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Abstract

In the current thesis, a numerical solution for laminar boundary layer problems is

developed for magnetohydrodynamics (MHD) fluids. In the first part of the thesis,

numerical solutions are obtained for mixed convection flow by considering a non-

linear stretching sheet for incompressible electrically conducting fluid. A coupled

nonlinear partial differential equations (PDEs) have been converted into system of

nonlinear ordinary differential equations (ODEs) by means of similarity transforma-

tion. Numerical solutions have been attained for velocity and temperature gradient

by using shooting technique and bvp4c, the built-in solver of MATLAB, in the pres-

ence of magnetic, suction/injection and velocity slip parameters. The effects of

these parameters have also been presented and discussed for momentum and ther-

mal boundary layer.

In the second part of the thesis, the constant and variable fluid properties have

been analyzed in a parallel free stream over a moving flat plate. This work is ex-

tended for the case of MHD. The similarity transformation is introduced to recon-

struct nonlinear partial differential equations (PDEs) into the system of nonlinear

ordinary differential equations (ODEs). The shooting method is used to obtain a

numerical solutions for constant fluid properties and temperature dependent viscos-

ity in the presence of transverse magnetic field and results are compared with the

built-in solver bvp4c of MATLAB.
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Chapter 1

Preliminaries

The purpose of this chapter is to present some basic definitions and fundamental

concepts related to the fluid mechanics. The governing equations of conservation

of mass, conservation of linear momentum,and conservation of energy are derived.

Numerical methods have also been presented at the end of this chapter.

1.1 Introduction

The present work is carried out for magnetohydrodynamic ( MHD ) laminar bound-

ary layer flow and heat transfer over a stretching sheet as well as a moving flat plate.

A uniform magnetic field is applied in the direction normal to the surface. Rossow

[1] was perhaps first researcher who applied magnetic field to control the influence of

the motion of electrically conducting fluid. He derived momentum and energy trans-

port equations for incompressible boundary layer flow by taking constant magnetic

field [1]. Moreover, applied magnetic field also plays a significant role in controlling

momentum and heat transfer in the boundary layer flow of different fluids over a

stretching sheet [2]. In recent times many researchers have shown interest in this

field and solutions were obtained for variable surface temperature, the effect of slip,

fluid injection and fluid suction and viscous dissipation over a linearly stretching

sheet for MHD stagnation point flow.

However, work has also been done for nonlinear stretching sheet. In this regard,

Shen et al [3] studied incompressible convection flow over a nonlinear stretching
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sheet near a stagnation point in the presence of a magnetic field. He observed that

heat flow rate rises with magnetic parameter when the free stream velocity exceeds

the stretching velocity, although reverse trend is analyzed when stretching velocity

exceeds the free stream velocity [3]. In the current work, Chapter 2 contains a review

analysis of MHD convection flow over a nonlinear stretching sheet near a stagnation

point [3].

The problem of laminar forced convection flow and heat transfer over a continuous

flat surface were solved by Sakiadis [4]. Sakiadis obtained similarity solution for

momentum and thermal boundary layer by considering ambient fluid. Thereafter,

many solutions have been derived for different problems of this class of boundary

layer flow. Most of the research is carried out for the ambient fluid by investigating

the constant and variable fluid properties. In these cases a parabolic velocity profile

is obtained for laminar boundary layer flow. Although, critical errors were predicted

by Pop et al [5] for constant fluid properties. However, viscosity is considered as

inverse linear function of temperature [6]. Andersson and Aarseth [7] considered

variable fluid viscosity and revised the results for Sakiadis flow. Moreover, vari-

able fluid properties for moving flat plate in a parallel free stream were analyzed

by Bachok et al [8]. In Chapter 3, the effect of temperature dependent viscosity

is taken into account to accurately determined flow [8]. However, in Chapter 4 an

extended work is taken into consideration for constant and variable fluid viscosity

in the presence of magnetic field over a moving flat plate in a parallel free stream.

1.2 Basic Definitions

In the following section, we present some definitions related to the current work.

1.2.1 Fluid Dynamics

A material that flows or deforms continuously when shear stress is applied known as

fluid. Generally, it includes liquids and gases. If deformation increases continuously

under applied shear stress then it is known as flow. The motion of fluids flow is

studied under the subject of fluid dynamics. It also analyzes the effect of forces on
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the motion of fluids flow. The influence of motion of liquids and gases are studied

under sub-discipline of fluid dynamics called hydrodynamics and aerodynamics,

respectively. However, the problems associated to fluids flows and heat transfer

are analysed numerically under the subject computational fluid dynamics (CFD).

The technique is powerful and span a wide range of industrial and non-industrial

application such as vehicles and aircraft (aerodynamics), ships (hydrodynamics),

polymer molding (chemical engineering) etc [9].

1.2.2 Viscosity

It refers to physical property of fluids. The internal flow resistance or frictional

force developed among the different layers of the particles of fluid is determined by

its absolute or dynamic viscosity µ. Basically, it corresponds to the thickness of

the fluid. It means those fluid which are thicker possess higher viscosity and their

movement is also slow such as honey while thinner fluids are less viscous and also

flows faster such as water. Moreover, the rate of momentum transferred between

the particles of fluids is computed by kinematic viscosity. It is obtained by dividing

the absolute viscosity to the density of a fluid. Mathematical expression of ν is

ν =
µ

ρ
, (1.2.1)

It is also known as momentum diffusivity.

The temperature and pressure are one of the factors that affect viscosity of fluids.

Both liquids and gases behave oppositely with the changes of temperature [10]. With

the rise of temperature, viscosity of some liquids such as oil, grease etc reduces.

Consequently, decreasing of temperature results in an increase in viscosity of fluids.

This is due to the fact that strong intermolecular forces exist within the molecules

of liquids which offers more internal resistance. Although, gases offer more viscosity

with higher temperature. As the particles of gases are far apart, so increasing

temperature particles move faster and collide with one another more vigorously,

which causes an increase in internal friction which correspond to more viscosity.

Unlike temperature, viscosity of fluids is moderately affected by pressure. With the
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increase of pressure, viscosity of gases and some liquids also increases. An instrument

used to measure viscosity of fluids, called viscometer. Under ordinary conditions the

dynamic viscosity of air is 17.08× 10−6 Pa.s and water is 1.793× 10−3 Pa.s [11].

1.2.3 Newtonian Fluid

Those fluids for which shear stress is directly proportional to the rate of deformation

are known as Newtonian fluids. Mathematically, it is written as

τ = µ
du

dy
, (1.2.2)

where µ is a proportionality constant known as dynamic viscosity and du
dy

is the

deformation rate which is also called velocity gradient or strain rate. The expression

(1.2.2) is also known as Newton’s law of viscosity as presented by Isaac Newton in

1687 [10]. Some fluids like water, air etc behave as a Newtonian fluid.

1.2.4 Compressible Flow

A fluid whose density varies sufficiently subject to high pressure gradient within

a flow field are known as compressible fluid. Mostly, gases are considered more

compressible ( for air 1 × 10−5m2/N ) than liquids (for water 4.6 × 10−10m2/N at

25oC) [12]. Compressibility can be analyzed and controlled more significantly by a

dimensionless parameter called Mach number, which can be defined as:

Ma =
v

c
, (1.2.3)

where v denotes speed of fluid flow and c is the speed of sound. Particularly, density

variation occurs when Mach number exceeds 0.3. When the Mach number Ma

approaches to unity and above, this effect becomes large.

1.2.5 Incompressible Flow

An incompressible flow is one in which the fluid density remains constant subject to

pressure gradient. Generally, liquids are considered as incompressible. For instance,
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Ma < 0.3 indicate this type of fluids.

1.2.6 Laminar Flow

A smooth orderly movement of viscous fluid in which fluid particles have a defi-

nite path in a parallel layer (laminae) with no unsteady macroscopic intersecting is

known as laminar flow [12].

This flow occurs in the following cases:

1. Reynolds number is small.

2. Velocity of liquid is below at certain critical value.

3. Low shear stress.

1.2.7 Steady Flow

A steady flow is one in which fluid properties at any point do not vary with respect

to time. Mathematically, it can be expressed as:

∂P

∂t
= 0, (1.2.4)

where P is any fluid property like density, temperature, pressure, velocity of flow

etc. Thus,

P = P (x, y, z), (1.2.5)

A water is flowing in a pipe with an increasing diameter is a steady flow because

the velocity varying due to an increasing flow but at each point it does not change

with time [14].

1.2.8 Reynolds Number

It is a dimensionless number that can be obtained by dividing the inertial forces by

viscous forces.
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Mathematically,

Re =
ρUL

µ
=
UL

ν
, (1.2.6)

where U , L and ν are known as the velocity of fluid, characteristics length, and

coefficient of viscosity, respectively. It determined a standard of classifying the mo-

tion of fluid. For instance, in a pipe flow small Reynolds numbers correspond to

large viscous forces. The flow becomes turbulent when large Reynolds number is

observed. In this case inertial forces are important.

Magnetic Reynolds number (Rm) is another important dimensionless parameter used

to analyze the effect of uniform magnetic field (magnetic advection) for an electri-

cally conducting fluid. Mathematically, it can be expressed as:

Rm ≡ UL

η
, (1.2.7)

where η is the magnetic diffusivity [15].

1.2.9 Prandtl Number

It is a dimensionless number that can be obtained by dividing the momentum diffu-

sivity (kinematic viscosity) to thermal diffusivity. Mathematically, it is represented

as:

Pr =
ν

α
=

µCp
κ
, (1.2.8)

In Eq. (1.2.8), µ is the dynamic viscosity, Cp is the specific heat at constant pressure

and κ is the thermal conductivity. So Pr is responsible for the growth of momentum

and thermal boundary layer. It also influences the relative thickness of these two

boundary layers. Moreover, when Prandtl number is large (Pr >> 1), momentum

diffusivity dominated, as a result momentum boundary layer becomes thicker while

lower value of Prandtl number (Pr << 1) corresponds to thicker the thermal bound-

ary layer as that thermal diffusivity is dominated in this case. This means that heat
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diffuses quickly in case of small Prandtl number. So Prandtl number Pr is the only

dimensionless quantity that associates the thickness of both momentum and thermal

boundary layer. Prandtl numbers for some of the fluid are given below:

Pr = 0.015 for mercury.

Pr = 0.16 - 0.7 for mixtures of noble gases.

Pr = 0.7 - 0.8 for air.

Pr = 7 for water at 200C.

1.2.10 Grashof Number

It is a dimensionless number that can be obtained by dividing buoyancy forces to

viscous forces acting on a fluid. Mathematically, it can be expressed as

Gr =
gβ(Ts − T∞)L3

ν2
(1.2.9)

where g is a gravitational acceleration, β is a coefficient of volume expansion, L is

a characteristics length, Ts represents surface temperature, T∞ is the temperature

sufficiently far from the surface and ν is a kinematics viscosity. It determined the

criteria whether a flow is laminar (Gr < 109) or turbulent (Gr > 109).

1.2.11 Thermal Conductivity

The ability of a substance to transmit heat is known as thermal conductivity. It

is denoted by κ. Those substances which have low value of thermal conductivity

such as air 0.024 W/(m.K) at 0oC, can conduct less amount of heat compared to

material which have high thermal conductivity such as water 0.56 W/(m.K) at 0oC.

The mathematical expression of κ is written as:

κ =
Q̇L

A∆T
, (1.2.10)

In Eq. (1.2.10), Q̇ represent the amount of heat transmit through the substance per

unit time, A is the area and ∆T is the temperature difference.
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1.2.12 The Boundary Layer

In 1904, a German aerodynamicist L. Prandtl first introduced the concept of bound-

ary layer flow. When the fluid flow on the surface, the adjacent fluid layer bears

a maximum effect of that surface motion. This causes a maximum viscosity near

the surface due to resistance. This influence of viscosity is continuously decreasing

when it is moved away from the surface and this effect is practically neglected after

a thin region in a normal to the surface. This thin region adjacent to a solid surface

in which viscous effect is significant is known as momentum boundary layer.

The thickness of this region increases in the direction of flow from the surface to

the fluid layer that attains a free stream velocity. Since the velocity profile merges

smoothly into the free stream, thus boundary layer is difficult to measure. So this

boundary layer flow is divided into two regions: a region near the surface in which

viscous and inertial properties cannot be neglected and a region covering the rest of

the fluid in which that properties can be negligible that is away from the surface of

the body.

Different from momentum boundary layer, thermal boundary layer is the region

which exists due to transfer of heat between the fluid and surface of the body as

characterized by the temperature gradient. Like momentum boundary layer, its

thickness also increases along the flow direction. These two boundary layers are

similar only in the case when Pr=1.

1.2.13 Boundary Conditions

Boundary conditions are necessary to solve fluid flow governed by conservation equa-

tion of motion. These conditions specify the behavior of boundary of the region in

which a set of differential conditions are to be solved. These conditions are gener-

ally provided on fluid-fluid interface and solid-fluid interface. When a fluid is flowing

over a solid surface, the instant contact of fluid particles to the layer of solid sur-

face is known as no-slip boundary conditions. Here, the velocity of fluid relative to

boundary is zero and also there is no relative motion between the fluid particles and

solid surface.
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1.3 Governing Equations of Fluid Flow and Heat

Transfer

In Computational Fluid Dynamics (CFD), the derivation of governing differential

equations is based on fundamental laws of mechanics. These are continuity, momen-

tum, and energy equations. These governing equations obey the following universal

law.

1. Mass is conserved.

2. The rate of change of momentum is equal to the sum of forces acting on

fluid particle. This is known as Newton’s second law of motion [9].

3. According to first law of thermodynamics, the rate of change of internal

energy is equivalent to the sum of the rate of the addition of heat and

the rate of work done on a fluid particle. Hence energy is conserved [9].

So these governing equations are mathematical representation of conservation laws

of mechanics.

1.3.1 Conservation of Mass

Mass of the fluid is strictly conserved. This is also known as equation of continuity.

The principle of conservation of mass can be stated as [18]:

ṁincrement = ṁin − ṁout, (1.3.1)

where ṁincrement denotes increase in mass per unit time in the control volume, while

ṁin and ṁout express inlet mass flow and outlet mass flow per unit time in a control

volume, respectively.

The mass of fluid flow in a control volume is taken as ρ dx dy dz and the mass

increment in the control volume per unit time can be demonstrated as

ṁincrement =
∂ρ

∂t
dx dy dz, (1.3.2)
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The mass of fluid flow (mass inlet) into the control volume per unit time in x-

direction is given by

ṁin = ρ u dy dz,

Now, the mass of fluid flow out (mass outlet) of the control volume in a unit time

in the x-direction is expressed as:

ṁout =

[
ρu +

∂

∂x
(ρu)dx

]
dydz,

Consequently, by using above equations of mass inflow and outflow, the mass incre-

ment per unit time in the control volume in the x-direction is stated as

ṁincrement =
∂

∂x
(ρu)dxdydz, (1.3.3)

Similarly, the mass increments of fluid flow in the control volume per unit time in the

y and z-directions per unit time are given by
(
∂
∂y

(ρv)dxdydz
)

and
(
∂
∂z

(ρw)dxdydz
)
,

respectively. Therefore, we obtained the following expression:

ṁin − ṁout =

[
∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw)

]
dxdydz, (1.3.4)

Comparing Eqs.(1.3.2) and (1.3.4), we attain the following form:

∂ρ

∂t
dxdydz +

∂

∂x
(ρu)dxdydz +

∂

∂y
(ρv)dxdydz +

∂

∂z
(ρw)dxdydz = 0,

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (1.3.5)

where u, v and w are the velocity components in x, y and z directions, respectively.

Eq.(1.3.5) is unsteady, three dimensional mass conservation equation for compress-

ible fluid in a Cartesian coordinates. This equation is also known as continuity

equation. The first term of continuity equation represents the rate of change in time

of fluid density while second term the net flow of mass out of the element across its
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boundaries [9].

In vector notation Eq.(1.3.5) becomes:

∂ρ

∂t
+∇.(ρ−→U ) = 0, (1.3.6)

where
−→
U = ui+ vj + wk. For steady compressible flow

∇.(ρ−→U ) = 0,

when density of the fluid ρ is constant for incompressible fluid then Eq.(1.3.6) can

be written as:

∇.
−→
U = 0,

In Cartesian coordinates for steady three dimensional for incompressible fluid, the

Eq.(1.3.5) can be written as:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.3.7)

1.3.2 Conservation of Momentum

The conservation of momentum equation can be derived by applying Newton’s sec-

ond law on a moving fluid element. According to this law the rate of change of

momentum is equal to the net force acting on the particle of fluid element [9].

Mathematically, this law can be written as:

−→
F = m−→a (1.3.8)

There are two types of forces acting on the fluid element.

1. Body Forces: They act at a distance on entire body of the mass of the fluid

element. These forces include electromagnetic forces, forces due to gravity, centrifu-

gal forces etc.
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2. Surface Forces: These forces act directly on the surface of the fluid elements.

It is due to pressure, normal and shear stresses, surface tension etc [17].

Consider an enclosed surface S that contain a control volume. Let
−→
F m be a force

per unit mass of fluid and the total mass force in a control volume is represented

by
−→
F m,v. Furthermore, −→τ n be a surface force per unit mass of fluid and −→τ n,S is

a surface force containing in a control volume. Now, increase in momentum of the

fluid in a control volume per unit time is taken as Gincrement.

According to the conservation of momentum law, the increase in momentum of the

fluid flow per unit time in the control volume is equal to the sum of total mass force

and surface force in the same volume such that [18]:

−→
G increment =

−→
F m,v + −→τ n,S, (1.3.9)

Total mass force per unit mass acting on fluid flow element within volume V is

expressed as:

−→
F m,v =

∫
v

ρ
−→
F m dV,

Total surface force per unit mass acting on fluid element within volume V is denoted

by:

−→τ n,S =

∫
S

−→τ n dS,

Also the rate of increase of momentum of the mass contained in volume V is:

−→
G increment =

D

Dt

∫
v

ρ
−→
U dV,

By using Gauss divergence theorem, the surface integral may be transform to volume

integral. This follows to

∫
S

−→τ ndS =

∫
v

∇. [τ ]dV,
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where ∇.[τ ] is known as surface shear tensor. Thus, the equation of motion (1.3.9)

for the fluid can be rewritten as by using above relations:

D

Dt

∫
v

ρ
−→
U dV =

∫
v

ρ
−→
F mdV +

∫
v

∇.[τ ]dV, (1.3.10)

∫
v

(
D(ρ
−→
U )

Dt
− ρ
−→
F m − ∇.[τ ]

)
dV = 0,

It can be supposed that V is arbitrary and integrand is smooth.

D(ρ
−→
U )

Dt
− ρ
−→
F m −∇.[τ ] = 0,

D(ρ
−→
U )

Dt
= ρ

−→
F m + ∇.[τ ], (1.3.11)

where
−→
U = ui+ vj + wk is called fluid velocity. The Eq. (1.3.11) is known as

momentum equation of the fluid flow.

For steady state, the momentum equation can be written as:

x-momentum equation:

ρ

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
+ u

(
u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
= − ∂p

∂x

+2
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]

− ∂

∂x

[
2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
+ ρgx, (1.3.12)
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y-momentum equation:

ρ

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+ v

(
u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
= − ∂p

∂y

+
∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+ 2

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂z

[
µ

(
∂v

∂z
+
∂w

∂y

)]

− ∂

∂y

[
2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
+ ρgy, (1.3.13)

z-momentum equation:

ρ

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+ w

(
u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
= − ∂p

∂z

+
∂

∂x

[
µ

(
∂u

∂z
+
∂w

∂x

)]
+

∂

∂y

[
µ

(
∂v

∂z
+
∂w

∂y

)]
+ 2

∂

∂z

(
µ
∂w

∂z

)

− ∂

∂z

[
2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
+ ρgz, (1.3.14)

where gx, gy and gz are gravitational accelerations in x, y, and z directions, respec-

tively.

1.3.3 Conservation of Energy

The principle of conservation of energy is based on first law of thermodynamics.

This law states that energy can be neither created nor destroyed during a mechanical

process but it can only change from one form to another form. Therefore, every part

of energy must be considered during a process. Thermal energy naturally moves in

the direction of decreasing temperature and the transfer of thermal energy from one

system to another as a result of a temperature difference.
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Another way this law can be expressed that the rate of the energy of the particles

of a fluid is equal to sum of the net rate of heat increment to the fluid particles and

the net rate of work done on the particle [17].

Consider an arbitrary mass of fluid enclosed in volume. According to first law of

thermodynamics:

∆Ė = Q̇ + Ẇout, (1.3.15)

The total energy per unit time contained in volume V in the system is given as:

∆Ė =
D

Dt

∫
v

ρ

(
e+

U2

2

)
dV, (1.3.16)

where t represents time, e is the internal energy per unit mass, U is the velocity of

the fluid, and U2

2
is the kinetic energy per unit mass of the fluid.

The work done on a fluid by the two external forces (surface and body forces) is

the product of force vectors and fluid velocity. So the total work due to presence of

these forces on a unit area will be:

∫
S

−→τ n.
−→
U dS,

where −→τ n is the magnitude of surface force (stress) per unit area and S is the surface

(boundary) enclosing volume V .

Similarly, the magnitude of body force per unit mass is vector
−→
F . Then the total

work done on the fluid particle due to mass force is

∫
v

ρ
−→
F .
−→
U dV,

The total work done by the mass force and surface force per unit time on the system

is represented as:

Ẇout =

∫
v

ρ
−→
F .
−→
U dV +

∫
S

−→τ n.
−→
U dS, (1.3.17)
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The addition of heat is carried out by thermal conduction. So conduction is governed

by Fouriers law[18]. Thus the net amount of heat entering the fluid per unit time is

given as:

Q̇ =

∫
S

κ
∂T

∂n
dS, (1.3.18)

where n̂ is normal line of the surface, while κ represent the heat conduction coeffi-

cient.

By substituting value of Eq. (1.3.16)-(1.3.18), in Eq. (1.3.15) we obtained the

following expression:

D

Dt

∫
v

ρ

(
e+

U2

2

)
dV =

∫
v

ρ
−→
F .
−→
U dV +

∫
S

−→τ n.
−→
U dS +

∫
S

κ
∂T

∂n
dS, (1.3.19)

where,

D

Dt

∫
v

ρ

(
e +

U2

2

)
dV =

∫
v

D

Dt

[
ρ

(
e+

U2

2

) ]
dV,

The surface forces can be rearranged as:

∫
S

−→τ n.
−→
U dS =

∫
S

−→n [τ ].
−→
U dS =

∫
S

−→n ([τ ].
−→
U )dS =

∫
v

∇.([τ ].
−→
U )dV

∫
S

κ
∂T

∂n
dS =

∫
v

∇. (κ∇T ) dV

By using above relations, the Eq. (1.3.19) can be rearranged as:

∫
v

D

Dt

[
ρ

(
e+

U2

2

)]
dV =

∫
v

ρ
−→
F .
−→
U dV +

∫
v

∇.([τ ].
−→
U )dV +

∫
v

∇.(κ∇T )dV,

D

Dt

[
ρ

(
e+

U2

2

)]
= ρ
−→
F .
−→
U +∇.([τ ].

−→
U ) +∇.(κ∇T ),

where [τ ] is known as tensor of shear forces. The Eq. (1.3.20) is called the energy

equation.
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1.4 Numerical Methods

Initial value problems (IVPs) are much easier to solve rather than boundary value

problems (BVPs). Any solver might be failed to solve BVPs. Moreover, the IVPs

always have a unique solution and solution always exists but BVP may not have a

solution or may or may not have finite number of solution. Following two numerical

techniques have been applied in this work.

1.4.1 Shooting Method

The conceptual strategy of boundary value problem (BVP) depends on the solution

of initial value problem (IVP) for ODEs along with the solution of nonlinear algebraic

equation. Since there are useful programmes for both the problem to combine them

in a program for the solution of BVPs. The strategy is known as shooting method.

The name is derived from analogy with target shooting - take a shot and examine

where it hits the target, then corrects the position and shoots again. Therefore,

shooting method is most successful numerical technique to solve linear as well as

nonlinear equations. Moreover, the fundamental algorithm of this numerical method

is the supposition of trial value. The solution executes at one end of the boundary

value problem (BVP) and shoots to the other end just like a cannon-ball (reaching its

target under the impact of gravity) by using initial value solver until the boundary

condition at the other end converges to its correct value. The superiority of the

shooting method is the speed and adaptivity of methods for initial value problems.

Consider a third order non-linear boundary value problem [19].

y′′′ = f(x, y, y′, y′′), ∀a ≤ x ≤ b,

y(a) = α, y′(a) = γ, y′(b) = β (1.4.1)

where α, β and γ are constant parameters.

Choose an initial guess u0 such that it to examine the solution of the derivatives

y′′′(0). So
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y′′′(x, u) = f(x, y(x, u), y′(x, u), y′′(x, u)), ∀a ≤ x ≤ b,

y(a) = α, y′(a) = γ, y′(b) = β, y′′(a, u) = u0. (1.4.2)

Now by differentiating Eq. (1.4.2) with respect to u, we obtained

∂y′′′

∂u
(x, u) =

∂f

∂x
(x, y(x, u), y′(x, u), y′′(x, u))

∂x

∂u
+
∂f

∂y
(x, y(x, u), y′(x, u), y′′(x, u))

∂y

∂u
+

∂f

∂y′
(x, y(x, u), y′(x, u), y′′(x, u))

∂y′

∂u
+
∂f

∂y′′
(x, y(x, u), y′(x, u), y′′(x, u))

∂y′′

∂u
,

As u and x are independent, so ∂x
∂u

= 0,

∂y′′′

∂u
(x, u) =

∂f

∂y
(x, y(x, u), y′(x, u), y′′(x, u))

∂y

∂u
+
∂f

∂y′
(x, y(x, u), y′(x, u), y′′(x, u))

∂y′

∂u
+

∂f

∂y′′
(x, y(x, u), y′(x, u), y′′(x, u))

∂y′′

∂u
,

Now consider,

z(x, u) =
∂y

∂u
(x, u),

z′′ =
∂f

∂y
(x, y, z, z′)z +

∂f

∂y′
(x, y, z, z′)z′ +

∂f

∂y′′
(x, y, z, z′)z′′,

z(a) = 0, z′(a) = 0, z′′ = 1. (1.4.3)

To select the value of u0 such that,

y(b, u)− β = 0,

uo = y′(a) =
y(b)− y(a)

b− a
,
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uo =
β − α
b− a

,

Newton Raphson method is required to estimate the solution of y(b, u)− β = 0 and

identify a next guess ut+1.

ut+1 = ut −
y′(b, ut)− β
z(b, ut)

, (1.4.4)

Eq. (1.4.4) is transform into a first order ordinary differential equation. Then a first

order ordinary differential equation can be solved by Runge-Kutta method. The

process will stop until the error is |β − y′(b, ut)| 6 Tolerance value.

1.4.2 bvp4c

MATLAB programming requires a guess to solve boundary value problem (BVP).

Finding a good guess is often the difficult part of solving a BVP. bvp4c is one such

useful solver for solving BVP. It takes an exceptional approach to the control of error

that assists to deal with poor guesses. It is a collocation method and starts solution

with initial guess provided at initial mesh points. bvp4c is based on algorithm

that are plausible even when the initial mesh is very poor, yet furnish the correct

results. A step-size is also changed to acquire the specified accuracy. Contradictory

to the shooting method, the solution approach over the whole interval and boundary

conditions are taken all the time [20].
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Chapter 2

Numerical Solution of MHD

Mixed Convection Slip Flow near

a Stagnation Point on a

Nonlinearly Vertical Stretching

Sheet

2.1 Introduction

This chapter is the review work of paper by Shen et al [3]. In recent years, the study

of magnetohydrodynamics (MHD) has created much interest for many researchers

and analysts due to extensive practical application especially in fluid dynamics.

MHD is related to the interaction of electromagnetic fields and electrically conduct-

ing fluids. It has significantly played a vital role in industry and engineering such as

the magnetic behavior of plasma in fusion reactors, liquid metal cooling of nuclear

reactor, drawing of plastic sheet, metallurgy, electromagnetic casting, polymer ex-

trusion etc. It also reveals specific characteristics in thermal conductivity. The study

of MHD flow on stretching sheet has been investigated effects of slip condition [21-

22], viscous dissipation[23] and unsteady flow and heat transfer [24]. The influence
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of viscosity on boundary layer flow and heat transfer is also analyzed for electrically

conducting fluid over a linearly stretching sheet. For this purpose, Mukhopadhyay

et al and Subhas et al [25-26] considered viscosity which was varying as a linear

function of temperature.

Some work has also been done on the effect of mixed convection stagnation point

flow on a stretching vertical sheet due to presence buoyancy forces. In this regard,

the behaviour of MHD convection flow and heat transfer has been investigated by

some researchers [33-35]. A substantial work is carried out for incompressible vis-

cous nanofluid by considering MHD on convective flow. For this purpose, Ibrahim

et al [30], Hamad [31], Ali et al [32] explored the effects of magnetic field on stagna-

tion point flow and heat transfer of nanofluid over a stretching sheet and obtained

a numerical results for velocity and temperature concentration.

In the recent time, some work has been carried out for fluid flow and heat trans-

fer due to non-linearly stretching sheet. Rana and Bhargava [33], Ashraf et al [34]

and Dhanai [35] evaluated results for the boundary layer fluid flow due to nonlinear

stretching of a flat surface placed in nanofluid. With changing the type of nanofluid

particles, fluid flow shows changes in behavior [36].

Shen et al [3] analyzed the impact of the nonlinearity parameter, mixed convec-

tion parameter, magnetic field, suction and injection, on a MHD mixed convection

incompressible flow near a stagnation point over a nonlinearly stretching sheet.

2.2 Mathematical Formulation

Consider a two dimensional incompressible laminar flow over a non-linearly stretch-

ing sheet that is emerged at the origin of Cartesian coordinate system (x, y). The

flow is restricted to y ≥ 0. The sheet moves with velocity uw(x) = cxm in the

positive x-direction, whereas y-axis is perpendicular to the stretching surface. The

external velocity is taken as ue(x) = axm, where a and c are considered as positive

constants. The constant m is the non-linearity parameter. It should be mentioned

that m = 1 represents a linear case while m 6= 1 corresponds a non-linearly stretch-

ing case. A uniform magnetic field of strength B is applied normally. The viscous

dissipation effect is neglected. The basic boundary layer equations such that conti-

21



nuity, momentum and energy for incompressible flow are given by:

∂u

∂x
+
∂v

∂y
= 0, (2.2.1)

u
∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+ ν
∂2u

∂y2
+
σB2(x)

ρ
(ue − u) + gβ(T − T∞), (2.2.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (2.2.3)

where u is the velocity component along x-direction while v denotes a velocity

component in y-direction, T is a temperature of fluid, ρ is a density of fluid, ν is

a kinematics viscosity and σ represents electrical conductivity. The magnetic field,

gravitational acceleration, thermal diffusivity, and coefficient of thermal expansion

are denoted by B(x), g, α and β, respectively. For subject problem, the related

boundary condition are given by:

u = uw(x) +
2− σv
σv

λ0
∂u

∂y
, v = vw(x),

∂T

∂y
= −qw(x)

k
, at y = 0

(2.2.4)

u→ ue(x) T → T∞ at y →∞

In Eq. (2.2.4), κ, σv, λ0, vw(x), and qw(x) corresponds to the thermal conductivity,

coefficient of the tangential momentum accommodation, the mean free path, the

suction (injection) velocity, and surface heat flux, respectively. So B(x), qw(x),

vw(x) are given by:

B(x) = B0 x
(m−1)/2, qw(x) = q0 x

(5m−3)/2,

(2.2.5)

vw = −
√
aν(m+ 1)

2
x(m−1)/2S,

where B0, S, and q0 are constants. It is emphasized that S > 0 indicates suction

while injection implies for S < 0. Now, we introduced the following similarity
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transformations to transform Eqs. (2.2.1)-(2.2.3) into nonlinear ODEs along with

relevant boundary conditions.

The following similarity variables are introduced:

η =

√
a

ν
y x(m−1)/2, (2.2.6)

ψ =
√
aν x(m+1)/2f(η), (2.2.7)

θ =

√
a

ν

κ (T − T∞)

q0 x2m−1
, (2.2.8)

In expression (2.2.7), ψ is the stream function. We define a ψ in such a manner

that it satisfies mass conservation Eq. (2.2.1).

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.2.9)

Moreover, the velocity component u and v are taken as:

u = axmf ′(η) and v = −
√
aνx(m−1)/2

[
m+ 1

2
f(η) +

m− 1

2
ηf ′(η)

]
, (2.2.10)

where prime denotes differentiation with respect to η.

Using Eq. (2.2.10), we evaluate ∂u
∂x

as:

∂u

∂x
= maxm−1f ′(η) + axmf ′′(η)

∂η

∂x
,

= maxm−1f ′(η) + axmf ′′(η)(y
√
a/ν

m− 1

2
xm−3/2),

= maxm−1f ′(η) + a3/2yν−1/2x(3m−3)/2
m− 1

2
f ′′(η). (2.2.11)
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Now, differentiate Eq. (2.2.10) w.r.t y

∂u

∂y
= axmf ′′(η)

∂η

∂y
,

= a3/2ν−1/2x3m−1/2f ′′(η). (2.2.12)

Again differentiate Eq. (2.2.12) w.r.t y

∂2u

∂y2
= a3/2ν−1/2x3m−1/2f ′′′(η)

∂η

∂y
,

= a2/ν.x2m−1f ′′′(η). (2.2.13)

Now, taking square of B(x) from Eq. (2.2.5), we get:

B2(x) = B2
0x

m−1,

by subtracting,

ue − u = axm(1− f ′(η)),

by simplifying Eq. (2.2.8), we obtain the following relation:

T − T∞ =
√
ν/aθ(q0/κ)x2m−1,

by substituting Eqs. (2.2.11)-(2.2.13) into Eq. (2.2.2), we obtained

(axmf ′(η))
[
(axm−1f ′(η) + a3/2ν−1/2ym−1/2x3m−3/2f ′′(η)

]
−
√
aνx(m−1)/2[

m+1
2
f(η) + m−1

2
ηf ′(η)

] [
a3/2ν−1/2x3m−1/2f ′′(η)

]
= (axm)(amxm−1) + ν(a2/νx2m−1

f ′′′(η)) + σB2
0x

m−1/ρaxm(1− f ′) + gβ(
√
ν/aθ(q0/κ)x2m−1),
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a2mx2m−1f ′2+a5/2ν1/2yx5m−3/2f ′f ′′−(a2x2m−1f ′′
[
m+1
2
f + m−1

2
f ′
√
a/νyx(m−1/2)

]
=

ma2x2m−1+a2x2m−1f ′′′(η)+(σB2
0a)/ρx2m− 1(1−f ′)+gβ(ν1/2/a5/2)(q0/κ)a2x2m−1θ,

a2mx2m−1f ′2+a5/2ν1/2yx5m−3/2f ′f ′′−(a2x2m−1f ′′
[
m+1
2
f + m−1

2
f ′
√
a/νyx(m−1/2)

]
=

ma2x2m−1 + a2x2m−1f ′′′(η) + (σB2
0a)/ρx2m−1(1− f ′) + gβ(ν1/2/a5/2)(q0/κ)a2x2m−1θ,

After applying transformation on momentum equation and simplifying it, the fol-

lowing nonlinear ordinary differential equation is obtained

f ′′′(η) +
m+ 1

2
f(η)f ′′(η) +m(1− f ′2(η)) +M(1− f ′(η)) + λθ(η) = 0, (2.2.14)

where M denotes a magnetic parameter and λ is the mixed convection parameter.

These constant parameters are given by

M =
σB2

0

aρ
, λ =

gβq0
√
ν

κa5/2
=

Grx

Re
5/2
x

,

where Grx = gqwx
4β/ν2κ is known as local Grashof number and Rex = uex/ν is

known as Reynolds number. It should be emphasized that λ = 0 correspond to

pure forced convection flow, while λ < 0 represent that flow is opposing and λ > 0

represents accelerating flow. Now for transforming energy equation, we evaluate ∂T
∂x

by using Eq. (2.2.8):

∂T

∂x
= (q0/κ)x2m−1

√
ν/aθ′(η)

∂η

∂x
+
√
ν/a(q0/κ)(2m− 1)x2m−2θ(η),

= (q0/κ)x2m−1
√
ν/a

(
(m− 1/2)

√
a/νyxm−3/2

)
θ′(η),

+
√
ν/a(q0/κ)(2m− 1)x2m−2θ(η). (2.2.15)
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Using Eq. (2.2.8), we evaluate ∂T
∂y

as:

∂T

∂y
= (q0/κ)x2m−1

√
ν/a

∂η

∂y
θ′(η),

= (q0/κ)x5m−3/2θ′(η). (2.2.16)

Again differentiate w.r.t y

∂2T

∂y2
= q0/κx

3m−2θ′′(η), (2.2.17)

by substituting Eq. (2.2.15)-(2.2.17) in Eq. (2.2.3),

(axmf ′(η))θ′(η)(q0/κ)x2m−1
√
ν/a

(
(m− 1/2)

√
a/νyxm−3/2

)
+
√
ν/a(q0/κ)

θ(2m− 1)x2m−2 −
√
aνx(m−1)/2

[
m+1
2
f(η) + m−1

2
ηf ′(η)

] [
θ′(η)(q0/κ)x5m−3/2

]
= α(q0/κ)x3m−2θ′′,

√
aν(2m− 1)f ′θ −

√
aν(m+ 1/2)θ′f = α

√
a/νθ′′,

θ′′(η) + ν/α(m+ 1/2)θ′(η)f(η)− ν/α(2m− 1)f ′(η)θ(η) = 0,

Finally, the following ordinary differential equation is obtained by simplifying above

expression:

θ′′(η) +
Pr(m+ 1)

2
f(η)θ′(η)− Pr(2m− 1)f ′(η)θ(η) = 0, (2.2.18)

where Pr= ν
α

is the Prandtl number.
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The boundary conditions (2.2.4) become

f(0) = S, f ′(0) = ε+ δf ′′(0), θ′(0) = −1,

(2.2.19)

f ′(∞) = 1, θ(∞) = 0,

where ε = c
a

is known as velocity ratio parameter and δ = 2−σv
σv

KnxRe
1/2
x denotes

velocity slip parameter with the local Knudsen number Knx = λ0/
√
εx.

Furthermore, the skin friction coefficient Cf and the local Nusselt number Nux can

be defined as

Cf =
τw(x)

ρu2e
, Nux =

xqw(x)

κ(Tw − T∞)
,

where τw(x) = µ(∂u
∂y

)y=0 is the surface shear stress. Using similarity variables (2.2.6)-

(2.2.8), we obtained

Re1/2x Cf = f ′′(0), Re−1/2x Nux = 1/θ(0).

2.3 Numerical Methods

The system of coupled nonlinear ODEs (2.1.14) and (2.2.18) subject to the boundary

conditions (2.2.19) has been solved numerically by using shooting method and bvp4c.

Using shooting method boundary value problems (BVP) are transformed into an

initial value problems (IVP). For this purpose an efficient initial guess is selected

until the convergence is obtained. Shooting and bvp4c has already been explained

in Chapter 1.

To convert BVP into IVP, we define a new variable as:

y = f = y1, f ′ = y′1 = y2, f ′′ = y′2 = y3,

θ = y4, θ′ = y′4 = y5. (2.3.1)

By using shooting method the system of ODEs (2.2.14) and (2.2.18) are transformed

to a system of five simultaneous equations with five unknowns. These transform

ODEs are third order in f and second order in θ, and can be written as

y′3 = f ′′′ = −m+ 1

2
y1y3 −m(1− y22)−M(1− y2)− λy4, (2.3.2)

27



y′5 = θ′′ = −Pr(m+ 1)

2
y1y5 + Pr(2m+ 1)y2y4, (2.3.3)

The Eqs. (2.3.2) and (2.3.3) are transformed momentum and energy equations,

respectively.

2.4 Results and Discussions

In this section the effect of different parameters on the skin friction coefficient,

the local Nussetl number, the velocity and the temperature profile are analyzed

numerically as well as graphically. In order to validate the accuracy of numerical

procedure, results of f ′′(0) and 1/θ(0) [3] are compared with the results of Yaqob

and Ishak [37] for Pr = 0.7, 1 at m = 1, λ = 1, M = 0, ε = 0, δ = 0, S = 0 in Table

2.1.

In Table 2.2 we present and compare the numerical results with the results in Table

2.1. We find a good agreement in Tables 2.1 and 2.2.

Yaqob and Ishak [37] Shen et al [3] Shooting Results

Pr f ′′(0) 1/θ(0) f ′′(0) 1/θ(0) f ′′(0) 1/θ(0)

0.7 1.8339 0.7776 1.8337 0.7771 1.8337 0.7776

1 1.7338 0.8780 1.7337 0.8780 1.7338 0.8780

Table 2.1: Results of f ′′(0) and 1/θ(0).

The influence of mixed convection parameter λ on the velocity and temperature

profile is depicted in Figs. 2.1-2.2 respectively for both cases of ε < 1 and ε > 1.

Velocity profile shows a subsequent variation in boundary layer structure rather

than thermal boundary layer. In Fig. 2.1(a), it is observed that thickness of velocity

boundary layer decreases with an increasing value of λ when velocity ratio parameter

is taken as ε = 0.1 < 1, although flow shows a boundary layer structure in this case.

On the other hand, for ε = 2 > 1 the velocity boundary layer thickness increases
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Shooting Method bvp4c

Pr f ′′(0) 1/θ(0) f ′′(0) 1/θ(0)

0.7 1.8337 0.7776 1.8337 0.7776

1 1.7338 0.8780 1.7338 0.8780

Table 2.2: Results of f ′′(0) and 1/θ(0).

with λ because stretching surface velocity uw(x) exceeds the external velocity ue(x),

as shown in Fig. 2.1(b).

Unlike velocity profile, a slight variation is observed in thermal boundary layer

structure. Fig. 2.2(a-b) shows that temperature decreases for increasing values of

mixed convection parameter λ. It is also observed that thermal boundary layer

thickness decreases for both cases when ε < 1 and ε > 1. It is also analyzed that

surface temperature θ(0) decreases with increasing values of λ, which indicates that

heat transfer rate 1/θ(0) at the surface increases.

(a) Velocity profile for ε = 0.1. (b) Velocity profile for ε = 2.

Figure 2.1: Velocity profile for different value of λ.

The effect of magnetic parameterM , injection (suction) parameter S and velocity

slip parameter δ on velocity profile are illustrated in Figs. 2.3-2.5 for both cases

of ε < 1 and ε > 1. Almost a similar impact is observed for these parameters
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(a) Temperature profile for ε = 0.1. (b) Temperature profile for ε = 2.

Figure 2.2: Temperature profile for different value of λ.

on momentum boundary layer structure. From these figures it is analyzed that

increasing values of parameters M , S and δ leads to decrease the velocity boundary

layer thickness for both cases. So that velocity gradient at the surface also increases.

As a result the magnitude of coefficient of skin friction f ′′(0) also increases.

(a) Velocity profile for ε = 0.1. (b) Velocity profile for ε = 2.

Figure 2.3: Velocity profile for different value of M .
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Physically, it can be interpreted that the thickness of the momentum boundary

layer decreases consequently as the strength of magnetic parameter M increases.

This is due to the fact that the Lorentz force related with the magnetic field retards

the motion of fluid which makes the boundary layer thinner so that the velocity

profile f ′(η) along the surface decreases significantly.

(a) Velocity profile for ε = 0.1. (b) Velocity profile for ε = 2.

Figure 2.4: Velocity profile for different value of S.

(a) Velocity profile for ε = 0.1. (b) Velocity profile for ε = 2.

Figure 2.5: Velocity profile for different value of δ.
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The effect of nonlinearity parameter m on velocity profile are illustrated in Figs.

2.6 for both cases of ε < 1 and ε > 1. In Fig. 2.6(a), it is observed that thickness of

velocity boundary layer decreases with an increasing value of m when velocity ratio

parameter is taken as ε = 0.1 < 1. On the other hand, for ε = 2 > 1 the velocity

boundary layer thickness increases with an increasing value of m as shown in Fig.

2.6(b).

(a) Velocity profile for ε = 0.1. (b) Velocity profile for ε = 2.

Figure 2.6: Velocity profile for different value of m.

Figs. 2.7-2.8, depicts the effect of non-linearity parameterm and injection(suction)

parameter S variations on temperature profile for both cases ε < 1 and ε > 1. It is

observed that with an increasing value these two parameters the thermal boundary

layer thickness decreases significantly for both cases. Moreover, it is also observed

that for ε < 1 the temperature and thermal boundary layer thickness is higher as

compared to ε > 1 by keeping other parameters are constant.

The temperature profile is less affected by velocity slip parameter δ and magnetic

parameter M as shown in Fig. 2.9-2.10. These parameters M and δ show a reverse

trend for both cases ε < 1 and ε > 1. Figs. 2.9 (a)-2.10 (a) a reduction in thermal

boundary layer thickness is observed with an increasing values of M and δ for ε < 1.

This follows an increase in heat transfer rate at the surface. However, an opposite

trend in characteristics is investigated for ε > 1 for these two parameters as depicted
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in Figs. 2.9 (b)-2.10 (b). In this case thermal boundary layer thickness increases

with an increasing values of M and δ which results in a reduction of heat transfer

rate.

(a) Temperature profile for ε = 0.1. (b) Temperature profile for ε = 2.

Figure 2.7: Temperature profile for different value of m.

(a) Temperature profile for ε = 0.1. (b) Temperature profile for ε = 2.

Figure 2.8: Temperature profile for different value of S.
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(a) Temperature profile for ε = 0.1. (b) Temperature profile for ε = 2.

Figure 2.9: Temperature profile for different value of δ.

(a) Temperature profile for ε = 0.1. (b) Temperature profile for ε = 2.

Figure 2.10: Temperature profile for different value of M .
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Chapter 3

Numerical Solution for Boundary

Layer Flow and Heat Transfer

with Variable Fluid Properties

3.1 Introduction

This chapter contains a review work of Bachok et al [8]. The study of boundary

layer on a continuous moving flat plate has significant role in Newtonian as well

as non-Newtonian flows problems in fluid mechanics. Although, it has received

considerable attention for many researchers due to its crucial practical applications

in engineering and industrial process such as materials manufactured by extrusion

processes, melt-spinning, wire drawing, polymer filaments and sheet, manufacture

of plastic and rubber sheets, the hot rolling, the fabrication of sheet glass, electro-

plating of steel sheets and copper wire etc. It was the Sakiadis [4] who first studied

the boundary layer flow with constant velocity induced by a solid surface in an oth-

erwise ambient fluid. Tsou et al [38] extended the Sakiadis [4] work and analyzed

a results for heat transfer in a thermal boundary layer by considering continuous

moving surface and ambient fluid. Afterwards, a series of research is carried out

on this class of boundary layer flow problems and many investigators [39-42] have

studied different aspects of this problem such as the effect of mass and heat transfer,
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chemical effects, constant and variable surface temperature, the effect of magnetic

field etc.

Later on, a substantial work is examined on temperature dependent fluid properties

for Sakiadis flow [4]. Pop et al [5] studied variation in viscosity of fluid with tem-

perature and derived a similarity solution. The influence of temperature dependent

viscosity on heat transfer was also reconsidered by Bazid [6] and Pantokratoras [43]

over a continuous surface. Although, Andersson and Aarseth [7] presented a de-

tailed analysis about the influence of variable fluid properties for Sakiadis [4] flow

and construct a new similarity transformation for boundary layer inspired by the

Howarth-Dorodnitsyn [7] transformation. In spite of the fact that, Bachok et al [8]

extended the work of Andersson and Aarseth [7] for the case when a flat plate moves

in a parallel free stream.

3.2 Mathematical Formulation

Consider a steady, two-dimensional flow of a viscous fluid due to moving flat plate

in a parallel free stream. The flow is assumed to be Newtonian and is placed at

y ≥ 0. The x-axis is taken along the direction of motion of moving plate while y-

axis is normal to the plate. Let Uw be the uniform velocity of moving plate along a

parallel free stream of constant velocity U0 in the same or opposite direction. Let Tw

and T0 be constant temperature of moving flat plate and free stream temperature,

respectively. So under these assumptions, the boundary layer equations governing

the flow and heat transfers over a moving flat plate are given by:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (3.2.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
, (3.2.2)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κ
∂T

∂y

)
, (3.2.3)
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where u and v are the the velocity components along x-axis and y-axis, respectively.

And T is the fluid temperature while κ, ρ, µ and Cp are the thermal conductivity,

fluid density, dynamic viscosity and specific heat at constant pressure respectively.

The boundary conditions for the subject problem are:

u = Uw, v = 0, T = Tw, at y = 0,

(3.2.4)

u→ U0 T → To as y →∞,

Now, similarity transformation is introduced to convert PDEs (3.2.1 - 3.2.3) into

ODEs along with boundary conditions (3.2.4). For this purpose, it is necessary to

define a stream function first ψ(x, y) such that it satisfies the conservation equations.

Hence, we define stream function as:

ρu =
∂ψ

∂y
, −ρv =

∂ψ

∂x
.

The similarity variable η is introduced to simplify the mathematical analysis of the

problem along with the new dependent variable f(η) and θ(η), such that

η =

√
U

aν0x

∫
ρ

ρ0
dy, (3.2.5)

ψ(x, y) = ρ0
√
aν0xUf(η), (3.2.6)

θ(η) =
T − T0
Tw − T0

, (3.2.7)

where U denotes the composite velocity, which is defined as U = Uw +U0 and a is a

dimensionless positive constant. It should be noticed that the transformation (3.2.7)

exists only if Tw 6= T0. Further, ρ0, κ0, ν0 and Cp0 are the values of fluid properties

at temperature T0 and ν0 is corresponding kinematic viscosity i.e. ν0 ≡ µ0/ρ0.
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For applying transformation η can be represented as

η = ρ/ρ0

(
U

aν0x

)1/2

y,

Differentiate η w.r.t x

∂η

∂x
= (ρ/2ρ0)

(
U

aν0x

)−1/2( −U
aν0x2

)
y,

= −ρ/2ρ0
(
U

aν0

)1/2

x−3/2y.

Differentiate η w.r.t y

∂η

∂y
= ρ/ρ0

(
U

aν0x

)1/2

.

Differentiate Eq. (3.2.6) w.r.t x

∂ψ

∂x
= ρ0/2(aν0xU)−1/2(aν0U)f(η) + ρ0(aν0xU)1/2f ′(η)

∂η

∂x
,

= ρ0/2(aνoxU)1/2x−1/2f(η)− ρ/2Ux−1yf ′(η).

Differentiate Eq. (3.2.6) w.r.t y

∂ψ

∂y
= ρ0(aνoxU)1/2f ′(η)

∂η

∂y
,

= ρUf ′(η).

Now, u can be expressed as:

u =
1

ρ

∂ψ

∂y
,

= U f ′(η). (3.2.8)
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Differentiate Eq. (3.2.8) w.r.t x

∂u

∂x
= U f ′′(η)

∂η

∂x
,

= − ρ

2ρ0

(
1

aν0

)
U3/2 x−3/2y f ′′(η). (3.2.9)

Differentiate Eq. (3.2.8) w.r.t y

∂u

∂y
= U f ′′(η)

∂η

∂y
,

=
ρ

ρ0
U f ′′(η)

(
U

aν0x

)1/2

. (3.2.10)

Now v can be written in the form:

v =
−1

ρ

∂ψ

∂x
,

=

(
U

2x

)
y f ′(η)− ρ0/2ρ

(
aν0U

x

)1/2

f(η). (3.2.11)

By substituting Eqs. (3.2.8) - (3.2.11) into Eq. (3.2.2), we obtained the following

expression:

U f ′(η) − ρ

2ρ0aν0
(U/x)−3/2 y f ′′(η) + ρ/ρ0Uf

′′(η)(U/aν0x)1/2(U/2x)y

f ′(η) − ρ0/2ρ (aν0 U/x)1/2f(η) =
1

ρ

∂

∂y

[
µρ/ρ0 Uf

′′(η)

(
U

aν0x

)1/2
]
,

− (ρ U2/2x) f(η) f ′′(η) = µ (ρ2/ρ20) U
2(aν0x)−1 f ′′′(η),
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ρU2/x

(
ρ

ρ20aν0
f ′′′(η) +

1

2
f(η) f ′′(η)

)
= 0,

ρ

ρ20aν0
f ′′′(η) +

1

2
f(η)f ′′(η) = 0,

2ρµ

aρoµo
f ′′′(η) +

1

2
f(η)f ′′(η) = 0,

The momentum equation can be reduced into the following nonlinear ordinary dif-

ferential equation:

2

a

(
ρµ

ρoµo
f ′′(η)

)′
+ f(η) f ′′(η) = 0, (3.2.12)

Now by simplifying Eq. (3.2.7), we obtain:

T = (Tw − T0)θ(η) + T0,

Differentiate T w.r.t x

∂T

∂x
= (Tw − T0)θ′(η)

∂η

∂x
,

= −ρ(Tw − T0)
2ρ0

(
U

aν0

)1/2

x−3/2yθ′(η). (3.2.13)

Differentiate T w.r.t y

∂T

∂y
= (Tw − To)θ′(η)

∂η

∂y
,

=
ρ(Tw − T0)

ρ0

(
U

aν0x

)1/2

θ′(η). (3.2.14)
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By substituting Eqs. (3.2.13) - (3.2.14) into Eq. (3.2.3), we obtained the following

relation:

−Uf ′(η)ρ(Tw−T0)
2ρ0

(
U
aν0

)1/2
x−3/2yθ′(η) +

(
U
2x

)
yf ′(η)− ρ0/2ρ

(
aν0U
x

)1/2
f(η)ρ(Tw−T0)

ρ0(
U
aν0x

)1/2
θ′(η) = 1

ρCp

∂
∂y

[
ρ(Tw−T0)

ρ0

(
U
aν0x

)1/2
θ′(η)

]
,

−Uf ′(η)ρ(Tw−T0)
2ρ0

(
U
aν0

)1/2
x−3/2yθ′(η) +

(
U
2x

)
yf ′(η)− ρ0/2ρ

(
aν0U
x

)1/2
f(η)ρ(Tw−T0)

ρ0(
U
aν0x

)1/2
θ′(η) = κρ2(Tw−T0)

ρ20

(
U
aν0x

)
θ′′(η),

(−Cp/2)(aν0)
1/2f(η)θ′(η) = (κρ/ρ20)(1/aν0)

1/2θ′′(η),

κρ

aρ0µ0

θ′′(η) = −Cp
2
f(η)θ′(η),

κρ

ρ0 κ0
θ′′(η) = − Cp aµ0 Cp0

2 κ0 Cp0
f(η)θ′(η),

(ρκ/ρ0κ0)θ
′′(η) + (aCp/2Cp0Pr0f(η)θ′(η) = 0,

Finally, the partial differential Eq. (3.2.3) is reduced to nonlinear ordinary differ-

ential equation:

(
ρκ

ρ0κ0
θ′(η)

)′
+

aCp
2Cp0

Pr0 f(η) θ′(η) = 0, (3.2.15)

where Pr0 ≡ µ0Cp0

κ0
is Prandtl number in free stream at temperature T0.
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Thus transformed boundary conditions are given by:

f(0) = 0, f ′(0) = 1− ε, θ(0) = 1,

f ′(η) = ε, θ(η) = 0, as η →∞ (3.2.16)

where, ε = U0

U
= U0

U0+Uw
is a known free stream parameter. It represents the relative

significance of free stream velocity.

It should be emphasized that when velocity of moving plate becomes equal to free

stream velocity then ε = 1/2, while ε = 0 and ε = 1 denotes the case of Sakiadis

or quiescent fluid and classical Blasius fluid for moving flat plate, respectively. It

should be noticed that 0 < ε < 1 is considered when both the free stream velocity

and the plate velocity are in the same direction. Although, ε > 1 corresponds to the

free stream is directed towards the positive x-direction while the plate moves towards

the negative x-direction and ε < 0 denotes to the free stream is directed towards

the negative x-direction while the plate moves towards the positive x-direction [47].

However, ε ≥ 0 is considered into account.i.e, when both free stream and plate

moves towards the positive x-direction [8].

The surface shear stress τw and surface heat flux qw can be written of the form

τw = µw

(
U3

aν0x

)1/2

f ′′(0), qw =
µwCp0
Pr0

∆T

(
U

aν0x

)1/2

[−θ′(0)]. (3.2.17)

3.3 Special Cases

3.3.1 Case A: Constant Fluid Properties

In specific case for constant physical fluid properties, the similarity variable η reduces

to the Blasius [51] variable:

η =

√
U

av0x
y (3.3.1)

Therefore Eqs. (3.2.12) and (3.2.15) can be written of the form

2

a
f ′′′(η) + f(η)f ′′(η) = 0, (3.3.2)
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θ′′(η) +
a

2
Pr0f(η)θ′(η) = 0, (3.3.3)

Eqs. (3.3.2) and (3.3.3) are subject to the same boundary conditions as mentioned

in Eq. (3.2.16).

3.3.2 Case B: Variable Viscosity

Viscosity is considered as temperature dependent µ(T ) by Pop et al [5] by assum-

ing other properties of fluid are constant. This assumption was also followed by

Elbashbeshy and Bazid [6], Pantokratoras [43] and Anderson [7]. This form of vari-

able viscosity µ(T ) is recommended by Lai and Kulacki [53] and then allowed by

Andersson and Aarseth [7], by assuming viscosity as an inverse linear function of

temperature. So µ(T ) is taken as

µ(T ) =
µref

1 + γ(T − Tref )
, (3.3.4)

In Eq. (3.3.4), γ is known as fluid property. It depends on reference temperature

( Tref ). For γ > 0, with the rise of temperature the viscosity of liquids decreases

while for γ < 0 viscosity of gases increases with decreasing temperature. By using

reference temperature Tref ≈ To the relation (3.3.4) can be written as

µ(T ) =
µ0

1− (T − T0)/(Tw − T0)θref
, (3.3.5)

In Eq. (3.3.5), Tw−T0 is an operating temperature difference while θref is a dimen-

sionless constant. It is defined as θref ≡ −1/[γ(Tw − T0)]. Using this relation in

above equation we obtained:

µ

µ0

=
θref

(θref − θ)
, (3.3.6)

It should be mentioned that θref is taken positive for gases and negative for liquid

[54]. By using approximation (3.3.5), the momentum boundary layer Eq. (3.2.12)

can be written as
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2

a

(
µ

µ0

f ′′
)′

+ ff ′′ = 0, (3.3.7)

From Eq. (3.3.6)

2

a

(
θref

(θref − θ)
f ′′
)′

+ ff ′′ = 0, (3.3.8)

The thermal boundary layer equation is considered same as in Eq. (3.3.3).

3.4 Numerical Methods

The system of coupled nonlinear ODEs. (3.2.12)- (3.2.15) subject to the boundary

conditions (3.2.16) has been solved numerically by using shooting method and bvp4c.

Using these methods boundary value problem (BVP) are converted into an initial

value problems (IVP).

To convert BVP into an IVP, we define a new variable as:

y = f = y1, f ′ = y′1 = y2, f ′′ = y′2 = y3.

θ = y4, θ′ = y′4 = y5. (3.4.1)

The system of ODEs. (3.2.12)- (3.2.15) are transformed to a system of five simulta-

neous equations with five unknowns.

For constant fluid properties (Case A), momentum and energy equations can be

written as:

y′3 = f ′′′ = −a
2
y1y3, (3.4.2)

and

y′5 = θ′′ = −a
2
Proy1y5, (3.4.3)

For variable fluid viscosity (Case B), momentum equation an be written as

y′3 = f ′′′ = −a
2

(
θref − y4
θref

)y1y3 − (
1

θref − y4
)y3y5. (3.4.4)

While energy equation remains same for Case B as Eq.(3.4.3).
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3.5 Results and Discussions

Like Andersson and Aarseth[7], Bachok et al [8] found numerical results for con-

sidering temperature dependent viscosity µ(T ) by keeping other fluid properties are

constant. First, numerical values are calculated for Sakiadis fluid, ε = 0 at Prandtl

number 0.7 and 10 by considering constant fluid properties and variable viscosity.

Then these results for characteristic surface gradient f ′′(0) and θ′(0) are compared

with Andersson and Aarseth [7] in Table 3.1. The purpose is to check the validity

of Bachok et al [8] technique.

Anderson [7] Bachok et al [8] Shooting Results

Case ε Pr0 a −f ′′(0) -θ′(0) −f ′′(0) -θ′(0) −f ′′(0) -θ′(0)

A 0 0.7 1 0.44374 0.34923 0.4437 0.3492 0.44375 0.34929

- 0 1 1 - - 0.4437 0.4437 0.44375 0.44375

- 0 10 1 0.44374 1.68029 0.4437 1.6803 0.44375 1.68031

B 0 1 1 - - 1.0381 0.3181 1.03814 0.31812

- 0 10 1 1.30055 1.52915 1.3006 1.5292 1.30065 1.52920

Table 3.1: Results of f ′′(0) and θ′(0) for Cases A and B.

Two different cases have been considered to analyze the effect of viscosity that

depends on temperature. For this purpose, numerical computation is obtained for

water as a fluid at temperature T0 = 5oC or 278K. The temperature of a moving

flat plate Tw is taken as 85oCor 358K. So the operating temperature difference ∆T

is 80K i.e. Tw − T0 = 80K. For variable fluid viscosity θref = −0.25 for water at

T0 = 5oC(278K) [7]. Results for skin friction coefficient f ′′(0) and local Nusselt

number −θ′(0) are compared for Case A (constant fluid properties) and Case B

(variable fluid viscosity) for Sakaidis fluid with free stream parameter ε in Table 3.2.

In these numerical results it is observed that the absolute value of f ′′(0) is larger

for Case B as compared to Case A. This increase in velocity gradient shows that

a skin friction is developed when temperature dependent viscosity is taken into

consideration. Although, a small reduction is noticed for temperature gradient θ′(0)

in Case B as compared to Case A.
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Shooting Method bvp4c

Case −f ′′(0) -θ′(0) −f ′′(0) -θ′(0)

A 0.44375 1.68031 0.44374 1.68031

B 1.30065 1.52920 1.30060 1.52920

Table 3.2: Results of f ′′(0) and θ′(0) for Pr0 = 10 and ε = 0.

When velocity profile f ′(η) of constant fluid properties (Case A) are compared

with those of variable viscosity (Case B), it is observed that f ′(η) is decreased near

the moving surface for Case B as shown in Fig. 3.1. This is because adjacent fluid

is heated due to moving surface as a result its viscosity is decreased. Inspite of

this, it also shows a reduction in the viscous diffusion of stream-wise momentum

from the surface in the inner part of momentum boundary layer. This reduction in

f ′(η) is caused by the advection term (1/2a)Pr0f(η)θ′(η) in transformed energy Eq.

(3.2.15) as a result viscosity is decreased and generates higher temperature close to

the moving surface.

(a) Case A. (b) Case B.

Figure 3.1: Velocity profile for different value of ε.
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In temperature profile θ(η), as viscosity is reduces so higher temperature is ob-

served near the moving surface for Case B rather then Case A as shown in Fig. 3.2.

However, thermal boundary layer thickness decreases for both cases with increasing

value Pr0. It is worth to mention that the result described in Figs. 3.1 and 3.2 were

generated with η∞ = 30. This integration length is enough longer to justify f ′ −→ 0

and θ′ −→ 0 which is a necessary condition indicated by Andersson and Aarseth [7].

(a) Case A. (b) Case B.

Figure 3.2: Temperature profile for different value of Pr0.
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Chapter 4

MHD Boundary Layer Flow and

Heat Transfer over a Moving Flat

Plate in a Parallel Free Stream

4.1 Introduction

In a fluid dynamics, the study of magnetohydrodynamics (MHD) viscous bound-

ary layer flow and heat transfer in a parallel free stream have numerous practical

applications in industry and engineering. Thus many researchers have shown inter-

est in the study of MHD in recent time. Rossow [1], Watanabe [45] and Das [46]

studied the flow of electrically conducting fluid over a flat plate in presence of trans-

verse magnetic field. Furthermore, thermal boundary layer flow in a parallel free

stream for a moving flat plate were also analyzed by some researchers for different

flow pattern and boundary condition. Afzal et al [47], Bianchi et al [48], Lin and

Huang [49], Chen [50], Ishak et al [42] and Bachok et al [8] studied characteristics

for momentum and heat transfer on a continuously moving flat plate in a parallel

free stream.

However, in this chapter an extensive work is carried out to analyze the motion of

fluid in the presence of magnetic field by considering variable viscosity of a fluid in

a parallel free stream. Soundalgekaret al [44], Pop et al [5], Elbashbeshy and Bazid
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[6], Pantokratoras [43], Andersson and Aareseth [7], Bachok et al [8] revised the

Sakiadis flow [4] by taking variable fluid properties into account. Although, this

extensive work deals both the constant fluid properties and temperature-dependent

viscosity for a fluid flow over a moving flat plate with a parallel free stream in the

presence of magnetic field. To our knowledge, the present analysis is not yet been

studied before.

4.2 Mathematical Formulation

Let us consider steady two dimensional magneto-hydrodynamic laminar boundary

layer flow on a fixed or continuously moving flat plate in a parallel free stream of

an electrically conducting viscous fluid. Suppose that the surface is moving with

constant velocity Uw in the same or opposite direction with respect to the constant

free stream velocity U0. A uniform magnetic field of strength B0 is assumed to be

applied in the positive y-direction. In this case the magnetic Reynold number of the

flow is assumed to be small. The aim of taking low value of Rm is to make possible

to neglect the induced magnetic field in the comparison to the applied magnetic

field. Electric field is also supposed to be zero i.e. E = 0. Under the boundary layer

assumptions the conservation equations for MHD flow for a moving flat plate in the

absence of body forces are as follows.

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (4.2.1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −dp

dx
+

∂

∂y

(
µ
∂u

∂y

)
+ (Jc ×B)x, (4.2.2)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κ
∂T

∂y

)
, (4.2.3)
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The relevant boundary condition for subject problem are given by [8]:

u = Uw, v = 0, T = Tw, at y = 0,

(4.2.4)

u→ U0 T → T0 as y →∞,

where x and y are Cartesian coordinates along the surface and normal to it, re-

spectively. Further, u is the component of velocity in the x-direction and v is the

component of velocity in the y-directions. Also ρ, µ, κ and Cp are the fluid density,

the dynamic viscosity, thermal conductivity, strength of magnetic field and specific

heat at constant pressure, respectively. Moreover, T0 and Tw are temperature at free

stream and moving plate temperature, respectively where Tw > T0. The last term

in Eq. (4.2.2) is known as Lorentz force where Jc represents conduction current and

B0 is the strength of magnetic field. For a given problem, conduction current can

be defined as:

Jc = σ ( −→q ×
−→
B ),

−→
E = 0, (4.2.5)

where σ is constant electrical conductivity and −→q = (u, v) = uî + vĵ is a velocity

field and
−→
B = (0, B0, 0) is a magnetic field.

Taking vector product we obtained

−→q ×
−→
B =

∣∣∣∣∣∣∣∣
î ĵ k̂

u v 0

0 B0 0

∣∣∣∣∣∣∣∣ = B0uk̂,

By using above expression, the Eq. (4.25) can be written of the form

Jc = σB0uk̂,

So the Lorentz force for subject problem are given by:

−→
Jc ×

−→
B =

∣∣∣∣∣∣∣∣
î ĵ k̂

0 0 σB0u

0 B0 0

∣∣∣∣∣∣∣∣ = −σB2
0uî, (4.2.6)
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Also,

dp

dx
= −σB2

0U0, (4.2.7)

Under above assumptions, the boundary layer Eqs. (4.2.1)- (4.2.3) becomes:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (4.2.8)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
=

∂

∂y

(
µ
∂u

∂y

)
− σ0B2

0(u− U0), (4.2.9)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κ
∂T

∂y

)
, (4.2.10)

However, boundary condition (4.2.4) remains the same.

Now, to solve the system of Equation numerically it is useful to express it through

transformed variable. Let us first choose a stream function ψ(x, y) which defines the

velocity component u and v as:

ρu =
∂ψ

∂y
, −ρv =

∂ψ

∂x
.

such that the mass conservation equation is satisfied.

Now, the following transformation is introduced to examine the flow [8]. Hence, the

similarity variable η and the new dependent variable f and θ are defined as:

η =

√
U

aν0x

∫
ρ

ρ0
dy, (4.2.11)

ψ(x, y) = ρ0
√
aν0xU f(η), (4.2.12)

θ(η) =
T − T0
Tw − T0

, (4.2.13)

where U = Uw +U0 is composite velocity and a is a dimensionless positive constant.

Further, ρ0, µ0, κ0, ν0 and Cp0 are the values of fluid properties at temperature T0.
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The momentum and energy equation after applying transformation can be reduced

to the following nonlinear ordinary differential equations:

2

a

(
ρµ

ρ0µ0

f ′′(η)

)′
+ f(η) f ′′(η)−M f ′(η) +M ε = 0, (4.2.14)

(
ρκ

ρ0κ0
θ′(η)

)′
+
aCp
2Cp0

Pr0 f(η) θ′(η) = 0, (4.2.15)

where M is the dimensionless magnetic parameter Pr0 is Prandtl number at free

stream. These parameters are given by:

M =
2σ0B

2
0x

ρU
, Pr0 =

µ0Cp0
κ0

The Eqs. (4.2.14) and (4.2.15) with subject to the boundary conditions (4.2.4) which

becomes

f(0) = 0, f ′(0) = 1− ε, θ(0) = 1,

(4.2.16)

f ′(η) = ε, θ(η) = 0, as η →∞

where ε = U0

U
is the free stream parameter of the fluid. For current analysis we

consider the case when the plate is moved in the same direction as the free stream

velocity i.e. ε ≥ 0 as taken by Bachok et al [8]. The surface shear stress τw and

surface heat flux qw can be written of the form

τw = µw

(
U3

aν0x

)1/2

f ′′(0), qw = µw
Cp0
Pr0

∆T

(
U

aν0x

)1/2

[−θ′(0)]. (4.2.17)

4.3 Special Cases

4.3.1 Case A: Constant Fluid Properties

By means of temperature-dependent density and viscosity, the ODE in Eq. (4.2.14)

governing the flow in the momentum boundary layer is paired to the thermal bound-

ary layer Eq. (4.2.15). In specific case for constant thermophysical fluid properties,

the similarity variable η reduce to the Blasius [51] variable:
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η =

√
U

av0x
y (4.3.1)

Hence, Eqs. (4.2.14) and (4.2.15)can be written of the form

2

a
f ′′′(η) + f(η)f ′′(η)−Mf ′(η) +Mε = 0, (4.3.2)

θ′′(η) +
a

2
Pr0f(η)θ′(η) = 0, (4.3.3)

Still these equations are subjected to same boundary conditions as mentioned in Eq.

(4.2.16). Fang [52] investigated the solution for ε = 1, by taking same boundary

condition (4.2.16).

4.3.2 Case B: Variable Viscosity

Generally, constant thermophysical properties of fluid are analyzed for considering

problem of convection flow and heat transfer. As in these thermal properties varia-

tion can be observed especially in viscosity with temperature, so it is necessary to

examine the change of viscosity to correctly predict the momentum and heat trans-

fer flow rate.

Viscosity is considered as temperature dependent µ(T ) by Pop et al [5] by assuming

other physical properties of fluid are constant. This assumption was also followed

by Elbashbeshy and Bazid [6], Pantokratoras [43], Andersson and Aarseth[7] and

Bachok et al [8]. This form of temperature-dependent variable viscosity µ(T ) is also

recommended by Lai and Kulacki [53] and then allowed by Andersson and Aarseth

[7] by assuming viscosity as a inverse linear function of temperature. So temperature

dependent viscosity µ(T ) is considered as

µ(T ) =
µref

1 + γ(T − T0)
, (4.3.4)

In expression (4.3.4), γ is a fluid property. It depends on reference temperature

Tref . The inversely linear temperature viscosity correlation mentioned in expression
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(4.3.4) was also been used by Bachok et al [8]. By considering reference temperature

Tref ≈ T0, the expression (4.3.4) can be written of the form:

µ(T ) =
µ0

1− (T − T0)/(Tw − T0)θref
, (4.3.5)

where Tw − T0 is a temperature difference of moving plate and free stream. Also

θref ≡ −1/[γ(Tw−T0)] is a dimensionless constant. Using this relation in Eq. (4.3.5)

we obtained the following ratio:

µ

µ0

=
θref

(θref − θ)
, (4.3.6)

By using above assumption, the momentum boundary layer Eq. (4.2.14) can be

represented as:

2

a

(
µ

µo
f ′′(η)

)′
+ f(η)f ′′(η)−Mf ′(η) +Mε = 0, (4.3.7)

Using relation (4.3.6) in above equation, we obtained

2

a

(
θref

(θref − θ)
f ′′(η)

)′
+ f(η)f ′′(η)−Mf ′(η) +Mε = 0, (4.3.8)

f ′′′ =
a

2

(
(θref − θ)
θref

)
[f ′′ +Mf ′(η)−Mε]−

(
1

(θref − θ)

)
f ′′θ′, (4.3.9)

The thermal boundary layer equation takes the same form as of Eq. (4.3.3).

4.4 Numerical Methods

The shooting method by means of fifth order Runge-Kutta integration scheme and

MATLAB built-in solver bvp4c are used to solve the system of coupled nonlinear

ODEs (4.2.14)-(4.2.15) subject to the boundary conditions (4.2.16).

To convert BVP into IVP, we define a new variable as:

y = f = y1, f ′ = y′1 = y2, f ′′ = y′2 = y3

θ = y4 θ′ = y′4 = y5 (4.4.1)
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The system of ODEs. (4.2.14)-(4.2.15) are transformed to a system of five simulta-

neous equations with five unknowns.

For constant physical fluid properties (Case A) the momentum and thermal equa-

tions in the form of new variable f and θ can be written of the form:

y′3 = f ′′′ =
a

2
(−y1y3 +My2 −Mε), (4.4.2)

y′5 = θ′′ = −a
2
Proy1y5, (4.4.3)

For variable fluid viscosity (Case B) the momentum boundary layer equation can be

written as

y′3 = f ′′′ =
a

2
(
θref − y4
θref

)(−y1y3 +My2 −Mε)− (
1

θref − y4
)y3y5, (4.4.4)

While thermal energy equation remains same for Case B as Eq. (4.4.3).

4.5 Results and Discussions

A numerical study is considered to investigate the effect of magnetic parameter

M and Prandtl number Pr0 with free stream ε parameter upon the nature of the

flow. Like Andersson and Aarseth[7] and Bachok et al [8], the extensive work is also

focused on impact of temperature dependent viscosity by keeping other thermophys-

ical properties are constant. Although, numerical computation has been done in the

presence of magnetic field. First the numerical study is computed for Pr0 at 0.71, 1

and 10 and then compared the numerical value of characteristics surface gradients

f ′′(0) and θ′(0) with the solution obtained by Bachok et al [8] of the quiescent fluid,

for ε = 0 in Table 4.1. The purpose is to check the accuracy of present solution

technique in the absence of magnetic field i.e, M = 0.

Two different cases have been considered to investigate the effect of magnetic field

on boundary layer structure for constant and variable fluid properties in a parallel
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Bachok et al [8] Shooting Results (M = 0)

Case ε Pr0 a −f ′′(0) -θ′(0) −f ′′(0) -θ′(0)

A 0 0.71 1 0.4437 0.3492 0.4437 0.3492

- 0 1 1 0.4437 0.4437 0.4437 0.4437

- 0 10 1 0.4437 1.6803 0.4437 1.6803

B 0 1 1 1.0381 0.3181 1.0381 0.3181

- 0 10 1 1.3006 1.5292 1.3006 1.5292

Table 4.1: Results of f ′′(0) and θ′(0) for Case A and B.

free stream. Case A constitutes constant fluid properties while Case B show variable

fluid viscosity. Water is considered as a fluid for Prandtl 7 and 10 at temperature

278K along with surface temperature 358K, so that ∆T ∼= (Tw−T0) ∼= 80k, whereas

Prandtl 0.71 is taken for air at temperature 293K. For variable fluid properties Lai

and Kulacki [53] declared θref = −0.37 for water and θref = 5.62 for air but we have

reviewed θref = −0.25 for water as reported by Andersson and Aarseth[7], Bachok

et al [8] and Ling and Dybb [54].

The influence of magnetic parameter on the coefficient of reduced skin friction

f ′′(0) and the local Nusselt number θ′(0) is illustrated in Table 4.2 for constant and

variable fluid properties respectively. Numerical values reveal that the skin friction

coefficient f ′′(0) increase consistently with an increasing values of magnetic field

whereas local Nusselt number θ′(0) decreases with an increasing values of magnetic

parameter. Actually, the effect of M on a viscous fluid is to suppress the velocity

field due to the enhanced Lorentz force which in turn causes the increase in skin

friction coefficient. Almost three fold increase in skin friction coefficient is observed

when temperature dependent viscosity is considered into account in the presence of

magnetic field. Similarly, for different value of Prandtl number it is noticed that

skin friction coefficient f ′′(0) shows a very small change in the solution for Case

A as compared to Case B, but θ′(0) increases with an increasing Prandtl number.

Also numerical value indicate that for Pr0 < 1, thermal diffusion occurs at a faster
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Case A Case B

ε Pro M −f ′′(0) -θ′(0) −f ′′(0) -θ′(0)

0.01 10 0 0.4371 1.6719 1.2811 1.5215

0.01 10 0.1 0.4852 1.6616 1.4117 1.4953

0.01 10 0.2 0.5301 1.6520 1.5265 1.4719

0.01 10 0.3 0.5721 1.6430 1.6293 1.4508

0.01 10 0.4 0.6110 1.6341 1.7225 1.4316

0.01 0.7 0.1 0.4852 0.3395 1.1207 0.2284

0.01 1 0.1 0.4852 0.4323 1.1337 0.3011

0.01 3 0.1 0.4852 0.8515 1.2223 0.7043

0.01 7 0.1 0.4852 1.3699 1.3463 1.2106

0.02 1 0.1 0.4783 0.4300 1.1177 1.2995

0.03 1 0.1 0.4714 0.4278 1.1009 1.2972

Table 4.2: Results of f ′′(0) and θ′(0) for Case A and B.

Shooting Method bvp4c

Case −f ′′(0) -θ′(0) −f ′′(0) -θ′(0)

A 0.4852 1.6616 0.4852 1.6617

B 1.4117 1.4953 1.4115 1.4952

Table 4.3: Results of f ′′(0) and θ′(0) for Pr0 = 10, M = 0.1 and ε = 0.01.
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rate rather than momentum diffusion while for Pr0 > 1, momentum diffuses at a

faster rate. However, in the presence of magnetic field atleast 11 % reduction in

temperature gradient at the surface is found for variable fluid viscosity as compared

to constant fluid property. Also same effects are analyzed by ε on both f ′′(0) and

θ′(0). With incresing value of ε, both f ′′(0) and θ′(0) decreases consistently.

The velocity f ′(η) profile is illustrated in Fig. 4.1 for both cases i.e. constant

fluid properties (Case A ) and variable fluid properties (Case B). The magnetic

parameter M and Prandtl number Pr0 are taken 0.5 and 10, respectively. In Fig.

4.1, a substantial variation is observed in velocity profile. It is noticed that the

velocity f ′(η) profile is significantly reduced near the moving surface for case B

when temperature dependent viscosity is taken into account. The moving surface

heats the adjacent fluid as a result temperature increases so that it reduces the

viscosity of fluid. Also momentum boundary layer thickness decreases for case B by

comparing it with Case A.

Figure 4.1: Velocity profile for Case A and Case B.

The temperature profile θ(η) is illustrated in Fig. 4.2 for Case A and Case B.

The magnetic parameter M and Prandtl number Pr0 are taken 0.5 and 10, respec-
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tively. A slight change is observed in temperature θ(η). Thermal boundary layer

thickness decreases for Case A as compared to Case B. So a higher temperature

is analyzed near a moving surface because of reduction in viscosity. This indirect

effect come due to the advection term 1/2aPro f(η)θ′(η) in the thermal boundary

layer Eq. (4.3.3).

Figure 4.2: Temperature profile for Case A and Case B.

In Fig. 4.3(a-b) the variation in the velocity profile is demonstrated for different

value of magnetic parameter M for constant and variable fluid properties over a

moving flat plate in a parallel free stream. As the magnetic parameter M increases

consequently the thickness of the momentum boundary layer decreases. Actually,

rate of transport decreases with increasing magnetic parameter M . This is caused

due to the fact that the Lorentz force retards the fluid motion which makes the

boundary layer thinner.

The effect of magnetic field is also analyzed for thermal boundary layer in Fig

4.4(a-b) for both constant and variable fluid properties respectively. The thermal

boundary layer thickness slightly increases for both cases as the Lorentz force in-
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creased with increasing value of M . A small variation is observed in θ(η) for Case

B when it is compared with Case A.

(a) Case A. (b) Case B.

Figure 4.3: Velocity profile for different values of M .

(a) Case A. (b) Case B.

Figure 4.4: Temperature profile for different values of M .
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In Fig. 4.5(a-b) the influence of Prandtl number on momentum boundary layer is

studied in the presence of magnetic field for constant and variable fluid properties.

For velocity profile constant fluid properties shows no remarkable effect with an in-

creasing values of Prandtl number in the presence of magnetic field but for Case B

due to presence temperature dependent viscosity a velocity boundary layer thickness

slightly increases with an increasing values of Prandtl number.

(a) Case A. (b) Case B.

Figure 4.5: Velocity profile for different values of Pr0.

Fig. 4.6(a-b) shows the impact of Prandtl number on thermal boundary layer

structure in the presence of magnetic field for constant and variable fluid properties.

It is observed that thermal boundary layer thickness decreases with an increasing

values of Prandtl number. With the increasing value of Prandtl number leads to

increase the heat transfer rate at the surface which indicates a higher temperature

near the moving surface.

The effect of the parameter ε on the velocity and temperature profile is depicted in

Figs. (4.7)-(4.8) for the case when both the fluid and plate move in same direction in

the presence of magnetic field. With an increasing values of free stream parameter

momentum boundary layer thickness increases significantly for constant as well as
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(a) Case A. (b) Case B.

Figure 4.6: Temperature profile for different values of Pr0.

variable fluid viscosity. However, insignificant effect of ε is measured for temperature

profile for both cases.

(a) Case A. (b) Case B.

Figure 4.7: Velocity profile for different values of ε.
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(a) Case A. (b) Case B.

Figure 4.8: Temperature profile for different values of ε.
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Chapter 5

Conclusions and Outlook

Numerical solution of incompressible and compressible fluid were studied for non-

linearly stretching sheet as well as for moving flat plate, respectively.

In the first part of current thesis, we studied the impact for the MHD stagnation

point flow with mixed convection. A laminar boundary layer solutions are obtained

for an incomprassible electrically conducting fluid over a non-linearly stretching

sheet specify the change that will brought about by a magnetic field applied nor-

mally. Non-linear partial differential equations (PDEs) are converted into non-linear

ordinary differential equations (ODEs) with the help of similarity transformation.

Numerical solutions for momentum and thermal boundary layer are obtained by

means of bvp4c and shooting method. Results are plotted for key embedding phys-

ical parameters such as suction (injection) parameter, magnetic parameter, veloc-

ity slip parameter and non-linearity parameter. The temperature decreases inside

a thermal boundary layer with increasing these parameters. However, increasing

mixed convection parameter, results an increased both skin friction coefficient and

heat transfer rate. It is also observed that when the free stream velocity dominates

the stretching velocity and heat transfer rate increases with velocity slip and mag-

netic field and they suppress the heat transfer rate when the stretching velocity

dominates the free stream velocity.

The influence of temperature dependent viscosity for Sakiadis problem is studied in

the second part of thesis. A momentum and thermal boundary layer flow behaviour
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has been explored on a continuous moving flat plate in a parallel free stream . A

uniform magnetic field is applied normal to the plate. By using similarity transfor-

mation the governing PDEs are reduced into the system of coupled ODEs. Numerical

methods namely shooting method and bvp4c are applied to solve resultant ODEs.

Results are investigated for constant fluid properties (Case A) and variable fluid

viscosity (Case B). It is observed that:

• The skin friction coefficient f ′′(0) increases consistently with an increasing

values of magnetic field whereas local Nusselt number θ′(0) decreases with an

increasing values of magnetic parameter.

• A three fold increase in skin friction coefficient is calculated for Case B as

compared to Case A.

• In the presence of magnetic field atleast 11 % reduction in temperature gradi-

ent at the surface is found for variable fluid viscosity as compared to constant

fluid property.

• As the magnetic parameter M increases consequently the thickness of the

momentum boundary layer decreases while thermal boundary layer thickness

slightly increases for constant as well as variable fluid properties.
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