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Abstract 

 

The analysis of boundary layer flow past a stretching surface is of great importance in many 

technological and industrial processes such as paper production, glass fiber, extrusion of plastic 

sheets and hot rolling etc. Viscoelastic fluids comprise a variety of industrial and house hold 

products such as polymers, dough used to make bread and pasta, toothpaste and paints etc. Here 

we study the heat/mass transfer effects on the revolving flow of Maxwell fluid due to 

unidirectional stretching surface. Mass transfer process is modeled in terms of binary chemical 

reaction and activation energy. Modified Arrhenius function for activation energy is invoked. 

Traditional boundary layer approximations are utilized to simplify the governing equations. By 

similarity transformation, we obtain a self-similar form of boundary layer equations which are 

solved numerically. The solutions depend on interesting parameters such as the rotation 

parameter , the Deborah number  , the Prandtl number Pr , the Schmidt number Sc , activation 

energy E , fitted rate constant n  and temperature difference parameter . We found that the 

solute concentration in binary mixture is proportional to both rotation parameter and activation 

energy E . The reaction rate and fitted rate n  both tend to reduce the solute concentration. 

Thermal boundary layer becomes thicker and heat transfer rate diminishes when fluid is 

subjected to larger rotation rate. 
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Chapter 1 

1.Introduction 

1.1 Basic definitions 
 

Fluids can be classified as either Newtonian or non-Newtonian depending on their rheological 

behavior.  

1.1.1  Newtonian fluids 
 

In these fluids shear stress 
yx  is directly and linearly proportional to the shear rate 

yx . For a 

laminar flow over a flat moving plate, shear rate can be expressed as velocity gradient xdV

dy
 in 

the direction perpendicular to the shearing force. Mathematically, 

,x
yx yx

dV

dy
     

(1.1) 

where   is the coefficient of viscosity also called dynamic viscosity. The graph of 
yx  verses 

yx  is a straight line whose slope  is passing through the origin. 

1.1.2  Non-Newtonian fluid 
 

In contrast to the Newtonian fluids, the ratio of shear stress and shear rate is not constant in non-

Newtonian fluids for the given pressure and temperature and depends on flow condition such as 

deformation history, shear rate and geometry of the fluid element under consideration. The flow 

curve for non-Newtonian fluid is non-linear and it generally does not pass through the origin. 


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The flow of non-Newtonian fluids can be explained mathematically by the power law model 

which is given as 

( ) ,n

yx K 

 

 (1.2) 

1( ) ,
yx nK


 



 

 

(1.3) 

here K  is the consistency index, n  the flow behavior index and η  the apparent viscosity. 

For 1n   the fluid demonstrates shear-thinning properties, for 1n   the fluid shows Newtonian 

behavior and for 1n   the fluid represents shear-thickening behavior.   

1.1.3  Incompressible and compressible flows 
 

The fluid whose specific volume V is a function of pressure, is called a compressible fluid. All 

gases are considered as compressible fluids.  

 On contrary, an incompressible fluid is a fluid whose density remains unchanged by the external 

forces applied on it. Liquids are considered as incompressible fluids under the condition of 

normal pressure. 

Classification of compressible and incompressible flows can be made on the basis of Mach 

number. If the Mach number (the ratio of flow velocity to the velocity of sound) is less than 0.3, 

the flow is considered as incompressible and if this ratio is greater than 0.3 the flow is considered 

as compressible. 

1.1.4  Coriolis acceleration 
 

The additional acceleration experienced by the body moving in a rotating frame of reference with 

constant velocity is called coriolis acceleration. It is the second pseudo force that opposes the 

retarding force and causes the path to be appeared as curve with respect to the rotating frame of 

reference. Mathematically, it is expressed below:  
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2 ,cor   a Ω V  

(1.4) 

here Ω  is the angular velocity and V is the velocity field. Its direction is right to the velocity 

vector if Ω  is anti-clock wise. 

1.1.5  Centrifugal acceleration 
 

It is a reaction force that ensures the motion of body in circular path without falling in to the 

center. It is directed radially outward and is given as  

2 2

( ) ,
2

r 
    

 
Ω Ω r

 

(1.5) 

where r  is the radius vector of the circular path. 

1.1.6  Deborah number 
 

Deborah number is defined as the ratio of the stress relaxation time ct  to the characteristic time 

scale 
pt . It is denoted by De  and given as  

.c

p

t
De

t


 

(1.6) 

A material with small Deborah number behaves as fluid like material while the material with 

large Deborah number shows the properties of solid like material.   

1.1.7  Reynolds number  
 

The ratio of the inertial forces to the viscous forces is defined as Reynolds number. 

Mathematically, 

,
VL

Re



  

(1.7) 
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where L  is the characteristic length,  the density, V the mean velocity and   the dynamic 

viscosity of the fluid. Reynolds number determines the nature of the flow. If Re 2300  the flow 

will be laminar, if 2300 Re 4000  the flow is in transition state and if Re 4000  the flow is 

turbulent.  

1.1.8  Prandtl number 
 

The ratio of kinematic viscosity   to the thermal diffusivity   is named as Prandtl number. It is 

denoted by Pr . Thus 

Pr .





 

(1.8) 

When the value of Pr is small, it means that heat diffuses quickly as compared to the momentum 

while for large value of Pr, momentum diffusivity dominates the thermal behavior.  

1.1.9  Schmidt number 

 

The ratio of momentum diffusivity   to mass diffusivity D  is called as Schmidt number. It is 

given as 

.Sc
D




 

(1.9) 

It is analogous to Prandtl number in heat transfer and compares the relative thicknesses of 

hydrodynamics and concentration boundary layers. 

1.1.10  Nusselt number 

 

Nusselt number also referred as heat transfer coefficient is the ratio of heat transfer due to 

convection to heat transfer due to conduction. Mathematically,  
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,wxq
Nu

k T


  

(1.10) 

where 
0

w

z

T
q k

z 


 


is the wall heat flux and w

T T T


    is the temperature difference between 

the surface and the free stream. 

1.1.11  Sherwood number 
 

Sherwood number also referred as mass transfer coefficient is the ratio of mass transfer due to 

convection to mass transfer due to diffusion. Mathematically,  

,wxj
Sh

D C


  

(1.11) 

where 
0

w

z

C
j D

z 


 


is the wall mass flux and w

C C C


    is the concentration difference 

between species in the mixture. 

1.1.12  Boundary layer 
 

The fine region in the neighborhood of an object merged in the fluid is called a boundary layer. 

By the boundary layer theory, the flow past a body is contained in two forms, a main stream 

referred as ideal stream where the effects of viscosity and thermal conductivity are negligible and 

a thin layer near the surface where the fluid is regarded as viscous and thermally conductive. 

These inviscid and viscous flows balance each other at the outer edge of the boundary layer. Due 

to the sufficient viscosity and thermal conductivity the velocity and thermal gradients are also 

large which give a thin boundary layer with respect to the scale of the flow. 
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Fig. 1.1. Boundary layer for velocity  

 

Variation in pressure and velocity can bring changes in the flow pattern of a fluid.   On the basis 

of the flow pattern, a flow may be laminar or turbulent. 

 

1.1.13  Turbulent flow 
 

Turbulent flow is classified by eddies and whirls caused by irregular motion and superimposed 

velocity fluctuations on the average flow due to chaotic pressure and velocity changes. This 

type of flows is linked with high Reynolds number due to the dominance of inertial forces on 

viscous forces.  

1.1.14  Laminar flow 
 

In contrast to the turbulent flow, laminar flow is well ordered and regular in its motion. It 

consists of streamlines that slide parallel with each other with respect to its neighbor. Laminar 

flows are associated with low Reynolds number where the viscous forces dominate and cause 

the velocity to decrease and fluid flows without mixing between the layers.   

1.2 Boundary layer equation for a rotating flow of 

Maxwell fluid  
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The constitutive equations for flow of Maxwell fluid in rotating frame are  

. 0, V  
(1.12) 

[( . ) ( ) 2 ] . ,p         V V Ω Ω r Ω V S  (1.13) 

1 1,
D

Dt
  

S
S A

 

(1.14) 

where  is the density of the fluid,  ( , , ), ( , , ), ( , , )u x y z v x y z w x y zV is the velocity vector, Ω  

is angular velocity of the fluid, r is the radius vector, S  is extra stress tensor, 
1  is the fluid 

relaxation time, /D Dt  is the convected time derivative,   is the dynamic viscosity and 1A  is 

the first Rivlin-Erickson tensor which is represented as 

1 ( ) ,

2

2 .

2

t

u u v u w

x y x z x

u v v v w

y x y z y

u w v w w

x z x z z

   

     
      

 
     

       
 
     

       

A V V

 

(1.15) 

 

(1.16) 

For any vector ia , the convected derivative /D Dt  is given by 

, , .i i
r i r i r r

Da a
a a

Dt t


  


V V  
(1.17) 

Taking (0,0, ) Ω and ( , ,0)x yr , we expressed centrifugal acceleration as 

2 2

( ) .
2

r 
    

 
Ω Ω r  

(1.18) 

Using Eq. (1.18) in Eq. (1.13) we have,  

2 2

[( . ) 2 ] . .
2

r
p 

 
       

 
V V Ω V S  

(1.19) 
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Now defining modified pressure as 

2 2

ˆ
2

r
p p 


   and using Eq. (1.18), Eq. (1.13) takes the 

following form  

ˆ[( . ) 2 ] . .p      V V Ω V S  (1.20) 

Assigning the operator
11

D

Dt


 
 

 
 on both side of Eq. (1.20), we obtain 

1 1 1 1
ˆ1 ( . ) 1 (2 ) 1 1 ( . ),

D D D D
p

Dt Dt Dt Dt
    
        

                   
        

V V Ω V S  
 

(1.21) 

where 

( .) . .
D D

Dt Dt

 
   

 
 

(1.22) 

Implementing Eq. (1.22) on Eq. (1.21) and then using Eq. (1.14), we get 

1 1 1 1

1 1

ˆ1 ( . ) 1 (2 ) 1 . 1 ,

ˆ1 ( . ).

D D D D
p

Dt Dt Dt Dt

D
p

Dt

    

 

        
                  

        

 
      

 

V V Ω V S

A

 

(1.23) 

 

(1.24) 

In the absence of the pressure gradient, Eq. (1.24) becomes 

1 1 11 ( . ) 1 (2 ) ( . ).
D D

Dt Dt
   
    

          
    

V V Ω V A  
 

(1.25) 

The components of Eq. (1.25) are as follows 
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2 2 2 2
2 2 2

2 2 2

2 2 2 2 2

12 2 2

2

2 2 2 2 2

2 2 2

u u u u
u v w uv

x y z x y

u u u u u u u u v v
u v w v vw wu u v

x y z x y z y z z x x y

v u u
w v u

z x y

 

    
   

     
           

               
              

   
          

 

 

 

(1.26) 

2 2 2 2
2 2 2

2 2 2

2 2 2 2 2

12 2 2

2

2 2 2 2 2 .

2 2 2

v v v v
u v w uv

x y z x y

v v v v v v v v u u
u v w u vw wu u v

x y z x y z y z z x x y

u v v
w v u

z x y

 

    
   

     
           

               
              

   
          

 

 

 

(1.27) 

Using the boundary layer approximations, Eq. (1.26) and Eq. (1.27) become 

2 2 2 2
2 2 2

2 2 2

2 2 2

12

2

2 2 2 2 2 ,

2 2 2

u u u u
u v w uv

x y z x y

u u u u u u v v
u v w v vw wu u v

x y z z y z z x x y

v u u
w v u

z x y

 

    
   

     
        

            
          

   
          

 

 

 

(1.28) 

2 2 2 2
2 2 2

2 2 2

2 2 2

12

2

2 2 2 2 2 .

2 2 2

v v v v
u v w uv

x y z x y

v v v v v v u u
u v w u vw wu u v

x y z z y z z x x y

u v v
w v u

z x y

 

    
   

     
        

            
          

   
          

 

 

 

(1.29) 

1.3 Conservation of energy  
 

The constitutive energy equation in the absence of viscous dissipation and heat generation/ 

absorption and under the constant pressure is given as  
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( . ) . ,pc T   V q  (1.30) 

where  is the fluid density, 
pc is specific heat,  ( , , ), ( , , ), ( , , )u x y z v x y z w x y zV  is the 

velocity vector, T is the temperature of the fluid and q is the heat flux which by the Fourier’s 

law of heat conduction is given as 

,k T  q  (1.31) 

where k  is the thermal conductivity. By using Eq. (1.31) in Eq. (1.30) we get 

2( . ) ,T T  V  (1.32) 

where / pk c  is the thermal diffusivity. Utilizing the boundary layer approximations, Eq. 

(1.32) in component form reduces to 

2 2 2

2 2 2
.

T T T T T T
u v w

x y z x y z

      

     
      

 
(1.33) 

1.4 Conservation of mass 
 

Activation energy is defined as the least obligatory amount of energy for atoms or molecules to 

bring themselves in a state in which they can undergo a chemical reaction. Some chemical 

reactions proceed faster at high temperature. Svante Arrhenius represented the Arrhenius 

equation which is the quantitative relationship between rate of reaction and its temperature. It is 

given as 

exp ,
( )

aE
k A

T T 

 
  

 
 

(1.34) 

where k  is the rate constant of chemical reaction, A is the pre exponential factor, aE  is the 

activation energy, 
58.61 10 /eV K    is the Boltzmann constant and T is the temperature 
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(in kelvin). High temperature increases the collisions between the molecules which increase the 

kinetic energy and thus the activation energy is affected.   

The constitutive equation of mass transfer for Maxwell fluid in the presence of a binary chemical 

reaction and activation energy is given as 

T2 2( . ) ( ),
Ea

n

r

T
C D C k e C C

T








 
     

 
V  

(1.35) 

where C  represents the concentration field and D the solute diffusivity. The term 

 2 / exp( / )
n

r ak T T E T  is the modified Arrhenius function [11],   is the Boltzmann constant, 

2

rk the reaction rate and n  the fitted rate constant generally lies in 1 1n   . 

 

1.5 Literature survey 
 

Mass transfer is a natural phenomenon in many processes such as absorption, vaporization and 

condensation in a mixture, diffusion of nutrients in tissues, thermal insulation, cooling towers 

and food processing, in absorbers such as activated carbon beds and in the condensation process, 

dispersion of temperature/moisture over groove fields and distillation of alcohol. Mass transfer 

has relevance in most living-matter processes such as respiration, nutrition, sweating etc. Mass 

transfer process with chemical reaction has been given special attention in the past (see [1] - [6] 

and ref. there in) because of its significance in chemical engineering, geothermal reservoirs, 

nuclear reactor cooling and thermal oil recovery. Bestman [7] was probably the first to study the 

boundary layer flow involving the binary chemical reaction. He analytically examined the effects 

of the activation energy on natural convection flow in a porous medium by using perturbation 

approach. One of the factors that have an important role in chemical reaction is the activation 

energy. It is defined as the least obligatory amount of energy for atoms or molecules to bring 

themselves in a state in which they can undergo a chemical reaction. The concept of activation 

energy is usually applicable in areas pertaining to geothermal or oil reservoir engineering and 
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mechanics of water and oil emulsions. Activation energy can be realized as energy barrier that 

separates two minima of potential energy (of the reactants and products of a reaction) which has 

to be overcome by reactants to initiate a chemical reaction. Makinde et al. [8] presented the 

numerical solution for unsteady convection flow over a flat porous plate with n
th 

order chemical 

reaction and Arrhenius activation energy. The recent attempts in this direction were made by 

Maleque [9], [10] who investigated the influence of binary chemical reaction with Arrhenius 

activation energy on mixed convection flows and Awad et al. [11] who explored the unsteady 

revolving flow due to impulsively stretched plate by means of spectral relaxation method (SRM).  

Steady and unsteady rotating flows have several noteworthy applications in geophysical and 

chemical fluid dynamics. They are also of applied significance in many areas such as in food 

processing, in rotor-stator systems, in thermal-power generating systems, in rotating machinery 

and in the cooling of the skins of high speed aircrafts. Wang [12] firstly explored the 

mathematical model for the effects of rotation on fluid flow adjacent to a stretched plate. In his 

work analytical solutions of velocity and temperature profiles were derived by perturbation 

approach. Effects of magnetic field on rotating fluid flow on stretching plate were observed by 

Takhar et al. [13]. Nazar et al. [14] employed similarity approach to examine unsteady revolving 

flow by an impulsively stretching plate. Kumari et al. [15] considered the flow near a stretching 

plate in revolving power-law and derived numerical approximations for both pseudoplastic and 

dilatant type fluids. Local similarity solutions for rotating viscous flow due to exponentially 

stretching plate were obtained by Javed et al. [16] utlizing Keller-box method. Zaimi et al. [17] 

considered a stretching surface immersed in rotating Walters’ B liquid. Mustafa [18] analytically 

studied the rotating flow of viscoelastic fluid bounded by a stretching surface through Cattaneo-

Christov heat flux theory. Turkyilmazoglu [19] extended the traditional Bödewadt flow problem 

for uniformly stretching disk. His numerical solution through collection method showed that 

radial stretching of disk improves the cooling process in practical applications. Mustafa et al. 

[20] also studied the Bödewadt flow problem over a stretching disk utilizing nanofluids. 

Numerical simulations for rotating flow of water containing ferromagnetic particles were 

reported by Mustafa et al. [21]. Rosali et al. [22] discussed the rotational effects on flow past an 

exponentially shrinking sheet and observed multiplicity of solutions in case of injection. Ahmad 

and Mustafa [23] performed a comparative study for revolving flow of nanofluids using two 
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different thermal conductivity models and convective conditions. Imtiaz et al. [24] explored the 

flow of carbon nanotubes between radially stretching disks by a homotopic approach. 

In this thesis, we aim to explore the influences of binary chemical reaction with activation energy 

on rotating flow of Maxwell fluid over a stretchable surface. Coriolis and centrifugal effects 

attributed due to the fluid rotation are preserved in the mathematical model. Using similarity 

approach, self-similar solutions for velocity, temperature and concentration are developed. 

Graphical illustrations for velocity, temperature and concentration are presented to emphasize the 

physical effects of embedded parameters on the solutions. Numerical values of local Nusselt 

number and local Sherwood number for broad range of parameters are tabulated.  
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Chapter 2 

2. Numerical solution for three dimensional flow of 

Maxwell fluid with non-linear thermal radiation 

 

This chapter includes the review of an article by Mushtaq et al. [29]. The objective of this 

chapter is to investigate the effects of non-linear radiation on three-dimensional flow of upper-

convected Maxwell (UCM) fluid over a surface which is being stretched in two lateral directions. 

The solutions for velocity and temperature are obtained numerically by using shooting method 

based on fifth-order Runge-Kutta algorithm. Graphs are presented to explore the physical 

behaviors of embedded parameters on the flow fluid. 

2.1 Problem formulation 
 

Consider a laminar flow of UCM fluid over a surface located in xy plane (see Fig. 2.1). The 

surface is being stretched in x  and y directions with velocities  wU x ax
 
and  wV y by

 

respectively in which , 0a b   are constants. The sheet is kept at constant temperature cT  and T

denotes the temperature at the far field.  
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Fig. 2.1: A schematic diagram presenting the development of boundary layer 

 

Based on scale analysis, the boundary layer approximations yield the following governing 

equations: 

0,
u v w

x y z

  
  

  
 

(2.1) 

2 2 2
2 2 2

2 2 22

12 2 2 2
,

2 2 2

u u u
u v w

x y zu u u u
u v w

x y z z u u u
uv uw vw

x y x z y z

 

   
  

          
       
   

      

 (2.2) 

2 2 2
2 2 2

2 2 22

12 2 2 2
,

2 2 2

v v v
u v w

x y zv v v v
u v w

x y z z v v v
uv uw vw

x y x z y z

 

   
  

          
       
   

      

 (2.3) 

2

2

1
,r

p

T T T T q
u v w

x y z z c z




    
   

    
 (2.4) 
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in which ,u v  and w  are x , y and z   components of velocity respectively, 
1  

is the fluid 

relaxation time,   is the kinematic viscosity,   is the thermal diffusivity,
 
 the fluid density, 

pc
 
is the specific heat,

 
4(4 */3 *) /rq k T z   

 
is the Rosseland radiative heat flux in which 

* is the Stefan-Boltzman constant and *k is the mean absorption coefficient respectively. 

The boundary conditions in the present problem are: 

( ) ,   ( ) ,   0,   = w w wu U x ax v V y by w T T              at       0,z 

 
0,    0,      u v T T  

                         

as     .z   
(2.5) 

For similarity solution of Eq. (2.1)-(2.4) with the conditions (2.5), we introduce the non-

dimensional distance   as  

,
a

z


  
(2.6) 

with the following similarity variables 

( ), ( ), ( ( ) ( )), ( ),u axf v ayg w a f g T T T      
         (2.7) 

In which wT T T    and prime denotes differentiation with respect to . 

In view of Eqs. (2.6) and (2.7), Eq. (2.1) is satisfied identically and Eqs. (2.2) - (2.4) are 

transformed into the following non-linear ordinary differential equations:  

2 2 2( ) [2( ) ( ) ] 0,f f f g f K f g f f f g f              (2.8) 

2 2''' ( ) [2( ) ( ) ] 0,g g f g g K f g g g f g g             (2.9) 

31
(1 (1 ( 1) ) ) ( ) 0.

Pr
w

d
Rd f g

d
   


          (2.10) 

The transformed boundary conditions are 

0, 1, , 1f g f g c        at 0,   

0, 0, 0f g      as .   

 

(2.11) 
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where 1K a is the Deborah number, Pr /  is the Prandtl number,  316 * / 3 *Rd T kk  is 

radiation parameter, /w wT T   is the temperature ratio parameter and /c b a  denotes the ratio 

of stretching rate along y direction to the stretching rate along the x direction. It should be 

mentioned here that above problem corresponds to the case of two dimensional flow when 0c 

while axisymmetric flow is obtained by setting 1c  . We now define the local Nusselt number 

xNu as below: 

,
( )

x
x

w

xq
Nu

k T T




 (2.12) 

where  0 0
( / )w z r z

q k T z q 
     is the wall heat flux. Now putting the values of dimensionless 

quantities from Eq. (2.6) - (2.11), we get 

1/2 3Re [1 ] (0),x x wNu Rd      (2.13) 

where Re /x wU x  is the local Reynolds number.  

2.2 Numerical method 
 

The solutions of Eq. (2.8) - (2.10) with the boundary conditions (2.11) have been developed by 

using shooting approach. For this purpose, we convert the equations into the system of first 

order equations by writing 1 2 3 4 5 6 7 8, , , , , , ,x f x f x f x g x g x g x x             . We 

obtain the following: 
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 (2.14) 

with the following initial conditions 

1

2

3 1

4

5

26

7

38

(0) 0

(0) 1

(0)

(0) 0
,

(0)

(0)

1(0)

(0)

x

x

x u

x

cx

ux

x

ux

   
   
   
   
   
   
   
   
   
   
   
  



  

 (2.15) 

where    1 2 3, , (0),g (0), (0)u u u f    . The system given in Eq. (2.14) is integrated via fifth 

order Runge-Kutta integration scheme. Newton’s method is employed to estimate the unknown 

slopes ''(0)f , ''(0)g and '(0) . All the computations are done successfully in MATLAB. 

2.3 Results and discussion 
 

To validate the given simulations we compared the numerical results of ''(0)f , ''(0)g and '(0)

with Lie and Andersson [25] in a limiting sense. The results look like to be nearly identical in all 

the cases as can be understood through Table 2.1. 
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c  Liu and Andersson  [25] Present 

(0)f   (0)g  (0)  (0)f   (0)g  (0)  

0 1 0 - 1 0 0.5819785  

0.25 1.048813 0.194565 0.665933 1.048811 0.1945639  0.6659264  

0.50 1.093096 0.465206 0.735334 1.093094 0.4652047 0.7353326 

0.75 1.134486 0.794619 0.796472 1.134486 0.7946183 0.7964708 

1 1.173721  1.173721 - 1.173721 1.1737210 0.8519916 

Table 2.1: Comparison of present results with Liu and Andersson [25] when 0,K  Pr 1,  and 

0.Rd   

Figs. 2.2 - 2.8 are prepared to illustrate the behavior of embedded flow parameters on the 

velocity and temperature profiles. 

  

Fig. 2.2: Effect of K on  f 
 
and  .g 

 

 

Fig. 2.3: Effect of K and c on  . 
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Fig. 2.4: Effect of Pr and Rd on  . 
 

 

Fig. 2.5: Effect of w and K  on  .   

 

  

Fig. 2.6: Effect of Rd on     when 1.1.w    

 

Fig. 2.7: Effect of Rd on     when 2.w 
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Fig. 2.8: Effect of K and c on  0  for Pr 5  and Pr 10.
 

 

 

The effect of Deborah number K on the velocity profile is shown in Fig. 2.2. An increase in K  

corresponds to an increase in the fluid relaxation time. Smaller fluid relaxation time represents 

viscous fluids. When relaxation time increases, the fluid tends to behave like elastically solid 

substance. The boundary layer thins when K is increased. Also the change in velocity fields f 

and g is greater in three-dimensional flow when compared with axisymmetric and two 

dimensional flows. Fig. 2.3 shows the change in temperature   when Deborah number K is 

varied. It is found that the temperature  rises as the fluid relaxation time increases. It means that 

elastic effects enhance the temperature of viscoelastic fluids. Fig. 2.4 displays that the thermal 

boundary layer thins with the increase in Prandtl number Pr . The reason is that increasing Pr

reduces the thermal diffusivity which restricts the penetration depth of temperature. Fig. 2.5 

exhibits the effect of temperature ratio parameter w on the temperature distribution. An increase 

in w  results in the thickening of thermal boundary layer. This effect is explained as follow. Eq. 

(2.4) shows that thermal diffusivity is the sum of classical thermal diffusivity  and the thermal 

diffusivity due non-linear radiative heat flux. Thus w being the coefficient of later term, supports 

the thickness of boundary layer. It can also be observed that a special S-shaped profile is 

obtained when w is increased which is an indicator of inflection point for temperature 

distribution. That is for sufficiently large wall to ambient temperature ratio, the temperature 

gradient approaches to zero. The influence of radiation parameter Rd  on temperature profile is 



22 
 

shown in Fig. 2.6 for both linear and non-linear cases. It can be analyzed that both profiles 

coincide only for small values of Rd while for large values of Rd , they disperse continuously. 

Also as the temperature ratio rises from 1.1w  to 2w  , the profiles in case of non-linear 

radiation move away from the corresponding profiles of linear radiation case. Fig. 2.7 points to 

the conclusion that only for w  approximately equal to unity and Rd  is sufficiently small (say

0.1Rd  ), the result for linear and non-linear radiation would become identical. Fig. 2.8 

represents the effects of Pr  on the local Nusselt number at different values of K . It shows that 

magnitude of (0) has inverse and non-linear relationship with Deborah number K . The reason 

is that fluids with large Prandtl number exhibit strong convection compared to pure conduction. 

Also from Fig. 2.4 we’ve already seen that large value of Pr makes the profile steeper. Thus the 

heat transfer rate from the surface grows as Pr increases.  

Table 2.2 contains the values of wall slope of temperature (0) for different values of , ,PrK c

and Rd . The heat transfer rate reduces nearly 6% in the absence of thermal radiation with K

varies when 0K    from 1.5K  with Pr 7 and 0.5c  . This reduction is increased to about 

10% in case of non-linear radiation with 1.5w  . 
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K  c  Pr  0Rd   1Rd   

Linear radiation Non-linear radiation 

1.1w 
 

1.5w 
 

1 0.5 2 1.01695 0.61177 0.53932 0.31686 

  4 1.60165 1.01695 0.90348 0.55107 

  7 2.24393 1. 47271 1.31435 0.82083 

  10 2.75508 1. 83692 1.64284 1.03739 

1 0 7 1.82603 1. 20254 1.07372 0.67255 

 0.3  2.09403 1. 37824 1.23051 0.77013 

 0.6  2.31293 1. 51544 1.35219 0.84341 

 1  2.55918 1. 66440 1.48361 0.92038 

0 0.5 7 2.35436 1. 59321 1.42760 0.91088 

0.5   2.29665 1. 53021 1.36840 0.86380 

1   2.24393 1. 47271 1.31435 0.82083 

1.5   2.19501 1.41998 1.26482 0.78170 

Table 2.2: Numerical result of wall temperature gradient (0)  for different values of , ,PrK c

and Rd .   
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Chapter 3 

3. Rotating flow of Maxwell fluid over a stretchable 

surface with a binary chemical reaction and 

activation energy  

 

The objective of this chapter is to investigate the effects of a binary chemical reaction and 

activation energy on three-dimensional flow of upper-convected Maxwell (UCM) fluid over a 

surface which is being stretched in one directions. The solutions for velocity, temperature and 

concentration are obtained numerically by using shooting method based on fifth-order Runge-

Kutta algorithm. Graphs are presented to explore the physical behaviors of embedded parameters 

on the flow fluid. 

3.1  Problem formulation 
 

Consider a three-dimensional flow of an incompressible Maxwell fluid over an elastic surface 

located in the xy plane. The fluid resides in the space 0z  . The surface is stretched in the x

direction with the linearly varying velocity of the form ( )wu x ax  which induces flow in the 

neighboring layers of the fluid. Let   be the constant angular velocity of the rotating fluid. The 

surface is kept at constant temperature wT
 
and solute concentration at the surface is denoted by 

wC . Let T  
and C  be the ambient values of temperature and solute concentration respectively. 

Physical sketch of the problem is shown in Fig. 1. Governing equations in the presence of 

species chemical reaction with Arrhenius activation energy are expressed below:  
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Fig. 3.1: Physical configuration and coordinate system. 

 

. 0, V  (3.1) 

   ( . ) ( ) 2 . ,p           V V Ω Ω r Ω V S  (3.2) 

2( . ) ,pc T k T   V  (3.3) 

T2 2 T
( . ) ( ),

T

Ea

n

rC D C k e C C






 
     

 
V  

(3.4) 

where k  is the thermal conductivity, D  the solute diffusivity,   the fluid density, 
pc  the 

specific heat and [0,0, ] Ω  the angular velocity vector. The term  

2 2( ) ( / 2)r    Ω Ω r  represents the centrifugal force which is being balanced by the 

pressure gradient p . The term   2 /
Ea

kT
n

rk T T e


 is the modified Arrhenius function [11] in 

which 
58.61 10 /eV K    is the Boltzmann constant, 2

rk the reaction rate and n the fitted rate 

constant generally lies in 1 1n   . In Eq. (2), S  is the extra stress tensor for upper-convected 

Maxwell fluid which satisfies the following: 
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1 1,
D

Dt
  

S
S A  

in which 
1  is the fluid relaxation time,    

t
   1A V V  the first Rivlin-Ericksen tensor and 

/D Dt  the upper-convected time derivative. Invoking the conventional boundary layer 

approximations, Eqs. (3.1) - (3.4) can be expressed in component forms as below: 

0,
u v w

x y z

  
  

  
 

(3.5) 
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 
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 
                 
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 (3.7) 

2

2
,

T T T T
u v w

x y z z


   
  

   
 (3.8) 

2
2

2
( ).

Ea

kT

n

r

C C C C T
u v w D k e C C

x y z z T







    
     

     
 (3.9) 

 

The boundary conditions in the present problem are: 

,   0,   0,   = ,   =      at   0,

     0,    0,   ,        as   .

w wu ax v w T T C C z

u v T T C C z 

   

    
 (3.10) 
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We introduce the following set of similarity variables involving dimensionless vertical distance 

  as 

, '( ), ( ), ( ), , ,
w w

a T T C C
z u axf v axg w a f

T T C C
      


 

 

 
      

 
 (3.11) 

Eq. (3.5) is identically satisfied and Eqs. (3.6) - (3.9) convert into the following ordinary 

differential equations: 

 2 22 [2 ] 0,f ff f g fg ff f f f                (3.12) 

 2 2 22 [2 ] 0,g fg gf f f ff g ff g f g                   
 

 (3.13) 

1
0,

Pr
f     (3.14) 

 
1

1 exp 0,
1

n E
f

Sc
    



 
       

 (3.15) 

subject to the transformed conditions 

at 0 : 0, 1, 1,

as : 0, 0, 0, 0.

f g f

f g

  

  

     

    
 (3.16) 

where / a  is the rotation parameter, 
1a 

 
the Deborah number, /pPr c k the Prandlt 

number, /Sc D  the Schmidt number,  /aE E T 
 
the non-dimensional activation energy, 

 –  /wT T T  
 
the temperature difference parameter, 2 /  rk a  the dimensionless reaction 

rate. Fourier law can be used to define local Nusselt number   xNu
 

and Fick’s law can be 

employed to define local Sherwood number   xSh . These are as follows: 

, ,
( ) ( )

w w

w w

x x

xq xj
Nu S

T T D C
h

Ck
 

 
   (3.17) 

where w
q  is the wall heat flux and w

j is the wall mass flux given by  
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0 0

, .
w w

z z

T C
q k j D

z z 

 
   

 
 (3.18) 

Now using Eq. (3.11) and Eq. (3.18), Eq. (3.17) becomes 

(0), (0),x x

x x

Nu Sh

Re Re
       (3.19) 

where 2 /xRe ax 
 
is the local Reynolds number. 

3.2 Numerical method 
 

Here we deal with the numerical solutions of Eqs. (3.12) - (3.15) with the conditions (3.16) by 

conventional shooting approach. We convert Eqs. (3.12) - (3.16) into a system of first order 

equations by writing 1 2 3 4 5 6 7 8 9, , , , , , , , .f x f x f x g x g x x x x x                We 

obtain the following: 

    

     

    

1
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2 3

2
3 2 1 3 4 1 5 1 2 3 1
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

 

 

 
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 
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 
      
 

 
 

        
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









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




 
 
 
 
 
 
 
 
 
 
 
 

 (3.20) 

with the following initial conditions 
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 (3.21) 

where    1 2 3 4, , , (0),g (0), (0), (0)u u u u f      . The first order system (3.20) can be integrated 

numerically through fifth-order Runge-Kutta method by assigning appropriate values to 1 2 3, ,u u u

and 4u . Newton-Raphson method is implemented to iteratively estimate these values. The whole 

process is repeated at different max  say 10,11,12,13   until the solutions exponentially tend to 

free stream conditions with specified tolerance say 
510
. The obtained solutions are found to be 

consistent with those from the MATLAB built in routine bvp4c. 

3.3 Results and discussion 
 

To validate our results we have made table 3.1 for different values of   when rotating 

parameter 0  . The values of  0f 
 
are found in great agreement with that of Abel et al. [26] 

and Megahed [27]. 

  Abel et al. [26] Megahed [27] Abbasi et al. [28] Present results 

0.0 0.999962 0.999978 1.000000 1.000000 

0.2 1.051948 1.051945 1.05189 1.051887 

0.4 1.101850 1.101848 1.10190 1.101898 

0.6 1.150163 1.150160 1.15014 1.150128 

0.8 1.196692 1.196690 1.19671 1.196708 

1.2 1.285257 1.285253 1.28536 1.285361 

1.6 1.368641 1.368641 1.36873 1.368756 

2.0 1.447617 1.447616 1.44781 1.447648 

Table 3.1: Comparison with   0f   obtained by Abel et al. [26] and Megahed [27] for 

different values of    when rotating parameter 0  . 
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In this section, our focus is to analyze the role of embedded parameters on the velocity, 

temperature and concentration profiles. For that Figs. 3.2 – 3.15 are prepared. 

  

Fig. 3.2: Effect of  on  ' .f 
 

 

Fig. 3.3: Effect of  on  ' .f 
 

 

 
 

Fig. 3.4: Effect of  on  .g 
 

 

Fig. 3.5: Effect of Pr and  on / Rex xNu for

0   and 0.5.   
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Fig. 3.6: Effect of  on  . 
 

 

Fig. 3.7: Effect of Pr on  .   

 

  

Fig. 3.8: Effect of  on  . 
 

 

Fig. 3.9: Effect of E on  . 
 

 

  

Fig. 3.10: Effect of  on  . 
 

 

Fig. 3.11: Effect of n on  . 
 

 

 



32 
 

  

Fig. 3.12: Effect of  on  . 
 

 

Fig. 3.13: Effect of Sc on  . 
 

 

  

Fig. 3.14: Effect of E and   on / Rex xSh  

for 1  and 3.   

Fig. 3.15: Effect of  and n on / Rex xSh for

1Sc   and 3.Sc 
 

 

Fig. 3.2 preserves the influence of Deborah number   on the velocity field f   when 0.2  . 

The profiles indicate a decreasing trend in f   for increasing values of  . It means that fluid 

motion in the x direction is opposed by the viscoelastic effects. For larger values of  , the 

profiles of f   tend to zero at smaller distances above the sheet. In smaller Deborah number fluid, 

viscous effect is dominant compared to the elastic effect whereas the fluid tends to behave as 

elastically solid material when Deborah number enlarges. In Fig. 3.3, the influence of rotation 

parameter   on the velocity in x direction is observed. The rotational effects tend to slow 

down the fluid motion in the x direction. For smaller  , the decrease in velocity field f   with 

  is monotonic while an interesting oscillatory behavior in f   is observed for large   which is 

due to the rotational effects. Fig. 3.4 shows the profiles of g  for various values of Deborah 
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number   with 0.2  . The negative value of g  reveals that flow is solely in the negative y 

direction. For larger value of  , the oscillations in the profile of g  analogous to those of f   are 

observed.  

Fig. 3.5 is presented to analyze the influence of rotation on the local Nusselt number which 

determines the heat transfer rate from the sheet. It is observed that the local Nusselt number 

approaches zero for vanishing Prandtl number Pr and it increases upon increasing Pr. It is also 

clear that local Nusselt number has inverse relationship with  . It means that heat transfer rate 

reduces when fluid is subjected to larger rotation rate. In Fig. 3.6 we have plotted temperature 

field   for different values of parameter   . Temperature    increases and thermal boundary 

layer becomes thicker upon increasing the parameter   . Physically it is attributed to the fact that 

larger rotation parameter    gives larger kinetic energy to the fluid which enhances its 

temperature. Fig. 3.7 shows the relation between Prandtl number  Pr  and temperature   . Larger 

Prandtl number implies weaker thermal diffusivity that leads to thinner penetration depth of 

temperature.  

In Fig. 3.8, the effects of rotation parameter    on the concentration profile ( )   have been 

shown. It depicts that concentration boundary layer thickness grows when angular velocity    is 

increased. Concentration profiles for various values of dimensionless activation energy  E  have 

been plotted in Fig. 3,9. It reveals that increasing the dimensionless activation energy causes the 

thickening of the concentration boundary layer. This is because low temperature and high 

activation energy leads to smaller reaction rate constant and thus slow down the chemical 

reaction. Consequently, the concentration of the solute increases. Fig. 3.10 shows the variation in 

solute concentration with the variation in temperature difference parameter   . It is observed that 

solute concentration    is a decreasing function of   . This implies that concentration boundary 

layer thickness increases when difference between wall and ambient temperature enlarges. Figs. 

3.11 and 3.12 are prepared to observe the influence of fitted rate constant  n  and reaction rate    

on solute concentration    respectively. It can be observed that an increase in either  n  or    

results in an increase in the factor (1 ) exp( /1 )n E     . This eventually favors the 

destructive chemical reaction due to which concentration rises. The reduction in    is 

accompanied with larger concentration gradient at the wall. The effects of Schimdt number  Sc  
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on concentration profile can be noticed from Fig. 3.13. It illustrates the thinning of concentration 

boundary layer when  Sc  is increased. Physically, an increase in Schmidt number  Sc  

corresponds to lower solute diffusivity which results in shorter penetration depth of 

concentration.  

Plots of local Sherwood number 1/2Rex xSh  versus activation energy E  at different values of 

reaction rate constant   have been included in Fig. 3.14. There is a decrease in 1/2Rex xSh  as 

E  increases and this decrease is pronounced when larger values of   are employed. It means 

that mass flux from the sheet is smaller when chemical reaction requires larger activation energy. 

Fluid rotation rate seem to have a mild influence on the wall mass flux for any prescribed values 

of n  and Sc (see Fig. 3.15). The magnitude of 1/2Rex xSh

 
is increased when Schmidt number 

Sc  is varied from 1Sc  to 3Sc  . 

Tables 3.2 and 3.3 are presented to observe the trends in wall heat and mass transfer rates with 

the variation in embedded parameters.  

Table 3.2 shows that magnitude of local Nusselt number 1/2Rex xNu  increases as the rotation 

parameter    and Deborah number   increase while it significantly grows as Prandtl number

 Pr  increases. In other words, fluid rotation and viscoelasticity have adverse impact on the 

cooling process of the sheet. Table 3.3 indicates a sharp growth in local Sherwood number 

1/2Rex xSh  when either Schmidt number  Sc  or reaction rate constant   is incremented. 

Schmidt number compares the momentum diffusion to mass diffusion. Thus concentration 

boundary layer becomes thinner and mass transfer rate augments when  Sc  increases.  
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Table 3.2: Numerical values of local Nusselt number (0)  for various values of ,Pr and  . 

 

Sc    E     ' 0  

1 0.2 1 1 0.95064 

3    1.80760 

5    2.40990 

8    3.12064 

1 0.1 1 1 0.95576 

 1   0.90663 

 2   0.88791 

 3   0.88577 

1 0.2 2 1 0.75333 

  4  0.58015 

  6  0.53528 

  8  0.52368 

0.2 0.2 1 1.5 0.43149 

   2.0 0.49336 

   2.5 0.54928 

   3 0.60083 

Table 3.3: Numerical values of local Sherwood number  ' 0 for different values of , ,Sc E

and .   

    Pr   ' 0  

0.2 0.5 1 0.51903 

1.0   0.34237 

1.5   0.27827 

2.0   0.23746 

0.2 0.2 1 0.54670 

 0.4  0.52809 

 0.6  0.51009 

 0.8  0.49255 

0.2 0.5 2 0.85109 

  5 1.51553 

  7 1.84540 

  10 2.26033 
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Chapter 4 

4. Conclusions 

 

Heat transfer involving non-linear radiative flux on the flow of Maxwell fluid over a 

bidirectional stretching surface and heat and mass transfer involving Arrhenius activation energy 

and binary chemical reaction on the flow of Maxwell fluid in a rotating frame is presented and 

analyzed. The major points of this work are as follows: 

1. Boundary layer of Newtonian fluids is thicker than the boundary layer of Maxwell fluids. 

2. In non-linear radiation, thermal boundary layer is controlled by variable thermal 

diffusivity of the form * 3( 16 / 3 *)
p

T c k    . 

3. Temperature profile becomes S-shaped in pattern for sufficiently large values of 
w

  . 

4. Velocities in the x- and y-directions decrease as fluid relaxation time 
1
  increases. Also, 

wall heat flux reduces upon increasing the fluid relaxation time 
1
 . 

5. Hydrodynamic boundary layer thins when rotation parameter   is incremented. An 

oscillatory behavior in both x- and y-components of velocity is observed when rotation 

parameter   is sufficiently large. 

6. The vertical component of velocity at far field decreases when either Deborah number   

or rotation parameter   is increased. 

7. Thermal boundary layer significantly grows when fluid rotates at larger angular velocity. 

This growth is accompanied with a reduction in wall slope of temperature and eventually 

the local Nusselt number. 

8. Solute concentration   increases and wall mass flux reduces when larger rotation 

parameter   is employed. 

9. Activation energy E  enhances the solute concentration and reduces wall mass flux. This 

reduction grows further when difference between wall and ambient temperatures is 

increased. 
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10. Solute concentration   reduces when reaction rate constant   enlarges. Concentration   

is also inversely proportional to the temperature differences. 

11. Schmidt number Sc  decreases the solute concentration and supports the mass transfer rate 

from the wall.  
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