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Abstract

Convex functions play a key role in different field of mathematics such as in the theory
of inequalities. m-convex function is the generalization of convex function. The calculus
and applications of dynamic derivatives defined on time scales give unification as well
as an extension of customary differential and difference equations. This dissertation
deals with the notion of m-convex function on time scale. Some basic and well-known
inequalities have been deduced such as Petrovic’s, Jensen’s, Hermite-Hadamard and
Fejer’s. Also Hermite-Hadamard and Petrovic’s inequalities have been discussed in the

two coordinated m-convex function on time scale.



List of Notations
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R Set of real numbers

R Set of positive real numbers

Z Set of integers

N Set of natural numbers

No Nu{o0}

Q Set of rational numbers
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vi



Contents

1 Introduction and Preliminaries 1
1.1 Convex Function . . . . . . . . .. . . . ... ... .. 2
1.2 m-Convex Function . . . . . . . .. .. ... ... .. ... ... .... 2
1.3 Coordinated m-Convex Function . . . ... .. ... ... .. ..... 3
1.4 Time Scale . . . . . . . . . . . 3
1.5 Convex Function on Time Scale . . . . . . . .. .. ... ... ..... 9

2 Some Inequalities of m-Convex Function 10
2.1 Basic Inequalities . . . . . . ..o 10
2.2 Petrovic’s Inequality . . . . .. ..o L o 14
2.3 Jensen’s Type Inequalities . . . . . . . . ... .. ... ... ... .. 14
2.4 Hermite-Hadamard Type Inequalities . . . . . ... ... ... .... 15
2.5 Inequalities Related to m-Convex Functions on Two Coordinates . . . 19

3 Time Scale Version of Some Inequalities of m-Convex Functions 28
3.1 m-Convex Function on Time Scale . . . . .. ... .. ... ...... 28
3.2 Basic Inequalities . . . . . . ... 28
3.3 Petrovic’s Inequality . . . . .. ..o oo 36
3.4 Jensen’s Type Inequalities . . . . . . . . .. .. ... ... ... ..., 37
3.5 Hermite-Hadamard Type Inequalities . . . . . . . . .. ... ... ... 40

4 Time Scale Version of some Inequalities of m-Convex Functions on
Two Coordinates 52
4.1 Coordinated Convex Function . . . . . . . . .. ... ... ... .... 52

vii



4.2 Coordinated m-Convex Function . .
4.3 Hermite-Hadamard Type Inequalities
4.4 Petrovic’s Inequality . . . . ... ..

Bibliography

viil



Chapter 1

Introduction and Preliminaries

Convexity is a basic idea which can be followed back to Archimedes (around 250
B.C.), regarding his renowned gauge of the estimation of 7. (utilizing engraved and
restricted standard polygons). He observed the crucial actuality that the border of

a convex figure is littler than the edge of some other convex figure, encompassing it.

Convex functions play a key role in different field of mathematics such as in the
theory of inequalities. Convex functions are illustrated by appropriate properties when
we are studying optimization problems. Such as, a local minimum of convex functions
is a global minimum. The theory established by the concept of convex functions ea-

gerly applied in real analysis as well as in economics.

In Chapter 1 we give some basic definitions and preliminaries such as convex func-

tion, m-convex function and time scale theory.
In Chapter 2 we give some basic results and well-known inequalities of m-convex
function such as Jensen’s inequality, Hermite-Hadamard inequality, Petrovic’s inequal-

ity and Fejer’s inequality.

In Chapter 3 we will apply the time scale theory on above mentioned inequalities.



In Chapter 4 we will generalize the definition of m-convex function on two coordi-
nates. We then apply the time scale theory and derive Petrovic and Hermite-Hadamard

type inequalities.

1.1 Convex Function

For the convexity of any set C, it must contain the line segment between two distinct

points, i.e. for 71,75 € C and a € [0, 1], we have
am + (1 —a)mn €C.

Definition 1.1.1. [19] A function ¢ : I — R is said to be convex if V 1,79 € I and
any arbitrary 0 < a < 1, the inequality

plam + (1 — a)r) < ap(n) + (1 — a)p(r), (1.1)
holds. For ¢ to be strictly convex on [
plam + (1 — a)m) < ap(i) + (1 — a)p(m), (1.2)

holds.

The function ¢ is said to be concave (strictly concave) on I, if —p is convex (strictly convez).

1.2 m-Convex Function

In [21] G.H. Toader defined the m-convexity.

Definition 1.2.1. If0 € I C R be an interval and any arbitrary number 0 < m < 1,

then a function ¢ : I — R is known as m-convex, if the inequality
oA +m(1 —N)1) < Ap(11) + m(1 — N)e(m), (1.3)

18 satisfied for arbitrary points 7,7 € I and every coefficient 0 < X\ < 1.



Geometric presentation of the inequality of m-convexity in formula (1.3) shows
that the line segment connecting the graph point (71, (7)) and the point (mr, mp(73))
is above the graph of the restriction ¢/conv{m, mm}. By the definition, a convex

function is usually represented by a 1-convex function.

1.3 Coordinated m-Convex Function

In [10], Farid et al. gave the definition of coordinated m-convex functions.

Definition 1.3.1. Let A% = [0, ps] x [0, q2] C [0,00)?, then a function ¢ : A* — R is

said to be coordinated m-convex if the partial mappings

@y [0,p2] =R defined by ¢, (u) = p(u,y),

and

0 1 [0,q2] = R defined by ¢.(v) = ¢(z,v),

are m-convex on [0, ps] and [0, go] respectively, ¥ y € [0, qz] and x € [0, ps).

1.4 Time Scale

In 1988, Stefan Hilger (German mathematician) was the first man who proposed the
theory of time scale in his PhD thesis [12]. The calculus and applications of dy-
namic derivatives defined on time scales give unification as well as an extension of

customary differential and difference equations.

Any subset ) # T of R with induced topology of R is said to be time scale if it is
closed. For example R, Z, N, Ny and [0,1] U [2,3] UN are time scales. Whereas Q,
Q/, C and (0,1) are not time scales. The intervals in time scale are denoted by Iy
defined by Iy = I N'Y, where [ is arbitrary interval of real numbers. For more details

about fundamental rules of calculus related with the dynamic derivatives and integral



operators, see [1], [4], [6], [12], and [20].

Here the idea of jump operators are required because the time scale T may or may

not be connected.

Definition 1.4.1. [3]/ For any s € Y, the forward jump operator o : T — T is
defined as
o(s)=inf{l € Y : { > s}.

Definition 1.4.2. [3] For any s € Y, the backward jump operator p : T — T is
defined by
p(s) =sup{f € T : (< s}.

We use the convention

inf =supY , sup@ =inf Y.

Definition 1.4.3. [}/ Any point s € Y is called right-scattered, if o(s) > s and it is
called left-scattered if p(s) < s.

Definition 1.4.4. [4] The points are said to be isolated if they simultaneously act

as right-scattered and left-scattered.

Definition 1.4.5. [{] Ifo(s) =s and s <sup Y then s is said to be right-dense and
if p(s)=s and if s >1inf Y, then s is said to be left-dense.

Definition 1.4.6. [/ If the points are simultaneously act as right-dense and left-

dense then the points are said to be dense.

Definition 1.4.7. [3] The mappings p,v: Y — [0,00) defined by
p(s) = o(s) —s,

and

v(s) = s — pls),

are known as the forward and backward graininess functions respectively.

4



We define T* = T\M;, where M; € T is a left-scattered maximum, otherwise
T* = 7. In case of right-scattered minimum M,, we define T, = T\M, ; otherwise
T, = Y. Finally, we define T* = YN 7Y, .

Example 1.4.8. Let T =R and any s € R, we have
o(s)=inf{ e R:{ > s} =inf{(s,00)} = s,

p(s) =sup{f € R:{ < s} =sup{(—o0,s)} =s.

Since, 0(s) = s and s < sup Y = supR = 00, so s is right-dense. Also, p(s) = s and
s > inf T =inf R = —o0, so s is left-dense. Therefore, s is dense.

The Graininess function of T = R is

pls) =a(s) —s
= 0.

Example 1.4.9. Let T = 7Z and any arbitrary s € Z
o(s)=inf{f €Z:0>s}=inf{(s+1,s+2,s+3,...)} =s+1,

p(s)=sup{f € Z: ¢ < s} =sup{(...,s—3,s—2,s—1)} =s—1.

Since, o(s) = s+ 1 > s, so s is right-scattered. Also, p(s) = s —1 < s, so0 s is

left-scattered. Hence, s is an isolated point.

The Graininess function of Y =7 is

pu(s) =o(s) —s
=s+1—s
=1.



Definition 1.4.10. [4] For a function ¢ : T — R and for s € Y*, we define > (s)
in s (if exists) having a property that for any given € > 0, 3 a Uy (neighborhood) of s
such that

l(a(s)) — @(€) — 0 (s)[o(s) — 0| <elo(s)—¢], YLeUy,Vse 1"
Then we can say that o is delta differentiable on Y*.

Definition 1.4.11. [4] For a function ¢ : T — R and for s € T, we define @V (s)
in s (if exists) having a property that for any given € > 0, 3 a Uy (neighborhood) of s
such that

|0(p(s) — o(0) = (s)lo(s) — | <elo(s) — €], YLEUr, Vse€Ty
Then we can say that ¢ is nabla differentiable on Y.
Theorem 1.4.12. [/] Assume ¢ : T — R and s € T*. Then

1. ¢ is continuous at s, if v is delta differentiable at s.

2. If v is continuous at s where s is right-scattered, then ¢ is delta differentiable at

s with

3. If s is right-dense(rd) then ¢ is differentiable at s < the limit

lim ©(s) — w(ﬂj
T—s S—T

exists as a finite number. In this case,

50— tim 28 =),

T—5§ S—T



4. If ¢ 1s delta differentiable at s, then

holds.
Theorem 1.4.13. [3] Assume ¢ : T — R and s € Yi. Then
1. ¢ is continuous at s, if @ is nabla differentiable at s.

2. If ¢ is continuous at s where s is left-scattered, then ¢ is nabla differentiable at

s with

3. If s is left-dense(ld), then ¢ is nabla differentiable at s < the limit

lim p(s) — (1)

T—s S—T

exists as a finite number. In this case,

SOV(S) — lim 90(5) B 90(7—)'

T—s S—T

4. If ¢ 1s nabla differentiable at s, then
p(p(s)) = p(s) +v(s)¢" (s),

holds.

Definition 1.4.14. [3] Any function ¢ : T — R is said to be an rd-continuous, if
continuity of ¢ holds at all right-dense points in Y and at all left-dense points in Y,

its left-sided limits are finite. C,.q is the set containing all rd-continuous functions.



Definition 1.4.15. [3] Any function ¢ : T — R is said to be an ld-continuous, if
continuity of ¢ holds at all left-dense points in Y and at all right-dense points in T,

its right-sided limits are finite. Cjy is the set of containing all ld-continuous functions.
Both Cq and Cyq are contained in set of continuous functions on Y.

Definition 1.4.16. [20] If ¢*(s) = ¢(s), V 7 € T*, then ¢ : ¥ — R is said to be a
A-antiderivative of ¢ : T — R. We define A-integral by

| otniar= o) - o).
Theorem 1.4.17. [5] Each rd-continuous(ld-continuous) function has a A (V) antiderivative.

Theorem 1.4.18. [20] If a,b,c € T, € R and, p, € Cyq, then

1 [2(p(s) + () As = [ p(s)As + [ 1(s)As.
- [Pap(s)As = a [* p(s)As.

[P o(s)As = — [ o(s)As.

4o Jio(s)As = 0.

JLo(s)As = [ p(s)As + [ o(s)As.

CIfY s, o(s) >0 = fab o(s)As > 0.

\S

co

“

D

Note that Theorem 1.4.18 also holds for o, € Cjy.



1.5 Convex Function on Time Scale

Definition 1.5.1. [5] Any function ¢ : Iy — R is said to be convez, if

plar + (1 — a)n) < ap(n) + (1 - a)p(72), (1.4)

V 11,7 € Iy and arbitrary 0 < o < 1, where Iy =1 NY, I be an interval in R.

For ¢ to be strictly convex on Iy

plam + (1 —a)m) < ap(r) + (1 — a)p(r), (1.5)

holds.

The function ¢ is said to be concave (strictly concave) on Iy, if —p is convex (strictly

convez).



Chapter 2

Some Inequalities of m-Convex
Function

In this chapter, some basic inequalities are considered related to m-convex functions.
Then there are given some Jensen type inequalities, Hadamard type inequalities, Petro-

vic inequality and Fejer inequality.

Remark 2.0.1. Usingm = 1 in (1.3); we regain the definition of convex functions and
by taking m = 0, we attain the star shaped functions. Remember that, ¢ : [0,a] — R
is star shaped if

(A1) < Ap(7),

holds, ¥V A € [0,1] and T € [0, al.
Lemma 2.0.2. [21] If ¢ € K,,,(a), then it is star shaped.

Lemma 2.0.3. [22] If p € K,,(a) and 0 <n <m <1, then ¢ € K,(a).

2.1 Basic Inequalities

Some algebraic and topological properties of m-convex functions are discussed in this

section.

Proposition 2.1.1. [15] Suppose ¢ : [0,a] — R, an mq-convezr function and 1) :

[0,a] — R, an my-convex function where my < msy, then ¢ + 1 and ap for a >0, are

10



mi-conver.

Proposition 2.1.2. [15] Let ¢ : [0,a] — R, ¥ : [0,b] — R with range(p) C
domain(t). If 1 is increasing and both ¢ and v are m-conver, then oy is also m-

convez on [0, al.

Proposition 2.1.3. [15] If the two non-negative functions ¢, : [0,b] — R are m-

conver as well as increasing, then @i is m-convex.

Proposition 2.1.4. [15] Consider an m-convex function ¢ : [0,4+00] — R, which is
b

finite on [a, E] C [0,400), where 0 < m < 1. Then in any arbitrary closed interval

la,b], ¢ is bounded.

Proposition 2.1.5. [14] If 1,92 : [0,a] — R are m-convex functions, then the func-
tion p(u) defined by

p(u) = g[gﬁ]{sm(w, pa(u)},

18 also m-convex.

Proposition 2.1.6. [1/] If the sequence of m-convex functions, p, : [0,b] — R con-

verges pointwise to a function ¢ on [0,b], then ¢ must be m-convez.

Theorem 2.1.7. [17] Suppose 0 < m < 1 be an arbitrary number and a function
@ : 1 — R defined on an interval O € I. Then the statements given below are equiva-

lent:

11



1. For each pair of points u,w € I, where u # w and each coefficient 0 < o < 1,
the function ¢ satisfies the inequality

(1 — a)u+ amw) < (1 — a)p(u) + amp(w). (2.1)

2. For every triple of points u,v,w € I, where u # mw and v € conv{u, mw}, the
function o satisfies the inequality
mw — v v—u
v) < —p(u) + ——mp(w). 2.2
p(0) < T o) 4 (i) (22
3. For every triple of points u,v,w € I, where u < mw and u < v < mw, the

function satisfies the inequality

u o op(u) 1
det [ v pv) 1| >0. (2.3)
mw mep(w) 1
If we replaced the first and the third row in (2.3), the above inequality also holds for

u > mw and mw < v < u.

Corollary 2.1.8. [17] Suppose I be an interval which contains zero and 0 < m < 1 be
an arbitrary number. Then for every triple of points u,v,w € I, such that u < v <
mw, every function ¢ : I — R which is m-convexr must satisfies the inequality given

below:

o(u) — p(v) _ pv) = mp(w)

If mw < v < u, then the reverse inequality holds.

Corollary 2.1.9. [17/ If 0 < m < 1 be an arbitrary number and I be an interval

which contains zero. Then every function ¢ : I — R which is m-convex:

12



Ifp<qg<0or0<p<yq, then

o) _ #lo)

p q

If p <0< q ,then

P q P q 2m

p(p) _vla) _ (1 1) (m + 1)p(0)

(2.4)

(2.5)

Lemma 2.1.10. [17] Let 0 < m < 1 be an arbitrary number and [p,q| is an in-

terval of R, where p < 0 < q. Then every function ¢ : [p,q] — R which is m-

convez, is bounded by the affine functions as follows:

If p <7 <0, then

If0 <1 <gq, then

(2.7)

Corollary 2.1.11. [17] If m € (0, 1] be an arbitrary number and [a,b] is an interval

of R, where a < 0 < b. Then every m-convex function ¢ : [a,b] — R, where ©(0) =0

must satisfies the inequality

bo(a) — a*p(b)

b
< < -—" "~ 7
2ab _/a plr)dr < 2

13



2.2 Petrovic’s Inequality

In [2], M. Bakula et al. gave the Petrovic’s inequality for m-convex functions as follows.

Theorem 2.2.1. Let ¢ : [0,00) — R be an m-convex function and 0 < m < 1 be any
arbitrary number. Let (xq,...,x,) be non-negative n-tuples and (p, ..., p,) be positive

n-tuples such that
P, = Zpk, O#fn:Zpkkaxi (i=1,2,...),
k=1 k=1
then
> puetrn) < min {mg (22) + (B, = 06(0), ) + m(P ~ 16(0) .
k=1

2.3 Jensen’s Type Inequalities

Now we will discuss different forms of Jensen’s inequality.

Theorem 2.3.1. [17](Jensen’s Inequality in Discrete form) Suppose 0 € I be
an interval and 0 < m <1 be an arbitrary number. If > " N7 be the conver combi-
nation of points T; € I having coefficients \; € [0,1]. Then, every function ¢ : I — R,

which s m-convexr must satisfy the following inequality:

@ (mz /\iTi> < mz Aip(Ti). (2.8)

Corollary 2.3.2. Consider an interval, 0 € I and an arbitrary number 0 < m < 1.
If > N be the convex combination of points 7; € I having coefficients \; € [0, 1].

Then every function ¢ : I — R, which is m — convex satisfy the following inequality:

® <)\17'1 + mz /\iTi> < Mip(m) + mz Aip(Ti).-

i=2 =2

14



Corollary 2.3.3. [17] Suppose m € (0,1], an arbitrary number and [c,d] C R be
an interval which contains zero. If an integrable function ¢ : [c,d] — R such that
image(v) C [c,d] then each continuous function ¢ : [c,d] — R which is also m-convet,

satisfies the following inequality:

o (72 [[vmar) < 2 ot

Corollary 2.3.4. [17] Suppose 0 <m <1 and 0 € [c,d] be an interval. Consider an
integrable functions v : [c,d] — R such that image(y) C [c,d] and U : [¢,d] — R which
satisfies fcd | O(7) | dr > 0. Then every continuous m-convex function ¢ : [c,d] —

R satisfies the inequality:

(2.9)

JA@B@drY _ [ e((n)(r)dr
p|m =m .
fcd O(r)dr fd O(r)dr

2.4 Hermite-Hadamard Type Inequalities

By [17], we have found an upper bound of Riemann integral for m-convex function

by taking mc € [a, b].

Theorem 2.4.1. Suppose 0 < m < 1 an arbitrary number and 0 € I C R be an
interval. If u,v,w € I be any triplet of points with v < mw < v, then every m-

conver function ¢ : I — R satisfies the following inequality:

/U o(T)dr < mw ugp(u) + Y _Qmww(v) + %m@(w). (2.10)

Proof. Let u < 7 < mw, with u < mw. Consider the convex combination

r= T T (2.11)
mw—u  mw—u

15



By using the m-convexity of the function ¢ to (2.11), we attain

Now, integrate the inequality (2.12) over the interval [u, mw], we have

[ etmr < T o)+ motw))

Again integrating the inequality (2.12) over the interval [mw, v], we obtain

| etrir < o) + melw))

we can write [~ o(T)dr as

/uv o(r)dr = /umw o(T)dT + /mvw o(T)dr.

By using the inequalities (2.13) and (2.14) in (2.15), we get the required result.

(2.12)

(2.13)

(2.14)

(2.15)

]

If we use w = uw or w = v, in Theorem 2.4.1, we get the following appropriate

inequality.

Corollary 2.4.2. If 0 <m < 1 and 0 € [c,d] C R be an interval. Then every m-

convez function ¢ : [c,d] — R satisfies the inequality

d ma — c — mc
| etrar < P + )

16



Theorem 2.4.3. Suppose m € (0,1] be an arbitrary number and ¢ : [0,00) — R, an
m-convez function. If 0 < ¢ < d < oo and p € Lyc,d], then inequality

1 /dwm 4 < min {w(c)ersO(%) w(d>+mw(%)}’

d—c 2 ’ 2
holds.

Theorem 2.4.4. [8] Suppose m € (0,1] be an arbitrary number and ¢ : [0,00) —

R, an m-convexr function. If0 < ¢ < d < oo and p € Ly|c,d], then we have the following

inequality:

s0<c+d)< 1 /cdcp(r)+mgo(%)d7

2
(2.16)

Lemma 2.4.5. [17] If h : [c,d] — R is an integrable function, which is symmetric
with respect to the midpoint of [c,d], then every affine function u : R — R satisfies
the following inequality:

/Cdu(T)h(T)dT <u (C : d) /cd h(r)dr.

Lemma 2.4.6. [17] Suppose [u,w] C R be an interval which contains zero and
0 < m <1, an arbitrary number. Consider any arbitrary point v € [a,b] and any
integrable function h: [u,w] — R which is positive and also symmetric with respect to

the mid-points of [u,mv| and [mv,w]. Then every m-convex function ¢ : [u,w] — R

17



must satisfies the following inequality:

/u " o(rh(ryar < 2 +2m90<v) /u " hrdr + m‘p(v); elw) / " h(r)dr.

Theorem 2.4.7. [8] Let 0 < m < 1 be an arbitrary number and an m-convex function

v :[0,00) = R. If ¢ € Li[em,d], where 0 < ¢ < d, then the inequality

[ e 2 [ o] < - 0 20D,

m+1 —mec S

holds.

Theorem 2.4.8. Suppose ¢, : [0,00) — [0,00) be two mappings such that oy €
LY([c,d]) where 0 < ¢ < d < co. If ¢ is my-convex for some fized my € (0,1] and v is

ma-convez on [c,d] for any fired my € (0, 1] then

1
d—rc

/ o(T)Y(T)dT < min{M;, M},

Theorem 2.4.9. [17](Fejer’s Inequality) Let [u,w] C R be an interval which con-

tains zero and 0 < m < 1 be an arbitrary number. Consider any arbitrary point
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v € [u,w| and an integrable function h : [u,w] — R, which is positive and also sym-
metric with respect to the mid-points of [u,mv] and [mv,w]. Then every m-convex

function ¢ : [u,w] — R must satisfies the following inequality:

1 (u+mov) [ W(r)dr + (mv +w) [ h(T)dr
m? (m 2 [ h(r)dr )

(p(u) +mep(v)) [ h(T)dT 4 ( ms@() p(w)) [ A(T)dr

2 [ h(r)

2.5 Inequalities Related to m-Convex Functions on
Two Coordinates

In [7] Dragomir gave the coordinated Hadamard inequality for convex functions.

Theorem 2.5.1. Let ¢ : [p1, p2] X [q1,q2] = R be such that the partial mappings

pr : [php?] — %, QOy(’LL) = QO(U, y)a
and

Pz {QI;(D] — R, 9096(7]) = QO(JZ,U),

defined for all v € [q1, q2] and u € [p1,ps], are convexr. Then we have
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P1+DP2 1+ G2
P\T 2 T o

1 1 D2 + 1 a2 +
_{ / go(:v, q1 QZ> dr + / g0(]91 pay) dy]
2 p2—p1Jp 2 2= 0 Jg 2
1 /pz /‘12 ( )
o(z,y)dydx
(p2— )2 — @) Jp, Jo

1 b2 1 2
_Mm—pﬁélWmﬂﬁ+w%%”“+ﬂgtgﬁélW@mﬂ+ﬂmwﬂ@

IN

IN

< P @) + 91, g2) + 02, 1) + 9(P2, 42)
= 4

Theorem 2.5.2. Let A* = [0,ps] X [0, 2] C [0,00)? where pa, gz > 0 and ¢ : A* — R
be a coordinated m-convex function in A% where 0 < m < 1 be an arbitrary number. If

0 € 110, q2] and @, € L]0, ps], then

1 D2 z, q1+q2 +m 1, q1+q2
2¢<p1+p2 Q1+Q2)§ / (‘P( 2 ) gO(m 2 ) du
p

2 ’ 2 2 — P1 p1 2

Ll /”(@(W,yﬂmw(’%%)%y.

©2—q1 Jg 2

Theorem 2.5.3. Let @, ¢,, and ¢, be defined (in Theorem 2.5.2). Then the following

mequality
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2 D2 q2
x,y)dydx
(P2 — p1)(q2 — @1) /pl /ql el y)dy

. 1 7@, q) + me(z, )
< min m- ) dx,
D2 — D1 Jp 2

1 /m (@(x,qz) + me(z, %))
dx
P2 — D1 Jp 2

+min{ 1 /qQ(sO(pl,y)wLmso(%,y))dy,

a2 — 41 Jg

1 /” (w(pa,y)ersO(%,y))dy
©2—q Jg 2 ’

holds.

Theorem 2.5.4. [10] (Hadamard Type Inequalities for Coordinated m-Convex
Functions) Let A? = [0,ps] X [0,¢] C [0,00)* where pa,qz > 0. Let o : A2 — R be
a coordinated m-convex function in A? where 0 < m < 1 be an arbitrary number. If

p € L1]0, g2] and @, € L]0, ps], such that 0 < p; < ps, 0<q < qo. Then we have

1 P2 + q2 +
/ 0 (x, q1 C&) dx+/ o (pl p2’y> dy
P2 —DP1 Jp, 2 T 2
! /m /qz (290($,y)+m<90 <x£> +w<£,y)>>dydx
2(1?2 - pl)(QZ - Q1) p Jaq m m

(m+ 1)?
16

IN

IN

p p
o(pr,q1) + (P2, 1) + (p1, ¢2) + ©(P2, ¢2) + m (ap (El Q1> + ¢ (ﬁ Q1>
(2.17)
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p p q q q q
+SO (_17Q2> +§0 <_27q2) +§0 (p17_1> +90 <p17_2) +§0 (p27_1) +90 <p27_2)>
m m m m m m

e (p (2 ) o (2. 2) v (2 2) 0 (2.2)) |
m m m m m m m m

Proof. As mapping ¢ : A2 — R is coordinated m-convex so, the functions ¢, and
¢, are m-convex on [0, ¢] and [0, po], respectively. For the function ¢,, we use the

inequality (2.16)

1 P2 + x
oy (Pl +p2) < / oy () + mep, (m) du
2 D2 — D1 Jp 2

ey(p) +u(p2) | 0u () T (%)] |

<m+1
- 4

2 2

We have

<m—|—1

2 2

©(p1,y) + p(p2,y) m? (By) +o (%79)] ‘

From this one has
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1 > p1+ D2
® Y | dy
©2—q1 Jg 2
+ )
/ / P, y) mgp (m y) dydx
(p2 - pl Q2 - Ch

m+1 2 1 o(p1,y) + o(p2,y)
S [

T A —q 2

(2.18)

+m

@(%ay);w(wy)]dy

Now for the function ¢,, we get

1 /p2 ( Q1+CJ2>
olr,— ) dx
D2 — D1 Jp 2
/ / xy —|—mg0( ) dydz
(p2 Pl 612—6_11

m+ 1 P lo(,q) + (T, q2)
< [

~ A(pe — 2

(2.19)

Addition of (2.18) and (2.19) gives
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1 P2 + 1 q2 +
/ o (% q1 Q2) dr + / o <p1 pQ,y) dy
P2 — D1 Jp 2 Q=0 Jg 2
1 P2 q2
< / / (290(%@/) +m (90 (93 E) + ¢ (ﬁy») dydx
2(p2 —p1)(@2 —q1) Jp, S m m

1 /p2 (go(l‘,ql) + p(z, q2) +m90 (x,%) Ty (x, 3”_2)) dx

D2 — D1 2 2

(2.20)
< m+1
4

P1

q2 — 1 2 2

q1

1 /” (go(pl,y)+s0(p2,y)+m

For a fixed y, and by using the m-convexity of ¢,, we get

p(z,y) +me (L,y)
o(r,y) < 5 :

Taking the average integral over the interval [p1, ps] and use the inequality (2.16), we

have

1 D2 1 P2 x, +m ﬁ’
(. g)de < plr.y) +me (y) \ o
¥
P2 —DP1 Jp, D2 —P1 Jp, 2

op1y) +olpery) | v (By) +o (%y)] |

<m+1

- 4 2 2

(2.21)

In similar way, for a fixed x and by using the m-convexity of ¢,, we deduce

24



1 0 1 2 [ o(x,y)+me (v, £
/ p(z,y)dy < / () dy
©2—q Jg ©2—q1 Jg 2

<m+1

< , 90(',1;7Q1>+90(x7Q2> +m

2 2

(2.22)

First consider the inequality (2.21) for y = q1, g2, (2.22) for x = py, py, then (2.21) for

y =4 2(922)forz =L 2+to multiply later with m. By summing all these inequalities,

we acquire the following inequality

m
D2 — D1 2 2

1 / (w(w) + oz, g2)

+

m
G2 — q1 2 2

1 /‘” (sO(pl, y) + o(p2, y)

<

[ 1 /p2 (go(x,ql)+mso(%,ql)+90(93,qQ)+m90(%,CI2)

1
2|p2—m 2

(2.23)

+m

ol ) + (g, ) + oo, ) + me(, ‘”>>dx
2

N 1 /q2 <90(p1,y)+mw(p1,%)+s0(pz,y)+m90(1)27%)

g2 — q1 2

+m

P (5 y) +me(f ) + (R y) + me(R _)>dy]
2
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<

A

b D2
[90(]017 1) + e(p2, 1) + ¢(p1,q2) + ©(p2, ¢2) + m(@ <E1’ Q1) + @ <E’ Q1)

p q q q q
_'_80 (127(&) +()0 <_27QZ) +()0 <p17_1> +90 <p17_2) +()0 (p27_1> +90 <p27_2>>
m m m m m m

2 b @1 D2 41 b1 G2 D2 Q2
bt (o (2 ) o (2 2) o (B 2) o (2 2)) |
m’m m’m m’m m’m
By combining the inequalities (2.20) and (2.23), we get the inequality (2.17). O

Theorem 2.5.5. [18/(Petrovic’s Inequality for Coordinated m-Convex Func-
tions) Let (x1,...,x,), (Y1,-.-,Yn) be non-negative n-tuples and (p1,...,pn), (@1, -y Gn)
be positive n-tuples such that > ;_, pr > 1, where x;,y;, pi, ¢; € [0,00).

P, = Zpk, 0#7T,= Zpkxk >x; for each 1=1,..,n,
k=1

k=1
and

Qn ::qu, O#Zanz%yj >vy; for each j=1,..n.
j=1

j=1

If :]0,00)%2 = R be a coordinated m-conver function with m € (0,1], then

Z Zpkqjcp(xk, y;) < min{mmin{G,, 1(Z,/m), G1m(Tn/m)} + (P, — 1)

¢ min{ G 1(0), G (0)}, min{ Gt (Zn), G (3n) } (224)
+m(P, — 1) min{G,,1(0), G1,.(0)}},
where
Goin(t) = mep (t, %") +(Qn — 1)p(t,0). (2.25)
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Corollary 2.5.6. [18] If ¢ : [0,00)? — R be a coordinated m-convex function where
€ (0,1] be an arbitrary number. Let (x1,...,x,), (Y1, ..., yn) be non-negative n-tuples

and (p1, -, Pn),(q1, -, Gn) be positive n-tuples such that Z;;lpj > 1, where

P, .= th O;éijn:ijxj >wx; for each i=1,..n,
j=1

Jj=1

then the following inequality holds.

anjgp(:z:j) < min {m min{(m +n — 1)p(Z,/m), (mn —m+ 1)p(&,/m)}

+ (P, — D)min{(m +n — 1)p(0), (mn —m+ 1)¢(0)} ,

min{(m +n — 1)@(Z,), (mn —m + 1)p(Z,)}

+m(P, — 1)min{(m +n — 1), (mn —m+ 1)4,0(0)}}.
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Chapter 3

Time Scale Version of Some
Inequalities of m-Convex Functions

In this chapter, we will extend the definition of m-convex function on time scale. Also,
we will present time scale version of some basic and well-known inequalities namely,

Hermite-Hadamard, Jensen’s and Fejer’s for m-convex functions.

3.1 m-Convex Function on Time Scale

Definition 3.1.1. A function ¢ : [a,b]y — R is called m-convezx on [a,b]y if

P(AT1 +m(1 = Am2)) < Ap(71) +m(1 = A)p(T2),

YV 11,79 € |a,bly, and \,m € [0,1] such that A1y +m(1 — X\)1» € [a,bly where [a, by is

any interval containing zero.

3.2 Basic Inequalities

In this section, we present some basic inequalities of m-convex function on time scale.

Theorem 3.2.1. Let 0 < m < 1 be an arbitrary number and ¢ : Iy — R be

a function, where Iy be an interval which contains zero. Then the statements given
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below are equivalent:

1. For every pair of points u,w € Iy, where u # w and each coefficient A € (0, 1],
the function ¢ satisfies the inequality

(1 = XNu+ dmw) < (1 — N)p(u) + Amp(w). (3.1)

2. For every triple of points u,v,w € Iy, where u # mw and v € conv{u, mw}, the
function ¢ satisfies the inequality
mw — v v—u
v) < —p(u) + ————mp(w). 3.2
pl0) < T o) + () (32)
3. For every triple of points u,v,w € Iy, where u < mw and u < v < muw, the

function satisfies the inequality

u  plu) 1
det | v ) 1] >0. (3.3)
mw me(w) 1

By replacing the first and the third row in (3.3), the above inequality also holds for

uw > muw and mw < v <u.

Each of the above statements (in Theorem 3.2.1) can also be used as a definition

of m-convex function.

Corollary 3.2.2. Suppose 0 < m < 1 be an arbitrary number and 0 € Iy be an inter-
val. Then for every triple of points p,q,r € Iy, such that p < ¢ < mr, every m-convex

function ¢ : Iy — R must satisfies the inequality

p(p) = ¢(a) _ pla) —me(r)
p—q ~  gq—mr

If mr < q < p, then the reverse inequality holds.
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Corollary 3.2.3. Let 0 < m < 1 be an arbitrary number and Iy be an interval which
contains zero. Then every function ¢ : Iy — R which is m-convexr must satisfies the

inequalities given below.

Ifp<qg<0or0<p<yq, then

p T q '
If p <0 <gq, then
(p)  ¢lq) 1 1Y\ (m+1)p(0)
P aq o <15 - 5) 2m &

Proof. We obtained inequality (3.4) by arranging (3.2) in the orders of p < ¢ < mgq
and mp < p < gq. We obtained inequality (3.5) by adding the inequalities arising from
(3.2) in the orders of p < 0 < mg and mp < 0 < q. m

Lemma 3.2.4. If 0 < m < 1, an arbitrary number and [c,d]y be an interval where
¢ < 0 < d, then every function ¢ : [c,d]ly — QR which is m-convez, is bounded

by the affine functions as follows:

If c<7<0, then

r+ 2 < o) < 29, (3.6)
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If 0 <71 <d, then

T. (3.7)

Proof. We obtained inequality (3.6) by using the m-convexity of ¢ to the ordered triplets
m7 < 0 < dand ¢ <7 <0. Similarly, we obtained inequality (3.7) by using the m-
convexity of ¢ to the ordered triplets ¢ < 0 < m7 and 0 <7 < d.

]

Now we estimate the A — integral of an m-convex function ¢ : [c,d]y — R for
which ¢(0) = 0. By adding (3.6) and (3.7) after integrating, we get the bound as in

the following corollary.

Corollary 3.2.5. If 0 < m < 1 be an arbitrary number and [c,d]y be any interval,
where ¢ < 0 < d. Then every m-convex function ¢ : [c,d]ly — R, where p(0) = 0

satisfies the inequality

d*¢(c)1q — o(d) T, !
o (0) = pld)re / P(T)AT < p(d)7a = @(e)Te,
where
1 0
7, = / TAT.
0 —C c
1 d
Ty = " i TAT.

Proposition 3.2.6. Suppose ¢ : [0,b]x — R, an my-conver and ¢ : [0,b]y — R,
an meo-convex where my < mo, then ¢ + v and ap, o > 0 an arbitrary constant, are

my-conver.
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Proof. As 1 is may-convex with m; < mo, so ¢ is my-convex. So for any arbitrary
71,72 € [0,b]r and 0 < A < 1, we have

(0 + ) A1 +mi(1 = N)72) = (A1 + my(1 — N)12) + (A1 + my (1 — A\)72)
< Ap(71) +ma(1 = A)p(72) + Ap(71) + ma (1 = A)p(72)

= Mo +9)(11) +ma(1 = N)(p + ¥)(72).
Also,

(ap) (A1 +mi(1 = A7) < a(Ap(m1) +mi(1 — Np(72))

= AMaw) () +mi (1 = A)(ap)(2).

Proposition 3.2.7. Let ¢ : [0,a]x — R, ¢ : [0, by — R with range(¢p) C domain(v),

if ¥ is increasing and both ¢ and i are m-conver and then o¢ is also m-convexr on
[07 a]T .

Proof. For any 71,75 € [0,aly and 0 < A < 1, we have

(Wod) Ay +m(1 — N)7s) = Y(¢(Ar + m(L — \)))
< Ap(d(1) +m(1 = A9 (e(72))

= A(@og)(11) + m(1 — A)(0g)(72).
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Proposition 3.2.8. If 1,5 : [0,b]y — R are m-convex functions then the func-
tion defined by

o(r) = Tg[loa}gfr{sol(ﬂ, ©a(7)},

18 also m-conver.
Proof. Tf 11,75 € [0,b]y and 0 < o < 1, we have
o1(am +m(l — a)r) < api(m1) + m(l — a)p1(7)

< ap(n) +m(l = a)p(m),

and

pa(am +m(l — a)r) < aps(m1) +m(l — a)pa(r)

< ap(n) + m(l — a)p(r),

where

olar + m(l — a)r) = max{pi(ar + m(l — @)r), p2(ar + m(l — @)}

< ap(n) +m(l — a)p(r).

Proposition 3.2.9. If the sequence of m-convex functions ¢, : [0,bly — R, converges

pointwise to a function ¢ on [0,bly then ¢ must be m-convez.

Proof. For any 71,7 € [0,b]y and 0 < A < 1, we have
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AT +m(l = N)m) = nll_>nolo On( AT +m(1 — N)1o)
< lim (Apn(m1) +m(1 — N)pn(72))

n—oo

= Ap(m1) +m(l = A)p(72).

Proposition 3.2.10. If ¢,v : [0,b]y — R are both non-negative, m-convex functions

as well as increasing, then @i is m-convex.

Proof. 1f (11 < 13) (for (72 < 71) runs in the same manner) then ¢(7) — ¢(72) < 0 and
Y(19) — (1) > 0 which implies

P(1)Y(72) + ()Y (11) < P(T)Y (1) + 0 (72) Y (72). (3.8)

For any arbitrary 71,7 € [0,b]y and 0 < A < 1, we have

(@)A1 +m(1 = N)72) = (A1 +m(1 = A)72)(Amy + m(1 — A)7y)
< (Ap(11) +m(1 = Np(72))(A(1) +m(1 — A)Y(72))
= No(r)e(n) + m*(1 = A)*@(12))(72) + mA(1 = N)[p(71)(72)

+p(72)(1)].

Using (3.8), we get
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()AL +m(1 = N)7e) < Mop(r)yh () +m* (1 — A\)o(m2) e (72) +mA(L = N)[io(71)(72)
+ (1) (71)]

= AA+m(1 = X))e(r) () +m(l = (A +m(l = A))p(r2)d(r).

But A +m(1 — A) < 1, Therefore

() (A +m(1 = N72) < Ap(m1)Y(11) + m(1 = N)p(72)1(72)

= AMe)(11) +m(1 = A) () (72).

Proposition 3.2.11. If ¢ : [0,bi]y — R be any finite function on [a, %)T C [0,b1]y
with b < mby, m-convex where m € (0, 1] be any number. Then ¢ must be bounded on

any arbitrary closed interval [a,b]y.

Proof. Suppose M = max{p(a), ¢ (%)} so by taking any arbitrary z = Aa+m(1—-\)b €

[a, b]y, we have

o(z) =pAa+ (1 =A)b) = (/\a +m(1— /\)—>

Then ¢ is bounded above in [a, b]y.
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Note that for z € [a, by can be written as “2 + X for | A |< 2. Hence,

a+b 1 /a+b 1 /a+b 1 a+b m atb _ )
== - — < = — 2 .
() - (G (5500 +5 (552-0)) =3 (5250 (52

In other words,

b b ath _ )
L,O(a+ +)\)22cp(—a+ >—mg0(2 )
2 2 m

b
2290<a—2|_ >_M7

and since X2+ ) € [a, b]y is an arbitrary element. So, ¢ is bounded below in [a, b]y. O

3.3 Petrovic’s Inequality

Time scale version of Petrovic’s inequality is derive in this section.

Corollary 3.3.1. Suppose ¢ : [0,00)y — R be an m-convex function, where 0 < m <
1 be an arbitrary number. Let x; and p; (1 = 1,2,...) be any non-negative numbers in
[07 OO)T' ]f

O#i:Zpkka:ci (1=1,2,..),
k=1

then

> puetan) < min fmp () + (P = 102000 6@) + m(Ps ~ )20}

k=1

where

=1
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3.4 Jensen’s Type Inequalities

Time scale version of Jensen’s type inequalities of m-convex functions are discussed

in this section.

Theorem 3.4.1. Let m € (0,1] be an arbitrary number and Iy be an interval which
contains zero. Let Y \iTi be the convex combination of points T; € Iy having coeffi-

cients \; € [0,1]. Then every m-convez function ¢ : Iy — R satisfies

¥ (mz >\ﬂi> < mz Xip(T5). (3.9)

Proof. Mathematical induction is being used on the number of points 7; to prove this

result. The basic step for n = 1 holds by the definition of m-convexity

p(mm) < mp(m).

For proving the induction step for n > 2, we take an assumption that the inequality
in (3.9) holds for all those convex combinations, which contains < n — 1 members.

Assume that A\; < 1, and using induction hypothesis to the point

S1 — mz 1_ )\17'1',
=2

where the sum ) . , 1:\_1\17@ is a convex combination in [y,we get

pls1) <m - /\1<P(Tz')-
=2
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<mz by Tl> = 1 — )\1)51 + m)\lﬁ)

< (1= A)w(s1) +mAip(n)

< (L= dm ) 775-0(m) + mhup(n)
1=2

=m Z /\z‘SO(Tz‘)'
i=1

]

Corollary 3.4.2. Let 0 < m < 1 and 0 € Iy be an interval. Let ) ., N\;7; be the
convex combination of points 7; € Iy having coefficients \; € [0,1]. Then for every

m-convex function ¢ : Iy — R, we have

2 ()\17’1 +m Z )\17'1> S )\1@(7’1) +m Z /\ﬁO(’Tz)

=2 =2

Corollary 3.4.3. Suppose 0 < m <1 be an arbitrary number and [u,v]y be an inter-
val which contains zero. If 1 : [u,v]y — R be any Delta integrable function, such that

image(v) C [u,v]y, then every continuous m-convex function ¢ : [u,v]y — R salisfies

o (2 [omar) < 2 [ etwiman

Proof. Let nbe an arbitrary positive integer and I = [u, v]y. Suppose I,,; be the disjoint

subinterval such that I = U?:l fnj i.e I, be the partitioning of I, so that each

the inequality

of them contracts to the point as n — oco. By choosing a point 7,,; from every subin-

terval I,; and form the convex combination

IIn]
Z 7"
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I nj

i
(3.9) to the above mentioned convex combination, we get

of points s,, = 1(7,,) with coefficients A,, = Where || denotes the length. Using

w(%zﬁmm)_ z ol
j=1

=1

and sending n — 0o, we get the desired result. To providing the left side limit, we
assumed that ¢ is continuous. Since the composition (/) is bounded and almost

everywhere continuous, so integrable. O]

Theorem 3.4.4. Suppose 0 < m < 1 be an arbitrary number and [u,v]y be an interval
which contains zero. Let ¢ : [u,v]y — R be a A — integrable function, such that
image(y) C [u,v]y and let U : [u,v]y — R be a positive A — integrable function i.e
U € Cra([u, v]y,R) which satisfies [ | O(t) | A > 0. Then every m-convex function

¢ @ [u,v]y = R,which is also continuous must satisfies the inequality

@(mf;wmzsmw) < e ewE)OmAT 510

f; O(1)AT fu O(T)AT

Proof. Let nbe an arbitrary positive integer and I = [u, v]y. Suppose I,,; be the disjoint

subinterval such that I = Un

i1 fnj ie I, be the partitioning of I, so that each

of them contracts to the point as n — co. By choosing a point 7,,, from every subin-

terval I,,; and form the convex combination

— |]n |U Tn — |In W’ Tn; ))
J J J U Tn ,
ZZJ lunjwm sz o o)

of points s,, = ¥(7,,) with coefficients \,, = ||}L| where || denotes the length. Apply-

ing the inequality (3.9) to the above mentioned convex combination, we get

n |]n ‘U Tn] ) n |In |U Tn]))
( 2 S 0, ) "2 o) )




As n — oo, we get (3.10). O

3.5 Hermite-Hadamard Type Inequalities

In this section, we define Hermite-Hadamard type inequalities of m-convex function on

time scale.

Theorem 3.5.1. Ifm € (0, 1] be an arbitrary number and [c, d]y be an interval, which
contains zero, then every continuous m-convexr function ¢ : [c,dly — R satisfies the

double inequality

1 1 d md — T, MT, — MC+ Tg — MTy
< AT < +
msp(mTA)_d—c/C #(7) T_< d—c )cp(c) < d—c )SO(d)’

where

1 d
TA:d—c/c TAT.

1 md
.= AT.
T, md—c/c TAT

1 d
= AT.
Td d—md/ TAT

md

Proof. For every triple of points ¢, 7,d € [¢,d]y, where ¢ # md and 7 € conv{c,md}.
The function ¢ satisfies the inequality

md—T T—¢
d).
ole) + ——mip(d)

pr) < ——

By taking the A-integral over [c, md]y, we have
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md
/ o(T)AT < mdp(c) — Tep(c) + mrep(d) — dmep(d). (3.11)

Similarly the inequality for triplets md, 7, d € [c, d]y, where md # d and 7 € conv{md, d}

d—T1 T —md

Pl7) < T mip(d) + T o(d).

By taking the A-integral over [md, d]y, we get

d
/ o(T)AT < 1a0(d) — mTa(d). (3.12)

md

By adding (3.11) and (3.12) we get the required second inequality of Theorem (3.5.1).

For proving the first inequality of Theorem 3.5.1, we use Corollary 3.4.3 , by taking
g: T =T, 9Y(s)=s, VseT. We get

; <m fcd sAs) < mfcdgp(s)As'

d—c

Hence

d
- / p(7)AT.

Theorem 3.5.2. Suppose m € (0,1] be an arbitrary number and ¢ : [0,00)y — R be

p(m7a) <

O

m-convez function as well as the A-integrable on [c,d]y. If 0 < ¢ < d < oo, where

c,d €Y then we have the following inequality.

1 d
— [ ¢(x)Az < min

2 ’ 2

m@+mw%>w@+mwﬁ?
d—c /. '
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Proof. As ¢ is m-convex, so

o(tu+m(l —t)v) <tep(u) +m(l —t)pw) Vu,v >0 and V0 <t <1,

we get

d

o(tc+m(1 —t)d) < te(c)+m(l—1t) (E) ,

and

C

o(td + m(1 — t)e) < to(d) +m(l — ) <E) .

Integrating on [0,1] we get

/1 p(te+ (1 —t)d)At <

2
and
/01 p(td + (1 —t)e)At < e(d) +;”9" (i)]
However,
/01 plte + (1 — t)d)At = /01 pltd+ (1= 1)) At = - ! : /Cdgo(x)Ax.
Hence




]

Theorem 3.5.3. Suppose m € [0,1] ba an arbitrary number and ¢ : [0,00)y — R
be m-convex function. Let c,d € T with 0 < ¢ < d < 00, ¢ s integrable function on

[e, d]y satisfies the inequality

(dd_—TcA) ple)+ (Tc?—_cc) #(d) (3.13)

Theorem 3.5.4. Let m € (0,1] be an arbitrary number and Iy be an interval which
contains zero. If u,v,w € Iy be any triple of points, where u < mw < v, then every
m-convex function ¢ : Iy — R satisfy the following inequality

/v o(T)AT < (mw — 7,)p(u) + (1, — mw)p((v) + (1, — 7 + v — w)mep(w), (3.14)

where
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Proof. Consider the convex combination

mw —T T—U
U+

mw —u mw —u

where 7 € conv{u, mw}, where u < mw. Now, apply the m-convexity of the function

¢ to the above mentioned convex combination, we get

Taking the A-Integral over [u, mw|y, we deduce the following integral estimation,
/ o(T)AT < (mw — 1,)p(u) + (174 — u)me(w). (3.15)
In the same way, using the interval [mw, v]y, we deduce the following estimation

/ " (AT < (0 — mymep(w) + (r, — muw)p(v), (3.16)

mw

we can write [ o(7)AT as

/u” o(T)AT = /umw o(T)AT + /v o(T)AT. (3.17)

By using the inequalities (3.15) and (3.16) in (3.17), we get the required result.
[l

Since I = [u,v]y is an arbitrary interval which contains zero, so we can take any
point w € [u,v]y in (3.14) as mw € [u,v]y. Taking w = u or w = v, we deduce the

following inequality.

Corollary 3.5.5. If0 < m <1 be an arbitrary number and [u,v]y be an interval which

contains zero, then every m-convez function ¢ : [u,v]ly — R satisfies the inequality
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/U o(T)AT < (mv — 7,)p(u) + (m7, — mu + 7, — m7,)(v).

Theorem 3.5.6. Suppose m € (0,1] be an arbitrary number and let ¢ : [0,00)y — R

be a m-convex function. If ¢ € Li[em,d]y where 0 < ¢ < d, then the following inequal-
ity holds.

<— [<md —r)(d=me) + (m(d =) (md = c)ple)  (3.18)

+ (m(7. — ¢))(d — me) + (1 — me)(md — c)gp(d)] ,

where

1 md
.= AT.
T, md—c/c TAT

1 d
;= AT.
Ty d—mc/ TAT

mc

Proof. The function ¢ satisfies the inequality

md—T T—c
p(c) +

p(r) <

md — ¢ md — Cmgp(d),

for every triple of points a,7,mb € [c,d]y, where ¢ # md and 7 € conv{c, md}. By
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taking the A-integral over [c, md|y, we get

md — ¢ md — ¢

Similarly by taking A-integral over [md, d]y, we get

d—mc J,,. d—mc d — mc

Addition of (3.19) and (3.20), gives (3.18).

[T emar < T 4 2D g

d — Tq Tq — Mc
— [ etnar< @=7) ooy + T2 ),

(3.19)

(3.20)

]

Theorem 3.5.7. If ¢ : [0,00)y — [0,00) be an my-convex function and v : [0,00)y —

[0, 00) be an ma-convex on [c,d]y, for fited my,mg € (0,1] , where 0 < ¢ < d < 0o and

o is in L'([e,d]y), then

7 [ ew@ar < minfan, i),
where
My = é :@(CW(C) + mymap (—1) (G (ﬂ%)} + é {mW(CW (%) +mip (—
Me = g [etarwta) + mimag (£ )0 (2| 4§ ot () g (5

Proof. We have

; (tc+m1(1 - t)i) < to(c) + ma(1 — ) (—) |

my

) (tc + may(1 — t)i> < th(c) + ma(l — ) (i) ;

mo
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vVt € ]0,1]. Since ¢ and v are non-negative, so

© (tc+ mq(1l — t)i> Y (tc+ ma(1l — t)—)

ma

< p(u(0) + mat(1 = 00(e)0 () mar(1 =) () 060

() ()

By taking the A-integral over ¢ € [0,1], we get

/0 o(tc+ (1 —t)d)(te+ (1 —t)d)At = / o(x)(z)Ax

< a2 ()] £ ot () s () ]

Similarly, we have

1

= [ e

{mw(d)w (m%) + g (mi1> cb(d)} :

(VAN
Wl
5
)
=
=
_l’_
3
3
[\]
AN
VRS
5|
N——
7 N
5|~
N———
—_

+

| =

Hence,

7 i c/ o(x)(z)Ax < min{M;, M,}.

]

Lemma 3.5.8. let h : [c,d]y — R be a A-integrable function, which is symmetric

with respect to the midpoint of [c,d|y. Then every affine function u : R — R, satis-
fies the inequality
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/Cd w(T)(T)AT = u(TA) /Cd h(T)AT, (3.21)

where

1 d
EN C/c TAT. (3.22)

Proof. Since the equation h(27A — 7) = h(7) is satisfied by the function A. Take the
function & : [e,d]y — R, which is defined by

(1) = (7 = 7a) (7).

satisfies h(27a —7) = —h(7). In fact, this implies that & is antisymmetric with respect

to the midpoint ta, so we deduce

subsequently,
d d
/ Tﬁ(T)AT:TA/ h(T)AT. (3.23)

The equality (3.22) can be obtained by using (3.23) and taking affine equation of u as

u(7) = m7 + n, where m and n are some real constants. ]

Lemma 3.5.9. Suppose 0 € [a,b]y be an interval and 0 < m <1 an arbitrary number.
Consider any arbitrary point ¢ € [a,bly and a positive A-integrable function which
is symmetric with respect to the mid-points of [a, mc|y and [me,bly. Then for ev-

ery m-convex function ¢ : [a,bly — R we have the following inequality
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/:sovmmm < (tme = mele) + (o~ ko) /mh

mc—a

N (LRI EL N

where

1 mc
Ty = TAT.
mec—a J,

1 b
Ty = / TAT.
b—mc J,,.

Proof. The function ¢ satisfies the inequality

mc—T T —Q

< a me(c) for T € [a,mc]y,
mec —a mec —a

and

o) < MO —pl0) | epla) — ag(o

for T € [a, mc]y.
me—a me—a

Consequently, for the interval [mc, b]y we have

(1) < WT + mw for T € [me,b]y.

Multiplying the inequalities (3.26),(3.27) with A(7) we get

)h(T) < mgo(c) — QO(CL) Th(T) + ngO((l) — a¢<c) h( )

mc—a mc—a

o(T
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T) for T € [a, mc]y.

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)



o(T)h(T) < p(b) —mep(c) B

— - (7_> + mb(p(c) — Cg@(b)h

b—mec

(1) for T € [me, by, (3.29)

A-integrating of (3.28) over [a,mc|y and (3.29) over the interval [mc,b]y by using
(3.23) gives

/amc o(T)MT)AT < 74 (M> /amc Am)AT (map(a) : am(p(C)) /amc Mr)AT

mc—a mc—a

Addition of (3.30) and (3.31), gives (3.24).

Theorem 3.5.10. (Fejer’s Inequality) Suppose [u,w|y be an interval which con-
tains zero and 0 < m < 1 be an arbitrary number. Consider any arbitrary point
v € [u,w|y and a positive A-integrable function, which is symmetric with respect to
the mid-points of [u,mv]y and [mv,w]y. Then every m-convex function ¢ : [u,w]y —

R must satisfies the following inequality

1 T [ W(T)AT + 1 [ R(T)AT
m” (m 7 h(r)Ar )

[P R(T)AT (3.32)




. ((w — 1) mep(v) + (1 = mv)s@(w)> / WA,

w — mv

where

Proof. For proving the above inequality we use (3.10) with identity function ¢ (7) =

(s ) = ar

(3.33)

By using Lemma (3.5.9) and (3.33), we get

[ o(r)h(T)Ar 1 (mv — 7u)e(u) + (1w — wmep(v) | (™
f: h(T)AT = fw h(T)AT ( ) /u Ar)AT

w — mu o
(3.34)
By using Lemma (3.5.8) and (3.33), we get
" h(T)A w 7)A v h(T)A
i(p T [ h(r)AT —|— T, f T < I (;;(T) (1) T (3.35)
m G [ h(T)AT
By combining (3.34) and (3.35) we get the desired inequality. O

If we choose h(z) = 1, v = w or v = w in (3.32), we attain the Hermite-Hadamard

inequality, which is defined in (Theorem 3.5.1).
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Chapter 4

Time Scale Version of some
Inequalities of m-Convex Functions
on Two Coordinates

In this chapter, we will present the time scale version of m-convex functions on two
coordinates. Also, we extend a time scale version of the well known inequality namely,

Hermite-Hadamard, for coordinated m-convex functions.

4.1 Coordinated Convex Function

Definition 4.1.1. Suppose p1,p2,q1,q2 € T where py < ps and ¢ < q2. Define
A% = [p1,polr X g1, o]y Any function o : A% — R is said to be convex on the

coordinates if the following partial mappings

90y : [plap2]T — %7 defzned by Wy(u) = gp(uay)7

and

Or @1, @)y — R, defined by @.(v) = p(z,v),

are convex, where these mappings are defined ¥ y € g1, qe]y and x € [p1, pa]r.

In other words, a mapping ¢ : A% — R is called convexr in A% if for every
(a,b),(c,d) € AL and 0 < X\ < 1 we have the following inequality:
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p(Aa,b) + (1 = A)(c,d)) < Ap(a,b) + (1 = A)p(c, d).

4.2 Coordinated m-Convex Function

Definition 4.2.1. Let A% = [0, pa]y x [0, go]y C [0,00)? then a function ¢ : A% — R

1s called two coordinated m-convex if the following mappings

Py - [0>p2]T — ma def’med by (Py(u) = (lp(uay>7

and

@z 0, @]y = R, defined by ¢.(v) = p(z,v),

are m-convex on [0, po]y and [0, g2|y respectively, where these mappings are defined ¥

y € [0, ¢2)y and x € [0, po]y.

4.3 Hermite-Hadamard Type Inequalities

In this section, we develop Hermite-Hadamard type inequalities of m-convex function

on two coordinates on timescale.

Theorem 4.3.1. If 0 < p1 < p2, 0 < q1 < q2, where p1,p2,q1,q2, 2,y € T, and
A% = [0,pa]r x [0, 2]y C [0,00)% with pa,qa > 0 and ¢ : AL — R be such that the

partial mappings

@y 1 [0, po]y = R, defined by ¢ (u) = p(u,y),

and

0z [0, gy — R, defined by ¢.(v) = @(x,v),

are continuous and m-conver, where mappings are defined, ¥V y € [0,q]y and x €

[0, po]y then the following inequalities
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1 1 P2 1 q2
— / o(z,msa)Az + /s@(mtmy)ﬁy

m | P2 — D1 Jp, 92 —q1 Jg

2 P2 /QQ
< x,y)AyAx
~ (p2—p1)(@2 —q1) /p1 @ #le.u)By

1 /fh
< mps — t, )e(p1,y) + (mt,, — mpy + t,, — mt,, )o(p2,y)) Ay
(22 — q1)(p2 — 1) Jy, ((mp2 =15, )p(p1, y) + (mty 1T Tp p2) (D2, 9))
1 D2 A
+ mqgs — S z,q1) + (msy, — mqy + s4, — MS T, X,
(P2 —p1)(@2 — @1) /pl ((mgz = s0.)p(, 1) + (msq, Q1T Sqp 02)P(T, q2))

holds, where

1 P2
tA = / TAz.
P2 —P1 Jp,

1 a2
SA = / yAy.
92 —q1 Jg

1 mp2
b= — / zAz.

mp2 —P1 Jp,

1 P2
= [ ate
P2 —Mp2 Jmp,

1 mq2
S = ——— / yAy.

mqgs —q1 Jg

1 q2
Sgp = ———— / yAy.
2 — Mq2 Jimg,

Proof. Applying Theorem (3.5.1) for the function ¢, we obtain
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1 1 /p2 <mp2 —t >
—u,(mta) < o) Ar < [ ——2
mSOy( a) < — py(v)Az < P2 — Py @y (p1)

mt,, —mpy +t,, —mit
+ ( P1 D2 p2) QOy(pg),
P2 —D1

v y e [OJQQ]T' i'eu

1 1 Pz mpy — tp,
—p(mta,y) < / p(z,y)Az < (— o(p1,y
m P2 —DP1 Jp, P2 —p1 )

mt, —mpy + t,, —mit
( 1 1 P2 p2) ( 2;y)~
(4.1)

Taking A-integral of (4.1) over the interval [g;, ¢2]y, and then dividing the resulting
inequality by ¢, — g1, we obtain

1 q2
_ mta.y)A
m(q2 —(h) /q; 90( A y) Yy

1 q2 D2
< ) AzZA
T Py / / p(@y)Aely

mpa — tpl ) /q2 (mtpl —pim + th - mtp2> /q2
= ) A + , A .
- <(p2 —p)e —a)/ Jo, Uy (P2 —p1)(@2 — @) @ #le2)Ay
(4.2)

Similarly by applying Theorem (3.5.1) for the function ¢,, we obtain
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1 1 2 mqs — S
—pa(msa) < / . AS(—“) +(q
ms@( ) — 0 (y) Ay p— @ (q1)

YV x € [0,po)y. ie,

1 1 e mqs — S
ptamsn) < —— [ "oy < (MEZ2) ofaa)
m 92 —q1 Jg 92— q1

mSqg, — MQq1 + Sq, — MS
(et e
92— q1

Taking A-integral of (4.3) over the interval [p;, p2]v, and then dividing the resulting
inequality by ps — p1, we obtain

1 /p2 1 /p? /q2
—_— x,msp)Ax < z,y)AyAr
m(pz — p1) Jp, ol 2) (2 —q)(p2 —p1) Sy Ja #la:9)

< (o) [Metmaar

MmsSq, — MGy + Sq, — MS p2
+ q1 q2 QQ> / z,q Al’
< (Q2 - Q1)(p2 - p1) i SO( 2)
(4.4)

Now by adding (4.2) and (4.4),
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1 1 P2 1 q2
— / o(x,msa)Az + /s@(mta,y)ﬁy

m [ p2 —p1Jpy 92— 0 Jg

2 D2 q2
< x,y)AyAx
~ (P2 —p1)(@2 — @) /pl /ql Pl@,y) Ay

1 /‘I2
< mpy — by, )p(p1,y) + (mty, —mpy +t,, — mity, )o(p2, y)) Ay
@G =0 =) /. ((mpa =ty )(p1,y) + (mty L+t p2)e(p2, 1))
1 P2
+ mas — Sq, )e(z, q1) + (Msy, — mqy + g — MSy,) (2, q2)) A,
o= L (e = st m) + sy~ mar + 5~ sl 02)

we get the desired inequality. O]

Theorem 4.3.2. Under the assumption of Theorem (4.5.1), and suppose also the in-

tervals contain the midpoints, then the inequality
1 1 P2
L {Qp (p1 +p27mSA>+@(mtA7q1+Q2>} < / go(x, q1+q2)A$
m 2 2 P2 — P1 p1 2
1 ” P11+ P2
+ / @ ( Y | Ay,
©2—q1Jg 2

(4.5)

holds.

Proof. Since the inequality (4.1) is true Vy € [0, go]y , and by postulation, for y = 272,
the following inequality holds:

1 1 P2
e (mtA, ht QQ) < / o (:n nt "2) Az, (4.6)
m 2 D2 — D1 Jp, 2
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similarly, from (4.3)
L (p1+pe ) 1 /q2 <p1 + P2 )

— ,msa | < —y | Ay. 4.7

mso( 5 s)su=a ) e\ o)A (4.7)

Add the inequalities (4.3) and (4.7), we get

1 1 P2
_{(P <p1+pz,msA)+<P(m%q1+qz)} < / (p(x’(h‘*’(h)Ax
m 2 2 P2 —DP1Jp 2

1 " o (pitp
G —q1 Jqg 2

the required result. O

Theorem 4.3.3. By postulation of Theorem (4.3.1), the following inequality

Do ipl /:2 (e(z, 1) + ¢(z, ¢2)) Az + - i o /(:2 (o(p1,y) + ©(p2,y)) Ay )
(4.8

< Ayp(pr,q1) + Asp(p2, 1) + Aso(p1, ¢2) + Asp(pa, ¢2),

holds, where

A, — (mp2 - tpl + mgs — Sql)
1= )
P2 —P1 q2 — 1
A — (mtpl —mpy +t,, —mt,, Mg sq1>
o =
P2 — D1 q2 — Q1
A — (mpg —lp, . MSq — Mqy + Sg, msq2>
3 =
P2 —P1 2 — 1
A, — (mtp1 —mp1 +ty, — My,  MSy — MG+ Sy mqu)
P2 — D1 Q2 — 1



Proof. By choosing y = ¢; in (4.1), we have

P2 — D1 Jp, P2 — D1

for y = ¢o, we have

P2 . B B
: / p(@, q)Az < (me_tpl) @(plaéh)—i-(mtpl mpy + tp, — miy,

b2 — D1

P2 — D1 Jp, P2 — D1

By choosing = = p; in (4.3), we have

P2 o B B
: / p(z, g2) Az < (me_tpl) @(pla%)—i-(mtpl mp1 + tp, — miy,

b2 — D1

—mqp + Sga — MSy,

1 92 maqs — § ms
/ o(p1,y)Ay < (M> w(p17q1)+( Z

q2 —q1 Jg q2 — 1

For x = p,, we have

G2 — q1

—mqp + Sgo — MSy,

1 9 mags — § ms
/ ©(p2,y)Ay < (M> Sp(p27Q1)+( Z

92 —q1 Jg q2 — 1

G2 — q1

By adding the inequalities (4.9), (4.10), (4.11) and (4.12), we get
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(4.9)

> ©(p2, q2)-
(4.10)

) ©(p1,q2)-
(4.11)

) ©(p2, q2)-
(4.12)



P2 1 q2
‘/ (o(as 1) + (e, 42)) A + / (001, ) + o2, ) Ay
D2 — D1 Jp, @2—qN Jg

mpy —t mgs — S mty, — mpy + 1y, —mt mgs — S
S < P1 + l]l) 90(p1,Q1) + ( P1 P2 P2 + q1 90(102,(]1)
P2 — D1 42 — q1

mpy — t MmSy, — Mmq1 + Sg, — MS
+( e e e qQ)so(pl,sz)

N (mtp1 — mpy + t,, —mt,, N MSq, — M1 + Sq — MSqy
P2 — D1 2 — 1

) @(p2, 2)-
0

Theorem 4.3.4. Let ¢, p, and p, be defined in the same way as in Theorem (4.3.1),
Then the the following inequality

2 P2 q2 A A
, x
@»—mx@—%>élllﬂx” y

_ 1 2 oz, q1) +mep (v, 2)
< min o Az,
B {p2 — D /p1 ( 2 (4.13)
D2 q1
1 / (w(fv,qz) +me (z, m)) Ax}
D2 — D1 Jp, 2
1 q2 , 127
{1 [ (et
42— q1 Jg 2

q2 P
1 / (w(pa,y)ersO(m,y)) Ay},
P2 — 0 Jg 2

holds.
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Proof. As mapping ¢ : A% — R is two coordinated m-convex, then the function ¢,

and ¢, are m-convex on [0, go]y and [0, pa]v, respectively. Hence, we have

! /P2 y(x)Az < min {%(%) o () ; Pup) + 0y (3n) } ;

P2 — D1 Jp, 2 2
that is
1 P2 e(pr,y) +¢ (2,y) ep2,y) +¢ (2,y)
/ o(z,y)Azx < min mo=s uL :
P2 —DP1Jp, 2 2

By taking the average A — integration over the interval [q1, g2]y, we have

1 P2 q2
Y)AyA
(p2—p1)(QQ—Q1) /p1 /ql gp(x y) vl

. 1 2 [ o(p,y) + ¢ (2,y)
< m Ay,
< min { p— / ( 5 Y (4.14)

q1

q2 p1
1 / (QO(P%?/)‘HO(mvy))Ay}
©—q Jg 2

Similarly for ¢, one has

1 /‘PQ /qz
x,y)AyAx
(]92 - pl)(QQ - Q1) mn Ja 90( )

. 1 /” oz, q) + ¢ (z,2)
< min e Az,
< {p2 . ( 5 (4.15)

L[ (e e () oL
D2 — D1 Jp, 2

By adding the inequalities (4.14) and (4.15), we get
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2 D2 q2
) AYA
=P (@ =) / / pl@y)AyAe

1 P2 z,q1) +my (x, £
< min / o(x,q1) +me (z,2) Ar .
P2 — D1 Jp 2

1 /m (w(x,q2)+m90 (L%)) Ax}
P2 — D1 Jp, 2

+ min L /q2 PP y) +my (%,y) Ay
92 —q1 Jgy 2 ’

q2 p1
1 / <s@(pz,y)+ms@(m,y)> Ay}
92 —q1 Jg 2

which is the required result. O

Theorem 4.3.5. Let A% = [0, pa]y x [0, q2]r C [0,00)? with 0 < p; < p2,0 < g1 < o
and ¢ : AL — R be m-conver on two coordinate in A% where 0 < m < 1. If

0y € L1]0, g2]y and p, € L]0, po]y, then

20 (ta, sa) < ! /p2 (gp(m, sa) £ myg (ﬁ7 SA)) Az

D2 — D1 Jp, 2
(4.16)

Q2 —q1 Jg

L /(,2 (s@(ta,yHms@(tA,%))Ay.
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Proof. Applying the first inequality of (3.13) for the function ¢,, we get

Py(ta) < ! /p2 <<Py(x) + My (%)) A,

P2 —P1 Jp,
that is,
o) < —— [ (play) +mp (£.9)) A
t Y S / <90 z,y +m <_7y>> xz,
wia P2 — D1 Jp, m
for y = sa
1 bz Y + £7
@ (ta,sa) < / (90(1’ sa) +me(, SA)> Az. (4.17)
P2 — D1 Jp, 2

Similarly for ¢,, we obtain

¢ (z,sa) < : /Cd (gp(x’y) +m¢<x7%>> Ay,

put x = ta, we get

1 2 [ o(ta,y) + me(ta, L
o (ta,sa) < ql_(&/ (90( 2,9) ¥ meplta m)) Ay. (4.18)
q1

Addition of (4.17) and (4.18) gives

20 (ta, sa) < = /m (SO(% sa) +me (o SA)) Az

P2 —P1 Jp, 2
(4.19)

N 1 /Q2 ((p(tA,y) + my (tA7 %)) Ay,

42— q1 Jg 2

which is the required result. O
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4.4 Petrovic’s Inequality

Time scale version of Petrovic’s inequality for coordinated m-Convex function is de-

fined in this section.

Theorem 4.4.1. If ¢ : [0,00)% — R, an m-convex function on coordinates where
0 < m < 1 be an arbitrary number. Let (xy1,...,2,), (Y1,-.-,Yn) be non-negative n-
tuples and (p1, ..., Pn),(q1, -, Gn) be positive n-tuples such that 2721 p; > 1, where
Ty, Yi, Pir € € [0, 00)7.

P, = ij, O#in:ijxj >x; for every i=1,...n,
j=1

j=1
and . .
Qn ::qu, O#gn:quyk >y, for every i=1,..n,
k=1 k=1
then
Piarp(s, yx) < min{m min{ G, 1 (Tn /M), G (Tn/m)} + (P — 1)
j=1 k=1
4.20
X min{G, 1(0), G1,,(0)}, min{ G, 1(Zn), G1.m(Tn) } (4.20)
+ m(P, — 1) min{G,,1(0), G1,,(0)}},
where
Grnlt) = (1.22) + (@, — (2.0, (a.21)

Proof. Let ¢, : [0,00)y — R and ¢, : [0,00)y — PR be mappings such that ¢,(v) =
o(z,v) and p,(u) = ¢(u,y). As ¢ is coordinated m-convex on [0,00)%, S0 ¢, is m-

convex on [0,00)y. By using Corollary 3.3.1 for ¢,, we have
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ijgpy(xj) < min{mpy (Z,/m) + (P — 1)y (0) ¢y (Zn) +m(F, — 1)p,(0)}.

J=1

This is equivalent to
> pie(rs,y) < min{me(E,/m, y) + (P = D)e(0,y) , @(Fn,y) +m(P, — 1)p(0,y)}.
By setting y = y, we have

ijw(%yk) < min{me(Z,/m, yp) +(Po—=1)0(0,yx) , ©(Tn, yr)+m(Pr—1)p(0, yr)},

That gives

ZZWJM (27, y) < min {qukso En /0, Yk) —1 quso 0, k)

7=1 k=1

qu Ty i) +m(Py — 1) quwo Ui }

. (4.22)

Similarly, one has

> (@ /m,yp) < minfme(Z,/m, Gu/m) + (Qn — 1)(Ea/m,0)

P(Tn/m; Gn) + m(Qn — 1) (Zn/m, 0)}.

> a0, yx) <min{mep(0, §o/m) + (Qn — 1)(0,0)

@(Oagn) + m(Qn - 1)90(07 O)},
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and

> aep(En, yi) <min{mp(in, gn/m) + (Qn — 1)¢(#4,0)
k=1

(T, Yn) + m(Qn — 1)p(T0, 0)}.

Putting all these values in inequality (4.22), and using the notation in (4.21), one has
the required result. O

Corollary 4.4.2. If ¢ : [0,00)3 — R, an m-convex function on two coordinates
where m € (0,1] be an arbitrary number. Let (xy,...,x), (Y1, ..., Yn) be non-negative
n-tuples and (p1, ..., pn),(Q1, -+, Gn) be positive n-tuples such that =7 | p; > 1, where
i, Yis Piy @i € [0,00)r.

P, = ij, O;éi:n:ijxj >wx; for each i=1,...n,
j=1

j=1

then the following inequality holds:

anjgp(xj) < min {m min{(m +n — 1)p(Z,/m), (mn —m+ 1)p(&,/m)}

+ (P, — D)min{(m +n — 1)p(0), (mn —m+ 1)¢(0)} ,

min{(m +n — 1)p(z,), (mn —m + 1)p(Z,)}

+m(P, — 1)min{(m +n —1),(mn —m+ 1)(,0(0)}}.

66



Proof. 1f we put yr = 0 and g, = 1, k = 1,...,n where ¢(z,0) — ¢(x) in inequality
(4.20), we get the desired result. O
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Conclusion

In this thesis, we discussed the concept of m-convex function on time scale. In chapter 3,
we deduce some basic and well-known inequalities such as Petrovic’s, Jensen’s, Hermite-
Hadamerd and Fejer’s of m-convex function on timescale. In chapter 4, we converted
the definition of m-convex function in two coordinates of real numbers into timescale.
Using this definition we deduce some inequalities such as Hermite-Hadamard, Petrovic’s

and other results.
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