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Abstract

The increasing reliance on networked technologies has triggered a digital transformation

in interconnected systems through integrating diverse technologies. This interconnectiv-

ity has considerably expanded the attack surface of networks, resulting in a proliferation

of cyber-attacks both in number and sophistication. To counteract this trend, the anal-

ysis of network traffic through Intrusion Detection Systems (IDS) has emerged as a

critical component in the arsenal of network security tools. In response to the escalating

rate and complexity of cyber-attacks, researchers have turned to Machine Learning (ML)

and Deep Learning (DL) techniques to develop IDS capable of addressing both known

and zero-day attacks. While a considerable volume of work has conventionally focused

on centralized approaches, this study conducts an empirical investigation of a decentral-

ized learning framework for detecting network intrusions. The proposed scheme adopts a

framework that leverages federated learning to surmount the limitations associated with

centralized data, integrating federated learning with potent privacy mechanisms, differ-

ential privacy to fortify IDS. The analysis of both centralized and decentralized learning

scenarios discloses nuanced insights into detection performance. The centralized ap-

proach achieves a TPR of 99.51%, followed by 98.05% and 95.31% for the decentralized

approach without and with privacy enhancement scheme, respectively. While the cen-

tralized approach exhibits slightly better detection performance, its impact on data

privacy renders it impractical for real-world implementation. The results underscore

the efficiency and efficacy of the designed framework, establishing a model that clas-

sifies distinct benign and intrusive traffic patterns from various organizations without

requiring inter-organizational data exchange.

Keywords: Intrusion detection, federated learning, differential privacy, cyber-attacks,

data privacy, collaborative learning framework
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Chapter 1

Introduction

As the connected digital world is expanding rapidly, the hazards associated with cyber-

security breaches have increased dramatically [1]. As a result, organizations and gov-

ernments are actively looking for novel approaches to safeguard personal and organi-

zational data kept on networked devices. However, up until now, computer network

security mechanisms have shown themselves to be unreliable in the face of unprece-

dented attacks [2]. The world’s top cyber economy researcher, Cybersecurity Ventures,

projects that worldwide cybercrime expenses would increase from USD 3 trillion in 2015

to approximately USD 10.5 trillion annually by 2025 [3]. As a result, there is increasing

interest in enhancing the detection controls’ present capability to identify sophisticated

and unusual threats. Thus, in order to improve intrusion detection systems’ performance

in detecting attacks, novel and inventive methods are needed.

These interruptions impair the network’s capacity to provide its core functions and re-

sult in service outages, data loss, damage to the infrastructure, and network failure, all

of which have a major negative impact on the economy and society [4, 5]. Network re-

silience minimizes the effects of attacks by allowing the network to endure disturbances

and bounce back swiftly and efficiently [6]. Resilient networks are necessary to mini-

mize service interruption downtime, stop additional harm, and stop cascading failures

[7]. Furthermore, a resilient network improves security and increases the difficulty of

network disruption or penetration by cybercriminals. Network Intrusion Detection Sys-

tems (NIDS) are vital security instruments designed to search for and identify network

attackers as they infiltrate a computer network at the perimeter layer [8]. In order to

maintain the confidentiality, integrity, and availability—the three pillars of information
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Chapter 1: Introduction

system security—NIDS are deployed [9, 10]. For the purpose of identifying patterns and

indicators of a possible danger or attack, they monitor and analyze network traffic. The

objectives of a network intrusion detection system (NIDS) are to identify security risks,

safeguard digital assets, and offer robust cyber-security defense against malicious actors

in operational infrastructures [9].

Conventional Network Intrusion Detection Systems (NIDSs) that rely on signatures

search and examine incoming network data for any indicator of compromise (IOC),

sometimes referred to as attack signatures [11, 12]. The purpose of the detection func-

tionality is to compare the signatures of incoming traffic with a pre-compiled list of

known harmful signatures. When the entire collection of IOCs has been previously rec-

ognized and recorded within the NIDS, this method offers a high detection accuracy of

known and precedented attacks. However, it has been demonstrated to be unreliable

against newly discovered attacks (zero-day attacks) or novel variations of known assaults

[13], in cases where the IOCs associated with the activity’s occurrence are unknown [14].

Furthermore, the use of classical IOC is insufficient for detecting modern advanced and

persistent threats, which call for a sophisticated depth of behavioral change monitoring

[15]. In general, attackers quickly and continuously adapt their attack strategies to by-

pass security protections in place by changing well-known network attack paths. As a

result, dynamic attack detection is unavoidable, and NIDSs must be flexible enough to

adjust to new methods of attack detection.

Therefore, in order to match attack behaviors and patterns, researchers investigated

into anomaly-based NIDSs [14]. Anomaly-based network intrusion detection systems

(NIDSs) employ sophisticated statistical techniques to circumvent the drawbacks of

signature-based NIDSs, allowing researchers to recognize trends in network traffic be-

havior. Anomaly detection is accomplished using a variety of approaches, including

data, machine, and statistical-based strategies [16]. When it comes to zero-day attacks,

they can typically reach better levels of accuracy and Detection Rate (DR) since they

concentrate more on matching attack patterns and behaviors [13]. The design and re-

liable performance assessment of a decentralised and privacy aware intrusion detection

systems are the main topics of this thesis. In the last few years, machine learning (ML)

techniques have been applied to improve the effectiveness and performance of a wide

range of technological applications [17], showing remarkable success in enabling decision-

making systems in a variety of areas. As a subset of artificial intelligence (AI) [18, 19],

2



Chapter 1: Introduction

machine learning (ML) uses a collection of statistical algorithms that are capable of

learning from data without explicit programming.

Machine learning (ML) models are acknowledged for their exceptional capacity to extract

and learn intricate patterns from data that are not practical for domain experts to

observe [20]. During the training phase, machine learning models derive meaningful

patterns from past data. Future occurrences and scenarios are predicted, classified, and

regressed using the learnt patterns. ML has been a game-changing innovation [21] in

a number of sectors where efficiency and operational automation are necessary. The

enhanced capabilities of machine learning algorithms and the availability of data have

contributed to its current surge in attention [22]. As a result, ML models have been

extensively used in a variety of fields, outperforming conventional computing techniques

in terms of offering a higher degree of analysis to automate complicated decision-making

activities. In order to increase cyber attack detection through the use of an intelligent

defense layer and get around the drawbacks of signature-based NIDS, the cyber security

domain has also welcomed ML in the development of NIDS [23].

Building on the conversation about how machine learning could transform NIDS, this

work takes an innovative approach by adopting federated learning as a decentralized

method. Our method deviates from the established framework, where machine learning

(ML) was a monumental breakthrough for intrusion detection. This paradigm fosters

a collaborative and privacy-centric design process by having individual clients actively

contribute on their own data.

1.1 Background

Machine Learning (ML) technologies have achieved widespread adoption across diverse

domains and applications, each presenting its own unique set of challenges and con-

siderations. When crafting a learning model, adherence to general guidelines and best

practices is crucial. The selection of a specific ML process or technique is contingent

upon various factors, including the availability of resources such as training data sam-

ples, data sensitivity, heterogeneity of data, computing power, storage requirements,

among others. Consequently, the application of ML technologies may vary in ease across

different domains, dictated by the intricacies of available resources.

3



Chapter 1: Introduction

In the realm of ML-based Network Intrusion Detection Systems (NIDS), the paramount

concerns revolve around the privacy and security of data samples utilized during training

and testing phases. The potential compromise of user information through sharing with

third parties poses a significant threat to data privacy. Consequently, the design of

ML-based NIDS encounters challenges related to data scarcity, often stemming from

limitations in the quantity of collected data samples or insufficient representation of

diverse data classes. Moreover, the inherent heterogeneity within network data samples

exacerbates the issue of generalization.

In practice, a model trained to achieve high accuracy in one network structure may

exhibit diminished effectiveness when applied to detect intrusions in a different network

environment. This discrepancy arises from the distinctive Standard Operating Environ-

ments (SOEs) present in each organizational network, coupled with variations in the

types of threats experienced. These disparities manifest in the statistical distribution of

utilized NIDS datasets, highlighting the critical impact of network-specific factors.

In the landscape of ML-based NIDS, where the stakes are elevated due to the critical

nature of network security, the ramifications of data scarcity and heterogeneity are pro-

nounced. The limited availability of real-world datasets poses a formidable challenge,

hindering the development of robust intrusion detection models. Furthermore, the dy-

namic nature of network threats necessitates continuous adaptation, accentuating the

need for models capable of evolving with the ever-changing threat landscape[24]. This

dynamicity introduces an additional layer of complexity, where the efficacy of intrusion

detection models is contingent upon their agility in learning and adapting to emerging

threats and evolving network structures. Therefore, the exploration of ML scenarios

within this context becomes not only a technological imperative but also a strategic

endeavor in fortifying network defenses against an evolving array of cyber threats.

1.2 Motivation

The escalation of security breaches in recent years has emerged as a formidable menace,

imposing substantial risks on organizations globally. As reported by Cybersecurity Ven-

tures, the frequency and gravity of cyber attacks have surged to alarming proportions,

prognosticating a staggering global cost of data breaches, estimated to reach USD 10.5
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trillion annually by 2025 [3]. These incursions not only inflict financial ramifications but

also engender operational disruptions and compromise the confidentiality of sensitive

information.

Traditionally, intrusion detection approaches have tended to adopt centralized struc-

tures, exposing vulnerabilities and the risk of data breaches. In response to these con-

cerns, this thesis employs a decentralized approach, augmented by differential privacy,

to enhance privacy measures. This methodology not only addresses the limitations of

centralized systems but also offer a more robust and privacy-preserving solution for

real-world intrusion detection challenges.

1.3 Problem Statement

The constantly evolving network landscape highlights the crucial role of Network Intru-

sion Detection Systems (NIDS) as essential tools for network security. However, most

existing methods are centralized and suffer from inefficiencies in real-time detection of

network intrusions. To address these issues, this study proposes an innovative NIDS

framework that integrates differential privacy to enhance the model’s privacy and en-

suring individual privacy.

1.4 Objectives

The fundamental aim of this study is to design a decentralized NIDS that is feasible for

practical scenarios. The objectives of this work are:

• To develop a robust and scalable framework that enables distributed intrusion

detection systems to collaboratively train and aggregate machine learning models

• To formulate and implement a proficient detection algorithm for distinguishing

between normal and abnormal network flows

• Investigate novel techniques to enhance the detection accuracy of distributed intru-

sion detection systems by leveraging the collective intelligence of multiple clients

• To evaluate the proposed algorithm and measure metrics such as detection accu-

racy, false positive rates.
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1.5 Thesis Organization

The subsequent chapters of the thesis are structured as follows: Chapter 2 presents a

thorough literature review, delving into the issues investigated in this study.The pre-

ceding research has focused on network intrusion detection through the application of

statistical methods, pattern matching, expert systems, and machine learning algorithms.

Chapter 3 discuss with the proposed methodlogy and implementation details. Chapter

3 delves into the proposed methodology and provides a detailed discussion of the imple-

mentation particulars. In Chapter 4, the attained results following the implementation

of the proposed methodology are thoroughly discussed, while Chapter 5 encapsulates

the drawn conclusions derived from these outcomes.
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Chapter 2

Literature Review

The field of cybersecurity research has experienced a shift in focus in recent years from

preventing the growing number of cyberattacks to grappling with the intricate nature

of intrusion detection. This chapter delves into the multifaceted aspects of Intrusion

Detection Systems (IDS) and offers an extensive academic overview of past research

conducted in the domain of network security.

2.1 IDS Overview

IDS systems are designed to keep an eye on and analyze other systems’ and network

activity. Finding abnormalities, invasions, or privacy violations is the aim of intrusion

detection systems (IDS). According to Ferrag et al. [25], they come in second to access

control, authentication, and encryption methods when it comes to defense. Network

Intrusion Detection System (NIDS) or Host Intrusion Detection System (HIDS) are two

types of IDS. NIDS keep an eye on how various nodes in a network or its subnetworks

communicate with one another. They examine both internal and external communica-

tion as well as traffic flow. The packets used in a network’s communication between two

nodes constitute a traffic flow [26]. When source and destination Internet Protocol (IP)

addresses are utilized, a network flow may be two-tuple in nature. A flow is regarded as

4-tuple when the source and destination ports are also utilized; 5-tuple flows also include

the protocol used. Both unidirectional and bidirectional traffic flows are possible. In

contrast to NIDS, HIDS monitors system internals or nodes, with a particular emphasis

on log files, operating system (OS) files, etc. Moreover, they enable the analysis of en-
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Chapter 2: Literature Review

crypted communications by monitoring the network connectivity of the node or nodes

they are installed on [27]. Instead than depending on payload data or headers, HIDS

rely on the content of the packet.

2.1.1 IDS based on Detection Method

There are two important types of IDS based on detection approach: anomaly-based and

signature-based. IDS that uses signatures, commonly referred to as Misuse Detection,

is based on predetermined signatures that stand in for known intrusions and attacks.

As a result, by comparison with known signatures, signature-based intrusion detection

systems can identify attacks. However, because their capacity to detect attacks is re-

stricted by the signatures present in the database they utilize, attacks lacking signature

patterns—including undiscovered or zero-day attacks—go undetected [12, 28].

Figure 2.1: Anomaly-Based vs Signature Based IDS

Anomaly-based intrusion detection systems, or "behavior-based detection," on the other

hand, rely on pattern recognition[29]. Before the system is deployed, this strategy ne-

cessitates training. Because AI methods have substantial training capabilities, Machine

Learning (ML) and Deep Learning (DL) in particular are well-suited for anomaly-based

intrusion detection systems. Being able to distinguish between regular and abnormal

traffic and identify both known and unknown threats is an advantage of anomaly-based

8
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intrusion detection systems[16, 30]. False Positive Rate (FPR) is frequently high, yet

anomaly-based intrusion detection systems (IDS) have a higher accuracy rate against un-

known threats than signature-based IDS. The strengths of both signature- and anomaly-

based techniques are used in specification-based intrusion detection systems (IDS) to

create a hybrid model that can try to detect known and unknown threats using various

AI techniques. IDS based on anomaly and signature has been compared in Figure 2.1.

IDS systems that rely on signatures or anomalies might operate in a stateless or stateful

manner. While stateful IDS rely on network flows, stateless IDS rely on packets. Mod-

ern IDS are stateful because they take advantage of the context flows. It is important

to remember that IDS are reliable for detecting anomalies, not like Intrusion Prevention

System (IPS) that can also take preventative and remedial measures as well.

Researchers began utilizing statistical techniques based on predetermined rates in the

late 1980s, with typical traffic serving as a baseline for detection. Knowledge-based

techniques, such as expert systems and finite state machines (FSM), were employed after

statistical techniques. Ultimately, the research and development of IDS was dominated

by ML approaches. Current polls highlight the importance of applying ML and DL

methods in the development of IDS.

2.1.2 IDS Based on System Configuration

Intrusion detection systems exhibit distinct classifications based on their system struc-

ture. A centralized intrusion detection system relies on a singular, centralized authority

for monitoring and analysis. In contrast, a distributed intrusion detection system op-

erates across multiple interconnected entities, distributing the monitoring and analysis

tasks for enhanced coverage and efficiency.

1. Centralized IDS: A centralized intrusion detection system functions by assessing

the overarching state of the network through the consolidation of data from diverse

sources. These sources encompass host-based or network-based data collection methods,

or a hybrid of both. Subsequently, the accumulated data undergoes central processing

and analysis, irrespective of the data sources or sensor locations. This methodology

affords a centralized perspective on network security, facilitating thorough analysis and

response capabilities from a singular control point.

2. Decentralized IDS: In contrast, a decentralized intrusion detection system entails

9
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the gathering and examination of data across multiple hosts, where decisions are au-

tonomously made at each host. Within a distributed framework, the intrusion detection

functionality is dispersed across various points within the network. This methodology

provides the benefit of triggering immediate response mechanisms based on local deci-

sions, thereby augmenting the speed of detection and response. However, distributed

IDS might exhibit reduced accuracy owing to the absence of global knowledge and

coordination, in contrast to centralized systems. Despite these considerations, the de-

centralized nature of distributed intrusion detection systems introduces a heightened

level of adaptability and resilience in complex network environments.

2.2 Related Work

In this section, research articles pertaining to Intrusion Detection Systems (IDS) are

comprehensively examined and analyzed, focusing on the diverse datasets employed and

the Machine Learning (ML) algorithms utilized for IDS training. Subsequent to the

analysis, a synopsis of recently detected cyber attacks by IDS is provided.

2.2.1 Analysis of Recent Development in IDS

This section delves into a comprehensive analysis of recent articles focused on Intru-

sion Detection Systems (IDS), meticulously examining their strengths, weaknesses, and

overarching research trends. A thorough exploration of primary research methodolo-

gies and carefully curated datasets is presented, culminating in a nuanced evaluation of

the advantages and disadvantages inherent in current IDS implementations. Table 2.1

presents a comprehensive summary of IDS research articles, where each row encapsu-

lates a distinct article. The table provides a detailed overview of the employed datasets,

algorithms, and the spectrum of cyber attacks effectively detected by the respective IDS

under investigation.

The temporal scope of the table, spanning over a decade, contributes to its significance,

capturing the evolving landscape of IDS research.This tabulated presentation serves as

a valuable resource for synthesizing key information on the methodologies and outcomes

of the analyzed research articles.
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Chapter 2: Literature Review

Table 2.1: Overview of Published Works Related to IDS

Ref Used Algorithm Dataset Detected Attack Year

[31]
Tree Classifiers

Bayesian Clustering KDD-99 Probing, DoS, R2L, U2R 2008

[32] Genetic-based KDD-99 Probing, DoS, R2L, U2R 2009

[33] RBF, Elman NN 1999 DARPA Probing, DoS, R2L, U2R 2009

[34] AdaBoost KDD-99 Probing, DoS, R2L, U2R 2009

[35]

FC-ANN based on:
ANN

Fuzzy Clustering KDD-99 Probing, DoS, R2L, U2R 2010

[36]
NN

FCM Clustering KDD-99 DoS, R2L, U2R 2010

[37] OCSVM Generated dataset

Scan (Nachi, Netbios,
SSH), TCP flood,

DDoS (TCP,
UDP flood),

Stealthy DDoS
UDP flood,

Traffic deletion,
Popup spam 2011

[38]
Weighted k-NN

Genetic Algorithm KDD-99 DoS/DDOS 2011

[39]
SOM

K-Means clustering KDD-99 Probing, DoS, R2L, U2R 2011

[40] SVM 1998 DARPA Attack, Non-Attack 2012

[41]
Non-Parametric

CUSUM Simulated dataset Jamming 2013

[42]
NB Classifier

K-Means Clustering ISCX 2012 Normal, Attack 2013

[43] AIS (NSA, CSA, INA) NSL-KDD Normal, Abnormal 2014

[44] K-Means, k-NN NSL-KDD Probing, DoS, R2L, U2R 2015

[45] ANN Simulated dataset DoS/DDoS 2016

[46] ANN
Generated dataset

using httperf SQL Injection, XSS 2016

[47]
BON

GPU-based ANN Generated dataset Normal, Attack 2017

[48] ANN , SVM UNB-CIC nonTor Traffic 2017

[49]

MLP, NB, SVM
Logistic Regression

RF Features Selection Simulated dataset

Individual and
Combination Routing
Attacks: Hello Flood,
Sinkhole, Wormhole 2018

Continued ...
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Ref Used Algorithm Dataset Detected Attack Year

[50]
ANN

Deep Auto-Encoder
NSL-KDD

UNSW-NB15

- Probing, DoS, R2L, U2R
Fuzzers, Analysis,

Backdoors, DoS, Exploits,
Generic, Reconnaissance,

Shellcode, Worm 2018

[51]

DT
SVM (least square)
Feature Selection:

FGLCC, CFA KDD-99 Probing, DoS, R2l, U2R 2019

[52]
IG, SVM, MLP,

PCA, IBK,

ISCX 2012
NSL-KDD

Kyoto2006+
Normal, Attack

Probing, DoS, R2l, U2R 2019

[53]

DT - NB - MLP
- RF - J48

- LSTM - k-NN CICIDS2017

SSH and FTP Brute-force
,Web Attacks (Brute-force,

XSS and SQL Injection) 2020

[54] Deep NN NSL-KDD Probing, DoS, R2l, U2R 2020

[55]
Isolation Forest

Local Outlier Factor Generated dataset

Port Scanning, HTTP
and SSH Brute-Force,

SYN Flood 2020

[56]
LR, XGB, DT,

HCRNN (proposed) CSE-CIC IDS2018

Brute-force DOS
attacks,DDOS attacks,

Brute-force SSH,
nfiltration, Heartbleed,

Web attacks, and Botnet. 2021

[57]

SVM, LDA, RF,
NB, LR,

HNIDS (proposed)
NSL-KDD

UNSW-NB15

Probing, DoS, R2L, U2R
Fuzzers, Analysis,
Backdoors, DoS,

Exploits, Generic,
Reconnaissance,
Shellcode, Worm 2022

[58]
DFEL:

DT, KNN,SVM NSL-KDD Probing, DoS, R2l, U2R 2022

Danish et al. [59] innovatively proposed a LoRaWAN-based Intrusion Detection Sys-

tem (LIDS) tailored for countering jamming attacks. Their methodology involved the

creation of a real experimental testbed, training LIDS on authentic join request data

using two statistical algorithms: Kullback Leibler Divergence (KLD) and Hamming

distance (HD). Through meticulous performance assessments employing Receiver Op-

erating Characteristic (ROC) analysis, the system demonstrated high detection rates.

Specifically, KLD achieved up to 98%, while HD reached up to 88%, both maintaining a

low 5% false positive rate. These endeavors contribute significantly to the advancement

of intrusion detection capabilities in diverse cyber threat scenarios. Gogoi et al. [60]

introduced a sophisticated Multi-Level Hybrid Intrusion Detection System (MLH-IDS)

that seamlessly integrates supervised, unsupervised, and outlier-based techniques. This
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holistic approach aims to enhance the efficiency of intrusion detection, addressing both

known and novel zero-day attacks. The performance evaluation of MLH-IDS revealed

commendable results, with a detection rate spanning from 81.43% for U2R attacks to

an impressive 99.99% for DoS attacks.

McDermott et al.[61] introduced an innovative Intrusion Detection System (IDS) de-

signed specifically for detecting intrusions in Wireless Sensor Networks. The system

employs a combination of a backpropagation neural network and a support vector ma-

chine (SVM) to enhance detection accuracy. The authors conducted a comprehensive

evaluation of the IDS using the NSL-KDD dataset, assessing its performance across six

distinct cyber attacks. This research contributes to the evolving landscape of intrusion

detection methodologies, showcasing the efficacy of neural network and SVM integration

in securing Wireless Sensor Networks against diverse cyber threats.

The impact of using auto encoder and Principal Component Analysis (PCA) on the

UNSW-NB15 and NSLKDD datasets were visually examined by the authors in [62]. In

a binary and multi-class classification scenario, they also experimented with various di-

mensions utilizing the classifiers K-Nearest Neighbour (KNN), DFF, and DT. According

to the study, for KNN and DFF, AE outperformed PCA, but for DT, both approaches

were comparable. It was determined that 20 dimensions was the ideal number for the

UNSW-NB15 dataset, but not for the NSL-KDD one. As a method for feature extrac-

tion, the authors of [63] suggested an AE neural architecture made up of dense layers

and LSTM. To detect attacks, the retrieved output is subsequently fed into an RF classi-

fier. The UNSW-NB15, ToN-IoT, and NSL-KDD datasets were the three used to assess

the suggested methodology’s performance. The outcomes show that, in the absence

of feature extraction techniques, the selected classifier achieves better detection perfor-

mance. However, employing lesser dimensions has resulted in a considerable reduction

in training time.

Khan et al. [64] investigated the five algorithms Decision Trees (DT), Random Forest

(RF), Gradient Boosting (GB), AdaBoost, and Naive Bayes (NB) with an additional

tree classifier for feature extraction. According to the findings, RF 98.60%, AdaBoost

97.92%, and DT 97.85% had the highest scores. A Convolutional Neural Network (CNN)

model was constructed and assessed on the UNSW-NB15 dataset by the authors in [65].

The CNN has a comprehensive set of its hyper-parameters, and it employs max-pooling.
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Different numbers of hidden layers as well as the addition of a Long Short Term Memory

(LSTM) layer were tested in these experiments. Obtaining accuracy of 85.86% and

91.2%, the three-layer network demonstrated superior performance on both balanced

and unbalanced datasets.

2.2.2 Threats Taxonomy

In the realm of intrusion attack classifications, Kendall [66] proposed an influential

framework that delineated intrusions into four distinct categories: DoS, R2L, U2R, and

Probing. This categorization aligns seamlessly with the timeline of the KDD dataset

family, as expounded by Siddique et al[67]. This historical perspective underscores

Kendall’s pivotal role in shaping our comprehension of intrusion types and their reso-

nance with subsequent dataset advancements.

Subsequent to this, various other classifications have emerged in the literature, each hon-

ing in on specific facets of attacks or targeting explicit domains. An illustrative instance

is the work of Welch and Lathrop [68], which categorizes threats in wireless networks

based on attack techniques, delineating seven distinct categories: Traffic Analysis, Pas-

sive Eavesdropping, Active Eavesdropping, Unauthorized Access, Man-in-the-Middle,

Session Hijacking, and Replay. Furthermore, Sachin Babar et al. [69] undertook a clas-

sification of threats motivated by IoT security requirements. These encompassed crucial

facets such as identification, communication, physical threat, embedded security, and

storage management. This nuanced approach serves to enhance our understanding of

threat landscapes within the context of evolving security paradigms.

Verkerken et al. [70] used the CIC-IDS-2017 NIDS dataset to assess the effectiveness

of several unsupervised machine learning models. The study emphasizes how crucial

unsupervised methods are for identifying zero-day attack groups. To reduce the dimen-

sionality of the dataset, PCA is used for transformation. The models in a one-class

classification technique were assessed on combined (benign and malicious) data sam-

ples after being trained on benign-only data sets. Autoencoders produce the highest

detection performance, with a 96.16% F1 score, according to the data. One-class SVM,

isolated forest, and PCA classifiers follow after. Liu and Zhang [71] proposed an in-

trusion detection model that cleverly integrates the strengths of both signature-based

recognition and immune-based recognition methods. Their approach involved defining
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numerical data features specifically tailored for intrusion detection, coupled with the

implementation of a subfeature-based numerical matching method to enhance preci-

sion. The model’s performance was evaluated using the KDD Cup 99 dataset, where it

exhibited an impressive detection rate of 90.706%.

In their study [72], the author introduced an innovative intrusion detection scheme

that leverages a hybrid Convolutional Neural Network (CNN) and Long Short-Term

Memory (LSTM) approach. This scheme is specifically designed for detecting network

anomalies with a focus on accuracy. Notably, the research is conducted in a centralized

manner, highlighting the potential for effective detection and management of network

intrusions. The integration of CNN and LSTM techniques underscores the commitment

to advancing intrusion detection.

The author in [73] advocates for the adoption of a decentralized intrusion detection

scheme employing federated learning methodologies. The proposed scheme strategi-

cally avoids centralizing datasets, opting instead for a distributed setting where models

operate collaboratively across multiple locations. Notably, through meticulous imple-

mentation, the author achieved a commendable accuracy of 88.92%.

2.3 Summary

In light of existing traditional threat taxonomies, a pressing demand has surfaced for

a contemporary and adaptable framework, prompted by the pervasive nature of com-

mon attacks within present-day Intrusion Detection System (IDS). The absence of a

modern cyber threat taxonomy not only poses a challenge but also hinders researchers

in effectively gauging the threat coverage. Addressing this gap, the development of a

generic and modular taxonomy for security threats emerges as a crucial initiative. Such

a taxonomy not only aids researchers but also empowers cybersecurity practitioners

to construct tools with enhanced capabilities, capable of identifying a comprehensive

spectrum of attacks, spanning known, advanced, and emerging zero-day threats.

The predominant paradigm in intrusion detection involves centralized techniques, pre-

senting inherent vulnerabilities associated with data breach risks. The conventional

methodology necessitates the aggregation of extensive datasets for training Intrusion De-

tection Systems (IDS). In response to this challenge, an alternative approach is posited,
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emphasizing a decentralized framework leveraging federated learning. This approach

aims to mitigate the risk of data leakage by distributing the training process across

diverse nodes. In the current research, we propose an innovative decentralized strategy,

complemented by the incorporation of differential privacy (DP) as a privacy enhance-

ment technique. The choice of a decentralized framework not only addresses concerns

related to data confidentiality but also fosters collaborative learning without the need

for centralized data repositories. The upcoming chapter provides a thorough explo-

ration of the nuanced aspects inherent in both the proposed framework and the concept

of differential privacy, offering a comprehensive analysis of their functions. This re-

search endeavors to contribute to the advancement of privacy-aware intrusion detection

methodologies.
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Methodology

In the preceding chapter, we delved into the diverse landscape of intrusion detection sys-

tems, exploring the multifaceted realm of cybersecurity solutions designed to safeguard

against unauthorized access and potential threats. Building upon this foundational

understanding, the ensuing chapter embarks on an exploration of our decentralized ap-

proach.

3.1 Framework

This section describes our proposed framework for decentralized collaborative intrusion

detection system. Figure 3.1 show the proposed framework. The foundational philos-

ophy is encapsulated by federated learning (FL). At its core, FL endeavors to derive a

model based on the data residing autonomously at individual clients. This is different

from conventional machine learning (ML) paradigms, where large datasets are tradi-

tionally aggregated at a central location, thereby introducing an inherent susceptibility

to security breaches. In contrast, FL operates on a principle wherein each client retains

possession of its respective data. This decentralized architecture aligns with contempo-

rary privacy considerations. The inherent advantage of this approach lies in its ability

to circumvent the risks posed by a centralized data repository, thereby enhancing the

security posture of the intrusion detection system. Embedded within our framework,

this FL-based methodology further contributes to the preservation of data privacy, as

training occurs locally on each client without necessitating the transmission of raw data

to a central server. The amalgamation of federated learning and differential privacy (Pri-
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vacy enhancement technique) within our proposed approach establishes a resilient and

secure foundation for decentralized intrusion detection, thereby advancing the discourse

on innovative strategies within the realm of cybersecurity

Figure 3.1: The Framework for privacy aware decentralized intrusion detection system

3.2 Data Extraction and Preprocessing

3.2.1 Data Extraction

The dataset for this study is acquired from the cyber range lab of the Australian Centre

for Cyber Security (ACCS) at University of New South Wales (UNSW) in Canberra.

The synthesis of the dataset involved using the IXIA PerfectStorm tool, allowing for the

creation of a comprehensive dataset that includes both benign network activities from

testbed scenarios and synthetic attack scenarios. The data collection was carried out

with the tcpdump tool, resulting in capturing a substantial dataset of 100 GB in pcap

files. Following data acquisition, a set of tools, including Argus, Bro-IDS, and twelve

additional SQL algorithms, were utilized to carefully extract relevant features from the

dataset. The dataset consists of a total of two million and 540,044 records distributed

across four CSV files. A portion of this dataset was specifically allocated for training

and testing purposes, referred to as the training set and testing set, with 175,341 records

and 82,332 records, respectively. [74–77].
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3.2.2 Data preprocessing

A thorough and systematic strategy was taken in order to ensure the integrity and

analytical viability of the data when it came to preprocessing the UNSW-NB15 dataset.

The data preprocessing process is described in Figure 3.1 In order to enable specific

processing strategies, the first stage involved the separation of numerical and categorical

data features. Then, in order to guarantee a complete dataset, missing values in the

dataset were imputationed. The numerical characteristics were then normalized using

feature scaling, which helped to homogenize the data distributions. Finally, a careful

feature selection procedure was carried out with the goal of reducing the dataset to

its most important characteristics in order to maximize computing effectiveness and

improve the interpretability of further analyses.

Figure 3.2: Data preprocessing workflow

3.3 Model Initialization

After the local preprocessing of data on each client, a Deep Neural Network (DNN)

model is globally initialized. Subsequently, this model is broadcasted to each partici-

pating client. In our decentralized approach, as opposed to the conventional practice of

aggregating data at a centralized location, the model is dispatched to individual clients,

each possessing its own data. This decentralization preserves the privacy of sensitive

data, as the model traverses to the data, mitigating the need for central data collection.

Upon reaching each client, the model undergoes localized training for a specified number
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of epochs. Post-training, it returns to the central server after the application of differen-

tial privacy mechanisms to the model weights. This strategic integration of differential

privacy ensures that individual client data remains secure, preventing unauthorized de-

coding during model transmission. The differentially private models are subsequently

aggregated at the central server, marking the completion of one learning round.

For subsequent iterations, the aggregated model, now imbued with the knowledge ac-

quired from individual clients, serves as the starting point. This iterative process of

model distribution, local training, and aggregation continues, each round building upon

the insights gained from the decentralized training paradigm. Throughout these iter-

ations, the performance metrics of the model are meticulously calculated, providing

a comprehensive evaluation of its efficacy and adaptability within the decentralized

learning framework. This methodology, rooted in privacy-preserving practices and it-

erative model refinement, epitomizes the innovative potential of decentralized learning

paradigms in contemporary data-centric applications.

DNN Classifier

We proposed a Deep neural network (DNN) classifier for intrusion detection. DNN is a

type of artificial neural network with multiple layers between the input and output layers.

It excels in learning intricate patterns and representations from complex data, enabling it

to tackle sophisticated tasks. DNNs leverage deep learning techniques to automatically

extract hierarchical features, making them powerful tools in various machine learning

applications.

In this methodology, Deep Neural Network (DNN) models undergo collaborative training

across a network of diverse devices or clients, without necessitating the direct exchange

of raw data. This decentralized training paradigm ensures the preservation of privacy

and security by confining sensitive information to local environments, while concurrently

leveraging collective learning across the network to augment the capabilities of intrusion

detection. The resulting decentralized training process contributes to the establishment

of a resilient and adaptive defense mechanism against the continually evolving landscape

of cyber threats. This approach facilitates the synthesis of diverse insights from disparate

sources, enhancing the robustness of the intrusion detection system through a federated

learning framework.

The preprocessed data is is fed into the input layer of the neural network. The data
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then propagates through the hidden layers, where the neural network learns to extract

intricate patterns and representations relevant to distinguishing between normal and

malicious network behavior. These hidden layers are designed to capture hierarchical

features in the data, enabling the network to make informed decisions about potential

network intrusions based on the learned patterns. After each hidden layer, a Rectified

Linear Unit (ReLU) activation function is employed. This activation function, expressed

by the equation 3.3.1 introduces non-linearity to the network, thereby improving its

capacity to discern intricate patterns and relationships within the data.

f(x) = max(0, x) (3.3.1)

The ReLu also helps in the generalization ability of the DNNs model and also reduces

the computational cost of the model.

Binary Cross-Entropy, also known as log loss or logistic loss, is used as a loss function. It

measures the dissimilarity between the predicted probability distribution and the actual

labels. The goal during training is to minimize this loss, guiding the model to make

predictions that align with the true labels.

L = − 1
N

N∑
i=1

(yi · log(pi) + (1 − yi) · log(1 − pi)) (3.3.2)

The equation penalizes the model more if the predicted probability diverges from the

true label.

3.4 Privacy Preserving

Various privacy enhancement schemes are employed to safeguard individuals’ sensitive

information within datasets. Anonymization or de-identification is one such approach,

involving the removal of any data elements that could identify an individual. Encryption,

while offering robust privacy protection, poses challenges for statistical analysis on en-

crypted data, necessitating specialized methods. Despite the advantages of encryption

in providing privacy to individuals and enabling third-party analytics, the significant

computational overhead required for such operations is a notable limitation. More-

over, the dynamic landscape of privacy preservation continually introduces innovative
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techniques, each with its trade-offs. Achieving a harmonious balance between ensur-

ing individual privacy and addressing the practical challenges of computation-intensive

methods is imperative for the effective deployment of privacy-enhancing mechanisms in

diverse data-driven domains. Given these considerations, differential privacy emerges as

a prominent approach for ensuring data privacy. Differential privacy [78] aims to pro-

tect individual privacy while allowing for meaningful data analysis, striking a balance

between privacy preservation and data utility.

Differential Privacy:

Differential privacy[78, 79] offers a sophisticated and stringent mathematical method

for determining an amount of privacy guaranteed by a privacy-preserving system[80,

81]. Statistically indistinguishable outcomes will be produced by a differentially private

privacy-preserving process operating on similar datasets. In the context of ϵ-differential

privacy, the main objective is the construction of a resilient framework that ensures

privacy throughout transitions between closely related datasets. The goal is contingent

upon the stability of the probability of observing a specific outcome (ξ) within the

purview of a randomized algorithmic function ϕ, especially when datasets β and β′

undergo an adjacent transition:

|P (ϕ(β) = ξ) − P (ϕ(β′) = ξ)| ≤ eϵ · P (ϕ(β′) = ξ) (3.4.1)

Here, the epsilon parameter (ϵ) assumes a pivotal role, delineating the degree of pri-

vacy conferred by the mechanism. A lower ϵ conveys a more robust privacy assurance,

elucidating the delicate trade-off inherent in privacy-preserving mechanisms.

The incorporation of the differential privacy function ϕ into the randomized algorithm

A is succinctly expressed as:

A(β) = ϕ(β) + Lap(δfs/ϵ) (3.4.2)

In this equation, A symbolizes the randomized algorithm, ϕ(β) represents the applica-

tion of the differential privacy function to dataset β, and Lap( δfs

ϵ ) introduces Laplace

noise following the Laplace distribution with a scale parameter of δfs

ϵ This mechanism

rigorously adheres to the ϵ-differential privacy parameter, strategically utilizing Laplace

22



Chapter 3: Methodology

noise for privacy preservation.

The Laplace mechanism, an indispensable component, introduces controlled perturba-

tions through Laplacian noise to each coordinate of the data. Governed by the sensitiv-

ity of the differential privacy function δfs

ϵ , this approach proves particularly effective in

scenarios involving numerical output results.

Additionally, the Laplace noise conforms to the Laplace distribution, characterized by

the probability density function:

f(x; µ, b) = 1
2b

exp
(

−|x − µ|
b

)
(3.4.3)

This distribution, renowned for its heavier tails, introduces a deliberate level of controlled

randomness, enhancing privacy preservation while concurrently safeguarding the utility

of the underlying data. The ϵ-differential privacy framework adeptly navigates the

intricate terrain of privacy preservation, demonstrating a judicious balance between

privacy assurance and data utility.

3.5 Model Aggregation

In this decentralized paradigm of federated learning, the aggregation stage plays a crucial

role in coordinating the iterative combination of model weights. This iterative combi-

nation occurs when locally trained model parameters from each client go to the central

server, where a aggregation technique is systematically implemented. The iterative na-

ture of this aggregation not only accommodates the dynamic evolution of decentralized

data distributions among clients but also guides the federated learning system towards

the convergence of an optimally refined global model. This iterative structure serves as

a strategic nexus, connecting the inherent variability associated with localized training

methodologies to the key objective of cultivating a unified, privacy-aware global model.

In this study, three different model aggregation strategies, FedAvg (Federated Aver-

aging), FedAdam (Federated Adam), and FedAdagrad (Federated Adaptive Gradient),

are used. The comprehensive exploration of these aggregation mechanisms, detailed

in the subsequent chapter. FedAvg, a methodology characterized by the collaborative

averaging of model parameters across diverse clients, is instrumental in fostering a col-
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lective learning environment. In contrast, FedAdam dynamically adapts the aggregation

process to disparate historical gradients through the incorporation of adaptive learning

rates derived from the Adam optimization method. Further enhancing the diversity of

approaches, FedAdagrad incorporates individualized learning rates for each parameter,

thereby promoting an effective fusion of models that accounts for nuanced variations

in data distributions. This meticulous examination of model aggregation mechanisms

contributes to a deeper comprehension of their nuanced dynamics within the complex

fabric of decentralized learning environment.
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Results and Discussion

This chapter presents the experimental findings of our intrusion detection solution, focus-

ing on the evaluation of its efficacy. Through rigorous testing featuring diverse network

configurations and simulated threats, the system’s performance is assessed using key

metrics such as accuracy, true positive rate (TPR), and F1 score. The results illuminate

the solution’s ability to accurately identify and classify security threats, offering insights

into its practical utility. Comparative analyses against centralized, decentralized and

decentralized with Privacy Enhancement Techniques (PET) are also discussed.

4.1 Centralized Approach

In the initial phase of the study, a centralized approach was employed for the intru-

sion detection system (IDS). This methodology involved the consolidation of the entire

dataset onto a central repository, serving as a unified data hub for subsequent analyses.

The rationale behind this centralized framework was to systematically orchestrate exper-

iments and assessments in a controlled and homogeneous environment. The consolidated

dataset facilitated comprehensive evaluations of the IDS performance, enabling a thor-

ough examination of its efficacy in identifying and mitigating potential security breaches.

Experimental scenarios, encompassing diverse network configurations and simulated in-

trusion instances, were systematically conducted within this centralized paradigm to as-

certain the system’s response under varying conditions. The centralized data repository

served as a pivotal element in standardizing experimental conditions, thereby provid-

ing a foundational basis for subsequent comparative analyses and assessments of the
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intrusion detection system.

Outcomes of Centralized Approach:

In the initial phase of our investigation, a centralized approach was adopted for the

intrusion detection system (IDS). This methodology involved the consolidation of the

entire dataset onto a singular repository, providing a centralized locus for subsequent

analyses. The centralized approach aims to streamline and standardize the experimen-

tal environment, ensuring a homogenous basis for evaluating the intrusion detection

system’s performance under controlled conditions.

Parameters Values

Learning rate 0.01

Batch size 64

Number of epochs 20

Optimizer Adam

Momentum 0.5

Table 4.1: Model Training Parameters for Centralised Approach

The primary training parameters used in the Deep Neural Network (DNN) for the intru-

sion detection task are shown in Table 4.1. The DNN’s training dynamics are carefully

optimized by adjusting these parameters, which include learning rate, batch size, opti-

mization algorithm, and number of epochs. Table 4.1 provides a systematic presentation

that is an essential point of reference. The results obtained from the centralized ap-

proach are depicted in Figure 4.1. The centralized scenario produced impressive results,

displaying a TPR of 99.5% and other associated metrics.

4.2 Decentralized Without PET

In the decentralized paradigm, each participating entity, denoted as a client, possesses

a distinct dataset exclusive to its domain. This configuration necessitates the establish-

ment of a global model, which is systematically disseminated to each individual client

in the network. Upon reception of the global model, each client embarks on local model
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Figure 4.1: Model Performance in Centralized Scenario

training, leveraging its unique dataset. The localized training process is characterized

by the autonomous processing of data within the confines of each client’s domain. Sub-

sequently, the locally trained models are offloaded and transmitted to a central server,

where they undergo a process of aggregation.

The aggregation process, situated at the central server, involves the synthesis of lo-

cally trained models from each participating client. Employing methodologies such as

federated averaging, the central server amalgamates the diverse insights and updates

contributed by individual clients. This iterative federated learning process unfolds in a

systematic manner, enabling the continual refinement of the global model.

Outcomes of Decentralized with out PET:

In the decentralized framework adopted for this study, individual client entities assume

custodianship of their respective datasets. However, it is noteworthy that the current

implementation lacks the incorporation of Privacy Enhancement Techniques (The Dif-

ferential Privacy is used as a PET as discussed in next section). This absence of PET

introduces considerations regarding the privacy and security aspects of the decentralized
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data distribution model. The parameters governing the Deep Neural Network (DNN)

utilized in this decentralized context are meticulously configured and documented in

Table 4.2, providing transparency and reproducibility in the experimental setup.

Parameters Values

Learning rate 0.01

Batch size 64

Number of epochs
(local)

5

Number of learn-
ing rounds

20

Optimizer Adam

Momentum 0.5

Table 4.2: Model Training Parameters for decentralised Approach

Concurrently, the empirical outcomes of the decentralized approach are visually pre-

sented and critically analyzed in Figure 4.2. the True Positive Rate (TPR) for the

decentralized approach is reported at 98%, a metric that is marginally lower than its

centralized counterpart.It is imperative to note that, in the absence of Privacy Enhance-

ment Techniques, the data privacy implications and potential vulnerabilities warrant

comprehensive scrutiny.

4.3 Decentralized with PET

In the preceding section, our experimentation was conducted within a decentralized

paradigm, devoid of a designated privacy enhancement scheme. Subsequently, in an ef-

fort to fortify the security of the distributed data, we introduce Differential Privacy (DP)

as a pivotal privacy enhancement scheme. The objective is to mitigate potential privacy

risks associated with data transmission, particularly in scenarios where eavesdropping

on the network might compromise confidentiality.

The distribution of data to diverse clients, while conducive to collaborative model train-
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Figure 4.2: Model Performance for Decentralized Approach without PET

ing, may introduces security concerns. In the absence of privacy measures, there exists

the possibility of data interception by malicious entities. To address this vulnerabil-

ity, Differential Privacy is strategically employed. This scheme, as comprehensively

discussed in the preceding chapter, serves as a robust protective mechanism for the

sensitive and confidential data hosted by each participating client.

The procedural workflow involves the initiation of a global model, with its parameters

meticulously configured, a detail elucidated in Table 4.2. This global model is then dis-

seminated to the participating clients, where each client undertakes local model training.

The incorporation of Differential Privacy at this stage ensures that the training process

is attuned to preserving the privacy of individual client datasets.

Subsequently, the locally trained models, imbued with the protective cloak of Differential

Privacy, are transmitted back to the central server. At this juncture, the amalgamation

of these differentially private models is performed through an aggregation process. No-

tably, this step is pivotal, as it serves as the crux for deriving collective insights from

individual client contributions while upholding privacy constraints.
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In this scenario we consider three different aggregation schemes namely namely Fe-

dAvg (Federated Averaging), FedAdam (Federated Adam), and FedAdagrad (Federated

Adaptive Gradient).

4.3.1 FedAvg (Federated Averaging)

FedAvg stands as a foundational Federated Learning (FL) technique, orchestrating the

cooperative training of a global model by aggregating local model updates from a diverse

array of clients. This collaborative aggregation process is pivotal, encapsulating a unified

representation of distributed learning across the network. It acts as a linchpin, providing

a cohesive and harmonized foundation for subsequent training iterations [82].

The Figure 4.3, presents the depiction of the performance outcomes associated with the

FedAvg federated learning approach.

Figure 4.3: Results with FedAvg Aggregation Mechanism.
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4.3.2 FedAdam (Federated Adam)

FedAdam stands as a prominent algorithm within the Federated Learning landscape,

seamlessly incorporating the advantageous features of the Adam optimizer into the fed-

erated learning paradigm. Noteworthy for its utilization of adaptive learning rates and

momentum, FedAdam blends the proficient updating of the global model by assimilat-

ing local updates contributed by individual clients. This distinctive process involves the

aggregation of gradients computed locally on various devices, culminating at a central

server. The aggregation, often implemented through algorithms like weighted averaging,

yields an approximated global gradient. FedAdam represents an intricate amalgamation

of Adam’s optimization prowess with the collaborative Federated Learning framework,

thereby facilitating heightened efficiency and improved model performance [83].

In Figure 4.4, the results corresponding to this scenario are visually presented, offering

a comprehensive illustration of the performance outcomes associated with FedAdam in

the federated learning context.

Figure 4.4: Results with FedAdam Aggregation Mechanism.
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4.3.3 FedAdagrad (Federated Adaptive Gradient)

FedAdagrad, a refined iteration within the Federated Learning paradigm, integrates

the dynamic optimization technique of Adagrad into its framework. This modification

demonstrates a sophisticated approach by intelligently adjusting the learning rates for

specific model parameters based on their historical gradients. This adaptive mechanism

significantly expedites model convergence, resulting in an enhanced overall performance.

In contrast to conventional methods reliant on parameter averaging, FedAdagrad places

emphasis on gradient aggregation, a characteristic that contributes to its nuanced and

accelerated training dynamics [83]. The learning curves corresponding to this scenario

are visually represented in 4.5.

Figure 4.5: Results with FedAdagrad Aggregation Mechanism.

The implications of employing diverse aggregation mechanisms on the overall model per-

formance are graphically illustrated in Figures 4.3, 4.4 and 4.5, respectively. In this spe-

cific use case, FedAvg emerges as the most favorable approach, yielding highly promising

outcomes. It achieves a commendable True Positive Rate (TPR) of 95%, indicating its

efficacy in correctly identifying positive instances. Following closely are FedAdam and

FedAdagrad, showcasing their comparative performances within the federated learning

32



Chapter 4: Results and Discussion

framework.

FedAvg’s superior performance can be attributed to its methodology of federated aver-

aging, where model updates from various clients are collectively averaged, fostering a

collaborative and coherent global model. This collaborative approach ensures a robust

and accurate representation of the overall dataset, contributing to the heightened TPR

observed.

While FedAdam and FedAdagrad demonstrate competitive performances, their nuanced

differences stem from the optimization techniques they incorporate. FedAdam leverages

adaptive learning rates and momentum from the Adam optimizer, combining optimiza-

tion efficiency with federated learning dynamics. On the other hand, FedAdagrad em-

ploys the Adagrad dynamic optimization technique, intelligently adjusting learning rates

based on historical gradients.

4.4 Comparison

In this section the comparison among three different schemes centralized, decentralized

with out PET and decentralized with DP is presented.

Figure 4.6: Comparison of Results in different settings
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After a thorough set of experiments, it became evident that there is a delicate tradeoff

between privacy and utility. The augmentation of privacy was observed to inversely

impact the model’s utility, and vice versa. Consequently, experiments varying the values

of epsilon were conducted, revealing a notable equilibrium between privacy and utility,

as depicted in Figure 4.3.

Figure 4.6 provides a comparative analysis among centralized, decentralized, and decen-

tralized with PET configurations. Despite the seemingly diminished results with PET,

it is imperative to underscore that they reflect heightened privacy awareness.

We established the centralized model as the benchmark to conduct a rigorous evalua-

tion of a decentralized framework’s performance. Through systematic experimentation,

we explored two distinct decentralized scenarios (as discussed above): one without the

incorporation of differential privacy and other integrating differential privacy as privacy

enhancement technique. The aim was to identify subtle differences in the model’s per-

formance in relation to the standard benchmark, which was the centralized method.

This evaluation included the calculation of both the mean absolute difference (MAD)

as shown in Figure 4.7 and mean squared difference (MSD) as shown in Figure 4.8 to

provide a quantitative assessment of the observed deviations.

The values obtained for Mean Squared Difference (MSD) were 0.0082001 without DP

and 0.0148552 with DP, highlighting a minute difference in model performance between

the two scenarios. The figure 4.8 visually depict this subtle distinction. Despite this

performance difference, the incorporation of DP significantly enhances privacy mea-

sures, reinforcing the importance of its integration in decentralized frameworks. These

findings provide a comprehensive understanding of the trade-off between minute per-

formance distinctions and the heightened privacy afforded by DP within the context of

decentralized network intrusion detection systems.
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Figure 4.7: MAD of decentralized approach with respect to centralized

Figure 4.8: MSD of decentralized approach with respect to centralized
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

IDS are tools that oversee and examine network traffic to detect anomalies and cyber

threats. Different ML approaches have been suggested in the past decade to build IDS.

The work presented in this study aims the use of decentralized ML techniques to build

IDS. This study entailed the systematic development of a decentralized intrusion detec-

tion framework utilizing Netflow data obtained from UNSW. A Deep Neural Network

(DNN) five local training epochs, and twenty rounds of Federated Learning (FL) was

deployed inside the recommended design framework in order to identify the complex

patterns present in the network data. The design’s meticulous construction and rigor-

ous testing underscore its potential contribution to the evolving cybersecurity landscape.

This investigation not only highlights the commendable efficacy of Federated Learning

but also clarifies its pivotal role in cultivating a secure and privacy-conscious network

environment. Three distinct settings were carefully considered for the experiments:

centralized, decentralized, and decentralized with the thoughtful addition of differential

privacy. A remarkable 99.51% True Positive Rate (TPR) were attained in the central-

ized technique. On the other hand, a TPR of 98.05% was noted in the decentralized

case where no Privacy Enhancement Techniques (PET) were used, and TPR of 95.31%

was achieved in the decentralized scenario with differential privacy. When analyzing

the results under various scenarios, it is important to notice that the decentralized

method combined with differential privacy produces somewhat marginal reduction in

performance outcomes. The Mean Squared Difference (MSD) values, when calculated
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against the centralized benchmark, reveal a minute difference.The values obtained for

Mean Squared Difference (MSD) were 0.0082001 without DP and 0.0148552 with DP,

highlighting a minute difference in model performance between the two scenarios when

compared to the conventional centralized approach. It is crucial to emphasize, nonethe-

less, that this slight drop in performance measurements is a responsible compromise

for the increased security guarantees and privacy-aware environment that come with

this methodology. This delicate balance highlights how important it is to put a privacy-

aware framework first when building stronger network protection models. The suggested

approach contribute to the field of network security by offering a reliable and effective

way to detect security risks.

5.2 Recommendations

As a recommendation for future work, it is suggested to enhance the proposed solu-

tion by addressing additional security vulnerabilities beyond network intrusions. Fur-

thermore, exploring various aggregation schemes and studying the synchronization of

model updates from different nodes could provide valuable insights for further improve-

ment.Lastly, testing the approach proposed in this thesis in a real-life testing environ-

ment may yield more insights. As opposed to benchmark dataset assessment, this will

further highlight the demands and requirements in various operational settings.
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