divide N and K is

the extension in U of the image of L in U/z, then

((Lp : N ), z) = ((Kp : N ), z).

Lemma 2.5.11. [7, Lemma 2.10] Let we have a graph H with edge ideal L = L(H).

Let u be a leaf of H and v be the only neighbor of u. Then (Lp : uv) = Lp−1 for any

p ≥ 2.

Proof. Since u is a leaf and v is its unique neighbor so we have {u, v} ∈ E(H) which

means uv ∈ G(J). One inclusion is clear which is Lp−1 ⊂ (Lp : uv). Now for the reverse

inclusion, let x be the monomial generator of (Lp : uv) then we have xuv = e1e2 . . . eph

where e′is are the monomials of degree two corresponding to the edges of the graph H.

Since u is leaf with v its unique neighbor so if a monomial x ∈ Lp−1 contains u then

its must be in the form of an edge uv so for x /∈ Lp−1 we can say that u divides ej
and v divides ek for some j 6= k. Assume that j = p. Since u is a leaf so, we have

ej = ep = uv and thus a = e1e2 . . . ep−1h ∈ Lp−1.

Lemma 2.5.12. [11, Lemma 2.6] For the graph H and edge ideal L = L(H) and

{u, v} ∈ E(H). Then (L2 : uv) = (L,E), where E =< uivj|ui ∈ N(u), vj ∈ N(v) >.

More generally, if u1u2 . . . u2p ∈ Lp, then (Lp+1 : u1u2 . . . u2p) = (L,E), where E is the

ideal generated by all monomials of degree two v1v2 supported on ∪2pi=1N(ui) satisfying

v1v2u1 . . . u2p ∈ Lp+1.

Proof. Let a be a monomial generator of (L,E). Now if a ∈ J , then a ∈ (L2 : uv) since

{u, v} ∈ E(L). If a /∈ L, then a = uivj ∈ E where ui ∈ N(u) and vj ∈ N(v). So we get

auv = uivjuv ∈ L2 which means a ∈ (L2 : uv). Thus we have (L,E) ⊆ (L2 : uv). Now

conversely, suppose that b ∈ (L2 : uv) but b /∈ L. Now suppose that b is a monomial

since (L2 : uv) is a monomial ideal. Thus buv ∈ L2. so buv = e′1e
′
2h where e′1 and e′2
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be the monomials of degree two corresponding to edges in H. Since b /∈ L so neither

e′1 divides b nor e′2 divides b. So without loss of generality u divides e′1 and v divides

e′2 thus e′1 = uui and e′2 = vvj for some ui ∈ N(u) and vj ∈ N(v). Thus uivj divides b

so b ∈ E ⊂ (L,E).

Generalized statement can be proved on the same outline keeping in view that all xi
need not all be distinct.

Lemma 2.5.13. [11, Lemma 4.2] Let L be an ideal of a polynomial ring U and let N
be the monomial in U . Let a set of variables {s1, s2, . . . , st} where for all i, N is not a

multiple of any s′is. Let x, y be the two nonnegative integers such that depthUi−1/(Lpi−1 :

N si) ≥ x for all i ≥ 1 and depthUt/(L
p
t : N ) ≥ y then depthUi/(L

p
i : N ) ≥ min{x, y}

for each i ≥ 0. In particular, depthU/(Lp : N ) ≥ min{x, y}.

Proof. For the proof of this theorem we will repeatedly make use of short exact se-

quences. Consider the following short exact sequence:

0 −→ U/(Lp : N s1) −→ U/(Lp : N ) −→ U/((Lp : N ), s1) −→ 0.

By hypothesis

depthU/(Lp : N s1) ≥ x.

Now for the depthU/((Lp : N ), s1) which is equal to depthU1/(L
p
1 : N ), consider the

following short exact sequence:

0 −→ U1/(L
p
1 : N s2) −→ U1/(L

p
1 : N ) −→ U1/((L

p
1 : N ), s2) −→ 0.

again by hypothesis

depthU1/(L
p
1 : N s2) ≥ x.

Continuing in the same way we reach at the last short exact sequence:

0 −→ Ut−1/(L
p
t−1 : N st) −→ Ut−1/(L

p
t−1 : N ) −→ Ut−1/((L

p
t−1 : N ), st) −→ 0

By hypothesis

depthUt−1/(L
p
t−1 : N st) ≥ x,
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and

depthUt−1/((L
p
t−1 : N ), st) = depthUt/(L

p
t : N )

≥ y.

So using depth lemma starting from last and working up to first sequence yields

depthUi/(L
p
i : N ) ≥ min{x, y} for each 0 ≤ i ≤ t− 1. Finally we have

depthU/(Lp : N ) ≥ min{x, y}.

The same lemma is valid for Stanley depth as well that is,

Lemma 2.5.14. Let L be an ideal in a polynomial ring U and let N be the monomial

in U . Let a set of variables {s1, s2, . . . , st} where for all i, N is not a multiple of any

s′is. Let x, y be the two nonnegative integers such that sdepthUi−1/(Lpi−1 : N si) ≥ x

for all i ≥ 1 and sdepthUt/(L
p
t : N ) ≥ y then sdepthUi/L

p
i : N ) ≥ min{x, y} for each

i ≥ 0. In particular, sdepthU/(Lp : N ) ≥ min{x, y}.

With the help of above mentioned results L. Fouli and S. Morey gave the following

bounds.

Proposition 2.5.15. [7, Proposition 4.3] For a graph H with q components and edge

ideal L = L(H),

depthU/Lp ≥ q − p.

where p ≥ 1,

Theorem 2.5.16. [11, Theorem 4.4] For a graph H with edge ideal L = L(H). Let H

has q connected component and l = d(H) be the diameter of H. Then

depthU/L2 ≥
⌈ l − 3

3

⌉
+ q − 1.
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Proof. The proof is done using induction on order of H. If m ≤ 4 then we have l ≤ 3

and q ≤ 2 as isolated vertices are not considered as components. If q = 1, then

depthU/L2 ≥
⌈ l − 3

3

⌉
= 0.

So the bound is trivial.

Now if q = 2, then H must contain two disjoint edges so by Theorem 3.4 of [11]

depthU/L2 ≥ max{
⌈(l − 2) + 2

3

⌉
+ q − 1, q}

= max{
⌈ l
3

⌉
+ q − 1, q}

= max{
⌈1
3

⌉
+ 2− 1, 2},

so

depthU/L2 ≥ 2.

Hence the bound is satisfied.

Now for the case when q ≥ 2 and m ≥ 5 we will repeatedly make use of depth lemma.

The depthU/L2 ≥ 1 by using Lemma 2.1 of [3]. Now consider the case m ≥ 5. For this

let P be the path with end points x, y which determines the diameter l of the graph

H. Now let s ∈ N(y) and let N(s) = {s1, s2, . . . , st} be ordered as in lemma 2.5.13,

such a way that d(x, s) is finite in Li for i < t. Clearly L0 = L so for each 1 ≤ i ≤ t

we have,

(L2
i−1 : ssi) = (Li−1, Ei−1),

where Ei−1 is an edge ideal as in Lemma 2.5.12. Now (Li−1, Ei−1) is an edge ideal of

a graph H ′, may be having loops, of diameter atleast l− 1 as d(x, s) ≥ l− 1. So if the

ideal (Li−1, Ei−1) is square free, then using corollary 3.3 we have

depthUi−1/(Li−1, Ei−1) ≥
⌈d(H ′) + 1

3

⌉
+ q − 1

≥
⌈(l − 1) + 1

3

⌉
+ q − 1

=
⌈ l
3

⌉
+ q − 1

≥
⌈ l − 3

3

⌉
+ q − 1.
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Now if ideal (Li−1, Ei−1) is non-square free, then there exists u ∈ V (H) such that

u2 ∈ Ei−1, obviously u ∈ N(s) so,

d(x, u) ≥ l − 2.

Every other component ofH((Li−1, Ei−1)) will be square free other than xH((Li−1, Ei−1))

so, will have depth atleast one. Then by using Lemma 6.2.7 of [19] with proposition

2.5.5 we have By using Lemma 2.5.13 we have

depthUi−1/(Li−1, Ei−1) ≥
⌈(l − 2)− 1

3

⌉
+ q − 1,

since d(x, u) ≥ l − 2. Now s is isolated in Lt so,

(L2
t : s) = L2

t ,

and s will be a free variable in Ut/L2
t . As

d(xH(Lt)) ≥ l − 3.

Then by the use of induction and Lemma 2.4.4 we have

depthUt/(L
2
t : s) ≥

⌈d(xH(Lt))− 3

3

⌉
+ q − 1 + 1.

Thus

depthUt/(L
2
t : s) ≥

⌈ l − 3

3

⌉
+ q − 1,

hence

depthU/(L2 : s) ≥
⌈ l − 3

3

⌉
+ q − 1.

Now we will work on the depth of U/(L2
s, s). For this we clearly know that

(L2, s) = (L2
s, s).

If y ∈ xH(Ls), then d(xH(Ls)) ≥ d and by induction on m we have

depthU/(L2, s) ≥
⌈ l − 3

3

⌉
+ q − 1.
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For the case when y /∈ xH(Ls)

d(xH(Ls)) ≥ l − 2,

with H(Ls) containing additional components or an isolated vertex. Hence we have

depthU/(L2, s) = depthU/(L2
s, w)

≥
⌈(l − 2)− 3

3

⌉
+ (q + 1)− 1

=
⌈ l − 2

3

⌉
+ q − 1.

By depth lemma we have

depthU/L2 ≥
⌈ l − 3

3

⌉
+ q − 1.

Similarly for Stanley depth we have the following result,

Theorem 2.5.17. For a graph H with edge ideal L = L(H). Let H has q connected

component and l = d(H) be the diameter of H. Then

sdepthU/L2 ≥
⌈ l − 3

3

⌉
+ q − 1.

Lemma 2.5.18. [7, Lemma 4.7] Let H be a graph with edge ideal L = L(H) then for

a fixed x ∈ V (H) and for a vertex w of H such that w /∈ xH, we have

depth(U/L2 : w) ≥
⌈h
3

⌉
,

where h = d(xH).

Proof. Let L = (M,N), where M = L(wH). Let N(w) = {s1, s2, . . . , st} be ordered

as in Lemma 2.5.13. Notice that Li = (Mi, Ni) and Mi = M for all i. From Lemma

2.5.12 we see that (L2
i−1 : wsi) = (Li−1, Ei−1) with endpoints of all the edges of Ei−1 in

V (−xH). Let U ′i−1 be a polynomial ring with variables corresponding to V (H(Mi−1)),

so

depthUi−1/(Li−1, Ei−1) ≥ depthU ′i−1/Mi−1 ≥
⌈h+ 1

3

⌉
.
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Since w is isolated vertex in Lt so, (L2
t : w) = L2

t with w a free variable. Thus we have

depthUt/(L
2
t : w) ≥ depthUt/L

2
t + 1 (2.1)

≥
⌈h− 3

3

⌉
+ 1 (2.2)

=
⌈h
3

⌉
. (2.3)

Using Lemma 2.5.13 we have,

depth(U/L2 : w) ≥
⌈h
3

⌉
.

Lemma 2.5.19. [7, Lemma 4.12] For the graph H with edge ideal L = L(H), a

fixed x ∈ V (H) and an edge uv ∈ E(H) with d(u, x) = t for some t ≤ l we have,

depthU/(L3 : uv) ≥
⌈
t−6
3

⌉
.

Theorem 2.5.20. [7, Theorem 4.13] Let H be the graph and q be its number of com-

ponents. Let L = L(H) and l be the diameter of the graph. Then

depthU/L3 ≥
⌈ l − 7

3

⌉
+ q − 1.

Proof. We will prove this result by induction on m, the total number of variables. For

the case when m ≤ 8, we have l ≤ 7 and q ≤ 4. It is clear that when q = 4, the bound

is trivial by Proposition 2.5.15. For q = 3, we have depthU/Lp ≥ 1 for all p ≤ q by

Lemma 2.1 of [3]. Now if q = 1 or q = 2 with l ≤ 4, then we get a trivial bound. If

q = 2 and l = 5, graph consists of two path graphs which are disconnected. Hence the

result is true from Theorem 3.4 of [11].

Now we may assume m ≥ 9. Consider the path, with end points x, y, that realizes

the graph’s diameter. Let w ∈ N(y) such that w lies on the path which realizes

the diameter of H. Notice that (L3, w) = (K3, w). Now if x and y are in the same

component of K, then d(K) ≥ l and q(K) ≥ q. Using induction on m we have

depthU/(L3, w) ≥
⌈d(K)− 7

3

⌉
+ q(K)− 1

≥
⌈ l − 7

3

⌉
+ q − 1.
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Now if x and y are two different components of the graph corresponding to edge ideal

K, then d(k) ≥ l − 2 and q(K) ≥ q + 1 or if y is isolated vertex then by induction we

have

depthU/(L3, w) ≥
⌈d(K)− 7

3

⌉
+ q + 1− 1

≥
⌈ l − 9

3

⌉
+ q + 1− 1

≥
⌈ l − 7

3

⌉
+ q − 1.

Now in order to calculate depth of Ui−1/(L3
i−1 : wsi) where N(w) = {s1, s2, . . . , st}, we

will use Lemma 2.5.13. Ordering {s1, s2, . . . , st} as in Lemma 2.5.13 and using Lemma

2.5.19 we get

depthUi−1/(L
3
i−1 : wsi) ≥

⌈ l − 7

3

⌉
.

Notice that w is an isolated vertex in Lt so, (L3
t : w) = L3

t . Thus by using induction

on m we have,

depthUt/(L
3
t : w) = depthUt/L

3
t + 1

≥
⌈d(Lt)− 7

3

⌉
+ q(Lt)− 1 + 1

≥
⌈ l − 3− 7

3

⌉
+ q − 1 + 1

=
⌈ l − 7

3

⌉
+ q − 1.

Thus

depthU/(L3 : w) ≥
⌈ l − 7

3

⌉
+ q − 1.

Hence by using depth lemma we have

depthU/L3 ≥
⌈ l − 7

3

⌉
+ q − 1.

Similar result holds for Stanley depth of the module U/L3, that is
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Theorem 2.5.21. [7, Theorem 4.13] Let H be the graph and q be its number of com-

ponents. Let L = L(H) and l be the diameter of the graph. Then

sdepthU/L3 ≥
⌈ l − 7

3

⌉
+ q − 1.

Corollary 2.5.22. [7, Corollary 4.14] Let H be a graph with edge ideal L = L(H).

For a fixed vertex x and a vertex u such that d(u, x) = h, the

depthU/(L3 : u) ≥
⌈h− 6

3

⌉
.

Proof. For h ≤ 6 the bound is trivial. Assume that h ≥ 7. Ordering the set N(u) =

{s1, s2, . . . , st} as in Lemma 2.5.13 and by using Lemma 2.5.19 we have

depthUi−1/(L
3
i−1 : usi) ≥

⌈h− 6

3

⌉
.

Since u is isolated vertex in Lt, thus (L3
t : u) = L3

t and d(Lt) ≥ h− 2. Using Theorem

2.5.20 we have

depthUt/(L
3
t : u) ≥

⌈d(Lt)− 7

3

⌉
+ 1

≥
⌈h− 9

3

⌉
+ 1

=
⌈h− 6

3

⌉
.

Hence by using Lemma 2.5.13 we have

depthU/(L3 : u) ≥
⌈h− 6

3

⌉
.

Similarly Corollary 2.5.22 and Lemma 2.5.19 are also true for Stanley depth also, that

is

Lemma 2.5.23. For a graph H with edge ideal L = L(H), a fixed x ∈ V (H) and an

edge uv ∈ E(H) with d(u, x) = t for some t ≤ l we have,

sdepthU/(L3 : uv) ≥
⌈t− 6

3

⌉
.
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and

Corollary 2.5.1. Let H be a graph with edge ideal L = L(H). For a fixed vertex x

and a vertex e such that d(u, e) = h, then

sdepthU/(L3 : e) ≥
⌈h− 6

3

⌉
.

Theorem 2.5.24. [1, Theorem 2.8] Let H be a (t;m1,m2, . . . ,mt)-star graph and

L = L(H) be its edge ideal with d(H) = l, then

sdepthU/Lp ≥ max{1,
t∑

j=1

⌈mj − p
3

⌉
},

for every p ≥ 1.

Proof. Clearly Theorem 2.7 of [14] we have

sdepthU/Lp ≥ max{1,
⌈ l − p+ 2

3

⌉
}.

Now if
⌈
l−p+2

3

⌉
≥ 1, then

sdepthU/Lp ≥
⌈ l − p+ 2

3

⌉
≥ 1,

so we have

sdepthU/Lp ≥ 1.

Now we are left with to show that

sdepthU/Lp ≥
t∑

j=1

⌈mj − p
3

⌉
.

The proof is done by induction on p and m where m is the total number of vertices in

graph H. If m ≤ 3 and t ≤ 2, then H is a path and by Theorem 6 of [18] we have

sdepthU/Lp = max{
⌈m− p+ 1

3

⌉
, 1},

which implies that

sdepthU/Lp = 1.
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Now for m ≥ 4 and t ≥ 3, when p = 1 then by Theorem 2.5.9 we have for

mj ≡ 0 or 2(mod 3) for all 1 ≤ j ≤ t,

sdepth(U/L) ≥
t∑

j=1

⌈mj

3

⌉
≥

t∑
j=1

⌈mj − 1

3

⌉
and for mj ≡ 1(mod 3) for some 1 ≤ j ≤ t,

sdepth(U/L) ≥ 1 +
t∑

j=1

⌈mj − 1

3

⌉
>

t∑
j=1

⌈mj − 1

3

⌉
.

Hence the bound is satisfied for p = 1. Now further assume that p ≥ 2 we will use

some short exact sequences and depth lemma to prove the result. Consider the short

exact sequence:

0 −→ U/(Lp : xmi−1,i) −→ U/Lp −→ U/(Lp, xmi−1,i) −→ 0.

We see that

(Lp, xmi−1,i) = (Kp, xmi−1,i),

where K is the edge ideal associated to the minor of H formed as a result of deletion

of xmi−1,i. Hence

sdepthU/(Lp, xmi−1,i) = sdepthU1[xmi,i, xmi−1,i]/(L
p, xmi−1,i).

Using Lemma 2.4.4 of [11] we have,

sdepthU/(Lp, xmi−1,i) = sdepthU1[xmi−1,i]/(L
p, xmi−1,i) + 1

= sdepthU1/L
p + 1

≥
t∑

i 6=j=1

⌈mj − p
3

⌉
+
⌈(mi − 2)− p

3

⌉
+ 1

≥
t∑

j=1

⌈mj − p
3

⌉
,

where U1 is the polynomial ring obtained by deleting xmi,i and xmi−1,i from U . For

determining the Stanley depth of U/(Lp : xmi−1,i), consider the following short exact

sequence:

0 −→ U/(Lp : xmi−1,ixmi,i) −→ U/Lp −→ U/((Lp : xmi−1,i), xmi,i) −→ 0.
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Without loss of generality we may have that mi ≥ 3 for some 1 ≤ i ≤ t. As xmi,i is a

leaf of H and xmi−1,i is its unique neighbour so, using Lemma 2.5.11 we have

(Lp : xmi,ixmi−1,i) = Lp−1.

So, by induction on p

sdepthU/(Lp : xmi,ixmi−1,i) = sdepthU/Lp−1

≥
t∑

j=1

⌈mj − (p− 1)

3

⌉
≥

t∑
j=1

⌈mj − p
3

⌉
.

Now consider the ideal

((Lp : xmi−1,i), xmi,i) = ((Jp : xmi−1,i), xmi,i).

Here J is the edge ideal associated to the H ′′ minor of H formed as a result of deletion

of variable xmi,i. Thus

sdepthU/((Lp : xmi−1,i), xmi,i) = sdepthU/(Jp : xmi−1,i),

where U2 is the polynomial ring formed from U by deleting xmi,i from U. In order to

determine the Stanley depth of U2/(J
p : xmi−1,i), consider the following short exact

sequence:

0 −→ U2/(J
p : xmi−1,ixmi−2,i) −→ U2/(J

p : xmi−1,i) −→ U2/((J
p : xmi−1,i), xmi−2,i) −→ 0.

Now since xmi−1,i is the leaf in U2 with its unique neighbor xmi−2,i. So again Lemma

2.5.11 we have

sdepthU/(Jp : xmi−1,ixmi−2,i) = sdepthU2/J
p−1

≥
t∑

i 6=j=1

⌈mj − (p− 1)

3

⌉
+
⌈(mi − 1)− (p− 1)

3

⌉
=

t∑
i 6=j=1

⌈mj − p+ 1

3

⌉
+
⌈mi − p

3

⌉
≥

t∑
j=1

⌈mj − p
3

⌉
.
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Also

((Jp : xmi−1,i), xmi−2,i) = ((Ip : xmi−1,i), xmi−2,i)

= (Ip, xmi−2,i),

where I is the edge ideal associated to the minor of H formed as a result of deletion of

variables xmi,i and xmi−2,i. Let U3 be the polynomial ring formed by deleting xmi−2,i

and xmi−1,i from U2. Since the number of vertices in the remaining graph has decreased

so by using induction on m and Lemma 2.4.4 we have,

sdepthU2/(I
p, xmi−2,i) = sdepthU3/I

p + 1

≥
t∑

i 6=j=1

⌈mj − p
3

⌉
+
⌈(mi − 3)− p

3

⌉
+ 1

=
t∑

j=1

⌈mj − p
3

⌉
.

Combining the results in the proof we have

sdepthU/(Lp : xmi,ixmi−1,i) ≥
t∑

j=1

⌈mj − p
3

⌉
,

sdepthU/(Lp, xmi−1,i) ≥
t∑

j=1

⌈mj − p
3

⌉
and

sdepthU/((Lp : xmi−1,i), xmi,i) ≥
t∑

j=1

⌈mj − p
3

⌉
.

Hence by using Lemma 2.2.2 we have

sdepthU/Lp ≥
t∑

j=1

⌈mj − p
3

⌉
.

Same result holds for the depth of the module U/Lp.
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Theorem 2.5.25. [1, Theorem 2.9] Let H be a (t;m1,m2, . . . ,mt)-star graph and

L = L(H) be its edge ideal with d(H) = l, then

depthU/Lp ≥ max{1,
t∑

j=1

⌈mj − p
3

⌉
},

for every p ≥ 1.
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Chapter 3

Depth and Stanley depth of some
special trees and other graphs.

First section of this chapter covers the bounds for the depth and Stanley depth for

module U/L where L is edge ideal corresponding to caterpillar graph. Second section

covers the bound for the depth and Stanley depth for the firecracker graphs. Third

section includes the bound for depth and Stanley depth of U/L where L is the edge

ideal corresponding to the graphs, one formed by the rooted product of Pn and Pl

path graph and the other formed by the rooted product of Cn and Pl graphs. The last

section covers the bounds for the depth and Stanley depth of edge ideals associated to

the graph B(m,n) formed by linking n number of Cm cycle graphs to a vertex each

through an edge.

3.1 Depth and Stanley depth of caterpillar graph.

Let H be a caterpillar graph denoted by Sn;k1,k2,...,kn where ki denotes the number of

pendant vertices of vertex xi of Pn path in caterpillar with 1 ≤ i ≤ n and edge ideal

corresponding to this graph is denoted by L = L(H).

Theorem 3.1.1. Let L = L(Sn;k1,k2,...,kn). For n ≥ 2 and ki ≥ 3,

depth(U/L) ≥ min{ki : 1 ≤ i ≤ n}.
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Figure 3.1: S4;4,3,5,3

Proof. Let xj be the vertices of the path of caterpillar, where 1 ≤ j ≤ n. The proof is

done by induction on n. Now for n = 2

(L : x2) = (L(Sk2), x1)

so,

depth(U/(L : x2)) = |L(Sk1)|+1

= (k1 − 1) + 1

= k1.

Clearly,

(L, x2) = (L(Sk1), x2)

so,

depth(U/(L, x2)) = |L(Sk2)|+depthU ′/L(Sk1)

= (k2 − 1) + 1

= k2,

where U ′ = U\({x2} ∪ {L(Sk2)}).
Then by Depth Lemma,

depth(U/L) ≥ min{k1, k2}.

Now for n = 3, we have

(L : x3) = (L(Sk1),L(Sk3), x2)
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so,

depth(U/(L : x3)) = depth(U ′′/L(Sk1)) + |L(Sk2)|+1

= 1 + (k2 − 1) + 1

= k2 + 1

≥ min{k1, k2, k3},

where U ′′ = U\{V (Sk2) ∪ V (Sk3)}.
Also

(L, x3) = (L(S2;k1,k2), x3)

and

depth(U/(L, x3)) ≥ min{k1, k2}+ |L(Sk3)|

= min{k1, k2}+ (k3 − 1)

≥ min{k1, k2, k3}.

Depth Lemma implies

depth(U/L) ≥ min{k1, k2, k3}.

Assume n ≥ 4, then

(L : xn) = (L(S(n−2);k1,k2,...,k(n−2)
),L(Skn), xn−1).

Then by induction on n,

depth(U/(L : xn)) = depth(U ′/L(S(n−2);k1,k2,...,k(n−2)
)) + |L(Skn−1)|+1

≥ min{k1, . . . , kn−2}+ (kn−1 − 1) + 1

≥ min{ki : 1 ≤ i ≤ n},

where U ′ = U\(V (Skn−1), V (Skn)). Clearly,

(L, xn) = (L(S(n−1);k1,k2,...,k(n−1)
), xn).
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Now by using induction

depth(U/(L, xn)) = depth(U ′′/(S(n−1);k1,k2,...,k(n−1)
)) + |L(Skn)|

≥ min{k1, . . . , kn−1}+ (kn − 1)

≥ min{ki : 1 ≤ i ≤ n},

where U ′′ = U\(V (Skn)).

Hence, by Depth Lemma

depth(U/L) ≥ min{ki : 1 ≤ i ≤ n}.

Thus the new bound is better than already given by Morey in [11, Theorem 3.1] when

minimum of the k′is is greater than d l+1
3
e. A similar result hold for the Stanley depth

of the graph.

Proposition 3.1.2. Let L = L(Sn;k1,k2,...,kn). For n ≥ 2 and ki ≥ 3,

sdepth(U/L) ≥ min{ki : 1 ≤ i ≤ n}.

Proof. By using [1, Lemma 2.4] and [1, Theorem 2.4] and working on the same lines

we get the required result.

Now we will find the bounds for the graph formed by adding an edge linking the first

and last vertex of path Pn. This graph is denoted by CSn;k1,k2,...,kn .

Figure 3.2: CS4;4,3,5,3
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Theorem 3.1.3. Let L = L(CSn;k1,k2,...,kn). For n ≥ 3 and ki ≥ 3,

depth(U/L) ≥ min{ki : 1 ≤ i ≤ n}.

Proof. Let x be any vertex in path of the caterpillar graph. For n = 3, let x = x3

(L : x3) = (x1,L(Sk3), x2),

so,

depth(U/(L : x3)) = |L(Sk1)|+|L(Sk2)|+1

= (k1 − 1) + (k2 − 1) + 1

= k1 + k2 − 1

≥ min{k1, k2, k3}.

Also

(L, x3) = (L(S2;k1,k2), x3)

where i ∈ {1, 2} so,

depth(U/(L, x3)) ≥ min{k1, k2}+ |L(Sk3)|

= min{k1, k2}+ (k3 − 1)

≥ min{k1, k2, k3}.

Depth Lemma implies

depth(U/L) ≥ min{k1, k2, k3}.

Assume n ≥ 4, and x = xn

(L : xn) = (L(S(n−3);k1,k2,...,k(n−3)
),L(Skn), xn−1, x1),

where i ∈ {2, . . . , n− 2}. Then by using Theorem 3.1.1,

depth(U/(L : xn)) = depth(U ′/L(CS(n−3);k1,k2,...,k(n−3)
)) + |L(Skn−1)|+|L(Sk1)|+1

≥ min{k2, . . . , kn−2}+ (kn−1 − 1) + (k1 − 1) + 1

≥ min{ki : 1 ≤ i ≤ n},
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where U ′ = U\(V (Skn−1), V (Skn , V (Sk1))). Notice that

(L, xn) = (L(S(n−1);k1,k2,...,k(n−1)
), xn)

where i ∈ {1, . . . , n− 1}. Now by using Theorem 3.1.1

depth(U/(L, xn)) = depth(U ′′/(S(n−1);k1,k2,...,k(n−1)
)) + |L(Skn)|

≥ min{k1, . . . , kn−1}+ (kn − 1)

≥ min{ki : 1 ≤ i ≤ n},

where U ′′ = U\(V (Skn)).

Hence, by Depth Lemma

depth(U/L) ≥ min{ki : 1 ≤ i ≤ n}.

In comparison to bound by Morey in [11, Theorem 3.1], the new bound is much im-

proved when minimum of the k′is is enough larger. A similar result hold for the Stanley

depth of the graph.

Proposition 3.1.4. Let L = L(CSn;k1,k2,...,kn). For n ≥ 3 and ki ≥ 3,

sdepth(U/L) ≥ min{ki : 1 ≤ i ≤ n}.

Proof. By using proposition 3.1.2 and [1, Lemma 2.4] we get the desired result working

on the lines of Theorem 3.1.3.

3.2 Depth and Stanley depth of a graph formed by
joining m number of n-star graph to a vertex each
through an edge.

This section covers the of bounds for depth and Stanley depth of edge ideal corre-

sponding to a graph H, denoted by Sm(k;n1, n2, . . . , nm), formed by linking m number

of caterpillar graphs to a vertex each through an edge. Each vertex of the path in

caterpillar graph has k number of leaves.
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Figure 3.3: S3(4; 2, 2, 2)

Theorem 3.2.1. Let L = L(Sm(k;n1, n2, . . . , nm)). For m ≥ 2 and ki ≥ 3,

depth(U/L) ≥ depth(U ′′1 /(L(Sn1,k))) + · · ·+ depth(U ′′m/(L(Snm,k)))

where U ′′i = U\({x} ∪ {V (Sn1,k), V (Sn2,k), . . . , V (Sni−1,k), V (Sni+1,k), . . . , V (Snm,k)}).

Proof. Let x be the vertex of the graph with which all caterpillars are linked each

through an edge. Consider a short exact sequence:

0 −→ U/(L : x) −→ U/L −→ U/(L, x) −→ 0.

Notice that

(L : x) = (N(x), L(Sn1−1,k), L(Sn2−1,k), . . . , L(Snm−1,k)).

So,

depth(U/(L : x2)) = m(k − 1) + 1 + depth(U ′1/(L(Sn1−1,k))) + · · ·+ depth(U ′m/(L(Snm−1,k)))

= mk −m+ 1 + depth(U ′1/(L(Sn1−1,k))) + · · ·+ depth(U ′m/(L(Snm−1,k))),

where U ′i = U\({N(x), x}∪{V (Sn1−1,k), V (Sn2−1,k), . . . , V (Sni−1−1,k), V (Sni+1−1,k), . . . , V (Snm−1,k)}).
Clearly,

(L, x) = (x, L(Sn1,k), L(Sn2,k), . . . , L(Snm,k)).
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So,

depth(U/(L, x)) = depth(U ′′1 /(L(Sn1,k))) + · · ·+ depth(U ′′m/(L(Snm,k))),

where U ′′i = U\({x} ∪ {V (Sn1,k), V (Sn2,k), . . . , V (Sni−1,k), V (Sni+1,k), . . . , V (Snm,k)}).
Then by Depth Lemma,

depth(U/L) ≥ min{depth(U/(L : x2)), depth(U/(L, x))},

thus

depth(U/L) ≥ depth(U ′′1 /(L(Sn1,k))) + · · ·+ depth(U ′′m/(L(Snm,k))).

Similarly Using [1, Lemma 2.4] we conclude the following result,

Proposition 3.2.2. Let L = L(Sm(k;n1, n2, . . . , nm)). For m ≥ 2 and ki ≥ 3,

sdepth(U/L) ≥ sdepth(U ′′1 /(L(Sn1,k))) + · · ·+ sdepth(U ′′m/(L(Snm,k))).

3.3 Depth and Stanley depth of Firecracker graph.

Firecracker graph F l
n,k is formed by concatenation of n number of star graphs. This is

done by linking one leaf from each star. In the graph n − 1 number of Sk stars with

one Sl star at one end are linked. When l = k, then we denote the graph by Fn,k.

Figure 3.4: F 5
4,7

Theorem 3.3.1. For a firecracker graph F l
n,k, let L = L(F l

n,k). Then for n ≥ 2 and

k ≥ 3,

depth(U/L) ≥
{
n , when l > 2;
n− 1 , when l ≤ 2.
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Proof. The proof is done by the induction on n. For n = 2 and l ∈ {1, 2}, the result

holds by Theorem 2.5.8. Now for n = 2 and l ≥ 3, let u be the central vertex of Sl star

graph. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), L(Sk)), thus

depthU/(L : u) = 1 + 1 = 2.

Now we notice that (L, u) = (u, J), so,

depthU/(L, u) = 2 + l − 2 = l.

So by depth lemma we have,

depthU/L ≥ n.

Now for n ≥ 3, when l = 1, let u be the vertex of Sl. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

We see that, (L : u) = (N(u), L(Sk−1), L(Sk)), thus

depthU/(L : u) = 1 + 1 + 1 = 3.

Now notice that (L, u) = (u, L(Fn−1,k)), thus

depthU/(L, u) = n− 1.

When l = 2, let u be the leaf of S2. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), L(F2,k)), thus

depthU/(L : u) = 1 + 2 = 3.

Now we see that (L, u) = (u, L(F 1
3,k)), so

depthU/(L, u) = 2 = n− 1.
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Thus by depth lemma we have,

depthU/L ≥ n− 1.

Now for l ≥ 3, let u be the central vertex of Sl star. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), L(Fn−1,k), so

depthU/(L : u) = 1 + n− 1 = n

and (L, u) = (u, L(F 1
n,k)), so

depthU/(L, u) = l − 2 + n− 1 = n+ l − 3.

Since l ≥ 3, we get by depth lemma,

depthU/L ≥ n.

Theorem 3.3.2. For a firecracker graph F l
n,k, let L = L(F l

n,k). Then for n ≥ 2 and

k ≥ 3,

sdepth(U/L) ≥
{
n , when l > 2;
n− 1 , when l ≤ 2.

Proof. By using theorem 2.5.9 and Lemma 2.2.2 we get the required result working on

the same lines.

3.4 Depth and Stanley depth of closed Firecracker
graph.

Firecracker graph CF l
n,k is formed by adding an edge in F l

n,k linking the linked vertex

of first star with the linked vertex of last star Sl.
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Figure 3.5: CF 5
4,7

Theorem 3.4.1. For a graph CF l
n,k, let L = L(CF l

n,k). Then for n ≥ 3 and k ≥ 3,

depth(U/L) ≥
{
n , when l > 2;
n− 1 , when l ≤ 2.

Proof. We will use induction on n to prove the result. For n = 3 and l = 1, consider

the short exact sequence with u be the vertex of the last star S1:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), 2(L(Sk−1))), thus

depthU/(L : u) = 1 + 2 = 3.

Now we notice that (L, u) = (u, L(F2,k)), so,

depthU/(L, u) = 2 = n− l.

So by depth lemma we have,

depthU/L ≥ n− 1.

For l = 2, consider the short exact sequence where u is the leaf of last star S2:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

We see that, (L : u) = (N(u), (L(F2,k))), thus

depthU/(L : u) = 1 + 2 = 3.
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Now we notice that (L, u) = (u, L(CF 1
3,k)), so

depthU/(L, u) = 2 = n− 1.

So by depth lemma we have,

depthU/L ≥ n− 1.

For l ≥ 3, consider the short exact sequence with u be the leaf of Sl which is linked

with other stars:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), 2(L(Sk−1))), thus

depthU/(L : u) = 1 + 2 + (l − 2) = l + 1.

Now we notice that (L, u) = (u, L(F2,k), L(Sl−1)) so,

depthU/(L, u) = 2 + l = 3 = n.

So by depth lemma we have,

depthU/L ≥ n.

Now for n = 4 and l = 1, consider the short exact sequence with u be the vertex of the

last star S1:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), 2(L(Sk−1)), (L(Sk))), thus

depthU/(L : u) = 1 + 2 + 1 = 4.

Now we notice that (L, u) = (u, L(F3,k)), so

depthU/(L, u) = 3 = n− 1.

So by depth lemma we have,

depthU/L ≥ n− 1.
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For l = 2, consider the short exact sequence where u is the leaf of last star S2:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

We see that, (L : u) = (N(u), (L(F3,k))), thus

depthU/(L : u) = 1 + 3 = 4.

Now we notice that (L, u) = (u, L(CF 1
4,k)), so

depthU/(L, u) = 3 = n− 1.

So by depth lemma we have,

depthU/L ≥ n− 1.

For l ≥ 3, consider the short exact sequence with u be the leaf of Sl which is linked

with other stars:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), L(Sk), 2(L(Sk−1))), thus

depthU/(L : u) = 1 + 1 + 2 + (l − 2) = l + 2.

Now we notice that (L, u) = (u, L(F3,k), L(Sl−1)), so,

depthU/(L, u) = 3 + l = 4 = n.

So by depth lemma we have,

depthU/L ≥ n

Now for n ≥ 5 and l = 1, consider the short exact sequence with u be the vertex of Sl:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), 2(L(Sk−1)), (L(Fn−3,k))), thus

depthU/(L : u) = 1 + 2 + (n− 3) = n.
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Now we notice that (L, u) = (u, L(Fn−1,k)), so,

depthU/(L, u) = n− 1.

So by depth lemma we have,

depthU/L ≥ n− 1.

For l = 2, consider the short exact sequence where u is the leaf of last star S2:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

We see that, (L : u) = (N(u), (L(Fn−1,k))), thus

depthU/(L : u) = 1 + n− 1 = n.

Now we notice that (L, u) = (u, L(CF 1
n,k)), so,

depthU/(L, u) = n− 1.

So by depth lemma we have,

depthU/L ≥ n− 1.

Now for l ≥ 3, consider the short exact sequence with u be the leaf of Sl which is linked

with other stars:

0 −→ U/(L : u) −→ U/L −→ U/(L : u) −→ 0.

Notice that (L : u) = (N(u), L(Fn−3,k), 2(L(Sk−1))), thus

depthU/(L : u) = 1 + (n− 3) + 2 + (l − 2) = n+ l − 2.

Now we notice that (L, u) = (u, L(Fn−1,k), L(Sl−1)), so,

depthU/(L, u) = (n− 1) + l = n.

So by depth lemma we have,

depthU/L ≥ n.
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Theorem 3.4.2. For a closed firecracker graph CF l
n,k, let L = L(CF l

n,k). Then for

n ≥ 3 and k ≥ 3,

sdepth(U/L) ≥
{
n , when l > 2;
n− 1 , when l ≤ 2.

Proof. By using theorem 2.5.9, theorem 3.3.1 and Lemma 2.2.2 we get the required

result by working on the same lines.

3.5 Depth and Stanley depth of graphs formed by
Rooted product of Paths and Cycles.

In this section two types of graphs are under consideration. First type of graph which

is discussed here is the one formed by the rooted product of Pn and Pl path graphs,

denoted by Pn,l. Second type of linked graph is obtained by the rooted product of Cn
and Pl graphs, denoted by CPn,l. For both types, bounds for the depth and Stanley

depth depends on number of paths and the length of paths. Two lemmas which are

widely used in this section tells us the depth and Stanley depth of the path graph Pn.

Lemma 3.5.1. [11, Lemma 2.8] For H = Pn, n ≥ 2 and L = L(Pn),

depth(U/L) =
⌈n
3

⌉
.

A similar lemma for the Stanley depth is

Lemma 3.5.2. [18, Lemma 4] For H = Pn with n ≥ 2 and L = L(Pn),

sdepth(U/L) =
⌈n
3

⌉
.

Lemma 3.5.3. [6, Proposition 1.3] Let H = Cn with n ≥ 3 and L = L(Cn),

depthU/L =
⌈n− 1

3

⌉
.

Lemma 3.5.4. [6, Proposition 1.8] Let H = Cn with n ≥ 3 and L = L(Cn),

sdepthU/L =
⌈n− 1

3

⌉
.
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Now we define the graph Pn,l.

Definition 3.5.5. Let H = Pn,l be a graph obtained by the rooted product of Pn and

Pm path graphs.

Below is an example of the graph formed by the rooted product of P5 and P6 path

graphs.

Figure 3.6: P(5,6)

Following theorems give the bounds for the depth and Stanley depth of module U/L(Pn,l)

Theorem 3.5.6. For any n ≥ 3 and l ≥ 3,

depth(U/L) ≥


nl
3
, when l ≡ 0 (mod 3);

nl
3
− n

3
+ 1 , when l ≡ 1 (mod 3);

nl
3
+ n

3
, when l ≡ 2 (mod 3).

Proof. Let L = L(Pn,l) be an edge ideal. For n = 3, let u be the linked vertex of last

attached path Pl. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L, u) −→ 0.

By depth lemma,

depth(U/L) ≥ min{depth(U/(L : u), depth(U/(L, u)}.

Notice that

(L : u) = (I,N(u)) = (L(Pl), L(Pl−1), L(Pl−2), N(u)),
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where I is the edge ideal of minor formed as a result of deletion of neighbors of u and

(L, u) = (L(P2l), L(Pl−1), u).

Lemma 2.4.4 and Lemma 3.5.1 implies,

depth(U/(L : u)) =
⌈ l
3

⌉
+
⌈ l − 1

3
e+

⌈ l − 2

3
e+ 1,

depth(U/(L, u)) =
⌈2l
3

⌉
+
⌈ l − 1

3

⌉
.

When l ≡ 0, 1 (mod 3)

depth(U/L : u) = l + 1

and

depth(U/L, u) = l.

So by depth lemma we have

depth(U/L) ≥ l.

For l ≡ 2 (mod 3)

depth(U/(L : u)) = l + 1,

depth(U/(L, u)) = l + 1,

so, by depth lemma we have

depth(U/(L)) ≥ l + 1.

Now for n = 4, consider the same short exact sequence, then

(L : u) = (L(P2l), L(Pl−1), L(Pl−2), N(u)),

and

(L, u) = (L(P3,l), L(Pl−1), u).

So by Lemma 2.4.4, Lemma 3.5.1,

depth(U/(L : u)) =
⌈2l
3

⌉
+
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+ 1.
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Using induction on n,

depth(U/(L, u)) ≥
⌈ l − 1

3

⌉
+ l, when l ≡ 0, 1 (mod 3),

depth(U/(L, u)) =
⌈ l − 1

3

⌉
+ l + 1, when l ≡ 2 (mod 3).

So for l ≡ 0 (mod 3)

depth(U/(L, u)) =
4l

3
,

depth(U/(L : u)) =
4l

3
+ 1.

Hence by using depth lemma we have

depth(U/(L)) ≥ 4l

3
.

For l ≡ 1 (mod 3)

depth(U/(L, u)) =
4l − 1

3
,

depth(U/(L : u)) =
4l + 2

3
,

so, by depth lemma we have

depth(U/(L)) ≥ 4l − 1

3
.

For l ≡ 2 (mod 3)

depth(U/(L, u)) =
4l + 4

3
,

depth(U/(L : u)) =
4l + 4

3
,

hence by depth lemma we have

depth(U/(L)) =
4l + 4

3
.

Assume n ≥ 5, notice that

(L : u) = (I,N(u)) = (L(Pn−2,l), L(Pl−1), L(Pl−2), N(u))

and

(L, u) = (L(Pn−1,l), L(Pl−1), u).
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Case 1: l ≡ 0 (mod 3)

By Lemma 2.4.4, Lemma 3.5.1 and induction on n,

depth(U/L : u) ≥
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+

(n− 2)l

3
+ 1

depth(U/L : u) ≥ 1 +
l

3
+
l

3
+
nl

3
− 2l

3
= 1 +

nl

3

depth(U/L, u) ≥
⌈ l − 1

3

⌉
+

(n− 1)l

3

depth(U/L, u) ≥ l

3
− l

3
+
nl

3
=
nl

3
.

Depth lemma implies,

depth(U/L) ≥ nl

3
, l ≡ 0 (mod 3).

Case 2: l ≡ 1 (mod 3)

Using Lemma 2.4.4, Lemma 3.5.1 and induction on n,

depth(U/L : u) ≥
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+

(n− 2)l − n+ 5

3
+ 1

= 1 +
l − 1

3
+
l − 1

3
+
nl

3
− 2l

3
− n

3
+

2

3
+ 1

= 1 +
nl

3
− n

3
,

depth(U/L, u) ≥
⌈ l − 1

3

⌉
+

(n− 1)l − n+ 1 + 3

3

=
l − 1

3
− l

3
+
nl

3
− n

3
+

1

3
+ 1

=
nl

3
− n

3
+ 1.

So by depth lemma,

depth(U/L) ≥ nl

3
− n

3
+ 1, l ≡ 1 (mod 3).

Case 3: l ≡ 2 (mod 3)

Then Lemma 2.4.4, Lemma 3.5.1 and induction implies,

depth(U/L : u) ≥
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+

(n− 2)l + n− 2

3
+ 1

= 1 +
l + 1

3
+
l − 2

3
+
nl

3
− 2l

3
+
n

3
− 2

3

=
nl

3
+
n

3
,
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depth(U/L, u) ≥
⌈ l − 1

3

⌉
+

(n− 1)l + n− 1

3

=
l + 1

3
− l

3
+
nl

3
+
n

3
− 1

3

=
nl

3
+
n

3
+ 1.

Hence by depth lemma,

depth(U/L) ≥ nl + n

3
, l ≡ 2 (mod 3).

The new bound determined above is sharper than given by Morey as in Theorem [11,

Theorem 3.1], since all new bounds contain terms which are product of n and l. Now

using Lemma 3.5.2 and Lemma 2.2.2 we can compute following bound on the same

lines,

Proposition 3.5.7. For any n ≥ 3 and l ≥ 3,

sdepth(U/L) ≥


nl
3
, when l ≡ 0 (mod 3);

nl
3
− n

3
+ 1 , when l ≡ 1 (mod 3);

nl
3
+ n

3
, when l ≡ 2 (mod 3).

Proof. By using [18, Lemma 2.4] and [1, Lemma 2.4] we get the desired result.

Now considering the second type of graph CPn,l.

Definition 3.5.8. Let H = CPn,l be a graph obtained by the rooted of Cn and Pm

graphs .

Theorem 3.5.9. For L = L(CPn,l) with n ≥ 3 and l ≥ 3,

depth(U/L) ≥


nl
3
, when l ≡ 0 (mod 3);

nl
3
− n

3
+ 1 , when l ≡ 1 (mod 3);

nl
3
+ n

3
, when l ≡ 1 (mod 3).

Proof. Let L = L(CPn,l) be an edge ideal. For n = 3, let u be the end vertex of any

attached path Pl. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L, u) −→ 0,
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Figure 3.7: CP (5, 6)

by depth lemma,

depth(U/L) ≥ min{depth(U/(L : u), depth(U/(L, u)}.

Notice that

(L : u) = (I,N(u)) = (2L(Pl−1), L(Pl−2), N(u)),

where I is the edge ideal of minor formed by deleting neighbors of u and

(L, u) = (L(P2l), L(Pl−1), u).

Lemma 2.4.4 and Lemma 3.5.1 implies,

depth(U/(L : u)) = 2
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+ 1,

depth(U/(L, u)) =
⌈2l
3

⌉
+
⌈ l − 1

3

⌉
.

When l ≡ 0 (mod 3)

depth(U/L : u) = l + 1,

and

depth(U/L, u) = l,

so, by depth lemma we have

depth(U/L) ≥ l.
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For l ≡ 1 (mod 3)

depth(U/(L : u)) = l,

depth(U/(L, u)) = l,

so, by depth lemma we have

depth(U/(L)) = l.

For l ≡ 2 (mod 3)

depth(U/(L : u)) = l + 1,

depth(U/(L, u)) = l + 1,

so by depth lemma we have

depth(U/(L)) = l + 1.

Now for n = 4, consider the same short exact sequence. Notice that

(L : u) = (L(Pl), 2L(Pl−1), L(Pl−2), N(u))

and

(L, u) = (L(P3,l), L(Pl−1), u).

So by Lemma 2.4.4, Lemma 3.5.1 and Theorem 3.5.6 we have,

depth(U/(L : u)) =
⌈ l
3

⌉
+ 2
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
and

depth(U/(L, u)) ≥
⌈ l − 1

3

⌉
+ l, when l ≡ 0, 1 (mod 3),

depth(U/(L, u)) =
⌈ l − 1

3

⌉
+ l + 1, when l ≡ 2 (mod 3).

For l ≡ 0 (mod 3)

depth(U/(L, u)) =
4l

3
,

depth(U/(L : u)) =
4l

3
+ 1,
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hence by using depth lemma we have

depth(U/(L)) ≥ 4l

3
.

For l ≡ 1 (mod 3)

depth(U/(L, u)) =
4l − 1

3
,

depth(U/(L : u)) =
4l + 2

3
,

so, by depth lemma we have

depth(U/(L)) ≥ 4l − 1

3
.

For l ≡ 2 (mod 3)

depth(U/(L, u)) =
4l + 4

3
,

depth(U/(L : u)) =
4l + 4

3
,

hence by depth lemma we have

depth(U/(L)) =
4l + 4

3
.

Now for n = 5, consider the same short exact sequence. Notice that

(L : u) = (L(P2l), 2L(Pl−1), L(Pl−2), N(u))

and

(L, u) = (L(P4,l), L(Pl−1), u).

So by Lemma 2.4.4, Lemma 3.5.1 and Theorem 3.5.6, we get

depth(U/(L : u)) =
⌈2l
3

⌉
+ 2
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
and

depth(U/(L, u)) ≥
⌈ l − 1

3

⌉
+

4l

3
, when l ≡ 0 (mod 3),

depth(U/(L, u)) ≥
⌈ l − 1

3

⌉
+

4l

3
− 1

3
, when l ≡ 1 (mod 3),
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depth(U/(L, u)) =
⌈ l − 1

3

⌉
+

4l

3
+

4

3
, when l ≡ 2 (mod 3).

For l ≡ 0 (mod 3)

depth(U/(L, u)) =
5l

3
,

depth(U/(L : u)) =
5l

3
+ 1,

hence by using depth lemma we have

depth(U/(L)) ≥ 5l

3
.

For l ≡ 1 (mod 3)

depth(U/(L, u)) =
5l

3
− 5

3
+ 1,

depth(U/(L : u)) =
5l + 1

3
,

so by depth lemma we have

depth(U/(L)) ≥ 5l

3
− 5

3
+ 1.

For l ≡ 2 (mod 3)

depth(U/(L, u)) =
5l + 5

3
,

depth(U/(L : u)) =
5l + 5

3
,

hence by depth lemma we have

depth(U/(L)) =
5l + 5

3
.

Assume n ≥ 6, notice that

(L : u) = (L(Pn−3,l), 2L(Pl−1), L(Pl−2), N(u))

and

(L, u) = (L(Pn−1,l), L(Pl−1), u).
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Case 1: l ≡ 0 (mod 3) .

By Lemma 2.4.4, Lemma 3.5.1 and Theorem 3.5.6,

depth(U/L : u) ≥ 2
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+

(n− 3)l

3
+ 1

= 1 +
2l

3
+
l

3
+
nl

3
− 3l

3

= 1 +
nl

3
,

depth(U/L, u) ≥
⌈ l − 1

3

⌉
+

(n− 1)l

3

=
l

3
− l

3
+
nl

3

=
nl

3
.

Depth lemma implies,

depth(U/L) ≥ nl

3
, l ≡ 0 (mod 3).

Case 2: l ≡ 1 (mod 3).

Using Lemma 2.4.4, Lemma 3.5.1 and theorem 3.5.6,

depth(U/L : u) ≥ 2
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+

(n− 3)l − n+ 6

3
+ 1

= 1 +
2(l − 1)

3
+
l − 1

3
+

(n− 3)l

3
− (n− 3)

3
+ 1

= 2 +
nl

3
− n

3
,

depth(U/L, u) ≥
⌈ l − 1

3

⌉
+

(n− 1)l − n+ 1 + 3

3

=
l − 1

3
− l

3
+
nl

3
− n

3
+

1

3
+ 1

=
nl

3
− n

3
+ 1.

So by depth lemma,

depth(U/L) ≥ nl

3
− n

3
+ 1, l ≡ 1 (mod 3).
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Case 3: l ≡ 2 (mod 3).

Then Lemma 2.4.4, Lemma 3.5.1 and Theorem 3.5.6 implies,

depth(U/L : u) ≥ 2
⌈ l − 1

3

⌉
+
⌈ l − 2

3

⌉
+

(n− 3)l + n− 3

3
+ 1

= 1 +
2(l + 1)

3
+
l − 2

3
+
nl

3
− 3l

3
+
n

3
− 1

=
nl

3
+
n

3
,

depth(U/L, u) ≥
⌈ l − 1

3

⌉
+

(n− 1)l + n− 1

3

=
l + 1

3
− l

3
+
nl

3
+
n

3
− 1

3

=
nl

3
+
n

3
.

Hence by depth lemma,

depth(U/L) ≥ nl + n

3
, l ≡ 2 (mod 3).

Bound given above is improved from already given since new bound contains the

term which is the product of n and l. Similarly using Lemma 3.5.2 and Lemma 2.2.2

we can compute following bound for Stanley depth on the same lines.

Proposition 3.5.10. For L = L(CPn,l) with n ≥ 3 and l ≥ 3,

sdepth(U/L) ≥


nl
3
, when l ≡ 0 (mod 3);

nl
3
− n

3
+ 1 , when l ≡ 1 (mod 3);

nl
3
+ n

3
, when l ≡ 1 (mod 3).

3.6 Depth and Stanley depth of Cycles on star graph.

In this section we will work on depth and Stanley depth of a graph B(m,n) formed by

linking n number of C ′ms graphs to a vertex each through an edge.
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Figure 3.8: B(4, 3)

Theorem 3.6.1. For n ≥ 1 and mi ≥ 4 for all 1 ≤ i ≤ n, we have,

1. When mi ≡ 1, 2 (mod 3) for some m′is then,

depth(U/L) ≥
n∑
i=1

⌈mi − 1

3

⌉
,

2. When all mi ≡ 0 (mod 3) for all m′is then,

depth(U/L) ≥
n∑
i=1

⌈mi

3

⌉
.

Proof. Let W = {x1, x2, . . . , xn} be the vertices each in C ′mi
s which are linked with

vertex u through an edge. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L, u) −→ 0.

By depth lemma we have,

depthU/L ≥ min{depthU/(L : u), depthU/(L, u)}.

Notice that,

(L : u) = (x1, x2, . . . , xn, L(Pm1−1), L(Pm2−1), . . . , L(Pmn−1),

so, by using [11, Lemma 2.8] we have,

depthU/(L : u) = 1 +
⌈m1 − 1

3

⌉
+
⌈m2 − 1

3

⌉
+ · · ·+

⌈mn − 1

3

⌉
.
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Now for (L, u) we see that,

(L, u) = (u, L(Cm1), L(Cm2), . . . , L(Cmn)).

By using [6, Proposition 1.3] we have,

depthU/(L, u) =
⌈m1 − 1

3

⌉
+
⌈m2 − 1

3

⌉
+ · · ·+

⌈mn − 1

3

⌉
.

Thus using depth lemma we have

depthU/L ≥
⌈m1 − 1

3

⌉
+
⌈m2 − 1

3

⌉
+ · · ·+

⌈mn − 1

3

⌉
,

that is

depthU/L ≥
n∑
i=1

⌈mi − 1

3

⌉
.

Note that when all m′is are multiple of 3 then

depthU/L =
⌈mi

3

⌉
.

For Stanley depth we have,

Theorem 3.6.2. For n ≥ 1 and mi ≥ 4 for all 1 ≤ i ≤ n, we have,

1. When mi ≡ 1, 2 (mod 3) for some m′is then,

sdepth(U/L) ≥
n∑
i=1

⌈mi − 1

3

⌉
,

2. When all mi ≡ 0 (mod 3) for all m′is then,

sdepth(U/L) ≥
n∑
i=1

⌈mi

3

⌉
.

Proof. By using proposition [6, Proposition 1.8] and [1, Lemma 2.4] we get the required

result on the same lines.
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Chapter 4

Depth and Stanley depth of power of
edge ideal associated to caterpillar
graph.

Louiza Fouli and Susan Morey in [7] gave lower bounds for the powers of edge ideal

that are not so sharp. The bounds in their paper are given in terms of diameter l,

number of components q of the graph and the power p of edge ideals. Higher the power

lower the bound is. We will focus our work on finding the bounds that are sharper

then these already present. In this chapter we have determined the bounds which are

sharper then previous one. These new bounds are in terms of total number of variables

and number of components q.

Definition 4.0.3. The graph Sn,k is a caterpillar graph with k− 1 number of pendant

vertices at each vertex of path Pn.

Figure 4.1: S4,5

The bound which was given by Louiza Fouli and Morey for any graph H and power p

is,
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Proposition 4.0.4. [7, Proposition 4.3] Let H be a graph having q connected compo-

nents and let L = L(H). Then, for every p ≥ 1,

depthU/Lp ≥ q − p.

We will work on lower bounds for depth and Stanley depth of cyclic module U/Lp such

that the new bound is sharper then above.

Lemma 4.0.5. [11, Lemma 2.6] Let L = L(H) for H a bipartite graph. Then for all

p ≥ 1,

depth(U/Lp) ≥ 1.

Similar result for the Stanley depth we have,

Theorem 4.0.6. [5, Theorem 1.4] For a finitely generated Zn-graded U-module N , if

sdepth(N) = 0 then depth(N) = 0.

Definition 4.0.7. The graph denoted by S(l)
n,k is a subclass of caterpillar graph with

first n− 1 vertices of the path Pn having k− 1 pendant vertices and last vertex of path

Pn having l − 1 pendant vertices.

Figure 4.2: S(4)
4,5

Lemma 4.0.8. Let L = L(S
(l)
n,k) and w be the end vertex of path Pn in S(l)

n,k as shown

in the following figure,

w

then for p ≥ 1,

(Lp, w) = (Lp(Sn−1,k), w).
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Proof. When w is introduced as a single variable in L, for p = 1, all the edges containing

w are deleted. As w is last vertex of the path Pn, all the edges incident to it are removed.

Hence we are left with a graph consisting of caterpillar on path Pn−1 with each of its

vertex having k−1 pendant vertices denoted by Sn−1,k and an isolated vertex w. Same

logic applies for p ≥ 1.

Lemma 4.0.9. Let L = L(S
(l)
2,k), for k ≥ 3 and 1 ≤ l ≤ k,

depth(U/L) ≥ l.

Proof. Let u and v be the vertices of path P2 with u having k − 1 and v having l − 1

pendent vertices respectively. Consider the short exact sequence:

0 −→ U/(L : u) −→ U/L −→ U/(L, u) −→ 0.

Then

(L : u) = (N(u))

depth(U/(L : u)) = 1 + (l − 1) = l

and

(L, u) = (L(Sl), u)

depth(U/(L, u)) = 1 + (k − 1) = k.

By Depth Lemma,

depth(U/L) ≥ min{depth(U/(L : u)), depth(U/(L, u))}

depth(U/L) ≥ l.

The above bound hold for Stanley depth also.
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Theorem 4.0.10. Let L = L(S
(l)
n,k), for n ≥ 3, l ≤ k and k ≥ 3,

depth(U/L) ≥


(
n−2
2

)
k + l , when n is even;(

n−1
2

)
k + 1 , when n is odd.

Proof. Let u be the last vertex of path Pn having l − 1 pendant vertices. Notice that

(L : u) = (L(Sn−2,k), N(u)),

and

(L, u) = (L(Sn−1,k), u).

Case 1: When n is even.

By induction and Lemma 2.4.4,

depth(U/(L : u)) =
(n− 2

2

)
k + (k − 1) + 1

=
(n
2

)
k,

and

depth(U/(L, u)) =
(n− 2

2

)
k + 1 + (l − 1)

=
(n− 2

2

)
k + l.

Then by Depth Lemma,

depth(U/L) ≥
(n− 2

2

)
k + l.

Case 2: When n is odd.

By induction and Lemma 2.4.4,

depth(U/(L : u)) =
(n− 3

2

)
k + 1 + (k − 1) + 1

=
(n− 1

2

)
k + 1,

and

depth(U/(L, u)) =
(n− 1

2

)
k + (l − 1),
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Then by Depth Lemma,

depth(U/L) ≥
(n− 1

2

)
k.

Now using the results of Stanley depth we have

Theorem 4.0.11. Let L = L(S
(l)
n,k), for n ≥ 3, l ≤ k and k ≥ 3,

sdepth(U/L) ≥


(
n−2
2

)
k + l , when n is even;(

n−1
2

)
k + 1 , when n is odd.

Now we will give the bounds for the depth and Stanley depth of edge ideal associated

to a graph CS(l)
n,k formed as a result of adding an edge in S(l)

n,k linking the first vertex

to the last vertex of path Pn.

Figure 4.3: CS(4)
4,5

Theorem 4.0.12. Let L = L(CS
(l)
n,k), for n ≥ 3, l ≥ 1 and k ≥ 3, then

1. when n is even,

depth(U/L) ≥
(n− 2

2

)
k + l,

2. when n is odd,

depth(U/L) ≥
(n− 1

2

)
k + l − 1.
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Proof. First we will prove for n = 3. Let u be the vertex of of path Pn having l − 1

pendent vertices. Notice that

(L : u) = (N(u))

thus we have

depthU/(L : u) = (k − 1) + (k − 1) + 1

= 2k − 1.

Now we see that

(L, u) = (u, J(S2,k))

thus

depthU/(L, u) = (l − 1) + k

= k + l − 1.

So by Depth lemma we have

depthU/L ≥ k + l − 1.

Assume n ≥ 4 Let u be the non-leaf of Sl. Notice that

(L : u) = (L(Sn−3,k), N(u))

and

(L, u) = (L(Sn−1,k), u).

Case 1: When n is even.

By Theorem 4.0.10 and Lemma 2.4.4,

depth(U/(L : u)) =
(n− 4

2

)
k + 1 + (k − 1) + (k − 1) + 1

=
(n
2

)
k,

and

depth(U/(L, u)) =
(n− 2

2

)
k + 1 + (l − 1)

=
(n− 2

2

)
k + l.
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Then by Depth Lemma,

depth(U/L) ≥
(n− 2

2

)
k + l.

Case 2: When n is odd.

By Theorem 4.0.10 and Lemma 2.4.4,

depth(U/(L : u)) =
(n− 3

2

)
k + 1 + (k − 1) + (k − 1)

=
(n+ 1

2

)
k − 1,

and

depth(U/(L, u)) =
(n− 1

2

)
k + (l − 1).

Then by Depth Lemma,

depth(U/L) ≥
(n− 1

2

)
k + l − 1.

Bounds given in above theorem are sharper than that given by Morey in [7] since this

new bound depends on k. Higher the value of k, higher the bound is. Similar result

holds for the Stanley depth of the edge ideal associated to this graph.

Theorem 4.0.13. Let L = L(CS
(l)
n,k), for n ≥ 3, l ≥ 1 and k ≥ 3, then

1. when n is even,

sdepth(U/L) ≥
(n− 2

2

)
k + l,

2. when n is odd,

sdepth(U/L) ≥
(n− 1

2

)
k + l − 1.

Proof. Using Theorem 4.0.11 and Lemma 2.4.5 we get the desired result.

For the case when p = 2 and l = k we get the following range.
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4.0.1 Depth and Stanley depth of power of edge ideal associated
to S

(l)
n,k-caterpillar graph.

Theorem 4.0.14. Let L = L(S
(l)
n,k), for n ≥ 2, k ≥ 3,1 ≤ l ≤ k and p ≥ 1,

depth(U/Lp) ≥


max {1,

(
n−p−1

2

)
k + l − 1} , when n and p have opposite parity;

max {1,
(
n−p
2

)
k + 1} , when n and p have same parity and 2 < l ≤ k;

max {1,
(
n−p
2

)
k − 1} , when n and p have same parity l ∈ {1, 2}.

Proof. Let x, y be the end point of the path realizing the diameter of graph. Let

u ∈ N(y). Let N(u) = {s1, s2, . . . , sl−1, sl}. Since S
(l)
n,k is a bipartite graph so

depth(U/Lp) ≥ 1 for all p by Lemma 4.0.5.

The result will be proved by induction on n and p. For n = 2 and p ≥ 1 the result

is true by Lemma 4.0.5. For n ≥ 3 and p = 1 the result follows from Theorem 4.0.10.

Now assume that n ≥ 3 and p ≥ 2.

Case 1: When n and p have same parity.

In this case we have three subcases. first one is when l = 1, then consider a short exact

sequence:

0 −→ U/(Lp : y) −→ U/Lp −→ U/(Lp, y) −→ 0.

By Depth lemma,

depth(U/Lp) ≥ min{depth(U/(Lp : y)), depth(U/(Lp, y))}.

By Lemma 4.0.8

(Lp, y) = (y, Lp(Sn−1,k)).

Here n− 1 and p have the opposite parity, so by induction on n,

depth(U/Lp, y) ≥ max {1,
(n− p− 2

2

)
k + k − 1}

= max {1,
(n− p

2

)
k − 1}.

For the depth of module U/(Lp : y) we will consider another short exact sequence as

follows:

0 −→ U/(Lp : yw) −→ U/Lp : y −→ U/((Lp : y), w) −→ 0.
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Now by using lemma 2.5.11 we have,

depth(U/Lp : yw) ≥ max {1,
(n− p

2

)
k}

and

depth(U/((Lp : y), w) ≥ 1 + (k − 1) + max {1,
(n− p− 2

2

)
k + 1}

= k +max {1,
(n− p

2

)
k − k + 1}

= max {1 + k,
(n− p

2

)
k + 1}.

Thus by depth lemma we have,

depthU/Lp ≥ max {1,
(n− p

2

)
k − 1}.

Now the second subcase is when l = 2. For this consider the short exact sequence:

0 −→ U/(Lp : w) −→ U/Lp −→ U/((Lp, w) −→ 0.

By Depth lemma,

depth(U/Lp) ≥ min{depth(U/(Lp : w)), depth(U/(Lp, w))}.

By Lemma 4.0.8

(Lp, w) = (w,Lp(Sn−1,k)).

Here n− 1 and p have the opposite parity, so by induction on n,

depth(U/Lp, w) ≥ 1 + max {1,
(n− p− 2

2

)
k + k − 1}

> max {1,
(n− p

2

)
k − 1}.

For the depth of module U/(Lp : w) we will consider another short exact sequence as

follows:

0 −→ U/(Lp : wy) −→ U/Lp : w −→ U/((Lp : w), y) −→ 0.

Now by using lemma 2.5.11 we have,

depth(U/Lp : yw) ≥ max {1,
(n− p

2

)
k + 1}.
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Now for depth of ((Lp : w), y) we will consider the following short exact sequence where

x is the n− 1th vertex of the path Pn.

0 −→ Uy/(L
p
y : wx) −→ Uy/L

p
y : w −→ Uy/((L

p
y : w), x) −→ 0.

depth(Uy/((L
p
y : wx) ≥ max {1,

(n− p+ 1

2

)
k − 1}

and

depth(Uy/((L
p
y : w), x) ≥ 1 + (k − 1) + max {1,

(n− p− 2

2

)
k + 1}

= k +max {1,
(n− p

2

)
k − k + 1}

= max {1 + k,
(n− p

2

)
k + 1}.

Hence by depth lemma we have,

depthU/Lp ≥ max {1,
(n− p

2

)
k − 1}.

Now the third subcase is when l ≥ 3, for this consider a short exact sequence:

0 −→ U/(Lp : u) −→ U/Lp −→ U/(Lp, u) −→ 0.

By Depth lemma,

depth(U/Lp) ≥ min{depth(U/(Lp : u)), depth(U/(Lp, u))}.

By Lemma 4.0.8

(Lp, u) = (Lp(Sn−1,k), u),

here n− 1 and p have opposite parity so, by using induction on n,

depth(U/Lp, u) = depth(U ′′/Lp(Sn−1,k)) + |L(Sl)|

≥
((n− 1)− p− 1

2

)
k + k − 1 + l − 1

=
(n− p

2

)
k + l − 2,
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where U ′′ = U\(L(Sl) ∪ {u}).
Now for the depth of U/(Lp : u) we will use Lemma 2.5.13. For this consider a short

exact sequence:

0 −→ U/(Lp : us1) −→ U/(Lp : u) −→ U/((Lp : u), s1) −→ 0.

Then by Lemma 2.5.11

depth(U/Lp : us1) = depth(U/Lp−1).

Here n and p− 1 have the opposite parity so, by using induction on p,

depth(U/Lp : us1) ≥
(n− (p− 1)− 1

2

)
k + l − 1

=
(n− p

2

)
k + l − 1

>
(n− p

2

)
k + 1.

For depth of U/((Lp : u), s1), consider another short exact sequence:

0 −→ U1/(L
p
1 : us2) −→ U1/(L

p
1 : u) −→ U1/((L

p
1 : u), s2) −→ 0.

Lemma 2.5.11 implies

depth(U1/L
p
1 : us2) ≥

(n− (p− 1)− 1

2

)
k + l − 1

=
(n− p

2

)
k + l − 1

≥
(n− p

2

)
k + 1.

Similarly, for the sequence:

0 −→ Ul−1/(L
p
l−1 : usl) −→ Ul−1/(L

p
l−1 : u) −→ Ul−1/((L

p
l−1 : u), sl) −→ 0

depth(Ul−1/L
p
l−1 : usl) = depth(Ul−1/L

p−1
l−1 ).

By using induction on p,

depth(Ul−1/L
p
l−1 : usl) ≥

(n− (p− 1)− 1

2

)
k + l − 1

=
(n− p

2

)
k + l − 1

≥
(n− p

2

)
k + 1.
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Notice that

depth(Ul/L
p
l : u) = depth(Ul/L

p(Sn−2,k)) + |L(Sk)|+1.

Since n− 2 and p have the same parity, so by induction on n,

depth(Ul/L
p
l : u) ≥

((n− 2)− p
2

)
k + 1 + (k − 1) + 1

=
(n− p

2

)
k + 1.

So by using Lemma 2.4.4, we get

depth(U/Lp : u) ≥
(n− p

2

)
k + 1.

Depth lemma implies,

depth(U/Lp) ≥
(n− p

2

)
k + 1.

Case 2: When n and p have the opposite parity. In this case we also have three more

sub-cases. First one is when l = 1, , then consider a short exact sequence:

0 −→ U/(Lp : y) −→ U/Lp −→ U/(Lp, y) −→ 0.

By Depth lemma,

depth(U/Lp) ≥ min{depth(U/(Lp : y)), depth(U/(Lp, y))}.

then by Lemma 4.0.8

(Lp, y) = (y, Lp(Sn−1,k)).

Here n− 1 and p have the same parity, so by induction on n,

depth(U/Lp, y) ≥ max {1,
(n− p− 1

2

)
k + 1}

= max {1,
(n− p− 1

2

)
k + 1}.

For the depth of module U/(Lp : y) we will consider another short exact sequence as

follows:

0 −→ U/(Lp : yw) −→ U/Lp : y −→ U/((Lp : y), w) −→ 0.
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Now by using lemma 2.5.11 we have,

depth(U/Lp : yw) ≥ max {1,
(n− p+ 1

2

)
k − 1}

and

depth(U/((Lp : y), w) ≥ 1 + (k − 1) + max {1,
(n− p− 3

2

)
k + k − 1}

= k +max {1,
(n− p− 1

2

)
k − 1}

= max {1 + k,
(n− p− 1

2

)
k + k − 1}.

Thus by depth lemma we have,

depthU/Lp ≥ max {1,
(n− p

2

)
k − 1}.

Now the second sub-case is when l = 2. For this consider the short exact sequence:

0 −→ U/(Lp : w) −→ U/Lp −→ U/((Lp, w) −→ 0.

By Depth lemma,

depth(U/Lp) ≥ min{depth(U/(Lp : w)), depth(U/(Lp, w))}.

then by Lemma 4.0.8

(Lp, w) = (w,Lp(Sn−1,k)).

Here n− 1 and p have the same parity, so by induction on n,

depth(U/Lp, w) ≥ 1 + max {1,
(n− p− 1

2

)
k + 1}

> max {1,
(n− p− 1

2

)
k − 1}.

For the depth of module U/(Lp : w) we will consider another short exact sequence as

follows:

0 −→ U/(Lp : wy) −→ U/Lp : w −→ U/((Lp : w), y) −→ 0.

Now by using lemma 2.5.11 we have,

depth(U/Lp : yw) > max {1,
(n− p− 1

2

)
k + 1}.
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Now for depth of ((Lp : w), y) we will consider the following short exact sequence where

x is the n− 1th vertex of the path Pn.

0 −→ Uy/(L
p
y : wx) −→ Uy/L

p
y : w −→ Uy/((L

p
y : w), x) −→ 0.

depth(Uy/((L
p
y : wx) ≥ max {1,

(n− p+ 1

2

)
k + 1}

and

depth(Uy/((L
p
y : w), x) ≥ 1 + (k − 1) + max {1,

(n− p− 3

2

)
k + 2− 1}

= k +max {1,
(n− p− 1

2

)
k − k + 1}

≥ max {1,
(n− p− 1

2

)
k + 1}.

Hence by depth lemma we have,

depthU/Lp ≥ max {1,
(n− p− 1

2

)
k − 1}.

Now the third subcase is when l ≥ 3, for this consider a short exact sequence:

0 −→ U/(Lp : u) −→ U/Lp −→ U/(Lp, u) −→ 0.

By Depth lemma,

depth(U/Lp) ≥ min{depth(U/(Lp : u)), depth(U/(Lp, u))}.

By Lemma 4.0.8

(Lp, u) = (Lp(Sn−1,k), u),

Here n− 1 and p have the same parity, so by induction on n,

depth(U/Lp, u) = depthU ′/Lp(Sn−1,k)) + |L(Sl)|

≥
((n− 1)− p

2

)
k + 1 + l − 1

>
(n− p− 1

2

)
k + l − 1,
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where U ′ = U\(L(Sl) ∪ {u}).
Now for depth of U/(Lp : u) we will use Lemma 2.5.13. For this consider a short exact

sequence:

0 −→ U/(Lp : us1) −→ U/(Lp : u) −→ U/((Lp : u), s1) −→ 0.

Then by Lemma 2.5.11 and induction on p ,

depth(U/Lp : us1) = depth(U/Lp−1)

≥
(n− (p− 1)

2

)
k + 1

=
(n− p− 1

2

)
k + k + 1

>
(n− p− 1

2

)
k + l − 1,

where n and p − 1 are having the same parity. Now for depth of U/((Lp : u), s1),

consider another short exact sequence:

0 −→ U1/(L
p
1 : us2) −→ U1/(L

p
1 : u) −→ U1/((L

p
1 : u), s2) −→ 0.

Again by Lemma 2.5.11 and induction on p ,

depth(U1/L
p
1 : us2) = depth(U1/L

p−1
1 )

≥
(n− (p− 1)

2

)
k + 1

=
(n− p− 1

2

)
k + k + 1

>
(n− p− 1

2

)
k + l − 1.

Proceeding in the same manner we reach at the following sequence:

0 −→ Ul−1/(L
p
l−1 : usl) −→ Ul−1/(L

p
l−1 : u) −→ Ul−1/((L

p
l−1 : u), sl) −→ 0.

Clearly,

depth(Ul−1/L
p
l−1 : usl) = depth(Ul−1/L

p−1
l−1 )

≥
(n− (p− 1)

2

)
k − 1

=
(n− p− 1

2

)
k + k − 1

≥
(n− p− 1

2

)
k + l − 1.
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Notice that

depth(Ul/L
p
l : u) = depth(Ul/L

p(Sn−2,k)) + |L(Sk)|+1.

Since n− 2 and p have opposite parity, so by induction on n,

depth(Ul/L
p
l : u) ≥

((n− 2)− p− 1

2

)
k + k − 1 + (k − 1) + 1

=
(n− p− 1

2

)
k + k − 1

≥
(n− p− 1

2

)
k + l − 1.

So by using Lemma 2.5.13 we have

depth(U/Lp : u) >
(n− p− 1

2

)
k + l − 1,

and hence by Depth Lemma

depth(U/Lp) >
(n− p− 1

2

)
k + l − 1.

So this new bound having a term as a multiple of k is much sharper than the one

proposed by Morey in [11, Theorem 4.4], and for general power p as in [7, Proposition

4.3]. Similarly for the Stanley depth by using Lemma 4.0.6 and Lemma 2.5.14 we have,

Corollary 4.0.15. Let L = L(S
(l)
n,k), for n ≥ 2, k ≥ 3,1 ≤ l ≤ k and p ≥ 1,

sdepth(U/Lp) ≥


max {1,

(
n−p−1

2

)
k + l − 1} , when n and p have opposite parity;

max {1,
(
n−p
2

)
k + 1} , when n and p have same parity and 2 < l ≤ k;

max {1,
(
n−p
2

)
k − 1} , when n and p have same parity l ∈ {1, 2}.

Proof. Working on the lines as in above theorem and using Lemma 2.4.5, Lemma 2.5.14

and theorem 4.0.6, we can get the required bound.

Corollary 4.0.16. For n ≥ 2, k ≥ 3, p ≥ 1 and l = k,

depth(U/Lp) ≥

 max {1,
(
n−p+1

2

)
k − 1} , when n and p have opposite parity;

max {1,
(
n−p
2

)
k + 1} , when n and p have same parity and 2 < l ≤ k.
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On the same lines for Stanley depth we have,

Corollary 4.0.17. For n ≥ 2, k ≥ 3, p ≥ 1 and l = k,

sdepth(U/Lp) ≥

 max {1,
(
n−p+1

2

)
k − 1} , when n and p have opposite parity;

max {1,
(
n−p
2

)
k + 1} , when n and p have same parity and 2 < l ≤ k.

Proposition 4.0.18. Let L = L(Sn,k), for n ≥ 2 and k ≥ 3, then

1. when n is even, (n− 2

2

)
k + 1 ≤ depth(U/L2) ≤

(n
2

)
k,

2. when n is odd, (n− 1

2

)
k − 1 ≤ depth(U/L2) ≤

(n+ 1

2

)
k − 1.

Proof. Let u, v be the end points of the path realizing the diameter and x, y be their

unique neighbors, respectively then by Lemma 2.5.12, (L2 : uv) = (L, xy). Hence the

result follows from Proposition 2.4.1, Corollary 4.0.16 and Theorem 4.0.12.
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