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Abstract

Depth and Stanley depth are the algebraic and geometric invariants, respectively, which

have been computed for various classes of graphs. Earlier, for the powers of edge ideal

associated with trees and forests, the computed bounds were dependent upon diameter,

power and number of connected components in the forest. The present dissertation is

primarily concerned with the value of depth and Stanley depth of edge ideals associated

with firecracker and three other classes of graphs. Also, the lower bounds have been

given for any power of the edge ideals corresponding to the generalized banana tree

and a class of the lobster tree, in terms of the total number of stars in the graph and

power of the edge ideal, which is comparatively better than the existing bounds for

trees.
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Introduction

At first sight, the utilization of graph theory for the study of edge ideals is advanta-

geous in light of the fact that there are common objects of study. However, indeed some

noteworthy results on certain graphs and power of their edge ideals have taken place

in this dissertation. In 1982, Stanley [23] defined an invariant for finitely generated

Zn-graded modules over the commutative ring, called Stanley depth. He also gave a

conjecture relating the depth and Stanley depth of a module. It was later proved by

Duval et al. [9] in 2015 that Stanley’s conjecture does not hold generally for modules

of the type S/I, where S is a polynomial ring in n variables and I is a monomial

ideal. Nonetheless, discovering the classes that still satisfies the conjecture is yet an

intriguing endeavor. In this thesis, some improved lower bounds are computed for the

power of edge ideals of certain trees. Also, a detailed review of the work of Morey [14]

and Pournaki et al. [18] on the power of edge ideals of the forest is given.

Chapter 1 summarizes the elementary details about commutative algebra. In par-

ticular, it covers the basics of ring and module theory. It also offers a short introduction

to graph theory.

Chapter 2 presents the brief introduction of depth and Stanley depth of multi-

graded finitely generated modules. A method of computing Stanley depth for square-

free monomial ideals is also discussed. Furthermore, some known bounds of these two

invariants are quoted along with Stanley’s conjecture.

Chapter 3 is devoted to the study of the power of edge ideals. It comprises the

bounds for depth and Stanley depth of kth power of edge ideals corresponding to trees

and forests. These bounds are dependent upon number of components, diameter and

powers of edge ideals.
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In Chapter 4, firecracker, circular firecracker, paths attached to a path and cycle

with a gradual decrease in length are introduced. Later their depth and Stanley depth

are computed by using induction and Depth Lemma on short exact sequences.

Chapter 5 is about calculating the bound for depth and Stanley depth of powers of

edge ideal corresponding to a class of lobster tree in terms of power k and the order

of r-star in the graph. The bound is also computed for the generalized banana tree in

terms of number of stars in the graph and power of its edge ideal.
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Chapter 1

Preliminaries

Algebra is the abstract encapsulation of our intuition for the concept of two objects

coming together to form a new one. This chapter comprises the fundamental concepts of

abstract and commutative algebra; including rings, subrings, their quotients, ideals and

modules along with examples. The study of rings is concerned with objects possessing

two binary operations (called addition and multiplication) related by the distributive

laws, whereas modules are the representation objects for rings, i.e., they are algebraic

objects on which rings act. In addition, graph theory is also discussed here. Later,

few elementary results are given in order to have a better understanding of the next

chapters.

1.1 Ring theory

In algebra, the theory of rings [8] deals with the study of algebraic structures, called

rings, which have defined operations of multiplication and addition.

Definition 1.1.1. A non-empty set R along with the two defined binary operations

“ × ” and “ + ” is called a ring if it satisfies the following axioms:

• R is a commutative group w.r.t “ + ”.

• Associativity holds w.r.t “ × ” that is for all s1, s2, s3 ∈ R

(s1 × s2)× s3 = s1 × (s2 × s3).
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• The distributive laws hold in R, that is for all s1, s2, s3 ∈ R

(s1 + s2)× s3 = (s1 × s3) + (s2 × s3),

s1 × (s2 + s3) = (s1 × s2) + (s1 × s3).

If ring R is commutative w.r.t multiplication then it is called a commutative ring. The

ring R is said to have an identity if ∀ s ∈ R, there exists an element 1 ∈ R such that

s× 1 = 1× s = s.

Definition 1.1.2. Let R be a ring with unity. If every non-zero element of R has

a multiplicative inverse then R is called a division ring. A division ring which is

commutative w.r.t multiplication is called a field.

Example 1.1.3. Following are the examples of ring.

1. Z/nZ with multiplicative identity 1 under multiplication and addition of residue

classes, forms a commutative ring.

2. Let R = R3, then R is a non-commutative ring without unity, where the operation

of addition to be the usual addition of vectors and multiplication is the cross

product of vectors.

Proposition 1.1.4. A non-empty subset I of a ring R is said to be an ideal if and

only if z1 − z2 ∈ I , zs ∈ I and sz ∈ I for all z1, z2, z ∈ I and s ∈ R.

1.1.1 Ring of Polynomials

The polynomial ring is a particular type of ring which is formed by a set of polynomials.

These polynomials are in one or more than one variable where the coefficients belong

to a ring or maybe a field. Polynomial rings are used in several fields of mathematics

and the investigation of their properties is among the primary inspirations for the

advancement of commutative algebra and ring theory.
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Definition 1.1.5. For a commutative ring R with unity, a polynomial in variable y

while the coefficients belong to R has the form

s0 + s1y + · · ·+ sn−1y
n−1 + sny

n,

with n ≥ 0 and each si ∈ R. If sn 6= 0, then the polynomial is said to be of degree n,

where rnyn is called the leading term. The set of polynomials is denoted by R[y]. Thus

R[y] = {s0 + s1y + · · ·+ sn−1y
n−1 + sny

n : n ≥ 0, si ∈ R}.

R[y] is a commutative ring with unity under addition and multiplication of polynomials

and the unity of R[y] is the unity of R.

Definition 1.1.6. The polynomial ring in the variables y1, y2, . . . , yn and coefficients

belonging to R(commutative with identity) is represented by

R[y1, y2, . . . , yn] = R[y1, y2, . . . , yn−1][yn].

1.1.2 Ring Homomorphism

In the field of ring theory, a ring homomorphism is a map from one ring to another

that respects the same additive and multiplicative structures.

Definition 1.1.7. Consider two rings R1 and R2. A ring homomorphism is a map

H : R1 → R2 which satisfies the following axioms for all s1, s2 ∈ R1

• H(s1 + s2) = H(s1) +H(s2),

• H(s1s2) = H(s1)H(s2),

• H(1) = H(1′),

where 1 and 1′ are multiplicative identities of R1 and R2, respectively. A ring homo-

morphism which is both injective and surjective is known as ring isomorphism.
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Definition 1.1.8. For a proper ideal I, a quotient ring R/I can be formed, which

consists of cosets s+ I, where s ∈ R, and the product of cosets is defined as:

(s1 + I)(s2 + I) = s1s2 + I.

Next there are the isomorphism theorems for rings.

Theorem 1.1.9. (Isomorphism Theorems)

1. For a ring homomorphism γ : R1 → R2, γ(R1) is isomorphic to R1/ker(γ), i.e.,

R1/ker(γ) ∼= γ(R1).

2. For an ideal I and subring J of R1,

(J + I)/I ∼= J/J ∩ I.

3. Consider the ideals I1 and I2 of ring R1, with I1 ⊆ I2, then I2/I1 is an ideal of

R1/I1. Also

(R1/I1)/(I2/I1) ∼= R1/I2.

For the ideals I and K of the ring R, the set of sums a + b with a ∈ I and b ∈ K
is not only a subring of R but is an ideal in R (the set is clearly closed under addition

and α(a+ b) = αa+ αb ∈ I +K since αa ∈ I and αb ∈ K). The product of ideals can

also be defined in the following way.

Definition 1.1.10. Assume I1 and I2 be the ideals of ring R.

1. Product of two ideals, say I1 and I2, is a set consisting of all possible finite sums

of the elements of the form i1i2 where i1 ∈ I1 and i2 ∈ I2. It is denoted by I1I2.

2. Similarly the tth power of an ideal I, for t ≥ 1, is a set consisting of all possible

finite sums of the elements of the form i1i2 . . . it with ij ∈ I for all j. Equivalently,
I t is defined inductively by defining I1 = I, and I t = II t−1 for t = 2, 3, . . . .

Example 1.1.11. Let I = 9Z and J = 12Z in Z. Then I + J consists of all integers

of the form 9z1 + 12z2 with z1, z2 ∈ Z. Since every such integer is divisible by 3, so

9Z + 12Z ⊆ 3Z. On the other hand, 3 = 9(−1) + 12(1) shows that 3Z is contained in

9Z + 12Z, hence 9Z + 12Z = 3Z. In general, q1Z + q2Z = dZ, whereas d = (q1, q2).
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1.1.3 Properties of Ideals

One important class of ideals are those which are not a subset of any other proper ideal

of the ring.

Definition 1.1.12. For a ring R, a maximal idealM is a proper ideal of the ring which

is only contained in M itself and R.

Definition 1.1.13. For a commutative ring R, a proper ideal P is said to be a prime

ideal if for s1, s2 ∈ R, s1s2 ∈ P , then either s1 ∈ P or s2 ∈ P .

Definition 1.1.14. For a ring R, consider two ideals I1 and I2. Then their ideal

quotient is defined as

(I1 : I2) = {s ∈ R : sI2 ⊆ I1}.

Definition 1.1.15. The radical of an ideal I is defined as

√
I = {s ∈ R : sk ∈ I , for k > 0}.

Definition 1.1.16. For a proper ideal N of ring R, N is called a primary ideal if

s1s2 ∈ N , for s1, s2 ∈ R, then either s1 ∈ N or sk2 ∈ N for some k ≥ 1.

When N is a primary ideal, P is a prime ideal and also P =
√
N then N is called

P -primary.

1.1.4 Monomial Ideal

For a polynomial ring S = K[x1, . . . , xn] over the field K, monomials forms the natural

K-basis. Let Rn
+ be the set of vectors b = (b1, . . . , bn) ∈ Rn where every bj ≥ 0 and

Zn+ = Rn
+ ∩ Zn. A monomial is any product of the form xb11 . . . x

bn
n with bj ∈ Z+. If

w = xb11 . . . x
bn
n is a monomial then w = xb with b = (b1, . . . , bn) ∈ Zn+, and

xb1xb2 = xb1+b2 .

An ideal whose generating set only consists of monomials is said to be a monomial

ideal. Mon(S) denotes the set of all monomials in S and it forms the basis of S. For

7



any polynomial f ∈ S and for bw ∈ K

f =
∑

w∈Mon(S)

bww,

where support of f is defined as

supp(f) = {w ∈Mon(S) : bw 6= 0}.

Definition 1.1.17. Let G(I) = {u1, . . . , um}. The ideal I is called a complete inter-

section ideal if and only if, for all i 6= j,

supp(ui) ∩ supp(uj) = ∅.

Proposition 1.1.18. Consider two monomial ideals I1 and I2. Then

1. I1 ∩ I2 is a monomial ideal, and {lcm(p, q) : p ∈ G(I1) , q ∈ G(I2)} is the

generating set of I1 ∩ I2.

2. (I1 : I2) is a monomial ideal and (I1 : I2) =
⋂
q∈G(I2)

(I1 : (q)).

A monomial xb is said to be squarefree if b has components 0 and 1. An ideal with a

generating set containing only squarefree monomials is known as squarefree monomial

ideal.

Definition 1.1.19. For a prime ideal P , the height of P denoted by ht(P ), is defined

as

ht(P ) = max{mi : P0 ⊂ P1 ⊂ . . . ⊂ Pmi = P}.

For any proper ideal I

ht(I) = min{ht(Pi) : I ⊂ Pi where Pi is a prime ideal}.

1.1.5 Primary Decomposition

For an ideal J , primary decomposition is a way of representing J as an intersection

J =
⋂n
m=1Nm, whereas each Nm is a primary ideal. Let {Pm} = Ass(Nm). If none of

the Nm can be omitted in this intersection and Pr 6= Ps for all r 6= s then it is called

irredundant primary decomposition.
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Example 1.1.20. Let I = (x21x3 , x
3
4 , x

4
2x

2
4 , x1x2x

3
3 ), then

I = (x21 , x
3
4 , x

4
2x

2
4 , x1x2x

3
3 ) ∩ (x3 , x

3
4 , x

4
2x

2
4 , x1x2x

3
3 )

= (x21 , x
3
4 , x

4
2x

2
4 , x1x2x

3
3 ) ∩ (x3 , x

3
4 , x

4
2x

2
4 )

= (x21 , x
3
4 , x

4
2 , x1x2x

3
3 ) ∩ (x21 , x

3
4 , x

2
4 , x1x2x

3
3 ) ∩ (x3 , x

3
4 , x

4
2 ) ∩ (x3 , x

3
4 , x

2
4 )

= (x21 , x
3
4 , x

4
2 , x1x2x

3
3 ) ∩ (x21 , x

2
4 , x1x2x

3
3 ) ∩ (x3 , x

2
4 , x

4
2 ) ∩ (x3 , x

2
4 ).

In the above example, the obtained primary decomposition is irredundant as Pr 6=
Ps for 1 ≤ r, s ≤ 4. But generally it does not happen, as in the following example.

Example 1.1.21. Let I = (x42 , x
4
3 , x

3
2x

3
4 , x2x3x

3
4 , x

3
3x

3
4 ), then

I = (x42 , x
4
3 , x

3
2 , x2x3x

3
4 , x

3
3x

3
4 ) ∩ (x42 , x

4
3 , x

3
4 , x2x3x

3
4 , x

3
3x

3
4 )

= (x32 , x
4
3 , x2x3x

3
4 , x

3
3x

3
4 ) ∩ (x42 , x

4
3 , x

3
4 )

= (x32 , x
4
3 , x2 , x

3
3x

3
4 ) ∩ (x32 , x

4
3 , x3x

3
4 , x

3
3x

3
4 ) ∩ (x42 , x

4
3 , x

3
4 )

= (x2 , x
4
3 , x

3
3x

3
4 ) ∩ (x32 , x

4
3 , x3x

3
4 ) ∩ (x42 , x

3
3 , x

3
4 )

= (x2 , x
4
3 , x

3
3 ) ∩ (x2 , x

4
3 , x

3
4 ) ∩ (x32 , x

4
3 , x3 ) ∩ (x32 , x

4
3 , x

3
4 ) ∩ (x42 , x

3
3 , x

3
4 )

= (x2 , x
3
3 ) ∩ (x2 , x

4
3 , x

3
4 ) ∩ (x32 , x3 ) ∩ (x42 , x

4
3 , x

3
4 )

= (x2 , x
3
3 ) ∩ (x32 , x3 ) ∩ (x42 , x

4
3 , x

3
4 ).

It is the primary decompostion of I but not irredundant. Here Ass(x2 , x
3
3 ) = Ass(x32 , x3 ) =

{(x2 , x3 )}. Now for irredundant primary decomposition, take an intersection of

(x2 , x
3
3 ) and (x32 , x3 ), that is

(x2 , x
3
3 ) ∩ (x32 , x3 ) = ( x32 , x2x3 , x

3
3 ).

Hence

I = (x42 , x
4
3 , x

3
4 ) ∩ (x32 , x2x3 , x

3
3 ).

1.2 Module Theory

For a ring R, the definition of R-module M [8] is quite similar to that of group action.

Modules are the representation objects for rings, which implies they are the algebraic

objects on which the rings act.

9



Definition 1.2.1. For a commutative ring R, an R-module M is an commutative

group w.r.t addition, along with a scalar multiplication map · : R×M →M , defined

as · ((s,m)) = sm, which holds the following axioms

1. s(m1 +m2) = sm1 + sm2,

2. (s1 + s2)m = s1m+ s2m,

3. (s1s2)m = s1(s2m),

4. 1m = m, ∀ s1, s2 ∈ R and m1,m2 ∈M .

Examples 1.2.2. 1. For a commutative group D, let d ∈ D and z ∈ Z, then define

· : Z×D → D, such that

·(z, d) = zd =


(−d) + · · ·+ (−d) , if z < 0;
d+ d+ · · ·+ d , if z > 0;
0 , if z = 0.

Then D is a Z-module.

2. The ideals of the ring are also R-modules.

1.2.1 R-module Homomorphism

Definition 1.2.3. For a ring R, let K and S be R-modules. A function F : K → S is

an R-module homomorphism if

• F (k1 + k2) = F (k1) + F (k2), for all k1, k2 ∈ K.

• F (rk) = rF (k), for all r ∈ R , k ∈ K.

If γ is injective and onto then it becomes an R-module isomorphism.

Examples 1.2.4. 1. For a ring R, consider R-module R. Then R-module homo-

morphism (even from R into itself) needs not to be a ring homomorphism. Con-

sider R = Z, the Z-module homomorphism x 7→ 2x is not a ring homomorphism.

10



2. When R = F [y], the ring homomorphism φ : h(y) 7→ h(y2) is not an F [y]-module

homomorphism.

Definition 1.2.5. For a ring R, assume a submodule Q of R-module M . Then (addi-

tive abelian) quotient group M/Q becomes an R-module by defining the scalar multi-

plication, ∀ r ∈ R , m+Q ∈M/Q

r(m+Q) = rm+Q.

1.2.2 Generation of Modules

For any subset A of R-module M , let

RA = {r1a1 + · · ·+ rnan : r1, . . . , rn ∈ R , a1, . . . , an ∈ A and n ∈ Z+}.

If A is the finite set, {a1, . . . , an}, then RA = Ra1 +Ra2 + · · ·+Ran. Let N = RA for

some subset A of M and say N is a submodule of M . A is the generating set for N .

A submodule N is said to be finitely generated if for N = RA, A is a finite subset of

M . A R-submodule N may have many different generating sets (for instance the set N

itself always generates N). Any generating set consisting of d number of elements (and

for all r < d it no longer remain a generating set) will be called a minimal generating

set for N , whereas generally it is not unique and d, r ∈ Z+ ∪ {0}.

Remark 1.2.6. Submodules of finitely generated module needs not to be finitely gen-

erated. For a field F let S = F [x1, x2, . . . ]. Consider S as a module over itself then R

is a cyclic module generated by 1. Let Q = (x1, x2, . . . ) is a submodule of S, generated

by x1, x2, . . . . Then Q cannot be generated by any finite set.

Definition 1.2.7. Let F be an R-module then it is said to be free on the subset H

of F if for 0 6= f ∈ F , there are unique non-zero elements r1, . . . , rk of R and unique

h1, . . . , hk in H, such that

f = r1h1 + · · ·+ rkhk.
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Definition 1.2.8. For a commutative ring R, consider a chain of prime ideals in the

ring, with length ni
P0 ( P1 ( P2 ( · · · ( Pni ,

then dimension of ring R is defined as

dimR = sup{ni}.

Let M be an R-module, then the Krull dimension of M is

dim(M) = dim(R/Ann(M)).

For the modules of the type R/I

dim(R/I) = max{dim(R/Qi) : Qi ∈ Ass(R/I)}.

1.2.3 Exact Sequences

Definition 1.2.9. Consider a sequence of R-homomorphisms on R-modules

. . . −→ Mj−1
gj−−→Mj

gj+1−−−→Mj+1
gj+2−−−→ . . .

it is exact at Mj if Im(gj) = ker(gj+1). The sequence is exact if it is exact at every

Mj. Particularly, 0 −→ N ′
g−−→ M is exact at N ′ if and only if g is one to one, and

M
h−−→ N ′′ −→ 0 is exact at N ′′ if and only if h is onto.

Proposition 1.2.10. The sequence

0 −→ N ′
g−−→M

h−−→ N ′′ −→ 0

is an exact sequence if and only if g is one to one, h is onto and Im(g) = ker(h).

Remark 1.2.11. The sequence in Proposition 1.2.10 is called a short exact sequence.

Examples 1.2.12. 1. Let D and E are R-modules, then

0 −→ D
j−→ D ⊕ E π−−→ E −→ 0

is a short exact sequence, where j(d) = (d, 0) and π(d, e) = e .

12



2. 0 −→ Z ·n−−→ Z π−−→ Z/nZ −→ 0 is also an short exact sequence, here n denotes

a map x 7→ nx, given by multiplication by n.

Proposition 1.2.13. Let Σ be a poset with respect to ≤. Then the following are

equivalent.

1. Every increasing sequence x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . in Σ is stationary, that is

there exist n ∈ N for which xm = xn, for all m ≥ n.

2. Every ∅ 6= A ⊂ Σ has a maximal element.

Let Σ be the set of submodules of M which is ordered by the relation ⊆ then 1 is

called ascending chain condition and 2 is called the maximal condition.

Definition 1.2.14. For a ring R, an R-module M is said to be Noetherian if each

ascending chain of R-submodules ofM is stationary. A ring R is said to be Noetherian

if R is Noetherian as an R-module.

Theorem 1.2.15. (Hilbert Basis Theorem) Let R be a noetherian ring, then R[y] is

also a noetherian ring.

Definition 1.2.16. Let M be finitely generated R-module where R is a Noetherian

ring, an associated prime ideal of a module is a prime ideal P of the ring R such that

P = Ann(m), where Ann(m) = {α ∈ R : αm = 0}.

1.2.4 Graded Rings

Consider a commutative semigroup (w.r.t addition) U . An U -graded ring is a ring R

along with a decomposition

R =
⊕
u∈U

Ru (as a group),

such that RuRv ⊂ Ru+v for all u, v ∈ U .
Then for r ∈ R, we can write a unique expression

r =
∑
u∈U

ru,

13



where ru ∈ Ru and almost all ru = 0. The element ru is called the uth homogeneous

component and if r = ru, then r is homogeneous of degree u. R[x] and R[x, y] are

Z-graded rings as

• R[x] = R⊕Rx⊕Rx2 ⊕Rx3 ⊕Rx4 ⊕Rx5 ⊕ · · ·.

• R[x, y] = R⊕ (Rx+Ry)⊕ (Rx2 +Rxy+Ry2)⊕ (Rx3 +Rx2y+Rxy2 +Ry3)⊕· · ·.

For a U -graded ring R and R-module M

M =
⊕
u∈U

Mu (as a group),

with RuMv ⊂ Mu+v for all u, v ∈ U , then M is said to be a U -graded module. A non

zero element of Mu is called a homogeneous element of degree u.

For a polynomial ring S defined over the field K, suppose b ∈ Zn, then h ∈ S is

said to be homogeneous of degree b when h has the form βxb, where β ∈ K. Also S

is Zn-graded with graded components:

Sb =

{
Kxb, if b ∈ Zn+;
0 , otherwise.

An S-module M is said to be Zn-graded if M =
⊕

b∈ZnMb and Sb1Mb2 ⊂Mb1+b2 for

all b1,b2 ∈ Zn.

1.3 Graph Theory

Graph theory comprises the study of graphs while the graphs are the mathematical

structures that are used to model the relation between the objects. The present section

gives an introduction to the primary fundamentals of graph theory [26].

Definition 1.3.1. A graph G is a triplet having a vertex set V (G), an edge set E(G)

and a relation that associates two vertices with each edge of G, which are called the

endpoints.

14
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Figure 1.1: Simple graph

Definition 1.3.2. An edge with same end points is called a loop. The edges which

share the same set of endpoints are called multiple edges. A simple graph is a graph

with no multiple edges and loops.

Consider an edge with endpoints u1, u2. Then u1, u2 are said to be adjacent and they

are neighbors of each other, written as u1 ↔ u2. In numerous significant applications,

the attention is restricted to simple graphs only.

Definition 1.3.3. For a vertex w of a graph G, the total number of edges incident on

it is known as the degree of w, which is usually denoted by dG(w) or d(w). The set

containing all the vertices adjacent to w forms the neighbourhood of w, denoted by

NG(w).

Definition 1.3.4. The total number of vertices in V (G) is known as the order of the

graph G, denoted by n(G). While the total number of edges in E(G) determines the

size of the graph, written as e(G).

Proposition 1.3.5. [26] For a graph G,∑
w∈V (G)

d(w) = 2e(G).

Definition 1.3.6. A graph G is said to be a path if V (G) can be ordered in a way

that whenever two vertices are consecutive in the list, there is an edge between them.

A path P is said to maximal if it is not contained in any path longer than P .
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Figure 1.2: 3-regular graph

Definition 1.3.7. A graph whose vertex and edge sets have the same cardinality

and vertices can be placed around the circle so that whenever two vertices appear

consecutive along the circle, an edge lies between them, such a graph is known as a

cycle. Deleting one edge from a cycle forms a path. A cycle and path on n vertices are

represented by Cn and Pn, respectively.

Definition 1.3.8. Bipartite graph is a graph whose vertex set can be written as a

union of two disjoint independent sets.

Figure 1.3: Bipartite graph

Definition 1.3.9. A simple graph in which there is an edge between every two vertices

is known as a complete graph.

Definition 1.3.10. A subgraph J of a graph G, written as J ⊆ G, is a graph such

that V (J) ⊆ V (G) and E(J) ⊆ E(G) and the endpoints of edges in J are the same as

16



in G.

Figure 1.4: Graph and its subgraph

Definition 1.3.11. A graph is said to be connected if there is a path between every

two vertices of the graph, otherwise graph is said to be disconnected.

Figure 1.5: Connected and disconnected graphs

Definition 1.3.12. A subgraph of G which is connected and is not a part of any other

connected subgraph of G is called the maximal connected subgraph. It is also known

as the component of the graph.

Definition 1.3.13. An acyclic graph is a graph without cycles. A forest is an acyclic

graph, while a connected graph without cycles is called a tree. A vertex w such that

degree of w is 1, is called a leaf.

Every component of forest is a tree. Since trees and forests contain no cycles, therefore

they are bipartite graphs.
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Figure 1.6: Tree

Definition 1.3.14. Consider a p, q-path in G. The distance from p to q is the mini-

mum length of p, q-path, written as d(p, q). The path with the maximum length in G

determines the diameter i.e.,

diamG = max
p,q ∈V (G)

d(p, q).

The eccentricity of a vertex p is the maximum distance from p to any other vertex of

the graph.

Example 1.3.15. The cycle Cn has diameter bn
2
c and the path has the diameter n−1.

For an edge e with endpoints p and q, the contraction of e replaces p and q with

a single vertex. The number of components in a graph can be increased by removing

a vertex or an edge. Whenever an edge is deleted, the number of components are

increased by 1, while the deletion of a vertex may cause the increment of more than

one components. Removal of a vertex also removes the edges incident on it and the

obtained graph is again a graph.
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Chapter 2

Depth and Stanley Depth

The present chapter concerns the depth and Stanley depth (named after Richard Stan-

ley in 1982) of Zn-graded modules over a commutative ring, including the Stanley’s

conjecture. It summarises the known values and bounds of depth and Stanley depth for

monomial ideals of the polynomial rings and their quotients. Throughout this chapter,

ring R has identity 1 6= 0.

2.1 Depth

Definition 2.1.1. Consider an R module M . A zero divisor of a module M is an

element 0 6= x ∈ R such that xm = 0, where 0 6= m ∈M .

Definition 2.1.2. Let M be a module over a ring R. A non-zero element r of R is

called M regular if for any m ∈ M , rm = 0 implies m = 0. In other words, the

multiplication by r on M is an injective map.

Definition 2.1.3. A sequence s = s1, . . . , sn of elements of R is said to be M -regular

if it satisfies the given axioms:

1. sk is M/(s1, . . . , sk−1)M regular for any k;

2. M 6= (s)M .
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Definition 2.1.4. Let M be a finitely generated R-module and let m be the unique

maximal ideal of local Noetherian ring R. Then depth of M is the common length of

all maximal M -sequences in m, denoted by depth(M).

Lemma 2.1.5. (Depth Lemma) Let R be a noetherian ring where R0 is local. Let

0 −→ H1 −→ H2 −→ H3 −→ 0

be a short exact sequence then [4, Proposition 1.2.9]

i) depth(H1) ≥ min{depth(H2) , 1 + depth(H3)},
ii) depth(H2) ≥ min{depth(H1) , depth(H3)},
iii) depth(H3) ≥ min{depth(H1)− 1 , depth(H2)}.

Definition 2.1.6. Consider a polynomial ring S in n number of variables and let I be

its ideal, then S/I is said to be Cohen-Macaulay if

dim(S/I) = depth(S/I).

2.2 Stanley Decomposition and Stanley Depth

Definition 2.2.1. Let S = K[x1, . . . , xn] be a polynomial ring, where K is a field and

let M be a finitely generated Zn-graded S-module. Let m ∈M be a homogeneous ele-

ment and consider a subset N ⊂ {x1, . . . , xn}, then mK[N ] represents the K-subspace

of M , whose generating set consists of homogeneous elements of the form mu, where

u is a monomial in K[N ]. The linear K-subspace mK[N ] is called a Stanley space of

dimension |N | if it is a free K[N ]-module, whereas |N | is the number of variables in N .

A Stanley decomposition of M is a presentation of the K-vector space M as a finite

direct sum of Stanley spaces.

D : M =
r⊕
j=1

ujK[Nj],

and the Stanley depth of a decomposition D is

sdepthD = min{ |Nj| , j = 1, . . . , r}.

20



The Stanley depth of M is

sdepths(M) = max{ sdepthD : D is a Stanley decomposition of M}.

2.2.1 Stanley’s Conjecture

In 1982, Stanley [23] gave a conjecture about an upper bound for the depth of a Zn-
graded S-modules. This conjectured upper bound is called the Stanley depth of a

module.

depth(M) ≤ sdepth(M).

It has been immensely significant as it gave a comparison of two very different invariants

of modules. For a polynomial ring S in n number of variables, let I ⊂ S be a monomial

ideal, then for n ≤ 3, n = 4 and n = 5 the conjecture for S/I is proved by Apel [3],

Anwar [2] and Popescu [17], respectively. Also, when I is an intersection of three

monomial prime ideals, or three monomial primary ideals or four monomial prime

ideals of S, the conjecture holds for I. But in 2016, Duval et al. [9] proved that

Stanley’s conjecture is generally false, by giving a counter example for the module of

type S/I for which the conjecture does not hold.

2.2.2 Method of computing Stanley Depth for Squarefree Mono-
mial Ideals

In 2009, Herzog et al. [13] gave a method of computing the lower bound for sdepth of

squarefree monomial ideals in finite number of steps by using posets. Assume I be a

squarefree monomial ideal and let G(I) = (u1, . . . , um) is the minimal generating set

of I. The characteristic poset of I w.r.t g = (1, . . . , 1), written as P(1,...,1)
I is defined as

P(1,...,1)
I = {γ ⊂ [n] | γ contains supp(uj) for some j},

where supp(uj) = {i : xi|uj} ⊆ [n] := {1, . . . , n}. For each ρ, σ ∈ P(1,...,1)
I where ρ ⊆ σ,

and

[ρ , σ] = {γ ∈ P(1,...,1)
I : ρ ⊆ γ ⊆ σ}.
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Let P : P(1,...,1)
I = ∪kj=1[γj , ηj] be a partition of P(1,...,1)

I , and for every j, suppose

s(j) ∈ {0, 1}n is the tuple with supp(xs(j)) = γj, then the Stanley decomposition D(P)

of I is given by

D(P) : I =
r⊕
j=1

xs(j)K[{xk | k ∈ ηj}].

Clearly, sdepthD(P) = min{|η1|, . . . , |ηr|} and

sdepth(I) = max{sdepthD(P) | P is a partition of P(1,...,1)
I }.

Example 2.2.2. Consider I = (y1y4, y1y2, y2y4, y1y3) ⊂ K[y1, y2, y3, y4] be a square-

free monomial ideal and J = 0. Set σ1 = (1, 0, 0, 1), σ2 = (1, 1, 0, 0), σ3 = (0, 1, 0, 1)

and σ4 = (1, 0, 1, 0). Thus I is generated by yσ1 , yσ2 , yσ3 , yσ4 and choose g = (1, 1, 1, 1).

The poset P = P g
I/J is given by

P = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1),

(0, 1, 1, 1), (1, 1, 1, 1)}.

Partitions of P are given by

P1 : [(1, 1, 0, 0), (1, 1, 0, 0)]
⋃

[(1, 0, 1, 0), (1, 0, 1, 0)]
⋃

[(0, 1, 0, 1), (0, 1, 0, 1)]
⋃

[(1, 0, 0, 1), (1, 0, 0, 1)]
⋃

[(1, 1, 1, 0), (1, 1, 1, 0)]
⋃

[(1, 1, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 0, 1, 1), (1, 0, 1, 1)]
⋃

[(0, 1, 1, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 1, 1), (1, 1, 1, 1)].

P2 : [(1, 1, 0, 0), (1, 1, 1, 0)]
⋃

[(1, 0, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 0, 1, 0), (1, 0, 1, 1)]
⋃

[(0, 1, 0, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 1, 1), (1, 1, 1, 1)].

and the corresponding Stanley decomposition is

D(P1) := y1y2K[y1, y2]⊕ y1y3K[y1, y3]⊕ y1y4K[y1, y4]⊕ y2y4K[y2, y4]⊕ y2y3y4K[y2, y3, y4]⊕

y1y2y4K[y1, y2, y4]⊕ y1y3y4K[y1, y3, y4]⊕ y1y2y3K[y1, y2, y3]⊕

y1y2y3y4K[y1, y2, y3, y4].

D(P2) := y1y3K[y1, y3, y4]⊕ y1y4K[y1, y2, y4]⊕ y1y2K[y1, y2, y3]⊕ y2y4K[y2, y3, y4]⊕

y1y2y3y4K[y1, y2, y3, y4].
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Then

sdepth(I) ≥ max{sdepth(D(P1)) , sdepth(D(P2))}

= max{2, 3}

= 3.

Since I is not principal, so sdepth(I) = 3.

Example 2.2.3. Consider I = (y1y4, y2y5, y3y4y5) ⊂ K[y1, y2, y3, y4, y5] be a square-

free monomial ideal and J = 0. Set σ1 = (1, 0, 0, 1, 0), σ2 = (0, 1, 0, 0, 1) and σ3 =

(0, 0, 1, 1, 1). Thus I is generated by yσ1 , yσ2 , yσ3 and choose g = (1, 1, 1, 1, 1). The

poset P = P g
I/J is given by

P = {(1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 0, 0, 1, 1),

(0, 1, 1, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1),

(1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)}.

Partitions of P are given by

P1 : [(1, 0, 0, 1, 0), (1, 0, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(1, 1, 0, 1, 0), (1, 1, 0, 1, 0)]
⋃

[(1, 0, 0, 1, 1), (1, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 0, 1), (1, 1, 0, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 0, 1, 1, 0)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 0, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (0, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(1, 1, 1, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(1, 1, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(1, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(0, 1, 1, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)].

P2 : [(1, 0, 0, 1, 0), (1, 1, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (1, 1, 0, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(1, 0, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(0, 1, 1, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)].
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P3 : [(1, 0, 0, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(1, 0, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)].

and the corresponding Stanley decomposition is

D(P1) := y1y4K[y1, y4]⊕ y2y5K[y2, y5]⊕ y1y2y4K[y1, y2, y4]⊕ y1y2y5K[y1, y2, y5]⊕

y1y3y4K[y1, y3, y4]⊕ y1y4y5K[y1y4y5]⊕ y2y3y5K[y2, y3, y5]⊕

y2y4y5K[y2, y4, y5]⊕ y3y4y5K[y3, y4, y5]⊕ y1y2y3y4K[y1, y2, y3, y4]⊕

y1y2y3y5K[y1, y2, y3, y5]⊕ y1y2y4y5K[y1, y2, y4, y5]⊕ y1y3y4y5K[y1, y3, y4, y5]⊕

y2y3y4y5K[y2, y3, y4, y5]⊕ y1y2y3y4y5K[y1, y2, y3, y4, y5].

D(P2) := y1y4K[y1, y2, y4]⊕ y2y5K[y1, y2, y5]⊕ y1y3y4K[y1, y2, y3, y4]⊕

y1y4y5K[y1, y2, y4, y5]⊕ y2y3y5K[y1, y2, y3, y5]⊕ y2y4y5K[y2, y3, y4, y5]⊕

y3y4y5K[y1, y3, y4, y5]⊕ y1y2y3y4y5K[y1, y2, y3, y4, y5].

D(P3) := y1y4K[y1, y2, y3, y4]⊕ y2y5K[y1, y2, y3, y5]⊕ y1y4y5K[y1, y2, y4, y5]⊕

y2y4y5K[y2, y3, y4, y5]⊕ y3y4y5K[y1, y3, y4, y5]⊕ y1y2y3y4y5K[y1, y2, y3, y4, y5].

Then

sdepth(I) ≥ max{sdepth(D(P1)) , sdepth(D(P2)) , sdepth(D(P3))}

= max{2, 3, 4}

= 4.

Since I is not principal, so sdepth(I) = 4.

The next example illustrates the method of computing the Stanley depth of S/I.

Example 2.2.4. For S = K[y1, y2, y3, y4, y5], consider I = (y1y5, y2y3y4, y1y2, y1y4).

Then choose g = (1, 1, 1, 1, 1) and the poset P = P g
S/I is given by

P = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),

(1, 0, 1, 0, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1),

(0, 0, 0, 1, 1), (0, 1, 1, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1)}.
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Partitions of P are given by

P1 : [(0, 0, 0, 0, 0), (0, 0, 1, 1, 1)]
⋃

[(1, 0, 0, 0, 0), (1, 0, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0), (0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 1), (0, 0, 0, 0, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 1, 0, 0), (0, 1, 1, 0, 0)]
⋃

[(0, 1, 0, 1, 0), (0, 1, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(0, 0, 1, 1, 0), (0, 0, 1, 1, 0)]
⋃

[(0, 0, 1, 0, 1), (0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 1, 1), (0, 0, 0, 1, 1)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 0, 1, 1)].

P2 : [(0, 0, 0, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 1, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(0, 0, 0, 1, 1), (0, 1, 0, 1, 1)]
⋃

[(0, 0, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 0, 1, 1, 0), (0, 0, 1, 1, 1)].

and the corresponding Stanley decomposition is

D(P1) := K[y3, y4, y5]⊕ y1K[y1]⊕ y2K[y2]⊕ y3K[y3]⊕ y4K[y4]⊕ y5K[y5]⊕

y1y3K[y1, y3]⊕ y2y3K[y2, y3]⊕ y2y4K[y2, y4]⊕ y2y5K[y2, y5]⊕

y3y4K[y3, y4]⊕ y3y5K[y3, y5]⊕ y4y5K[y4, y5]⊕ y2y3y5K[y2, y3, y5]⊕

y2y4y5K[y2, y4, y5].

D(P2) := K[y1, y3]⊕ y2K[y2, y3]⊕ y4K[y2, y4]⊕ y5K[y2, y5]⊕ y4y5K[y2, y4, y5]⊕

y3y5K[y2, y3, y5]⊕ y3y4K[y3, y4, y5].

Then

sdepth(S/I) ≥ max{sdepth(D(P1)) , sdepth(D(P2))}

= max{1, 2}

= 2.
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2.2.3 Values and Bounds for Depth and Stanley Depth of Mono-
mial Ideals and their Quotients

Some fundamental results on depth and Stanley depth of S-modules are given below.

Theorem 2.2.5. [7, Theorem 1.3] Let c1, . . . , cn be some positive integers, then

sdepth((xc11 , . . . , x
cn
n )) = sdepth((x1, . . . , xn)) = dn

2
e.

In particular, for any 1 ≤ m ≤ n

sdepth((xc11 , . . . , x
cm
m )) = n−m+ dm

2
e.

Proposition 2.2.6. [5, Proposition 2.7] For I ⊂ S and for every monomial u /∈ I,

1. sdepthS(I : u) ≥ sdepthS(I), [17, Proposition 1.3]

2. depthS(S/(I : u)) ≥ depthS(S/I), [19, Corollary 1.3]

3. sdepthS(S/(I : u)) ≥ sdepthS(S/I).

Theorem 2.2.7. [20, Theorem 1.1] Let J ⊂ S be a monomial ideal and w ∈ S be a

monomial regular on S/J , then

sdepth(S/(J, w)) = sdepth(S/J)− 1.

Lemma 2.2.8. [13, Lemma 3.6] For I and J be two monomial ideals with J ⊂ I,

suppose S ′ = S[xn+1], then

depth(IS ′/JS ′) = depth(IS/JS) + 1.

sdepth(IS ′/JS ′) = sdepth(IS/JS) + 1.

Lemma 2.2.9. [5, Proposition 1.1] Let I ⊂ S ′ = K[x1, . . . , xr], J ⊂ S ′′ = K[xr+1, . . . , xn]

be monomial ideals, with 1 ≤ r ≤ n, then

depthS(S/(IS + JS)) = depthS′(S
′/I) + depthS′′(S

′′/J).
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Theorem 2.2.10. [19, Theorem 3.1] Let I ⊂ S ′ = K[x1, . . . , xr], J ⊂ S ′′ = K[xr+1, . . . , xn]

be monomial ideals, with 1 ≤ r ≤ n, then

sdepthS(S/(IS + JS)) ≥ sdepthS′(S
′/I) + sdepthS′′(S

′′/J).

Lemma 2.2.11. [15, Lemma 2.4] Let M be a Zn-graded S-module. Suppose that H1

and H2 are two submodules of M and assume 0 → H1 → M → H2 → 0 be a short

exact sequence. Then

sdepth(M) ≥ min{sdepth(H1), sdepth(H2)}.
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Chapter 3

Depth and Stanley depth of Power of
the Edge Ideals of a Forest

This chapter is devoted to the detailed review of [14] and [18], which deals with the

lower bounds for the depth and Stanley depth of powers of edge ideal corresponding

to trees and forests. The Depth Lemma will mainly be used for the particular form of

short exact sequences given below.

Lemma 3.0.12. Let H be an ideal of S and let s ∈ S, then

0 −→ S/(H : s)
s−→ S/H −→ S/(H, s) −→ 0

is a short exact sequence.

Definition 3.0.13. The edge ideal I(G) corresponding to the graph G is the square-

free ideal of polynomial ring S and the generating set contains monomials of the type

wiwj, where wi is adjacent to wj in G.

Lemma 3.0.14. Consider a polynomial ring S and squarefree monomial ideal I. Sup-

pose B ∈ S be a monomial and z is an indeterminate in S so that z does not divide B.
Assume G ′ be minor formed by letting z = 0 in I and suppose E is the extension of G ′

in S, then for any k ≥ 1

((Ik : B), z) = ((Ek : B), z).

Lemma 3.0.15. For a bipartite graph G and k ≥ 1

depth(S/Ik(G)) ≥ 1.
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3.1 Powers of Paths

For small value of γ, the depth is computed for edge ideal of Pγ. Then it will be utilized

as the base while proving bounds for other graphs.

Example 3.1.1. Let I = I(Pγ). For γ ≤ 3 and k ≥ 1

depth(S/Ik) = 1.

Proof. Case 1: When γ = 1

I = I(P1) = (0) since I is an edge ideal and P1 contains no edge. Then for all k

depth(S/Ik) = depthK[y] = 1.

Case 2: When γ = 2

Then I = I(P2) becomes a complete intersection monomial ideal and therefore S/Ik

becomes Cohen-Macaulay for all values of k. Thus

depth(S/Ik) = dim(K[y, z]/(yz)k) = 1.

Case 3: When γ = 3

Then ht(I(P3)) = 1. As Min(S/I) = Min(S/Ik) for all powers of any monomial ideal.

It implies that, for all k ≥ 1, S/Ik is mixed and hence it is not a Cohen-Macaulay.

Now for k ≥ 1

depth(S/Ik) ≤ γ − ht(I)− 1 = 3− 1− 1 = 1.

Notice that P3 is a bipartite graph, Lemma 3.0.15 gives depth(S/Ik) ≥ 1. This yields

depth(S/Ik) = 1 for γ = 3 and k ≥ 1.

Let graph G be a tree or a forest. Initially, a bound for depth(S/I) is required,

for computation of depth for power of edge ideals associated to G. Firstly, the depth

of edge ideal of path will be computed. Notice that there exist a correspondence in

between the graphs and two degree square-free monomial ideals which is basically the

correspondence between the generators of an ideal and edges of a graph.
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Lemma 3.1.2. For S = K[y1, . . . , yγ] and I = I(Pγ)

depth(S/I) = dγ
3
e.

Proof. The proof is done by induction on γ. For γ ≤ 3, the result is true from Example

3.1.1. Assume γ ≥ 4, consider a short exact sequence

0 −→ S/(I : yγ−1)
yγ−1−−→ S/I −→ S/(I, yγ−1) −→ 0

Then

(I : yγ−1) = (Pγ−3, yγ, yγ−2).

Thus by using induction on γ and Lemma 2.2.8

depth(S/(I : yγ−1)) = depth(Ω′[yγ−1]/I(Pγ−3))

= 1 + depth(Ω′/I(Pγ−3))

= 1 + dγ − 3

3
e

= dγ
3
e,

where Ω′ = S\{yγ−1, yγ−2, yγ−3}. And

(I, yγ−1) = (Pγ−2, yγ−1).

Induction on γ and Lemma 2.2.8 implies

depth(S/(I, yγ−1)) = depth(Ω′′[yγ]/I(Pγ−2))

= 1 + depth(Ω′′/I(Pγ−2))

= 1 + dγ − 2

3
e,

where Ω′′ = S\{yγ, yγ−1}. Now by Depth Lemma

depth(S/I) ≥ dγ
3
e,

and as

depth(S/I) ≤ depth(S/(I : yγ−1)) = dγ
3
e,

therefore,

depth(S/I) = dγ
3
e.
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The above proved value of depth of path can be useful in obtaining the lower bound

of depth of trees. The path which determines the diameter of tree always join its two

leaves.

Proposition 3.1.3. For a tree G with diameter δ,

depth(S/I(G)) ≥ dδ + 1

3
e.

Proof. Let p and q be the nodes of graph, where δ is the distance between p and q.

Assume Pδ+1 be a path joining p and q which determines the diameter of G. Consider

a short exact sequence

0 −→ S/(I : z) −→ S/I −→ S/(I, z) −→ 0

When δ ≤ 2 then

dδ + 1

3
e = 1,

and Lemma 3.0.15 implies the result. So the result is true for n ≤ 3. Now let δ ≥ 3.

For a leaf p let z be its unique neighbor. As

(I, z) = (λ, z)

where λ is the edge ideal of deletion minor ∆′ which is obtained by letting z = 0. Note

that ∆′ has at least δ − 2 diameter and p is the isolated vertex in ∆′. If Ω′ is formed

by removing p from S, then by using induction on δ and Lemma 2.2.8

depth(S/(I, z)) = depth(Ω′[p]/(λ, z))

= 1 + depth(Ω′/(λ, z))

≥ 1 + d(δ − 2) + 1

3
e

= dδ + 2

3
e

≥ dδ + 1

3
e.

Furthermore,

(I : z) = (K, N(z))
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here the edge ideal K is associated to the contraction minor ∆′′ obtained by eliminating

neighbors of z. Suppose Ω′′ is a polynomial ring which is obtained by removing N̄(z) =

z∪N(z). So ∆′′ has at least δ−3 diameter, also z is a vertex of degree zero. Therefore,

induction and Lemma 2.2.8 implies

depth(S/(I : z)) = depth(Ω′′[z]/K)

≥ d(δ − 3) + 1

3
e+ 1.

Then Depth Lemma implies

depth(S/I) ≥ dδ + 1

3
e.

Lemma 3.1.4. Let I = I(G), for a graph G. Consider a leaf p in G and let q be the

only vertex adjacent to it, then for any k ≥ 2

(Ik : pq) = Ik−1.

Proof. As {p, q} is an edge in G and pq is in the generating set of I so, Ik−1 ⊆ (Ik : pq).

For the other inclusion, let b ∈ (Ik : pq). Then b(pq) = g1g2 . . . gkf , for a monomial

f and some two degree monomials gi associated to the edges of G. Now supposing

b /∈ Ik−1, then p divides gj, also q divides gt, where j 6= t. Assume j = k. But as p is

a leaf of G, so gk = pq and hence

b = g1 . . . gk−1f ∈ Ik−1.

This completes the proof.

Corollary 3.1.5. For γ ≥ 2 and k ≥ 2

(P k
γ : zγ−1zγ) = P k−1

γ .

Proof. Since zγ is leaf of Pγ so Lemma 3.2.3 implies the result.
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3.2 Power of Edge Ideals of Trees and Forests

The aim of this section is to give bound for the depth of power of edge ideals associated

to tree and forest by using the graph invariants. As the Depth Lemma is repeatedly

used to several short exact sequences, firstly the following Lemma is proved in order

to make easy the proof of main result.

Lemma 3.2.1. Let I = I(G), for a graph G. Assume w1, w2 are the nodes of G and

for some r ≥ 0, depth(S/(Ik : w1w2)) ≥ r, depth(S/(Ik, w1)) ≥ r and depth(S/((Ik :

w1), w2)) ≥ r, then

depth(S/Ik) ≥ r.

Proof. Consider a short exact sequence

0 −→ S/(Ik : w1)
.w1−−→ S/Ik −→ S/(Ik, w1) −→ 0

Then by given statement, depth(S/(Ik, w1)) ≥ r and for depth of S/(Ik : w1), consider

another exact sequence

0 −→ S/(Ik : w1w2)
.w2−−→ S/(Ik : w1) −→ S/((Ik : w1), w2) −→ 0

Then by Depth Lemma

depth(S/(Ik : w1)) ≥ min{depth(S/(Ik : w1w2)), depth(S/((Ik : w1), w2))}.

Thus

depth(S/(Ik : w1)) ≥ r,

and by again applying Depth Lemma on first exact sequence

depth(S/Ik) ≥ r.

Before moving towards computing the depth of power of edge ideals associated with

trees and forest, a bound for the depth of powers of edge ideals corresponding to path

is determined in the below proposition.
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Proposition 3.2.2. For γ ≥ 2, suppose I(Pγ) be the edge ideal of path, then

depth(S/Ik(Pγ)) ≥ max {dγ − k + 1

3
e, 1}.

Proof. As paths are bipartite graphs so, [22] for all k

depth(S/Ik(Pγ)) ≥ 1.

Now it is only need to be proved that depth(S/Ik(Pγ)) ≥ dγ−k+1
3
e. Note that for γ ≤ 3

and for all k, the result holds by Example 3.1.1. For k = 1 and γ ≥ 1, Lemma 3.1.2

implies the result. Let γ ≥ 4 and k ≥ 2. Consider a short exact sequence

0 −→ S/(Ik(Pγ) : yγ−1) −→ S/Ik(Pγ) −→ S/(Ik(Pγ), yγ−1) −→ 0

Since yγ−1 is the unique neighbor of yγ, so

(Ik(Pγ) , yγ−1) = (Ik(Pγ−2) , yγ−1).

By using induction on γ

depth(Ω′′/Ik(Pγ−2) ≥ d
(γ − 2)− k + 1

3
e,

where Ω′′ = K[y1, . . . , yγ−2]. Consequently,

depth(S/(Ik(Pγ) , yγ−1)) = depth(Ω′′[yγ−1, yγ]/(I
k(Pγ−2) , yγ−1))

= depth(Ω′′/Ik(Pγ−2)) + 1

≥ d(γ − 2)− k + 1

3
e+ 1

= dγ − k + 2

3
e.

Now for the depth of S/(Ik(Pγ) : yγ−1), consider another short exact sequence

0 −→ S/(Ik(Pγ) : yγ−1yγ) −→ S/(Ik(Pγ) : yγ−1) −→ S/((Ik(Pγ) : yγ−1), yγ) −→ 0

Then by Corollary 3.1.5 and induction on k

depth(S/(Ik(Pγ) : yγ−1yγ)) = depth(S/Ik−1(Pγ))

≥ dγ − (k − 1) + 1

3
e

= dγ − k + 2

3
e.

34



To compute the depth of S/((Ik(Pγ) : yγ−1), yγ), notice that since yγ does not divide

yγ−1, so by Lemma 3.0.14

((Ik(Pγ) : yγ−1), yγ) = ((Ik(Pγ−1) : yγ−1), yγ)

and let Ω′ = K[y1, . . . , yγ−1]. Notice that

depth(S/((Ik(Pγ) : yγ−1), yγ)) = depth(Ω′/(Ik(Pγ−1) : yγ−1)).

Consider a short exact sequence

0 −→ Ω′/(Ik(Pγ−1) : yγ−1yγ−2) −→ Ω′/(Ik(Pγ−1) : yγ−1) −→

Ω′/((Ik(Pγ−1) : yγ−1), yγ−2) −→ 0

Corollary 3.1.5 implies

(Ik(Pγ−1) : yγ−1yγ−2) = Ik−1(Pγ−1)

and by induction on k and γ

depth(Ω′/(Ik(Pγ−1) : yγ−1yγ−2)) = depth(Ω′/Ik−1(Pγ−1))

≥ d(γ − 1)− (k − 1) + 1

3
e

= dγ − k + 1

3
e.

Also since yγ−2 does not divide yγ−1, so by Lemma 3.0.14

((Ik(Pγ−1) : yγ−1), yγ−2) = ((Ik(Pγ−3) : yγ−1), yγ−2)

= (Ik(Pγ−3), yγ−2).

Then by using induction on γ

depth(Ω′/((Ik(Pγ−1) : yγ−1), yγ−2)) = depth(Ω′/(Ik(Pγ−3), yγ−2))

= depth(K[y1, . . . , yγ−3, yγ−1]/I
k(Pγ−3))

= depth(K[y1, . . . , yγ−3] + 1

≥ d(γ − 3)− k + 1

3
e+ 1

= dγ − k + 1

3
e.

35



Then the Depth Lemma implies

depth(Ω′/(Ik(Pγ−1) : yγ−1)) ≥ d
γ − k + 1

3
e,

consequently,

depth(S/((Ik(Pγ) : yγ−1), yγ)) ≥ d
γ − k + 1

3
e.

Hence Lemma 3.2.1 implies

depth(S/Ik(Pγ)) ≥ d
γ − k + 1

3
e.

The next lemma is a fundamental result related to tree graphs which will be required

in proving the lower bound for powers of tree.

Lemma 3.2.3. Let the graph G be a tree and a path Pδ+1 = {y1y2, y2y3, . . . , yδyδ+1}
determines the diameter of G then there is at most one non-leaf vertex in the neighbors

of yδ.

Proof. As Pδ+1 is path whose length is maximal in G since there exists a unique path

connecting any two nodes of a tree. Suppose y ∈ N(yδ). Now if y 6= yδ−1 and y is a

non-leaf then there exist a node w ∈ N(y) with w 6= yδ. Then there exist a path

P = {y1y2, . . . , yδ−1yδ, yδy, yw},

of length δ + 1 in G, which is a contradiction. Hence, there is at most one non-leaf in

the neighbors of yδ.

Following result is the main theorem about the depth of forests. Here the connected

components ∆′is of G contain at least two vertices whereas the component with a single

vertex will not be a connected component.

Theorem 3.2.4. Let G be a forest having s number of connected components ∆1, ∆2

, . . . , ∆s. Let I = I(G) and ∆j has diameter δj also suppose δ = max{δj}. For k ≥ 1

depth(S/Ik) ≥ max {dδ − k + 2

3
e+ s− 1, s}.
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Proof. The induction on γ and k is used in the proof, here γ be the total number of

non-isolated vertices in G. Suppose that δ = δj. Proposition 3.1.3 follows the result

for s = 1 and k = 1. Now let k = 1 and s ≥ 2 then [25, Lemma 6.2.7] and Proposition

3.1.3 implies the result. Therefore, result is true for k = 1 and γ ≥ 1. Let k ≥ 2. For

γ = 2, graph becomes a path on two vertices with δ = 1 and by Proposition 3.2.2 the

result follows for k ≥ 1 .

Now suppose γ ≥ 3. Consider a diameter realizing path Pd+1 in G. Let y1 be the

endpoint of Pd+1 and hence a leaf of G. Suppose z be the only vertex adjacent to y1 and

assume N(z) = {y1, y2, . . . , yt} be the neighbors of z, where t ≥ 1 and t is finite. Also,

by Lemma 3.2.3, at most one yj is a non-leaf. Suppose that yj is a leaf for 1 ≤ j < t .

Consider an edge ideal Ir corresponding to the minor of G formed when y1, y2, . . . , yr
are deleted and let Ωr = K[yr+1, . . . , yn−1, z] be the subring of S excluding y1, . . . , yr
and assume Ω′r = K[yr+1, . . . , yn−1]. Also for every r, Ir ⊂ Ωr is a edge ideal of a graph

having less than γ number of vertices. Let

q = max {dδ − k + 2

3
e+ s− 1, s}.

As y1 is a leaf so by Lemma 3.1.4, (Ik : y1z) = Ik−1 and so by induction on k,

depth(S/(Ik : y1z)) = depth(S/Ik−1)

≥ max {dδ − (k − 1) + 2

3
e+ s− 1, s}

= max {dδ − k + 3

3
e+ s− 1, s}

≥ q.

To compute the depth(S/(Ik, z)), notice that (Ik, z) = (λk, z), where λ is the edge ideal

of ∆′, which is obtained by eliminating z. Therefore ∆′ again becomes a forest having

less than γ number of vertices, with the connected components at least s− 1. Also the
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generating set of λ lie in Ω′1. So induction implies depth(Ω′1/λ
k) ≥ s− 1 and

depth(S/(Ik, z)) = depth(Ω1[y1]/(λ
k, z))

= 1 + depth(Ω′1/λ
k)

≥ 1 + s− 1

= s.

Now assume δ ≤ 3, then for all k ≤ 2

dδ − k + 2

3
e ≤ 1,

thus

q = max {dδ − k + 2

3
e+ s− 1, s}

≤ max{1 + s− 1, s}

= s,

and

depth(S/(Ik, z)) ≥ q.

For δ > 3, note that there are at least s number of connected components in λ

since ∆2,∆3, . . . ,∆s remains the same and δ− 2 ≥ 1 edges of Pδ+1 are in ∆′. Thus the

maximal diameter δ of a component of ∆′ is at least δ − 2. Therefore,

depth(S/(Ik, z)) = 1 + depth(Ω′1/λ
k)

≥ 1 + max {d(δ − 2)− k + 2

3
e+ s− 1, s}

≥ q.

Thus, depth(S/(Ik, z)) ≥ q, for all d. Consider ((Ik : z), y1). Since by Lemma 3.0.14

((Ik : z), y1) = ((Ik1 : z), y1)

where I1 is the extension in S of the minor obtained by deleting y1, therefore

depth(S/((Ik : z), y1)) = depth(δ1/(Ik1 : z)).
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Notice that when t = 1 then diameter becomes one and q = s. Further for t = 1

(Ik1 : z) = Ik1

and I1 ⊂ Ω′1 be the edge ideal corresponding to a forest having less than γ number of

vertices with s− 1 components. Therefore, by induction

depth(S/((Ik : z), y1)) = depth(S/Ik1 )

= depth(Ω′1[z]/Ik1 )

≥ max {d3− k
3
e+ (s− 1)− 1, s− 1}+ 1

= s− 1 + 1

= s.

So for t = 1

depth(S/((Ik : z), y1)) ≥ q.

Now let t ≥ 2, then δ ≥ 2 as y1, z, yt lies in Pδ+1. Next reverse induction on t will be

used to compute depth of Ω1/(Ik1 : z). Since z is an isolated vertex in It, so

(Ikt : z) = Ikt

Note that all the generators of Ikt lies in Ω′t therefore by using Lemma 2.2.8

depth(Ωt/Ikt ) = depth(Ω′t[z]/Ikt )

= 1 + depth(Ω′t/Ikt ).

When δ ≤ 3, then It ⊂ Ω′t is the edge ideal associated to a graph having s − 1

components. Thus induction on γ implies

depth(Ω′t/Ikt ) ≥ max{1 + (s− 1)− 1, s− 1}

= s− 1.

So

depth(Ωt/Ikt ) ≥ s = q.
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Now for δ ≥ 4, It is associated to a graph having s connected components and at least

δ − 3 diameter. Then by induction on γ

depth(Ωt/Ikt ) ≥ max {d(δ − 3)− k + 2

3
e+ s− 1, s}.

Consequently,

depth(Ωt/(Ikt : z)) = depth(Ωt/Ikt )

= depth(Ω′t/Ikt ) + 1

≥ q.

Next suppose that depth(Ωj/(Ikj : z)) ≥ q where 2 ≤ j ≤ t. For a short exact sequence

0 −→ Ωj−1/(Ikj−1 : zyj) −→ Ωj−1/(Ikj−1 : z) −→ Ωj−1/((Ikj−1 : z), yj) −→ 0

By Lemma 3.0.14 ((Ikj−1 : z), yj) = ((Ikj : z), yj), so

depth(Ωj−1/((Ikj−1 : z), yj)) = depth(Ωj/(Ikj−1 : z))

≥ q,

and Lemma 3.1.4 implies

(Ikj−1 : zyj) = Ik−1j−1

since yj is a leaf for j < t and when j = t then z is a leaf. Ij−1 corresponds to a graph

with at least δ − 1 diameter then by induction

depth(Ωj−1/(Ikj−1 : zyj)) = depth(Ωj−1/Ik−1j−1 )

≥ max {d(δ − 1)− (k − 1) + 2

3
e+ s− 1, s} = q,

and hence by Depth Lemma

depth(Ωj−1/(Ikj−1 : z)) ≥ q.

Therefore, by reverse induction

depth(Ω1/(Ik1 : z) ≥ q.
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Since depth(S/((Ik : z), y1)) = depth(Ω1/(Ik1 : z)) then

depth(S/((Ik : z), y1)) ≥ q.

Now applying Lemma 3.2.1 with w1 = z and w2 = y1

depth(S/Ik) ≥ q.

Corollary 3.2.5. For a tree G with diameter δ, let I = I(G). Then for all k ≥ 1

depth(S/Ik) ≥ max {dδ − k + 2

3
e, 1}.

Proof. By setting s = 1, Theorem 3.2.4 implies the result .

Since Pγ has γ − 1 diameter therefore in this case Proposition 3.2.2 and Corollary

3.2.5 implies the same result. The above proof strongly relies on the existence of a

node having at most one non-leaf in its neighbor. For tree of diameter δ ≥ 3, there

must exist at least two such type of vertices that are non-leaves. These non-leaves

are the neighbors of the end points of path which determines diameter. A node of a

graph is known as near leaf if it is a non-leaf and its neighbors contain at most one

non-leaf. Suppose α denotes the total number of near leaves in a graph. Next the

bound computed in Theorem 3.2.4 will be improved using the same proof.

Lemma 3.2.6. For a tree G with α near leaves, let δ be the diameter. Then

depth(S/I) ≥ dδ + α− 1

3
e.

Proof. When n is small, α ≤ 2 and the result is true by Proposition 3.1.3. Let α ≥ 3.

Notice that when two near leaves are adjacent in a connected graph then δ = 3 and

α = 2, as all remaining vertices must be leaves. Therefore for α ≥ 3, two near

leaves will never be adjacent. Consider a diameter realizing path Pδ+1 with vertices

y1, y2, . . . , yδ+1. Notice that both y2 and yδ are near leaves and δ ≥ 4 as for δ = 3 there

is an edge between y2 and yδ and for δ ≤ 2 there is atmost one near leaf in the tree.
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Let (I, y2) = (λ, y2) where λ be the edge ideal associated with deletion minor ∆′

which is obtained by eliminating y2. Suppose Ω′ be the polynomial ring obtained by

removing y1 and y2. Then ∆′ has the diameter at least δ − 2 and near leaves at least

α− 1. So, by using induction on δ and α

depth(Ω′/λ) ≥ d(δ − 2) + (α− 1)− 1

3
e = dδ + α− 4

3
e.

Consequently, from Lemma 2.2.8

depth(S/(I, y2)) = depth(Ω′[y1]/λ) ≥ dδ + α− 3− 1

3
e+ 1

≥ dδ + α− 1

3
e.

Let (I : y2) = (ψ,N(y2)), where ψ is the edge ideal of contraction minor ∆′′

obtained by removing the neighbors of y2. Then ∆′′ is a tree with diameter at least

δ − 3. Suppose b be the number of near leaves in the neighbors of y3 which does not

belongs to Pδ+1. The path joining y3 to a leaf and not containing yj for j 6= 3 has at

most 2 length otherwise there exist another path having length greater than δ in G,

which is a contradiction.

Thus a near leaf belonging to such a path is a neighbor of y3. Assume δ = 4. As

α ≥ 3 and no near leaves are adjacent to either y2 or yδ = y4 then b = α − 2 ≥ 1.

Notice that ∆′′ has b+ 1 components corresponding to near leaves adjacent to y3 and

to (y4y5), which is the path with δ − 3 length. Note that y2 is a vertex of degree one

in ∆′′. Since α ≥ 3, [25, Lemma 6.2.7] implies

depth(S/(I : y2)) ≥ 1 + b+ 1 = α

= d3α
3
e ≥ d3 + α

3
e

= d4 + α− 1

3
e.

Next assume δ ≥ 5. Then ∆′′ has at least δ − 3 diameter and at least α − b − 1

near leaves in the connected component which contains Pδ−2. Considering that y2 is

an isolated vertex and there exist b additional connected components, so by applying

induction

depth(S/(I : y2)) ≥ d
(δ − 3) + (α− b− 1)− 1

3
e+ b+ 1.

42



If b is a non-zero positive integer

d(δ − 3) + (α− b− 1)− 1

3
e+ b+ 1 ≥ dδ + α− 1

3
e,

and in the case when b = 0 if there are α near leaves in ∆′′ then

depth(S/(I : y2)) ≥ d(δ − 3) + α− 1

3
e+ 1

= dδ + α− 1

3
e.

When ∆′′ contains α − 1 near leaves, then y5 cannot be an additional near leaf. For

δ = 5; y5 is already a near leaf. As b = 0 with α ≥ 3 then the path adjacent to y4 other

than Pδ−2 must contain a near leaf. ∆′′ has at least δ − 2 diameter as y4 is non-leaf in

∆′′. When δ ≥ 6 and y5 is not a near leaf in ∆′′ than either y4 is non-leaf or there is

another non-leaf else y6 in the neighbors of y5. In both cases, ∆′′ has diameter at least

δ − 2. Hence

depth(S/(I : y2)) ≥ d(δ − 2) + (α− 1)− 1

3
e+ 1

= dδ + α− 1

3
e.

Then by applying Depth Lemma to the sequence

0 −→ S/(I : y2) −→ S/I −→ S/(I, y2) −→ 0

the result follows.

Corollary 3.2.7. Consider a forest G having s connected components ∆1, ∆2 , . . . ,

∆s. Let I = I(G) and ∆j has diameter δj and suppose δ = max{δj} and component

with diameter δ has α near leaves. For k ≥ 1

depth(S/Ik) ≥ max {dδ − k + α

3
e+ s− 1, s}.

Proof. Let δ = δ1 and α be the number of near leaves in ∆1. Only the near leaves in

the minor of ∆1 will be counted while doing this proof. Let

q = max {dδ − k + α

3
e+ s− 1, s}.
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When δ ≤ 3 then α ≤ 2 and Theorem 3.2.4 follows the result for smaller values of n.

For t = 1, Lemma 3.2.6 implies the result. Let δ ≥ 4 and α ≥ 3, so

(Ik : y1z) = Ik−1

and by applying induction on k

depth(S/(Ik : y1z)) = depth(S/Ik−1)

≥ max {dδ − (k − 1) + α

3
e+ s− 1, s}

≥ q.

Further

(Ik, z) = (λk, z)

where λ is the edge ideal corresponding to the minor ∆′ obtained by removing z, where

∆′ has diameter at least δ − 2 and near leaves at least α − 1. y1 is an isolated vertex

in ∆′. So by using induction on γ

depth(S/(Ik, z)) ≥ max {d(δ − 2)− k + (α− 1)

3
e+ s− 1, s}+ 1

≥ q.

Since δ ≥ 4 so t ≥ 2 and

(Ikt : z) = Ikt

Note that the graph associated to It has diameter at least δ−3. Since yt lies on a path

realizing the diameter and it is at two distance from a leaf on the same path, any other

path which joins a leaf to yt and does not have any other node in Pδ+1 must have at

most two length. Therefore any near leaves on such a path are neighbors of yt.

Suppose there are b number of near leaves in the neighbors of yt and they are not

on Pδ+1. Accordingly, the graph of It contains s+ b connected components. There are

at least α − b− 1 near leaves of It in the component which contains Pδ−2, as z is not

a near leaf of It.
When δ = 4, there are zero near leaves in graph of It and b = α− 2 because every

near leaf is the neighbor of yt, including both that are on Pδ+1. Therefore the minor
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corresponding to It contains P2 along with b extra components and at least one vertex

with degree zero. Hence

depth(Ωt/(Ikt : z)) = depth(Ωt/Ikt )

≥ 1 + b+ s− 1 + 1

≥ α + s− 1

≥ dα + 3

3
e+ s− 1

= dδ + α− 1

3
e+ s− 1.

Let δ = 5, then either there are two near leaves in the connected component which

contains Pδ−2 and has at least δ − 2 diameter or b ≥ 1. In case 1

depth(Ωt/Ikt ) = depth(Ω′t/Ikt ) + 1

≥ max {d(δ − 2)− k + (α− 1)

3
e+ s− 1, s}+ 1

≥ q.

Else b ≥ 1, so

depth(Ωt/Ikt ) = depth(Ω′t/Ikt ) + 1

≥ max {d(δ − 3)− k + (α− b− 1)

3
e+ s− 1, s}+ b+ 1

≥ q.

Assume δ > 5, then δ−3 ≥ 4 and therefore either there are two near leaves in Pδ−3,

where one of them was not a near leaf of I, or there exist a path other than Pδ−3 that

realizes the diameter. Hence the diameter of It is at least δ − 2. In case 1, there are

α− b near leaves and at least δ − 3 diameter. Thus by induction

depth(Ωt/Ikt ) = 1 + depth(Ω′t/Ikt )

≥ 1 + max {d(δ − 3)− k + (α− b)
3

e+ s− 1, s}+ b

≥ q,
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otherwise

depth(Ωt/Ikt ) = 1 + depth(Ω′t/Ikt )

≥ 1 + max {d(δ − 3)− k + (α− b− 1)

3
e+ s− 1, s}+ b

≥ q.

Hence by reverse induction on j

depth(Ω1/(Ik1 : z)) = depth(S/((I t : z), y1))

≥ q,

and Lemma 3.2.1 implies the required result.

Example 3.2.8. Consider a graph G having edge set

{y1y2, y2y3, y3y4, y4y5, y3y6, y6y7, y3y8, y8y9, y3y10, y10y11},

then δ = 4 and there are 5 near leaves in G. So,

depth(S/I) = dδ − 1 + α

3
e = d4− 1 + 5

3
e = 3,

while depth(S/I) = 5, by using Macaulay 2 [11]. Therefore the bound in Corollary

3.2.7 is not always sharp. Since

depth(S/I2) ≥ dδ − 2 + α

3
e = d4− 2 + 5

3
e = 3,

whereas the actual value of depth is 5. This situation is encountered when δ = 4 and

m is very large. Still for large value of k, this bound gives accurate value. If k = 5,

Macaulay 2 and Corollary 3.2.7 gives the same value i.e., 2 and when k = 6 it becomes

1. When δ gets large value, an improvised bound gives comparatively accurate values.

For example, for a graph having 9 vertices and the edges

{y1y2, y2y3, y3y4, y4y5, y5y6, y6y7, y4y8, y8y9},

diameter is 6 with three near leaves. The bound in Corollary 3.2.7 and actual value of

depth(S/Ik) are same for all k 6= 3 and k ≤ 6. When k = 5, 6 both the bound and

actual depth are 2 and 1 respectively. predicts where the depth will become one.
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3.3 Stanley depth of Powers of Forest

Consider an edge ideal I of forest containing s connected components. Morey [14]

proved that for k ≥ 1

depth(S/Ik) ≥ max {dδ − k + 2

3
e+ s− 1, s}.

Later on, Pournaki et al. [18] proved the same bound for the Stanley depth for any

power of I. For a bipartite graph, a fundamental lower bound exists for depth of S/Ik.

Theorem 3.3.1. [6, Theorem 1.4] For a finitely generated Zn-graded S module M , if

sdepth(M) = 0 then depth(M) = 0. Conversely, if depth(M) = 0 and dimK(Mα) ≤ 1

for any α ∈ Zn, then sdepth(M) = 0.

Proposition 3.3.2. Let S = K[y1, . . . , yn] and I = I(Pγ), then

sdepth(S/I) ≥ dγ
3
e.

Proposition 3.3.3. Let I = I(G) where G is a tree with diameter δ, then

sdepth(S/I) ≥ dδ + 1

3
e.

Lemma 3.3.4. For a graph G, let I = I(G). Suppose w1, w2 are the nodes of G. If

sdepth(S/(Ik : w1w2)) ≥ r, sdepth(S/(Ik, w1)) ≥ r and sdepth(S/((Ik : w1), w2)) ≥ r

for r ≥ 0, then

sdepth(S/Ik) ≥ r.

Proof. The proof is similar to the proof of Lemma 3.2.1. Lemma 2.2.11 is used instead

of Depth lemma.

Proposition 3.3.5. Let I(Pγ) be the edge ideal of path with n ≥ 2, then

sdepth(S/Ik(Pγ)) ≥ max {dγ − k + 1

3
e, 1}.

Theorem 3.3.6. Let G be a forest having s number of connected components ∆1, ∆2

, . . . , ∆s. Let I = I(G) and ∆j has diameter δj and suppose δ = max{δj}. Then for

k ≥ 1

sdepth(S/Ik) ≥ max {dδ − k + 2

3
e+ s− 1, s}.
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Proof. The proof is done on the similar lines as the proof of Theorem 3.2.4, by replacing

depth with Stanley depth and using Lemma 2.2.11, Lemma 3.3.4 and Proposition

3.3.5.

Lemma 3.3.7. For a tree G with diameter δ and α near leaves, then

sdepth(S/I) ≥ dδ + α− 1

3
e.

Corollary 3.3.8. Consider a forest G having s connected components ∆1, ∆2 , . . . , ∆s.

Let I = I(G) and ∆j has diameter δj and suppose δ = max{δj}. Also the component

with diameter δ has α near leaves. For k ≥ 1

sdepth(S/Ik) ≥ max {dδ − k + α

3
e+ s− 1, s}.
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Chapter 4

Depth and Stanley depth of some
Graphs

4.1 Firecracker Graph

Definition 4.1.1. An (γ, z)-firecracker is a graph formed by the concatenation of γ

number of z-stars by linking one leaf from each star. It is denoted by F (γ, z).

Figure 4.1: Firecracker F (3, 5)

Proposition 4.1.2. [1] For a star graph Sk, let I = I(Sk), then

depth(S/I) = sdepth(S/I) = 1,

and

depth(S/I t), sdepth(S/I t) ≥ 1.
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Theorem 4.1.3. For a firecracker graph F (γ, z) let I = I(F (γ, z)), then for γ ≥ 2

and z ≥ 3

depth(S/I) = γ.

Proof. The proof is done by the induction on γ. Let e be the non-leaf of the last star

in F (γ, z). For short exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0

When γ = 2, (I : e) = (I(Sk), N(e)), here N(e) be the neighbors of e in F (2, z).

Then by Proposition 4.1.2 and Lemma 2.2.8, depth(S/(I : e)) = depth(S ′[e]/I(Sz)) =

depth(S ′/I(Sz)) + 1 = 2 and S ′ = S\N(e) ∪ {e}. Now let W := (I, e). Let f be the

leaf of second star in F (2, z) which is linked with the leaf of previous star. Then for

depthS/(I, e) consider another short exact sequence

0 −→ S/(W : f) −→ S/W −→ S/(W, f) −→ 0

Now (W : f) = (I(Sz−1), N(f)), here the neighbors of f in G′ are denoted by N(f).

So by Lemma 2.2.8 and Proposition 4.1.2

depth(S/(W : f)) = depth(S ′′[N(e)]/(I(Sz−1)) = depth(S ′′/(I(Sz−1)) + |N(e)|

= 1 + (z − 1) = z,

where S ′′ = S ′\N(f). Next (W, f) = (I(Sz), f), and

depth(S/(W, f)) = depth(S ′[L]/I(Sz)) = depth(S ′/I(Sz)) + |L|

= 1 + (z − 2) = z − 1,

where L is a set of variables obtained by removing f from neighbors of e. Therefore

by Depth Lemma, depth(S/W ) ≥ z − 1. And again by applying Depth Lemma,

depth(S/I) ≥ 2. Also, since 2 = depth(S/(I : e)) ≥ depth(S/I), hence for γ = 2,

depth(S/I) = 2. Next for γ = 3, (I : e) = (I(F (2, z)), N(e)), where N(e) be set of

neighbors of e in F (3, z). Then by Proposition 4.1.2 and Lemma 2.2.8, depth(S/(I :

e)) = depth(S ′[e]/I(F (2, z))) = 1 + depth(S ′/I(F (2, z))) = 1 + 2 = 3, where S ′ =
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S\N(e) ∪ {e}. Now let W := (I, e). Let f be the leaf of third star in F (3, z) which

is linked with the leaf of previous star. Then for depthS/(I, e) consider another short

exact sequence

0 −→ S/(W : f) −→ S/W −→ S/(W, f) −→ 0

Now (W : f) = (I(Sz), I(Sz−1), N(f)), here the neighbors of f in G′ are N(f). So by

Lemma 2.2.8 and Proposition 4.1.2

depth(S/(W : f)) = depth(S ′′[N(e)]/(I(Sz), I(Sz−1))

= depth(S ′′/(I(Sz), I(Sz−1)) + |N(e)|

= 1 + 1 + (z − 1) = z + 1,

where S ′′ = S ′\N(f). Next (W, f) = (F (2, z)), f), then

depth(S/(W, f)) = depth(S ′[L]/I(F (2, z))) = depth(S ′/I(F (2, z))) + |L|

= 2 + (z − 2) = z,

where L = N(e)\{f}. Then by Depth Lemma, depth(S/W ) ≥ z. And again by apply-

ing Depth Lemma, depth(S/I) ≥ 3. Also, since 3 = depth(S/(I : e)) ≥ depth(S/I),

hence for γ = 3, depth(S/I) = 3. Now assume γ ≥ 4. Then

(I : e) = (∆, N(e))

= (I(F (γ − 1, z)), N(e))

where the set of neighbors of e in F (γ, z) is denoted by N(e) and ∆ be the edge ideal of

contraction minor of F (γ, z) obtained by removing N(e). So, by induction and Lemma

2.2.8

depth(S/(I : e)) = depth(S ′[e]/I(F (γ − 1, z)))

= 1 + depth(S ′/I(F (γ − 1, z)))

= 1 + (γ − 1)

= γ,
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where S ′ = S\N(e) ∪ {e}. Now let

W := (I, e) = (I ′, e)

and I ′ be the ideal associated to deletion minor G′ of F (γ, z) obtained by eliminating

e. Let f be the leaf of last star in F (γ, z) which is linked with the leaf of previous star.

Then for depthS/(I, e) consider another short exact sequence

0 −→ S/(W : f) −→ S/W −→ S/(W, f) −→ 0

By using Depth Lemma,

depth(S/W ) ≥ min{depth(S/(W : f)), depth(S/(W, f)}.

Now

(W : f) = (W ′, N(f))

= (I(F (γ − 2, z)), I(Sz−1), N(f))

where N(f) be the neighbors of f in G′ and W ′ is the edge ideal corresponding to

contraction minor of G′, obtained by eliminating N(f). Then by induction on γ,

Lemma 2.2.8 and Proposition 4.1.2

depth(S/(W : f)) = depth(S ′′[N(e)]/(I(F (γ − 2, z)), I(Sz−1))

= depth(S ′′/(I(F (γ − 2, z)), I(Sz−1)) + |N(e)|

= (γ − 2) + 1 + (z − 1)

= γ + z − 2,

where S ′′ = S ′\N(f). Note that, (W, f) = (W ′′, f) = (I(F (γ − 1, z)), f). Here W ′′ is

associated to the deletion minor of G′ obtained by removing f . So by using induction

and Lemma 2.2.8

depth(S/(W, f)) = depth(S ′[N ′]/I(F (γ − 1, z))

= depth(S ′/I(F (γ − 1, z)) + |N ′|

= (z − 2) + (γ − 1)

= γ + z − 3,
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where N ′ = N(e)\{f}. Then by Depth Lemma

depth(S/W ) ≥ γ + z − 3.

And again by applying Depth Lemma, depth(S/I) ≥ γ. Since γ = depth(S/(I : e)) ≥
depth(S/I), hence

depth(S/I) = γ.

This completes the proof.

On the lines of above proof, by using Proposition 2.2.6, Lemma 2.2.8, Proposition 4.1.2

and Lemma 2.2.11 the next result follows.

Proposition 4.1.4. For a firecracker graph F (γ, z) let I = I(F (γ, z)), then for γ ≥ 2

and z ≥ 3

sdepth(S/I) = γ.

4.2 Circular Firecracker

Definition 4.2.1. The graph obtained by linking a leaf of first star to the leaf of last

star in a firecracker graph is termed as a circular firecracker, denoted by CF (γ, z).

Figure 4.2: Circular firecracker CF (6, 5)
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Theorem 4.2.2. Let I = I(CF (γ, z)), then for any γ ≥ 3 and z ≥ 3

depth(S/I) = γ.

Proof. Let e be the central vertex of a star Sz in CF (γ, z). For the short exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0

When γ = 3, (I : e) = (I(F (2, z)), N(e)), here the neighbors of e in CF (3, z) forms

the set N(e). So, Lemma 2.2.8 and Theorem 4.1.3

depth(S/(I : e)) = depth(S ′[e]/I(F (2, z))) = 1 + depth(S ′/I(F (2, z)))

= 1 + 2 = 3,

where S ′ = S\N(e) ∪ {e}. Now let W := (I, e) = (I ′, e) and let f be neighbor of e on

cycle C3. To compute depth(S/(I, e)), consider another short exact sequence

0 −→ S/(W : f) −→ S/W −→ S/(W, f) −→ 0.

Then (W : f) = (2(I(Sz−1)), N(f)), here the neighbors of f in G′ forms the set N(f).

Then by Lemma 2.2.8 and Proposition 4.1.2

depth(S/(W : f)) = depth(S ′′[N(e)]/(2(I(Sz−1))) = depth(S ′′/(2(I(Sz−1))) + |N(e)|

= 2 + (z − 1) = z + 1,

where S ′′ = S ′\N(f). Furthermore, (W, f) = (I(F (2, z)), f). Then by using Lemma

2.2.8

depth(S/(W, f)) = depth(S ′[L]/I(F (2, z)) = depth(S ′/I(F (2, z)) + |L|

= 2 + (z − 2) = z,

where L = N(e)\{f}. Then by Depth Lemma depth(S/W ) ≥ z. And by again

applying Depth Lemma depth(S/I) ≥ 3. Since, 3 = depth(S/(I : e)) ≥ depth(S/I),

hence for γ = 3, depth(S/I) = 3. Now for γ = 4, (I : e) = (I(F (3, z)), N(e)),

where N(e) be the neighbors of e in CF (4, z). So, Lemma 2.2.8 and Theorem 4.1.3,
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depth(S/(I : e)) = depth(S ′[e]/I(F (3, z))) = 1 + depth(S ′/I(F (3, z))) = 1 + 3 = 4,

where S ′ = S\N(e) ∪ {e}. Now let W := (I, e) = (I ′, e) and let f be neighbor of e on

cycle C4. To compute depth(S/(I, e)), consider another short exact sequence

0 −→ S/(W : f) −→ S/W −→ S/(W, f) −→ 0.

Then (W : f) = (2(I(Sz−1)), I(Sz), N(f)), where the neighbors of f in G′ forms the

set N(f). Then by Lemma 2.2.8 and Proposition 4.1.2

depth(S/(W : f)) = depth(S ′′[N(e)]/(2(I(Sz−1)), I(Sz))

= depth(S ′′/(2(I(Sz−1)), I(Sz)) + |N(e)|

= 2 + 1 + (z − 1) = z + 2,

where S ′′ = S ′\N(f). Furthermore, (W, f) = (I(F (3, z)), f). Then by using Lemma

2.2.8

depth(S/(W, f)) = depth(S ′[L]/I(F (3, z)) = depth(S ′/I(F (3, z)) + |L|

= 3 + (z − 2) = z + 1,

where L = N(e)\{f}. Then by Depth Lemma depth(S/W ) ≥ z + 1. And by again

applying Depth Lemma depth(S/I) ≥ 4. Since, 4 = depth(S/(I : e)) ≥ depth(S/I),

hence for γ = 4, depth(S/I) = 4. Now assume γ ≥ 5. Then

(I : e) = (∆, N(e))

= (I(F (γ − 1, z)), N(e))

whereN(e) are the neighbors of e in CF (γ, z) and ∆ be the edge ideal of the contraction

minor of CF (γ, z) obtained by removing N(e). So, Lemma 2.2.8 and Theorem 4.1.3

depth(S/(I : e)) = depth(S ′[e]/I(F (γ − 1, z)))

= 1 + depth(S ′/I(F (γ − 1, z)))

= γ,

where S ′ = S\N(e) ∪ {e}. Now let

W := (I, e) = (I ′, e)
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here I ′ is the ideal associated to deletion minor G′ of CF (γ, z) obtained by eliminating

e. Let f be neighbor of e on Cγ. To compute depth(S/(I, e)), assume a short exact

sequence

0 −→ S/(W : f) −→ S/W −→ S/(W, f) −→ 0

By using Depth Lemma

depth(S/W ) ≥ min{depth(S/(W : y)), depth(S/(W, y)}.

Now

(W : f) = (W ′, N(f))

= (I(F (γ − 3, z)), 2(I(Sz−1)), N(f))

where the neighbors of y in G′ forms N(f) and W ′ is the ideal of contraction minor,

which is obtained by removing N(f). Then by Lemma 2.2.8 and Proposition 4.1.2

depth(S/(W : f)) = depth(S ′′[N(e)]/(I(F (γ − 3, z)), 2(I(Sz−1)))

= depth(S ′′/(I(F (γ − 3, z)), 2(I(Sz−1))) + |N(e)|

= (γ − 3) + 2 + 1 + (z − 2)

= γ + z − 2,

where S ′′ = S ′\N(f), and

(W, f) = (W ′′, f)

= (I(F (γ − 1, z)), f)

where W ′′ is the ideal of deletion minor of G′ obtained after removing f . Then by

using Lemma 2.2.8

depth(S/(W, f)) = depth(S ′[L]/I(F (γ − 1, z))

= depth(S ′/I(F (γ − 1, z)) + |L|

= (γ − 1) + (z − 2)

= γ + z − 3,
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where L = N(e)\{f}. Then by Depth Lemma

depth(S/W ) ≥ γ + z − 3.

And again by applying Depth Lemma, depth(S/I) ≥ γ. Since γ = depth(S/(I : e)) ≥
depth(S/I), hence

depth(S/I) = γ.

This completes the proof.

Similarly, by using Proposition 2.2.6, Proposition 4.1.4, Lemma 2.2.8, Proposition 4.1.2

and Lemma 2.2.11, the next result holds.

Proposition 4.2.3. Let I = I(CF (γ, z)), then for any γ ≥ 3 and z ≥ 3

sdepth(S/I) = γ.

4.3 Paths Attached to a Path with a Gradual De-
crease in Length

Definition 4.3.1. Let Pp(γ;m1, . . . ,mγ) be a graph in which γ number of paths are

attached in a way that the end vertex of each path Pmi (with order mi = mγ + γ − i)
is adjacent to the end vertex of path Pmi+1

(with order mi+1 = mγ + γ − i− 1), where

1 ≤ i ≤ γ − 1 and mγ is the order of Pmγ .

Theorem 4.3.2. Let I = I(Pp(γ;m1, . . . ,mγ)), then for γ ≥ 3 and mγ ≥ 3

depth(S/I) ≥ 2γ +mγ − 5.

Proof. Let I = I(Pp(γ;m1, . . . ,mγ)) and suppose e be the end vertex of Pmγ then for

γ = 3 consider a short exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0
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Figure 4.3: Pp(γ ; mγ + γ − 1,mγ + γ − 2, . . . ,mγ + 1,mγ)

Now (I : e) = (∆, N(e)), here ∆ be the edge ideal associated to contraction minor

obtained by removing N(e). So, (I : e) = (I(Pmγ+2), I(Pmγ ), I(Pmγ−2), N(e)). So by

Lemma 2.2.8

depth(S/(I : e)) = depth(S ′/(I(Pmγ+2), I(Pmγ ), I(Pmγ−2))) + 1,

where S ′ = S\(N(e) ∪ {e}). Then by Lemma 3.1.2

depth(S/(I : e)) = dmγ + 2

3
e+ dmγ

3
e+ dmγ − 2

3
e+ 1

≥ mγ + 1.

Furthermore,

(I, e) = (∆′, e)

= (I(P2mγ+3), I(Pmγ−1), e),

and ∆′ be the edge ideal corresponding to the deletion minor obtained by removing e

and all the edges incident on it. Now by Lemma 3.1.2

depth(S/(I, e)) = depth(S ′′/(I(P2mγ+3), I(Pmγ−1))

= d2mγ + 3

3
e+ dmγ − 1

3
e

≥ mγ + 1,
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where S ′′ = S\{e}. Hence Depth lemma implies, depth(S/I) ≥ mγ + 1 for γ = 3.

Assume γ ≥ 4. Then

(I : e) = (I(Pp(γ − 2;mγ + γ − 1, . . . ,mγ + 2)), I(Pmγ ), I(Pmγ−2), N(e))

and from Lemma 2.2.8

depth(S/(I : e)) = depth(S ′/(I(Pp(γ−2;mγ+γ−1, . . . ,mγ+2)), I(Pmγ ), I(Pmγ−2)))+1,

where S ′ = S\(N(e) ∪ {e}). Then by induction on n and Lemma 3.1.2

depth(S/(I : e)) = 2(γ − 2) + (mγ + 2)− 5 + dmγ

3
e+ dmγ − 2

3
e+ 1

= 2γ +mγ − 6 + dmγ

3
e+ dmγ − 2

3
e

≥ 2γ +mγ − 5.

Also

(I, e) = (∆′, e)

= (I(Pp(γ − 1;mγ + γ − 1, . . . ,mγ + 1)), I(Pmγ−1), y)

where ∆′ be the edge ideal corresponding to the deletion minor obtained by removing

e and all the edges incident on it. Now by using induction and Lemma 3.1.2

depth(S/(I, e)) = depth(S ′′/(I(Pp(γ − 1;mγ + γ − 1, . . . ,mγ + 1)), I(Pmγ−1)))

= 2(γ − 1) + (mγ + 1)− 5 + dmγ − 1

3
e

= 2γ +mγ − 6 + (mγ + 1)− 5 + dmγ − 1

3
e

≥ 2γ +mγ − 5,

where S ′′ = S\{e}. Hence by Depth Lemma

depth(S/I) ≥ 2γ +mγ − 5.

Moreover, on the same steps of above proof by using Proposition 2.2.6, Lemma 2.2.8,

Lemma 2.2.11 and Lemma 3.1.2 the following result holds.
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Proposition 4.3.3. Let I = I(Pp(γ;m1, . . . ,mγ)), then for γ ≥ 3 and mγ ≥ 3

sdepth(S/I) ≥ 2γ +mγ − 5.

4.4 Paths Attached to a Cycle with a Gradual De-
crease in Length

Definition 4.4.1. Consider a graph Cp(γ;m1, . . . ,mγ) in which the end vertex of each

path Pmi (having order mi = mγ +γ− i) is attached through an edge to the end vertex

of path Pmi+1
(having order mi+1 = mγ + γ − i − 1), where 1 ≤ i ≤ γ − 1 and mγ is

the order of Pmγ . Also there is an edge between the end vertex of Pm1 and Pmγ .

Figure 4.4: Cp( γ ;mγ + γ − 1,. . . ,mγ + 1,mγ)

Example 4.4.2. Let I = I(Cp(γ;m1, . . . ,mγ)). Then

depth(S/I) ≥


mγ + 1, when γ = 3;
d4mγ+5

3
e, when γ = 4;

d4mγ+11

3
e, when γ = 5.

Proof. Let e be the end vertex of path Pmγ which is adjacent to the end vertex of

Pmγ−1 . Consider a short exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0
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Then consider the following cases.

Case 1: When γ = 3.

Then (I : e) = (I(Pmγ−2), I(Pmγ ), I(Pmγ+1), N(e)). Therefore, by Lemma 2.2.8 and

Lemma 3.1.2

depth(S/(I : e)) = depth(S ′/(I(Pmγ−2) + 1, I(Pmγ ), I(Pmγ+1)))

= 1 + dmγ − 2

3
e+ dmγ

3
e+ dmγ + 1

3
e

≥ mγ + 1,

where S ′ = S\N(e) ∪ {e}. Next (I, e) = (e, I(Pmγ−1), I(P2mγ+3)). So, by Lemma 3.1.2

depth(S/(I, e)) = depth(S∗/(I(Pmγ−1), I(P2mγ+3)))

= dmγ − 1

3
e+ d2mγ + 3

3
e

≥ mγ + 1,

where S∗ = S\{e}. Hence, by Depth Lemma, depth(S/I) ≥ mγ + 1 for γ = 3.

Case 2: When γ = 4.

Now (I : e) = (I(Pmγ−2), I(Pmγ ), I(Pmγ+2), N(e)). Therefore, by Lemma 2.2.8 and

Lemma 3.1.2

depth(S/(I : e)) = depth(S ′/(I(Pmγ−2), I(Pmγ ), I(Pmγ+2))) + 1

= 1 + dmγ − 2

3
e+ dmγ

3
e+ dmγ + 2

3
e

≥ d4mγ + 5

3
e,

where S ′ = S\N(e)∪{e}. Next (I, e) = (e, I(Pmγ−1), I(Pp(3;mγ +3,mγ +2,mγ +1))).

So, by Lemma 3.1.2 and Theorem 4.3.2

depth(S/(I, e)) = depth(S∗/(I(Pmγ−1), I(Pp(3;mγ + 3,mγ + 2,mγ + 1))))

= dmγ − 1

3
e+ 2(3) + (mγ + 1)− 5

= dmγ − 1

3
e+mγ + 2

≥ d4mγ + 5

3
e,
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where S∗ = S\{e}. Hence by Depth Lemma, depth(S/I) ≥ d4mγ+5

3
e for γ = 4.

Case 3: When γ ≥ 5.

Then (I : e) = (I(Pmγ−2), I(Pmγ ), I(Pmγ+3), I(P2mγ+5), N(e)). Therefore, by Lemma

2.2.8 and Lemma 3.1.2

depth(S/(I : e)) = depth(S ′/(I(Pmγ−2), I(Pmγ ), I(Pmγ+3), I(P2mγ+5))) + 1

= 1 + dmγ − 2

3
e+ dmγ

3
e+ dmγ + 3

3
e+ d2mγ + 5

3
e

≥ d4mγ + 11

3
e,

where S ′ = S\N(e) ∪ {e}. Next (I, e) = (e, I(Pmγ−1), I(Pp(4;mγ + 4, . . . ,mγ + 1))).

So, by Lemma 3.1.2 and Theorem 4.3.2

depth(S/(I, e)) = depth(S∗/(I(Pmγ−1), I(Pp(4;mγ + 4, . . . ,mγ + 1))))

= dmγ − 1

3
e+ 2(4) + (mγ + 1)− 5

= dmγ − 1

3
e+mγ + 4

≥ d4mγ + 11

3
e,

where S∗ = S\{e}. Hence by Depth Lemma, depth(S/I) ≥ d4mγ+11

3
e for γ = 5.

Theorem 4.4.3. Let I = I(G) for G = Cp(γ;m1, . . . ,mγ), then for mγ ≥ 3

depth(S/I) ≥
{
mγ + 1, when γ = 3;
d4mγ+6γ−19

3
e, when γ ≥ 3.

Proof. For γ ≤ 5, the result follows from Example 4.4.2. Assume γ ≥ 6. Let e be the

end vertex of path Pmγ which is adjacent to the end vertex of Pmγ−1 . Consider a short

exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0

Note that

(I : e) = (N(e),W )

whereW = (I(Pmγ−2), I(Pmγ ), I(Pmγ+γ−2), I(Pp(γ−3;mγ +γ−4,mγ +γ−3, . . . ,mγ +

2))) and the set of neighbors of e in G be N(e). Then by Lemma 2.2.8, Lemma 3.1.2
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and Theorem 4.3.2

depth(S/(I : e)) = depth(S∗[e]/W )

= 1 + depth(S∗/W )

≥ 1 + dmγ − 2

3
e+ dmγ

3
e+ dmγ + γ − 2

3
e+ 2(γ − 3) + (mγ + 2)− 5

= dmγ − 2

3
e+ dmγ

3
e+ dmγ + γ − 2

3
e+ 2γ +mγ − 8

≥ d4mγ + 6γ − 19

3
e,

where S∗ = S\N(e) ∪ {e}. Further

(I, e) = (e,H)

where H = (I(Pmγ−1), I(Pp(n− 1;mγ + γ − 1,mγ + γ − 2, . . . ,mγ + 1))). Then

depth(S/(I, e)) = depth(S ′/H)

≥ dmγ − 1

3
e+ 2(γ − 1) + (mγ + 1)− 5

= dmγ − 1

3
e+ 2γ +mγ − 6

≥ d4mγ + 6γ − 19

3
e,

where S ′ = S\{e}. Hence, the Depth Lemma implies the result.

Proposition 4.4.4. Let G = Cp(γ;m1, . . . ,mγ) and let I = I(G). Then for mγ ≥ 3

sdepth(S/I) ≥
{
mγ + 1, when γ = 3;
d4mγ+6γ−19

3
e, when γ ≥ 3.

Proof. The proof is same as that of Theorem 4.4.3. Proposition 2.2.6, Lemma 2.2.11,

Lemma 3.1.2 and Proposition 4.3.3 implies the result.
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Chapter 5

Depth and Stanley depth of Power of
Certain Trees

A caterpillar tree is a graph in which all the vertices are within distance 1 of a central

path. A lobster tree is a tree having the property that the removal of leaf nodes leaves

a caterpillar graph. This chapter covers the lower bounds for depth and Stanley depth

of a class of the lobster trees.

5.1 A class of Lobster Trees

Definition 5.1.1. Consider a star graph Sr and let li − 1 number of vertices are

adjacent to the ith leaf of Sr with at most one li = 1, where 1 ≤ i ≤ r − 1, such a

graph is denoted by S(r; l1, . . . , lr−1).

Figure 5.1: S(5; 3, 6, 4, 5)
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Definition 5.1.2. Let Sk be a star. Then L(Sk) denotes the set consisting of leaves

of Sk.

Lemma 5.1.3. [10, Lemma 4.2] Consider a polynomial ring S over the field and an

ideal I of S. Suppose σ ∈ S be a monomial and let {y1, y2, . . . , ys} be variables such

that ∀ j, yj does not divide σ. Assume z1, z2 ∈ Z+\{0}. If depthSj−1/(I
k
j−1 : σyj) ≥ z1

∀ j ≥ 1 and depthSs/(I
k
s : σ) ≥ z2, then depthSj/(I

k
j : σ) ≥ min{z1 , z2} for each

i ≥ 0. In particular, depthS/(Ik : σ) ≥ min{z1 , z2}.

Proposition 5.1.4. Let I = I(S(3; l1, l2)), then for k ≥ 2

depth(S/Ik) ≥ 1.

Proof. Let e be the central vertex of the graph and let w be the neighbor of e with l−1

leaves adjacent to it. Let N(w) = {y1, y2, . . . , yj} and let l = min{l1, l2}. Without loss

of generality, let l = l2 ≥ 2. For k = 3 the result is true. Assume k ≥ 4. For a short

exact sequence

0 −→ S/(Ik : w) −→ S/Ik −→ S/(Ik, w) −→ 0

(Ik, w) = (Ik(Sl1+1), w), and

depth(S/(Ik, w)) = depth(S ′/Ik(Sl1+1)) + |L(Sl)|

≥ 1 + (l − 1)

= l,

where S ′ = S\V (Sl). Now for depthS/(Ik : w), consider a short exact sequence

0 −→ S/(Ik : wy1) −→ S/(Ik : w) −→ S/((Ik : w), y1) −→ 0

Then by Lemma 3.1.4 and induction on k

depth(S/Ik : wy1) = depth(S/Ik−1) ≥ 1.

Now for depth of S/((Ik : w), y1) consider another short exact sequence

0 −→ S1/(I
k
1 : wy2) −→ S1/(I

k
1 : w) −→ S1/((I

k
1 : w), y2) −→ 0
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Again by Lemma 3.1.4 and induction on k

depth(S1/I
k
1 : wy2) = depth(S1/I

k−1
1 ) ≥ 1.

...

Proceeding in the same manner, for the sequence

0 −→ Sj−1/(I
k
j−1 : wyl) −→ Sj−1/(I

k
j−1 : w) −→ Sj−1/((I

k
j−1 : w), y1) −→ 0

depth(Sj−1/I
k
j−1 : wyl) = depth(Sj−1/I

k−1
j−1 ) ≥ 1.

and

depth(Sj/I
k
j : w) = depth(Sj/I

k(Sl1)) + 1 ≥ 2

So, Lemma 5.1.3 implies

depth(S/Ik : w) ≥ 1,

and by Depth Lemma

depth(S/Ik) ≥ 1.

When j = 1, w has a unique neighbor y1 = e. Therefore, (Ik, w) = (Ik(Sl1+1), w) and

depth(S/(Ik, w)) = depth(S ′′/(Ik(Sl1+1)))

≥ 1,

where S ′′ = S\{w}. Next by induction on k

depth(S/(Ik : wy1)) = depth(S/(Ik−1)) ≥ 1,

and

depth(S1/I
k
1 : w) ≥ 1.

So, by Lemma 5.1.3

depth(S/Ik : w) ≥ 1.

Hence depth(S/Ik) ≥ 1.
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Theorem 5.1.5. Let I = I(S(r; l1, l2, . . . , lr−1)) and consider l = min{l1, l2, . . . , lr−1},
then for r ≥ 2, and k ≥ 1

depth(S/Ik) ≥
{

max{1, r − k − 1}, when l = 1;
max{1, r − k}, otherwise.

Proof. The proof is done by induction on k and r. For r ≥ 2 and k = 1, let e be the

center of the graph. For a short exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0

(I : e) = (N(e))

Thus

depth(S/(I : e)) = (l1 − 1) + (l2 − 1) + · · ·+ (lr−1 − 1) + 1

= l1 + l2 + · · ·+ lr−1 − r + 2

≥ r − 1,

and

(I, e) = (I(Sl1), . . . , I(Slr−1), e)

Consequently, from Proposition 4.1.2

depth(S/(I, e)) = 1 + 1 + · · ·+ 1

= r − 1.

So by applying Depth Lemma,

depth(S/I) ≥ r − 1.

Now for r = 2 and for all k, since given graph is a bipartite, so the result follows

from Lemma 3.0.15. Assume r ≥ 3 and k ≥ 2. Let w be the neighbor of e, with

l − 1 leaves adjacent to it. Let N(w) = {y1, y2, . . . , yj}. Without loss of generality, let

l = lr−1 ≥ 2. For a short exact sequence

0 −→ S/(Ik : w) −→ S/Ik −→ S/(Ik, w) −→ 0
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(Ik, w) = (Ik(S(r − 1; l1, . . . , lr−2)), w), therefore

depth(S/(Ik, w)) = depth(S ′/Ik(S(r − 1; l1, . . . , lr−2))) + |L(Sl)|

≥ (r − 1− k) + (l − 1)

= l + r − k − 2,

where S ′ = S\V (Sl). Now for depthS/(Ik : w) consider a short exact sequence

0 −→ S/(Ik : wy1) −→ S/(Ik : w) −→ S/((Ik : w), y1) −→ 0

Then by Lemma 3.1.4 and induction on k

depth(S/Ik : wy1) = depth(S/Ik−1) ≥ r − (k − 1) = r − k + 1.

Now for depth of S/((Ik : w), y1) consider another short exact sequence

0 −→ S1/(I
k
1 : wy2) −→ S1/(I

k
1 : w) −→ S1/((I

k
1 : w), y2) −→ 0

Again by Lemma 3.1.4 and induction on k

depth(S1/I
k
1 : wy2) = depth(S1/I

k−1
1 ) ≥ r − (k − 1) = r − k + 1.

...

Proceeding in the same manner, for the sequence

0 −→ Sj−1/(I
k
j−1 : wyl) −→ Sj−1/(I

k
j−1 : w) −→ Sj−1/((I

k
j−1 : w), y1) −→ 0

depth(Sj−1/I
k
j−1 : wyl) = depth(Sj−1/I

k−1
j−1 ) ≥ r − (k − 1)− 1 = r − k.

and (Ikl : w) = Hk, where H is a forest consisting of r − 2 components and each

component is a star. Then by Theorem 3.2.4

depth(Sj/I
k
j : w) = depth(Sj/H

k) + 1

≥ max {d2− t+ 2

3
e+ (r − 2)− 1, r − 2}

= (r − 2) + 1

= r − 1

≥ r − k.
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So, Lemma 5.1.3 implies

depth(S/Ik : w) ≥ r − k,

and by Depth Lemma

depth(S/Ik) ≥ r − k.

When j = 1, w has a unique neighbor y1 = e. Therefore,

(Ik, w) = (Ik(S(r − 1; l1, . . . , lr−2)), w),

and

depth(S/(Ik, w)) = depth(S ′′/Ik(S(r − 1; l1, . . . , lr−2)))

≥ (r − 1)− k,

where S ′′ = S\{w}. Next by induction on k

depth(S/(Ik : wy1)) = depth(S/(Ik−1))

≥ r − (k − 1)− 1

= r − k,

and

depth(S1/I
k
1 : w) ≥ (r − 2) + 1

= r − 1

> r − k − 1.

So, by Lemma 5.1.3

depth(S/Ik : w) ≥ r − k − 1,

and hence the result holds by Depth Lemma.

On the same lines, the following result can be proved by using Lemma 2.2.11, Lemma

3.1.2 and Corollary 3.3.8.

Proposition 5.1.6. Let I = I(S(r; l1, l2, . . . , lr−1)) be the edge ideal, for r ≥ 2, and

k ≥ 1

sdepth(S/Ik) ≥
{

max{1, r − k − 1}, when l = 1;
max{1, r − k}, otherwise.
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5.2 Generalized Banana Tree Graph

Definition 5.2.1. An (γ, z)-banana tree is a graph obtained by connecting one leaf

of each of γ copies of an z-star graph with a single vertex that is distinct from all the

stars. It is denoted by B(γ, z).

Figure 5.2: B(3, 5)

Definition 5.2.2. A generalized banana tree graph B(γ; z1, . . . , zγ) is a graph in which

γ number of zi-star graphs are connected to a single vertex that is distinct from all

the stars, where at most one zi = 1 or at most one zi = 2 and remaining all zi ≥ 3.

Banana tree graphs are the subclass of these graphs, i.e., for all zi = z for some z ≥ 2,

B(γ; z1, . . . , zγ) = B(γ, z).

Figure 5.3: Banana tree B(4; 7, 5, 6, 4)
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Theorem 5.2.3. Let G be a (r; γ1, . . . , γr)-star graph, where γj is the length of Pγj
and assume I = I(G). For k ≥ 1

depth(S/Ik) ≥ max {
r∑
j=1

dγj − 1

3
e, 1}.

Proposition 5.2.4. Let G = B(γ; z1, . . . , zγ), q = min{zi : 1 ≤ i ≤ γ} and I = I(G).

Then for γ ≥ 2

depth(S/I) ≥ γ.

Proof. Let v be the root vertex of G and e be the central vertex of star Sq in G.

Without loss of generality, let q = zγ. Consider a short exact sequence

0 −→ S/(I : v) −→ S/I −→ S/(I, v) −→ 0

Case 1: When q = 1, then (I : v) = (N(v), I(Sz1−1), . . . , I(Szγ−1−1)), therefore

depth(S/(I : v)) = 1 + depth(S ′/(I(Sz1−1), . . . , I(Szγ−1−1))) = 1 + (γ − 1) = γ.

Also (I, v) = (v, I(Sz1), . . . , I(Sznγ−1)) so

depth(S/(I, v)) = depth(S ′[e]/(I(Sz1), . . . , I(Szγ−1))) = 1 + (γ − 1) = γ,

where S ′ = S\{v}. By Depth Lemma depth(S/I) ≥ γ.

Case 2: When q = 2, then (I : v) = (N(v), I(Sz1−1), . . . , I(Szγ−1−1)) and

depth(S/(I : v)) = 1+depth(S ′[e]/(I(Sz1−1), . . . , I(Szγ−1−1))) = 1+1+(γ−1) = γ+1.

Moreover, (I, v) = (v, I(Sz1), . . . , I(Szγ−1), I(Sq)) so

depth(S/(I, v)) = depth(S ′[e]/(I(Sz1), . . . , I(Szγ−1), I(Sq))) = γ.

By Depth Lemma depth(S/I) ≥ γ.

Case 3: For q ≥ 3, notice that (I : v) = (N(v), I(Sz1−1), . . . , I(Szγ−1−1), I(Sq−1)),
where N(v) be the neighbors of v in G. Then by using Proposition 4.1.2,

depth(S/(I : v)) = depth(S∗/(I(Sz1−1), . . . , I(Szγ−1−1), I(Sq−1))) + 1

= (1 + · · ·+ 1) + 1 = γ + 1,
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where S∗ = S\N(v)∪{v}. Next (I, v) = (v, I(Sz1), . . . , I(Szγ−1), I(Sq)), so by applying

Proposition 4.1.2

depth(S/(I, v)) = depth(S/(v, , I(Sz1), . . . , I(Szγ−1), I(Sq)))

= 1 + · · ·+ 1 = γ.

Consequently, by Depth Lemma

depth(S/I) ≥ γ. (5.1)

Proposition 5.2.5. For γ = 2, let G = B(2; z1, z2), q = min{z1, z2} and I = I(G).

Then for k ≥ 2

depth(S/Ik) ≥ 1.

Proof. Let e be the central vertex of last star in G and let f be the neighbor of e which

is adjacent to v. The proof is done by induction on k. Suppose k = 2. For q = 1, the

result follows from Theorem 5.2.3. For q ≥ 2, consider a short exact sequence

0 −→ S/(I2 : e) −→ S/I2 −→ S/(I2, e) −→ 0 (5.2)

Then (I2, e) = (W 2, e) = W 2, here W is the edge ideal of deletion minor obtained by

eliminating e and variables in N ′ = N(e)\{f}.

depth(S/(I2, e)) = depth(S ′/W 2) + |N ′|

= depth(S ′/W 2) + q − 2,

with S ′ = S\N ′ ∪ {e}. Then by Theorem 5.2.3, depth(S ′/W 2) ≥ 1. Therefore,

depth(S/(I2, e)) ≥ q − 1. Now let N(e) = {y1, . . . , yl = f} and for depth of S/(I2 : e),

consider a short exact sequence

0 −→ S/(I2 : ey1) −→ S/(I2 : e) −→ S/((I2 : e), y1) −→ 0

By Lemma 3.1.4 and Eq. (5.1)

depth(S/(I2 : ey1)) = depth(S/I) ≥ 2.
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For the depth of S/((I2 : e), y1), consider another short exact sequence

0 −→ S1/(I
2
1 : ey2) −→ S1/(I

2
1 : e) −→ S1/((I

2
1 : e), y2) −→ 0

By Lemma 3.1.4 and Eq. (5.1)

depth(S1/(I
2
1 : ey2)) = depth(S1/I1) ≥ 2.

...

Proceeding in the same manner, for the sequence:

0 −→ Sl−1/(I
2
l−1 : eyl) −→ Sl−1/(I

2
l−1 : e) −→ Sl−1/((I

2
l−1 : e), y1) −→ 0

Then by Lemma 3.1.4 and Theorem 5.2.3

depth(Sl−1/(I
2
l−1 : eyl)) = depth(Sl−1/(Il−1) ≥ 1,

and by Lemma 2.2.8 and Theorem 5.2.3

depth(Sl/I
2
l : e) = depth(S ′l/T

2) + 1 ≥ 2,

where T is the edge ideal corresponding to contraction minor, obtained by removing

{e}∪N(e) from G and S ′l = Sl\{e}. Therefore from Lemma 5.1.3, depth(S/I2 : e) ≥ 1

and from Equation 5.2, depth(S/I2) ≥ 1. Now assume k ≥ 3. For q = 1, the result

follows from Theorem 5.2.3. When q ≥ 2, assume a short exact sequence

0 −→ S/(Ik : e) −→ S/(Ik) −→ S/((Ik, e)) −→ 0

Then depth(S/Ik, e) = depth(S ′/W k)+|N ′|= depth(S ′/W k)+q−2. Since by Theorem

5.2.3 depth(S ′/W k) ≥ 1, it implies

depth(S/Ik, e) ≥ q − 1.

For depth of S/(Ik : e), consider a short exact sequence

0 −→ S/(Ik : ey1) −→ S/(Ik : e) −→ S/((Ik : e), y1) −→ 0
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By Lemma 3.1.4 and induction on k

depth(S/(Ik : ey1)) = depth(S/Ik−1) ≥ 1.

For the depth of S/((Ik : e), y1), consider another short exact sequence

0 −→ S1/(I
k
1 : ey2) −→ S1/(I

k
1 : e) −→ S1/((I

k
1 : e), y2) −→ 0

Then by Lemma 3.1.4 and induction on k

depth(S1/(I
k
1 : ey2)) = depth(S1/I

k−1
1 ) ≥ 1.

...

Proceeding in the same manner, for the sequence:

0 −→ Sl−1/(I
k
l−1 : eyl) −→ Sl−1/(I

k
l−1 : e) −→ Sl−1/((I

k
l−1 : e), y1) −→ 0

Then by Lemma 3.1.4 and Theorem 5.2.3

depth(Sl−1/(I
k
l−1 : eyl)) = depth(Sl−1/(I

k−1
l−1 ) ≥ 1.

Moreover, Lemma 2.2.8 and Theorem 5.2.3 implies

depth(Sl/I
k
l : e) = depth(S ′l/T

k) + 1 ≥ 2,

where T is the edge ideal corresponding to contraction minor, obtained by removing

{e} ∪N(e) from G and S ′l = Sl\{e}. From Lemma 5.1.3, depth(S/Ik : e) ≥ 1 and by

Equation 5.2, depth(S/Ik) ≥ 1.

Theorem 5.2.6. Let G = B(γ; z1, . . . , zγ) and let q = min{zi : 1 ≤ i ≤ γ}. Then for

γ ≥ 2 and k ≥ 1

depth(S/Ik(G)) ≥
{

max{γ − k + 1, 1}, when q > 2;
max{γ − k, 1}, when q = 2.

Proof. Since G is a bipartite graph so depth(S/Ik) ≥ 1 for all k. Therefore, the focus

of the proof is to prove the other part of the result. For k = 1 and γ ≥ 2, the result

74



follows from Proposition 5.2.4. Suppose k ≥ 2. If γ = 2, then Proposition 5.2.5 implies

the result. Assume n ≥ 3. Let v be the root vertex in G and suppose e be the central

vertex of last star in G and f be the neighbor of e which is adjacent to v. Without

loss of generality, let q = kn.

Case 1: When q = 1. LetW be the edge ideal corresponding to graphB(γ; z1, . . . , zγ−1, 1)

and let e be the only vertex of star Sq in the graph. Now for the depth of S ′/W k, con-

sider another short exact sequence

0 −→ S/(W k : e) −→ S/W k −→ S/(W k, e) −→ 0 (5.3)

Then by induction on γ

depth(S/((W t, e))) = depth(S ′/Ik(B(γ − 1, z))) ≥ (γ − 1)− k + 1 = γ − k, (5.4)

where S ′ = S\{e}. Moreover, for the depth of S ′/(W k : e), consider a short exact

sequence

0 −→ S/(W k : ev) −→ S/(W k : e) −→ S/((W k : e), v) −→ 0 (5.5)

Then by Lemma 3.1.4 and induction on k,

depth(S/(W k : ev)) = depth(S/W k−1) ≥ γ − (k − 1) = γ − k + 1, (5.6)

and by Lemma 2.2.8

depth(S/((W k : e), v)) = depth(S ′/Hk, v) + 1,

where H is the edge ideal corresponding to a forest with γ − 1 number of components

and each component is a z-star graph. Therefore, by Theorem 3.2.4

depth(S/((W k : e), v)) ≥ max {d2− k + 2

3
e+(γ−1)−1, γ−1}+1 = γ−1+1 = γ (5.7)

By applying Depth Lemma on exact sequence (5.5) along with using Eqs. (5.6) and

(5.7)

depth(S/(W k : e)) ≥ γ − k + 1, (5.8)
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and applying Depth Lemma on exact sequence (5.3) along with using Eqs. (5.4) and

(5.8)

depth(S/W k) ≥ γ − k. (5.9)

Case 2: When q ≥ 2. assume I = I(G) and a short exact sequence

0 −→ S/(Ik : e) −→ S/(Ik) −→ S/(Ik, e) −→ 0 (5.10)

Note that (Ik, e) = (W k, e) = W k, where W be the edge ideal of deletion minor G′

obtained by eliminating e and variables in N ′ = N(e)\{f}. Note that q = 1 in G′.

Therefore

depth(S/Ik, e) = depth(S∗/W k) + |N ′|= depth(S∗/W k) + q − 2, (5.11)

where S∗ = S\N ′ ∪ {e}. Then Eq. (5.9) implies

depth(S/(Ik, e)) ≥ γ − k + q − 2. (5.12)

Now let N(e) = {y1, . . . , yl = f} and for depth of S/(Ik : e), consider a short exact

sequence

0 −→ S/(Ik : ey1) −→ S/(Ik : e) −→ S/((Ik : e), y1) −→ 0

Then by Lemma 3.1.4 and induction on k

depth(S/(Ik : ey1)) = depth(S/(Ik−1) ≥ γ − (k − 1) + 1 = γ − k + 2.

For the depth of S/((Ik : e), y1), consider another short exact sequence

0 −→ S1/(I
k
1 : ey2) −→ S1/(I

k
1 : e) −→ S1/((I

k
1 : e), y2) −→ 0

Then by Lemma 3.1.4 and induction on k

depth(S1/(I
k
1 : ey2)) = depth(S1/I

k−1
1 ) ≥ γ − (k − 1) + 1 = γ − k + 2.

...
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Proceeding in the same manner, for the exact sequence

0 −→ Sl−1/(I
k
l−1 : eyl) −→ Sl−1/(I

k
l−1 : e) −→ Sl−1/((I

k
l−1 : e), y1) −→ 0

Then by Lemma 3.1.4 and induction on k

depth(Sl−1/(I
k
l−1 : eyl)) = depth(Sl−1/(I

k−1
l−1 ) ≥ γ − (k − 1) = γ − k + 1.

Moreover, Lemma 2.2.8 and induction on n implies

depth(Sl/I
k
l : e) = depth(S ′l/I

k(B(γ − 1, z))) + 1 ≥ (γ − 1)− k + 1 + 1 = γ − k + 1,

where S ′l = Sl\{e}. Moreover, from Lemma 5.1.3

depth(S/Ik : e) ≥ γ − k + 1. (5.13)

Hence applying Depth Lemma on exact sequence (5.10) along with using Eqs. (5.12)

and (5.13) implies the result.

Corollary 5.2.7. For banana tree graph B(γ, z), let I = I(B(γ, z)). Then for γ ≥ 2,

z ≥ 3 and k ≥ 1

depth(S/Ik) ≥ max{γ − k + 1, 1}.

Proposition 5.2.8. Let G = B(γ; z1, . . . , zγ) and let q = min{zi : 1 ≤ i ≤ γ}. Then

for γ ≥ 2 and k ≥ 1

sdepth(S/Ik(G)) ≥
{

max{γ − k + 1, 1}, when q > 2;
max{γ − k, 1}, when q = 2.

Proof. The proof is similar to proof of Theorem 5.2.6. Lemma 2.2.11, Lemma 3.1.2

and Corollary 3.3.8 implies the result.
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