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Abstract

In this thesis we have discussed a few results for depth and Stanley depth of ideals

with disjoint support. We have also discussed some bounds of Stanley depth of

addition and of ideals. For any ideals we have lower bounds of Stanley depth for

addition and intersection of ideals. We have also given some equivalent forms of

Stanley conjecture for a monomial ideal and quotient of a monomial ideal.
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Introduction

Stanley gave the idea of what we call stanley depth of Zn-graded module over a com-

mutative polynomial ring S ([18]).He gave the inequality that depthM ≤ sdepthM

but it is still largely open. According to [8] the Stanely depth of a monomial ideal is

computed in a finite number of steps by partitioning a finite poset associated to the

monomial ideal into intervals. But it is still very difficult to compute the Stanely

depth of monomial ideals and even more difficult for modules, so we find it difficult

to verify the Stanely conjecture.

The thesis has three chapters. Chapter one discusses some basic definitions and

concepts of abstract algebra in detail with examples and some related results.

Chapter two provides the concept of Stanely depth, Stanely decomposition and

states Stanely conjecture. Next we recall some fundamental results related to depth

and Stanely depth of Zn graded S-modules where S is a polynomial ring in m vari-

ables over a field K.

Chapter three gives a review of [3] which provides some upper and lower bounds

for sdepthS(I1S + I2S) and sdepthS(S/(I1S ∩ I2S)) where I1 and I2 are ideals

with disjoint supports. It also discusses some lower bounds for sdepthS(I1S ∩
I2S) and sdepthS(S/(I1S + I2S)). We will also use the equalities sdepthS(I1S) =

sdepthS1
(I1)+n−m and depthS(I1S) = depthS1

(I1)+n−m for the above obtained

lower and upper bounds. For the specific case sdepthS(J) = sdepthS[y1](J, y1) we

will prove Asia Rauf conjecture that sdepthS(J) ≥ sdepthS(S/J) + 1. Next we will

prove a few corollaries in third section.

This section gives lower bounds for sdepthS(I1+I2), sdepthS(I1∩I2), sdepthS(S/(

I1 + I2)) and sdepthS(S/(I1∩ I2)) where I1, I2 ⊂ S are arbitrary monomial ideals. It

is proved that sdepthS(S/(I1 : v)) ≥ sdepthS(S/I1) for I1 ⊂ S and v ∈ S which gives

the lower bounds for sdepthS(I1 : I2) and sdepthS(S/(I1 : I2)) where I1, I2 ⊂ S are

any monomial ideals. For the monomial ideal I1 ⊂ S we have given some bounds for

sdepthS(I1) and sdepthS(S/I1) in the form of irreducible irredundant decomposition



of I1.

In the third section we have discussed a few equivalent forms of Stanely conjec-

ture for (I1) and S/I1 where I1 ⊂ S is a monomial ideal.
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Chapter 1

Preliminaries

In this chapter basic definitions and concepts of abstract algebra are discussed which

will be used further. It states definitions, examples and some related results in detail.

1.1 Rings and Fields

Definition 1.1.1. A ring R is a non-empty set with two binary operations “ + ”

(addition) and “ · ”(multiplication) which holds the following axioms:

(1) R is an abelian group with respect to “ + ”,

(2) R is associative with respect to “ · ” and

(3) For any x, y, z ∈ R, the left distributive law, x · (y + z) = (x · y) + (x · z) and

the right distributive law (x+ y) · z = (x · z) + (y · z) are satisfied.

In this section are rings are assumed to have identity unless stated otherwise

Definition 1.1.2. A ring R is called commutative if R is commutative with respect

to multiplication that is for all a, b ∈ R, a · b = b · a.

1



Definition 1.1.3. A ring R is considered to have an identity, when it has an identity

with respect to multiplication.

Proposition 1.1.1 ([6]). Consider a ring R with additive identity 0, then ∀ a, b ∈ R,

the following hold

(1) 0a = a0 = 0,

(2) a(−b) = (−a)b = −(ab),

(3) (−a)(−b) = +ab.

Example 1.1.1. (1) Rational numbers Q, real numbers R, integers Z and complex

numbers C are rings under the usual operations of addition and multiplication.

(2) R3 is a non-commutative ring without identity with the usual addition and cross

product of vectors.

Definition 1.1.4. A commutative ring R with identity 1 6= 0 is called as division

ring, if for all a(6= 0) ∈ R, there exists b ∈ R such that ab = ba = 1.

Example 1.1.2. Rational numbers Q form a division ring.

Definition 1.1.5. Consider a ring R having unity 1 6= 0. Any a ∈ R is a unit in R

if there exists b ∈ R such that ab = ba = 1.

Theorem 1.1.2 ([6]). In the ring Z/nZ all those elements which are relatively prime

to n are units in Z/nZ.

Example 1.1.3. All non-zero elements in Z13 are units because they are relatively

prime to 13.

Example 1.1.4. The set of integers Z has units ±1.

Definition 1.1.6. A commutative division ring is called a field.

Example 1.1.5. (Q,+, .) and (R,+, .) are fields.
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Definition 1.1.7. Consider a ring R, any non-zero element a ∈ R is called a zero

divisor if there exists b (6= 0) ∈ R such that ab = 0 or ba = 0.

Theorem 1.1.3 ([6]). In the ring Z/nZ all those non-zero elements which are not

relatively prime to n are zero divisors in Z/nZ.

Corollary 1.1.4 ([6]). If p is prime then Z/pZ has no zero divisors.

Definition 1.1.8. A commutative ring R with unity 1 6= 0 without zero divisors is

called an integral domain.

Proposition 1.1.5 ([6]). Consider a, b and c of any ring R and a is not a zero

divisor. If ab = ac ⇒ either a = 0 or b = c. Particularly for any a, b and c in any

integral domain if ab = ac then either a = 0 or b = c.

Theorem 1.1.6 ([6]). Every field ia an integral domain.

Theorem 1.1.7 ([6]). A finite integral domain is a field.

Corollary 1.1.8. For any prime p, Zp is a field.

Definition 1.1.9. A subring S of a ring R is a subset of R which becomes a ring

under the same operations as R.

Example 1.1.6. (1) Z is a subring of R.

(2) 2Z is a subring of Z.

(3) Suppose D is a squarefree integer. If D ≡ 1 mod 4 then the set

Z[(1 +
√
D)/2] = {x+ y(1 +

√
D)/2 : x, y ∈ Z}

is a subring of Q(
√
D) = {q1 + q2

√
D : q1, q2 ∈ Q}.
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Definition 1.1.10. Let R be a commutative ring with unity. Then the polynomial

in variable x with coefficients from R is

anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with n ≥ 0 and ai ∈ R.

When an 6= 0, then the polynomial is said to have degree n, anx
n is the leading

term and an is the leading coefficient. The set containing all such polynomials is

termed as ring of polynomials in x with coefficients in R and is denoted as R[x].

The polynomial ring in two variables x1, x2 with coefficients from R is R[x1, x2] =

R[x1][x2].

By induction the polynomial ring for n variables x1, x2, · · · , xn with coefficients from

R is defined as

R[x1, x2, · · · , xn] = R[x1, x2, · · · , xn−1][xn]

which means that we now consider n variables with coefficients in R, as polynomials

in just one variable xn with the cofficients which are themselves polynomials in n−1

variables.

The operations of addition is componentwise i.e.

(anx
n + an−1x

n−1 + · · ·+ a1x+ a0) + (bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0)

= (an + bn)xn + (an−1 + bn−1)x
n−1 + · · ·+ (a1 + b1)x+ (a0 + b0).

The multiplication is done by first defining (axi)(bxj) = (abxi+j) for only one non-

zero term polynomials and then further elongating to all polynomials

(anx
n + an−1x

n−1 + · · ·+ a1x+ a0)× (bnx
n + bn−1x

n−1 + · · · .+ b1x+ b0)

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + · · ·

the coefficient of xk in the product will be
∑k

j=0 ajbk−j.

By definition of multiplication R[x] is a commuatative ring with the same unity as

that of R.
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Proposition 1.1.9 ([6]). Let R be an integral domain and let p(y), q(y) be non-zero

elements of R[y]. Then

(1) degree (p(y)q(y)) = degree(p(y))+degree (q(y)),

(2) The units of R[y] are just the units of R and

(3) R[y] is an integral domain.

Remark 1.1.1. If S is a subring of R then S[y] is a subring of R[y].

Example 1.1.7. Z is a subring of R so Z[y] is a subring of R[y].

Definition 1.1.11. Let S1 and S2 be two rings. A map α : S1 → S2 satisfying

(1) α(x+ y) = α(x) + α(y) ∀ x, y ∈ S1 and

(2) α(xy) = α(x)α(y) ∀ x, y ∈ S1

is called a ring homomorphism.

(i) The kernal of α, denoted as ker(α), is the set

ker(α) = {x ∈ S1 : α(x) = 0S2}.

(ii) A bijective one to one and onto homomorphism is called a ring isomor-

phism.

Example 1.1.8. (i) φ : Z→ Z/2Z defined as

φ(y) =

{
0, if y is even;

1, if y is odd.

is a ring homomorphism.

(ii) Consider φ : Q[y] → Q to be the map from the ring of polynomials in y with

rational coefficients to the rationals defined as φ(p(y)) = p(0), then φ is a ring

homomorphism.
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(iii) For n ∈ Z, the map φn : Z→ Z, defined by φn(y) = ny

is not a ring homomorphism when n 6= 0, 1.

Proposition 1.1.10. Let S1 and S2 be two rings and θ : S1 → S2 be a homomor-

phism

(i) Im(θ) is a subring of S2.

(ii) Ker(θ) is a subring of S1. If α ∈ Ker(θ), then r1α, αr1 ∈ Ker(θ) for all r1 ∈
S1.

Definition 1.1.12. Consider a subset I of the ring R and the following three prop-

erties

(i) I is an additive subgroup of R.

(ii) For a ∈ I and r ∈ R, ra ∈ I or we can write rI ⊆ I for every r ∈ R.

(iii) For a ∈ I and r ∈ R, ar ∈ I or we can write Ir ⊆ I for every r ∈ R.

If (i) and (ii) are satisfied, then I is a left ideal of R and if (iii) and (i) are satisfied,

then I is a right ideal of R. If all three properties hold, then I is said to be an ideal

(two sided) of R.

Definition 1.1.13. I is called a proper ideal if I 6= R.

Remark 1.1.2. (1) Every ideal is a subring.

(2) A subring may not be an ideal in general e.g Z is a subring of R but Z is not

an ideal (for 5 ∈ Z and 5/9 ∈ R (5)(5/9) = (25/9) /∈ Z).

Proposition 1.1.11 ([6]). Consider a ring R. A subset I (6= ∅) of R is an ideal if

and only if for all a, b ∈ I and r ∈ R, a− b ∈ I, ar ∈ I and ra ∈ I.

Remark 1.1.3. Let λ : R1 → R2 be a ring homomorphism then ker(λ) is an ideal

of R1.
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Definition 1.1.14. For any proper ideal I of the ring R, since I is a subgroup of the

additive group R, so we can form the quotient group R/I, containing cosets r+ I for

r ∈ R. The addition and multiplication are defined in the natural way as

(s1 + I) + (s2 + I) = (s1 + s2) + I

(s1 + I)(s2 + I) = (s1s2) + I.

Example 1.1.9. (1) For any n ∈ Z, nZ is an ideal of Z so the associated quotient

ring is Z/nZ.

(2) Consider R = Z[x] to be the ring of polynomials in x with integer coefficients.

Let I be the collection of polynomials whose terms are of degree atleast 2. The

associated quotient ring R/I is given by the polynomials a + bx of degree at

most 1.

Theorem 1.1.12 ([6]). (First Isomorphism Theorem for Rings). Let φ : R1 → R2

be a ring homomorphism, then ker(φ) is an ideal of R1 and image of φ is a subring

of R2, and Im(φ) is isomorphic to R1/Ker(φ), that is

Im(φ) ∼= R1/Ker(φ).

Theorem 1.1.13 ([6]). (Second Isomorphism Theorem for Rings). Consider I to

be an ideal of R1 and S be a subring of R1. Then S + I = {x+ y | x ∈ S, y ∈ I} is

a subring of R1, S ∩ I is an ideal of S and we have

S/(S ∩ I) ∼= (S + I)/I.

Theorem 1.1.14 ([6]). (Third Isomorphism Theorem for Rings). Suppose I1 and

I2 are ideals of R such that I2 ⊆ I1. Then I1/I2 is an ideal of R/I2, we have

(R/I2)/(I1/I2) ∼= R/I1.

Proposition 1.1.15. Every proper ideal is the kernal of a ring homomorphism.
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Definition 1.1.15. Consider I and J to be ideals of a ring R then we define

(1) The sum of I and J is given by

I + J = { c1 + c2 | c1 ∈ I, c2 ∈ J }.

(2) The product of I and J, written as IJ, as the set of all finite sums of the

elements of the form c1c2, where c1 ∈ I and c2 ∈ J.

Example 1.1.10. Consider an ideal I in Z[x] having polynomials with integer co-

efficients with even constant terms . The polynomials 4 and y are contained in I.

16 = 4.4 ∈ I2 = I.I and y2 = y.y ∈ I2 = I.I

Their sum y2 + 16 is also contained in I. But y2 + 16 cannot be expressed as the

product of two polynomials of I like p(y)q(y).

Definition 1.1.16. Suppose X is any subset of a commutative ring R

(1) The smallest ideal of R containing X, denoted as (X), is called the ideal gen-

erated by X.

(2) The set of all possible finite sums, denoted by RX, is of the form rx such that

r ∈ R and x ∈ X is given as

RX = { r1x1 + r2x2 + ...+ rnxn | ri ∈ R, xi ∈ X, n ∈ Z+ }.

(3) Any ideal which is generated by a finite set is a finitely generated ideal.

Definition 1.1.17. An ideal I of any ring R is called principal if it is generated by

a single element.

Example 1.1.11. (1) The ideals 0 and R are both principle

0 = (0) and R = (1).

8



(2) For the ring Z the principal ideals are kZ where k ∈ Z. These are the ideals

generated by k and denoted as (k).

Proposition 1.1.16. Consider an ideal I of a ring R then

(1) I = R if and only if I contains a unit.

(2) Suppose R is commutative. Then R is a field if and only if 0 and R are its

only ideals.

Definition 1.1.18. In any ring R any ideal M is called a maximal ideal if M 6= R

and M and R are the only ideals that contain M.

Proposition 1.1.17 ([6]). Every proper ideal, in a ring with identity, is contained

in a maximal ideal.

Proposition 1.1.18. Suppose S is a commutative ring. The ideal M is maximal if

and only if the quotient ring S/M is a field.

Example 1.1.12. (2, y) is a maximal ideal in Z[y] as the quotient ring Z[y]/(2, y) ∼=
Z/2Z is a field.

Definition 1.1.19. Suppose a commutative ring R. An ideal I 6= R in R is called

a prime ideal for x, y ∈ R such that xy ∈ I, either x ∈ I or y ∈ I.

Proposition 1.1.19 ([6]). An ideal P , in a commutative ring R, is a prime ideal

in R if and only if the quotient ring R/P is an integral domain.

Corollary 1.1.20 ([6]). Every maximal ideal in a commutative ring R is a prime

ideal.

The converse of Corollary 1.1.20 is not true.

Example 1.1.13. (1) The 0 ideal in Z is prime but is not maximal.
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(2) pZ are the principal ideals, which are generated by primes in Z are prime as

well as maximal.

Definition 1.1.20. Suppose Q is a proper ideal of a commutative R, if ax ∈ Q
then either a ∈ Q or xk ∈ Q for some k > 0 then Q is called a primary ideal.

Remark 1.1.4. All prime ideals are primary.

Definition 1.1.21. A binary relation over a set Q which satisfies for all x, y, z ∈ Q

(a) x ≤ x. (reflexive)

(b) x ≤ y and y ≤ x then x = y. (antisymmetric)

(c) x ≤ y and y ≤ z then x ≤ z. (transitive)

is called a (non-strict) partial order and Q is called partially ordered st.

For any elements p, q ∈ Q if p ≤ q or q ≤ p then p and q are called comparable.

Example 1.1.14. (1) The real numbers are ordered by ≤.

(2) The power set of a set is ordered by inclusion.

Definition 1.1.22. A partial order set S which satisfies the condition for any x, y ∈
S, either x ≤ y or y ≤ x is called totally ordered set.

Example 1.1.15. Real numbers ordered by ≤ is a totally ordered set.

Lemma 1.1.21. Suppose Nn is the set of n-tuples of natural numbers where n is a

fixed constant. The tuples can be assigned a product order such that

(x1, x2, · · · , xn) ≤ (y1, y2, · · · , yn)

if and only if xj ≤ yj for each j.
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Definition 1.1.23. A partially ordered set is said to satisfy the ascending chain

condition if every strictly increasing sequence of elements eventually stops

e1 ≤ e2 ≤ e3 ≤ · · · ≤ en = en+1 = en+2 = · · ·

Definition 1.1.24. A partially ordered set is said to satisfy the descending chain

condition if every strictly decreasing sequence of elements eventually stops

e1 ≥ e2 ≥ e3 ≥ · · · ≥ en = en+1 = en+2 = · · ·

Definition 1.1.25. For a commutative ring R to be notherian if any infinite se-

quence of ideals

S1 ⊂ S2 ⊂ S3 ⊂ · · ·
in S eventually stops for some value of n that is Sn = Sn+1 = Sn+2 = · · ·
or we can say it fulfills the ascending chain condition with respect to inclusion on

ideals.

Proposition 1.1.22. (1) For a notherian ring R and an ideal J of R the quotient

ring R/J is notherian.

(2) A homomorphic image of a notherian ring is notherian.

Theorem 1.1.23 ([6]). For a commutative ring R the following are equivalent

(a) R is a notherian ring.

(b) Every non-empty set of ideals of R has a maximal element with respect to

inclusion.

(c) Every ideal of R is finitely generated.

Example 1.1.16. Z is notherian.

Example 1.1.17. Z[y1, y2, · · · ] is not notherian.
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Theorem 1.1.24. If R is a notherian then R[y] is also notherian.

Corollary 1.1.25. For a notherian ring R[y1][y2] = R[y1, y2] is also notherian. We

can say by induction that R[y1, y2, · · · , yn] is also notherian ring.

Definition 1.1.26. If a commutative ring R has a unique maximal ideal then R is

called a local ring.

Example 1.1.18. (1) All fields are local rings since 0 is the only maximal ideal.

(2) A nonzero ring in which every element is either a unit or nilpotent is a local

ring.

1.2 Modules over commutative rings

Definition 1.2.1. Suppose a commutative ring R then a non-empty set M is said

to be an R-module M if

(i) M is an abelian group under addition.

(ii) A map R×M→ M which satisfies for all r, s ∈ R and l,m ∈ M, the following

(1) (r + s)m = rm+ sm

(2) (rs)m = r(sm)

(3) r(l +m) = rl + rm

(4) 1 ·m = m

Example 1.2.1. (a) Every vector space over a field K is a K-module.

(b) For a ring R, R is a module over itself under usual multiplication.

Definition 1.2.2. For a ring R, the additive subgroup M ′ of a module M over R is

a submodule of M ′ if mb ∈M ′ for all r ∈ R and m ∈M ′.
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Remark 1.2.1. Submodules of modules are just subsets which are modules under

the specified operations.

Proposition 1.2.1 ([6]). Suppose a module M over a commutative ring R. Then

a subset M1 of a module M is a submodule of M if and only if

(a) M1 is non-empty.

(b) For any m1,m2 ∈M1 and r ∈ R, m1 −m2 ∈M1 and m1r ∈M1.

Definition 1.2.3. Suppose a ring R and let M1 and M2 be two R-modules. Then

a map γ : M1 → M2 is an R-module homomorphism when it satisfies the following

conditions

(a) γ (x+ y) = γ (x) + γ (y) ∀ x, y ∈M1.

(b) γ (rz) = rγ (z) ∀ z ∈M1 and r ∈ R.

Definition 1.2.4. A module homomorphism is called a module isomorphism if it is

one-to-one and onto. If there is a module isomorphism for two modules M1 and M2,

such as π : M1 →M2 then M1 and M2 are isomorphic and written as M1
∼= M2.

Definition 1.2.5. Suppose π : M1 →M2 is an R-module homomorphism then

(a) The kernal of π is

ker(π) = { m ∈M1 : π(n) = 0M2 }.

(b) The image of π is

π(M1) = { m2 ∈M2 : m2 = π(m1) for some m1 ∈M1 }.

(c) The set of all R-module homomorphisms from M1 to M2 is denoted as

HomR(M1,M2).
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Example 1.2.2. For a ring R and a positive integer n the map αj : Rn → R defined

as

αj(y1, y2, · · · , yn) = yj

is an onto R-module homomorphism and its kernal is given as the submodule of

n-tuples having a zero in jth position.

Theorem 1.2.2 ([6]). (First Isomorphism Theorem for Modules). Suppose M and

M ′ are two R modules and β : M →M ′ be R-module homomorphism then ker β is

a submodule of M with

M/kerβ ∼= β(M).

Theorem 1.2.3 ([6]). (Second Isomorphism Theorem for Modules). Suppose M

and M ′ are two submodules of R-module N then

(M +M ′)/M ′ ∼= M/(M ∩M ′).

Theorem 1.2.4 ([6]). (Third Isomorphism Theorem for Modules). Suppose M and

M ′ are two submodules of an R module M1 with M ⊆M ′ then

(M1/M)/(M ′/M) ∼= (M1/M
′).

Definition 1.2.6. An R-module M is finitely generated if any s ∈ M can be

expressed as s = r1s1 + · · · + rmsm, when ri’s ∈ R and si’s ∈ M then {s1, · · · , sm}
is the generating set for M .

Definition 1.2.7. Let M be an R-module and M1, · · · ,Mt, · · · be submodules in

M then for notherian modules any infinite increasing sequence of these submodules

finally stops that is

Mb = Mb+1,

for a positive integer b.

Definition 1.2.8. Suppose M is a module over a commutative ring R. An element

s(6= 0) ∈ R is a zero divisor in module M if there exists r ∈ M then sr = 0.
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Definition 1.2.9. For an R-module M and M1,M2, · · · ,Mt as submodules of M

then M can be written as a (internal)direct sum of M1,M2, · · · ,Mt if every r ∈ R

can be given uniquely as r = m1 +m2 + · · ·mt for mj ∈ Rj that is

M = M1

⊕
M2

⊕
· · ·

⊕
Mt.

1.3 Monomials and monomial ideals

Definition 1.3.1. Consider S = K[y1, y2, · · · , yn] a polynomial ring in n variables

over the field K. The set of vectors c = (c1, · · · , cn) ∈ Rn such that ci ≥ 0. The

product yc11 · · · ycnn such that ci ∈ Z+ is a monomial. Another way of writing the

monomial z = yc11 ...y
cn
n is the form z = yc where c = (c1, c2, · · · , cn) ∈ Zn+.

If the set of all monomials of S is denoted by Q then Q forms a K-basis of S. We

can express any polynomial h ∈ S as a unique linear combination of monomials

having coefficients in K

h =
∑

czz.

such that cz is an element of K.

The support of h, denoted as supp(h), is defined as

supp(h) = { q ∈ Q : cq 6= 0 }.

The support of a monomial q is given as

supp(q) = { yi : yi|q }.

Definition 1.3.2. If an ideal J ⊂ S is generated by monomials then J is called a

monomial ideal.

Theorem 1.3.1. The set Q of monomials belonging to J ⊂ S is a K-basis of J .

Corollary 1.3.2 ([7]). Consider an ideal J ⊂ S then the following are equivalent
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(1) J is a monomial ideal.

(2) For any h ∈ S, we have h ∈ J iff supp(h) ⊂ J .

Corollary 1.3.3 ([7]). Consider a monomial ideal J . The residue classes of the

monomials not belonging to J form a K-basis of the residue class ring S/J .

Proposition 1.3.4 ([7]). Consider {w1, w2, · · · , wn} be the monomial system of the

generators of the monomial ideal J ⊂ S then the monomial y ∈ J iff there exists a

monomial z such that y = zwi for some i.

Proposition 1.3.5 ([7]). Every monomial ideal has a unique minimal set of mono-

mial generators. For a monomial ideal J the unique minimal set of monomial gen-

erators is commonly denoted as G(J).

Example 1.3.1. Let S = K[ y1, y2, y3 ] then the ideal J = (y21y
2
2, y

2
2y

2
3, y

3
2y

2
3, y

2
1y

3
2)

has G(J) = { y21y22, y22y23 }.

Definition 1.3.3. A monomial yc = yc11 y
c2
2 · · · ycnn is called squarefree if ci’s that is

the components of c are 0 or 1.

Definition 1.3.4. An ideal J ⊂ S generated by squarefree monomials is called a

squarefree monomial ideal.

Example 1.3.2. Let S = K[ y1, y2, y3 ] then the ideal J = (y1y2, y2y3, y3y1) is

squarefree monomial ideal.

Definition 1.3.5. If an ideal J ⊂ S generated by variables not by its power then

J is called monomial prime ideal.

Corollary 1.3.6 ([7]). A squarefree monomial ideal is intersection of prime mono-

mial ideals.
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Definition 1.3.6. Radical of an ideal I ⊂ S of a commutative ring R, denoted as

rad(I) or
√
I, is given as

rad(I) = { a ∈ R | an ∈ I, for n > 0 }.

Definition 1.3.7. If I =rad(I), then I is called a radical ideal.

Proposition 1.3.7 ([7]). Let M be a monomial ideal then the set of generators of

rad(M) is given as

rad(M) = {
√
m : m ∈ G(M) }.

Corollary 1.3.8 ([7]). A monomial ideal N is called radical monomial ideal that is

N =
√
N iff N is squarefree monomial ideal.

Example 1.3.3. (1) 9Z has radical 3Z.

(2) Let S = K[y1, y2, y3 ] then the radical of ideal J = (y21y
2
2, y

2
2y

2
3, y

2
3y

2
1) is

rad(J) = (y1y2, y2y3, y3y1).

Definition 1.3.8. A monomial ideal J is called p-primary if its radical equals prime

ideal p.

Definition 1.3.9. An ideal J is irreducible if it cannot be expressed as the inter-

section of two bigger ideals i.e

J = U ∩ V then either J = U or J = V.

Definition 1.3.10. A monomial ideal that is not irreducible is called reducible

monomial ideal.

Corollary 1.3.9 ([7]). A monomial ideal is irreducible if and only if it is generated

from pure powers of variables.

Theorem 1.3.10. Every irreducible ideal is primary in a notherian ring.

Proposition 1.3.11 ([7]). The irreducible monomial ideal (ya1c1 , y
a2
c2
, · · · , yarcr ) is

(yc1 , yc2 , · · · , ycr)-primary.
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1.4 Algebric operations on ideals

Addition and multiplication of monomial ideals gives monomial ideals. Also G(I1 +

I2) ⊂ G(I1) ∪G(I2) and G(I1I2) ⊂ G(I1)G(I2).

Proposition 1.4.1 ([7]). Let I1 nd I2 be monomial ideals then the set of generators

for the monomial ideal I1 ∩ I2 is given as {lcm(w1, w2) : w1 ∈ G(I1), w2 ∈ G(I2)}.

Definition 1.4.1. Let I1,I2 ⊂ S be monomial ideals then the set

I1 : I2 = { g ∈ S : gh ∈ I1 for all h ∈ I2 }.

is called the colon ideal of I1 with respect to I2.

Proposition 1.4.2 ([7]). Let I1,I2 be monomial ideals then I1 : I2 is a monomial

ideal and

I1 : I2 =
⋂

I1 : (x).

Where the set of generators of I1 : (x) is { y/gcd(y, x) | y ∈ G(I1) }.

Example 1.4.1. Consider S = K[ y1, y2, y3 ] then the ideal J = (y1, y2) is monomial

prime ideal.

Definition 1.4.2. Consider an ideal J ⊂ R of a ring R. A prime ideal P is called a

minimal prime ideal of J , denoted as Min(J), if J ⊂ P and there is no prime ideal

containing J which is properly contained in P .

Definition 1.4.3. An irredundant presentation of an ideal I is an intersection I =⋂m
i=1 Ii such that none of the ideals Ii can be omitted in the presentation.

Theorem 1.4.3 ([7]). Suppose an ideal J ⊂ S = K[y1, · · · , yn] is a monomial ideal.

Then we have J =
⋂m
i=1 Ii where each Ii is generated by pure powers of the vari-

ables or we can say each Ii is of the form (ya1c1 , · · · , y
ar
cr ). Moreover, an irredundant

presentation of this form is unique.
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Lemma 1.4.4 ([7]). Let J has irredundant presentation as J = Q1∩Q2∩ · · · ∩Qm

as the intersection of prime ideals. Then Min(J) = {Q1, Q2, · · · , Qm}.

Corollary 1.4.5 ([7]). Consider M ⊂ S be a squarefree monomial ideal. Then

M =
⋂

P∈Min(M)

P,

and each P ∈Min(M) is a monomial prime ideal.

Definition 1.4.4. Suppose J ⊂ S is a monomial ideal withG(J) = {w1, w2, · · · , wn}
then J is called complete intersection ideal if and only if

supp(wl) ∩ supp(wm) = ∅, for l 6= m

Example 1.4.2. Consider S = K[y1, y2, y3] then the ideal J = (y21y
2
3, y

2
2) is a com-

plete intersection ideal.

Definition 1.4.5. Presentation of an ideal J as the intersection J =
⋂m
i=1 Ii, where

each ideal Ii is a primary ideal, is called primary decomposition.

Theorem 1.4.6. In a notherian ring every ideal can be presented as the intersection

of finite number of primary ideals.

Definition 1.4.6. Consider a notherian ring R and M a finitely generated R−
module. For a prime ideal ideal P ⊂ R if there exists an element s ∈ M such that

P = Ann(s), then P is called an associated prime ideal of M .

Corollary 1.4.7 ([7]). The associated prime ideals of a monomial ideal are mono-

mial prime ideals.

Example 1.4.3. For an ideal I = (y21y3, y
2
1y4, y

2
2) of a polynomial ring S = K[y1, y2,

y3, y4] over the field K, the primary decomposition of I is given as (y21, y
2
2)∩(y3, y4, y

2
2)

and Ass(S/I) = {(y1, y2), (y3, y4, y2)}.
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Corollary 1.4.8 ([7]). Consider J ⊂ S and let Q ∈ Ass(J). Then there exists a

monomial w such that Q = J : w.

Definition 1.4.7. Consider an abelian semigroup (G,+). The commutative ring R

is called G-graded if R has a family of subgroups, {Rp}, such that

(1) R =
⊕

p∈GRp and

(2) RpRq ⊂ Rp+q, for all p, q ∈ G.

Example 1.4.4. For h ∈ S, with b ∈ Zn, if h is of the form xyb with x ∈ K it is

called homogenous of degree b. Then S is Zn -graded with graded components

Sb =

{
Kyb, if b ∈ Zn+;

0, otherwise.

Definition 1.4.8. An S-module M is called Zn-graded module when

(a) M =
⊕

c∈ZnMc and

(b) ScMd ⊂Mc+d for c, d ∈ Zn.

Definition 1.4.9. Suppose M is a G-graded R module. An element m ∈ M is

called homogenous if there exists k ∈ G such that m ∈Mk where k is called degree

of M .

Every Mk, for k ∈ G, is a homogenous component of M of degree k.

Definition 1.4.10. A module M is called G-graded over a G-graded ring R if the

following conditions hold

(1) M =
⊕

f∈GMf and

(2) RhMf ⊂Mh+f for all h, f ∈ G.

Example 1.4.5. (1) Z- grading for K[y]

K[y] = K︸︷︷︸
deg 0

⊕
Ky︸︷︷︸
deg 1

⊕
Ky2︸︷︷︸
deg 2

⊕
Ky3︸︷︷︸
deg 3

⊕
· · ·
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(2) Z - grading for K[y1, y2, · · · , yn]

K[y1, y2, · · · , yn] = K︸︷︷︸
deg 0

⊕
(Ky1 +Ky2 + · · ·+Kyn)︸ ︷︷ ︸

deg 1⊕
(Ky21 +Ky22 + · · ·+Ky2n +Ky1y2 + · · · )︸ ︷︷ ︸

deg 2

⊕
· · ·

(3) Zn - grading for K[y1, y2, · · · , yn]

K[y1, y2, · · · , yn] =
⊕
µ∈Zn

Rµ =
⊕
µ∈Zn

KY µ

where µ = (c1, c2, · · · , cn) and Y µ = (yc11 y
c2
2 · · · ycnn ).

Definition 1.4.11. An ideal J , of a G-graded ring R, is G-graded when

J =
⊕
i∈G

(J ∩Ri).

Definition 1.4.12. Suppose M is a module over a ring R then the annihilator of

M over the ring R is given as

AnnR(M) = {z ∈ R : zM = 0 }.

Definition 1.4.13. Krull dimension is usually considered as the dimension of a

ring. For a commutative ring it is given as supremum of the length of all chains of

prime ideals

P0 ( P1 ( · · · ( Pk.

When there is no upper bound on the length we call dimension to be infinite.

Example 1.4.6. (1) The ring Z has dimension 1.

(2) K[y1, y2, · · · , yp] has dimension p.

(3) K[y1, y2, · · · ] has infinite dimension.
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Corollary 1.4.9. If we have a notherian ring R then,

dim R[y1, y2, · · · , yn] = n+dimR.

If K is a field then,

dim K[y1, y2, · · · , yn] = n.

Definition 1.4.14. For a module M the krull dimension, denoted as dim(M), is

supremum over the strictly increasing chains of length r

P0 ( P1 ( · · · ( Pr where Pl ∈ supp(M)

that is dim(M) =dim(R/annM) when M 6= 0.

Definition 1.4.15. If an element of a ring is not a zero divisor, then it is called

regular element.

Definition 1.4.16. Suppose M is a module over a commutative ring R. An element

s (6= 0) ∈ R is M-regular only if s is not a zero divisor in M that is if r ∈ M and

rs = 0 then r = 0.

Definition 1.4.17. The sequence z = (z1, · · · , zm) of a ring R is called M -regular

sequence if

(i) zj is M/(z1, · · · , zj−1)M regular element for j = 1, · · · ,m.

(ii) M/zM 6= 0.

Example 1.4.7. As S = K[y1, · · · , ym] is a module over itself so we have y1, · · · , ym
a regular sequence on S.

Definition 1.4.18. Suppose a graded ring R having a graded maximal ideal m

and M(6= 0) a finitely generated graded R-module. The depth of M is the common

length of the maximal regular sequence on M in m. It is denoted as depth(M).
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Example 1.4.8. Suppose S = K[y1, · · · , yb] then y = y1, · · · , yb is a maximal

regular sequence on S as S/(y) ∼= K. So depth(S) = b.

Proposition 1.4.10. [20] Suppose a G-graded ring R with graded maximal ideal m

and a finitely generated graded R-module M( 6= 0). Then depth(M) ≤ dim(R/P) for

P ∈ Ass(M). Particularly depth(M) ≤ dim(M).

Definition 1.4.19. In particular if v ∈M then the annihilator of v is given as

AnnR(v) = {b ∈ R : bv = 0 }.

Example 1.4.9. For an ideal I = (x21x2, x
3
1x4, x3x

2
4, x5) then two annihilators of

x1 = x1 + I ∈ S/I are x1x2 and x21x4.

Definition 1.4.20. A finite or infinite sequence of modules and module homomor-

phisms

· · ·N0
g1−→ N1

g2−→ N2
g3−→ · · · gm−→ Nm · · ·

is called exact sequence if the image (range) of each homomorphism equals the kernel

of the next that is

Im(gn) = Ker(gn+1).

Definition 1.4.21. A finite exact sequence is called a short exact sequence when

it is of the form

0→ N0
g−→ N1

h−→ N2 → 0.

Hence g is monomorphism and h is epimorphism.

Example 1.4.10.

0→ Z .2−→ Z→ Z/2Z→ 0

is a short exact sequence.
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Chapter 2

Stanley Decomposition and the

Stanley Depth

In this chapter Stanley decomposition, Stanley depth of Zn-graded S-modules are

discussed where S is the polynomial ring over a field. R. P. Stanley’s conjecture is

also stated. Some results regarding to depth, Stanley depth and Stanley’s conjecture

are discussed which will be helpful in further chapters.

2.1 Stanley Decomposition and Stanley depth

Definition 2.1.1. Consider a field K and a polynomial ring S = K[x1, · · · , xm]

in m variables with coefficients in the field K. Consider M a finitely generated

multigraded Zn-graded S-module. Suppose u ∈ M is homogeneous in M and Z ⊆
{x1, · · · , xm}. The K-subspace of M , denoted as uK[Z], is generated by all elements

ux where x is a monomial in K[Z]. The Zn graded K sub-space uK[Z] ⊂M is called

Stanley space of dimension |Z| and uK[Z] is a free K[Z]-module, where |Z| is the

cardinality of Z. The presentation of the K-vector space M as finite direct sum of

24



Stanley spaces is called Stanley decomposition of M i.e

D : M =
m⊕
i=1

uiK[Zi].

Then the Stanley depth of the decomposition is given by

sdepthD = min{|Zi| : i = 1, · · · ,m}

The Stanley depth of M is given as

sdepthM := max{sdepthD : D is a Stanley decomposition of M }

2.2 Method for finding Stanley Depth

The method for finding the Stanley depth of a module I/J where J ⊂ I ⊂ S =

K[x1, · · · , xn] are monomial ideals is given in [8]. We define a natural partial order on

Nn as x ≤ y if and only if xi ≤ yi for i = 1, · · · , n. Suppose we have xc = xc1 · · ·xcn

for c ∈ Nn. Suppose I is generated by monomials xc11 , · · · , xcnn and J is generated

by xd11 , · · · , xdnn . Choose g ∈ Nn such that xi ≤ g and yj ≤ g for all i and j. Let

P g
I/J be the set of all s ∈ Nn with s ≤ g such that xi ≤ s for some i and s � yj for

all j. It is called the characteristic poset of I/J with respect to g and is viewed as

a finite subposet of Nn. For any poset P and x, y ∈ P we set an interval [x, y] for

x ≤ v ≤ y and v ∈ P . A partition of of a finite poset P is a disjoint union

P : P =
⋃r
a=1[xa, ya].

Each partition of P g
I/J gives rise to a Stanley decomposition of I/J .

Example 2.2.1. For an ideal I = (x1x3, x1x4, x2x3, x2x4) ⊂ S = K[x1, x2, x3, x4]

D1 := x1x3K[x1, x2, x3, x4]⊕ x1x4K[x1, x2, x4]⊕ x2x4K[x2, x3, x4]⊕ x2x3K[x2, x3].

sdepth(D1) = 2.

D2 := x1x2x3K[x1, x2, x3, x4]⊕ x2x3K[x2, x3, x4]⊕ x2x4K[x1, x2, x4]⊕ x1x3K[x1,

x3, x4].
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sdepth(D2) = 3.

sdepth(I) ≥ max{sdepth(D1), sdepth(D2)} = max{2, 3} = 3

D3 : S/I = K[x1, x2]⊕ x3K[x3, x4].

sdepth(D3) = 2.

D4 : S/I = K[x4]⊕ x3K[x3, x4]⊕ x1K[x1, x2]⊕ x2K[x2].

sdepth(D4) = 1.

sdepth(S/I) ≥ max{sdepth(D3), sdepth(D4)} = max{2, 1} = 2

Conjecture 2.2.1. Richard P. Stanely [18], in 1982, conjectured that for all finitely

generated Zn-graded S-modules M [18]

depthM ≤ sdepthM.

The conjecture is disproved on 16 April 2015 by Art M. Duval, Bennet Goeckner,

Caroline J. Klivans, Jeremy L. Martin.

2.3 Some known values, equalities and bounds for

Stanley depth

Theorem 2.3.1. [1, Theorem 2.2]. Let m = (x1, · · · , xn) ⊂ S then

sdepth(m) = dn
2
e.

Lemma 2.3.2. [4, Lemma 1.1]. Suppose u1, · · · , un ∈ K[x2, · · · , xn] be some

monomial and let c be a positive integer. Let I = (xc1u1, u2, · · · , un) and J =

(xc+1
1 u1, u2, · · · , un) then sdepth(I) = sdepth(J).

Theorem 2.3.3. [4, Theorem 2.1]. Let I be a complete intersection monomial ideal

in S and
√
I be its radical. Then

sdepth(I) = sdepth(
√
I).
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Corollary 2.3.4. [10, Corollary 2.2]. Suppose J ⊂ S is a monomial ideal and
√
J

is its radical. Then sdepth(S/J) ≤ sdepth(S/
√
J) and sdepth(J) ≤ sdepth(

√
J).

Corollary 2.3.5. [10, Corollary 2.3]. Suppose I and J are two monomial ideals of

S such that I ⊂ J and the radical ideals of I and J are
√
I and

√
J respectively. If

sdepth(J/I) = dim(J/I). Then sdepth(
√
J/
√
I) = dim(

√
J/
√
I).

Theorem 2.3.6. [2] Suppose I ⊂ S = K[x1, · · · , xn] is a monomial ideal which is

minimally generated by q elements then

sdepth(S/I) ≥ n− q.

Theorem 2.3.7. [19] Suppose I ⊂ S = K[x1, · · · , xn] is a monomial ideal which is

minimally generated by q elements then

sdepth(I) ≤ n− bq
2
c.

Proposition 2.3.8. [13, Proposition 1.3]. Suppose a monomial ideal I in S. Then

for each monomial u 6∈ I sdepthS(I) ≤ sdepthS(I : u).

Corollary 2.3.9. [13, Corollary 1.2]. Suppose a monomial ideal I in S. Then for

each monomial v /∈ I

depthS(S/(I : v)) ≥ depthS(S/I).

Theorem 2.3.10. [8, Theorem 1.4]. Let J ⊂ S be a monomial ideal (minimally)

generated by m monomials. Then:

sdepth(J) ≥ max{1, n− dm
2
e}.

Corollary 2.3.11. [5, Corollary 2.6]. If J ( I ⊂ S are two monomial complete

intersection ideals, then

sdepthS(J/I) ≥ depthS(J/I).
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Theorem 2.3.12. [9, Theorem 1.1]. Suppose I ⊂ S is a monomial ideal such that

Ass(S/I) = {P1, · · · , Pr} then

sdepth(I) ≤ min{sdepth(Pj) : 1 ≤ j ≤ r}.

Lemma 2.3.13. [4, Lemma 2.2.]. Suppose I ′ ⊂ S[xn+1] be a monomial ideal. We

consider the homomorphism α : S[xn+1]→ S, α(xi) = xi for i ≤ n and α(xn+1) = 1.

Let I = α(I ′). Then sdepth(I ′) ≤ sdepth(I) + 1.

Proposition 2.3.14. [14, Proposition 2.2]. Suppose P and P ′ are two non-zero

monomial primary ideals of S with different associated prime ideals. Suppose that

dim(S/(P + P ′)) = 0. Then sdepth(S/(P ∩ P ′)) ≤

max{min{dim(S/P ′), ddim(S/P )

2
e},min{dim(S/P ), ddim(S/P ′)

2
e}}.

Theorem 2.3.15. [14, Theorem 4.5]. If P and P ′ are irreducible monomial ideals

and P + P ′ is the maximal ideal of S then

sdepth(P ∩ P ′) ≥ ddim(S/P )

2
e+ ddim(S/P ′)

2
e.

Theorem 2.3.16. [10, Theorem 2.8]. Suppose Q and Q′ are two primary monomial

ideals with Q = (x1, · · · , xp) and Q′ = (xp+1, · · · , xq), where p ≥ 2 and q ≥ 4. Then

sdepth(Q ∩Q′) ≤ q + 2

2
.

Corollary 2.3.17. [10, Corollary 2.9]. Suppose P and P ′ are two irreducible mono-

mial ideals such that
√
P = (x1, · · · , xs) and

√
P ′ = (xs+1, · · · , xn). Suppose that n

is odd. Then sdepth(P ∩ P ′) = dn
2
e.

Lemma 2.3.18. [10, Lemma 2.6]. Suppose P and P ′ are two monomial primary

ideals with
√
P = (x1) and

√
P ′ = (x2, · · · , xn). Then

sdepth(P ∩ P ′) ≤ 1 + dn− 1

2
e.
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Lemma 2.3.19. [10, Lemma 2.15]. Suppose P and P ′ are two primary monomial

ideals with
√
P = (x1, · · · , xn−1) and P ′ = (x2, · · · , xn). Then

sdepth(P ∩ P ′) ≤ n− bn− 1

2
c.

Proposition 2.3.20. [10, Proposition 2.16]. Suppose P and P ′ are two monomial

primary ideals with
√
P = (x1, · · · , xl) and

√
P ′ = (xs+1, · · · , xn) where 1 < s ≤ l <

n. Then

sdepth(P ∩ P ′) ≤ min{n− b l
2
c, n− bn− l

2
c}.

Lemma 2.3.21. [14, Lemma 4.1]. Suppose Q,Q′ ⊂ S = K[x1, · · · , xn] are two non-

zero irreducible monomial ideals such that
√
Q = {x1, · · · , xm},

√
Q′ = {xm+1, · · · , xn}

for some integer m with 1 ≤ m ≤ n. Then

sdepth(Q ∩Q′) ≥ dm
2
e+ dn−m

2
e ≥ n

2
.

Lemma 2.3.22. [14, Lemma 1.3]. Suppose P and Q are two monomial ideals of

S = K[x1, · · · , xn]. Then

sdepth(S/(P ∩Q)) ≥ max{min{sdepth(S/P ), sdepth(P/(P ∩Q))},

min{sdepth(S/Q), sdepth(Q/(P ∩Q))}}.

Lemma 2.3.23. [14, Lemma 1.5]. Suppose P and P ′ are two irreducible monomial

ideals of S. Then

sdepth(S/(P ∩ P ′)) ≥ max{min{dim(S/P ′), ddim(S/P ) + dim(S/(P + P ′))

2
e},

min{dim(S/P ), ddim(S/P ′) + dim(S/(P + P ′))

2
e}}.

Theorem 2.3.24. [14, Theorem 2.3]. Suppose P and P ′ are two non-zero monomial

primary ideals of S with different associated prime ideals. Then

sdepth(S/(P ∩ P ′)) ≤ max{min{dim(S/P ′), ddim(S/P ) + dim(S/(P + P ′))

2
e},

min{dim(S/P ), ddim(S/P ′) + dim(S/(P + P ′))

2
e}}.
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Theorem 2.3.25. [14, Theorem 4.5]. Suppose P and P ′ are two non-zero irreducible

monomial ideals of S. Then

sdepth(P ∩ P ′) ≥ dim(S/(P + P ′)) + ddim(S/P ′)− dim(S/(P + P ′))

2
e

+ddim(S/P )− dim(S/(P + P ′))

2
e ≥ ddim(S/P ′) + dim(S/P )

2
e.

Lemma 2.3.26. [14, Lemma 5.7]. Suppose P1, P2, P3 are three non-zero irreducible

monomial ideals of S = K[x1, · · · , xn]. Then sdepth((P2 ∩ P3)/(P1 ∩ P2 ∩ P3)) ≥

dim(S/(P1 + P2 + P3)) + ddim(S/(P1 + P2))− dim(S/(P1 + P2 + P3))

2
e

+ddim(S/(P1 + P3))− dim(S/(P1 + P2 + P3))

2
e

≥ ddim(S/(P1 + P2)) + dim(S/(P1 + P3))

2
e.

Proposition 2.3.27. [14, Proposition 5.8]. Suppose P1, P2, P3 are three non-zero

irreducible ideals of S and dimS/(P1+P2+P3) = 0. Then sdepth(S/(P1∩P2∩P3)) ≥

max{min{sdepth S/(P2 ∩ P3), d
dim(S/(P1 + P2))

2
e+ ddim(S/(P1 + P3))

2
e}

min{sdepth S/(P1 ∩ P3), d
dim(S/(P1 + P2))

2
e+ ddim(S/(P2 + P3))

2
e},

min{sdepth S/(P1 ∩ P2), d
dim(S/(P3 + P2))

2
e+ ddim(S/(P1 + P3))

2
e}}.

Corollary 2.3.28. [10, Corollary 1.5]. Let a monomial ideal J ⊂ S and Pj ∈
Ass(S/J) = {P1, · · · , Pt}, dj =ht(Pj), J ′ := (J, xn+1, xn+2) ⊂ S ′ := S[xn+1, xn+2].

Then

sdepthS′(J
′) = min{n+ 1− ddj

2
e, 1 ≤ j ≤ t}.

Corollary 2.3.29. [10, Corollary 1.12]. Let J ⊂ S is a monomial ideal, Ass(S/J)=

{P1, · · · , Pt} and suppose that G(Pl) ∩ G(Pm) = ∅ for l 6= m. Then sdepth(J) = t.

In particular Stanleys conjecture holds for J .
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Lemma 2.3.30. [10, Lemma 3.1]. Let J ′ ⊂ S ′ = S[xn+1] be a monomial ideal, xn+1

being a new variable. If J ′ ∩ S 6= (0), then sdepthS(J ′ ∩ S) = sdepthS[xn+1]J
′ − 1.

Theorem 2.3.31. [8] For S = K[x1, · · · , xn] we suppose I ⊂ S ′ = K[x1, · · · , xr]
then we have

sdepthS(IS) = sdepthS′(I) + n− r.

Theorem 2.3.32. [8] For S = K[x1, · · · , xn] we suppose J ⊂ S ′ = K[x1, · · · , xr]
then

depthS(JS) = depthS′(J) + n− r.

Theorem 2.3.33. [2] Suppose a monomial ideal I ⊂ S such that I = u(I : u) for

monomial u ∈ S. Then

(1) sdepthS(I) = sdepthS(I : u).

(2) sdepthS(S/I) = sdepthS(S/(I : u).

Lemma 2.3.34. [16] Suppose I ⊂ S = K[x1, · · · , xn] is a monomial complete in-

tersection then sdepth(I) = sdepth(S/I) + 1 and

depth(I) ≥ depth(S/I) + 1.

Conjecture 2.3.35. [13] Suppose a monomial square free ideal I ⊂ S. Then

sdepth(I) ≥ depth(I).

Theorem 2.3.36. [15] Suppose a monomial ideal I ⊂ S. If n = 5 then I is a Stanely

ideal and sdepth(S/I) ≥ depth(S/I).

Lemma 2.3.37. [14] Suppose a primary monomial ideal Q ⊂ S = K[x1, · · · , xn].

Then

sdepth(S/Q) = dim(S/Q).
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Lemma 2.3.38. Suppose an ideal P of S = K = [x1, · · · , xn] such that P =
√
Q.

Then

dim(S/P ) = dim(S/Q).

Lemma 2.3.39. [11] Suppose N is a Zn-graded R module and N1 and N2 are its

two submodules. Let

0→ N1 → N → N2 → 0

is an exact sequence. Then

sdepthN ≥ min{sdepthN1, sdepthN2}.

Lemma 2.3.40. [20] Suppose a short exact sequence of finitely generated graded

modules over a graded ring S

0→ N0 → N1 → N2 → 0

Then

(1) For depthN1 < depthN2, depthN0 = depthN1.

(2) For depthN1 = depthN2, depthN0 ≥ depthN1.

(3) For depthN1 > depthN2, depthN0 = depthN2 + 1.
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Chapter 3

Inequalities for Stanley Depth

In this chapter we will review the paper [3]. We will discuss bounds of Stanley

depths for ideals with disjoint support and will also consider the general case. A

few equivalent forms of Stanley inequality are discussed in detail.

3.1 The case of ideals with disjoint support

For S = K[x1, · · · , xn] and n ≥ 2 the support of a monomial v ∈ S is denoted as

supp(v) = {xj : xj|v}.

Proposition 3.1.1. Suppose two monomial ideals I1 ⊂ S1 = K[x1, · · · , xm] and

I2 ⊂ S2 = K[xm+1, · · · , xn] for 1 ≤ m ≤ n. Then we have

(1) sdepthS(I1S ∩ I2S) ≥ sdepthS1
(I1) + sdepthS2

(I2).

(2) sdepthS(S/(I1S + I2S)) ≥ sdepthS1
(S1/I1) + sdepthS2

(S2/I2).

(3) depthS(S/(I1S ∩ I2S)) − 1 = depthS(S/(I1S + I2S)) = depthS1
(S1/I1) +

depthS2
(S2/I2).

Proof. (1) For 1 ≤ m ≤ n suppose a ∈ I1 ∩K[x1, · · · , xm], b ∈ I2 ∩K[xm+1, · · · , xn]

and P (J) are the monomials from ideal I2. Define a map γ : P (I1∩K[x1, · · · , xm])×
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P (I2∩K[xm+1, · · · , xn])→ P (I1∩ I2), it is injective. Let u be a monomial of I1∩ I2
and u = ab for some monomials a ∈ K[x1, · · · , xm], b ∈ K[xm+1, · · · , xn] which

implies ab ∈ I1 and we have a ∈ I1 since xj, j > m are regular on S/I1. Likewise

b ∈ I2 then u = γ((a, b)), which means γ is surjective. Suppose D1 is a Stanley

decomposition of I1 ∩K[x1, · · · , xm]

D1 : I1 ∩K[x1, · · · , xm] =
⊕p

l=1 clK[Zl],

such that sdepth D1 = sdepth(I1 ∩K[x1, · · · , xm]) and D2 is a Stanley decomposi-

tion of I2 ∩K[xm+1, · · · , xn]

D2 : I2 ∩K[xm+1, · · · , xn] =
⊕q

m=1 dmK[Zm],

such that sdepth D2 = sdepth(I2 ∩K[xm+1, · · · , xn]). From bijection they induce a

Stanley decomposition

D : I1 ∩ I2 =
⊕p

l=1

⊕q
m=1 cldmK[Zl ∪ Zm].

So sdepth(I1 ∩ I2) ≥ sdepthD = mina,b |Za| + |Zb| ≥ mina |Za| + minb |Zb| =

sdepth D1 + sdepth D2.

(2) Suppose a Stanley decomposition

D1 : S1/I1 =
⊕p

x=1 uxK[Zx]

of S1/I1 such that sdepth D1 = sdepthS1/I1 and

D2 : S2/I2 =
⊕q

y=1 vyK[Xy]

of S2/I2 such that sdepth D2 = sdepthS2/I2. So S/I1S = S1[xm+1, · · · , xn]/I1S =

(S1/I1)[xm+1, · · · , xn] =
⊕p

x=1 uxK[Zx][xm+1, · · · , xn] =
⊕p

x=1 uxK[Zx, xm+1, · · · , xn
]. Likewise S/I2S = S2[x1, · · · , xm]/I2S = (S2/I2)[x1, · · · , xm] =

⊕q
y=1 vyK[Xy][x1,

· · · , xm] =
⊕q

y=1 vyK[Xy, x1, · · · , xm].

For claiming S/(I1 + I2) =
⊕

x,y uxvyK[Zx, Xy] suppose a monomoial r ∈ (I1S ∩
I2S)c = S/(I1S ∩ I2S) i.e r ∈ S and r /∈ (I1S ∩ I2S). It implies r /∈ (I1S)

and r /∈ (I2S) but r ∈ (I1S)c and r ∈ (I2S)c so we have x, y such that r ∈
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uxK[Zx, xm+1, · · · , xn] and r ∈ vyK[Xy, x1, · · · , xm]. Now r ∈ uxK[Zx, xm+1, · · · , xn]

∩vyK[Xy, x1, · · · , xm]. As ux ∈ S1 and vy ∈ S2 so uxK[Zx, xm+1, · · · , xn]∩vyK[Xy,

x1, · · · , xm] = uxvyK[Zx ∩Xy].

For the other inclusion suppose a monomial s ∈ uxvyK[Zx∩Xy]. So s ∈ uxK[Zx, xm+1

, · · · , xn] ⊂ (I1S)c and s ∈ vyK[Xy, x1, · · · , xm] ⊂ (I2S)c. Therefore s ∈ (I1S∩I2S)c.

For this sum to be direct suppose x1, x2 ∈ [x] and y1, y2 ∈ [y] such that (x1, y1) 6=
(x2, y2) for say x1 6= x2. Now ux1vy1K[Zx1 , Xy1 ]∩ux2vy2K[Zx2 , Xy2 ] ⊂ ux1K[Zx1 , xm+1

, · · · , xn] ∩ vy2K[Zx2 , xm+1, · · · , xn] = {0} which shows the claim holds and hence

concludes the proof.

(3) Consider the exact sequence of S-modules: 0 → S/(I1S ∩ I2S) → S/I1S ⊕
S/I2S → (S/(I1S+I2S))→ 0. From (2) and depth Lemma we have depthS(S/(I1S∩
I2S)) = depthS(S/(I1S + I2S)) + 1 = depthS1

(S1/I1) + depthS2
(S2/I2) + 1.

Lemma 3.1.2. Suppose v1,v2 ∈ S are two monomials and P,Q ⊂ {x1, x2, · · · , xn}.
Then v1K[P ] ∩ v2K[Q] =lcm(v1, v2)K[P ∩Q] or v1K[P ] ∩ v2K[Q] = (0).

Proof. Suppose v1K[P ]∩ v2K[Q] 6= (0) and a monomial l(6= 0) ∈ v1K[P ]∩ v2K[Q].

Then for two monomials x ∈ K[P ] and y ∈ K[Q], l can be given as l = v1x and

l = v2y. As v1|l and v2|l, we have lcm(v1, v2)|l so for z ∈ K[P ] ∩K[Q] = K[P ∩Q]

we get l = lcm(v1, v2)z. Particularly lcm(v1, v2) = v1/z ∈ v1K[P ] ∩ v2K[Q] so

lcm(v1, v2)K[P ∩ Q] ⊂ v1K[P ] ∩ v2K[Q]. As z was randomly selected we have

v1K[P ] ∩ v2K[Q] ⊂ lcm(v1, v2)K[P ∩Q].

Theorem 3.1.3. Suppose two monomial ideals I1 ⊂ S1 = K[x1, · · · , xm] and I2 ⊂
S2 = K[xm+1, · · · , xn] for 1 ≤ m ≤ n. Then we have

(1) sdepthS(I1S) > sdepthS(I1S+I2S) ≥ min{sdepthS(I1S), sdepthS2
(I2)+sdepthS1

(S1/I1)}.

(2) sdepthS(S/I1S) ≥ sdepthS(S/(I1S ∩ I2S)) ≥ min{sdepthS(S/I1S), sdepthS2

(S2/I2) + sdepthS1
(I1)}.
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Proof. (1) Firstly we will prove the 1st inequality. For the ideal I1S + I2S ⊂ S we

suppose a Stanley decomposition

I1S + I2S =
t⊕

j=1

ljK[Lj] (3.1.1)

Now take the intersection of this decomposition with S1

(I1S + I2S) ∩ S1 = (
t⊕

j=1

ljK[Lj]) ∩ S1 (3.1.2)

As I1S ∩S1 = I1 and I2S ∩S1 = (0). We get (I1S ∩S1 + I2S ∩S1) = I1 so equation

3.1.2 becomes I1 + (0) = (
⊕t

j=1 ljK[Lj] ∩ S1)

⇒ I1 = (
t⊕

j=1

ljK[Lj] ∩ S1) (3.1.3)

The L.H.S of equation 3.1.3 has two cases for lj

(1) If lj ∈ S1 then by lemma 3.1.2

liK[Li] ∩ S1 = liK[Li ∩ {x1, · · · , xm}]

(2) If lj /∈ S1, then liK[Li] ∩ S1 = (0)

Therefore I1 =
⊕

li∈S1
ljK[Lj ∩ {x1, · · · , xm}]

⇒ I1S =
⊕
li∈S1

ljK[Lj ∪ {xm+1, · · · , xn}] (3.1.4)

From equation 3.1.1 and 3.1.4 we have

sdepthS(I1S + I2S) < sdepthS(I1S).

For the second inequality suppose two Stanley decompositions

I2 =

q⊕
c=1

ycK[Yc]. (3.1.5)
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and S1/I1 =
⊕p

k=1 xkK[Xk].

We have S1/I1S =
⊕p

k=1 xkK[Xk ∪ {xm+1, · · · , xn}] and I2S =
⊕q

c=1 ycK[Yc ∪
{x1, · · · , xm}]. Now consider K-vector spaces decomposition I1S + I2S = ((I1S +

I2S) ∩ I1S)⊕ ((I1S + I2S) ∩ S/I1S) = I1S ⊕ (I2S ∩ S/I1S). We get

sdepth(I1S + I2S) ≥ min{sdepth(I1S), sdepth(I2S ∩ S/I1S)}. (3.1.6)

As I2S ∩ (S/I1S) ∼= (I2S + I1S)/I1S so we get

I2S ∩ S/I1S =
⊕p

k=1

⊕q
c=1 xkK[Xk ∪ {x1, · · · , xm}] ∩ ycK[Yc ∪ {xm+1, · · · , xn}].

We now apply lemma 3.1.2 as xk ∈ S1 and yc ∈ S2 for (k, c)′s

I2S ∩ S/I1S =

p⊕
k=1

q⊕
c=1

xkycK[Xk ∪ Yc]. (3.1.7)

From equation 3.1.5 and equation 3.1.7

sdepthS(I2) ≤ sdepthS2
(I2S ∩ S/I1S). (3.1.8)

Now from equation 3.1.6 and equation 3.1.8 we get second inequality.

(2) Firstly we will prove the 1st inequality. For S/(I1S + I2S) suppose a Stanley

decomposition

S/(I1S + I2S) =
l⊕

j=1

rjK[Rj]. (3.1.9)

From proof of (1) we have

S/I1S =
l⊕

j=1

rjK[Rj ∪ {xm+1, · · · , xn}]. (3.1.10)

so sdepthS(S/I1S) ≥ sdepthS(S/(I1S + I2S)).

For the 2nd inequality suppose the decomposition

S/(I1S∩I2S) = (S/(I1S∩I2S)∩S/I1S)⊕(S/(I1S∩I2S)∩I1S) = S/I1S⊕((S/I2S)∩
I1S). From lemma 2.3.39 we get

sdepthS(S/(I1S ∩ I2S)) ≥ min{sdepth(S/I1S), sdepth((S/I2S) ∩ I1S)}. (3.1.11)
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From Proposition 3.1.1(1)

sdepth((S/I2S) ∩ I1S) ≥ sdepthS1
(I1) + sdepthS2

(S2/I2). (3.1.12)

From equation 3.1.11 and equation 3.1.12 we get the desired inequality.

Lemma 3.1.4. Suppose two monomial ideals I1 ⊂ S1 = K[x1, · · · ,
xm] and I2 ⊂ S2 = K[xm+1, · · · , xn] for 1 ≤ m ≤ n. Then we have depthS(I1S ∩
I2S) = depthS(I1S + I2S) + 1 = depthS1

(I1) + depthS2
(I2) and depthS((I1S +

I2S)/I1S) = depthS(I1S + I2S).

Proof. The 1st equality follows directly from Proposition 3.1.1(3). For the 2nd

equality we consider the short exact sequence

0→ I1 → I1 + I2 → (I1 + I2)/I1 → 0.

Now from lemma 2.3.40(2) we get the required equality.

Remark 3.1.1. If I1 ⊂ S is a monomial ideal, the support of I1 is defined to be

the set supp(I1) =
⋃
z∈G(I1)

supp(z) where G(I1) is the set on minimal monomial

generators of I1. For two monomial ideals I1, I2 ⊂ S with supp(I1) ∩ supp(I2) = ∅
and notations stated above notation we reformulate and modify Proposition 3.1.1

and Theorem 3.1.3 as:

sdepthS(I1 ∩ I2) ≥ sdepthS(I1) + sdepthS(I2)− n.

By 2nd isomorphism theorem I1/(I1∩ I2) ∼= (I1 + I2)/I1. Now we consider the short

exact sequences 0→ I1 → I1 + I2 → (I1 + I2)/I1 → 0 so we have 0→ I1/(I1 ∩ I2) ∼=
(I1 + I2)/I1 → S/(I1 ∩ I2) → (S/I1) → 0. Then clearly sdepthS(I1 + I2) ≥
min{sdepthS(I1), sdepthS((I1+I2)/I1} and sdepthS(S/(I1∩I2)) ≥ min{sdepthS(S/I1),

sdepthS((I1 + I2)/I1)}.
Observe that (I1 + I2)/I1 = I2 ∩ (S/I1). Using Theorem 3.1.3(1) when supp(I1) ∩
supp(I2) = ∅ we obtain

sdepth((I1 + I2)/I1) ≥ {sdepthS(I2) + sdepthS(S/I1)− n}. (3.1.13)

We get equation (3.1.13) again for (I1 + I2)/I2 = I1 ∩ (S/I2).
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For an ideal I1 = (v1, · · · , vr) ⊂ S if I1 is a monomial complete intersection then

we have sdepthS(I1) = n − b r
2
c [4, Theorem 2.4] and sdepthS(S/I1) = n − r [17,

Theorem 2.4].

If I1 is any arbitrary monomial ideal then sdepthS(I1) ≥ n− b r
2
c[11, Theorem 2.3]

and sdepthS(S/I1) ≥ n− r [2, Proposition 1.2].

Corollary 3.1.5. Suppose a monomial ideals I1 ⊂ S1 = K[x1, · · · , xm] and I2 =

(v1, · · · , vr) ⊂ S2 = K[xm+1, · · · , xn] then:

(1) sdepthS(I1S) > sdepthS(I1S + I2S) ≥ min{sdepthS(I1S), sdepthS(S/SI1) −
b r
2
c}.

(2) sdepthS(I1S ∩ I2S) ≥ sdepthS(I1S)− b r
2
c.

(3) sdepthS(S/I1S) ≥ sdepthS(S/(I1S ∩ I2S)) ≥ min{sdepthS(S/I1S), sdepthS(I1

S)− r}.

(4) sdepth(S/(I1S + I2S)) ≥ sdepthS(S/I1S)− r.

(5) If I2 is complete intersection ideal then:

depthS(S/(I1S ∩ I2S))− 1 = depthS(S/(I1S + I2S)) = depthS(S/I1S)− r.

Proof. (1) As we have

sdepthS2
(I2) = sdepthS(I2S)−m ≥ n− br

2
c −m. (3.1.14)

sdepthS1
(S1/I1) = sdepthS(S/I1S)− (n−m). (3.1.15)

Using equations (3.1.14) and (3.1.15) in [3, Theorem 1.3(1)] we have

sdepthS(I1S) ≥ sdepthS(I1S+I2S) ≥ min{sdepthS(I1S), n−b r
2
c−m+sdepthS(S/I1

S)− n+m}.
sdepthS(I1S) ≥ sdepthS(I1S + I2S) ≥ min{sdepthS(I1S), sdepthS(S/I1S)− b r

2
c}.

(2)

sdepthS1
(I1) = sdepthS(I1S)− (n−m). (3.1.16)
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Using equations (3.1.14) and (3.1.16) in [3, Proposition 1.1(1)] we have

sdepth(I1S ∩ I2S) ≥ min sdepthS(I1S)− (n−m) + n− b r
2
c −m

sdepth(I1S ∩ I2S) ≥ min sdepthS(I1S)− b r
2
c.

(3) sdepthS2
(S2/I2) = sdepthS(S/I2S)−m ≥ (n− r)−m. (3.1.17)

sdepthS1
(I1) = sdepthS(I1S)− (n−m). (3.1.18)

Using equations (3.1.18) and (3.1.17) in [3, Theorem 1.3(2)] we get

sdepthS(S/I1S) ≥ sdepthS(S/(I1S ∩ I2S)) ≥ min{sdepthS(S/I1S), (n − r) − m +

sdepthS(I1S)− (n−m)}.
sdepthS(S/I1S) ≥ sdepthS(S/(I1S ∩ I2S)) ≥ min{sdepthS(S/I1S), sdepthS(I1S) −
r}.
(4) Using equations (3.1.15)and (3.1.17) in [3, Proposition 1.1(2)] we get

sdepth(S/(I1S + I2S)) ≥ sdepthS(S/I1S)− (n−m) + (n− r)−m
sdepth(S/(I1S + I2S)) ≥ sdepthS(S/I1S)− r. (5)

depthS1
(S1/I1) = depthS(S/I1S)− (n−m). (3.1.19)

depthS2
(S2/I2) = depthS(S/I2S)−m = (n− r)−m. (3.1.20)

Using equations(3.1.19) and (3.1.20) in [3, Proposition 1.1(3)] we have

depthS(S/(I1S ∩ I2S))− 1 = depthS(S/(I1S + I2S)) = depthS(S/I1S)− (n−m) +

(n− r)−m.
depthS(S/(I1S ∩ I2S))− 1 = depthS(S/(I1S + I2S)) = depthS(S/I1S)− r.

Remark 3.1.2. Suppose a monomial ideal J ⊂ S = K[x1, · · · , xp]. If S∗ =

S[y1, · · · , yq] then according to [3, Corollary 1.6(1)]

sdepthS(J)+q ≥ sdepthS∗(J, y1, · · · , yq) ≥ min{sdepthS(J)+q, sdepthS(S/J)+d q
2
e}.

Suppose sdepthS(J)+q > sdepthS∗(J, y1, · · · , yq) then sdepthS(J)+q > sdepthS(

S/J) + d q
2
e so sdepthS(J) ≥ sdepth(S/J) + b q

2
c+ 1.

If q = 1 and sdepthS∗(J, y1) = sdepthS(J) then remark 3.1.2 gives sdepthS(J) =

sdepthS∗(J, y1) ≥ sdepthS(S/J) + 1 which implies sdepthS(J) ≥ sdepthS(S/J) + 1.
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Corollary 3.1.6. The following hold with notations of Theorem 3.1.3

(1) If Stanely inequality hold for I1 and I2 then Stanely inequality holds for (I1S∩
I2S).

(2) If the Stanley inequality hold for S1/I1 and S2/I2, then the Stanley inequality

holds for S/(I1S + I2S).

(3) If the Stanley inequality hold for I1, I2 and S1/I1 or for I1, I2 and S2/I2, then

the Stanley inequality holds for (I1S + I2S).

(4) If the Stanley inequality hold for S1/I1,S2/I2 and I1 or S1/I1, S2/I2 and I1

and I2, then the Stanley inequality holds for S/(I1S ∩ I2S).

Proof. (1) In Proposition 3.1.1(1) use Stanley inequality for I1 and I2 then apply

Lemma 3.1.4(2) we get the required result.

(2) In Proposition 3.1.1(2) use Stanley inequality for S1/I1 and S2/I2 then apply

Proposition 3.1.1(3) we get the required result.

(3) Suppose Stanley inequality satisfies for I2 and S1/I1 consider the case when

sdepthS(I1S + I2S) = sdepthS(I1S) then Theorem 3.1.3(1) gives us sdepthS(I1S +

I2S) ≥ sdepthS(I1S) = depthS1
(I1) + n − m ≥ depthS1

(I1) + depthS2
(I2) then by

Lemma(3.1.4) depthS1
(I1) + depthS2

(I2) > depthS(I1S + I2S) so we finally have

sdepthS(I1S + I2S) > depthS(I1S + I2S).

When sdepthS(I1S + I2S) < sdepthS(I1S) Theorem 3.1.3(1) gives sdepthS(I1S +

I2S) ≥ sdepthS2
(I2) + sdepthS1

(S1/I1) from Stanley inequalities of I2 and S1/I1

we get sdepthS(I1S + I2S) ≥ depthS2
(I2) + depthS1

(S1/I1) then by Lemma (3.1.4)

depthS2
(I2)+depthS1

(S1/I1) = depthS(I1S+I2S) so we get the form sdepthS(I1S+

I2S) ≥ depthS(I1S + I2S).

Likewise for I1 and S2/I2 when sdepthS(I1S + I2S) = sdepthS(I2S) by Theo-

rem 3.1.3(1) we have sdepthS(I1S + I2S) ≥ sdepthS(I2S) = depthS1
(I2) + m ≥

depthS1
(I2)+depthS2

(I1) then by Lemma(3.1.4) depthS1
(I1)+depthS2

(I2) > depthS(I1
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S + I2S) so we finally have sdepthS(I1S + I2S) > depthS(I1S + I2S).

When sdepthS(I1S + I2S) < sdepthS(I2S) Theorem 3.1.3(1) gives sdepthS(I1S +

I2S) ≥ sdepthS1
(I1) + sdepthS2

(S2/I) from Stanley inequalities of I1 and S2/I2 we

have sdepthS(I1S+I2S) ≥ depthS1
(I1)+depthS2

(S2/I2) = depthS1
(I1)+depthS2

(I2)

then using Lemma (3.1.4) depthS1
(I1) + depthS2

(I2)− 1 = depthS(I1S + I2S) so we

have sdepthS(I1S + I2S) ≥ depthS(I1S + I2S).

(4) From Theorem 3.1.3(2) sdepthS(S/I1S ∩ I2S) ≥ sdepthS(S/I1S). Also sdepthS(

S/I1S) = sdepthS1
(S1/I1) + n − m. As Stanley inequality holds for S1/I1 so

sdepthS1
(S1/I1) + n−m ≥ depthS1

(S1/I1) + n−m then depthS1
(S1/I1) + n−m ≥

depthS1
(S1/I1) + depthS2

(I2). Using Lemma 2.3.34 depthS1
(S1/I1) + depthS2

(I2) ≥
depthS1

(S1/I1) + depthS2
(S2/I2) + 1 then from Proposition 1.1(3) depthS1

(S1/I1) +

depthS2
(S2/I2) + 1 = depth(S/(I1S ∩ I2S))− 1 + 1 = depth(S/(I1S ∩ I2S)).

Theorem 3.1.3(2) gives sdepthS(S/I1S ∩ I2S) ≥ sdepthS(S/I2S). As sdepthS(

S/I2S) = sdepthS2
(S2/I2) +m. from Stanley inequality of S2/I2 we get sdepthS2

(S2

/I2) + m ≥ depthS2
(S2/I2) + m then depthS2

(S2/I2) + m ≥ depthS2
(S2/I2) +

depthS1
(I1). From Lemma 2.2.13 depthS2

(S2/I2) + depthS1
(I1) ≥ depthS2

(S2/I2) +

depthS1
(S1/I1) + 1 then using Proposition 1.1(3) depthS2

(S2/I2) + depthS1
(S1/I1) +

1 = depth(S/(I1S ∩ I2S))− 1 + 1 = depth(S/(I1S ∩ I2S)).

From the above corollary if sdepthS(I1S + I2S) = sdepthS(I1S) and Stanley

inequality holds for I1 i.e sdepthS(I1) ≥ depthS(I1), then sdepthS(I1S + I2S) ≥
depthS(I1S + I2S) + n−m− depthS2

(S2/I2). Likewise if sdepthS(S/(I1S ∩ I2S)) =

sdepthS(I1S) and Stanley inequality holds for S1/I1 i.e sdepthS(S1/I1) ≥ depthS(S1/

I1), then sdepthS(S/(IS∩ I2S)) ≥ depthS(S/(I1S∩ I2S)) +n−m−depthS2
(S2/I2).

Corollary 3.1.7. Consider the monomial ideals It ⊂ St = K[xt1, · · ·
, xtmt ] for q ≥ 2 , mt ≥ 1 and 1 ≤ t ≤ q and S = K[xti : 1 ≤ t ≤ q, 1 ≤ i ≤ mt]

then:

(1) sdepthS(I1S ∩ · · · ∩ IqS) ≥ sdepthS1
(I1) + · · ·+ sdepthSq(Iq).
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(2) sdepthS(I1S + · · ·+ IqS) ≥ min{sdepthS1
(I1) +m2 + · · ·+mq, sdepthS2

(I2) +

sdepthS1
(S1/I1) +m3 + · · ·+mq, · · · , sdepthSq(Iq) + sdepthSq−1

(Sq−1/Iq−1) +

· · ·+ sdepthS1
(S1/I1)}.

sdepthS(I1S + · · ·+ IqS) ≤ min{sdepthS(ItS) : t = 1, · · · , q}

(3) sdepthS(S/(I1S∩· · ·∩IqS) ≥ min{sdepthS1
(S1/I1)+m2+· · ·+mq, sdepthS2

(S2

/I2) + sdepthS1
(I1) +m3 + · · ·+mq, · · · , sdepthSq(Sq/Iq) + sdepthSq−1

(Iq−1) +

· · ·+ sdepthS1
(I1)}.

sdepthS(S/(I1S ∩ · · · ∩ IqS) ≤ min{sdepthS(S/ItS) : t = 1, · · · , q}

(4) sdepthS(S/(I1S + · · ·+ IqS) ≥ sdepthS1
(S1/I1) + · · ·+ sdepthSq(Sq/Iq).

(5) depthS(I1S ∩ · · · ∩ IqS) = depthS(I1S + · · · + IqS) + (q − 1) = depthS1
(I1) +

· · ·+ depthSq(Iq).

Proof. (1) We will use induction. q = 2 satisfies by Proposition 3.1.1(1). Consider

S∗ = m1 + · · ·+mq−1 and Suppose (1) holds for q − 1 i.e

sdepthS∗(I1S ∩ · · · ∩ Iq−1S) ≥ sdepthS1
(I1) + · · ·+ sdepthSq−1

(Iq−1).

Now we need to proof it holds for q then

sdepthS((I1S ∩ · · · ∩ Iq−1S) ∩ IqS) ≥ sdepthS∗(I1S ∩ · · · ∩ Iq−1S) ∩ sdepthSq(IqS) ≥
(sdepthS1

(I1) + · · ·+ sdepthSq−1
(Iq−1)) + sdepthSq(Iq) by using Proposition 3.1.1(1).

sdepthS((I1S∩· · ·∩Iq−1S)∩IqS) ≥ sdepthS1
(I1)+· · ·+sdepthSq−1

(Iq−1)+sdepthSq(Iq).

(2) q = 2 holds according to Theorem 3.1.3(1). Consider S∗ = m1 + · · ·+mq−1 and

assume (2) holds for q−1 i.e sdepthS∗(I1S+ · · ·+Iq−1S) ≥ min{sdepthS1
(I1)+m2 +

· · ·+mq−1, sdepthS2
(I2)+sdepthS1

(S1/I1)+m3 + · · ·+mq−1, · · · , sdepthSq−1
(Iq−1)+

sdepthSq−2
(Sq−2/Iq−2) + · · ·+ sdepthS1

(S1/I1)}.
Then sdepthS(I1S+· · ·+Iq−1S+(IqS)) ≥ (sdepthS∗(I1S+· · ·+Iq−1S))+sdepthSq(IqS)

≥ min{sdepthS1
(I1) +m2 + · · ·+mq−1 +mq, sdepthS2

(I2)

+sdepthS1
(S1/I1)+m3+· · ·+mq−1+mq, · · · , (sdepthSq(Iq)+sdepthSq−1

(Sq−1/Iq−1))+

sdepthSq−1
(Iq−1) + sdepthSq−2

(Sq−2/Iq−2) + · · · + sdepthS1
(S1/I1} holds for q using

Theorem 3.1.3(1).
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(3) q = 2 is satisfied according to Theorem 3.1.3(2). Consider S∗ = m1 + · · ·+mq−1

and assume (3) satisfies for q − 1 i.e

sdepthS∗(S/(I1S∩· · ·∩Iq−1S) ≥ min{sdepthS1
(S1/I1)+m2+· · ·+mq−1, sdepthS2

(S2/I2

) + sdepthS1
(I1) +m3 + · · ·+mq−1, · · · , sdepthSq−1

(Sq−1/Iq−1) + sdepthSq−2
(Iq−2) +

· · ·+ sdepthS1
(I1)}.

sdepthS(S/(I1S ∩ · · · ∩ Iq−1S ∩ (IqS)) ≥ min{sdepthS1
(S1/I1) +m2 + · · ·+mq−1 +

mq, sdepthS2
(S2/I2) + sdepthS1

(I1) +m3 + · · ·+mq−1 +mq, · · · , (sdepthSq(Sq/Iq) +

sdepthSq−1
(Iq−1)) + sdepthSq−1

(Sq−1/Iq−1) + sdepthSq−2
(Iq−2) + · · ·+ sdepthS1

(I1)} is

satisfied for q applying Theorem 3.1.3(2).

(4) It holds for q = 2 according to Proposition 3.1.1(2). We have S∗ = m1 +

· · ·+mq−1 and consider (4) holds for q − 1 i.e sdepthS∗(S/(I1S + · · ·+ Iq−1S)) ≥
sdepthS1

(S/I1) + · · ·+ sdepthSq−1
(Sq−1/Iq−1)

We have sdepthS(S/(I1S+· · ·+Iq−1S+(IqS))) ≥ sdepthS∗(S
∗/(I1S+· · ·+Iq−1S))+

sdepthSq(Sq/Iq) ≥ sdepthS1
(S1/I1)+ · · ·+sdepthSq−1

(Sq−1/Iq−1)+(sdepthSq(Sq/Iq))

holds for q by using 3.1.1(2).

(5) q = 2 is satisfied according to Lemma 3.1.4. We have S∗ = m1 + · · ·+mq−1 and

consider (5) satisfies for q − 1 i.e

depthS∗(I1S ∩ · · · ∩ Iq−1S) = depthS∗(I1S + · · ·+ Iq−1S) + (q − 2) = depthS1
(I1) +

· · ·+ depthSq−1
(Iq−1)

Then we get by Lemma 3.1.4 depthS((I1S∩· · ·∩Iq−1S)∩IqS) = depthS((I1S∩· · ·∩
Iq−1S)+IqS)+1 = depthS∗(I1S∩· · ·∩Iq−1S)+sdepthS(IqS) = depthS∗(I1S+ · · ·+
Iq−1S) + (q − 2) + depthSq(IqS) = depthS(I1S + · · ·+ Iq−1S + IqS) + 1 + (q − 2) =

depthS(I1S+ · · ·+Iq−1S+IqS)+(q−1). By Lemma 3.1.4 depthS(I1S+ · · ·+Iq−1S+

IqS) + (q − 1) = depthS∗(I1S + · · · + Iq−1S) + depthSq(Iq) = depthS1
(I1) + · · · +

depthSq−1
(Iq−1) + depthSq(Iq) is satisfied for q.

Corollary 3.1.8. With the notations of the above Corollary following hold:

(1) If I1, · · · , Iq satisfy the Stanley inequality, then I1S ∩ · · · ∩ IqS satisfies the

Stanley inequality.
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(2) If S/I1, · · · , S/Iq satisfy the Stanley inequality, then S/(I1S+· · ·+IqS) satisfies

the Stanley inequality.

(3) If 1 ≤ l ≤ m is an integer and the Stanley inequality hold for It for all

1 ≤ t ≤ m and for S/It for all t 6= l then, the Stanley inequality holds for

I1S + · · ·+ IqS.

(4) If 1 ≤ l ≤ m is an integer and the Stanley inequality hold for St/It for all

1 ≤ t ≤ m and for It for all t 6= l then, the Stanley inequality holds for

S/(I1S ∩ · · · ∩ IqS).

Proof. (1) We will apply induction on q. q = 2 holds according to Proposition

3.1.1(1). When S∗ = m1 + · · ·+mq−1 suppose (1) is satisfied for q − 1

sdepthS∗(I1S ∩ · · · ∩ Iq−1S) ≥ depthS∗(I1S ∩ · · · ∩ Iq−1S). We need to show (1) is

satisfied for q then by Corollary 3.1.7(1)

sdepthS(I1S ∩ · · · ∩ IqS) ≥ sdepthS1
(I1S) + · · · + sdepthSq(IqS). Since Stanley in-

equality satisfies for It’s so we get sdepthS(I1S ∩ · · · ∩ IqS) ≥ depthS1
(I1S) + · · ·+

depthSq(IqS). Now by using Lemma 3.1.4 sdepthS(I1S ∩ · · · ∩ IqS) ≥ depthS(I1S ∩
· · · ∩ depthSIqS).

(2) q = 2 is satisfied by Proposition 3.1.1(2). When S∗ = m1 + · · · + mq−1

suppose (2) is satisfied for q − 1

sdepthS∗(I1S ∩ · · · ∩ Iq−1S) ≥ depthS∗(I1S ∩ · · · ∩ Iq−1S). For q we apply Corol-

lary 3.1.7(4) sdepthSS/(I1S + · · ·+ IqS) ≥ sdepthS1
(S1/I1) + · · ·+ sdepthSq(S1/Iq).

As Stanley inequality satisfies for S/It’s so we have sdepthSS/(I1S + · · · + IqS) ≥
depthS1

(S1/I1)+· · ·+depthSq(S1/Iq).Now by using Proposition 3.1.1(3) sdepthS(I1S

∩ · · · ∩ IqS) ≥ depthS(I1S ∩ · · · ∩ IqS).

(3) q = 2 holds by Theorem 3.1.3(1). For q > 2 we suppose l = q. We have S∗ =

K[xti : 1 ≥ t ≥ q − 1, 1 ≥ i ≥ mt] and suppose an ideal I∗ = I1S
∗ + · · · + Iq−1S

∗ ⊂
S. Now using Corollary 3.1.7(4) sdepthS∗(S

∗/I∗) = sdepthS∗(S
∗/(I1S

∗ + · · · +

Iq−1S
∗)) ≥ sdepthS1

(S1/I1) + · · · + sdepthSq−1
(Sq−1/Iq−1). Since Stanley inequality
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satisfies for S/It’s so we have sdepthS∗(S
∗/(I1S

∗+ · · ·+Iq−1S
∗)) ≥ depthS1

(S1/I1)+

· · · + depthSq−1
(Sq−1/Iq−1). Using Proposition 3.1.1(3) sdepthS∗(S

∗/(I1S
∗ + · · · +

Iq−1S
∗)) ≥ depthS∗(S

∗/(I1S
∗ + · · · + Iq−1S

∗)). From induction Stanley inequality

satisfies for I∗. For I = I1S + · · ·+ IqS = I∗S + IqS as Stanley inequality holds for

I∗, S∗/I∗, Iq so by the case of induction for q = 2 Stanley inequality holds for I.

(4) q = 2 holds by Theorem 3.1.3(2). For the case q > 2 we suppose l = q. We

have S∗ = K[xti : 1 ≥ t ≥ q − 1, 1 ≥ i ≥ mt] and suppose an ideal I∗ = I1S
∗ ∩ · · · ∩

Iq−1S
∗ ⊂ S. Using Corollary 3.1.7(1) sdepthS∗(I

∗) = sdepthS∗(I1S
∗∩· · ·∩Iq−1S∗) ≥

sdepthS1
(I1) + · · · + sdepthSq−1

(Iq−1). Stanley inequality satisfies for It’s so we get

sdepthS∗(I1S
∗ ∩ · · · ∩ Iq−1S∗) ≥ depthS(I1S) + · · ·+ depthSq−1

(Iq−1S). By applying

Lemma 3.1.4 sdepthS∗(I1S
∗ ∩ · · · ∩ Iq−1S∗) ≥ depthS∗(I1S

∗ ∩ · · · ∩ Iq−1S∗). From

induction Stanley inequality holds for S∗/I∗. Now for I = I1S∩· · ·∩IqS = I∗S∩IqS
since Stanley inequality is satisfied for I∗, S∗/I∗, Sq/Iq so by the case of induction

for q = 2 Stanley inequality holds for I.

Corollary 3.1.9. Following the notations of Corollary 3.1.7, if all mt ≤ 5 and

It’s are square free, then I1S ∩ · · · ∩ IqS, I1S + · · · + IqS, S/(I1S + · · · + IqS) and

S/(I1S ∩ · · · ∩ IqS) satisfy the Stanley inequality.

Proof. From Conjecture 2.3.35 and Theorem 2.3.36 for a squarefree monomial ideal

J ⊂ K[x1, · · · , xm] and m ≤ 5 we know J and S/J satisfy the Stanley inequality

so J ’s and S/J ’s satisfy the Stanley inequality. Using Corollary 3.1.8(1,2,3,4) we

directly get required results.

Example 3.1.1. Suppose J = (y11, · · · , y1m1)∩(y21, · · · , y2m2)∩· · ·∩(yq1, · · · , yqmq) ⊂
S for q ≥ 2 ,1 ≤ t ≤ q and S = K[xti : 1 ≤ t ≤ q, 1 ≤ i ≤ mt]. Now if

J = P1 ∩ · · · ∩ Pq when G(Pr) ∩ G(Ps) = ∅ ∀ r 6= s then depthS(S/J) = q − 1

then from Lemma 2.3.34 depthS(J) = q and from Corollary 3.1.7(1) sdepthS(J) ≥
dm1/2e+ · · ·+ dmq/2e so sdepthS(J) ≥ depthS(J). From [9, Theorem 1.1] we have

sdepthS(J) ≤ min{m− bmt/2c : 1 ≤ t ≤ q}. Now using Corollary 3.1.7(3)
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sdepthS(S/J) ≥ min{m2 + · · ·+mq, dm1/2e+m3 + · · ·+mq, dm1/2e+ dm2/2e+

m4 + · · ·+mq, · · · , dm1/2e+ · · ·+ dmq−1/2e+mq}.

we have sdepthS(S/J) ≥ depthS(S/J) = q − 1. From Corollary 3.1.7(3) we have

sdepthS(S/J) ≤ {m−mt : 1 ≤ t ≤ q}.

3.2 The General case

Suppose p, q,m ∈ Z such that 1 ≤ p ≤ q + 1 ≤ m and m ≥ 2. Denote S =

K[x1, · · · , xn], S1 = K[x1, · · · , xq] and S2 = K[xp, · · · , xm] where l = q − p+ 1.

Lemma 3.2.1. Suppose two monomials v1 ∈ S1 and v2 ∈ S2, two set of variables

P ⊂ {x1, · · · , xq} and Q ⊂ {xp, · · · , xm}. Denote P = P ∪ {xq+1, · · · , xm} and

Q = Q ∪ {x1, · · · , xp−1}. When M = v1K[P ] ∩ v2K[Q],then M = (0) or M =

lcm(v1, v2)K[(P ∪Q) \R] where R ⊂ {xp, · · · , xq} and |(P ∪Q) \R| ≥ |P |+ |Q| − l

Proof. M = (0) is obvious. For M 6= (0) from Lemma 3.1.2 we have M = lcm(v1, v2)

K[P ∩ Q]. As P ∩ Q = (P ∪ Q) \ R so we get M = lcm(v1, v2)K[(P ∪ Q) \ R] for

R ⊂ {xp, · · · , xq}.

We will generalize some results for Proposition 1.1 and Theorem 1.3

Theorem 3.2.2. Suppose two monomial ideals I1 ⊂ S1 and I2 ⊂ S2. Then we have

(1) sdepthS(I1S∩I2S) ≥ sdepthS1
(I1)+sdepthS1

(I2)−l = sdepthS(I1S)+sdepthS(

I2S)−m.

(2) sdepthS(S/(I1S+I2S)) ≥ sdepthS1
(S1/I1)+sdepthS2

(S2/I2)− l = sdepthS(S/

I1S) + sdepthS(S/I2S)−m.

(3) sdepthS(I1S+I2S) ≥ min{sdepthS(I1S), sdepthS2
(I2)+sdepthS1

(S1/I1)−l} =

min{sdepthS(I1S), sdepthS(I2S) + sdepthS(S/I1S)−m}.
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(4) sdepthS(S/(I1S ∩ I2S)) ≥ min{sdepthS(S/I1S), sdepthS2
(S2/I2)+sdepthS1

(I1)

− l} = min{sdepthS(S/I1S), sdepthS(S/I2S) + sdepthS(I1S)−m}.

Proof. (1) Suppose two Stanley decompositions for I1 and I2 as I1 =
⊕i

a=1 vaK[Pa]

and I2 =
⊕j

b=1 ubK[Qb] respectively. If Pa = Pa ∪ {xq+1, · · · , xm} then I1S =⊕i
a=1 vaK[Pa] and for Qb = Qb ∪ {x1, · · · , xp−1}, I2S =

⊕j
b=1 vbK[Qb]. For Mab =

vaK[Pa]ubK[Qb] we get I1S ∩ I2S =
⊕i

a=1

⊕j
b=1Mab. Now Lemma 3.2.1 can be

applied which gives Mab = {0} or Mab = lcm(va, ub)K[(Pa ∪ Qb) \ Rab] for Rab ⊂
{xp, · · · , xq} and |(Pa ∪Qb) \Rab| ≥ |Pa|+ |Qb| − l.

(2) Suppose two Stanley decompositions for S1/I1 and S2/I2 as S1/I1 =⊕r
i=1 viK[Pi] and S2/I2 =

⊕s
j=1 ujK[Qj] respectively. Then S/(I1S) =

⊕r
i=1 viK[Pi]

and for Pi = Pi ∪ {xq+1, · · · , xm} also Qj = Qj ∪ {x1, · · · , xp−1} for S/(I2S) =⊕s
j=1 ujK[Qj]. We get (S/I1S)∩(S/I2S) =

⊕r
i=1

⊕s
j=1Mij forMij = viK[Pi]ujK[Qj

].As S/(I1S+I2S) = (S/I1S)∩(S/I2S) so sdepthS(S/(I1S+I2S)) = sdepthS((S/I1S)

∩ (S/I2S)) =
⊕r

i=1

⊕s
j=1Mij. Now we apply Lemma 3.2.1, Mij = {0} or Mij =

lcm(vi, uj)K[(Pi∪Qj)\Rij] for Rij ⊂ {xp, · · · , xq} and |(Pi∪Qj)\Rij| ≥ |Pi|+|Qj|−l.
(3) Assume two Stanley decompositions S1/I1 =

⊕i
a=1 vaK[Pa] and I2 =⊕j

b=1 ubK[Qb] for S1/I1 and I2 respectively. We have S1/I1 =
⊕i

a=1 vaK[Pa] where

Pa = Pa ∪ {xq+1, · · · , xm} and I2S =
⊕j

b=1 vbK[Qb] for Qb = Qb ∪ {x1, · · · , xp−1}.
As

I1S + I2S = ((I1S + I2S)∩ I1S)⊕ ((I1S + I2S)∩ (S/I1S)) = I1S ⊕ (I2S ∩ (S/I1S)).

We get sdepthS(I1S + I2S) ≥ min{sdepthS(I1S), sdepthS(I2S ∩ (S/I1S))}. So we

get a Stanley decomposition for I1S∩I2S as I2S∩ (S/I1S) =
⊕i

a=1

⊕j
b=1Mab where

Mab = vaK[Pa]ubK[Qb]. From Lemma 3.2.1 Mab = {0} or Mab = lcm(va, ub)K[(Pa∪
Qb)\Rab] where Rab ⊂ {xp, · · · , xq} and |(Pa∪Qb)\Rab| ≥ |Pa|+ |Qb|− l that gives

sdepthS(I2S ∩ (S/I1S)) ≥ sdepthS1
(S1/I1) + sdepthS2

(I2).

(4) Suppose two Stanley decompositions for I1 and S2/I2 as I1 =
⊕i

a=1 vaK[Pa]

and S1/I2 =
⊕j

b=1 ubK[Qb] respectively. We have I1S =
⊕i

a=1 vaK[Pa] where Pa =
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Pa∪{xq+1, · · · , xm} and S/(I2S) =
⊕j

b=1 vbK[Qb] for Qb = Qb∪{x1, · · · , xp−1}. We

apply the decomposition

S/(I1S ∩ I2S) = (S/(I1S ∩ I2S) ∩ I1S)⊕ (S/(I1S ∩ I2S) ∩ (S/I1S)) =

S/(I1S)⊕ (I1S ∩ (S/I2S)).

As sdepthS(I1S∩(S/I2S)) ≥ min{sdepthS(S/I1S)+sdepthS((S/I2S)∩(I1S)} follows

from above decomposition. We have I1S ∩ (S/I2S) =
⊕i

a=1

⊕j
b=1Mab when Mab =

vaK[Pa]ubK[Qb]. Using Lemma 3.2.1 Mab = {0} or Mab = lcm(va, ub)K[(Pa ∪Qb) \
Rab] where Rab ⊂ {xp, · · · , xq} and |(Pa ∪ Qb) \ Rab| ≥ |Pa| + |Qb| − l that follows

sdepthS(I1S ∩ (S/I2S)) ≥ {sdepthS2
(S2/I2) + sdepthS1

(I1)}.

Remark 3.2.1. Results of the previous theorem do not depend on the numbers p,q.

So we can rewrite Theorem 3.2.2 as randomly chosen monomial ideals I1, I2 ⊂ S. If

I1, I2 ⊂ S are two monomial ideals, the minimal number l which can be selected by

a reordering of the variables is l = |supp(I1) ∩ supp(I2)|.
As observed in Remark 3.1.1 (I1 + I2)/I1 = I2 ∩ (S/I1) so sdepthS(I1 + I2)/I1 =

sdepthS(I2∩(S/I1)) ≥ sdepthS2
(I2)+sdepthS1

(S1/I1) ≥ sdepthS(I2)+sdepthS(S/I1)

−m. Particularly if I1 ⊂ I2 then sdepthS(I2/I1) ≥ sdepthS(I2)+sdepthS(S/I1)−m.

Corollary 3.2.3. If I1, I2 ⊂ S are monomial ideals and |G(I1) = r| then:

(1) sdepthS(I1 ∩ I2) ≥ sdepthS(I1)− br/2c.

(2) sdepthS(I1 + I2) ≥ min{sdepthS(I1), sdepthS(S/I1)− br/2c}.
sdepthS(I1 + I2) ≥ sdepthS(I1)− r.

(3) sdepthS(S/(I1 + I2)) ≥ sdepthS(S/I1)− r.

(4) sdepthS(S/(I1 ∩ I2)) ≥ min{sdepthS(S/I1), sdepthS(I1)− r}.
sdepthS(S/(I1 ∩ I2)) ≥ min{m− r, sdepthS(S/I1)− br/2c}.

(5) sdepthS((I1 + I2)/I2) ≥ sdepthS(S/I1)− br/2c.
sdepthS((I1 + I2)/I2) ≥ sdepthS(I1)− r.
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Proof. (1) From theorem 3.2.2 (1) we have sdepthS(I1S ∩ I2S) ≥ sdepthS(I1S) +

sdepthS(I2S) − m = sdepthS(I1S) + (m − br/2c) − m by using sdepthS(I2S) ≥
m− br/2c. Solving we get sdepthS(I1S ∩ I2S) ≥ sdepthS(I1S)− br/2c.

(2) From Theorem 3.2.2 (3) sdepthS(I1S+I2S) ≥ min{sdepthS(I1S), sdepthS(I2S)+

sdepthS(S/I1S)−m} ≥ min{sdepthS(I1S), (m−br/2c)+sdepthS(S/I1S)−m} using

sdepthS(I2S) ≥ m−br/2c. We get sdepthS(I1S+I2S) ≥ min{sdepthS(I1S), sdepthS

(S/I1S)−br/2c} after solving. Also we have sdepthS(I1S+ I2S) ≥ sdepthS(I1)− r.
(3) From Theorem 3.2.2 (2)sdepthS(S/(I1S+I2S)) ≥ sdepthS(S/I1S)+sdepthS(S/

I2S)−m ≥ sdepthS(S/I1S) + (m− r)−m using sdepthS(S/I2) ≥ m− r. We finally

have sdepthS(S/(I1S + I2S)) ≥ sdepthS(S/I1S)− r.
(4) From Theorem 3.2.2(4) sdepthS(S/(I1S∩I2S)) ≥ min{sdepthS(S/I1S), sdepthS

(S/I2S) + sdepthS(I1S) − m} ≥ min{sdepthS(S/I1S), (m − r) + sdepthS(I1S) −
m} using sdepthS(S/I2) ≥ m − r. By solving we get sdepthS(S/(I1S ∩ I2S)) ≥
min{sdepthS(S/I1S), sdepthS(I1S) − r}. We also have sdepthS(S/(I1S ∩ I2S)) ≥
min{m− r, sdepthS(S/I1)− br/2c}.

(5) As from Remark 3.2.1 sdepthS(I1 + I2)/I1 ≥ sdepthS(I2) + sdepthS(S/I1) −
m ≥ (m − br/2c) + sdepthS(S/I1) −m. By solving we have sdepthS(I1 + I2)/I1 ≥
sdepthS(S/I1)− br/2c. And we get sdepthS(I1 + I2)/I2 ≥ sdepthS(I1)− r.

Corollary 3.2.4. If I1 ⊂ S is a monomial ideal and v ∈ S is a monomial then:

(1) sdepthS(I1 ∩ (v)) ≥ sdepthS(I1).

(2) sdepthS(I1, v) ≥ min{sdepthS(I1), sdepthS(S/I1)}.

(3) sdepthS(S/(I1, v)) ≥ sdepthS(S/I1)− 1.

(4) sdepthS(S/(I1 ∩ (v))) ≥ sdepthS(S/I1).

Proof. (1) Using Corollary 3.2.3(1) and substituting |G(I2)| = 1 we have

sdepthS(I1 ∩ (v)) ≥ sdepthS(I1)− b1/2c ≥ sdepthS(I1)− 0 ≥ sdepthS(I1).

which is the required result.
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(2) Using Corollary 3.2.3(2) we get

sdepthS(I1, (v)) ≥ min{sdepthS(I1), sdepthS(S/I1)− b1/2c} ≥ min{sdepthS(I1),

sdepthS(S/I1)}.
(3) Using Corollary 3.2.3(3)

sdepthS(S/(I1, (v))) ≥ sdepthS(S/I1)− 1.

(4) From Corollary 3.2.3(4)

sdepthS(S/(I1 ∩ (v))) ≥ min{sdepthS(S/I1), sdepthS(I1)− 1}. Using Theorem 3.1.3

sdepthS(S/(I1 ∩ (v))) ≥ min{sdepthS(S/I1), sdepthS(S/I1)} so sdepthS(S/(I1 ∩
(v))) ≥ sdepthS(S/I1).

Theorem 3.2.5. If I1 ⊂ S is a monomial ideal such that I1 = v(I1 : v) for a

monomial v ∈ S then:

(1) sdepthS(I1) = sdepthS(I1 : v).

(2) sdepthS(S/(I1 : v)) ≥ sdepthS(S/I1).

Proposition 3.2.6. If I1 ⊂ S is a monomial ideal and v ∈ S is a monomial then:

(1) sdepthS(I1 : v) ≥ sdepthS(I1).

(2) sdepthS(S/I1) ≤ sdepthS(S/(I1 : v)).

Proof. (1) In Theorem 3.2.5(1) apply the fact I1 ∩ (v) = v(I1 : v) and then use

Corollary 3.2.4(1) to get the desired result.

(2) By Theorem 3.2.5(2) and I1 ∩ (v) = v(I1 : v) and then using Corollary 3.2.4(4)

follows the required proof.

For an ideal J ⊂ S, if P ∈ Ass(S/J) is an associated prime then there exists a

monomial u ∈ S such that P = (J : u).

Corollary 3.2.7. For a monomial ideal J ⊂ S, with Ass(S/J) = {P1, · · · , Pt}, if

we denote dj = ht(Pj) then:
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(1) sdepthS(J) ≤ min{m− bdj/2c : j = 1, · · · , t}.

(2) sdepthS(S/J) ≤ min{m− dj : j = 1, · · · , t}.

Proof. (1) Notice that sdepthS(Pj) = m− dj/2. Now from Proposition 3.2.6(1) we

get the required result.

(2) Notice that sdepthS(Pj) = m−dj. Then by Proposition 3.2.6(2) we are done.

Corollary 3.2.8. Suppose J ⊂ S is a monomial ideal minimally generated by r

monomials, such that there exists a prime ideal P ∈ Ass(S/J) with ht(P ) = r.

Then sdepthS(S/J) = m− r.

Proof. It directly follows from Theorem 3.2.6(2) and Corollary 3.2.7(2).

Remark 3.2.2. Assume a monomial ideal J ⊂ S. Then sdepthS

(S/J) = m − 1 iff J is principal. J is principal if and only if all the primes in

Ass(S/J) have height 1. Then by Corollary 3.2.7(2) we get desired form.

Corollary 3.2.9. Suppose q ≥ 2 be an integer, and let Ij ⊂ S be some monomial

ideals, when 1 ≤ j ≤ q. Then:

(1) sdepthS(I1 ∩ · · · ∩ Iq) ≥ sdepthS(I1) + · · ·+ sdepthS(Iq)−m(q − 1).

(2) sdepthS(I1+· · ·+Iq) ≥ min{sdepthS(I1), sdepthS(I2)+sdepthS(S/I1)−m, · · · ,
sdepthS(Iq) + sdepthS(S/Iq−1) + · · ·+ sdepthS(S/I1)−m(q − 1)}.

(3) sdepthS(S/(I1∩· · ·∩Iq)) ≥ min{sdepthS(S/I1), sdepthS(S/I2)+sdepthS(I1)−
m, · · · , sdepthS(S/Iq) + sdepthS(Iq−1) + · · ·+ sdepthS(I1)−m(q − 1)}.

(4) sdepthS(S/(I1 + · · ·+ Iq)) ≥ sdepthS(S/I1) + · · ·+ sdepthS(S/Iq)−m(q− 1).

Proof. (1) Use induction on q.

If q = 2, then by Theorem 3.2.2(1), we have

sdepthS(I1 ∩ I2) ≥ sdepthS(I1) + sdepthS(I2)−m
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Now let S∗ = m1 + · · ·+mq−1 then suppose by induction that (1) holds for q − 1

sdepthS∗(I1 ∩ · · · ∩ Iq−1) ≥ sdepthS∗(I1) + · · ·+ sdepthS∗(Iq−1)−m(q − 2).

Then for q we have

sdepthS((I1 ∩ · · · ∩ Iq−1) ∩ Iq) = sdepthS∗(I1 ∩ · · · ∩ Iq−1) + sdepthSq(Iq) − m ≥
(sdepthS(I1) + · · ·+ sdepthS(Iq−1)−m(q − 2)) + sdepthS(Iq)−m ≥ sdepthS(I1) +

· · ·+ sdepthS(Iq−1) + sdepthS(Iq)−m(q − 1).

(2) Use induction on q.

If q = 2, then by Theorem 3.2.2(3), we get

sdepthS(I1 + I2) ≥ min{sdepthS(I1), sdepthS(I2) + sdepthS(S/I1)−m}

Now let S∗ = m1 + · · ·+mq−1 then suppose by induction that (2) holds for q − 1

sdepthS∗(I1 + · · ·+ Iq−1) ≥ min{sdepthS(I1), sdepthS(I2) + sdepthS(S/I1)−
m, · · · , sdepthS(Iq−1) + sdepthS(S/Iq−2) + · · ·+ sdepthS(S/I1)−m(q − 2)}.

Now from Theorem 3.2.2(2) for q we have sdepthS(I1+· · ·+Iq−1+Iq) = sdepthS((I1+

· · · + Iq−1) + Iq) ≥ min{sdepthS∗(I1 + · · · + Iq−1), sdepthS(Iq) + sdepthS∗(S/(I1 +

· · ·+ Iq−1)S)−m}.
From Corollary 1.1.9(4), we get

sdepthS((I1+ · · ·+Iq−1)+Iq) ≥ min{min sdepthS(I1), sdepthS(I2)+sdepthS(S/I1)−
m, · · · , sdepthS(Iq−1)+sdepthS(S/Iq−2)+· · ·+sdepthS(S/I1)−m(q−2)}, sdepthS(Iq)

+ sdepthS(S/I1) + sdepthS(S/I2) + · · ·+ sdepthS(S/Iq−1)−m(q − 2)−m}.
sdepthS((I1 + · · · + Iq−1) + Iq) ≥ min{sdepthS(I1), sdepthS(I2) + sdepthS(S/I1) −
m, · · · , sdepthS(Iq) + sdepthS(S/Iq−1) + · · ·+ sdepthS(S/I1)−m(q − 1)}.
(3) Use induction on q.

If q = 2, then by Theorem 3.2.2(4), we have

sdepthS(S/(I1 ∩ I2)) ≥ min{sdepthS(S/I1), sdepthS(S/I2) + sdepthS(I1)−m}

Now let S∗ = m1 + · · ·+mq−1 then suppose by induction that (3) holds for q − 1
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sdepthS∗(S/(I1 ∩ · · · ∩ Iq−1)) ≥ min{sdepthS(S/I1), sdepthS(S/I2) + sdepthS(I1)−
m, · · · , sdepthS(S/Iq−1) + sdepthS(Iq−2) + · · ·+ sdepthS(I1)−m(q − 2)}.

Now from Theorem 3.2.2(4) for q we have sdepthS(S/(I1 ∩ · · · ∩ Iq−1) ∩ Iq)
≥ min{sdepthS∗(S/(I1∩ · · · ∩ Iq−1)), sdepthS(S/Iq) + sdepthS∗(I1∩ · · · ∩ Iq−1)−m}.
Using Corollary 1.1.9(1) sdepthS(S/(I1∩· · ·∩Iq−1)∩Iq) ≥ min{min{sdepthS(S/I1),

sdepthS(S/I2)+sdepthS(I1)−m, · · · , sdepthS(S/Iq−1)+sdepthS(Iq−2)+· · ·+sdepthS

(I1) −m(q − 2)}, sdepthS(S/Iq) + sdepthS(I1) + · · · + sdepthS(Iq−1) −m(q − 2) −
m} ≥ min{sdepthS(S/I1), sdepthS(S/I2) + sdepthS(I1) − m, · · · , sdepthS(S/Iq) +

sdepthS(Iq−1) + · · ·+ sdepthS(I1)−m(q − 1)}. which is the required form for q.

(4) Use induction on q.

If q = 2, then by Theorem 3.2.2(2), we have

sdepthS(S/(I1 + I2)) ≥ sdepthS(S/I1) + sdepthS(S/I2)−m

Now let S∗ = m1 + · · ·+mq−1 then suppose by induction that (4) holds for q − 1

sdepthS(S/(I1 + · · ·+ Iq−1)) ≥ sdepthS(S/I1) + · · ·+ sdepthS(S/Iq−1)−m(q − 2)

Now from Theorem 3.2.2(2) for q we have sdepthS(S/(I1 + · · · + Iq−1 + Iq)) ≥
sdepthS∗(S/(I1+· · ·+Iq−1))+sdepthS(S/Iq)−m ≥ sdepthS(S/I1)+· · ·+sdepthS(S/

Iq−1)−m(q−2)+sdepthS(S/Iq)−m ≥ sdepthS(S/I1)+ · · ·+sdepthS(S/Iq)−m(q−
1).

Corollary 3.2.10. Suppose I1, I2 are two monomial ideals such that G(I2) = {v1, · · ·
, vq} is the set of minimal monomial generators of I2. Then

(1) sdepthS(I1 : I2) ≥ sdepthS(I1 : v1) + sdepthS(I1 : v2) + · · · + sdepthS(I1 :

vq)−m(q − 1) ≥ qsdepthS(I1)−m(k − 1).

(2) sdepthS(S/(I1 : I2)) ≥ min{sdepthS(S/(I1 : v1)), sdepthS(S(I2 : v2))+sdepthS

(I1 : v1)−m, · · · , sdepthS(S/(I1 : vq)) + sdepthS(I1 : vq−1) + · · ·+ sdepthS(I1 :

v1)−m(q − 1) ≥ sdepthS(S/I1) + (q − 1)sdepthS(I1)−m(q − 1).
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Proof. (1) As we know (I1 : I2) = (I1 : v1) ∩ (I1 : v2) ∩ · · · ∩ (I1 : vq) so from

Corollary 3.2.9(1) sdepthS(I1 : I2) ≥ sdepth(I1 : v1) + sdepth(I1 : v2) + · · · + (I1 :

vq) − m(q − 1) and 2nd inequality follows from Proposition 3.2.6(1) (I1 : I2) ≥
sdepth(I1) + sdepth(I1) + · · ·+ (I1)−m(q − 1) ≥ qsdepth(I1)−m(q − 1).

(2) Likewise from Corollary 3.2.9(3) we get sdepthS(S/(I1 : I2)) ≥ {sdepth(S/(I1 :

v1)), sdepth(S/(I1 : v2)) + sdepth(I1 : v1)−m, · · · , sdepth(S/(I1 : vq)) + sdepth(I1 :

vq−1)+· · ·+sdepth((I1 : v1)−m(q−1).Now using Proposition 3.2.6(2) sdepthS(S/(I1 :

I2)) ≥ sdepthS(S/I1) + (q − 1)sdepthS(I1)−m(q − 1).

Assume I1 ⊂ S a monomial ideal and the irredundant minimal decomposition

of I1 is I1 = Q1 ∩ · · · ∩ Qq. Denote Pi =
√
Qi for 1 ≤ i ≤ q and Ass(S/I1) =

{P1, · · · , Pq}. Particularly when I1 is squarefree then Qi = Pi for all i. Denote

di = ht(Pi), for 1 ≤ i ≤ q. Suppose d1 ≥ d2 ≥ · · · ≥ dq then we have following

bounds for sdepthS(I1) and sdepthS(S/I1).

Corollary 3.2.11. (1) m− bd1/2c ≥ sdepthS(I1) ≥ m− bd1/2c − · · · − bdq/2c.

(2) m− d1 ≥ sdepthS(S/I1) ≥ m− bd1/2c − · · · − bdq−1/2c − dq.

Proof. (1) For the 1st inequality use Corollary 3.2.7(1) sdepthS(I1) ≤ min{m −
bdi/2c : i = 1, · · · , s} ≤ m − bd1/2c. From Corollary 3.2.9(1) sdepthS(I1) ≥ m −
bdi/2c ≥ m− bd1/2c − · · · − bdq/2c −m(q − 1) ≥ m− bd1/2c − · · · − bdq/2c which

is the required 2nd inequality.

(2) The 1st inequality follows directly from Corollary 3.2.7(2). From Corollary

3.2.9(3) sdepthS(S/(I∗1 ∩ · · · ∩ Iq)) ≥ min{sdepthS(S/I∗1 ), sdepthS(S/I2) + sdepthS(

I∗1 )−m, · · · , sdepthS(S/Iq)+sdepthS(Iq−1)+· · ·+sdepthS(I∗1 )−m(q−1)} now using

Corollary 3.2.7(1) and Corollary 3.2.7(2) sdepthS(S/(I∗1 ∩ · · · ∩ Iq)) ≥ m− d1,m−
d2 +m− bd1/2c −m, · · · ,m− dq +m− bdq−1/2c+ · · ·+m− bd1/2c −m(q − 1) ≥
m− bd1/2c − · · · − bdq−1/2c − dq.

More generally, assume the primary irredundant decomposition of I1 is I1 =

C1 ∩ · · · ∩ Cq, Pj =
√
Cj. Denote ci = sdepthS(Ci) and di = ht(Pi). Suppose
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d1 ≥ d2 ≥ · · · ≥ dq. Observe that ci ≤ m − di/2, for a monomial vi ∈ S we have

Pi = (Ci : vi) therefore by Proposition 3.2.6(1) sdepthS(Ci) ≤ sdepthS(Pi). We also

have sdepthS(S/Ci) = sdepthS(S/Pi). The following bounds for sdepthS(I1) and

sdepthS(S/I1) are obtained by simple computations.

Corollary 3.2.12. (1) m− bd1/2c ≥ sdepthS(I1) ≥ c1 + · · ·+ cq −m(q − 1).

(2) m−d1 ≥ sdepthS(S/I1) ≥ min{m−d1, c1−d2, c1 + c2−d3−m, · · · , c1 + · · ·+
cq−1 − dq −m(q − 2).

Proof. (1) From Proposition 3.2.7(1) sdepthS(I1) ≤ min{m−bdi/2c : i = 1, · · · , s} ≤
min{m−bd1/2c, · · · ,m−bdq/2c so sdepthS(I1) ≤ m−bd1/2c. Using Corollary 3.2.9

sdepthS(I1) ≥ sdepthS(I∗1 ) + · · ·+ sdepthS(Iq)−m(q− 1) ≥ c1 + · · ·+ cq−m(q− 1).

(2) From Proposition 3.2.7(2) sdepthS(S/I1) ≤ m − d1. For the 2nd inequality use

Corollary 3.2.9(3) sdepthS(S/(I∗1∩· · ·∩Iq)) = sdepthS(S/I1) ≥ min{sdepthS(S/I∗1 ),

sdepthS(S/I2)+sdepthS(I∗1 )−m, · · · , sdepthS(S/Iq)+sdepthS(Iq−1)+· · ·+sdepthS(I∗1

)−m(q−1)} ≥ min{m−d1,m−d2+c1−m,m−d3+c2+c1−2m, · · · , c1, · · · , cq−1−dq−
m(q−1) ≥ min{m−d1, c1−d2, c1+c2−d3−m, · · · , c1+· · ·+cq−1−dq−m(q−2)}.

Example 3.2.1. Suppose I1 = C1 ∩ C2 ∩ C3 ⊂ S := K[y1, · · · , y7], for C1 =

(y22, · · · , y25), C2 = (y34, y
3
5, y

3
6) and C3 = (y36, y6y7, y

2
7). Denote Pj =

√
Cj. Observe

c3 = sdepthS(C3) = sdepthK[y6,y7](C3∩K[y6, y7])+5 = 1+5 = 6. From [4, Theorem

1.3] c1 = 7− b5/2c = 5 and c2 = 7− b3/2c = 6.

Corollary 3.2.14(1) gives

5 = 7− bd1/2c ≥ sdepthS(I1) ≥ c1 + c2 + c3 − 14 = 3.

From Corollary 3.2.12(2) we have

2 = 7− d1 ≥ sdepthS(S/I1) ≥ min{7− d1, c1− d2, c1 + c2− d3− 7} = min{7− 5, 5−
3, 5 + 6− 2− 7} = 2.

Therefore sdepthS(I1) ∈ {3, 4, 5} and sdepthS(S/I1) = 2.

Also depthS(S/I1) ≥ min{m−depthS(S/Pi) : i = 1, 2, 3} = 2. We have sdepthS(I1) ≥
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depthS(I1) and sdepthS(S/I1) ≥ depthS(S/I1). Using CoCoA we have depthS(S/I1)

= 2.

Proposition 3.2.13. Suppose two monomial ideals I1 ⊂ I2 ⊂ S = K[y1, · · · , yn]

and denote S∗ = S[x]. Then:

sdepthS(I2/I1)+1 ≥ sdepthS∗((I2S
∗+(x))/I1S

∗) ≥ min{sdepthS(I2/I1), sdepthS(S/

I1) + 1}.

Proof. For the 1st inequality consider a Stanley decomposition (I2S
∗+ (x))/I1S

∗ =⊕l
j=1 vjK[Zj] and ((I2S

∗ + (x))/I1S
∗) ∩ S = I2/I1. So we have S = I2/I1 =⊕l

j=1 vjK[Zj] ∩ S =
⊕

x|vj vjK[Zj{x}] a Stanley decomposition. For the second

inequality consider the short exact sequence

0→ I2/I1 → (I2S
∗ + (x))/I1S

∗ → (S/I1)[x]→ 0.

Thus we have (I2S
∗+(x))/I1S

∗ = I2/I1
⊕

(S/I1)[x] and we obtain desired inequality.

3.3 Equivalent forms of Stanley inequality

Proposition 3.3.1. The following are equivalent:

(1) For any integer m ≥ 1 and any monomial ideal I1 ⊂ S = K[x1, · · · , xm],

Stanley inequality holds for I1, i.e. sdepthS(I1) ≥ depthS(I1).

(2) For any integer m ≥ 1 and any monomial ideals I1, I2 ⊂ S, if sdepthS(I1 +

I2) ≥ depthS(I1 + I2), then sdepthS(I1) ≥ depthS(I1).

(3) For any integers m, k ≥ 1, any monomial ideal I1 ⊂ S = K[x1, · · · , xm], if

v1, · · · , vk ∈ S is a regular sequence on S/I1 and I2 = (v1, · · · , vk), then if:

sdepthS(I1 + I2) ≥ depthS(I1 + I2)⇒ sdepthS(I1) ≥ depthS(I1).
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(4) For any integers m, k ≥ 1,any monomial ideal I1 ⊂ S = K[x1, · · · , xm], if

v1, · · · , vk ∈ S is a regular sequence on S/I1 and I2 = (v1, · · · , vk), then if:

sdepthS(I1 + I2) = depthS(I1 + I2)⇒ sdepthS(I1) = depthS(I1).

(5) For any integer m ≥ 1, any monomial ideal I1 ⊂ S = K[x1, · · · , xm], if

S∗ = S[z], then:

sdepthS∗(I1, z) = depthS(I1)⇒ sdepthS(I1) = depthS(I1).

Proof. (1)⇒(2)⇒(3) is clearly obvious.

(3)⇒(4). Suppose sdepthS(I1 + I2) = depthS(I1 + I2). Observe depthS(I1 + I2) =

depthS(I1)− k, because v1, · · · , vk ∈ S is a regular sequence on S/I1. Using Corol-

lary 3.2.3(2) we have depthS(I1+I2) ≥ depthS(I1)−k. As sdepthS(I1) ≥ depthS(I1)

by (3) sdepthS(I1) ≤ depthS(I1), so sdepthS(I1) = depthS(I1).

(4)⇒(5). As z is regular on S∗/I1S
∗ then by (4) for I1S we have sdepthS(I1) ≥

depthS(I1). Assume sdepthS(I1, z) = depthS(I1) also sdepthS(I1, z) ≥ sdepthS(I1)+

1 = depthS(I1)⇒ sdepthS(I1) + 1 = depthS(I1) so sdepthS(I1) = depthS(I1).

(5)⇒(1). Suppose a monomial ideal I1 ⊂ S. For an integer q ≥ 1, denote Iq =

(I1, z1, · · · , zq) ⊂ Sq := S[z1, · · · , zq]. As z1, · · · , zq is a regular sequence on Sq/Iq so

depthSq(Iq) = depthS(I1). By Corollary 3.1.5(1), sdepthSq(Iq) ≥ min{sdepthS(I1) +

q, sdepthS(S/I1) + dq/2e then there exist q0 ≥ 1 such that for q ≥ q0 sdepthSq(Iq) ≥
depthS(I(1)). Choose q0 minimal such that we can claim that sdepthSq0 (Iq0) =

depthS(I1). Observe that sdepthSq(Iq) ≤ sdepthSq−1
(Iq−1) + 1. By using (5) induc-

tively we have sdepthS(I1) = depthS(I1).

Remark 3.3.1. Suppose a monomial ideal I1 ⊂ S = K[y1, · · · , ym] such that

sdepthS(I1) ≥ depthS(I1). Suppose v1, · · · , vk ∈ S is a regular sequence on S/I1 and

I2 = (v1, · · · , vk). By Proposition 3.1.1(3), depthS(I1 ∩ I2) = depthS(I1 + I2) + 1 =

depthS(I1) − k + 1. By Corollary 3.2.3(1) sdepthS(I1 ∩ I2) ≥ sdepthS(I1) − bk/2c.
Suppose sdepthS(I1∩ I2) = depthS(I1∩ I2) then sdepthS(I1)−k+ 1 ≥ depthS(I1)−
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k + 1 ⇒ sdepthS(I1) = depthS(I1), bk/2c = k − 1 and k ≤ 2. We can contra-

dict the Stanley inequality for an ideal I1 ⊂ S for S∗ = S[x1, x2, x3] such that

sdepthS∗(I1S
∗ ∩ (x1, x2, x3)) = depthS(I1).

Proposition 3.3.2. The following are equivalent:

(1) For any integer m ≥ 1 and any monomial ideal I1 ⊂ S = K[x1, · · · , xm],

Stanley inequality holds for I1, i.e. sdepthS(I1) ≥ depthS(I1).

(2) For any integer m ≥ 1 and any monomial ideals I1, I2 ⊂ S, if sdepthS(I1 ∩
I2) ≥ depthS(I1 ∩ I2), then sdepthS(I1) ≥ depthS(I1).

(3) For any integers m, k ≥ 1, any monomial ideal I1 ⊂ S = K[x1, · · · , xm], if

v1, · · · , vk ∈ S is a regular sequence on S/I1 and I2 = (v1, · · · , vk), then if:

sdepthS(I1 ∩ I2) ≥ depthS(I1 ∩ I2)⇒ sdepthS(I1) ≥ depthS(I1).

Proof. (1)⇒(2) and (2)⇒ (3).It is obvious.

(3)⇒(1). Suppose a monomial ideal I1 ⊂ S. For an integer q ≥ 1, define Iq =

I1 ∩ (z1, · · · , zq) ⊂ Sq := S[z1, · · · , zq]. We denote I2 = (z1, · · · , zq) ⊂ Sq. As

z1, · · · , zq is a regular sequence on Sq/IqS using Corollary 3.2.3(1) sdepthSq(Iq) ≥
sdepthS(I1) + dq/2e. By Corollary 3.1.5(5) depthSq(Iq) = depthS(I1) + 1 then there

exist q0 ≥ 1 such that sdepthSq(Iq) ≥ depthSq(Iq) for q ≥ q0. By (3) sdepthS(I1) ≥
depthS(I1).

Proposition 3.3.3. The following are equivalent:

(1) For any integer m ≥ 1 and any monomial ideal I1 ⊂ S = K[x1, · · · , xm],

Stanley inequality holds for S/I1, i.e. sdepthS(S/I1) ≥ depthS(S/I1).

(2) For any integer m ≥ 1 and any monomial ideals I1, I2 ⊂ S, if sdepthS(S/(I1∩
I2)) ≥ depthS(S/(I1 ∩ I2)), then sdepthS(S/I1) ≥ depthS(S/I1).
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(3) For any integers m, k ≥ 1, any monomial ideal I1 ⊂ S = K[x1, · · · , xm], if

v1, · · · , vk ∈ S is a regular sequence on S/I1 and I2 = (v1, · · · , vk), then if:

sdepthS(S/(I1 ∩ I2)) ≥ depthS(S/(I1 ∩ I2))⇒ sdepthS(S/I1) ≥ depthS(S/I1).

Proof. (1)⇒(2) and (2)⇒ (3).It is obvious.

(3)⇒(1). Suppose a monomial ideal I1 ⊂ S. For an integer q ≥ 1, define Iq =

I1 ∩ (z1, · · · , zq) ⊂ Sq := S[z1, · · · , zq]. We denote I2 = (z1, · · · , zq) ⊂ Sq. As

z1, · · · , zq is a regular sequence on Sq/IqS using Corollary 3.2.3(4) sdepthSq(Sq/Iq) ≥
min{m, sdepthS(S/I1)+dq/2e}. By Corollary 3.1.5(5) depthSq(Sq/Iq) = depthS(S/I1)

then there exist q0 ≥ 1 such that sdepthSq(Sq/Iq) ≥ depthSq(Sq/Iq) for q ≥ q0. By

(3) sdepthS(S/I1) ≥ depthS(S/I1).

Remark 3.3.2. Suppose a monomial ideal I1 ⊂ S = K[y1, · · · , ym] such that

sdepthS(S/I1) ≥ depthS(S/I1). Suppose v1, · · · , vk ∈ S is a regular sequence on

S/I1 and I2 = (v1, · · · , vk). Observe depthS(S/(I1∩I2)) = depthS(S/(I1 +I2))+1 =

depthS(S/I1) − k + 1. By Corollary 3.2.3(4) sdepthS(S/(I1 ∩ I2)) ≥ min{m −
k, sdepthS(S/I1) − bk/2c}. Suppose sdepthS(S/(I1 ∩ I2)) = depthS(S/(I1 ∩ I2))
then depthS(S/I1) − k + 1 ≥ min{m − k, sdepthS(S/I1) − bk/2c} ≥ min{m −
k, depthS(S/I1)−bk/2c} ≥ min{m−k, depthS(S/I1)−k+1} = depthS(S/I1)−k+1.

For principal ideal depthS(S/I1) = m− 1 then

min{m− k, depthS(S/I1)− bk/2c} = m− k

⇒ depthS(S/I1)− bk/2c = m− 1− bk/2c ≥ m− k

If ideal is not principal, then depthS(S/I1) ≤ m− 2 then by Remark 3.2.2.

min{m−k, sdepthS(S/I1)−bk/2c} = depthS(S/I1)−bk/2c = depthS(S/I1)−m+1.

Hence sdepthS(S/I1) = depthS(S/I1) and k ≤ 2. We can contradict the Stanley

inequality if we find an ideal I1 ⊂ S which is not principal for S∗ = S[x1, x2, x3]

such that sdepthS∗(S
∗/(I1S

∗ ∩ (x1, x2, x3))) = depthS(S/I1).
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The following Lemma is a specific case of Example 3.1.1

Lemma 3.3.4. Suppose I2 = (x1, · · · , xm)∩(y1, · · · , yk) ⊂ S∗ = K[x1, · · · , xm, y1, · · ·
, yk] with m ≥ k. Then

(1) k ≥ sdepthS∗(S
∗/I2) ≥ min{k, dm/2e}.

(2) depthS∗(S
∗/I2) = 1.

Particularly if m ≥ 2k − 1 then sdepthS∗(S
∗/I2) = k.

Proposition 3.3.5. The following are equivalent:

(1) For any integer m ≥ 1 and any monomial ideal I1 ⊂ S = K[x1, · · · , xm],

Stanley inequality holds for S/I1 and I1

(2) For any integer m ≥ 1 and any monomial ideals I1, I2 ⊂ S with supp(I1) ∩
supp(I2) = ∅ we have sdepthS((I1 + I2)/I1) ≥ depthS((I1 + I2)/I1), then

sdepthS(S/I1) ≥ depthS(S/I1) and sdepthS(I2) ≥ depthS(I2).

Proof. (1)⇒(2). Suppose two monomial ideals I1, I2 ⊂ S with supp(I1)∩supp(I2) =

∅. From Lemma 3.1.4 depthS((I1 + I2)/I1) = depthS(I1 + I2)) = depthS(S/I1) +

depthS(I2)−m. By Remark 3.1.1 and (1) sdepthS((I1 + I2)/I1) ≥ sdepthS(S/I1) +

sdepthS(I2)−m ≥ depthS(S/I1) + depthS(I2)−m = depthS((I1 + I2)/I1).

(2)⇒(1). Suppose I1 ⊂ S is a monomial ideal. For any positive integer q, de-

note Sq = S[z1, · · · , zq] and Iq = (I1, z1, · · · , zq) ⊂ Sq. Suppose sdepthS(S/I1) <

depthS(S/I1). By Remark 3.1.1 sdepthSq(Iq/I1Sq) ≥ sdepthS(S/I1) + bq/2c and

as for all q depthSq(Iq/I1Sq) = depthS(S/I1) + 1 so there exists a positive inte-

ger q0 such that sdepthSq(Iq/I1Sq) ≥ depthSq(Iq/I1Sq) for all q ≥ q0. From (2)

sdepthS(S/I1) ≥ depthS(S/I1) which is a contradiction.

Suppose sdepthS(I1) < depthS(I1) and denote I2q = (z1, · · · , z2q−1)∩(z2q, · · · , z3q−1)
⊂ S3q−1 := S[z1, · · · , z3q−1]. From Lemma 3.1.4 sdepthS3q−1

(S3q−1/I2q) = m+ q and

depthS3q−1
(S3q−1/I2q) = m + 1. Suppose Iq := I1S3q−1 + I2q . From Remark 3.1.1
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sdepthS3q−1
(I1q/I2q) ≥ sdepthS(I1) + q and depthS3q−1

((I1q/I2q)) = depthS(I1) +

depthS3q−1
(S3q−1/I2q)−m = depthS(I1)+1. So there exists a positive integer q0 such

that for any q ≥ q0 we have sdepthS3q−1
((I1q/I2q)) ≥ depthS3q−1

(I1q/I2q). Therefore

from (2) we get a contradiction sdepthS(I1) ≥ depthS(I1).
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