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Abstract

The main aim of this thesis is to numerically preserve quadratic first integrals of

Hamiltonian systems using symplectic method. We use classical Noether approach

to calculate Noether symmetries and corresponding first integrals of Hamiltonian

systems. Furthermore, by using complex Lie symmetry method we determine the

Noether-like operators and associated first integrals of two dimensional system of

Harmonic oscillator. For the numerical preservation of the first integrals of Hamilto-

nian systems, we integrate these systems with two stages Gauss symplectic Runge-

Kutta method of order four. It is observed that only symplectic methods show good

long time preservation of the first integrals.
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Chapter 1

Introduction

In real world, physical phenomena can be analyzed and understood by the process

of mathematical modeling. These models describe the dynamics of related physical

phenomenon. For example, motion of mechanical systems in Physics, chemical reac-

tions in Chemistry, population dynamics in Biology, stock trends in Economics, are

all studied through their mathematical models. These models are expressed in the

language of ordinary differential equations (ODEs) or partial differential equations

(PDEs). In this thesis, we will explore an important class of ODEs known as Hamil-

tonian system. These systems have some conserved quantities. Our main aim is

to calculate these conserved quantities and then numerically integrate Hamiltonian

systems such that their solutions also preserve the conserved quantities.

1.1 Hamiltonian Systems

Hamiltonian mechanics was first formulated by Irish mathematician William Rowan

Hamilton in 1824 to describe evolution of the dynamical systems [30]. Hamiltonian

mechanics is a form of classical mechanics, in which equations of motion depend on

generalized coordinates qi and generalized momenta pi. The Hamiltonian equations

of motion are defined as

p′i = −∂H
∂qi

,

q′i =
∂H

∂pi
,

(1.1)
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for i = 1, 2, · · · , n. The terms p′i and q′i represent the derivatives of functions p

and q with respect to time t, where pi = (p1, p2, · · · , pn), qi = (q1, q2, · · · , qn) are

generalized coordinates and momenta respectively. H(p, q) is called the total energy

of Hamiltonian system and it is also known as Hamiltonian which depends upon

position and momentum [16].

The number of (pi, qi) pairs in Hamilton’s equations represent the number of de-

grees of freedom of a Hamiltonian system. In many physical systems, Hamiltonian

is in separable form, and is defined as sum of the kinetic and potential energies of

the system i.e.

H(p, q) = K(p) + T (q), (1.2)

where K(p) represents kinetic energy and T (q) is the potential energy.

In Lagrangian framework, the equations of motion are given as

∂L

∂qi
=

d

dt

(
∂L

∂q′i

)
, (1.3)

where L is the Lagrangian of the system (1.1) and is defined as the difference of

kinetic and potential energy of the system which is written as

H(p, q) = K(p)− T (q). (1.4)

Moreover, we can also write y = (p, q), then equation (1.1) takes the form

dy

dt
= J−1∇H, (1.5)

where ∇ = (∂p1 , · · · , ∂pn , ∂q1 , · · · , ∂qn) is the gradient operator and J is skew sym-

metric matrix having I as n× n identity matrix i.e.

J =

[
0 I

−I 0

]
.

Example 1.1.1. Harmonic Oscillator

A Harmonic oscillator is a mass spring system having kinetic energy p2

2m
and po-

tential energy 1
2
kq2, where p is momentum, q is distance of spring from equilibrium
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position and k is a spring constant. The total energy of a system is given by

H(p, q) =
p2

2m
+
kq2

2
. (1.6)

In the case, when m = k = 1, differential equations for Harmonic oscillator are

p′ = −q,

q′ = p.
(1.7)

Hamiltonian systems possess some remarkable properties due to their special struc-

ture, which are described in the following section.

1.1.1 Energy Conservation

In the case of autonomous Hamiltonian systems, the total energy of the system

remains conserved. The total energy is first integral and is given as

dH

dt
=

n∑
i=1

∂H

∂pi
p′i +

n∑
i=1

∂H

∂qi
q′i. (1.8)

By using equation (1.1), we have

dH

dt
=

n∑
i=1

∂H

∂pi
(−∂H

∂qi
) +

n∑
i=1

∂H

∂qi
(
∂H

∂pi
) = 0. (1.9)

This shows that the value of the Hamiltonian remains constant. Thus for a conser-

vative system, trajectories in phase space are confined to a constant energy surface.

1.1.2 Symplectic Structure

Another important qualitative property of Hamiltonian system is that their phase

flow is symplectic [15], which means that area is preserved in the phase space. For

the Hamiltonian systems the phase space is a 2n-dimensional space with (p, q) co-

ordinates. There are different ways to check symplecticity. Here, we explain one of

them.
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Area Preservation through Jacobian:

A linear mapping φ : (p, q)→ (p∗, q∗) is symplectic if,

φ′TJφ′ = J.

To prove that the transformation φ is area preserving, we assume that the Jacobian

of transformation has a unit determinant.

φ′ =

(
∂p∗

∂p
∂p∗

∂q
,

∂q∗

∂p
∂q∗

∂q

)
,

=
∂p∗

∂p

∂q∗

∂q
− ∂p∗

∂q

∂q∗

∂p
= I.

We have,

φ′TJφ′ =

(
∂p∗

∂p
∂q∗

∂p
∂p∗

∂q
∂q∗

∂q

)(
0 I

−I 0

)(
∂p∗

∂p
∂p∗

∂q
∂q∗

∂p
∂q∗

∂q

)
.

=

(
∂p∗∂q∗

∂p∂p
− ∂p∗∂q∗

∂p∂p
∂p∗∂q∗

∂p∂q
− ∂p∗∂q∗

∂q∂p
∂p∗∂q∗

∂q∂p
− ∂p∗∂q∗

∂p∂q
∂p∗∂q∗

∂q∂q
− ∂p∗∂q∗

∂q∂q

)
.

Thus

φ′TJφ′ =

(
0 I

−I 0

)
= J.

1.2 Symmetries and Conservation laws

Symmetry is a transformation that leaves a geometrical object invariant. Invariant

means that the structural properties of the geometrical object remain unchanged.

A more precise definition of symmetry in mathematics is that it is a transformation

which leaves the differential equation invariant. Some examples of point symme-

try are translation, rotation and reflection and scaling. In case of reflection, any

geometrical shape is reflected about the axis. Then the shape, angle and size of
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that shape remain the same, the only difference is we get the reflected image in the

opposite direction. In other words, we can say the orientation of the shape gets

changed. Similarly in translation, if an object is displaced in some direction then it

will remain invariant.

In the nineteenth century, a Norwegian mathematician, Marius Sophus Lie intro-

duced a remarkable method of solving differential equations using continuous groups

of transformations, known as Lie groups [21]. He proposed that under continuous

transformations differential equations will remain invariant and these transforma-

tions map solution to another solution of the same differential equation. Lie sym-

metry method is an important tool to find the solution of linear as well as nonlinear

DEs. Another application of Lie’s work is to find first integrals (conservative laws)

of DEs which plays an important role in order reduction and to study physical prop-

erties of dynamical systems. For a given system, the existence of a symmetry means

that a conserved physical quantity exists.

In this section, we review some basic definitions and concepts of Lie symmetry

analysis [4,18]. We use Lie symmetry methods to calculate the first integrals of our

Hamiltonian systems.

1.2.1 Point Transformation

An nth order ODE is given as

E(t, y, y′, y′′, · · · , y(n)) = 0, (1.10)

where t is independent and y is the dependent variables, respectively. While deal-

ing with differential equations, one tries to simplify the equation by an appropriate

change of variables, that is the transformation of dependent and independent vari-

ables.

t̃ = t̃(t, y), ỹ = ỹ(t, y). (1.11)

Equation (1.11) is known as point transformation as it maps point (t, y) to point

(t̃, ỹ). Consider an invertible point transformation which depends on at least one

arbitrary parameter ε,

t̃ = t̃(t, y; ε), ỹ = ỹ(t, y; ε), (1.12)

5



having identity at ε = 0,

t̃(t, y; 0) = t, ỹ(t, y; 0) = y,

where ε ∈ R. The transformations (1.12) form a one-parameter group of point

transformations [31]. A one-parameter group of point transformations leaves the

family of solution curves of ODEs invariant.

1.2.2 Lie Symmetry Generator and its Prolongation

To explain the idea of infinitesimal transformations we consider the point transfor-

mations (1.12) and expand its Taylor’s series at ε = 0,

t̃ = t̃(t, y; ε) = t̃ |ε=0 +ε
∂t̃

∂ε
|ε=0 + . . . ,= t+ εXt+ . . . ,

ỹ = ỹ(t, y; ε) = ỹ |ε=0 +ε
∂ỹ

∂ε
|ε=0 + . . . ,= y + εXy + . . . ,

(1.13)

where the functions ξ(t, y) and η(t, y) are defined as,

ξ(t, y) =
∂t̃

∂ε
|ε=0, η(t, y) =

∂ỹ

∂ε
|ε=0 . (1.14)

The operator X

X = ξ(t, y)
∂

∂t
+ η(t, y)

∂

∂y
, (1.15)

is called the infinitesimal generator or infinitesimal operator of the transformations

(1.12). The functions ξ and η are the components of tangent vector X.

Example 1.2.1.

The one-parameter group of rotation is given by,

t̃ = t cos ε− y sin ε,

ỹ = t sin ε+ y cos ε,
(1.16)

where

ξ(t, y) =
∂t̃

∂ε
|ε=0= −y,

η(t, y) =
∂ỹ

∂ε
|ε=0= t.

(1.17)
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The associated infinitesimal generator of rotation is,

X = −y ∂
∂t

+ t
∂

∂y
. (1.18)

In order to apply a point transformation (1.12) to an ODE, we have to extend

(prolong) the point transformation (1.12) to the derivatives y(n). The prolongation

of the infinitesimal generator gives the following expressions

t̃ = t+ εξ(t, y) + · · · = t+ εXt+ · · · ,

ỹ = y + εη(t, y) + · · · = y + εXy + · · · ,

ỹ′ = y′ + εη(1)(t, y, y′) + · · · = y′ + εXy′ + · · · ,
...

ỹ(n) = y(n) + εη(n)(t, y, y′, · · · , y(n)) + . . . = y(n) + εXy(n) + · · · ,

(1.19)

where η(1), . . . , η(n) are the prolongation coefficients of η(t, y). For η(1) we have

η(1) =
dη

dt
− y′dξ

dt
. (1.20)

Similarly η(n) is defined in [26] as,

η(n) =
dη(n−1)

dt
− y(n)dξ

dt
, n ≥ 2, (1.21)

for positive integer n. Here d
dt

is the differential operator

d

dt
=

∂

∂t
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · ·+ y(n)

∂

∂y(n−1)
. (1.22)

Thus, the prolongation of symmetry generator up to nth order is represented by,

X(n) = ξ
∂

∂t
+ η

∂

∂y
+ η(1)

∂

∂y′
+ η(2)

∂

∂y′′
+ . . .+ η(n)

∂

∂y(n)
. (1.23)

The first two prolongation coefficients η(1) and η(2) are expressed as

η(1) =ηt + (ηy − ξt)y′ − ξyy′2

η(2) =ηtt + (2ηty − ξtt)y′ + (ηyy − 2ξty)y
′2 − ξyyy′3

+ (ηy − 2ξt − 3ξyy
′)y′′.

(1.24)
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Theorem 1.2.1. An nth order ODE admits a group of symmetries with generator

X if and only if

X(n)E |E=0= 0, (1.25)

holds, where X(n) denotes nth order prolongation of the symmetry generator (1.15).

The proof is given in [31].

Example 1.2.2.

Consider free particle differential equation

y′′ = 0. (1.26)

By applying second order extension of generator X on equation (1.26)

X(2)y′′|y′′=0 = 0, (1.27)

gives

η(2) = 0. (1.28)

Inserting the value of (1.24) in the above expression, we get

ηtt + (2ηty − ξtt)y′ + (ηyy − 2ξty)y
′2 − ξyyy′3 = 0. (1.29)

Now comparing coefficients of different power of y′, we obtain

y′0 : ηtt = 0,

y′1 : 2ηty − ξtt = 0,

y′2 : ηyy − 2ξty = 0,

y′3 : ξyy = 0.

(1.30)

Solving the above system, we get

ξ(t, y) = (a1t+ a2)y + a3t
2 + a7t+ a8,

η(t, y) = a1y
2 + (a3t+ a4)y + a5t+ a6,

(1.31)

where a1, a2, · · · , a8 are arbitrary constants. Thus, we obtain eight Lie point sym-

metry generators.

8



X1 = ty
∂

∂t
+ y2

∂

∂y
,

X2 = y
∂

∂t
,

X3 = t2
∂

∂t
+ ty

∂

∂y
,

X4 = y
∂

∂y
,

X5 = t
∂

∂y
,

X6 =
∂

∂y
,

X7 = t
∂

∂t
,

X8 =
∂

∂t
.

(1.32)

1.2.3 Conservation Laws

A conservation law is a quantity of an isolated physical system which does not dissi-

pate with time i.e., the quantity remain conserved. It is a function of the dependent

variables that is a constant along each trajectory of the system [6]. Examples of

conserved quantities are energy, linear momentum and angular momentum, etc. In

case of energy conservation, the total energy in an isolated system does not change

with time, though it may change its form. Conserved quantities of DEs are also

known as the first integrals of these equations. They are also called constants of

motion or invariants. Mathematically they are represented as

dI

dt
= 0, (1.33)

here I is any function of dependent variables. So for a conservative system the rate

of change in I with respect to time is zero. In the case of Hamiltonian system, the

Hamiltonian is a first integral.

1.3 Numerical Methods for Hamiltonian Systems

In this section, we give a brief introduction of numerical methods which are used

to find approximate solutions of ODEs. The solutions of ODEs give enormous
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insight in the evolution of underlying physical system. In some cases, these equa-

tions can be solved analytically but most of the time it is not possible to find their

analytical solutions. Therefore, approximation techniques are used to find their so-

lutions. Different numerical methods are available: such as the one-step methods

like the Runge-Kutta methods and multistep methods to find the numerical solution

of ODEs [13].

During the past few years, special interest has been developed in studying numer-

ical schemes that preserve some qualitative characteristic of the flow of differential

equations [23]. The reason is that many physical systems have some hidden geo-

metrical properties, such as symplectic structure, symmetries, phase-space volume,

Lyapunov functions and first integrals. Standard numerical methods completely ig-

nores the preservation of such quantities, therefore we are interested in numerical

methods that preserve the geometric properties of ODEs, while also showing good

stability and convergence. These methods are termed as structure preserving nu-

merical methods. They are very helpful in stimulation of dynamical systems for

long time periods. If traditional numerical methods are used to solve Hamiltonian

systems, then they will not preserve Hamiltonian structure. Therefore, we are using

structure preserving numerical methods for the solutions of Hamiltonian systems.

In this thesis, we are considering symplectic numerical methods for the preservation

of the first integrals of Hamiltonian systems. Pioneering work on symplectic numer-

ical methods was by Ruth [28], de-Vogelaere and Feng [11]. Sanz-Serna, Suris [3,29]

and Lasagni, found that by having suitable choice of coeffcients implicit Runge-

Kutta methods become symplectic. Only one-step methods can be symplectic [14].

Symplectic numerical methods are helpful in long time stimulation of Hamiltonian

systems.

The outline of the thesis as follows: In Chapter 1, we give a brief introduction

of Hamiltonian systems and some of its properties togather with a brief introduc-

tion of suitable numerical methods. Then, we review some basic definitions and

concepts of Lie symmetry analysis. In Chapter 2, we present Noether’s theorem

and explain how it is used to calculate the first integrals of Hamiltonian systems.

We then define complex Lie symmetries and discuss complex Noether approach and

Noether-like operators to determine the first integrals for complex system of ODEs.

10



In Chapter 3, a review of the traditional numerical methods for solving system of

ODEs and conservative problems is given. In Chapter 4, we calculate first integrals

of Hamiltonian systems. The invariants for complex ODEs are determined by using

Noether’s theorem for restricted system of complex ODEs. In Chapter 5, numerical

experiments are performed to check preservation of the first integrals using sym-

plectic Runge-Kutta method. In last chapter, we discuss numerical results which we

have achieved and conclude the results.
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Chapter 2

Noether Symmetries and First

Integrals

In this chapter, we review some basic definitions and formulas related to Noether

symmetries and first integrals of ODEs. Then we briefly explain some results re-

lated to complex Noether symmetries, which are used to calculate first integrals for

restricted complex ODEs.

The connection between symmetries and conservation laws is one of the most pro-

found relation discovered in the twentieth century. Conservation laws play a signifi-

cant role in finding the solutions of differential equations [12,26]. Different methods

have been developed over the years to calculate conservation laws or first integrals

of system of ODEs. These methods are: the direct method, the characteristic or

multiplier method, the celebrated Noether approach and partial Noether approach.

Details are given in [17,20,22,25]. A large amount of literature is available regarding

symmetries and construction of first integrals for scalar ODEs. In this thesis, we are

using Noether approach to calculate the first integral for real ODEs and restricted

complex ODEs.

In 1918, Amalie Emmy Noether, a German mathematician, established a classical

relation which relates variational symmetries (symmetries of a variational problem)

with conservation laws for Euler-Lagrange equations [24]. She proved that there

exists a correspondence between each variational symmetries and conservation laws

(first integrals) of the associated Euler-Lagrange equations. For example, a sys-
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tem which is invariant under time translation gives conservation of energy, while

a system which remains invariant under space translation and rotations is related

with conservation of linear momentum and angular momentum. Using the relation

between Noether symmetries and first integrals we can reduce and derive the exact

solutions of ODEs. Here, to calculate the first integrals of second order ODEs, we

restrict our consideration of Lagrangian up to only first order derivative.

A function L(t, y, y′) is a Lagrangian for a second order ODE

y′′ = f(t, y, y′), (2.1)

if equation (2.1) is equivalent to the Euler-Lagrange equation

∂L

∂y
− d

dt
(
∂L

∂y′
) = 0. (2.2)

Definition 2.0.1. The operator

X = ξ(t, y)
∂

∂t
+ η(t, y)

∂

∂y
, (2.3)

is called a Noether point symmetry generator [9] corresponding to the Lagrangian

L(t, y, y′) of equation (2.1), if there exist a function B(t, y) known as gauge function

such that the following condition holds,

X(1)(L) +D(ξ)L = D(B), (2.4)

where X(1) is first order prolongation of symmetry generator and D = d
dt

is the total

differential operator.

Noether’s Theorem 2.0.1.

If X is a Noether point symmetry generator of a given Lagrangian L(t, y, y′), then

there exist a function

I = ξL+ (η − ξy′)∂L
∂y′
−B, (2.5)

known as Noether first integral of the Euler-Lagrange equation (2.2), with respect

to symmetry generator X [27].

Theorem 2.0.2.

The first integral I associated with Noether point symmetry X satisfies the condition

X(1)I = 0. (2.6)
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2.1 Noether Symmetries and First Integrals for

System of ODEs

In this section, we extend the operator of Noether symmetry generator for two-

dimensional system of ODEs.

Consider a generalized system of second order ODEs

y′′ = f(t, y, z, y′, z′),

z′′ = g(t, y, z, y′, z′),
(2.7)

having t as independent variable and y, z as two real dependent variables. The

symmetry generator is defined as,

X = ξ(t, y, z)
∂

∂t
+ η(t, y, z)

∂

∂y
+ ζ(t, y, z)

∂

∂z
, (2.8)

where the total derivative is,

D =
d

dt
=

∂

∂t
+ y′

∂

∂y
+ z′

∂

∂z
. (2.9)

The first order extension of symmetry generator X is given in [20] as,

X(1) = ξ(t, y, z)
∂

∂t
+ η(t, y, z)

∂

∂y
+ ζ(t, y, z)

∂

∂z
+ η(1)(t, y, z, y′, z′)

∂

∂y′

+ ζ(1)(t, y, z, y′, z′)
∂

∂z′
,

(2.10)

where η(n) and ζ(n) are defined as,

η(n) =
dη(n−1)

dt
− y(n)dξ

dt
,

ζ(n) =
dζ(n−1)

dt
− z(n)dξ

dt
.

(2.11)

The values of η(1) and ζ(1) are calculated by using equation (2.11),

η(1) = ηt + (ηy − ξt)y′ + (ηz − y′ξz)z′ − y′2ξy,

ζ(1) = ζt + (ηz − ξt)z′ + (ζy − z′ξy)y′ − z′2ξz.
(2.12)
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Now we present the formula to calculate Noether point symmetries and associated

first integrals for two-dimensional system of ODEs.

A system of ODEs of the form (2.7) admits the Lagrangian L(t, y, z, y′, z′), if it

is equivalent to the Euler-Lagrange equations

d

dt

(
∂L

∂y′

)
− ∂L

∂y
= 0,

d

dt

(
∂L

∂z′

)
− ∂L

∂z
= 0.

(2.13)

Theorem 2.1.1.

If X is a Noether symmetry generator of a given Lagrangian L(t, y, z, y′, z′), then

I = ξL+ (η − ξy′)∂L
∂y′

+ (ζ − ξz′)∂L
∂z′
−B, (2.14)

is called Noether first integral [10] of system of ODEs (2.7), associated with X.

2.2 Restricted Complex ODEs

In complex symmetry analysis, we deal with systems of differential equations in-

volving complex variables. They are called complex differential equations because

their dependent variables are complex functions of either real or complex indepen-

dent variables. Writing the complex variables into real and imaginary parts, yields

system of two ODEs if we have real independent variable, and system of two PDEs if

we have complex independent variable. Thus a complex ODE can be represented by

a system of two second order real ODEs. Examples include system of two coupled

Harmonic oscillators and system of free particle equations.

Consider general form of a second order complex ODE

y′′(t) = ω(t, y, y′). (2.15)

We restrict y(t) to be complex dependent function of a single real independent

variable t. Substituting y(t) as,

y(t) = f(t) + ig(t), (2.16)
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and using the assumption,

ω(t, y(t)) = ω1(t, f, g) + iω2(t, f, g), (2.17)

we get the following system of ODEs

f ′′ = ν1(t, f, g, f
′g′),

g′′ = ν2(t, f, g, f
′, g′),

(2.18)

where ω is a complex analytic function and its components ν1 and ν2 are arbitrary

real functions.

Example 2.2.1. Consider the Harmonic oscillator equation

y′′(t) = −y(t). (2.19)

Using equation (2.16), we get

f ′′ = −f,

g′′ = −g.
(2.20)

Note that the general solution of equation (2.19) has the form

y(t) = a cos t+ b sin t, (2.21)

where a = a1 + ia2 and b = b1 + ib2. We can get the general solution of equation

(2.20) by putting the value of a and b in (2.21).

f(t) = a1 cos t+ b1 sin t,

g(t) = a2 cos t+ b2 sin t.
(2.22)

2.3 Symmetry Condition for Complex ODEs

Consider general form of an nth order restricted complex ODE

y(n)(t) = ω(t, y, y′, · · · , y(n−1)). (2.23)

The infinitesimal complex Lie point transformations are defined by

t̃ = t(t, y; ε), ỹ = y(t, y; ε), (2.24)
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where ε is a complex parameter. The infinitesimal complex symmetry generator is

defined as,

Z = τ(t, y)
∂

∂t
+ χ(t, y)

∂

∂y
. (2.25)

The prolonged symmetry generator for nth order complex ODE is given as

Z(n) = τ(t, y)
∂

∂t
+ χ

∂

∂y
+ χ(1) ∂

∂y′
+ . . .+ χ(n) ∂

∂y(n)
, (2.26)

where

χ(n) =
dχ(n−1)

dt
− y(n)dτ

dt
. (2.27)

The differential operator is

d

dt
=

∂

∂t
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · ·+ y(n)

∂

∂y(n−1)
. (2.28)

2.4 Noether Symmetry Condition and First Inte-

grals for Complex ODEs

In this section we review some basic definitions and concepts related to complex

Euler-Lagrange equation, complex Lagrangian, complex Noether symmetries in or-

der to deal with restricted second order complex ODEs [1, 2]. For complex case we

consider y to be a complex function of real independent variable t. Consider second

order complex ODE

y′′(t) = ω(t, y, y′), (2.29)

L(t, y, y′) is a complex Lagrangian of restricted complex ODE (2.29), if it is equiv-

alent to the Euler-Lagrange equation

∂L

∂y
− d

dt

(
∂L

∂y′

)
= 0. (2.30)

Definition 2.4.1. The operator (2.25) is called complex Noether point symmetry

generator of (2.29) corresponding to a complex Lagrangian L(t, y, y′), if there exists

a complex gauge function B(t, y) such that

Z(1)(L) +D(τ)L = D(B), (2.31)
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where Z(1) is first order prolongation of symmetry generator Z.

Noether’s Theorem 2.4.1.

If Z is a complex Noether point symmetry corresponding to a complex Lagrangian

L(t, y, y′) of Eq. (2.29), then there exists a function I

I = τL+ (χ− τy′)∂L
∂y′
−B, (2.32)

known as complex first integral of (2.29).

Theorem 2.4.2.

The first integral I associated with complex Noether point symmetry Z, satisfies

the following condition

Z(1)I = 0. (2.33)

2.5 Noether-Like Operators and Associated First

Integrals

Noether-like operators [10] play an essential role in writing down the first inte-

grals for Euler Lagrange system of ODEs. Two real Lagrangians for system of two

second-order ODEs are obtained by restricting the domain of a complex Lagrangian.

In order to calculate Noether-like operators, suppose that L is a complex Lagrangian

of restricted complex ODE

L(t, y, y′) = L1 + iL2. (2.34)

Therefore, we have two Lagrangians L1 and L2 that satisfy complex Euler-Lagrange

equations

∂L1

∂f
+
∂L2

∂g
− d

dt

(
∂L1

∂f ′
+
∂L2

∂g′

)
= 0,

∂L2

∂f
− ∂L1

∂g
− d

dt

(
∂L2

∂f ′
− ∂L1

∂g′

)
= 0.

(2.35)
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The operators

X = τ1
∂

∂t
+ χ1

∂

∂f
+ χ2

∂

∂g

Y = τ2
∂

∂t
+ χ2

∂

∂f
− χ1

∂

∂g

(2.36)

are called Noether-Like operators [2], corresponding to the Lagrangian L1 and L2,

if there exist B1(t, f, g) and B2(t, f, g) gauge functions such that

X(1)L1 −Y(1)L2 + (dtτ1)L1 − (dtτ2)L2 = dtB1,

X(1)L2 + Y(1)L1 + (dtτ1)L2 + (dtτ2)L1 = dtB2,
(2.37)

where Z = X + iY, and X(1) and Y(1) are the first order prolongation of Noether-

Like operators, defined as

X(1) = τ1∂t + χ1∂f + χ2∂g + χ
(1)
1 ∂f ′ + χ

(1)
2 ∂g′ ,

Y(1) = τ2∂t + χ2∂f − χ1∂g + χ
(1)
2 ∂f ′ − χ(1)

1 ∂g′ .
(2.38)

The two first integrals [10] corresponding to Noether-like operator X and Y of

equation (2.18) are

I1 = τ1L1 − τ2L2 + ∂f ′L1(χ1 − f ′τ1 − g′τ2)− ∂f ′L2(χ2 − f ′τ2 − g′τ1)−B1,

I2 = τ1L2 + τ2L1 + ∂f ′L2(χ1 − f ′τ1 − g′τ2) + ∂f ′L1(χ2 + f ′τ2 − g′τ1)−B2.

(2.39)
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Chapter 3

Symplectic Runge-Kutta Methods

Numerical methods are used to approximate the exact solution of ODEs. These

methods are helpful in understanding the dynamics of physical systems. In this

chapter, we review geometric numerical integrators. These are specialized numeri-

cal methods which preserve geometric properties of Hamiltonian systems. In par-

ticular we are interested in one-step symplectic Runge-Kutta methods. We take

Gauss-Legendre Runge-Kutta method of order four for the numerical integration of

Hamiltonian systems.

3.1 Conservation of First Integrals

Hamiltonian systems belong to a special class of ODEs where the solutions possess

first integrals. In this thesis, we explain two types of first integrals,

• Linear first integral

• Quadratic first integral

3.1.1 Linear First Integral

A non-constant function I(y) is the linear first integral of an initial value problem [14]

y′ = f(y(t)), y(t0) = y0, (3.1)

if it satisfies
dI

dt
= I ′(y)f(y) = 0, ∀y, (3.2)
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which means that the solution y(t) of (3.1) satisfies

I(y(t)) = I(y0) = constant. (3.3)

Example 3.1.1. Consider system of Lotka-Volterra equations

u′ = u(v − 2),

v′ = v(1− u).
(3.4)

The above system contains I(u, v) = lnu− u+ 2 ln v − v as a first integral [15]. By

applying definition of linear first integral we get

dI

dt
= (

1

u
.u′)− u′ + (

2

v
.v′)− v′. (3.5)

Substituting the value of u′, v′ in (3.5), we obtain

dI

dt
=

1

u
{u(v − 2)} − u(v − 2) +

2

v
{v(1− u)} − v(1− u)

= (v − 2)− u(v − 2) + 2(1− u)− v(1− u)

= 0.

(3.6)

This shows that I is the first integral of the Lotka-Volterra problem.

3.1.2 Quadratic First Integral

A quadratic function

Q(y) = ytAy, (3.7)

is called first integral of (3.1) if,

Q′(y) = ytAf(y) = 0, ∀y, (3.8)

where A is symmetric square matrix [13].

Example 3.1.2. Consider Harmonic oscillator equations

p′ = −q, q′ = p, (3.9)
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Consider the quadratic function

Q(y) = (p q)

(
0 1

1 0

)(
p

q

)
, (3.10)

where

y =

(
p

q

)
, (3.11)

By using (3.8), we get

dQ

dt
= (p q)

(
0 1

1 0

)(
−q
p

)
= 0. (3.12)

Thus Q(y) is a quadratic first integral of (3.9).

3.2 Runge-Kutta Methods

Runge-Kutta methods were discovered by two German mathematicians Carl Runge

and Martin Kutta in 1901 [5]. These methods belong to the family of one-step

methods to find the numerical solutions of initial value problems.

Consider an autonomous initial value problem

y′ = f(y(t)), y(t0) = y0, (3.13)

where f : Rn −→ Rn. An s-stage implicit Runge-Kutta method is defined as

Yi = yn−1 +
s∑
j=1

aijhf(Yj), i = 1, 2, · · · , s,

yn = yn−1 +
s=∑
i=1

bihf(Yi),

(3.14)

where h is the stepsize. In case of non-autonomous system Runge-Kutta method is

given by,

Yi = yn−1 + h
s∑
j=1

aijf(tn + cjh, Yj), i = 1, 2, · · · , s

yn = yn−1 + h

s∑
i=1

bif(tn + cih, Yi),

(3.15)
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where Yi are the stages. The output value yn represents numerical approximation

of the actual solution at time tn.

The coefficients of Runge-Kutta methods [a, b, c] can be expressed in the form of a

tableau, known as the Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

.

The coefficient bi are called quadrature weights of the method, the matrix A = [aij]

is the Runge-Kutta matrix and ci are the abscissas.

Runge-Kutta methods are explicit if the matrix A is strictly lower triangular that is

aij = 0, j ≥ i, j = 1, 2, · · · , s (3.16)

The implementation of explicit Runge-Kutta methods is more convenient because

they require less computation time in solving ODEs.

Example 3.2.1. The Euler method is the simplest example of Runge-Kutta method

having one stage

Y1 = yn,

yn+1 = yn + hf(Y1).
(3.17)

It can be written in tableau form

0 0

1
.
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Example 3.2.2. The classical explicit Runge-Kutta method of order four having 4

stages is given below

Y1 = yn,

Y2 = yn +
1

2
hf(Y1),

Y3 = yn +
1

2
hf(Y2),

Y4 = yn + hf(Y3),

yn+1 = yn +

(
1

6
hf(Y1) +

1

3
hf(Y2) +

1

3
hf(Y3) +

1

6
hf(Y4)

)
.

(3.18)

The Butcher tableau is given as

0 0 0 0 0
1
2

1
2

0 0 0
1
2

0 1
2

0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

.

3.3 Order Conditions of Runge-Kutta Methods

To find the order of a numerical method, we need to compare the Taylor series of the

numerical solution with the Taylor series of exact solution. The order condition of

the Runge-Kutta method can be found by using explicit as well as implicit method.

To calculate the order of Runge-Kutta method, we first understand the concept of

elementary differentials

y′ = f,

y′′ = f
′
f,

y′′′ = f
′′
(f f) + f

′
f
′
f,

y(4) = f
′′′

(f f f) + 2f
′′
(f f

′
f) + 2f

′
f
′′
(f f) + f

′
f
′
f
′
f,

y(5) = f(4)(f f f f) + 4f
′′′

(f
′
f f f) + 2f

′′′
(f f f

′
f) + 4f

′′
(f
′
f f
′

f) + 2f
′′
(f f

′′
f f)

+ 2f
′
f
′′′

(f f f) + 2f
′′
f
′′
(f f f) + 4f

′
f
′′
(f
′
f f) + 3f

′′
f
′
f
′
(f f).

(3.19)
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The terms f
′
f, f
′
f
′
f, etc. are known as elementary differentials. Consider general

form of explicit Runge-Kutta method for solving autonomous ODEs

Yi = yn−1 +
i−1∑
j=1

aijhf(Yj), i = 1, 2, · · · , s

yn = yn−1 +
s∑
i=1

bihf(Yi).

(3.20)

For s = 3 stages, we have

Y1 = yn−1,

Y2 = yn−1 + ha21f(Y1),

Y3 = yn−1 + ha31f(Y1) + ha32f(Y2),

(3.21)

where

f(Y1) = f(yn−1), (3.22)

f(Y2) = f(yn−1 + ha21f(yn−1)). (3.23)

Then

Y3 = yn−1 + ha31f(yn−1) + ha32f(yn−1 + ha21f(yn−1)), (3.24)

By Taylor series expansion, we get

f(yn−1+ha21f(yn−1)) = f(yn−1)+ha21f
′f(yn−1)+

h2

2
a21f

′′ff(yn−1)+O(h3). (3.25)

Using equation (3.25) in (3.24)

Y3 = yn−1 + ha31f(yn−1) + ha32f(yn−1) + h2a32a21f
′f(yn−1) +O(h3), (3.26)

where

f(Y3) =f(yn−1 + h(a31 + a32)f(yn−1) + h2a32a21f
′f(yn−1) +O(h3))

=f(yn−1) + hc3f
′f(yn−1) +

h2

2
c23f
′′f (2)(yn−1)

+ h2(a32a21f
′f(yn−1)f

′) +O(h3).

(3.27)
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Since the output value is

yn = yn−1 + h(b1f(Y1) + b2f(Y2) + b3f(Y3)). (3.28)

Using the values of (3.32), (3.25) and (3.27) in equation (3.28)

yn = yn−1 + h(b1 + b2 + b3)f(yn−1) + h2(b2c2 + b3c3)f
′f(yn−1)

+
h3

2
(b2c

2
2 + b3c

2
3)f
′′f (2)(yn−1) + h3b3a32c2f

′f ′f(yn−1) +O(h4).
(3.29)

Now, expanding the Taylor series of exact solution

y(tn) = y(tn−1) + hy′(tn−1) +
h2

2!
y′′(tn−1) +

h3

3!
y(3)(tn−1) +O(h4). (3.30)

Putting values of equation (3.19) in (3.30) and the comparing it with (3.29), we get

b1 + b2 + b3 = 1,

b2c2 + b3c3 =
1

2
.

b2c
2
2 + b3c

2
3 =

1

3
,

b3a32c2 =
1

6
.

(3.31)

Thus to achieve an order of 3, Runge-Kutta method must satisfy the following four

order conditions

3∑
i=1

bi = 1, (3.32)

3∑
i=2

bici = 1
2
, (3.33)

3∑
i=2

bic
2
i = 1

3
, (3.34)

3∑
i=1

biaijcj = 1
6
. (3.35)

This shows that by increasing the order of Runge-Kutta methods, order conditions

also increases.
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3.4 Implicit Runge-Kutta Methods

Implicit Runge-Kutta methods were introduced by Kuntzmann and Butcher in

1960 [3]. Runge-Kutta methods are implicit if aij 6= 0 for some j ≥ i. In order to

evaluate its stages, we either need Newton iteration method or fixed point method

because at each stage the value of Yi vector depends on Yj. Implicit Runge-Kutta

methods are very helpful in solving stiff differential equations. Another advantage

of these methods is the ability to show good stability.

The Implicit Runge-Kutta methods are obtained from famous Gauss-Legendre poly-

nomial. They are known as Gauss methods. These methods requires s stages and

the highest possible order is 2s. By choosing the c′is as zeroes of the shifted Gauss-

Legendre Polynomial P (t) on [0, 1].

Ps(t) =
s!

2s

s∑
m=0

(−1)(s−m)

(
s

m

)(
s+m

m

)
xm. (3.36)

For s = 1, we get

P1(t) = −1

2
+ t, (3.37)

having root c1 = 0. The 1-stage implicit midpoint rule of order 2 is given by

1
2

1
2

1

.

When we put s = 2, we get

P2(t) = t2 − t+
1

6
, (3.38)

having roots

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
. (3.39)

The coefficient of 2-stages implicit Runge-Kutta method of order four can be repre-

sented through Butcher tableau
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1
2
−
√
3
6

1
4

1
4
−
√
3
6

1
2

+
√
3
6

1
4

+
√
3
6

1
4

1
2

1
2

. (3.40)

3.5 Symplectic Runge-Kutta Methods

In this thesis, we consider symplectic Runge-Kutta method for the numerical preser-

vation of the first integrals of Hamiltonian systems. The Runge-Kutta methods of

order s are symplectic if numerical solution satisfies

< yn, yn >=< yn−1, yn−1 >, (3.41)

and if coefficients of Runge-Kutta methods satisfy the following condition

biaij + bjaji − bibj = 0, for all i, j = 1, 2, . . . , s. (3.42)

Equation (3.42) is known as symplectic condition for Runge-Kutta methods. For a

conservative system, we have

< Yi, f(Yi) >= 0, (3.43)

Inserting value of Yi in the above expression

< yn−1 +
s∑
j=1

aijhf(Yj), f(Yi) >= 0, (3.44)

we get

< yn−1, f(Yi) > = −h
s∑

i,j=1

aij < f(Yj), f(Yi) > . (3.45)

Now to prove equation (3.41), consider

< yn, yn > =< yn−1 +
s∑
i=1

bihf(Yi), yn−1 +
s∑
i=1

bjhf(Yi) >,

< yn, yn > =< yn−1, yn−1 > +h < yn−1,

s∑
i=1

bif(Yi) > +h <
s∑
i=1

bjf(Yi), yn−1 >

+ < h2
s∑
i=1

bif(Yi),
s∑
i=1

bjf(Yj) >,

(3.46)
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we have

< yn, yn > =< yn−1, yn−1 > +h
s∑
i=1

bi < yn−1, f(Yi) > +h
s∑
i=1

bj < f(Yi), yn−1 >

+ h2
s∑

i,j=1

bibj < f(Yi), f(Yj) >,

(3.47)

By using value of (3.45) in above expression, we obtain

< yn, yn > =< yn−1, yn−1 > −h2
s∑

i,j=1

biaij < f(Yj), f(Yi) > −h2
s∑

i,j=1

bjaji < f(Yj), f(Yi) >

+ h2
s∑

i,j=1

bibj < f(Yj), f(Yi) >,

< yn, yn > =< yn−1, yn−1 > −h2
s∑

i,j=1

(biaij + bjaji − bibj) < f(Yj), f(Yi) >,

(3.48)

since

< yn, yn >=< yn−1, yn−1 >,

therefore

h2
s∑

i,j=1

(bi(aij + bjaji − bibj) < f(Yj), f(Yi) >= 0.

As

< f(Yj), f(Yi) >6= 0,

Therefore

h2
s∑

i,j=1

bi(aij + bjaji − bibj) = 0.

A Runge-Kutta method is symplectic if its coefficients satisfy the following condition

biaij + bjaji − bibj = 0, ∀ i, j = 1, 2, · · · , n. (3.49)
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Only implicit Runge-Kutta methods can be symplectic. Therefore, we only con-

sider two stages implicit Gauss Legendre Runge-Kutta method of order four given

as

Gauss-2:

1
2
−
√
3
6

1
4

1
4
−
√
3
6

1
2

+
√
3
6

1
4

+
√
3
6

1
4

1
2

1
2

. (3.50)
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Chapter 4

First Integrals of Hamiltonian

Systems

In this chapter, we calculate the first integrals of Hamiltonian systems. As discussed

in Chapter 2, there are different methods to construct first integrals for ODEs. Here,

we use classical Noether approach to calculate Noether symmetries and associated

first integrals of Hamiltonian systems. Then by using complex symmetry method

we calculate the first integrals for system of restricted complex ODEs.

4.1 Simple Pendulum

A simple pendulum is a two dimensional nonlinear oscillating system having equation

of motion

y′′ = − sin y, (4.1)

which admits Lagrangian

L(t, y, y′) =
y′2

2
+ cos y. (4.2)

The Lagrangian (4.2) satisfy the Euler-Lagrange equation (2.2). Using equation

(2.4), we get Noether symmetry determining equation

−η sin y + y′(ηt + ξy cos y) + y′2(ηy −
ξt
2

)− y′3 ξy
2

+ ξt cos y = Bt + y′By, (4.3)
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Separating the coefficients of y′ and its powers, we obtain a system of four partial

differential equations.

−η sin y + cos yξt −Bt = 0,

ηt + cos yξy −By = 0,

ηy −
ξt
2

= 0,

−ξy
2

= 0.

(4.4)

Solving the system (4.4) gives

ξ(t, y) = a1, η(t, y) = 0, (4.5)

where a1 is arbitrary constant. One Noether symmetry is obtained

X1 =
∂

∂t
, (4.6)

By utilizing equation (2.5) we obtain

I1 =
y′2

2
− cos y. (4.7)

where the first integral I1 represents total energy of the system.

4.2 Kepler Problem

The equations of motion of the Kepler problem are

x′′ = − x

(x2 + y2)
3
2

,

y′′ = − y

(x2 + y2)
3
2

,
(4.8)

where prime represent the differentiation of x and y with respect to t. The above

system admits the Lagrangian of the form

L(t, x, y, x′, y′) =
1

2
(x′2 + y′2) +

1√
x2 + y2

, (4.9)
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By utilizing equation (2.4), we get

Bt + x′Bx − y′By =− xη

(x2 + y2)
3
2

− yζ

(x2 + y2)
3
2

+ x′{ηt + x′(ηx − ξt) + y′ηy − x′2ξx − x′y′ξy}

+ y′{ζt + y′(ζy − ξt) + x′ζx − y′2ξy − x′y′ξx}+
1

2
(x′2 + y′2)ξt +

ξt√
x2 + y2

+
1

2
(x′2 + y′2)ξxx

′ +
ξxx

′√
x2 + y2

+
1

2
(x′2 + y′2)ξyy

′ +
ξyy
′√

x2 + y2
.

(4.10)

On comparing coefficients of x′, y′ and their powers, we obtain

− xη

(x2 + y2)
3
2

− yζ

(x2 + y2)
3
2

+
ξt√

x2 + y2
−Bt = 0,

−ηt +
ξx√
x2 + y2

−Bx = 0,

−ζt +
ξy√
x2 + y2

−By = 0,

ηx −
ξt
2

= 0,

ζy −
ξt
2

= 0

ηy + ζx = 0

ξx = ξy = 0

(4.11)

Solving the system yields

ξ = a1, η = −a2y, ζ = a2x, B = a3, (4.12)

Thus, we get two independent symmetry generators.

X1 =
∂

∂t
,

X2 = t
∂

∂y
− y ∂

∂x
.

(4.13)

In order to evaluate the two first integrals, we insert the value of equation (4.12) in

(2.14), which gives
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I1 =
1

2
(x′2 + y′2)− 1√

x2 + y2
,

I2 =xy′ − yx′.
(4.14)

Here I1 represents the total energy whereas I2 is angular momentum of the system.

4.3 Henon-Heiles Problem

The Henon-Heiles model describes the motion of stars around the galactic center.

Here, we consider the motion in the xy plane. To determine the Noether symmetries

and associated constants of motion, we take equations of motion

x′′ = −x− 2xy,

y′′ = −y − x2 + y2.
(4.15)

The above system admits the Lagrangian

L(t, x, y, x′, y′) =
1

2
(x′2 + y′2) + V (x, y), (4.16)

where V (x, y) is the generalize form of Henon-Heiles potential

V (x, y) =
1

2
(x2 + y2) + Ax3 +Bx2y + Cxy2 +Dy3, (4.17)

having A,B,C and D as real parameters. Here we consider a special case of Henon-

Heiles potential in which the value of parameters are A = 0, B = 1, C = 0 and

D = −1
3

respectively.

V (x, y) =
1

2
(x2 + y2) + x2y − 1

3
y3. (4.18)

Then equation (4.16) takes the form

L(t, x, y, x′, y′) =
1

2
(x′2 + y′2)− 1

2
(x2 + y2)− x2y − 1

3
y3. (4.19)
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Using equation (4.19) and (2.10) in (2.4) and then comparing coefficients of x′, y′

and their powers, we get

−xη − 2xyη − yζ − x2ζ − y2ζ − 1

2
(x2 + y2)ξt−x2yξt +

1

3
y3ξt −Bt = 0,

ηt −
1

2
(x2 + y2)ξx − x2yξx +

1

3
y3ξx −Bx =0,

ζt −
1

2
(x2 + y2)ξy − x2yξy +

1

3
y3ξy −By =0,

ηx − ξt +
1

2
ξt =0,

ζy − ξt +
1

2
ξt =0,

ηy − ζx =0,

1

2
ξx =0,

1

2
ξy =0.

(4.20)

The solution of above system of equations give value of ξ, η and ζ.

ξ = a1, η = 0, ζ = 0. (4.21)

For this particular case, one Noether symmetry is obtained

X1 =
∂

∂t
, (4.22)

where the first integral is calculated by using (2.14),

I1 =
1

2
(x′2 + y′2) +

1

2
(x2 + y2) + x2y − 1

3
y3. (4.23)

4.4 Harmonic Oscillator

Consider the second order ordinary differential equation

y′′ = −k2y (4.24)

having k as a spring constant and it explains the motion of a Harmonic oscilla-

tor. For convenience we choose different values of k2 to determine the first integrals

of corresponding equations. Since Lagrangian of the system is known, so we can
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compute symmetry group and associated constants of motion by using an explicit

formula provided by Noether theorem. Here, we take different values of constant k2

to obtained first integrals for our real and complex system.

Case I : when k2 = 1 and y is real

In the first case, when k2 = 1 and y(t) is real valued function, then equation (4.24)

becomes one-dimensional Harmonic oscillator equation

y′′ = −y, (4.25)

having standard Lagrangian [25]

L =
y′2

2
− y2

2
. (4.26)

Using the Lagrangian in equation (2.4), gives the following determining equation

−ηy + ηty
′ + (ηy −

1

2
ξt)y

′2 − 1

2
ξyy
′3 − 1

2
ξty

2 − 1

2
ξyy

2y′ −Bt − y′By = 0. (4.27)

On comparing different powers of y′ yields, system of four partial differential equa-

tions. Solving this system we get

ξ(t, y) = a1 + a2 sin 2t+ a3 cos 2t,

η(t, y) = (a2 cos 2t− a3 sin 2t)y + a4 sin t+ a5 cos t,

B(t, y) = −(a2 sin 2t+ a3 cos 2t)y2 + (a4 cos t− a5 sin t)y.

(4.28)

We obtain five Noether symmetries of equation (4.25)

X1 =
∂

∂t
,

X2 = sin 2t
∂

∂t
+ y cos 2t

∂

∂y
,

X3 = cos 2t
∂

∂t
− y sin 2t

∂

∂y
,

X4 = cos 2t
∂

∂y
,

X5 = sin 2t
∂

∂y
.

(4.29)
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Using Lagrangian (4.26) and values of (4.28) in (2.5), we get the following first

integrals

I1 =
y′2

2
+
y2

2
,

I2 = y′ cos t+ y sin t,

I3 = y′ sin t− y cos t,

I4 = −1

2
y′2 cos 2t− yy′ sin 2t+

1

2
y2 cos 2t,

I5 =
1

2
y′2 sin 2t+ yy′ cos 2t− 1

2
y2 sin 2t.

(4.30)

We observe that amongst five first integrals of Harmonic oscillator, only two are

independent. Here I2 and I3 as the consider as independent quantities.

I1 =
1

4
(I22 + I23 ),

I4 = −1

2
(I22 − I23 ),

I5 =
1

4
(I2I3)

(4.31)

Case II : when k2 = 1 and y is complex

When we take k2 = 1 and y(t) as a complex dependant function y = f + ig having

f and g as real functions, we get a system of Harmonic oscillators. The complex

symmetry analysis will help us to calculate first integrals of system of Harmonic

oscillator. we have the following equations of motion for Harmonic oscillator

f ′′ = −f,

g′′ = −g,
(4.32)

which admits the Lagrangians

L1 =
1

2
(f ′2 − g′2 − f 2 + g2),

L2 = f ′g′ − fg.
(4.33)

Using Lagrangians L1 and L2 in Noether like symmetry condition (2.38) gives
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− fχ1 + gχ2 + f ′(χ1t) + f ′2(χ1f + χ2g − τ1t)− g′2(χ1f + χ2g − τ1t)

− 2f ′g′(χ2f − χ1g − τ2t) + f ′3(τ1f + τ2g) + g′3(τ2f − τ1g)− 3f ′2g′(τ2f − τ1g)

− 3f ′g′2(τ1f + τ2g) +
1

2
f ′2(τ1t)−

1

2
g′2(τ1t)−

1

2
f ′3(τ1f + τ2g) + f ′g′(τ2t)

− 1

2
f ′2g′(τ2f − τ1g)−

1

2
f ′g′2(τ1f + τ2g) +

1

2
g′3(τ2f − τ1g)−

1

2
f 2(τ1t)

− f ′2g′(τ2f − τ1g)− f ′g′2(τ1f + τ2g)−
1

2
f ′f 2(τ1f + τ2g) +

1

2
f 2g′(τ2f − τ1g)

+
1

2
g2(τ1t) + fg(τ2t) +

1

2
f ′g2(τ1f + τ2g)−

1

2
g2g′(τ2f − τ1g) + f ′(fg)(τ2f − τ1g)

+ g′(fg)(τ1f + τ2g)−B1t − f ′(B1f +B2g)− g′(B2f −B1g) = 0,

(4.34)

and

− gχ1 − fχ2 + f ′(χ2t) + f ′2(χ2f − χ1g − τ2t)− g′2(χ2f − χ1g − τ2t)

+ 2f ′g′(χ1f + χ2g − τ1t)− f ′3(τ2f − τ1g)− g′3(τ1f + τ2g) + 3f ′2g′(τ1f

+ τ2g)− 3f ′g′2(τ2f − τ1g) +
1

2
f ′2(τ2t) +

1

2
f ′3(τ2f − τ1g) +

1

2
f ′2g′(τ1f + τ2g)

− 1

2
g′2(τ2t)−

1

2
f ′g′2(τ2f − τ1g)−

1

2
g′3(τ1f + τ2g) + f ′g′(τ1t) + f ′2g′(τ1f + τ2g)

− f ′g′2(τ2f − τ1g)−
1

2
f 2τ2t −

1

2
f ′f 2(τ2f − τ1g)−

1

2
f 2g′(τ1f + τ2g) +

1

2
g2τ2t

+
1

2
f ′g2(τ2f − τ1g)− fgτ1t +

1

2
g2g′(τ1f + τ2g)− f ′fg(τ1f + τ2g) + g′fg(τ2f − τ1g)

−B2t − f ′(B2f −B1g)− g′(B1f +B2g) = 0.

(4.35)

On comparing the coefficients of independent variables, yields a system of partial

differential equations.
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τ1f + τ2g = 0,

τ2f − τ1g = 0,

χ1f + χ2g −
1

2
τ1t = 0,

χ2f − χ1g −
1

2
τ2t = 0,

− fχ1 + gχ2 −
1

2
(f 2 − g2)τ1t + (fg)τ2t = B1t,

− gχ1 − fχ2 −
1

2
(f 2 − g2)τ2t − (fg)τ1t = B2t,

χ1t −
1

2
(f 2 − g2)τ1f −

1

2
(f 2 − g2)τ2g + (fg)(τ2f − τ1g)−B1f −B2g = 0,

− χ2t −
1

2
(f 2 − g2)τ2f +

1

2
(f 2 − g2)τ1g + (fg)(τ1f + τ2g) +B2f −B1g = 0,

(4.36)

Solving the system (4.36) gives nine Noether like symmetry generators

X1 =
∂

∂t
,

X2 = sin t
∂

∂f
,

X3 = sin t
∂

∂g
,

X4 = cos t
∂

∂f
,

X5 = cos t
∂

∂g
,

X6 = sin 2t
∂

∂t
+ f cos 2t

∂

∂f
+ g cos 2t

∂

∂g
,

X7 = g cos 2t
∂

∂f
− f cos 2t

∂

∂g
,

X8 = cos 2t
∂

∂t
− f sin 2t

∂

∂f
− g sin 2t

∂

∂g
,

X9 = −g sin 2t
∂

∂f
+ f sin 2t

∂

∂g
.

(4.37)
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By utilizing equation (2.39), we obtain the following first integrals

I1,1 = (f ′2 − g′2 − f 2 + g2) sin 2t− 2(ff ′ − gg′) cos 2t,

I1,2 = 2(f ′g′ − fg) sin 2t− 2(fg′ + f ′g) cos 2t,

I2,1 = (f ′2 − g′2 − f 2 + g2) cos 2t+ 2(f ′f − g′g) sin 2t,

I2,2 = 2(f ′g′ − fg) cos 2t+ 2(fg′ + f ′g) sin 2t,

I3,1 = −2f ′ cos t− 2f sin t,

I3,2 = −2g′ cos t− 2g sin t,

I4,1 = −2f ′ sin t+ 2f cos t,

I4,2 = −2g′ sin t+ 2g cos t,

I5,1 = f ′2 − g′2 − f 2 + g2,

I5,2 = 2f ′g′ + 2fg.

(4.38)

Case III: when k and y are complex

For k and y to be complex functions k = α + iβ and y = f + ig, the following

coupled system of harmonic oscillators is obtained

f ′′ = −(α2 − β2)f + 2αβg,

g′′ = −(α2 − β2)g − 2αβf,
(4.39)

having two Lagrangians

L1 =
1

2
(f ′2 − g′2)− 1

2
(α2 − β2)(f 2 − g2) + 2αβfg,

L2 = f ′g′ − αβ(f 2 − g2)− (α2 − β2)fg.
(4.40)
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On comparing the coefficients of independent variables, yields a system of partial

differential equations

τ1f + τ2g = 0,

τ2f − τ1g = 0,

χ1f + χ2g −
1

2
τ1t = 0,

χ2f − χ1g −
1

2
τ2t = 0,

− (α2 − β2)fχ1 + (α2 − β2)gχ2 + 2αβ(gχ1 + fχ2) = B1t,

− (α2 − β2)gχ1 − (α2 − β2)fχ2 − 2αβ(fχ1 + gχ2) = B2t,

χ1t −
1

2
(α2 − β2)(f 2 − g2)(τ1f + τ2g) + αβ(f 2 − g2)(τ2f − τ1g)

+ 2αβfg(τ1f + τ2g)−B1f −B2g = 0,

− χ2t +
1

2
(α2 − β2)(f 2 − g2)(τ2f − τ1g) + αβ(f 2 − g2)(τ1f + τ2g)

− 2αβfg(τ2f − τ1g) +B2f −B1g = 0.

(4.41)

The following nine Noether-like operators are obtained by solving the system (4.41)

X1 =
∂

∂t
,

X2 = sin(αt) cosh(βt)
∂

∂f
+ cos(αt) sinh(βt)

∂

∂g
,

X3 = cos(αt) sinh(βt)
∂

∂f
− sin(αt) cosh(βt)

∂

∂g
,

X4 = cos(αt) cosh(βt)
∂

∂f
− sin(αt) sinh(βt)

∂

∂g
,

X5 = − sin(αt) sinh(βt)
∂

∂f
− cos(αt) cosh(βt)

∂

∂g
,
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X6 = sin(2αt) cosh(2βt)
∂

∂t
+ {(αf − βg) cos(2αt) cosh(2 βt) + (αg + βf) sin(2αt) sinh(2βt)} ∂

∂f

+ {(αg + βf) cos(2αt) cosh(2βt)− (αf − βg) sin(2αt) sinh(2βt)} ∂
∂g
,

X7 = cos(2αt) sinh(2βt)
∂

∂t
+ {(αg + βf) cos(2αt) cosh(2βt)− (αf − βg) sin(2αt) sinh(2βt)} ∂

∂f

− {(αf − βg) cos(2αt) cosh(2βt) + (αg + βf) sin(2αt) sinh(2βt)} ∂
∂g
,

X8 = cos(2αt) cosh(2βt)
∂

∂t
+ {(αf − αβg) sin(2αt) cosh(2βt)− (αg + βf) cos(2αt) sinh(2βt)} ∂

∂f

+ {(α1f − α2g) cos(2α1t) sinh(2α2t) + (α1g + α2f) sin(2α1t) cosh(2α2t)}
∂

∂g
,

X9 = − sin(2αt) sinh(2βt)
∂

∂t
+ {(αf − βg) cos(2αt) sinh(2βt) + (αg + βf) sin(2αt) cosh(2βt)} ∂

∂f

− {(αf − βg) sin(2αt) cosh(2βt)− (αg + βf) cos(2αt) sinh(2βt)} ∂
∂g
.

(4.42)

Using equation (2.39), we obtained the following first integrals of the system (4.39).

I1,1 = (α2 − β2)(f 2 − g2)− 2αβfg + f ′2 − g′2,

I1,2 = 2(α2 − β2)fg + 2αβ(f 2 − g2) + 2f ′g′,

I2,1 = f ′ sin(αt) cosh(βt)− g′ cos(αt) sinh(βt)− (αf − βg) cos(αt) cosh(βt)

− (αg + βf) sin(αt) sinh(βt),

I2,2 = g′ sin(αt) cosh(βt) + f ′ cos(αt) sinh(βt) + (αg + βf) cos(αt) cos(βt)

− (αf − βg) sin(αt) sinh(βt),

(4.43)
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I3,1 = f ′ cos(αt) cosh(βt) + g′ sin(αt) sinh(βt) + (αf − βg) sin(αt) cosh(βt)

− (αg + βf) cos(αt) sinh(βt),

I3,2 = g′ cos(αt) cosh(βt)− f ′ sin(αt) sinh(βt) + (αg + βf) sin(αt) cosh(βt)

+ (αf − βg) cos(αt) sinh(βt),

I4,1 =
1

2
[{(α2 − β2)(f 2 − g2)− 4αβfg − (f ′2 − g′2)} sin(2αt) cosh(2βt)

− {2αβ(f 2 − g2) + 2(α2 − β2)fg − 2f ′g′}] cos(2αt) sinh(2βt)

+ {α(ff ′ − gg′)− β(fg′ + gf ′)} cos(2αt) cosh(2βt)

+ {α(fg′ − gf ′) + β(ff ′ − g′g)} sin(2αt) sinh(2βt),

I4,2 =
1

2
[{(α2 − β2)(f 2 − g2)− 4αβfg − (f ′2 − g′2)} cos(2αt) sinh(2βt)

+ {2αβ(f 2 − g2) + 2fg(α2 − β2)− 2f ′g′}] sin(2αt) cosh(2βt)

+ [{α(fg′ + f ′g) + β(ff ′ − gg′)} cos(2αt) cosh(2βt)]

− [{α(ff ′ − gg′) + β(fg′ + f ′g)} sin(2αt) sinh(2βt)],

I5,1 =
1

2
[{(α2 − β2)(f 2 − g2)− 4αβfg − (f ′2 − g′2)} cos(2αt) cosh(2βt)

+ {2αβ(f 2 − g2) + 2(α2 − β2)fg − 2f ′g′}] sin(2αt) sinh(2βt)

+ {α(fg′ + gf ′) + β(ff ′ − gg′)} cos(2αt) sinh(2βt)

− {α(ff ′ − gg′) + β(fg′ + gf ′)} sin(2αt) cosh(2βt),

I5,2 =
1

2
[{−(α2 − β2)(f 2 − g2) + 4αβfg + (f ′2 − g′2)} sin(2αt) sinh(2βt)

+ {2αβ(f 2 − g2) + 2fg(α2 − β2)− 2f ′g′}] cos(2αt) cosh(2βt)

− [{α(fg′ + f ′g)− β(ff ′ − gg′)} sin(2αt) cosh(2βt)]

− [{α(ff ′ − gg′) + β(fg′ + f ′g)} cos(2αt) sinh(2βt)].
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Chapter 5

Numerical Experiments

In this chapter, we numerically integrate Hamiltonian systems using symplectic

Runge-Kutta method and look at the preservation of quadratic first integrals of

Hamiltonian systems for long time period. For implementation we have used sym-

plectic implicit Runge-Kutta methods for the preservation of all first integrals. We

have used fixed stepsize for the implementation of numerical methods. To evalu-

ate implicit stages we have used modified Newton iterations. The numerical results

show good preservation of first integrals.

The graphs are plotted by taking time along x-axis and absolute error in first inte-

grals along y-axis. The absolute error in the first integrals is basically the difference

between the value of first integral I calculated at initial value I(y0) with the value

of first integral calculated at each point of the approximated solution I(yn). The

error formula is given by,

Error = |I(yn)− I(y0)|

.

5.1 Simple Pendulum

A simple pendulum consists of a particle of mass m attached with a light inextensible

rod of unit length. The motion of the rod is along vertical plane. The equations of
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motion of the simple pendulum are defined as

y′1 = − sin y2,

y′2 = y1.
(5.1)

The total energy of the system is given in (4.7). We have applied Gauss-2 method

on Simple pendulum with initial values y1 = 0, y2 = 0.01. We have taken 100,000

steps and stepsize is h = 0.01. Figure 5.1 shows good long time conservation of first

integral as the error is bounded by 0.8× 10−9.
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Figure 5.1: Error in integral I1 of Simple pendulum using Gauss-2 method.
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5.2 Kepler Problem

The classical Kepler problem explains the motion of two bodies interacting with

each other by a gravitational force. The governing equations of motion are

y′1 = y3,

y′2 = y4,

y′3 =
−y1

(y21 + y22)
3
2

,

y′4 =
−y2

(y21 + y22)
3
2

.

(5.2)

Hamiltonian systems can be written more compactly in the form of canonical coor-

dinates (pi, qi). For convenience we have taken (y3, y4) as generalized momenta and

(y1, y2) as generalised position coordinates. To get an elliptic orbits, the eccentricity

is taken as 0 < e ≤ 1. The initial conditions are

(y1, y2, y3, y4) = (1− e, 0, 0,

√
1 + e

1− e
). (5.3)

The conserved quantities is I1 and I2 which represents the total energy and angular

momentum of the system is given in equation (4.14).

We have used Gauss-2 method on Kepler problem to check preservation of the first

integrals. We have taken stepsize h = 0.01 for 100, 000 steps. The absolute error

in integral I1, I2 is plotted in Figure 5.2 and Figure 5.3 respectively. The following

results are obtained, when eccentricity is e = 0.6. The results shows that absolute

error does not grow with time which mean that error will remain bounded for long

time period.
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Figure 5.2: Error in integral I1 of Kepler problem using Gauss-2 method.
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Figure 5.3: Error in integral I2 of Kepler problem using Gauss-2 method.
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5.3 Henon-Heiles Problem

The Henon-Heiles problem explains the motion of stars along the galactic center.

The equations of motion are

y′1 = y3,

y′2 = y4,

y′3 = −y1 − 2y1y2,

y′4 = −y2 − y21 + y22.

(5.4)

having initial value [19],

(y1, y2, y3, y4) = (0, 0,
√

0.3185, 0), (5.5)

where the first integral is given in (4.23). Figure 5.4 shows absolute error in integral

I1. Gauss-2 method is used to check preservation of first integral with stepsize 0.01

and n = 100, 000 steps.
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Figure 5.4: Error in integral I1 of the Henon-Heiles problem using Gauss-2 method.
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5.4 Harmonic Oscillator

Case I : when k2 = 1 and y is real

Harmonic oscillator explains the motion of a unit mass m attached to a spring of

length l. The differential equations of Harmonic oscillator are

y′1 = −y2,

y′2 = y1.
(5.6)

The first integrals of one-dimensional Harmonic oscillator are calculated in Chapter

4. There are total five first integral of Harmonic oscillator. Amongst these five first

integrals only two are independent, here we consider I2 and I3 to be the independent

quantities.
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Figure 5.5: Error in integral I1 of Harmonic oscillator using Gauss-2 method.
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Figure 5.6: Error in integral I2 of Harmonic oscillator using Gauss-2 method.
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Figure 5.7: Error in integral I3 of Harmonic oscillator using Gauss-2 method.
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Figure 5.8: Error in integral I4 of Harmonic oscillator using Gauss-2 method.
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Figure 5.9: Error in integral I5 of Harmonic oscillator using Gauss-2 method.
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We have plotted absolute error in the first integrals by using symplectic Gauss-2

method. We have taken n = 100, 000 and stepsize h = 0.01. The error in first

integrals, is plotted in Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9

respectively. The initial conditions are [0, 1], [1, 0], [0, 0.1], [0.1, 0], [0.1, 0.1]. The

results have shown the error does not grow out of bound. This shows symplectic

Gauss-2 method show good long time preservation of all the first integrals.

Case II : when k2 = 1 and y is complex

Harmonic oscillator consists of two oscillator each of mass m connected by a spring.

The differential equations of the system are given as

y′1 = y3,

y′2 = y4,

y′3 = −y1,

y′4 = −y2.

(5.7)

We have integrated system of equations (5.7) using symplectic Gauss-2 method.

We have taken h = 0.01 and n = 100, 000 steps. The absolute error in the first

integrals I1,1, I1,2, I2,1, I2,2, I3,1, I3,2, I4,1, I4,2, I5,1, I5,2, are plotted in Figures

5.10, 5.11, · · · , 5.19 respectively.
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Figure 5.10: Error in integral I1,1 of Harmonic oscillator using Gauss-2 method.
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Figure 5.11: Error in integral I1,2 of Harmonic oscillator using Gauss-2 method.
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Figure 5.12: Error in integral I2,1 of Harmonic oscillator using Gauss-2 method,
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Figure 5.13: Error in integral I2,2 of Harmonic oscillator using Gauss-2 method.
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Figure 5.14: Error in integral I3,1 of Harmonic oscillator using Gauss-2 method.
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Figure 5.15: Error in integral I3,2 of Harmonic oscillator using Gauss-2 method.
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Figure 5.16: Error in integral I4,1 of Harmonic oscillator using Gauss-2 method.
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Figure 5.17: Error in integral I4,2 of Harmonic oscillator using Gauss-2 method.
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Figure 5.18: Error in integral I5,1 of Harmonic oscillator using Gauss-2 method.
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Figure 5.19: Error in integral I5,2 of Harmonic oscillator using Gauss-2 method.
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Case III: when k and y are complex

A coupled time-independent harmonic oscillators consists of two objects of mass m

attached with three springs. The equations of motion are

y′1 = y3,

y′2 = y4,

y′3 = −αy1 + βy2,

y′4 = −αy2 − βy1.

(5.8)

We have plotted the absolute error in integrals I1,1, I1,2, I2,1, I3,1, I3,2, I4,1, I4,2, I5,1

and I5,2 using stepsize h = 0.01 and number of steps n = 100, 000. The absolute

error in the first integrals are plotted in Figures 5.20, 5.21, · · · , 5.27 respectively.
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Figure 5.20: Error in integral I1,1 of coupled Harmonic oscillator using Gauss-2

method.
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Figure 5.21: Error in integral I1,2 of coupled Harmonic oscillator using Gauss-2

method.
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Figure 5.22: Error in integral I2,1 of coupled Harmonic oscillator using Gauss-2

method.
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Figure 5.23: Error in integral I2,2 of coupled Harmonic oscillator using Gauss-2

method.
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Figure 5.24: Error in integral I3,1 of coupled Harmonic oscillator using Gauss-2

method.
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Figure 5.25: Error in integral I3,2 of coupled Harmonic oscillator using Gauss-2

method.
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Figure 5.26: Error in integral I4,1 of coupled Harmonic oscillator using Gauss-2

method.
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Figure 5.27: Error in integral I4,2 of coupled Harmonic oscillator using Gauss-2

method.
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Chapter 6

Conclusion

In this thesis, we have studied numerical preservation of first integrals of Hamiltonian

systems. We have used classical Noether theorem to calculate Noether symmetries

and associated first integrals of Hamiltonian systems. We have evaluated first in-

tegrals of Simple pendulum, Kepler problem, Henon-Heiles problem and Harmonic

oscillator by using Noether approach. Then we have extended our work by using

complex symmetry method to calculate first integrals of system of Harmonic oscilla-

tors. Furthermore, it is seen that the two dimensional coupled Harmonic oscillators

can be represented by one restricted complex ordinary differential equation. We

have determined Noether-like symmetries and associated first integrals correspond-

ing to uncoupled and coupled two dimensional system of Harmonic oscillators.

In these cases, we observe that amongst five first integrals of one dimensional Har-

monic oscillator only two first integrals I2 and I3 are independent. The other three

first integrals which are I1, I4 and I5 can be written as linear combination of these

two integrals. Similarly for the complex case, amongst ten first integrals, only four

first integrals are independent for each system of equations.

Since we are interested in the numerical conservation of the first integrals of Hamil-

tonian systems, we have taken order four symplectic Runge-Kutta method for the

integration. These first integrals are quadratic in nature, so symplectic Runge-

Kutta method has successfully been used. Through this approach, a good long time

preservation of the first integrals of single as well as system of Harmonic oscillators

is observed.
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