
Accuracy of the simplified finite difference
method via LU- factorization for system of

non-linear ODEs

by

Tousif Iqra

A thesis
Submitted for the Degree of Master of Science

in
Mathematics

School of Natural Sciences,
National University of Sciences and Technology,

H-12, Islamabad, Pakistan

c© Tousif Iqra , 2020

Dedicated

to

My Beloved Parents

iii

Acknowledgements

Fa Inna ma’al ’usri yusra (Verily, with hardship comes ease).

[94:6], Qur’an - Surah Ash-Sharh (The Relief)

First and foremost, praises and thanks to the God, the Almighty, for his showers

of blessings and mercy bestowed upon me through the difficulties of life. I seek His

guidance, and pray for ease throughout this life and the life hereafter. Secondly, I

would like to express my deepest gratitude to my research supervisor Dr. Muhammad

Asif Farooq for sincere guidance, vision, dynamism, motivation and constant encour-

agement throughout this research. I would cordially like to pay my earnest and honest

gratitude to my family especially my parents, siblings (Javeria Tabassum and Dr. Ab-

dul Rehman), and my friends specially Naila Mahreen, Amna Sadiq, Mamoona Shahid,

Sidra, Muhammad Irfan and who were there for me every single hour when I needed

them the most and entrusting me their unconditional support, prayers and patience.

It wouldn’t be possible for me to make out this far without their support.

iv

Abstract

The main purpose of this thesis is to introduce a refined and reliable numerical method.

The method introduced in this work for the solution of non-linear ODEs with boundary

value problem is called simplified finite difference method (SFDM) and can be defined as

the extension of finite difference method which is used for the solution of linear ODEs

and PDEs. Quasilinearlization technique is used to transfer the non-linear coupled

ODEs into linear ODEs. We write a general introduction of well-known methods for

the approximate solution of differential equations and to find an error between the

exact solution and approximate solution. We use SFDM for the different number of

coupled ODEs and the result gives the reliability of this method. These problems are

taken from fluid mechanics. The results of theses ODEs are compared with the other

methods to check the accuracy, efficiency and reliability that we expected.

v

Contents

List of figures viii

List of Tables ix

1 Introduction 1

1.1 Finite.difference method (FDM) . 1

1.2 Taylor Series for FDM . 3

1.2.1 Taylor series in 1D . 3

1.2.2 Forward difference formulas . 4

1.2.3 Second order forward difference method 4

1.2.4 Third order forward difference method 5

1.2.5 Backward difference formulas 5

1.2.6 Second order backward difference method 5

1.2.7 Third order backward difference method 5

1.2.8 Central difference formulas . 5

1.2.9 Fourth order backward difference method 6

1.2.10 Taylor expansions in 2D . 6

1.3 Finite element method (FEM) . 6

1.3.1 Procedural Steps in FEM . 7

1.4 Finite volume method (FVM) . 7

1.4.1 Procedural steps in FVM . 7

vi

1.5 Spectral Methods . 8

1.5.1 Collocation methods . 8

1.5.2 Galerkin methods . 8

1.5.3 Tau method . 8

1.6 Quasi-linearlization for linear scalar second order ODE 9

1.7 CPU Time . 10

1.8 FLOPS . 10

1.9 Band matrix . 10

1.9.1 Bandwidth . 10

1.9.2 Examples . 10

1.9.3 Diagonal matrix . 11

1.9.4 Tridiagonal matrix: . 11

1.9.5 Pentadiagonal matrix . 12

1.9.6 Triangular matrices . 12

1.10 Sparse Matrix . 12

1.11 LU Factorization . 13

1.11.1 Doolittle factorization . 13

1.11.2 Crout factorization . 13

1.11.3 Cholesky Factorization . 14

1.12 Thomas Algorithm . 14

1.13 bvp4c . 16

2 Finite difference method (FDM) for scalar ODEs 17

2.1 Linear differential equation of second order: 17

2.1.1 General second order ODE . 17

2.2 Linear differential equations of third order: 20

2.2.1 General third order ODE . 20

2.3 Thomas Algorithm for SFDM . 21

2.4 Numerical procedure of the simplified finite difference (SFDM) method 23

vii

3 Simplified finite difference method (SFDM) for two Coupled ODEs 25

3.1 Results and discussion . 28

4 Simplified finite difference method (SFDM) for three and four Cou-

pled ODEs 29

4.1 SFDM for three coupled ODEs . 29

4.2 Results and discussion . 33

4.3 Results and discussion . 33

4.4 Results and discussion . 38

4.5 SFDM for four coupled ODEs . 39

4.6 Results and discussion . 42

5 Summary 43

Bibliography 44

viii

List of Figures

2.1 Flow chart of SFDM. 24

ix

List of Tables

3.1 −f ′′(0), −θ′(0) comparison with bvp4c and SFDM for n=1 and ε = 0.1 28

4.1 −g′′
(0) value comparison for various n values from literature and α =

0.25 . 33

4.2 −f ′′
(0) value comparison with bvb4c for different parametersM,n, α,E1

and Kp. 34

4.3 −f ′′
(0) values comparison for various n values from literature and α = 0.25 38

4.4 g′′(0), p′(0) and −ψ′(0) comparison when Pe = 1,ε1 = 1,Le = 2,B = 0,

Nt = Nb = 0.5, and Pro = 1 and also set and B = 1 42

x

Chapter 1

Introduction

Inithis chapter, we give an introduction of theifiniteidifferenceimethod(FDM) and Tay-

lor series. We introduce some approximate methods for the solution of ODEs and PDEs

like FEM, FVM and spectral methods. Some Techniques are introduced for coupled

ODEs such as Quasi-linearlization, bvp4c and numerical procedure for the simplified

finite difference method(SFDM).

1.1 Finite.difference method (FDM)

The finite difference is one of the oldest and simplest methods for the solution of

differential equations that approximate the derivative. In 2000 Ditkowskti [1] work on

the error bound of finite difference to explore the rate of convergence to approximate the

PDEs. They observed error bound to depend on the time and mesh size and for their

purpose the use of the parabolic and hyperbolic partial differential equation. In 2001

Mickens [2] for the construction of differential equations introduced a non-structural

finite difference with its applications and rules. In 2006 Farjadpour et al. [3] work on the

increase of accuracy of finite difference method which reduces due to the discretization

so the use subpixel smoothing to fix to improve the accuracy and they designed it

properly. In (2009) McGee et al. [4] work with the coupled flow models for transport

with the finite difference method. They work with the blood flow in the vessel and for

this, they use the Navier-stokes equation and also plasma flow in the vessel. They form

the coupled equations and solved these by the finite difference method and Schwartz

1

Method is also used for it. In (2010) Dolicani et al. [5] work with finite difference

methods in a thin plate. In the process, the differential equation is replaced with the

difference equation and also use to solve the thin plate bending. It can find solutions for

stress, momentum, strain and plate deflection. Mehra et al. [6] work n the comparison

of the finite difference, Wavelet Galerkin and spectral methods. The plot the graphs and

compare the results using MATLAB. In (2011) Chambolle et al.[7] they work with the

variation problem by the approximation of the finite difference method. For an upwind,

they give the dual formulation of the finite difference method. They showed the effect of

the multiscale method. They also give an example of numerical solutions to prove their

quantitative and qualitative behavior. In(2012) Sungu et al.[8] introduced the hybrid

method for the non-linear partial differential equation. Because different methods are

used for different subdomains like finite difference and differential transformation this

method is hybrid. The main objective of this method was to achieve the accuracy

of finite difference and the flexibility of differential transform. The finite difference

method is used for the discretization and time operator is obtained by the differential

transformation. This method showed faster results and iterative procedures for the

calculation of accurate solutions. In (2013) Izadian et al. [9] worked on the application

of the finite difference method and solved the elliptic equation on the irregular mesh

points. Its application is in Dirichlet boundary condition for 3 dimensional Poisson’s

equation on irregular grids. Taylor series expansion is the use and approximation of

finite differences. Results are also given which shows the efficiency of this method. In

(2013) Lakshmi et al. [10] worked with the ODEs with the linear boundary conditions

and solve it by finite difference method. The hyperbolic and elliptic partial differential

equations are changed into an ordinary differential equation with boundary and initial

boundary value problems. The central difference is used for this replacement. Then it

is solved by the Numerov-type method. This method can be used for many hyperbolic

and elliptic PDEs which shows that the method is flexible. In (2015) Gulkac [11] worked

on the implicit finite difference method. The heat equation is solved with the moving

boundary problems. The accuracy and efficiency are checked by the Fourier series and

two-dimensional heat equation. The application of this method is easier than the other

2

methods like finite element and spectral methods. Leonhard Euler (1707-1783) already

know about it for one-dimensional space and this is extended to two dimensional by

Carl David Tolme Runge (1856-1927) in 1908. The work on the finite difference method

began in the 1950s in numerical applications and their development on the computer

is done for the solution of complex problems and simulation of complex problems in

technology and science. Results of partial differential equations are obtained during the

last five decades regarding the stability, convergence and accuracy of finite difference

method.

In FDM, the derivatives in the original equation is replaced by the finite differences.

To get higher accuracy, it can increase the order of an element. The use of a regular

grid can help to fit the simulation in a box-shaped geometry. Large scale simulation

can be solved by the regular grid on the supercomputer.

The main purpose of FDM is to find an approximation of differential equations. The

boundary value problems in which the conditions are given on the edge of their domains

which relate with the derivative on some time or space give the required function. In

FDM the derivatives are replaced by the approximation which leads to an algebraic

system of equations that can be solved instead of the original differential equations.

Before applying the FDM we should know how to use the derivative approximation on

the function.

1.2 Taylor Series for FDM

1.2.1 Taylor series in 1D

A Taylor series is a function expansion about some point. Taylor series for one-

dimension is real function w(q) expansion about q = b(point) is given by

w(q+∆q) = w(q)+∆qw′(q)+
(∆q)2

2!
w′′(q)+

(∆q)3

3!
w′′′(q)+

(∆q)4

4!
w(4)(ξ1), ξ1ε(q, q+∆q)

(1.1)

3

where ξ1 is some number between q and q + ∆q

w(q−∆q) = w(q)−∆qw′(v)+
(∆q)2

2!
w′′(q)− (∆q)3

3!
w′′′(v)+

(∆q)4

4!
w(4)(ξ2), ξ2ε(q−∆q, q)

(1.2)

w(q+2∆q) = w(q)+2∆qw′(q)+4
(∆q)2

2!
w′′(q)+8

(∆q)3

3!
w′′′(q)+16

(∆q)4

4!
w(4)(ξ3), ξ3ε(q, q+2∆q)

(1.3)

w(q−2∆q) = w(q)−2∆qw′(q)+4
(∆q)2

2!
w′′(q)−8

(∆q)3

3!
w′′′(q)+16

(∆q)4

4!
w(4)(ξ4), ξ4ε(q−2∆q, q)

(1.4)

For b = 0, the series expansion is Maclaurin series

1.2.2 Forward difference formulas

Here we derive forward difference formula. Let us consider

w(q + ∆q) = w(q) + ∆qw′(q) +
(∆q)2

2!
w′′(ξ), ξε(q, q + ∆q). (1.5)

Rearranging the equation (1.5) gives

w(q + ∆q)− w(q)

∆q
− w′(q) =

∆q

2!
w′′(ξ), ξε(q, q + ∆v), (1.6)

where

w′(q) =
w(q + ∆q)− w(q)

∆q
+O(∆q) (1.7)

is called first order forward difference approximation.

1.2.3 Second order forward difference method

Similarly, the second order forward difference are

w′(q) =
−3w(q) + 4w(q + ∆q)− w(q + 2∆q)

2∆q
+O(∆q2), (1.8)

w′′(q) =
2w(q)− 5w(q + ∆q) + 4w(q + 2∆q)− w(q + 3∆q)

∆q3
+O(∆q2). (1.9)

4

1.2.4 Third order forward difference method

The third order forward difference is

w′(q) =
−w(q + 2∆q) + 6w(q + ∆q)− 3w(q)− 2w(q −∆q)

6∆q
+O(∆q3). (1.10)

1.2.5 Backward difference formulas

If h < 0, say h = −∆q where ∆q > 0 then

w′(q) =
w(q)− w(q −∆q)

∆q
+O(∆q). (1.11)

1.2.6 Second order backward difference method

The second order backward difference formulas are

w′(q) =
−3w(q)− 4w(q −∆q) + w(q − 2∆q)

2∆q
+O(∆q2) (1.12)

w′′(q) =
2w(q)− 5w(q −∆q) + 4w(q − 2∆q)− w(q − 3∆q)

∆q3
+O(∆q2) (1.13)

1.2.7 Third order backward difference method

Similarly the third orderibackward difference formula is

w′(q) =
2w(q + ∆q) + 3w(q)− 6w(q −∆q) + w(q − 2∆q)

6∆q
+O(∆q3) (1.14)

1.2.8 Central difference formulas

By subtracting equation (1.3) from equation (1.4) gives

w(q + ∆q)− w(q −∆q) = 2∆qw′(q) + ∆q3
w′′′(ξ1) + w′′′(ξ2)

12
(1.15)

w(q + ∆q)− w(q −∆q)

2∆q
− w′(q) = ∆q2

w′′′(ξ1) + w′′′(ξ2)

12
(1.16)

The second order central difference formula is

w′(q) =
w(q + ∆q)− w(q −∆q)

2∆q
+O(∆q2) (1.17)

w′′(q) =
w(q + ∆q)− 2w(q) + w(q −∆q)

∆q2
+O(∆q2) (1.18)

5

1.2.9 Fourth order backward difference method

Similarly, 4th order backward difference formulas are

w′(q) =
−w(q + 2∆q) + 8w(q + ∆q)− 8w(q −∆q) + w(q − 2∆q)

12∆q
+O(∆q4) (1.19)

w′′(q) =
−w(q + 2∆q) + 16w(q + ∆q)− 30w(q) + 16w(q −∆q)− w(q − 2∆q)

12∆q
+O(∆q2)

(1.20)

1.2.10 Taylor expansions in 2D

The Taylor expansion in 2D is given by

w(z0 +4z, v0 +4v) = w(z0, v0) + wz(z0, v0)4 z + wv(z0, v0)4 v +
1

2
[wzz(z0, v0)4 z2+

2wzv(z0, v0)4 z 4 v + wvv(z0, v0)4 v2] +O(4z3 +4v3)
(1.21)

1.3 Finite element method (FEM)

In FEM the complex problems are changed into simple problems and then obtain the

solution of such complex problems. The solution to such a problem is approximated

because the real complex problem is replaced by a simple problem. For the exact

solution of the practical problem the mathematical tools which are mostly use will not

be useful.

FEM is preferred to find the solution to such a given problem over other methods.

Approximate solutions can be refined for working on computational methods. FEM

consists of small subregions which are interconnected and known as finite elements

from which the solution region is build up. The stresses and displacement of complex

geometry structures are difficult to find exactly for this purpose, it is divided into small

parts and it is used to approximate by these several parts which are finite elements.

The condition for which the structure is equilibrium and the assumption of solution

which is approximate is done in each piece. For the stresses and displacement when

the conditions are satisfied they give an approximate solution.

6

1.3.1 Procedural Steps in FEM

1. Discretization (Selection of element Geometry)

2. Selection of the appropriate shape function. Determining the pattern for un-

known variable distribution across the continuum.

3. Development of the finite element equation. The application of appropriate prin-

ciples to form the equation governing the continuum and rewriting is presented

in the form of an equation by incorporating an appropriate form function.

4. Assemble the equations of the elements to obtain the global equation

5. Solution for unknowns.

1.4 Finite volume method (FVM)

Conservation properties are an important feature of FVM. The conservation principle

is to apply for each part of the control volume. Global conservation is also applicable

to it. It is applied to the rectangular Cartesian grids, non-orthogonal and also for

unstructured grids.

1.4.1 Procedural steps in FVM

1. The flow domain is divided into small control volumes.

2. In each control volume, the variables at the grid points are stored and defined at

the center of it.

3. For the next process extra nodes on the boundary are often added

4. Over each control volume the equations which transport are integrated.

7

1.5 Spectral Methods

Spectral methods give extremely accurate results. These methods have been stud-

ied intensively. The methods depend on the application and identify the nodes by

collocation, Galerkin and tau.

1.5.1 Collocation methods

Collocation methods are applicable for the non-linear problems and also for the coeffi-

cients which are complex.

1.5.2 Galerkin methods

Galerkin methods can give more convenient analysis and also its advantage is to optimal

error estimates.

1.5.3 Tau method

The tau method is used when both methods collocations and Galerkin cannot give

results.

In all of these methods, the disadvantage is that the condition number increase due

to the discretization of matrices, the rounding error reduces the exponential accuracy

that we expected theoretically. The discretization also makes difficult to use algebraic

solvers. The solution of the fourth-order equation is difficult due to these disadvantages

because approximation is applied for the higher-order and stability and accuracy are

not guaranteed. The methods such as Hermite, Legendre polynomials, Chebyshev sinc

and Fourier functions are observed and used to build a trivial function. These methods

sometimes transfer the self-adjoint problems into discrete algebraic, non-symmetric

problems. But all of these disadvantages can be reduced by a proper choice of trial and

test functions. MATLAB is used for numerical experiments and can give an accurate

result.

8

1.6 Quasi-linearlization for linear scalar second order
ODE

Let us consider the non-linear second-order differential equation [21]

z
′′

= g(x, z, z
′
), (1.22)

with boundary conditions

z(0) = 0, z(L) = A. (1.23)

Let

χ(x, z, z
′
, z

′′
) = z

′′ − g(x, z, z
′
). (1.24)

To derive the recurrence equation, note the nth and (n + 1)th iterations by zn and

zn+1, respectively, and required that, for the two iterations, χ = 0. For the nth iteration,

this gives

z
′′

n − g(x, zn, z
′

n) = 0. (1.25)

For the (n+ 1)th iteration, we get

χ(x, zn, z
′

n+1, z
′′

n+1) = χ(x, zn, z
′

n, z
′′

n) + (
∂χ

∂z
)n(zn+1 − zn)+

(
∂χ

∂z′)n(z
′

n+1 − z
′

n) + (
∂χ

∂z′′)n(z
′′

n+1 − z
′′

n) +,

(1.26)

or

−(
∂g

∂z
)n(zn+1 − zn)− (

∂g

∂z′)n(z
′

n+1 − z
′

n) + (z
′′

n+1 − z
′′

n) = 0. (1.27)

Substituting z′′
n from equation (1.25) into equation (1.27), we get

z
′′

n+1 − (
∂g

∂z′)nz
′

n+1 − (
∂g

∂z
)nzn+1 = g(x, zn, z

′

n)− (
∂g

∂z
)nzn − (

∂g

∂z′)nz
′

n. (1.28)

The boundary conditions are

zn+1 = 0, zL = A. (1.29)

9

1.7 CPU Time

The time of execution between the start and end of a given program is defined as CPU

time or CPU Execution time. This is the time CPU is taking to compute the program,

the routine of operating system included on program behalf execution and the other

running programs and time waiting for I/O does not include in it.

1.8 FLOPS

FLOPS stands for floating-point operations per second. It is used to calculate the num-

ber of floating-point operations that process, device or a core is capable of performing

within a second.

1.9 Band matrix

1.9.1 Bandwidth

Consider a matrix T = (ti,j) of n × n order. If the elements except the diagonal are

zero and the range of diagonally bordered band is determined by a1 and a2 which are

constants {
ti,j = 0 if j < i− a1 or j > i+ a2; a1, a2 ≥ 0

}
(1.30)

and the quantity a1 is known as lower bandwidth and a2 is upper bandwidth. The

maximum of a1 and a2 is the matrix bandwidth.

Definition

Band matrix is defined as a matrix that has reasonably small bandwidth.

1.9.2 Examples

Examples of matrices are

10

1. Diagonal matrix

2. Tridiagonal matrix

3. Pentadiagonal matrix

4. Triangular matrices

1.9.3 Diagonal matrix

In bandwidth definition if a1 = a2 = 0 then the matrix is diagonal.

In MATLAB A = diag(w) gives the square diagonal matrix which have the vector

elements of w on the main diagonal.

1.9.4 Tridiagonal matrix:

If a1 = a2 = 1 then the matrix is triangular.

In MATLAB we can write tridiagonal matrix as

P = 5;

x = −1;

y = 4;

z = 2;

G = diag(x× ones(1,P)) + diag(y× ones(1,P-1),1) + diag(z× ones(1,P-1),-1) (1.31)

11

1.9.5 Pentadiagonal matrix

In bandwidth definition if a1 = a2 = 2 and so on then the matrix is pentadiagonal

matrix. In MATLAB we can write pentadiagonal matrix for a1 = a2 = 2 as

P = 5;

x = −1;

y = 4;

z = 2;

h = 4;

g = 9;

G = diag(h*ones(1,P-2),2) + diag(a*ones(1,P))+

diag(y*ones(1,P-1),1) + diag(z*ones(1,P-1),-1)+diag(g*ones(1,P-2),-2) (1.32)

1.9.6 Triangular matrices

The upper and lower triangular matrices are define by

Upper triangular matrix

In bandwidth definition if a1 = 0, a2 = n − 1 is define as upper triangular matrix. In

MATLAB it can be code as b = triu(ones(5))

Lower triangular matrix

In bandwidth definition if a1 = n − 1, a2 = 0 is define as lower triangular matrix. In

MATLAB it can be code as b = tril(ones(5))

1.10 Sparse Matrix

A sparse matrix is defined as a matrix that contains very few non-zero components. In

other words, in a n × n matrix where m is column and n is a row matrix the number

12

of non-zero values is less than zero values such matrix is defined as a sparse matrix.

For example: 
0 0 0 0 9 0
0 7 0 0 0 0
1 0 0 2 0 0
0 0 0 0 0 5
0 0 1 0 0 0

 . (1.33)

In 50x50 matrix contains only 5 nonzero components and all the other entries are zero.

1.11 LU Factorization

The LU-factorization of a nonsingular matrix A if it has upper-triangular U and lower-

triangular L.

A = LU

For this form we can say A has LU decomposition. The uniqueness of this factorization

(when it exists) does not exist.

1.11.1 Doolittle factorization

If diagonal elements of L are 1 then it is a Doolittle factorization.
ζ11 ζ12 ζ13 · · · ζ1n
ζ21 ζ22 ζ23 · · · ζ2n
...
ζn1 ζn2 ζn3 · · · ζnn

 =


1 0 0 0 0
l21 1 0 · · · 0
...
ln1 ln2 ln3 · · · 1



u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
...
0 0 0 · · · unn


1.11.2 Crout factorization

If diagonal elements of U are 1 then it is a Crout factorization.
ζ11 ζ12 ζ13 · · · ζ1n
ζ21 ζ22 ζ23 · · · ζ2n
...
ζn1 ζn2 ζn3 · · · ζnn

 =


l11 0 0 0 0
l21 l22 0 · · · 0
...
ln1 ln2 ln3 · · · lnn




1 u12 u13 · · · u1n
0 1 u23 · · · u2n
...
0 0 0 · · · 1



13

1.11.3 Cholesky Factorization

Cholesky factorization of a matrix A is defined as if the matrix is real, symmetric and

also positive definite A = UTU where U represents the upper-triangular(L = UT)
ζ11 ζ12 ζ13 · · · ζ1n
ζ21 ζ22 ζ23 · · · ζ2n
...
ζn1 ζn2 ζn3 · · · ζnn

 =


u11 0 0 0 0
u21 u22 0 · · · 0
...
un1 un2 un3 · · · unn



u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
...
0 0 0 · · · unn


LU factorization of a matrix A which is non-singular.

1. Change the linear system of equations into matrices form with A, B andX, where

A represents augmented matrix, B and x shows constants and variable vectors

respectively.

2. Consider A = LU , where U and L are upper triangular matrix and lower tri-

angular matrix respectively also suppose that the diagonal entries are equal to

1.

3. To solve y′s consider Ly = B.

4. To solve variable vector x consider Ux = y, solve for the variable vectors x.

1.12 Thomas Algorithm

For the solution of a tridiagonal system of equation, we use the Thomas Algorithm

or Tridiagonal Matrix Algorithm (TDMA) that is the simplified form of Gaussian

elimination. For the system of n×n unknowns of the triangular system can be written

as:

xivi1 + yivi + zivi+1 = wi (1.34)

with the boundary conditions

v0 = D0 (1.35)

vns−1 = Dns−1 (1.36)

14

The vector v and the coefficients xi, yi, zi, wi are unknown and the matrix can be express

as 

1 0 0 · · · · · · 0
x1 y1 z1
0 x2 y2 z2

.
.
xns−2 yns−2 zns−2

0 0 0 1





v0
v1
v2
...

vns−3
vns−2
vns−1


=



D0

w1

w2
...

wns−3
wns−2
Dns−1


By applying boundary condition

y1 z1
x2 y2 z2

.
.
xns−2 yns−2 zns−2




v1
v2
...

vns−3
vns−2

 =


w1 − a1D0

w2
...

wns−3
wns−2zns−2Dns−1


The method eliminates the lower diagonal by the forward elimination and adjusts the

RHS and upper diagonal.

Generally, the TDMA is written as

z∗1 =


z1
y1

; i = 1

z∗1
yi − z∗i1xi

; i = 2, 3, ...ns− 3
(1.37)

w∗1 =


w1

y1
; i = 1

wi − w∗i1xi
yi − z∗i1xi

; i = 2, 3, ...ns− 2
(1.38)

Now by the back substitution we obtain the solution

vns−2 = w∗ns−2, i = 2, 3, ...ns− 2 (1.39)

vi = w∗i − z∗i vi+1, i = ns− 3, ns− 4, ...1 (1.40)

15

1.13 bvp4c

bvp4c [22] is MATLAB built-in function which is an effective solver. It is used to solve

the boundary values problems in MATLAB. To obtain the required accuracy it begins

with the solution of a system of equations with the initial guess provided at initial

mesh point and the step size is changed. It can help to reduce the error that comes in

poor guessing for the BVPs solution.

Syntax

sol = bvp4c(odefun, bcfun, solinit)

solinit = bvpinit(x, yinit, params)

where odefun is a function that deals with the differential equations f(x,y). Its form

dydx = odefun(x, y)

dydx = odefun(x, y, parameters)
(1.41)

For a column vector y and scalar x, odefun return a column vector, f(x,y) is represented

by dydx. Unknown parameters are represented by parameters. The function bcfun

deals with the residual in boundary conditions. To deal with the two-point in boundary

value condition which has the form bc(y(a),y(b)), form of bcfun is

res = bcfun(ya, yb)

res = bcfun(ya, yb, parameters)
(1.42)

where column vectors are ya and yb corresponding to y(a) and y(b). Unknown pa-

rameters are represented by parameters. The output res also represents the column

vector. For a solution, the initial guess is contained in the form of structure solinit.

The function bvpinit makes it manageable to form the guess structure.

solinit = bvpinit(x, yinit, parameters) (1.43)

where x is the interval, yinit is initial guess.

16

Chapter 2

Finite difference method (FDM) for
scalar ODEs

In this chapter, we solve the linear differential equation of second and third orders.

Further steps are also discussed in this chapter after the simplification of differential

equations by FDM. We will present the algorithm that is used for the solution of

coupled ODEs.

2.1 Linear differential equation of second order:

FDM is used for the solution of the second-order differential equation. This method is

reliable and gives accuracy to the results.

2.1.1 General second order ODE

Consider a linear differential equation of second-order [21]

d2u

dv2
+ A(v)

du

dv
+B(v)u = C(v). (2.1)

and the boundary conditions for equation (2.1) is

u(0) = α, u(L) = δ.

The grid points for this equation as in finite-difference form are defined as

vk = vk−1 + h, k = 1, 2, ...,M,

17

where vk = L. and total number of intervals is represented by M.

Now u be the variable and derivatives of u at vm are given by

u = uk, (2.2)

du

dv
=
uk+1 − uk−1

2h
, (2.3)

d2u

dv2
=
uk+1 − 2uk + uk−1

h2
. (2.4)

Now the equation (2.1) and boundary conditions of it become

uk+1 − 2uk + uk−1
h2

+ A(v)
uk+1 − uk−1

2h
+B(v)uk = C(v), (2.5)

or

akuk−1 + bkun + ckuk+1 = rk, (2.6)

ak = 2− hA(vk), bk = 2h2B(vk)− 4, ck = 2 + hA(vk) , rk = 2h2C(vk). (2.7)

It is written in matrix-vector form in compact form as

Au = s. (2.8)

where

u =


u1
u2
.
.

uM−1

 s =


s1
s2
.
.

sM−1

 =


r1 − αa1

r2
.
.

rM−1 − δcM−1

 (2.9)

The matrix A is tridiagonal matrix and is written in LU-Factorization as

A = LU. (2.10)

where

L =


ξ1
a2 ξ2

....
aM−2 ξM−2

aM−1 ξM−1

 (2.11)

18

and

U =


1 γ1

1 γ2
....

1 γM−2
1

 (2.12)

where U is upper and L is lower triangular matrix. Here the unknowns (ξi, γi), k =

1, 2, ...,M − 1 are to be related as

ξ1 = −1− λ

h
, γ1 =

λ

ξ1h
(2.13)

ξk = bk − akγk−1, k = 2, 3, ...,M − 1 (2.14)

ξkγk = ck, k = 2, 3,,M − 2 (2.15)

After defining these relations equation (2.8) becomes

LUu = s, Uu = z, and Lz = s. (2.16)

we have


ξ1
a2 ξ2

....
aM−2 ξM−2

aM−1





z1
z2
z3
.
.
.

zM−2
zM−1


=



s1
s2
s3
.
.
.

sM−2
sM−1


(2.17)

we can find the unknown elements of z

z1 = s1/ξ1, zk =
sk − akzk−1

ξk
, k = 2, 3, ...,M − 1, (2.18)

and

19


1 γ1

1 γ2
....

1 γM−2
1





u1
u2
.
.
.

uM−2
uM−1


=



z1
z2
.
.
.

zM−2
zM−1


. (2.19)

We then get

uk−1 = zk−1, uk = zk − γkuk+1, k = M − 2,M − 3, ..., 3, 2, 1, (2.20)

which is a solution of equation (2.8).

As a summary,the solution of equation (2.1) involves the following steps.

1. Reduce the given differential equation to its corresponding finite difference form.

2. Compare with equation (2.6) to identify ak,bk,ck, and rk.

3. Calculate ξk and γk from equation (2.15)

4. Calculate zk from equation (2.18)

5. Calculate yk from equation (2.20) which is the solution we required.

2.2 Linear differential equations of third order:

The third order linear differential equation can be solved by FDM. For this purpose, the

third order differential equation is changed into second order. The boundary condition

also changes when we change the equation order.

2.2.1 General third order ODE

Consider a third order linear differential equation

d3u

dv3
+ A(v)

d2u

dv2
+B(v)

du

dv
+ C(v)u = D(v). (2.21)

20

The boundary conditions of equation (2.21) are

u(0) = α,
du(0)

dv
= ε,

du(L)

dv
= λ. (2.22)

These equation replace into two equation

du

dv
= e,

d2e

dv2
= −A(v)

de

dv
−B(v)e− C(v)u+D(v). (2.23)

The boundary conditions of equation (2.23) are

u(0) = α, e(0) = ε, e(L) = λ. (2.24)

2.3 Thomas Algorithm for SFDM

Thomas algorithm is implemented in MATLAB to compute the solution G.

The tridiagonal matrix X can be written in LU-Factorization as

X = LU (2.25)

where

L =


ξ1
a2 ξ2

....
aM−2 ξM−2

aM−1 ξM−1

 (2.26)

and

U =


1 γ1

1 γ2
....

1 γM−2
1

 (2.27)

where U upper and L is lower triangular matrix, respectively. Here the unknowns

(ξk, γi), k = 1, 2, ...,M − 1 are to be related as

ξ1 = −1− λ

h
, γ1 =

λ

ξ1h
(2.28)

21

ξk = yk − xkγk−1, k = 2, 3, ...,M − 1 (2.29)

ξkγk = zk, k = 2, 3,,M − 2 (2.30)

After defining these relations equation (2.25) becomes

LUG = s, UG = z, and Lz = s. (2.31)

we have


ξ1
a2 ξ2

....
aM−2 ξM−2

aM−1





z1
z2
z3
.
.
.

zM−2
zM−1


=



s1
s2
s3
.
.
.

sM−2
sM−1


(2.32)

we can find the unknown elements of z

z1 = s1/ξ1, zk =
sk − xkzk−1

ξk
, k = 2, 3, ...,M − 1, (2.33)

and


1 γ1

1 γ2
....

1 γN−2
1





G1

G2

.

.

.
GM−2
GM−1


=



z1
z2
.
.
.

zM−2
zM−1


. (2.34)

We then get

Gk−1 = zk−1, Gk = zk − γkGk+1, k = M − 2,M − 3, ..., 3, 2, 1, (2.35)

Which gives solution of equation (2.25). g′
= G is in discretization form and we can

find g easily

gk+1 − gk
h

= Gk (2.36)

22

2.4 Numerical procedure of the simplified finite dif-
ference (SFDM) method

For the solution of coupled non-linear ODEs with the boundary conditions first, transfer

the non-linear ODEs into linear ODEs of the first order. This purpose is fulfilled by

the SFDM. The algorithm for the SFDM with the necessary details are as follows:

1. First we reduce the ODEs in the third order. The reduction forms second and

first-order group ODEs.

2. For further process, the system of non-linear ODEs is linearized by the Taylor

series.

3. Finite differences formulas are used to replace the derivatives in ODEs

4. Finally, we attain algebraic equations that Thomas algorithm can effectively

solve.

23

Third order ODE in f

Reduce order by f ′
= F

Linearize 2nd order ODEs

Apply Finite differences

Get a system AF = s

Thomas algorithm

Obtain F

The solution f from f
′
= F

Repeat for θ, φ and χ

Figure 2.1: Flow chart of SFDM.

24

Chapter 3

Simplified finite difference method
(SFDM) for two Coupled ODEs

SFDM is used to solve the coupled ODEs. In this chapter, we solve the two coupled

ODEs and compare their results with other methods. Here we present some problems

that appear in fluid mechanics.

Example 3.0.1.

Consider a two coupled ODEs [13]

g′′′ − g′2 + gg′′ + ε2 +M(ε− g′) = 0, (3.1)

θ′′ − Pro(nθg′ − gθ′) = 0. (3.2)

along with the boundary conditions

g(η) = 0, g′(η) = 1, θ(η) = 1, as η = 0

g′(η)→ ε, θ(η)→ 0, as η →∞

(3.3)

To initiate we assume g′
= G in equation (3.1) then we get

d2G

dη2
= G2 − gdG

dη
− ε2 −M(ε−G) = 0. (3.4)

25

This expression can be written for the function g as

φ1(η,G,G
′
) = G2 − gdG

dη
− ε2 −M(ε−G). (3.5)

Let us approximate dG
dη

in the above equation by an approximation of the forward

difference

φ1(η,G,G
′
) = G2 − gk(

Gk+1 −Gk

h
)− ε2 −M(ε−G). (3.6)

The second-order coefficients ODE read as

Xn = −∂φ1

∂G′ = −(−g) = g = gk, (3.7)

Yn = −∂φ1

∂G
= −2G−M, (3.8)

Yn = −2Gk −M, (3.9)

Zn = φ1(η,G,G
′
) + YnGk +Xn

Gk+1 −Gk

h
. (3.10)

After some manipulation equation (3.10) becomes

xkGk−1 + ykGk + zkGk+1 = wk, k = M,3, 2, 1, (3.11)

where

xk = −hXn + 2, yk = −4 + 2h2Yn, zk = hXn + 2 , wk = 2h2Zn. (3.12)

The expression written in matrix-vector form

XG = p. (3.13)

where

X =


y1 z1
x2 y2 z2

....
xM−2 yM−2 zM−2

xM−1 yM−1

 , (3.14)

26

G =


G1

G2

.

.
GM−1

 s =


p1
p2
.
.

pM−1

 . (3.15)

The tridiagonal matrix X can be written in LU-Factorization as

X = LU. (3.16)

by Thomas Algorithm we get

Gk−1 = zk−1, Gk = zk − γkGk+1, k = 1, 2, 3,M − 3,M − 2, (3.17)

which is a solution of equation (4.31). From the discretization form of f ′
= F we can

find f .

gk+1 − gk
h

= Gk (3.18)

which gives a required solution of equation (3.1). A similar procedure may also be

opting for θ.

d2θ

dη2
= Pro(nθG− g

dθ

dη
).

φ2(η, θ, θ
′
) = Pro(nθG− g

dθ

dη
).

Xnn =
∂φ2

∂θ′ = Pr0g, (3.19)

Xnn = −∂φ2

∂θ′ = Progk, (3.20)

Ynn = −∂φ2

∂θ
= −nProG, (3.21)

27

Ynn = −∂φ2

∂θ
= −nProGk. (3.22)

Table 3.1. −f ′′(0), −θ′(0) comparison with bvp4c and SFDM for n=1 and ε = 0.1

bvp4c CPU Time(sec) SFDM CPU Time(sec) Absolute Error
Pr M −f ′′(0) −θ′(0) (bvp4c) −f ′′(0) −θ′(0) (SFDM) −f ′′(0) −θ′(0)
0.7 0.1 1.009892 0.812049 2.476289 1.009868 0.827645 6.800476 0.000024 0.015596
1 - 1.009892 1.01274 2.351210 1.009868 1.016543 6.591892 0.000024 0.003803
3 - 1.009893 1.926745 2.338525 1.009868 1.919854 6.762179 0.000025 0.006891
7 - 1.009893 3.072613 2.586294 1.009868 3.058422 6.707079 0.000025 0.014191
10 - 1.009893 3.720453 2.392673 1.009868 3.700721 6.732499 0.000025 0.019732
0.7 0.2 1.048905 0.804591 2.297988 1.04823 0.8213916 7.076160 0.000675 0.016801
- 0.3 1.086569 0.797513 2.545248 1.08314 0.7996568 6.297520 0.00255 0.002014
- 0.4 1.12301 0.790780 2.391195 1.119332 0.7932026 6.207300 0.003678 0.002423
- 0.5 1.158335 0.784366 2.374771 1.154416 0.787055 6.077611 0.003919 0.002689

3.1 Results and discussion

In the attempt to check the accuracy of our purposed method SFDM, we have compared

the time of execution of SFDM with bvp4c using built-in MATLAB routine tic-toc and

also check the absolute error between SFDM and bvp4c. bvp4c is a built-in function

and it takes less time than SFDM. The absolute error shows the error in SFDM as

compare to bvp4c because SFDM is manual solver and bvp4c is a built-in function.

28

Chapter 4

Simplified finite difference method
(SFDM) for three and four Coupled
ODEs

In this chapter, we solve three and four coupled ODEs by SFDM and compare the

results with other methods and results. This chapter shows that the SFDM is reliable

for even three and four coupled ODEs.

4.1 SFDM for three coupled ODEs

Example 4.1.1.

Consider a third order coupled ODEs [14]

g
′′′

+ gg
′′ − 2n

n+ 1
g

′2 −Kpg
′
+M(E1 − g

′
) = 0, (4.1)

(1 +
4

3
Rd)p

′′
+ Pro(Nbp

′
φ

′
+ gp

′
+Nt(k

′
)2 +

2

n+ 1
sp+MEc(g

′ − E1)
2) = 0, (4.2)

χ
′′

+
Nt

Nb

p
′′

+ ProLegχ
′
= 0. (4.3)

along with boundary conditions

g
′
(∞) = 0, g′(0) = 1, g(0) = α(

1− n
1 + n

),

k(∞) = 0, k
′
(0) = Bi(θ(0)− 1), χ(∞) = 0, Nbχ

′
(0) +Ntk

′
(0) = 0 (4.4)

29

Assume g′
= G in equation (4.1), we may write

d2G

dη2
= −gdG

dη
+

2n

n+ 1
G2 +KpG−M(E1 −G). (4.5)

The function g can be expressed as

φ1(η,G,G
′
) = −gdG

dη
+

2n

n+ 1
G2 +KpG−M(E1 −G).

(4.6)

In the above equation we can approximate dG
dη

using forward difference approximation

φ1(η,G,G
′
) = −gk(

Gk+1 −Gk

h
) +

2n

n+ 1
G2
k +KpGk −M(E1 −Gk). (4.7)

The second order ODE coefficients can be read as

Xn = −∂φ1

∂G′ = −(−g) = g = gk, (4.8)

Yn = −∂φ1

∂G
= −(

4n

n+ 1
G+Kp +M) = −(

4n

n+ 1
Gk +Kp +M), (4.9)

Zn = φ1(η,G,G
′
) + YnGk +Xn

Gk+1 −Gk

h
. (4.10)

After some manipulation equation (4.10) becomes

xkGk−1 + ykGk + zkGk+1 = wk, k = M,3, 2, 1, (4.11)

where

xk = −hXn + 2, yk = −4 + 2h2Yn, zk = hXn + 2 , wk = 2h2Zn. (4.12)

The expression written in matrix-vector form

XG = p. (4.13)

30

where

X =


y1 z1
x2 y2 z2

....
xM−2 yM−2 zM−2

xM−1 yM−1

 , (4.14)

G =


G1

G2

.

.
GM−1

 s =


p1
p2
.
.

pM−1

 . (4.15)

The tridiagonal matrix X can be written in LU-Factorization as

X = LU. (4.16)

by Thomas Algorithm we get

Gk−1 = zk−1, Gk = zk − γkGk+1, k = 1, 2, 3,M − 3,M − 2, (4.17)

which is a solution of equation (4.5). From the discretization form of g′
= G we can

find g .

gk+1 − gk
h

= Gk (4.18)

gives a required solution of equation (4.1). A similar procedure may also be opting for

p and χ solutions.

d2p

dη2
= −(

Pro
(1 + 4

3
Rd)

(Nb
dp

dη

dχ

dη
+ g

dp

dη
+Nt(

dp

dη
)2 +

2

n+ 1
sk +MEc(

dg

dη
− E1)

2))

(4.19)

φ2(η, θ, θ
′
) = −(

Pro
(1 + 4

3
Rd)

(Nb(
pk − pk−1

h
)(
χk − χk−1

h
) + gk(

pk − pk−1
h

)+

Nt(
pk − pk−1

h
)2 +

2

n+ 1
spk +MEc(Gk − E1)

2)),

(4.20)

31

Xnn = −∂φ2

∂p′ = −(− Pro
(1 + 4

3
Rd)

(Nbχ
′
+ g + 2Ntk

′
)), (4.21)

Xnn =
Pro

(1 + 4
3
Rd)

(Nb(
χk − χk−1

h
) + gk + 2Nt

pk − pk−1
h

)), (4.22)

Ynn =
2sPro

(1 + 4/3Rd)(n+ 1)
, (4.23)

d2χ

dη2
=
−Nt

Nb

d2p

dη2
− LeProgχ

′
(4.24)

Q(η, χ, χ
′
) =
−Nt

Nb

pk−1 − 2pk + pk+1

h2
− LePro(gk

χk − χk−1
h

) (4.25)

Similarly, the coefficients for equation (4.3) are written as

Xnnn = ProLegk, Ynnn = 0. (4.26)

32

Table 4.1. −g′′
(0) value comparison for various n values from literature and α = 0.25

n Fang et al. [12] Khader and Ahmed [17] (bvp4c) CPU Time(sec) (SFDM) CPU Time(sec)
10 1.1433 1.1433 1.1433 3.243484 1.1433 5.489294
9 1.1404 1.1404 1.1404 3.238109 1.1404 4.421134
7 1.1323 1.1322 1.1323 1.244996 1.1323 4.901705
5 1.1186 1.1186 1.1186 3.2041311 1.1186 4.560193
3 1.0905 1.0904 1.0905 3.176654 1.0905 4.434601
1 1.0000 1.0000 1.0000 3.241500 1.0000 3.912580
0.5 0.9338 0.9337 0.9338 3.227510 0.9338 3.227510
0 0.7843 0.7843 0.7843 6.427043 0.7843 3.815771
-1/3 0.5000 0.5000 0.5000 3.227962 0.5024 4.916691

4.2 Results and discussion

For table 4.1 in the attempt to check the accuracy of our purposed method SFDM,

we have compared the time of execution of SFDM with bvp4c using built-in MATLAB

routine tic-toc and the results showed the accuracy of SFDM. SFDM took more time

than bvp4c because it is a manual solver and bvp4c is a built-in function. The accuracy

of SFDM results is good as compared with bvp4c.

4.3 Results and discussion

For table 4.2 in the attempt to check the accuracy of our purposed method SFDM,

we have compared the results of bvp4c with SFDM. The results showed good accuracy

and also we have compared the time of execution of SFDM with bvp4c using built-in

MATLAB routine tic-toc. SFDM took more time than bvp4c because it is a manual

solver and bvp4c is a built-in function. The accuracy of SFDM results is good as

compared with bvp4c.

The results are computed for N = 1000 grid points in the η direction. However,

the number of grid points varied in some calculations to achieve better accuracy.

33

Table 4.2. −f ′′
(0) value comparison with bvb4c for different parameters M,n, α,E1

and Kp.

M n α E1 Kp (−f ′′
(0))(bvp4c) CPU Time(sec) (−f ′′

(0))(SFDM) CPU Time(sec)
0 0.5 0.3 0.1 0.1 0.996308 1.708002 0.996308 4.532807
0.3 1.097247 1.681953 1.097247 2.762483
0.7 1.236298 1.593069 1.236298 3.458474
0.1 0 0.907889 1.796501 0.907889 3.583938

0.5 1.025923 1.641161 1.025923 2.462961
1 1.078835 1.675789 1.078835 3.275369

0.5 0.4 1.043448 2.579608 1.043448 3.233970
0.7 1.097515 2.332225 1.097515 3.347940
1 1.153791 2.328705 1.153791 3.406247

0.3 0.5 0.954581 2.292361 0.954581 3.308675
1 0.877466 2.2321733 0.877466 3.308496

1.5 0.807036 2.456861 0.807036 3.308675
0.1 0.1 1.025923 2.248751 1.025923 3.879703

0.3 1.12657 2.274022 1.12657 3.307774
0.5 1.216757 2.241876 1.216757 3.256483

Example 4.3.1.

Consider a third order coupled ODEs [15]

f
′′′

+Nf
′′′ −Nλ(

n+ 1

2
)f

′′2
f

′′′ − 2n

n+ 1
f

′2
+ ff

′′
+M(E − f ′

)−Kpf
′
+Grθ = 0,

(4.27)

(1 +
4

3
Rd)θ

′′
+ Pro(Nbθ

′
φ

′
+ fθ

′
+ +Nt(θ

′
)2 +MEc(f

′ − E)2 +
2

n+ 1
sθ) = 0,

(4.28)

φ
′′

+
Nt

Nb

θ
′′

+ Lefφ
′
= 0.

(4.29)

along with boundary conditions

f(0) = α(
1− n
1 + n

), f ′(0) = 1, f
′
(∞) = 0, θ(0) = 1,

θ(∞) = 0, Nbφ
′
(0) +Ntθ

′
(0) = 0, φ(∞) = 0. (4.30)

Assume f ′
= F in equation (4.27), we may write

d2F

dη2
= (

1

1 +N −Nλ(n+1
2

)(dF
dη

)2
)(

2n

n+ 1
F 2 − f dF

dη
−M(E − F) +KpF −Grθ).

(4.31)

34

Then writing this expression as

χ1(h, F, F
′
) = (

1

1 +N −Nλ(n+1
2

)(dF
dη

)2
)(

2n

n+ 1
F 2 − f dF

dη
−M(E − F) +KpF −Grθ),

(4.32)

and replace dF
dη

by forward difference approximation

χ1(h, F, F
′
) = (

1

1 +N −Nλ(n+1
2

)(Fk+1−Fk

h
)2

)(
2n

n+ 1
F 2
k − fk(

Fk+1 − Fk
h

)−

M(E − Fk) +KpFk)−Grθ.

(4.33)

The coefficients of second order ODE read

Xn = −∂χ1

∂F ′ = (
1

(1 +N −Nλ(n+1
2

)(dF
dη

)2)2
)[(λN(n+ 1)](

−2n

n+ 1
F 2+

f
dF

dη
+M(E − F)−Kp

θr
θr − θ

F +Grθ]− f(1 +N −Nλ(
n+ 1

2
)(
dF

dη
)2)] =

((
1

1 +N −Nλ(n+1
2

)(Fk+1−Fk

h
)2)

)[λN(n+ 1)](
−2n

n+ 1
F 2+

f
Fk+1 − Fk

h
+M(E − F)−KpF +Grθ)− fk(1 +N −Nλ(

n+ 1

2
)(
Fk+1 − Fk

h
))],

(4.34)

Yn = −∂χ1

∂F
= −(

1

1 +N −Nλ(n+1
2

)(dF
dη

)2
)(

4n

n+ 1
F +M +Kp)

= −(
1

1 +N −Nλ(n+1
2

)(Fk+1−Fk

h
)2

)(
4n

n+ 1
Fk +M +Kp),

(4.35)

Zn = χ1(h, F, F
′
) + YnFk +Xn

Fk+1 − Fk
h

. (4.36)

After manipulation in equations (4.34)-(4.36) the linear algebraic system in F are

written as

xkFk−1 + ykFk + zkFk+1 = wk, k = M,3, 2, 1, (4.37)

where

xk = −hXn + 2, yk = −4 + 2h2Yn, zk = hXn + 2 , wk = 2h2Zn. (4.38)

35

The expression written in matrix-vector form

XF = p. (4.39)

where

X =


y1 z1
x2 y2 z2

....
xM−2 yM−2 zM−2

xM−1 yM−1

 , (4.40)

F =


F1

F2

.

.
FM−1

 s =


p1
p2
.
.

pM−1

 . (4.41)

The tridiagonal matrix X can be written in LU-Factorization as

X = LU. (4.42)

by Thomas Algorithm we get

Fk−1 = zk−1, Fk = zk − γkFk+1, k = 1, 2, 3,M − 3,M − 2, (4.43)

which is a solution of equation (4.31). From the discretization form of f ′
= F we can

find f .

fk+1 − fk
h

= Fi (4.44)

which gives a required solution of equation (4.27). A similar procedure may also be

opting for θ and φ.

d2θ

dη2
= − Pro

(1 + 4
3
Rd)

(Nb
dθ

dη

dφ

dh
+ f

dθ

dη
+ Nt(

dθ

dη
)2 + MEc(

df

dη
− E)2 +

2

n+ 1
sθ).

36

χ2(h, θ, θ
′
) = − Pro

(1 + 4
3
Rd)

(Nb(
θk − θk−1

h
)(
φk − φk−1

h
)+fk(

θk − θk−1
h

)+Nt(
θk − θk−1

h
)2+

MEc(Fk − E)2 +
2

n+ 1
sθk).

Xnn = −∂χ2

∂θ′ = −(− Pro
(1 + 4

3
Rd)

(Nbφ
′
+ f + 2Ntθ

′
)), (4.45)

Xnn =
Pro

(1 + 4
3
Rd)

(Nb(
φk − φk−1

h
) + fk + 2Nt

θk − θk−1
h

)), (4.46)

Ynn =
Pro

(1 + 4
3
Rd)

2

n+ 1
s, (4.47)

Ynn =
Pro

(1 + 4
3
Rd)

2

n+ 1
s. (4.48)

d2φ

dη2
=
−Nt

Nb

d2θ

dη2
− LeProfφ

′
. (4.49)

χ3(h, φ, φ
′
) =
−Nt

Nb

θk−1 − 2θk + θk+1

h2
− LePro(fk

φk − φk−1
h

). (4.50)

Similarly, the coefficeints for equation (4.29) are

Annn = ProLefk, Bnnn = 0. (4.51)

37

Table 4.3. −f ′′
(0) values comparison for various n values from literature and α = 0.25

n Fang et al. [12] Daniel et al. [16] Present result (SFDM) CPU Time (sec)
10 1.1433 1.143316 1.143301 4.248827
9 1.1404 1.140388 1.140431 4.317216
7 1.1323 1.132281 1.132301 4.218688
5 1.1186 1.118587 1.118602 4.207821
3 1.0905 1.090490 1.090400 4.488553
1 1.0000 1.000001 1.000009 4.279683
0.5 0.9338 0.933828 0.933796 4.206902
0 0.7843 0.784284 0.784330 4.240561
-1/3 0.5000 0.500000 0.501889 4.497585
-0.5 0.0833 0.083289 0.086736 4.256302

4.4 Results and discussion

In the attempt to check the accuracy of our purposed method SFDM, we have checked

the time of execution of SFDM using built-in MATLAB routine tic-toc. The results

showed the accuracy and it took 4.3 second approximate CPU time.

38

4.5 SFDM for four coupled ODEs

SFDM for the solution of four coupled ODEs.

Example 4.5.1.

Consider a four coupled ODEs [20]

g′′′ + gg′′ − (g′)2 + 1 +B[1− (
1

2
g′′η + g′)] = 0, (4.52)

p′′ + Progp
′ +Nbφ

′p′ +Ntp
′2 − ProB

1

2
p′η = 0, (4.53)

ψ′′ +
Nt

Nb

p′′ + LegProψ
′ − ProB

1

2
ψ′η = 0, (4.54)

χ′′ + LbProgχ
′ − Pe[χψ′′ + ψ′χ′]− LbProB

1

2
χ′η = 0. (4.55)

along with the boundary conditions

g(η) = 0, g′(η) = ε1, p(η) = 1, ψ(η) = 1, χ(η) = 1, as η = 0

g′(η)→ 0, p(η)→ 0, ψ(η)→ 0, χ(η)→ 0, as η →∞

(4.56)

Assume g′
= G in equation (4.52), we may write

d2G

dη2
= −gdG

dη
+ (G)2 − 1−B[1− (

1

2

dG

dη
η +G)]. (4.57)

This expression can be written for the function g as

f(η,G,G
′
) = −gdG

dη
+ (G)2 − 1−B[1− (

1

2

dG

dη
η +G)], (4.58)

Let us approximate dG
dη

by forward difference approximation in above equation

f1(η,G,G
′
) = −gk(

Gk+1 −Gk

h
) +G2

kB[1− (
1

2
(
Gk+1 −Gk

h
)η +G)]. (4.59)

The second-order coefficients ODE read as

Xn = − ∂f1
∂G′ = −(−g +

B

2
η) = g − B

2
η = gk −

B

2
η, (4.60)

39

Yn = −∂f1
∂G

= −2G−B, (4.61)

Yn = −2Gk −B, (4.62)

Zn = f1(η,G,G
′
) + YnGk +Xn

Gk+1 −Gk

h
. (4.63)

After some manipulation equation (4.63) becomes

xkGk−1 + ykGk + zkGk+1 = wk, k = M,3, 2, 1, (4.64)

where

xk = −hXn + 2, yk = −4 + 2h2Yn, zk = hXn + 2 , wk = 2h2Zn. (4.65)

The expression written in matrix-vector form

XG = p. (4.66)

where

X =


y1 z1
x2 y2 z2

....
xM−2 yM−2 zM−2

xM−1 yM−1

 , (4.67)

G =


G1

G2

.

.
GM−1

 s =


p1
p2
.
.

pM−1

 . (4.68)

The tridiagonal matrix X can be written in LU-Factorization as

X = LU. (4.69)

40

Now solve by Thomas Algorithm we get

Gk−1 = zk−1, Gk = zk − γkGk+1, k = M − 2,M − 3, ..., 3, 2, 1, (4.70)

which is a solution of (4.57). From the discretization form of g′
= G we can find g .

gk+1 − gk
h

= Gk (4.71)

gives a required solution of equation (4.52). A similar procedure may also be opting

for p, χ and ψ.

d2p

dη2
= −Prog

dp

dη
−Nbψ

′ dp

dη
−Nt(

dp

dη
)2 + ProB

1

2

dp

dη
η

f2(η, p, p
′
) = −Prog

pk − pk−1
h

−Nbψ
′pk − pk−1

h
−Nt(

pk − pk−1
h

)2 + ProB
1

2

pk − pk−1
h

η

Xnn = −∂f2
∂p′ = Prog +Nb

dψ

dη
+ 2Nt

dp

dη
− ProB

1

2
η, (4.72)

Xnn = −∂f2
∂p′ = Prog +Nb

ψk − ψk−1
h

+ 2Nt
pk − pk−1

h
− ProB

1

2
η,

(4.73)

Ynn = 0, (4.74)

Ynn = 0. (4.75)

f3(η, ψ, ψ
′
) = −Nt

Nb

p′′ − LegProψ′ + ProB
1

2
ψ′η.

(4.76)

f3(η, ψ, ψ
′
) == −Nt

Nb

pk−1 − 2pk + pk+1

h2
− LegPro

ψk − ψk−1
h

+ ProB
1

2

ψk − ψk−1
h

η

(4.77)

41

Similarly, the coefficeints for equation (4.54) are written as

Xnnn = LegkPro − ProB
1

2
ψ′η, Ynnn = 0. (4.78)

f4(η, χ, χ
′
) = −LbProgχ′ + Pe[χψ

′′ + ψ′χ′] + LbProB
1

2
χ′η.

(4.79)

f4(η, χ, χ
′
) = −LbProg

χk − χk−1
h

+ Pe[χ
ψk−1 − 2ψk + ψk+1

h2
+

ψk − ψk−1
h

χk − χk−1
h

] + LbProB
1

2

χk − χk−1
h

η.

(4.80)

Similarly, the coefficeints for equation (4.55) are written as

X4 = LbProgkPro − LbProB
1

2
η − Pe

ψk − ψk−1
h

, Y4 = −Pe
ψk−1 − 2ψk + ψk+1

h2
.

(4.81)

Table 4.4. g′′(0), p′(0) and −ψ′(0) comparison when Pe = 1,ε1 = 1,Le = 2,B = 0,
Nt = Nb = 0.5, and Pro = 1 and also set and B = 1 .

Ibrahim et al.[18] Zaimi et al.[19] Naganthran et al.[20] SFDM CPU Time(sec)
G′(0) 0 0 0 0 4.872384
k′(0) 0.4767 0.474737 0.476737 0.4626 4.872384
ψ′(0) 1.0452 1.045154 1.045154 1.0956 4.872384

4.6 Results and discussion

The results by the simplified difference method show accuracy when compare with

other methods. The application of this method is easy and reliable for a different

number of coupled equations.

42

Chapter 5

Summary

The main purpose of this research is the solution of coupled ODEs. Chapter 1 of

the thesis consists of some basic definitions and introduction of different methods that

are used for the approximation of the differential equations like FDM, FEM, FVM

and spectral methods. Defining the quasilinearzation for the transformation of non-

linear coupled ordinary differential equations into linear differential equations. Thomas

algorithm and bvp4c are defined.

In chapter 2, the method is defined for the solution of general second and third-order

linear differential equations by FDM. The Thomas algorithm for SFDM is described.

The Numerical procedure of SFDM is explained which is used in the next chapters for

the solution of coupled ODEs.

In chapter 3, we worked on two coupled ODEs and solved it by SFDM and compared

the result with bvp4c. We check the accuracy of SFDM by comparing it with bvp4c

results. The CPU time of SFDM is also checked by comparing it with bvp4c. The

results are accurate.

In chapter 4, we solve three and four coupled ODEs with SFDM. We also checked its

CPU time of SFDM. The results show accuracy when compare with other methods

and show reliability when it works with more number of coupled equations.

The results are accurate and the method is reliable because it can be used for a different

number of coupled ODEs and give an accurate result.

43

Bibliography

[1] Abarbanel, Saul, Adi Ditkowski, and Bertil Gustafsson. "On error bounds of finite

difference approximations to partial differential equationsâĂŤtemporal behavior

and rate of convergence." Journal of Scientific Computing 15, no. 1 (2000): 79-116.

[2] Mickens, R. E. "Analytical and numerical study of a non-standard finite difference

scheme for the unplugged van der Pol equation." Journal of sound and vibration

245, no. 4 (2001): 757-761.

[3] Farjadpour, Ardavan, David Roundy, Alejandro Rodriguez, Mihai Ibanescu, Pe-

ter Bermel, John D. Joannopoulos, Steven G. Johnson, and Geoffrey W. Burr.

"Improving accuracy by subpixel smoothing in the finite-difference time domain."

Optics letters 31, no. 20 (2006): 2972-2974.

[4] McGee, Shelly, and Padmanabhan Seshaiyer. "Finite difference methods for cou-

pled flow interaction transport models." In Electron. J. Differ. Equ. Conf, vol. 17,

pp. 171-184. 2009.

[5] Dolicanin, C. B., V. B. Nikolic, and D. C. Dolicanin. "Application of finite differ-

ence method to study of the phenomenon in the theory of thin plates." Scientific

Publications of the State University of Novi Pazar 2, no. 1 (2010): 29-43.

[6] Mehra, Mani, Nutan Patel, and Rahul Kumar. "Comparison between different

numerical methods for discretization of PDEsâĂŘA short review." In AIP Con-

ference Proceedings, vol. 1281, no. 1, pp. 599-602. American Institute of Physics,

2010.

44

[7] Chambolle, Antonin, Stacey E. Levine, and Bradley J. Lucier. "An upwind finite-

difference method for total variationâĂŞbased image smoothing." SIAM Journal

on Imaging Sciences 4, no. 1 (2011): 277-299.

[8] I. SÃĳngÃĳ and H. Demir, "Application of the Hybrid Differential Transform

Method to the Nonlinear Equations," Applied Mathematics, Vol. 3 No. 3, 2012,

pp. 246-250.

[9] Izadian, Jalal, Nasibeh Ranjbar, and Maryam Jalili. "The generalized finite dif-

ference method for solving elliptic equation on irregular mesh." World Appl. Sci.

J.(ISSN 1818 (2013): 95-100.

[10] Lakshmi, R., and M. Muthuselvi. "Numerical solution for boundary value problem

using finite difference method." Int. J. Innovative Res. Sci., Eng. Technol 2 (2013):

5305-5313.

[11] Gulkac, Vildan. "An Implicit Finite-Difference Method for Solving the Heat-

Transfer Equation." International Journal of Scientific and Innovative Mathemat-

ical Research 3 (2015): 39-44

[12] Fang, Tiegang, Ji Zhang, and Yongfang Zhong. "Boundary layer flow over a

stretching sheet with variable thickness." Applied Mathematics and Computation

218, no. 13 (2012): 7241-7252.

[13] Zobia Wajid. "Numerical study of boundary layer flow with variable fluid proper-

ties on a nonlinear and exponentially stretching sheet." MS Thesis, 2017

[14] Muhammad Irfan, Muhammad Asif Farooq, and Tousif Iqra. "A New Computa-

tional Technique Design for EMHD Nanofluid Flow Over a Variable Thickness

Surface With Variable Liquid Characteristics." Frontiers in Physics 8 (2020): 66.

[15] Muhammad Irfan, Muhammad Asif Farooq, and Tousif Iqra. ”A Simplified Fi-

nite Difference Method for EMHD Powell-Eyring Nanofluid Flow over a Variable

Thicked Surface and Variable Liquid Properties”(Submitted) .

45

[16] Daniel YS, Aziz ZA, Ismail Z, Salah F. Impact of thermal radiation on electrical

MHD flow of nanofluid over nonlinear stretching sheet with variable thickness.

Alexandria Engineering Journal. 2018 Sep 1;57(3): 2187-97.

[17] Khader, M. M., and Ahmed M. Megahed. "Numerical solution for boundary layer

flow due to a nonlinearly stretching sheet with variable thickness and slip velocity."

The European physical journal plus 128, no. 9 (2013): 100.

[18] Ibrahim, Wubshet, Bandari Shankar, and Mahantesh M. Nandeppanavar. "MHD

stagnation point flow and heat transfer due to nanofluid towards a stretching

sheet." International journal of heat and mass transfer 56, no. 1-2 (2013): 1-9.

[19] Zaimi, Khairy, Anuar Ishak, and Ioan Pop. "Stagnation-point flow toward a

stretching/shrinking sheet in a nanofluid containing both nanoparticles and gyro-

tactic microorganisms." Journal of heat transfer 136, no. 4 (2014): 2-8

[20] Naganthran, Kohilavani, Md Faisal Md Basir, Sayer Obaid Alharbi, Roslinda

Nazar, Anas M. Alwatban, and Iskander Tlili. "Stagnation point flow with time-

dependent bionanofluid past a sheet: Richardson extrapolation technique." Pro-

cesses 7, no. 10 (2019): 722.

[21] Na, Tsung Yen, ed. Computational methods in engineering boundary value prob-

lems. Academic Press, 1980.

[22] L F Shampine, J Kierzenka and M W Reichelt Available at

http://www.mathsworks.com (2003)

46

	Tousif.pdf
	tousif iqra9
	tousif iqra10

