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Abstract 

 

Artificial Neural Networks (ANN) utilization as surrogates within particle swarm 

optimization (PSO) and genetic algorithm (GA) frameworks for methanol flow rate 

optimization under uncertainty is explored in this work. First, Aspen Plus model with 

steady-state conditions of the CO2 hydrogenation to methanol process was developed. The 

process model was then transformed to a dynamic mode by inserting ±5% uncertainty in 

the process and 3880 data samples were generated. An ANN model, developed using 

MATLAB 2022a, was trained using these data samples. ANN achieved an impressive 

accuracy having a root mean square error (RMSE) of 26.83 and correlation coefficient (R) 

of 0.995 while testing for unseen data during cross-validation of the model. Then the ML 

model ANN was used as a surrogate in the PSO and GA for optimization methods to 

identify optimal conditions that maximize the methanol flow rate amidst uncertainty. 

Results show consistent improvements over the standalone Aspen model, with PSO 

slightly outperforming GA. Validation in Aspen Plus confirms the efficacy of the proposed 

methodology. This study highlights the potential of ANN-based surrogate modeling and 

its application in intelligent data-driven optimization for complex chemical processes 

under uncertainty, ultimately contributing to more efficient production systems. 

 

Keywords: Carbon Conversion, Artificial Neural Network, Artificial Intelligence, Particle 

Swarm Optimization, Genetic Algorithm, Surrogate modeling, Machine learning.  
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Chapter 1 
Introduction 

1.1 Background 

Lately, the global focus has shifted towards exploring environmentally-friendly solutions to 

address pressing environmental challenges. Environmental issues arise because of the increased 

demand for energy requirements. Nowadays most energy is generated using non-fossil energy 

sources, but fossil fuels are still used as the main energy supply source [1]. So, we need to 

develop reasonable and sustainable fossil fuel with less environmental concerns [2]. Carbon 

dioxide (CO2) is a greenhouse gas generated from fossil fuels whose increased emission has 

caused a greenhouse effect that results in global warming, acidification, and a certain degree 

of sea level rise with 1oC rise of average temperature since before the industrial revolution 

of the planet with the ten warmest years recorded occurring since 1998 [ 3 - 5 ] . As per a  

recent report, by 2100, our atmosphere could hold up to 570 ppm of CO2, resulting in a 

1.9 oC temperature rise and a 3.8-meter sea level increase[6]. When it comes to various emission 

sources of CO2, an anthropogenic emission source coal-fired power plants stand out as 

significant contributors to global CO2 emissions, releasing around 2 billion tons of CO2 annually 

as shown in Fig 1. Thus, it is of utmost importance to deal with rising levels of Carbon dioxide 

(CO2). 

 

 

 

 

 

 

 

 

 

 

 

 

                           [7] Figure 1: Breakdown of the dominant CO2 emission sources  
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Carbon dioxide (CO2) can effectively be mitigated by four possible pathways: (1) enhancing 

current process efficiency (2) using eco-friendly or sustainable energy resources (3) Trapping 

carbon dioxide emissions at their origin and depositing them beneath Geological formations, 

known as carbon capture and sequestration (CCS), and (4) Utilizing the collected CO2 for make 

useful and marketable products [8-10]. Among all the alternatives, the CO2 utilization methods 

stands out as the most intriguing option for addressing climate change in the long term because 

the price of CO2 capture can be recovered by making the market-desired end product from 

capture Carbon dioxide (CO2) utilization can either be physical where its chemistry is same or 

dissolved in the mixture (i.e., process fluid, solvent, dry ice, refrigerant, welding medium, or fire 

extinguisher), or chemical where the CO2 molecule loses its identity and is transformed into 

another end product (i.e. dimethyl carbonate (DMC), methanol,  ethanol, di-methyl ether (DME), 

methane, syngas, and carbonates) [11]  as shown in figure 2.  

 

                     [11] 

 

 

  

Figure 2: CO2 different chemical utilization pathways 
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Out of all the chemical conversion product methanol is one of the most important products 

produced from chemical utilization of CO2 which is both a significant fuel  and chemical industry 

raw material [12]. With an energy density of 22.7 MJ/kg, it is approximately half that of gasoline. 

It appears as a colorless, water-soluble liquid with a boiling point of 64.6 oC and a freezing point 

of 97.6 oC [13]. Unlike gasoline, methanol (MeOH) is highly toxic but is not considered 

carcinogenic. As a result, MeOH is a preferred fuel choice for internal combustion engines [14]. 

The process of methanol synthesis requires cost-effective raw materials and highly efficient 

chemical processes. The transformation of carbon dioxide into methanol through hydrogenation 

is considered a great industrial opportunity [15]. Although there are numerous sources for 

affordable CO2, the availability of low-priced hydrogen is somewhat constrained. 

Methanol is a widely used commodity in various industrial processes. It finds application in 

producing formaldehyde [16], methyl formate [17], methyl tertiary butyl ether [18], DME [19], 

DMC [20], acetic acid [21], biodiesel [22], ethanol [23], propanol [ 2 4 ] , methyl amines 

[ 2 5 ] , ethylene glycol [ 2 6 ] . Additionally, it serves as a common industrial solvent in 

numerous applications. Additionally, methanol possesses excellent combustion qualities, 

making it suitable as a vehicle fuel, despite having roughly half the energy density of 

gasoline. Moreover, it is a cleaner option compared to traditional fossil fuels. It can be 

blended with gasoline in various proportions, ranging from minor additives to higher 

concentrations like M85 (85% methanol and 15% gasoline). Vehicles running on pure 

methanol (M100) are  also feasible and even more streamlined [27]. However, it’s important to 

note that methanol’s toxicity is a significant concern when considering its use as fuel. 

Ingesting large quantities of methanol can be extremely harmful, leading to blindness and 

potentially even death. 

Now ML is used in the study because the industry undergoing a transformation towards AI-

driven smart manufacturing, commonly referred to as Industry 4.0, machines are now capable of 

autonomous communication and collaboration. 

Machine learning is at the forefront of AI, allowing systems to create mathematical models from 

training data. This helps them learn and make predictions, even in unfamiliar situations [28]. The 

precision comes from carefully selecting features and effective training, making ML a valuable 
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tool for understanding complex environmental phenomena with variations over time and space 

[29-31]. 

ML has a wide impact, touching all aspects of life and being a key part of Industry 4.0. Inspired 

by how the human brain learns, ML gives computers the ability to handle complex problems by 

learning and adapting to different inputs. It has many advantages, like dealing with complexity, 

improving computational efficiency, handling uncertainty, and aiding decision-making [31]. 

ML’s progress has benefited various scientific and engineering fields, including materials 

science, bioengineering, construction management, and transportation engineering [32]. 

Numerous studies have explored the diverse applications of AI and machine learning in various 

industries. These encompass real-time monitoring [33, 34], predictive maintenance [35, 36], 

quality control [37, 38], energy efficiency enhancements [39, 40], data mining and analytics [41], 

drug discovery and development [42], streamlining industrial processes [43], safeguarding 

against process-aware attacks on industrial control systems [44], optimization [45], monitoring 

and diagnosing faults in supervised processes [46], IoT-based Smart Agriculture systems [47], 

industrial tomography [48], predicting Heart Failure Disease [49], earthquake engineering [32], 

and more. 

1.2 Conventional methanol production process 

On commercial scale methanol is typically produced by catalytically converting synthesis 

gas (gaseous mixture of CO, CO2 and H2). In 1905, Sabatier introduced the initial synthetic 

method for generating methanol from CO and H2. [50]. Synthesis gas, which serves as the 

primary feedstock for methanol production is most commonly derived from the reforming of 

fossil fuels, with natural gas being the predominant source in today’s use [9].In 1923, Badis- 

Che Anilin–und Soda Fabrik (BASF) patented a methanol-producing method referred to as 

”high-pressure methanol synthesis” [51]. This process utilized syngas generated through coal 

gasification. Operating within a temperature range of 300oC to 400oC and under pressures 

ranging from 250 to 350 atm, it employed a zinc/chromium oxide catalyst. It’s worth noting, 

however, that this catalyst also yielded lightweight hydrocarbons and methane with a 

selectivity of around 2–5 wt% [52]. In 1966, Imperial Chemical Industries (ICI) introduced 

a process, operating at lower temperatures and pressures (300oC and 100 atm), using cleaner 
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sulfur-free syngas from methane steam reforming. This allowed for a more efficient Cu/ZnO 

catalyst and eliminated the co-production of lighter hydrocarbons due to the lower reaction 

temperature [50]. Lurgi later developed a method operating under milder conditions (250–

350oC, 40–50 atm). Initially, methanol was made via CO catalytic hydrogenation using 

CO/H2 or CO/CO2/H2 as a feed gas [53]. During the 1990s, research revealed that the 

hydrogenation of CO2 occurred at a faster rate when compared to CO, making it the 

preferred reaction even when utilizing a feed gas composed of CO, CO2, and H2. [54]. 

1.3 CO2 to methanol process 

1.3.1. Overview 

Methanol can be made from CO2 using two different methods: the one-step and two-step 

processes. In the one-step process, methanol is directly produced through the hydrogenation of 

CO2 (Eq.(1)). In the two-step process, a series of reactions is employed. Initially, CO2 

undergoes conversion into CO by means of the Reverse Water Gas Shift (RWGS) reaction, 

as illustrated in Equation (2). Then, the generated CO is transformed into methanol by 

adding hydrogen (Eq.(3)) [55]. 

CO₂ + 3H₂ → CH₃OH + H₂O     ΔH298 = -49.5 kJ/molCO₂            (1) 

CO₂ + H₂ → CO + H₂O              ΔH298 = 41.2 kJ/mol CO₂              (2) 

CO + 2H₂ → CH₃OH                 ΔH298 = -90.7 kJ/mol CO               (3) 

The methanol-producing reactions (Eq.(1)) and (Eq.(3)) are exothermic, releasing heat, 

while the reverse water-gas-shift (RWGS) reaction (Eq.(2)) occurs together and is 

endothermic. 

Many recent investigations have been carried out regarding the production of methanol through 

the hydrogenation of CO2. Joo et al.[56] explored a two-step process for methanol production 

and determined that it results in higher yields compared to the one-step method. Mignard  et 

al.[57] introduced synthesis process of methanol that relies on utilizing CO2 extracted from 

coal power plant flue gas and electrolytic hydrogen. The effectiveness of this method in 

achieving substantial CO2 reduction hinges upon the presence of waste heat from the power 
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plant, which provides the necessary thermal energy. When these heat sources are not available, 

the capacity for CO2 abatement is essentially negligible. Mignard et al.[58] conducted a 

study in which the energy effectiveness of manufacturing methods involving the hydrogenation 

of CO2 to produce ethanol, gasoline, and methanol is compared. The methanol production 

process exhibited the maximum level of efficiency. Pontzen et al.[59] carried out tests to contrast 

the production of methanol from CO2 using a Cu/ZnO/Al2O3 catalyst with the traditional syngas 

production process. The CO2-dependent method displayed reduced efficiency in comparison to 

the conventional method. Soltanieh et al.[60] performed an economic evaluation of the 

simultaneous production of methanol and electricity using captured CO2 and hydrogen devoid 

of carbon content. Van Der Ham et al.[61] developed a fluidized-bed membrane reactor system 

for converting CO2 into methanol. Although the process successfully reduced CO2 emissions, it 

faced challenges in terms of economic feasibility. 

1.3.2 Catalysts 

Cu and Zn have been identified as the primary components of catalysts essential for methanol 

production from CO2, often supplemented with additives like Al, Si, Cr, Zr, B, Ga, and others 

[62]. For commercial methanol production from CO2, the prevalent catalyst of choice is typically 

Cu/ZnO/Al2O3, as examined by various researchers [57-59, 63]. However, it’s worth noting that 

this catalyst exhibits reduced efficiency when supplied with CO2 compared to a mixture of 

CO/CO2 [9]. In pursuit of catalysts better suited for CO2 feedstock, substantial research efforts 

have been dedicated. In many instances, the proposed catalysts are built upon copper and zinc 

oxides, incorporating additional elements like ZrO2, GaO3, and SiO2 over alumina. Guo et al. 

[64] conducted a study to examine how the preparation process in- fluences the performance of 

a Cu/ZnO/ZrO2 catalyst. Meanwhile, Zhang et al. [65] explored how the addition of zirconia 

affects the γ-Al2O3-supported Cu-based catalyst. Additionally, Raudaskoski et al. [51] conducted 

a comprehensive review of research papers focusing on copper-based catalysts containing 

zirconia. 

  1.4 Objectives 

Objective of this work includes: 

• Integration of First principal model and Matlab for parameters uncertainty. 
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• ANN model Development for data-based prediction of methanol production plant 

under uncertainty. 

• Employing an ANN model as a surrogate within PSO and GA  frameworks to 

achieve enhance methanol production in the presence of uncertainty. 

  1.5 Thesis Outline 

Thesis follows the following pattern: In Chapter 1, we provide an Introduction and background 

to the research topic. This is followed by Chapter 2, where we present an extensive literature 

review on the subject of CO2 conversion to different products, especially methanol. Chapter 3 

delves into the research methodology employed in the development of a predictive and 

optimization framework for Methanol flow rate. Moving on to Chapter 4, we present the 

outcomes of our research, including quantification of Methanol flow rate and discussions 

pertaining to the optimization framework. 
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Chapter 2 
Literature Review 

2.1 Literature Review 

Numerous studies have explored the utilization of machine learning in the conversion stage of 

carbon dioxide (CO2) management. These studies aim to enhance the efficiency of CO2 

conversion through a variety of computational techniques and make the process efficient. The 

literature in this field is often categorized based on the diverse range of products that can be 

synthesized. 

2.1.1 Methanol Production:  

Khademi et al.[66] used an artificial neural network approach to Investigate a Conventional 

model with two jacketed reactors connected in series for methanol production. The ANN gives 

good predictions for Conventional Methanol Production with Reactor Outlet: MSE=0.0042, 

AARD= 0.0035 and Unit outlet: MSE=0.0042, AARD= 0.0040 and Modified Methanol 

Production with Reactor outlet: MSE=0.009, AARD= 0.0024 and Unit outlet: MSE=0.008, 

AARD= 0.0024. Chuquin-Vasco et al.[67] utilized a neural network (ANN) to forecast the 

methanol flux at the exit of a carbon dioxide dehydrogenation facility, employing the 

Cu/ZnO/Al2O3 catalyst. They compared the ANN's performance when trained with three distinct 

algorithms: Levenberg–Marquardt (LM), Bayesian regularization (BR), and scaled conjugate 

gradient backpropagation (SCG). Notably, the ANN trained with the Levenberg–Marquardt 

(LM) algorithm displayed exceptional predictive accuracy, achieving an RMSE (Root Mean 

Square Error) of 0.0085 and an overall regression coefficient of 0.9442.  

Vanjari et al.[68] conducted a comparative analysis of different ML models to investigate the 

direct catalytic CO2 hydrogenation process for methanol production. The GBRT and ANN 

models demonstrated superior performance compared to other ML models, achieving R2=0.95, 

RMSE=2.06 and R2=0.94, RMSE=2.29 for CO2 conversion, and R2=0.95, RMSE=6.06 and 
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R2=0.95, RMSE=6.05 for methanol selectivity, respectively. The study explores various 

catalysts and operating conditions to directly convert CO2 and hydrogen into methanol. 

2.1.2 Synthesis Gas (Syngas) Production: 

Istadi et al.[69] introduced an innovative method that integrates a genetic algorithm and an 

artificial neural network (ANN-GA) for the modeling of the "Catalytic-dielectric barrier 

discharge" process, which aims to produce synthesis gas (syngas) by converting methane and 

CO2. Their study employed a dielectric barrier discharge system to investigate the impacts of 

different operational parameters. The ANN-GA gives good prediction for all process parameter 

with CH4 conversion:R2=0.997 and % E=8.29%, C2
+ selectivity:R2=0.998 and % E=20.39%, H2 

selectivity:R2=0.991 and % E=14.86%, C2
+ yield: R=0.997 and % E=21.59% and H2/CO 

ratio:R2=1 and % E=12.53%. Hossain et al.[70] explored the utilization of artificial neural 

networks (ANN) for the modeling of hydrogen-rich syngas production from methane dry 

reforming on Ni/CaFe2O4 catalysts within a continuous flow fixed bed stainless steel reactor. 

The investigation encompassed two different neural network architectures, namely the multi-

layer perceptron (MLP) and the radial basis function (RBF). The ANN-MLP-based model 

achieved superior coefficient of determination (R2) values when compared to the ANN-RBF-

based model. Specifically, the ANN-MLP model achieved R2 values of 0.9726 for H2 yield, 

0.8597 for CO yield, 0.9638 for CH4 conversion, and 0.9394 for CO2 conversion.  Ayodele et 

al.[71] employed an artificial neural network (ANN) to assess the influence of various process 

parameters on the production of synthesis gas through dry reforming of methane over a cobalt 

catalyst. This investigation was conducted within a fixed-bed stainless steel reactor. The ANN, 

trained using the forward propagation algorithm, exhibited excellent predictive abilities for CH4 

conversion, CO2 conversion, and the rates of H2 and CO production, achieving R2 values of 1 

for all these variables. Ayodele et al.[72] Ayodele and colleagues (Reference 72) carried out a 

research study aimed at assessing how various process parameters affect the conversion of 

carbon dioxide (CO2) and methane (CH4) in reforming reactions using Nickel (Ni) catalysts. 

They employed various configurations of multilayer perceptron (MLP) and nonlinear auto-

regressive exogenous (NARX) neural network models to investigate this impact. The models' 

performance was assessed based on their capacity to predict the conversion of CO2 and CH4. The 

NARX model, specifically the one trained with Bayesian Regularization (BR-NARX), exhibited 
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the most exceptional performance, achieving an impressive coefficient of determination (R2) of 

0.998 and a very low mean squared error (MSE) of 3.24×10–9. The BR-NARX accurately 

predicted the thermocatalytic conversion of CH4 and CO2. 

2.1.3  C2 and C2
+ Hydrocarbon Production: 

Ayodele et al.[73] utilized the Radial Basis Function artificial neural network to model and 

predict the thermo-catalytic CO2  oxidative coupling of methane to C2  hydrocarbons.  The Radial 

Basis Function ANN demonstrated excellent performance with a sum of square error (SSE) of 

0.224 and a coefficient of determination (R2) of 0.990. Moreover, the model’s high R2 values of 

0.989 and 0.998 for predicting the selectivity and yield of C2 hydrocarbons respectively, 

highlight the robustness and accuracy of the Radial Basis Function ANN. Istadi et al.[69] 

developed a hybrid artificial neural network-genetic algorithm (ANN-GA) to model Investigated 

Catalytic-dielectric barrier discharge for the production of C2
+ hydrocarbons through the 

conversion of CO2 and methane. The research utilized a dielectric barrier discharge system to 

explore the effects of various process parameters. The ANN-GA give good prediction for all 

process parameter with CH4 conversion:R2=0.997 and  E=8.29%, C2
+ selectivity:R2=0.998 and 

% E=20.39%, H2 selectivity:R2=0.991 and % E=14.86%, C2
+ yield: R=0.997 and  % E=21.59%  

and  H2/CO  ratio:R2=1 and % E=12.53%. Istadi et al.[74] develop a hybrid artificial neural 

network-genetic algorithm (ANN-GA) model, to study the effect of process parameter on 

Noncatalytic dielectric barrier discharge (DBD) method for the production of C2
+ hydrocarbons 

from carbon dioxide (CO2) and methane (CH4). The model gives good predictions with 

MSE=0.0034 and R =0.9938, 0.9955, 0.9877, 0.9978 for CH4 conversion, C2
+ selectivity, H2 

selectivity and C2
+ yield respectively. 

2.1.4  Biomass Productivity: 

Hossain et al.[75] apply the comparison of three artificial intelligence (AI) modeling approaches 

including boosted regression tree (BRT), artificial neural networks (ANN), and support vector 

regression (SVR) to Study Bio fixation to enhance biomass productivity using air and CO2 to 

support microalgae growth. Comparing results SVR outperforms all ML approaches in 

prediction with R2=0.779, MAE=0.013, MARE=1.2587, RMSE 0.0296, FB=0.0061 for biomass 

productivity and R2=0.911, MAE=0.0128, MARE=0.4131, RMSE=0.0189, FB=0.0088 for CO2 
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fixation (RCO2). Kushwaha et al.[76] introduced a novel prediction model to forecast the carbon 

dioxide (CO2) fixation of microalgae, employing a hybrid approach that combines the adaptive 

neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA). The analysis revealed  that  

the  GA-ANFIS  model  outperformed the standalone ANFIS model.  The  GA-ANFIS  model  

demonstrated  superior  prediction  capability, with RMSE, R2, and AARD values of 0.00056, 

0.98457, and 0.032156 respectively. 

2.1.5  Lower Olefins(LO) Production 

Chandana et al.[77] designed a machine learning (ML) framework to model and design catalysts 

for the direct hydrogenation of CO2 to lighter olefins, focusing on the relationship between 

structural composition and operating parameters. The study employed artificial neural network 

(ANN) models using Bayesian-Regularization (BR) and Levenberg-Marquardt (LM) 

backpropagation learning algorithms to predict catalyst activity. These ANN models were then 

compared with other ML models, including linear, tree-based, and kernel-based approaches. 

Among the various ML models investigated, the ANN-BR model demonstrated the best 

performance in predicting CO2 conversion and LO (lighter olefins) selectivity, showing minimal 

deviation from experimental data with R values of 0.90 and 0.8, RMSE values of 8.43 and 16.73, 

and AAD values of 5.8 and 9.5 for test data, respectively. 

2.1.6  Methane Production 

Yılmaz et al.[77] presented a novel random forest (RF) model to analyze an extensive dataset 

comprising 4051 data points from 527 distinct experiments collected from 100 published articles. 

The study focused on catalytic CO2 methanation from CO2 and H2. The RF model demonstrated 

promising results in predicting CO2 conversion, yielding a root mean square error (RMSE) of 

12.7 and an R2 value of 0.85. 

Wiheeb et al.[78] develop an Artificial Neural Network (ANN) to study CO2 Conversion in a 

falling film reactor. This study shows that the ANN model gives a very close estimation of CO2 
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conversion. The average error as predicted by ANN was 0.6% which is within the acceptable 

level. 

Alsaffar et al.[78] conducted a comprehensive investigation into the impact of process 

parameters on hydrogen production through catalytic methane dry reforming. Ten distinct ANN 

models were constructed, with variations in the number of hidden neurons ranging from 1 to 10. 

The model that exhibited the most favorable performance was the one with a topology of 4-9-2. 

In short, the convergence of AI, especially ML, with industrial processes represents a significant 

technological advancement. It redefines how industries operate, enabling greater efficiency, 

sustainability, and innovation. Various researchers have integrated AI with methanol production. 

But to the best knowledge of the authors, no work has been reported in CO2 hydrogenation to 

methanol product under uncertainty. 
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Chapter 3 

Process Description and Methodology 

In this section, a brief general overview of process description, ANN, GA, PSO, and 

methodology will be discussed. 

3.1 Process description 

In this process (CO2 hydrogenation to methanol), two primary feed gases, carbon dioxide (CO2) 

and hydrogen (H2), are subjected to compression with intercooling prior to entering the adiabatic 

reactor. Within this reactor, a Cu/ZnO/Al2O3 is used catalyst to facilitate a chemical conversion, 

potentially increasing the selectivity of methanol product. Unreacted gases from the reactor are 

efficiently recycled, with a fraction released into the atmosphere to prevent impurity buildup. 

Following reactor operation, phase separation is employed to distinguish untreated gases from 

liquid condensate. This phase separation step is integral to the process, ensuring the efficient 

management of gas and liquid components.  

 

Figure 3: Bloc diagram of the process 
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The final crucial stage involves a distillation column. The crude methanol stream, obtained from 

prior phases, undergoes depressurization and further phase separation to eliminate any residual 

gases and water content. This comprehensive process results in the production of the desired 

methanol product while optimizing resource utilization and minimizing waste. Figure 3 

represents an overview of the process. 

 

3.2. Artificial neural networks 

An artificial neural network (ANN) is a subset of machine learning algorithms that draws 

inspiration from the human brain for its computational model [79]. It consists of a network of 

interconnected neurons with predefined functions, arranged into layers known as the input, 

hidden, and output layers [80, 81]. They use artificial neurons to receive inputs, apply activation 

functions, and predict output. In situations where deriving precise analytical correlations for 

highly nonlinear phenomena is challenging, artificial intelligence techniques, especially ANNs, 

come into play [80]. They make predictions using real-world data without needing any 

relationship between inputs and outputs [82]. Figure 4 represents ANN’s general structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: General ANN structure 
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3.2.1 The Levenberg-Marquardt Method 

This method addresses nonlinear programming problems by reducing the sum of squared errors 

between data points and a model function. This minimization process is achieved by iteratively 

adjusting a set of parameters through a combination of Gauss-Newton and gradient descent 

updates, as expressed in equation (4). 

[𝑱⊤𝑾𝑱 + 𝝀(𝑱⊤𝑾𝑱) ]𝒉∣𝒎 = 𝑱⊤𝑾(𝒚 − �̂�)                                        (𝟒) 

The process begins by varying these parameters in the steepest-descent manner, gradually 

reducing the total squared error using gradient descent. This method assumes that the least square 

function is approximately quadratic in the vicinity of the current parameter values. By 

minimizing this quadratic approximation, the Gauss-Newton approach effectively reduces the 

sum of squared errors. 

The damping parameter 𝝀 plays a crucial role in the update process. A small 𝝀 leads to a Gauss-

Newton update, while a large 𝝀 results in a gradient descent update. To ensure stability and 

convergence, 𝝀 starts with a large value, causing initial updates to be relatively small steps along 

the steepest-descent path. As the algorithm progresses and the solution improves, 𝝀 is gradually 

reduced, guiding the approach towards the Gauss-Newton method and moving closer to a local 

minimum.[83] 

3.3 Genetic algorithm 

The Genetic Algorithm (GA) is a bio-inspired optimization method that draws its inspiration 

from Charles Darwin's theory of evolution, initially proposed by Holland and later expanded 

upon by Goldberg and Holland [84, 85]. Genetic algorithms mimic nature’s selection and 

inheritance to solve complex optimization problems. In GA, every parameter corresponds to a 

genetic element, and solutions are encoded as chromosomes. The process kicks off by 

establishing an initial population, wherein the fitness of each individual is assessed using an 

objective function. The algorithm proceeds to generate fresh populations iteratively through 

processes like selection, crossover, and mutation until it converges towards an optimal solution, 

guided by predefined termination criteria, such as a specified threshold for solution differences 

or a set number of iterations [82]. In short, GA is a meta-heuristic method that continuously 

refines a population of solutions, driven by principles of natural selection. It selects parents from 
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the current population based on fitness, produces offspring through crossover and mutation, and 

evolves toward the best solution until termination conditions are met [86]. These genetic 

operators, including selection, crossover, mutation, and elitism, guide GA iteratively to explore 

unvisited regions of the search space in pursuit of better solutions [87, 88]. Figure 5 depicts a 

general flowchart of a genetic algorithm, outlining the steps and processes within the algorithm. 

 

3.3.1 Genetic Algorithm Operators 

The functions of all the genetic operators are as follow: 

3.3.1.1 Population 

The initial population was randomly generated, and each conceivable solution is referred to as a 

chromosome, as demonstrated in Table 1. 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 }                                                           (5) 

𝑝𝑖 = [𝑝𝑖1
 𝑝𝑖2

 ⋯ 𝑝𝑖𝑗
 ⋯ 𝑝𝑖𝑛𝑜−𝑣𝑎𝑟𝑠 

 ]                                            (6) 

 𝑝𝑎𝑟𝑎 𝑚𝑖𝑛
𝑗

≤ 𝑝𝑖𝑗
≤  𝑝𝑎𝑟𝑎 𝑚𝑎𝑥

𝑗
                                                   (7) 

 

 
Table 1: Chromosomes 

Chromosome No. 1 1011000101110010 

Chromosome No. 2 1001010110111001 

 

In equation (5), pop_size represents the total population size, while in equation (6), no_vars 

denotes the number of variables to be optimized. The symbols 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑗

 and 𝑝𝑎𝑟𝑎𝑚𝑎𝑥
𝑗

 

correspond to the minimum and maximum values of the parameter 𝑝𝑖𝑗
. 

3.3.1.2 Determination of Parents and Offspring 

 During the selection process, the algorithm identifies which chromosomes will serve as parents 

for reproduction and mating. Additionally, it determines the number of offspring that each 

selected chromosome will generate. 
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Objective of Selection: The primary objective of the selection process is to give preference to 

individuals with higher fitness levels. This is often summarized by the principle that "the better 

an individual's fitness, the greater its likelihood of becoming a parent [89]. Several well-known 

selection methods are as follows: 

Tournament Selection: This method is widely regarded as one of the most common and efficient 

techniques in the field of genetic algorithms due to its simplicity and effectiveness [90]. The 

tournament selection process involves randomly selecting individuals from the broader 

population. These selected individuals then engage in a competition to determine which one 

possesses the highest fitness value. The victor of this competition is chosen as a parent for the 

Figure 5: Schematic representation of Genetic Algorithm 
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next generation. Typically, individuals compete in pairs, forming binary tournaments or 

"tournament size." Tournament selection ensures diversity by offering an equal opportunity to 

all individuals, although it may slightly slow down convergence. Notably, tournament selection 

is adept at utilizing computational resources, particularly when implemented in parallel. It also 

demonstrates resilience against domination by a few individuals, thus enhancing its robustness. 

Moreover, it eliminates the need for fitness scaling or sorting procedures [91]. 

 

 

 

 

 

 

 

 

 

 

 

Proportional Roulette Wheel Selection: In this method, possible solutions are represented as 

segments on a roulette wheel, with the size of each segment determined by their respective fitness 

values. The wheel is then spun randomly to select the solutions that will participate in the creation 

of the next generation, as depicted in Figure 6. Rank-based selection is a variation of this 

Figure 6: Roulette wheel selection 
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approach where individuals are assessed based on their ranks rather than their absolute fitness 

values, ensuring that every individual has a chance of being chosen [92]. 

Rank Selection: It is employed for parent selection, involving the utilization of a ranking 

mechanism. Within this context, the fitness value is utilized to assign rankings to individuals 

within the population. The individual with the highest fitness receives the highest rank (n), while 

the lowest-ranked individual is assigned a rank of 1. Each chromosome's ranking is determined 

based on its expected value [93]. 

3.3.1.3 Crossover 

This process involves merging the genetic data from two or more parents to generate 

offspring. Genetic algorithms commonly employ crossover operators such as single-point, 

double-point, and uniform. In Single-Point Crossover, a random crossover point is 

designated, and the genetic information of two parents is exchanged beyond that specific 

point, as visually represented in Figure 7 [86]. 

 

 

Double Points Crossover: In this method, entails the random selection of two or more 

crossover points. The exchange of genetic information between parents occurs based on 

the segments created, as exemplified in Figure 8 [86]. 

 

Figure 7: Single point crossover 
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Uniform crossover: The parental individual cannot be divided into separate segments. Instead, 

each parent is 

considered to represent each gene independently. The choice of whether to swap a gene with its 

corresponding gene at the same position in another chromosome is determined through a random 

process, as depicted in Figure 9 [86]. 

 

 

 

 

 

 

 

3.3.1.4 Mutation 

 Mutation plays a vital role in preserving genetic diversity from one generation to the next. 

During the mutation process, genes within the chromosomes undergo changes. This alteration 

can lead to variations in the characteristics of chromosomes inherited from their parents. 

Notably, the mutation process generates three additional offspring [94]. In practice, within the 

Genetic Algorithm (GA), this operator prevents solutions from becoming identical and enhances 

the likelihood of avoiding local optima. Refer to Figure 10 for a conceptual depiction of this 

Figure 8: Double points crossover 

Figure 9: Uniform crossover 
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operator. After the crossover (replication) stage, minor modifications in some randomly selected 

genes can be observed in the diagram [95]. 

 

 
 

 
 

 

 

 

 

 

 

3.4.Particle Swarm Optimization 

Particle swarm optimization (PSO) is a robust exploration technique that draws inspiration from 

the collective movement patterns observed in birds and fish. [96]. It was initially developed by 

Kennedy and later refined by Clerc [97]. In PSO, a group of particles explores a search space, 

and in each step, the algorithm assesses how well each particle is positioned. Particles are drawn 

toward the best positions discovered within the group. This cooperative exploration continues, 

with particles adjusting their positions based on their neighbors and using a defined fitness 

function to guide their movement [98, 99]. 

One of the notable strengths of PSO is its rapid convergence, making it stand out among other 

evolutionary algorithms. This adaptability has led to its application in various engineering 

challenges [100]. PSO primarily employs a population-based approach, where random particles 

explore the search space, continually updating their positions. Each particle independently seeks 

Figure 10:  After the crossover phase, the mutation operator changes one or more genes in 

the children's solutions 
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optimal solutions while considering the positions of nearby particles and using a fitness function 

as a guide [96, 101]. 

3.5 Surrogate Model 

A surrogate model, also referred to as a meta-model, serves as a valuable analytical tool 

for establishing a statistical link between the input and output behaviors of complex 

systems. These surrogate models are generally categorized into two main types based on 

their approach to approximation: (i) model-driven and (ii) data-driven, often called black 

box models. Within the model-driven framework, known as the Reduce Order Model 

(ROM), the primary aim is to reduce computational costs by employing lower-order 

equations for approximating the original equations. However, it's important to note that 

implementing this approach often necessitates access to the source code of the simulation, 

a requirement that is typically unattainable when using commercial software. In contrast, 

in the data-driven surrogate model approach, the primary emphasis is on constructing the 

model using input data and their corresponding output responses. The development process 

of a surrogate model involves several well-defined steps: 

• Sampling the Design Space: The initial phase involves systematically sampling the 

design space to identify the input parameters from various datasets.  

• Executing Simulations or Conducting Experiments: Subsequently, the simulator is 

run, or experiments are carried out to generate the outcomes corresponding to the 

input parameters. 

• Selecting and Training the Surrogate Model: A surrogate model is chosen and then 

trained using the available training data, which includes both input and output.  

• Evaluating Model Performance: The model's performance is rigorously assessed 

based on test data. If the model's accuracy falls short of expectations, the entire 

process is reiterated, commencing from the initial design space sampling. 

In essence, a surrogate model fulfills the essential role of establishing a statistical link 

between the input parameters and the corresponding system outputs. These surrogate 

models are broadly divided into two types: data-driven and model-driven. The model-

driven approach, or ROM, seeks to reduce computational costs through the application of 
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lower-order equations, while the data-driven approach relies on input-output data to 

construct the model. The process of creating a surrogate model involves systematic design 

space sampling, simulator execution or experimentation, the selection and training of the 

surrogate model, and ongoing evaluation to ensure accuracy[102].   

3.6 Methodology 

The methodology used in this study is summarized in Figure 11 and is briefly detailed 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase I: First principle (FP) for CO2 hydrogenation into methanol was developed in Aspen plus 

with a little modification by changing the heat exchanger with heater [8]. 

Phase II: Aspen plus model was integrated with Matlab to shift the steady state model into 

dynamic mode. A total of 3880 datasets were generated by introducing ±5 % uncertainty in the 

steady state process input variables. i.e., mass flow rates, pressures, temperatures, split fraction, 

RR, and BR. 

Phase III: Matlab 2022a was used to build and validate the ANN model. Model selection, 

training, and validation was part of the modeling. 

• Model selection: A feed-forward neural network was chosen and trained using the 

Levenberg-Marquardt back propagation (trainlm) algorithm. The dataset was divided, 

Figure 11: Methodology 
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with 80% of the samples designated for training, and the rest 20% was evenly split 

between testing and validation of the model. 

• Training and validation: The model’s performance was calculated by two measures: 

root-mean-squared error (RMSE) and correlation coefficient (R). These values were 

determined using the following equation (8) and (9). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖)
2 

𝑛

𝑖

                        (8) 

 

𝑅 = 1 −
∑ (𝑌𝑖

𝑒𝑥𝑝
− 𝑌𝑖)𝑛

𝑖=0

∑ (𝑌𝑖
𝑒𝑥𝑝 − 𝑌𝑎𝑣𝑔

𝑒𝑥𝑝)𝑛
𝑖

                              (9) 

 

  

Yi
exp  and Yi stand for the actual and the expected outcomes results, and n indicates the total test 

samples. 

The RMSE (Root Mean Square Error) is always a non-negative value, and a smaller RMSE 

indicates more accurate model predictions. The coefficient of determination, typically denoted 

as R-squared, falls within the range of 0 to 1. A value of 0 suggests that the output variable 

cannot be effectively predicted from the regressor variables, while a value of 1 signifies that the 

response variable is entirely predictable from the regressor variables. 

 

Phase IV: The ANN was used as a surrogate in a GA and PSO framework to optimize a system 

under uncertainty, with the goal of optimizing the methanol flow rate at the product stream. The 

ideal settings that resulted in the methanol flow rate at the product stream were determined using 

the GA and PSO methods. The proposed optimization’s effectiveness was confirmed through 

the utilization of the optimized outcomes in the Aspen Plus model. 
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Chapter 4 
Results and Discussion 

In this segment, Section 4.1 focuses on Aspen model development, Section 4.2 on the ANN 

Model, and Section 4.3 on GA and PSO based optimization and the ANN utilization as surrogate 

components within GA and PSO frameworks. 

4.1 Aspen Model 

For this study, a model proposed by Van-Dal et al. [9] was regenerated by using the commercial 

software Aspen Plus V11 and was used to design and simulate the process. RedlicheKwonge 

Soave equation of state with modified HuroneVidal mixing rules (RKSMHV2) was used to 

calculate the thermodynamic properties of streams at high pressure (>10 bar). For streams at low 

pressure (<10 bar), NRTL-Rk model was employed. 

Carbon dioxide (CO2) with a flow rate of 88.0 t/hr was introduced at a pressure of 1 bar and a 

temperature of 250C, and then it underwent a four-stage compression network (CP-1, CP-2, CP-

3, and CP-4) to elevate its pressure to 78 bar. Throughout the compression process, there is 

intercooling(HX-1, HX-2, and HX-3), and the heat extracted can be redirected to the CO2 capture 

plant. Simultaneously, hydrogen was supplied to the methanol production plant with a flow rate 

of 12.1 t/hr at a pressure of 30 bar, and the same temperature of 250C. This hydrogen stream was 

compressed to 78 bars using a single-stage compressor (CP-5). The hydrogen and CO2 gases 

were then carefully mixed in a dedicated mixer (MIX-1) and subsequently combined with a 

recycled stream (stream 19) in another mixer (MIX-2). The resulting mixed feed (stream 12) was 

heated to a temperature of 2100C and then introduced into the fixed bed adiabatic reactor. This 

reactor was packed with 44,500 kg of a commercial Cu/ZnO/Al2O3 catalyst. The output stream 

(stream 14) exiting the reactor was to preheat the feed of the distillation column (stream 25) to 

800C in a heat exchanger (HX-5), and then its temperature was further reduced to 350C in the 

heat exchanger (HX-6). 

Furthermore, in the flash tank (KO-1), untreated gases (stream 17) are effectively separated from 

the water-methanol condensate (stream 20). A minor portion (1%) of the un- treated gases 

(PURGE) is released into the atmosphere to prevent the buildup of impurities in the system. The 
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remaining 99% of the untreated gases were compressed back to 78 bars in CP-6 and returned to 

the process as a recycle stream. The liquid stream exiting the flash tank (KO-1), referred to as 

crude methanol, was de- pressurized to 1.2 bar using two valves (VLV-1 and VLV-2) and 

subsequently introduced into another flash tank (TKFL1) to eliminate any residual gases 

completely. The resulting stream was then heated to 800C in the heat exchanger (HX-5). The 

heated stream (stream 25) was further directed to a distillation column (DT-1), where water 

(stream 27) was extracted from the bottom at a temperature of 1020C, with minimal methanol 

content. 

The desired methanol product (stream 26) was obtained from the top of the column at a pressure 

of 1 bar and a temperature of 64.060C, in gaseous form with small amounts of water and some 

unreacted gases. Methanol was compressed to 1.2 bar using CP-7 (to accommodate the pressure 

losses in the following equipment) and then cooled to 400C in heat exchanger HX-8. At this 

point, the methanol is directed to a second flash tank (KO-2), where non-reacted gases exit from 

the top (stream 31), while the final methanol product emerges from the bottom (stream 30) in 

liquid form. A detailed schematic for the process is given in Figure 12. 

[9]                

 

To assess the model’s validity, a parallel investigation was conducted concerning similar 

methanol production processes. The findings revealed that the overall CO2 levels in this study 

Figure 12: Process flowsheet of CO2 hydrogenation into Methanol 
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closely aligned with the literature data reported in Table 2, demonstrating a high degree of 

concordance with previous research. 

Likewise, an inquiry into the MeoH (% w) purity within analogous processes was under- taken 

by consulting relevant literature, and the results are elegantly presented in Table 3. This rigorous 

comparison serves to underscore the robustness and credibility of our study.  

 
Table 2: Overall CO2 conversion of similar MeoH processes 

 [9] [103] [104] [105] [106] [107] Current Work 

CO2 conversion [%] 93.4 95.2 98.4 93.9 99.7 97.3 95.4 
 

Table 3: Produced MeoH (%w ) purity 

 [103] [104] [106] [107] [108] Current Work 

MeoH (%w ) purity 100 99.8 99.04 99.9 99.9 99.04 

        

The kinetic used in this paper is that of the Rearranged model of Vanden Bussche and Froment 

[109] as presented in Van-Dal and Bouallou [9] where pressure is expressed in Pa and 

temperature is expressed in K. For these kinetic models, the Reaction rates are given by equations 

10 and 11, and the Parameters of the rearranged kinetic model are given in Table 4. 

Methanol generation: 

 

rCH3OH =   
𝐾1𝑃𝐶𝑂2𝑃𝐻2 − 𝐾6𝑃𝐻2𝑂𝑃𝐶𝐻3𝑂𝐻𝑃𝐻2

−2

(1 + 𝐾2𝑃𝐻2𝑂𝑃𝐻2
−1 +  𝐾3𝑃𝐻2

0.65 + 𝐾4𝑃𝐻2𝑂)3
     [

𝐾𝑚𝑜𝑙

𝐾𝑔𝑐𝑎𝑡𝑠
]           (10) 

 

Reverse water gas shift reaction: 

 

rRWGS =   
𝐾5𝑃𝐶𝑂2 − 𝐾7𝑃𝐻2𝑂𝑃𝐶𝑂𝑃𝐻2

−1

(1 + 𝐾2𝑃𝐻2𝑂𝑃𝐻2
−1 +  𝐾3𝑃𝐻2

0.65 + 𝐾4𝑃𝐻2𝑂)
     [

𝐾𝑚𝑜𝑙

𝐾𝑔𝑐𝑎𝑡𝑠
]               (11) 
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Table 4: Parameters of the rearranged kinetic model 

K1 A1 -29.87 

B1 4811.2 

K2 A2 8.147 

B2 0 

K3 A3 -6.452 

B3 2068.4 

K4 A4 -34.95 

B4 14928.9 

K5 A5 4.804 

B5 -11797.5 

K6 A6 17.55 

B6 -2249.8 

K7 A7 0.131 

B7 -7023.5 

 

4.2 ANN Model 

The ANN model was constructed using MATLAB 2022a. An uncertainty of ±5% was introduced 

into the 12 process variables documented in Table 5. A comprehensive dataset comprising 3880 

data samples was meticulously generated. Among these, 3104 data points were allocated for 

training the model, another 388 for validation purposes, and an additional 388 for testing the 

model’s performance. The training of the ANN was carried out employing the Levenberg-

Marquardt backpropagation (trainlm) training algorithm, while the behavior of the neural 

network was governed by the utilization of the Tansig activation function. The ANN gives good 

results with an R-value of 0.994 and RMSE of 28.59 as shown in Figure 13. 
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Table 5: Steady State conditions 

Process Input variables 

Mass Flow Rate(tons/hr) Temperature (oC) Pressure (bar) 
Split 

fraction 
RR BR 

C02-FEED H2-FEED HX-4 KO-1 TKFL1 HX-5 HX-4 KO-1 TKFL1 DIV-2 DT-1 

88 12.1 210 35 22 80 75 73.4 1.2 0.001 1.2 0.6 

 

  

In addition to the automatic allocation of data samples by the ANN for training and testing 

purposes, an extra set of 125 data samples (referred to as test samples) was intentionally reserved 

and kept unknown from the model. This was done to evaluate the model’s ability to generalize, 

as illustrated in Figure 7. For these predictions of methanol flow rates, the ANN model 

Figure 13: Targeted vs predicted flowrate of ANN during training 
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achieved a remarkable correlation coefficient (R) of 0.995, coupled with a root mean square 

error (RMSE) of 26.83. 

Thus, it is evident from the visual representations in Figure 6 and Figure 14 that both 

illustrations exhibit a remarkable degree of consistency, not only for the known data but also 

for the unknown data presented to the ANN. This compelling agreement underscores the robust 

predictive capabilities of our ANN model.  

 

 

 

 

 

 

 

 

 

 

 

 

All the 12 graphs in figure 15 give a graphical representation of uncertainty that we bring in the 

12 input variables of the process mentioned in table 5 in order to transfer the Aspen plus model 

from steady state to dynamic state. 

 

Figure 14: Targeted vs predicted flowrate of ANN during testing. 
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4.3 Genetic algorithm and particle swarm based optimization 

GA and PSO employ an ANN-trained model as a surrogate to enhance the optimization of 

Methanol flow rates under conditions of uncertainty. Table 6 provides a comprehensive 

comparison of the Methanol flow rates produced by the process for three different frameworks: 

Standalone (SA), GA, and PSO. The SA model refers to the Aspen first principle (FP) model 

without any optimization under uncertainty. Remarkably, both the GA and PSO-based 

frameworks consistently outperform the SA model across all test data samples in terms of 

Methanol flow rates. 

For instance, in data sample 1, the SA model predicts a Methanol flow rate of 1479.02 kmol/hr, 

while the GA and PSO optimizations significantly improved methanol flow rates to 1794.94 

Figure 15: Graphical representation of Uncertainty in 12 Process input variables for 100 datasets lying 

on X-axis with an input variable fluctuating on Y-axis 
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kmol/hr and 1867.45 kmol/hr, respectively. A similar trend is observed in data sample 2, where 

the SA model estimates a Methanol flow rate of 1317.86 kmol/hr, but the GA and PSO 

optimizations elevate it to 1754.62 kmol/hr and 1813.76 kmol/hr, respectively. This consistent 

enhancement in performance underscores the effectiveness of both GA and PSO in optimizing 

Methanol flow rates under uncertainty. 

 
Table 6: Comparison of SA, GA, and PSO for Methanol stream(product) 

 SA Methanol Stream 

flow(kmol/hr) 

GA optimized Methanol 

Stream flow(kmol/hr) 

PSO optimized Methanol 

Stream flow(kmol/hr) 

Data Sample 1 1,479.02 1,794.94 1,867.45 

Data Sample 2 1,317.86 1,754.62 1,813.76 

Data Sample 3 1,438.58 1,851.68 1,885.78 

Data Sample 4 1,668.18 1,784.50 1,786.39 

Data Sample 5 1,389.80 1,805.58 1,792.01 

Data Sample 6 1,614.92 1,825.18 1,837.57 

Data Sample 7 1,317.86 1,754.62 1,823.76 

Data Sample 8 1,528.23 1,775.15 1,822.39 

Data Sample 9 1,461.28 1,829.78 1,878.34 

Data Sample 10 1,448.87 1,815.86 1,777.78 

 

The effectiveness of our framework was assessed through a cross-validation process. 

Specifically, by feeding the Aspen model with optimized process conditions obtained via both 

the GA and PSO techniques. The goal was to determine the absolute error and % increase in 

methanol flow rate associated with each approach. In Table 7, you can observe a performance 

evaluation comparing the GA and PSO models. 
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Table 7: GA and PSO performance validation 

 

 Data  

 Sample 

 

 GA 

 optimized 

 

 Aspen 

 model 

 

 Absolute 

 Error  

(%) 

 

  % 

  increase 

 

 PSO  

 optimized 

 

 Aspen 

 model 

 

 Absolute 

 Error 

(%) 

 

 %  

 increase 

1  1,794.94  1,834.45  2.15  21.36  1,867.45  1,864.16  -0.18  26.26 

2  1,754.62  1,758.26  0.21  33.14  1,813.76  1,812.08  -0.09  37.63 

3  1,851.68  1,839.69  -0.65  28.72  1,885.78  1,863.52  -1.19  31.09 

4  1,784.50  1,755.62  -1.64  6.97  1,786.39  1,780.63  -0.32  7.09 

5  1,805.58  1,804.32  -0.07  29.92  1,792.01  1,815.21  1.28  28.94 

6  1,825.18  1,814.48  -0.59  13.02  1,837.57  1,814.41  -1.28  13.79 

7  1,754.62  1,758.26  0.21  33.14  1,823.76  1,812.08  -0.64  38.39 

8  1,775.15  1,773.61  -0.09  16.16  1,822.39  1,807.20  -0.84  19.25 

9  1,829.78  1,841.64  0.64  25.22  1,878.34  1,863.80  -0.78  28.54 

10  1,815.86  1,795.53  -1.13  25.33  1,777.78  1,758.19  -1.11  22.70 

 

Upon reviewing Table 6, it becomes apparent that PSO holds a slight advantage over GA in 

terms of performance. For instance, in the first data sample, PSO demonstrates an absolute error 

of -0.18% and an increase in Methanol flow rate of 26.26%, while GA exhibits a larger absolute 

error of 2.15% and an increase in Methanol flow rate of 21.36%. Similarly, in the second data 

sample, PSO’s absolute error stands at -0.09% and an increase in the methanol flow rate of 

37.63%, whereas GA’s absolute error is notably higher at 0.21% and an increase in the methanol 

flow rate of 33.14%. Thus, these comparisons show that using PSO not only gives accurate 

prediction but also results in an increased methanol flow rate that is higher than GA during 

optimization. Figures 16 and 17 give a comparison of SA with GA and PSO, having the highest 

absolute error(%) of 2.15 and 1.28 for GA and PSO respectively. Figure 18 gives a comparison 

of the Percentage(%) increase in original value by GA and PSO with PSO clearly outperforming 

GA. Figure 19 gives an Absolute error Comparison of SA and PSO clearly showing that GA has 

low overall absolute error as compared to PSO. 
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Figure 16: Comparison of SA and GA 

Figure 17: Comparison of SA and PSO 
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Figure 18: % increase comparison of GA and PSO 

Figure 19:Absolute error Comparison of SA and PSO 
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Conclusions 

This research paper delves into the realm of artificial neural networks (ANN) as a means to 

optimize methanol flow rate under uncertainty. The study’s methodology involves a 

systematic approach, starting with the creation of a first-principal model for CO2 

hydrogenation into methanol. To accommodate the uncertainties inherent in real-world 

processes, the study integrates Aspen Plus and MATLAB, transitioning from steady state to 

dynamic modeling. The resulting ANN model proves its ability by achieving remarkable 

predictive accuracy with a correlation coefficient(R) of 0.996 and a root mean square 

error(RMSE) of 26.81 during cross-validation for unseen data. This ANN model, now a 

reliable surrogate, takes center stage in the genetic algorithm (GA) and particle swarm 

optimization (PSO) frameworks, consistently enhancing methanol flow production despite 

the presence of uncertainty. PSO, in particular, emerges as a slightly superior optimization 

method. In practical terms, checking if the optimized conditions work well in the Aspen Plus 

model confirms that this method can be used in the real world. This research shows how 

powerful artificial intelligence can be in making complicated chemical processes better. It 

combines basic modeling(First principle), ANN surrogate models, and smart optimization 

algorithms, providing a strong base for using data-driven methods to improve the 

monitoring, prediction, and control of complex chemical processes under uncertain 

conditions. This way of doing things could change how efficient and eco-friendly chemical 

production is. 

Looking forward to this, there are several promising directions for future research of this 

work. One path is to use real data from actual plants instead of the Aspen model. This 

will help us see how well this approach works in real industrial settings and deal with uncertainty 

in practice. Another area to investigate is to explore the performance of alternative machine 

learning algorithms beyond ANN, such as support vector machines and Gaussian processes, 

in surrogate modeling for optimization under uncertainty. Moreover, expanding the dataset 

to include additional process variables and levels of uncertainty could lead to more robust 

ANN models. Advanced control strategies could be designed based on the integrated Aspen- 

ANN model to enhance the regulation of methanol production amidst dynamic uncertainty. 

This research can also be extended to optimize other chemical production processes involving 

CO2 utilization under uncertain conditions, making it a versatile contribution to the field. 
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Finally, the implementation of real-time optimization on pilot or commercial-scale CO2 to 

methanol plants could provide practical insights into the proposed strategy’s effectiveness in 

real-world scenarios. In short, this study establishes a foundation for intelligent optimization 

in the realm of chemical production under conditions of uncertainty, offering numerous avenues 

for further advancements and applications. 
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