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Abstract

Electricity is distributed through a network of transmission and distribution lines to

industrial, commercial and residential load. These networks cover a large geographical

area making their analysis and monitoring a complex and expensive task. An alternate

way is to use mathematical modeling and simulation of power distribution network where

mathematical model involves differential equations and algebraic equations leading to

a system of differential algebraic equations (DAEs). It is also known that simulation

of such large complex systems is computationally expensive and takes a lot of time to

simulate such large models for observing their behavior. To resolve this problem, the

concept of Model Order Reduction (MOR) can be used in which a reduced order model

is constructed from the original large scale model in a way that the behavior remains

approximately same. Various MOR methodologies have been developed in the literature

for linear systems such as Balanced Truncation, Moment Matching Methods, Krylov

Projection techniques and Proper orthogonal decomposition. Most of these techniques

are based on the transfer function of the system that are identified by the assumption that

the initial condition is zero. This means that the performance of the MOR method may

not be accurate when the initial condition is non-zero. In this research, some well-used

model order reduction techniques have been applied including Balanced Truncation

(BT), Iterative Rational Krylov Algorithm (IRKA), and their repeated implementation

(BT-BT) to a model with non-zero initial condition. It is shown that the performance

of the repeated implementation is better as compared to the direct reduction methods

(BT and IRKA). A variant of the repeated MOR implementation (IRKA-IRKA) has

been proposed and implemented on a comprehensive 100 km transmission line model. It

is shown that the repeated use of IRKA improve the absolute error to 10−4 range for

the specific transmission line model with 70% reduction in size. The convergence and

accuracy of the results has been demonstrated specifically for BT-BT and IRKA-IRKA
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in terms of actual and reduced system responses, absolute error between actual and
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Chapter 1

Introduction
This chapter includes an outline of power networks and the process of power distribution

from power plants to end-users. The analysis of such systems through mathematical

modeling and simulation is also discussed along with the associated issues under large

scale settings. The problem statement is then introduced and the motivation and

objectives of this research work are presented. Finally an overview of the complete thesis

is given.

1.1 Power Distribution Networks

The first power distribution system was introduced by Thomas Edison in 1882 trans-

mitting 110V direct current (DC) from the Pearl Street Power Station in Manhattan,

USA. Since the network was based on direct current, the distance from the point of

production to the consumer was very small and its expansion was costly. In 1888, Nicola

Tesla introduced alternating current (AC) which was used by George Westinghouse to

built an 11000V AC distribution system between Niagara Fall and Buffalo New York

covering a distance of 20 miles. From this point on three main factors in distribution

networks grew rapidly:

• Power generation

• Voltage capacity on Transmission line

• Distance from generation to end-user

In the modern landscape of technology, instead of having the facility of AC electricity

sources, various objects operate on DC flow of electricity. Examples of such objects are

1



Chapter 1: Introduction

solar cells, processors, LEDs, cars etc. Moreover, various techniques have been made that

are capable of transforming the direct current (DC) into different higher and lower tier

voltages. In addition, engineers and technicians are working hard to attain methods to

utilise High Voltage Direct Current (HVDC) for the purpose of transmission of electricity

over large distances along with minimum power loss.

1.2 Why Mathematical Modeling of transmission line is

important?

Transmission line modeling is a fundamental practice in electrical engineering and power

systems for various critical purposes. It serves as the cornerstone for power system

analysis, enabling engineers to comprehensively understand the dynamics of energy

transmission and distribution. By accurately modeling transmission lines, engineers

can conduct stability studies to predict and mitigate potential instabilities, analyze

faults to enhance system reliability, and optimize power flow for efficient energy transfer.

The distribution of voltage and current along transmission lines is closely examined to

maintain stable power levels and minimize losses.

Moreover, transmission line models play a pivotal role in grid planning, helping engineers

assess the need for expansions, integrate renewable energy sources, and determine optimal

operating conditions. Dynamic studies, such as transient stability analysis, are facilitated

through these models, enabling a thorough understanding of the power system’s response

to sudden changes. Overall, transmission line modeling ensures the robust design,

operation, and maintenance of power grids, contributing to a reliable, efficient, and

resilient electrical infrastructure.

1.3 Mathematical Analysis of Power Networks

Power networks can be described mathematically through a set of equations for analysis.

These models describe their behavior, such as the flow of electricity throughout the

network, the voltage and current levels at different points, and the power losses. The

mathematical models used to represent power networks are based on the laws of physics

and electronics such as Kirchhoff’s laws, Ohm’s law, and power flow equations. Different

2



Chapter 1: Introduction

equations such as PDEs, ODEs, linear equation, algebraic equations represent any

physical system. Analytical time-dependent solution for these models is possible for

simple, structured equations but in majority cases, the solution is either approximated

or numerically computed.

Mathematical modeling of power networks and their response to different inputs allow

us to get insight about the power network resulting in improvement in power network

design and performance optimization. In the following, the mathematical representation

of power transmission lines are discussed.

1.4 Mathematical Modeling of Transmission lines

Transmission lines is the backbone of the whole power network by connecting power

plants to substations and other loads. They are responsible for transferring electrical

energy from one point to another and can be categorized on the basis of voltage and

distance or length. There are three types of transmission lines: Long, medium and short.

The general equivalent circuitry of transmission lines remains the same but it is slightly

different for short-transmission lines. It is because they have to deal with short lengths

and low voltage level. Meanwhile, medium and long transmission lines are used to cover

long distances and they carry very high voltages.

Figure 1.1: Transmission line model

Figure (1.1) shows the equivalent circuitry of transmission lines in which there are ‘n’

number of lumped parameters and

• a source delivering power

• current and voltage at every node

• capacitance and inductance uniformly distributed throughout the line

• and a load connected with transmission line

3



Chapter 1: Introduction

Implementing Kirchhof’s voltage law ( KVL) over first and primary node of the transmis-

sion line model along with the representation of the voltage across resistor and inductor

as vR = iR and vL = Ldi
dt respectively, we obtain

vs − isRs − Ls
dis

dt
− v1 = 0

Ls
dis

dt
= vs − isRs − v1

dis

dt
= − isRs

Ls
− v1

Ls
+ vs

Ls
(1.4.1)

Now by applying Kirchhoff’s Current Law (KCL) on the first node of the transmission

line model along with the use of conductance G for reciprocal of resistance and current

across capacitor as i = C dv
dt we get

is = i1 + G

2 v1 + C

2
dv1
dt

C

2
dv1
dt

= is − G

2 v1 − i1

dv1
dt

= 2
C

is − G

C
v1 − 2

C
i1 (1.4.2)

By applying KVL and KCL on Figure (1.1) yields “N” number of ordinary differential

equations for current and voltage, which can be generalized. The generalized form is

given as,

din

dt
= 1

Ln
vn − Rn

Ln
in − 1

Ln
Vn+1 (1.4.3)

dvk

dt
= 1

Ck−1
ik−1 − Gk−1

Ck−1
vk − 1

Ck−1
ik (1.4.4)

Where in and ik are the currents at ‘N’ nodes, Ln is the number of inductors used in

the circuit, Rn represent resistance, Gn shows inductance, Cn depicts capacitors and

vn,vk are the voltages. Generalized equations also provide an effective way to represent

the behavior of a circuit and analyze its performance. This is especially useful when

dealing with complex circuits that involve multiple components and connections. By

using generalized equations, it is possible to represent the circuit’s behavior in a simplified

form and analyze it accurately.
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Chapter 1: Introduction

1.5 Problem Statement

A large class of power networks is modelled as LTI systems, considering and supposing

that initial conditions of the particular system is zero. If the initial condition is non-zero,

the simulation process and the approach of reducing model complexity require special

treatment. The research problem in this thesis is to explore how the approaches of model

order reduction for linear state space models can be extended to power systems with

in-homogeneous initial conditions. The reduced order model should not only ensure

accuracy but also the properties of the true model such as stability of the system. In

addition, the complete reduction and simulation process should be computationally cheap.

To visualize the simulation results, geographic information system (GIS) can be used to

show the calculation of the node on the power distribution network.

1.6 Model Order Reduction

Model Order Reduction (MOR) is considered and proved to be reliable and most used

technique in engineering field to simulate large and complex models. MOR has recently

undergone immense development for more complicated dynamical systems. Complex

high-order dynamic models are typically produced when physical systems are modelled.

Often, simpler models with lower orders are preferred to replace these models. It is

essential to construct the reduced model in this procedure such that it retains the key

elements of the original high-order model. Describing physical system through differential

equations (mathematical model) is a helpful analytical technique. This model is attained

via experiments or physical principles.

Constructing a state-space model for a transmission line involves representing the electrical

behavior of the line using a series of first-order differential equations. A transmission line

can be described using a distributed-parameter model, which accounts for the distributed

capacitance and inductance along its length. Here’s a general approach to constructing a

state-space model:

ẋ(t) = Ax(t) + Bu(t) (1.6.1)

y(t) = Cx(t) + Du(t) (1.6.2)

5



Chapter 1: Introduction

where A ∈ Rn×n, C ∈ Rp×n, B ∈ Rn×m and D ∈ Rp×m and x(t) ∈ Rn is the state vector

of model, u(t) ∈ Rm represent input of the system and y(t) ∈ Rp is the output of the

model. In this case, the ROM will be represented as:

˙̂x(t) = Âx(t) + B̂u(t) (1.6.3)

ŷ(t) = Ĉx(t) + D̂u(t)

where Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rp×r and D̂ ∈ Rp×m. The number of states of ROM is

much less than that of the full order model (i.e. r << n). The output of reduced model

is approximation of the output of the original model ŷ(t) ∼= y(t).

1.7 Research Objectives

The following objectives have been designed to conduct the research work:

• Implementation of Model Order Reduction techniques for efficient simulation of

linear systems

• MOR techniques for power systems with non-homogeneous initial conditions

• Analysis of Reduced Order Model in terms of power transmission lines

1.8 Thesis Layout

This thesis embarks on a comprehensive exploration of power systems and transmission

line networks, delving into the intricacies of Model Order Reduction (MOR). The initial

chapter provides a foundational understanding, introducing power systems, transmission

line networks, and laying the groundwork for MOR. Chapter 2 meticulously reviews the

literature on various MOR techniques applicable to large-scale Linear Time-Invariant

(LTI) systems, with a focus on those previously employed in power systems. Building

on this foundation, Chapter 3 unfolds the methodology, elucidating the conversion

of differential equations into state space models. The core of the research resides

in Chapter 4, where diverse MOR techniques are applied, and their outcomes are

rigorously examined. This chapter delves into results, conducting error analyses and

6



Chapter 1: Introduction

offering insightful discussions. The conclusive Chapter 5 encapsulates the findings, draws

overarching conclusions, and sets the stage for future research trajectories. The seamless

progression through these chapters not only enhances our understanding of MOR but

also contributes valuable insights to the broader landscape of power system modeling

and optimization.

7



Chapter 2

Literature Review

In the previous chapter, we discussed about power networks and the mathematical

representation of transmission lines. We now examine the methods used in Model Order

Reduction (MOR). Model Order Reduction is a computational approach that lowers

the order of a dynamical system specified by a set of differential or ordinary algebraic

equations to allow for its design and optimization in the simulated physical system, its

simulation, or the controller’s model. This preserves the integrity of the input-to-output

function by enabling the substitution of the large-scale set of describing ODEs/DAEs

with a considerably smaller number of ODEs/DAEs.

2.1 Model Order Reduction for Linear Systems

Large-scale, linear systems can be found in many real-world scenarios, such as control

problems and circuit simulations where partial differential equations are used to represent

the underlying physical process [2]. MOR methods have already been extensively

developed for linear systems. In essence, the MOR techniques for linear systems are just

a continuation of the non-linear system techniques.

2.1.1 Balanced Truncation

Balanced Truncation (BT), one of the many MOR approaches, is the most often employed.

Eliminating the states that have minimal effect on the response of the model or system

results in a stable ROM with an existing frequency response error bound. This technique

is known as balanced truncation. This method transforms a complex (higher) order

8



Chapter 2: Literature Review

system into a lower/simple order model and makes it easy enough to analyse its numerical

simulations. BT assures stability of a system (bounded output for a given bounded input)

along with an error bound. As this method of MOR is highly used and approached in

Linear Time Invariant (LTI) systems such as power network systems, therefore it can

provide lower order models for easy simulation, design and analysis of power networks.

Transfer function compromises of various realizations (state space). Internally balanced

realizations (having controllability and observability gramians equal and diagonal) can

differentiate most effective and least effective states of a model. Using Balance Truncation,

less effective states can be truncated and eliminated, hence a lower approximation error

is obtained for a frequency range giving appreciative performance. It must be noted that

the states truncated are least controllable and observable. Balanced Truncation works

best for higher frequencies, therefore other methods are considered for lower frequencies.

BT is capable of maintaining basic properties of the original system after reducing its

complexity by reducing its order along with error bound. It means that BT formulates

an error bound too. Let’s consider a higher order LTI system. A transfer function of a

higher model complex system is represented by

G(s) = C(sI − A)−1B + D

A ∈ Rn×n, C ∈ Rp×n, B ∈ Rn×m and D ∈ Rp×m and x(t) ∈ Rn. It must be noted that n

= order of the system and p and m denotes number of outputs and inputs, respectively.

After carrying on BT, the transfer function for the reduced order model (ROM) is given

by

Gr(s) = Cr(sIr − Ar)−1B + Dr

Order for this model is r and (r << n). Moreover, the approximation error is given

by ∥ G(s) − Gr(s) ∥∞ by having A11, B1, C1, and D as rth order minimal realizations.

Introducing a Controllability Gramian P and Observability Gramian Q to satisfy the

following Lyapunov’s equation:

AP + PAT + BBT = 0 (2.1.1)

AT Q + QA + CT C = 0 (2.1.2)

Now by defining a transformation matrix T we can transform the system in balanced

9
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form:

T −T QT −1 = TPT T = Σ =

Σ1 0

0 Σ2


where Σ1 = diag [α1,α2, . . . ,αr], Σ2 = diag [αr+1,αr+2, . . . ,αn], in which αi represent

i-th Hankel singular value. Hence, obtaining new realizations as:

Ā = T −1AT =

A11 A12

A21 A22

 , B̄ = T −1B =

B1

B2


C̄ = CT =

[
C1 C2

]
The error expression is bounded and can be expressed as:

||G(s) − Gr(s)||∞ ≤ 2
n∑

i=r+1
αi (2.1.3)

2.1.2 Interpolation Based Model Order Reduction

A dynamical system can be treated as a problem of rational interpolation in which

a system’s transfer function is considered as n degree rational function H(s). Hr(s)

represents the approximation of original transfer function with respect to H2 norm and

is known as transfer function of ROM. Hr(s) is obtained by Petrov-Galerkin projection

in which basis matrices (V and W) are constructed as discussed in [3]. The interpolation

based model reduction gives good approximation of model but the error in output of

original and reduced model depends on the selection of interpolation points and tangential

directions. Apart from this, interpolation based model order reduction is possible only if

there exists original model of a physical system.

In case of linear systems (where Q and N are null matrices), there are several techniques

in the literature to compute ROMs, cf., [4]. Among these methods, projection-based

moment-matching methods [5, 6] are well used. Using projection matrices V ∈ Rn×n and

W ∈ Rn×r, we approximate x(t) ≈ V xr(t) such that the Petrov-Galerkin orthogonality

condition holds:

W T
(

V ẋr(t) −
(
AV xr(t) + NV xr(t)u(t) + Q(V xr(t) ⊗ V xr(t)) + Bu(t)

))
= 0, (2.1.4)

yr(t) = CV xr(t).

10
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The projection is called one-sided projection, if W = V . Otherwise it is known as two

sided which gives ROM of the form:

Er = W T V, Ar = W T AV, Qr = W T Q(V ⊗ V ), Nr = W T NV, (2.1.5)

Br = W T B, Cr = CV.

In case of linear time invariant systems, a suitable choice of V and W, implicitly ensure

moment-matching, where moments are the coefficients of the Taylor series expansion of

the transfer function at some predefined shift frequencies. Thus for projection-based

moment-matching, the choice of V and W can be linked with the transfer function of the

system and often they are biorthogonal, that is Er is identity matrix.

2.1.3 Iterative Rational Krylov Algorithm (IRKA)

The Krylov Algorithm, also known as Iterative Rational IRKA, is a model order reduction

method. It is used extensively in control theory and is also discussed in linear algebra.

It also simplifies any dynamic systems and aids in the solution of challenging differential

equations, perhaps in line with other MOR approaches. IRKA is helpful since it converts

a higher dimensional model into a lower dimensional model while maintaining the

fundamental qualities (input, output). This method approximates the behaviour of any

system by using knowledge of Krylov sub-spaces to simulate its algorithm. When a

system matrix is applied to some initial vectors, such sub-spaces are reached. IRKA

employs an iterative methodology and context. For the iteration process, a starting

model that is less complex than the original system under consideration is chosen, either

arbitrarily or via a heuristic [7].

Let us consider a single-input-single-output (SISO) linear dynamical system in state

space:

ẋ(t) = Ax(t) + Bu(t), y = Cx(t) (2.1.6)

The states, input, and output of the dynamical system are A ∈ Rn×n and B, C ∈ Rn,

respectively; x(t)∈ Rn, u(t)∈ R, and y(t) ∈ R. The underlying system’s transfer function

is expressed as H(s) = cT (sI − A) − 1b. We will refer to the system and its transfer

function as H(s).

Dynamic systems of form (2.1.6) with a large state-space dimension n are used in many

applications; see, for instance, [8]. Large-scale simulations like such put an enormous

11
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burden on the computing system. Model order reduction aims to create a system that is

equivalent,

ẋr(t) = Arxr(t) + Bru(t), y(t) = Crxr(t) (2.1.7)

of much smaller dimension (r ≪ n), with Ar ∈ Rr×r and Br, Cr ∈ Rr such that yr(t)

approximates y(t) well in a certain norm. Similar to H(s), the transfer function Hr(s) of

the reduced model (2.1.7) is given by Hr(s) = cT
r (sIr − Ar) -1Br. Taking into account

the reduced model Hr(s), which is acquired by projection. Assuming that Wr
T and

Vr are invertible, we select full rank matrices Vr, Wr ∈ Rr×r. We next define the

reduced-order state-space realization with (2.1.7) and,

Ar = (W T
r Vr)−1W T

r AVr, Br = (W T
r Vr)−1W T

r B, Cr = V T
r C (2.1.8)

The reduced system is entirely determined by the choice of Wr and Vr inside this

"projection framework"; in fact, determining Hr(s) just requires defining the ranges of Wr

and Vr. IRKA iteratively adjusts the rational function parameters of the reduced-order

model to improve fit the spectrum and transfer function of the full-order system. This

refining procedure continues until a good reduced-order model is obtained [9]. Iterative

Rational Krylov Algorithm also known as IRKA has a competitive edge as it gives a

simpler approach and algorithm. This technique has been put forward and proposed

by Gugercin, Beattie and Antoulas [10, 11]. It is a MOR technique that gives an H2

optimal approximation problem approach related to interpolatory model reduction [12].

2.1.4 Proper Orthogonal Decomposition

Proper orthogonal decomposition, or POD for short, is a widely used technique for

principal component analysis (PCA) and model order reduction. POD is a mathematical

technique that can be used to reduce the number of dimensions in complex data or

high-dimensional systems. To find the dominant modes or patterns in the data, it projects

the data or system behaviour onto a lower-dimensional subspace. In the context of model

order reduction, POD is used to reduce the degrees of freedom of a mathematical model

while preserving its essential characteristics [13–15].

In this method, the inputs which consist of essential behaviour of the system are given to

a certain model which builds outputs. These outputs are called ‘snapshots’ which consist

of column vector [16]. These snapshots describe the state of model at some moment.
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Consider Y is a matrix which contains snapshots of the output and belongs to Rm×n,

then there exist

U = (u1, u2, ..., um), V = (v1, v2, ..., vn), (2.1.9)

where U ∈ Rm×m and V ∈ Rn×n. Using singular value decomposition (SVD)

Y = UΣV ∗ or U∗Y V = ( D 0
0 0 ) := Σ ∈ Rm×n (2.1.10)

The Y can be written as:

Y = (y1, y2, ..., yn) = UdD(V d)T =
d∑

i=1
< ui, yj > Rmui (2.1.11)

Model order reduction using POD generates ROMs with good approximation of the

output. POD has the advantage of being able to solve nonlinear PDEs. This method

works well for the fixed input, but if input keeps changing, there will be need of designing

ROM every time the input changes. The disadvantage of this method is that this method

is structured (input) dependent.

2.1.5 Modal Reduction

Using the prominent eigenmodes or resonant frequencies of a linear time-invariant (LTI)

system, a technique known as modal reduction can lower the system’s order. The main

principle of modal reduction is to find the most important system modes and keep them

while eliminating the less important ones. This results in a reduced-order model that

captures the fundamental dynamics of the original system [17, 18].

As previously mentioned, systems and control theory is the foundation of model order

reduction. In this field, techniques that are very different from Krylov-based techniques

have been created. The fundamental concept is to eventually end the dynamical system

studies. To demonstrate its operation, let’s revisit the linear dynamic system (1.6.1) and

(1.6.2), Applying a state space transformation

T x̃ = T

has no effect on the system’s input-output behavior. Based on the A matrix eigenvalue

decomposition, the following transformation might be selected:

TA = ΛT
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T −1, a diagonal matrix obtained from eigenvalues of A matrix when T is non-singular,

can be ordered so that the eigenvalues on the diagonal appear in decreasing order of

magnitude. Next, by limiting the matrix T to the dominating eigenvalues, the system

can be terminated. We call this procedure "Modal Truncation."

2.2 MOR for Power Systems

Model Order Reduction (MOR) has made a significant impact in power systems by

addressing the computational challenges associated with the associated large-scale and

complex models. The scale and complexity of these networks will probably keep rising

due to the growing tendency of enabling more connections to neighboring systems,

which will pose difficulties for their development, management, and control. Therefore,

reduced-order power system models are used for a variety of applications and research,

especially for fast and inexpensive stability analysis [19]. In general, the primary goal of

model reduction for large power networks—also referred to as Power System Dynamic

Equivalency [20] is to produce a system equivalent model that can replicate the aggre-

gated steady-state [21] and dynamic characteristics of the full-order network [22] while

also working with the computation tools that are currently available for power system

analysis [23, 24].

Simplified network models are frequently used in reliability analyses of distribution

networks [25, 26]. This practice is becoming even more important as power systems

get more complex [27], particularly with the incorporation of renewable energy sources

as demand response actuators, electric cars, and photovoltaic solar power and energy

storage (ES). In an increasingly complex environment, simplified benchmark models will

be necessary to accurately assess network reliability and determine the optimal course of

action for future investments in a reliable, secure, and flexible power grid that meets the

necessary dependability criteria. [28].

For power systems, a model reduction method based on Krylov subspaces has been

explained in [1]. The reduced model, which is seen as an input-output system during the

reduction process, approximates the behavior of the exterior area of the power system

by matching the leading coefficients of a power series expansion of the transfer function
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around pre-specified frequencies. The method was demonstrated using time domain

simulations, and it was found that the trajectories of the reduced model match those of

the original model for sufficiently large Krylov subspaces. According to their effect on

the input-output behavior of the system, this method thus seems to successfully mimic

the dominating modes of the original system without necessitating the possibly expensive

eigenvalue decomposition. The method was tested using a 50-machine power system

that functioned as the external region [29].

Figure 2.1: System configuration of the study and the external areas. [1]

Krylov subspace methods appear to be highly promising for reducing the power system

model. Subsequent investigations would concentrate on addressing the issue of unstable

reduced models and explicitly evaluating these techniques on big systems.

Network reduction in the context of reliability is typically achieved by methodically

replacing some of the interconnected components of the chosen reliability model (e.g.,

series and parallel configurations in reliability block diagrams) with fewer equivalent

components that share the same reliability properties. This simplifies the system

representation. The following are the main drawbacks of this network reduction technique:

The impact of critical or unreliable areas and components on the system reliability metrics

becomes increasingly difficult to distinguish; a) it can only be applied to networks with

very basic structure [30]; b) it cannot be used to calculate customer-based reliability

indices, such as customer average interruption duration and frequency indices (CAIDI

and CAIFI) [31]. Despite these limitations, this approach is practical, especially for

straightforward investigations where further analytical modifications are not needed.

Because of these drawbacks, substitute strategies have been created, such as the decom-

position technique, which depends on conditioning a complex system on the condition

of a crucial power component (PC) [30]. However, because the model soon becomes

unmanageable as the number of critical PCs increases, this strategy is not appropriate

for big systems. There are other analytic methods that rely on evaluating minimum
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pathways or the minimal cut set technique [30], but their primary flaw is that when the

number of paths and cut sets increases for big systems, a combinatorial explosion occurs.

MOR for LTI systems with non-zero initial conditions is a complex but essential process,

especially in fields like electrical engineering where transmission lines are common.

Conventional MOR techniques primarily focus on the system’s transfer function, often

overlooking initial conditions. For systems with non-zero initial conditions, it’s crucial

to incorporate these into the reduced model. These conditions significantly impact the

system’s response, especially in transient analysis [32]. In power systems, The reduced

model must be thoroughly tested to ensure it accurately represents the original system

under various conditions, including non-zero initial states. According to [Model reduction

for systems with inhomogeneous initial conditions], the authors’ approach is novel in

that it decomposes the system’s output into two separate mappings: one from input to

output (Su→y) and another from initial condition to output (Sx→y). This allows for the

independent reduction of each mapping, offering greater control over the accuracy and

complexity of the reduced models [33].
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Chapter 3

Model Order Reduction for Power

Transmission Lines

In the electrical power systems, transmission line models play a crucial role. Since

simulations are necessary for the design and control of modern power systems, modeling

such a system is still difficult. In order to analyze the numerical approach for a benchmark

collection of some needful real-world examples, which can be utilized to evaluate and

compare mathematical approaches for model reduction. The technique aims to preserve

the main modes of the system while truncating the less significant ones. The stability is

ensured by the reduction as the dominant modes of the large-scale stable system were

retained in the development of the lower order model. The main drawback of many

MOR techniques is that the reduced order model’s steady state values do not match

those of the higher order systems. This makes it possible for a new assessment of the

error system offered that the Observability Gramian of the original system, an H∞ and

H2 error bound can be calculated with minimal numerical effort for any minimized model

attributable to the reduced order model (ROM) of a large-scale dynamical system is

essential to effortlessness the study of the system utilizing approximation Algorithms.

3.1 Transmission Lines: An Overview

Electrical systems use transmission lines because they are essential for transferring

electrical energy from one place to another. They have a unique function in the long-

distance delivery of high-voltage power from power plants to distribution centres and,
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eventually, to final consumers [34]. Conductors (usually made of copper or aluminium),

insulators, supporting structures, and grounding systems make up the majority of

transmission lines. Although some more recent lines use direct current (DC), they

are made to transport power using alternating current (AC). Some crucial elements

are Resistance(R): The conductor material’s natural resistance to current flow [35],

Inductance (L): This is the result of a magnetic field created by current flow, which

induces a voltage in opposition to the current change [36], Capacitance (C): The ability

of a line to retain electrical charge, which is influenced by the conductors’ proximity to

one another and the insulating material [37] and Conductance (G): This represents the

leakage current via the insulator [38].

Equations for transmission lines explain how voltage and current behave along the

line. They provide a thorough mathematical foundation for examining transmission

line characteristics and are derived from Maxwell’s equations [39]. The Telegrapher’s

Equations are the basic formulas used in transmission line analysis. According to these

formulas, the line is represented as an endless chain of segments with varying differential

lengths, each having a unique conductance, capacitance, inductance, and resistance [40].

3.2 Theoretical Background

Understanding the fundamentals of electricity is required in order to be able to model

telegraph equations. Ohm’s law describes the relationship between voltage, current, and

resistance in an electrical circuit. Ohm’s law states that when one volt is applied to a

one-ohm resistance, it will conduct one ampere (A) of current.

V = I.R

where R is resistance measured in ohms (W), I is current measured in amps, and V is

voltage measured in volts. The current entering a junction in a circuit or node must be

equal to the current leaving the junction or node, according to Kirchhoff’s first law,

Itotal = I1 + I2 + I3

Kirchhoff’s second law states that for every closed loop path in a circuit, the sum of the

voltage gains and drops equals zero. This implies that there can be no overall voltage

change because the circuit cannot gain or lose any energy. The formula for voltage in a
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closed circuit is given as,

Vin = V1 + V2 + V3

Since an infinitely small piece of telegraph wire has a source and a load, as indicated by

Kirchhoff’s and Ohm’s laws, modeling it as an electric circuit unveils a challenge. Mod-

elling an indefinitely small bit of telegraph wire is adequate to replicate a transmission

line across a distance since the features of a long transmission line and a small piece of

telegraph wire are the same [41].

Figure 3.1: Equivalent Circuit of Transmission Lines

Extending the circuit to ’n’ number of lumped parameters and applying Kirchhoff’s

current and voltage law on 3.1 yields current and voltage equations on each node and

mesh respectively. The generalized equations at each node and loop are given as:

din

dt
= 1

Ln
vn − Rn

Ln
in − 1

Ln
Vn+1 (3.2.1)

dvk

dt
= 1

Ck−1
ik−1 − Gk−1

Ck−1
vk − 1

Ck−1
ik (3.2.2)

3.3 State-Space Representation

The minimum number of variables, or "state variables," that adequately describe a

dynamic system and its reaction to a certain set of inputs is known as the system’s

"state". In particular, a state-determined system model has the following property: the

state of the system and its output at t > t0 can be predicted using a basic understanding

of the variables at initial time ’t0’ and the system inputs for time t ≥ t0, as well as
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a fundamental set of variables used to mathematically describe the system, i.e. xi(t),

i = 1, ..., n,.

Figure 3.2: System Inputs and Outputs

Two inputs, u1(t) and u2(t), and four output variables, y1(t), ..., y4(t), make up the

system depicted in (3.2). In the event that the system is state-determined, all fu-

ture behaviour of the system may be predicted from knowledge of its state variables

(x1(t0), x2(t0), ..., xn(t0)) at some starting time t0 and the inputs u1(t) and u2(t) for

t ≥ t0. Any output variable yi(t) of the system can be computed using the state variables,

which act as an internal system description that accurately represents the state of the

system at any given time ’t’ [42].

3.4 State Equation Based Modeling Procedure

The complete system model of a linear time-invariant system is composed of (i) a set of

n state equations defined in terms of matrices A and B, and (ii) a set of output equations

expressed in terms of matrices C and D that relate the inputs and state variables to any

pertinent output variables. The tasks involved in modelling the system include creating

the matrix elements and putting the system model in the state space form.

ẋ = Ax + Bu (3.4.1)

y = Cx + Du (3.4.2)

The matrices A and B, which are characteristics of the system, are defined by the

components and structure of the system. The specific selection of output variables

determines the output equation matrices C and D. Using matrix algebra and the Laplace

transform, classical representations of higher-order systems may be generated in a similar

manner. The standard form linear state and output equations are arranged, and (3.4.1)
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and (3.4.2) are subjected to the Laplace transformation.

sX(s) = AX(s) + BU(s) (3.4.3)

Y (s) = CX(s) + DU(s) (3.4.4)

and the state equations may be rewritten:

sx(s) − Ax(s) = [sI − A]x(s) = Bu(s). (3.4.5)

where s is on the leading diagonal and zeros are everywhere else in an n × n matrix

created by the phrase sI. The matrix [sI - A] is a square n × n matrix whose components

are directly related to the A matrix throughout linear system theory.

[sI − A] =



(s − a11) −a12 · · · −a1n

−a21 (s − a22) · · · −a2n

...
... . . . ...

−an1 −an2 · · · (s − ann)


The state equations consist of n simultaneous operational expressions and are expressed

in the manner of (3.4.5). Other linear operational equations may be solved directly using

standard techniques for solving linear algebraic equations, including as substitution,

elimination, and matrix inverse, as well as Gaussian elimination. The Laplace transform

of the state equations for a linear time-invariant system yields expressions involving

the state variables, inputs, and initial conditions. Substituting this expression into the

output equation and assuming zero initial conditions, the output can be represented in

operational form with a transfer function matrix [42]. The input-output relationship of

the system in the Laplace domain is captured by the transfer function. The dynamic

behaviour of the system in the time domain is concisely captured by a single differential

equation that is generated using the transfer function between the output and the system

input.

3.5 State Space Representation of Transmission Lines

Modern power systems require transmission line models for simulations in order to be

designed and controlled. The outdated electrical systems of today need to be replaced

with a better energy grid. These models have very massive orders, and it is known
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that their simulations need a lot of computing power. To calculate surge responses and

Corona effects, transmission line transients induced by faults and switching activities

must be simulated [43]. One common classification for transmission overhead line models

used in transient simulations is lumped and distributed parameters models.

When a lumped parameters line model is selected, state space techniques are frequently

employed to analyse the currents and voltages along a line. This eliminates the require-

ment for explicit inverse transforms and enables the model to be easily created and run

simulations in the time domain [44]. The lumped parameters approach has the same

features for simulating electromagnetic transients on lines with nonlinear components,

such as fault arcs and corona effects, or when a detailed voltage and current profile is

needed.

Figure 3.3: Transmission line model based on N lumped-parameter π networks.

In contrast to the distributed parameter line model, the cascaded connection of nominal

circuits produces a linear state space model with a finite number of states. Each

nominal network contains a series resistance, an inductance, a shunt conductance, and a

capacitance, as illustrated in Figure 3.3.

Figure 3.4: π section networks.

State variables in this model are capacitor voltages and inductor currents. Additionally,

the state vector needs to have the source inductance current added to it for a typical

arrangement such as the one seen in Figure 3.3 (a similar inductance might be applied

to the load, which is excluded for simplicity). For the cascaded nominal circuits seen in

Figure 3.3, the resultant state equations may be expressed as [45],
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ẋ = Alx + Blvs (3.5.1)

where xT = [is v1 i1 v2 i2 v3 ... iN vr] is the state vector and Al is a tridiag-

onal matrix whose eigenvalues can be calculated in a straightforward manner. Consider

a linear-time invariant system,

ẋ = Ax + Bu ; x(0) = x0, (3.5.2)

where x∈ Rn is the state vector, u∈ Rm is the excitation vector, and A ∈ Rn×n , B

∈ Rn×m are known coefficient matrices.

BT
l = [ 1

Ls
0 ... 0] (3.5.3)

A =
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1
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The test case, shown in Figure 3.3, refers to a 220-kV system comprising a resistive load

Rr = 96Ω, source resistance with Rs = 2Ω, Ls = 0.06H, and a 100-km transmission

line with R = 0.05Ω/Km, L = 10−3H/Km, C = 1219−9F/Km. The transmission line’s

conductivity is neglected. Now, we have all the information required for state-space

analysis of transmission lines except initial conditions. Generally, we take initial condition

zero i.e. x0 = 0 but for this specific case initial conditions are specified i.e.

x0 = [73902.6 − 31.6 43680 − 58.2 15574 − 112.3 − 10778]

3.6 MOR with zero Initial Conditions

We briefly navigate the conventional methods of Balanced Truncation (BT) and Iterative

Rational Krylov Algorithm (IRKA), both of which are crucial to the proposed model
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reduction framework. Numerous methods have already been developed to produce

high-fidelity reduced models with zero initial conditions (x0 = 0). These methods include

data-driven methods like the Loewner framework [46] and Vector Fitting [47], Lyapunov-

based methods like Balanced Truncation (BT) and optimal Hankel Norm Approximation

[48], and interpolatory methods like the Iterative Rational Krylov Algorithm (IRKA)

[49] and spectral zero interpolation [50, 51]. For instance, [48] provides a comprehensive

analysis of the relative advantages and disadvantages of some of these techniques. In

chapter 2, a few reduction techniques are also covered.

3.7 MOR with Inhomogeneous Initial Conditions

When the initial condition is non-zero, the situation changes. One natural method

(see, for example, to [52]) takes into account a translated state vector, x̂(t) = x(t) - x0.

Rewriting (2.1.6) in terms of x̂(t) permits the use of reduction techniques intended for

null initial conditions since it now has a null initial condition, x(0) = 0. The reduced

state trajectory is translated back to obtain an approximate version of the original state

trajectory resulting from the nontrivial initial conditions (see, for example, [53]). This

method might work well if there is only one initial condition that is known a priori. Note

that an asymptotic state bias has been created from the temporary (but potentially

large) effect of a nontrivial initial condition. This bias is likely to remain in the final

reduced model even after the final reverse translation [54].Thus, this approach may

overemphasise the significance of the initial conditions, perhaps resulting in imprecise

response approximations from the associated reduced models.

If different initial conditions are used than those used in the initial reduction, it is not

recommended to expect that reduced models produced in this way would yield accurate

approximations. A new method was proposed in [55] to address this issue. It builds a

reduced model that yields a good approximation to the true output, y(t), for a range of

input functions, u(t), as well as for a range of initial conditions, x0. This means that

the model reduction process is largely independent of the specification of specific initial

conditions. This method assumes that the initial conditions lie in a known n0-dimensional

subspace, x0, which is covered by the columns of a matrix X0 ∈ Rn×n0 , rather than that

the initial circumstances are known a priori. The method of [55] proceeds by appending

the basis X0 to the input-to-state matrix, B and then performs balanced truncation using
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the augmented input-to-state matrix, [B X0].

3.8 Proposed Methodology

This section presents a novel and adaptable model reduction framework for systems with

nonzero initial conditions. It permits the reduction of the initial condition to output map

as well as the reduction of input to output map separately. The idea is to incorporate the

initial condition information into the model reduction process with a slightly different

approach. The method is based on the well-known observation that the output y(t) of

the linear dynamical system (2.1.6) is a superposition of two outputs: one associated

with u(t) = 0 and x(0) = x0, and the other corresponding to the response of the system

to u(t) with x(0) = 0. As a result, we have two separate model reduction processes:

one on the initial condition-to-output map (Mx0→y) with zero input and other on the

input-to-output map (Mu→y) with zero initial condition.

3.8.1 BT based reduction for Mu→y and Mx0→y

For the system (1.6.2), the output y(t) can be expressed formally as follows using the

Duhamel formula:

y(t) = CeAtx0︸ ︷︷ ︸
yx0 (t)

+
∫ t

0
CeA(t−τ)Bu(τ) dτ︸ ︷︷ ︸

yu(t)

(3.8.1)

where eA(τ) is the matrix exponential, yu(t) is the system’s response to the input u(t)

with zero initial conditions (x0 = 0), and yx0(t) is the system’s response to the initial

condition x0 without any input (u = 0). Consequently, the output is the superposition

of these two signals because the underlying dynamics are linear. In order to fully infer

the new technique, we express the initial condition of the system as a linear combination

of a matrix X0 as

x0 = X0z0 (3.8.2)

in which z0 ∈ Rn0 and X0 ∈ Rn×n0 . This means that the response yx0(t) may be

expressed as,

yx0(t) = CeAtX0z0. (3.8.3)

This demonstrates that yx0(t) is the response of a dynamical system with zero initial

condition and an input of v = z0δ(t), where δ(t) stands for the Dirac delta function.
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That is
ẋv(t) = Axv(t) + X0v(t), xv(0) = 0,

yx0(t) = Cxv(t),
(3.8.4)

Thus we can use the problem of model order reduction on the above dynamical system

with zero initial condition to get approximation of yx0(t). The reduced model can be

obtained by using balanced truncation as discussed in Subsection 2.1.1 to obtain:

ẋrv(t) = Arvxrv(t) + Xrv0v(t), xrv(0) = 0,

yrx0(t) = Crvxrv(t),
(3.8.5)

Similarly we can write another dynamical system with zero initial condition and input

u(t):
ẋu(t) = Axu(t) + Bu(t), xu(0) = 0,

yu(t) = Cxu(t),
(3.8.6)

The above system can also be reduced separately from states n to ru using the methodolgy

discussed in Subsection 2.1.1, and the resulting reduced order model becomes:

ẋru(t) = Aruxru(t) + Bruu(t), xru(0) = 0,

yru(t) = Cruxru(t)
(3.8.7)

Thus we used balanced truncation two times in order to reduce the original model with

non-zero initial condition and thus the response y(t) can be approximated by using

y(t) ≈ yr(t) = yrx0 + yru(t)

This method is called BT-BT because balanced truncation is used two times. It should

be noted that the two components can be computed simultaneously in an offline phase

prior to applying the simplified model to do simulation or perform controller design and

testing. The complete framework of BT-BT is given in Algorithm 1 as a pseudo-code.

3.8.2 Error bounds for the BT-BT method

It is observed in [33] that the error in output functions ∥ yx0(t) − yrx0(t) ∥ in reduction

of Mx0→y to Mrx0→y is directly dependent on the truncated Hankel singular values of

the system. The error in output functions ∥ yu(t) − yru(t) ∥ is straight forward and

well-known as it is the standard input-output linear system with zero initial condition.

Thus the upper bound in this case is known from Balanced truncation method and is
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Algorithm 1 BT-BT model reduction for systems with nonzero initial conditions
Offline Phase: Compute the two balanced and truncated models

Input: The system matrices A, B, C, and the initial condition basis X0.

Output: Reduced models for Mu→y and Mx0→y.

1: Mx0→y to Mrx0→y : Use BT on (3.8.4) to obtain the reduced model in (3.8.5)

2: Mu→y to Mru→y : Use BT on (3.8.6) to obtain the reduced model in (3.8.7)

Online Phase: Simulate using the reduced models.

Input: The forcing term u(t) and the initial condition x0.

Output: The estimated outputs of the two reduced models: yr(t)

1: Identify z0 such that X0z0 = x0.

2: Acquire output yru(t) by simulating Mru→y using input u(t) and zero initial condition.

3: Acquire output yrx0 by simulating Mrx0→y with zero input and the initial state z0.

4: The approximate final output is as follows: yr(t) = yru(t) + yrx0(t).

related to the truncated Hankel singular values of Mu→y. Thus the complete error in

output function ∥ y(t) − yr(t) ∥ can be linked to the error bounds of the individual

components and therefore to the corresponding truncated Hankel singular values.

3.8.3 IRKA-based MOR

It is easy to see that Algorithm 1 can be modified to use IRKA instead of BT for reducing

the model Mx0→y and Mu→y. We can also use a combination of IRKA and BT, one for

Mx0→y and the other for Mu→y or vice versa. The error bound with IRKA is not known

in the literature as in case of BT but when IRKA converges, it ensure the necessary

conditions for optimality in terms of H2 norm. Thus approximating Mx0→y and Mu→y

by model reduction methods that seek to minimise the H2 error norm will be beneficial.

Note that the framework of IRKA based MOR is exactly similar to the one discussed in

Algorithm 1. The only difference is to use IRKA as discussed in Subsection 2.1.3 at Step

1 and 2 instead of BT in the Offline Phase.

This approach is called IRKA-IRKA method as we are using IRKA two times now. As

discussed in [49, 56], it is expected that IRKA will result in better approximations of the

model especially in terms of H2 norm than BT. In case where IRKA and BT are used in

combinations, we will call them IRKA-BT or BT-IRKA, depending on the sequence of

the implementation.

27



Chapter 3: Model Order Reduction for Power Transmission Lines

3.9 NUST Power Network Integration with ArcGIS

The modeling and simulation of power network gives useful information about the power

values on the transmission line at different nodes over a period of time, starting from an

initial state of the system. The model order reduction framework discussed above can

help in extending the scalability of the modeling and simulation of power networks. In

the latter phase of this study, we sought to integrate the modeling and simulation results

of power network of NUST University into ArcGIS, a geographic information system, by

substituting some power values at different points in the network through our modeling

and simulation framework. This integration aimed to assess the practical applicability of

the Model Order Reduction (MOR) techniques applied earlier in a simulated environment.

The process involved mapping the power network onto the GIS platform, allowing for

spatial visualization and analysis. As a starting point, random values were assigned

to the network that allowed us to provide a simulated environment in the GIS setup.

The lack of real data and resources for real-time communication with the central system

presented a limitation.

Figure 3.5: Nust Power Network in ArcGIS
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The integration process allowed us to observe how the power network behaved within

the GIS framework, providing insights into potential spatial correlations and fault

identification. However, the absence of authentic, real-time data hindered the full

realization of the system’s operational capabilities. For optimal functionality, a seamless

connection to real-time data sources and resources would be necessary to communicate live

values with the central system. This limitation underscores the practical challenges faced

in implementing these advanced modeling and GIS integration techniques in real-world

scenarios, emphasizing the need for access to authentic data and adequate resources

for comprehensive system operation and analysis. As we move forward, addressing

these limitations will be pivotal in bridging the gap between simulation and practical

application in power system management.
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Results and Discussion

This chapter presents the results of the approach used for model order reduction on a

system of power networks. As discussed earlier, the focusing is to use an equivalent model

of transmission lines derived from Kirchhoff’s laws in terms of Ordinary Differential

Equations (ODEs) and algebraic equations and subsequently transformed them into a

state space model. The original model has been simulated without the application of

model order reduction in order to compare the performance of the ROM techniques

in mitigating computational costs. The accuracy of the reduced order model in time

domain and the associated error are also observed.

4.1 Transmission Lines Model

In the vibrant urban landscape powered by a critical 100 km transmission line, this

study undertakes a transformative exploration guided by the application of Model Order

Reduction (MOR) techniques. The lumped parameter model considers a voltage source

of 220 kV, source resistance (Rs) of 0.07 W/km, inductor (Ls) of 10−3 H/km, capacitance

(C) of 1219 * 10−9 F/km, and a terminating load resistance (Rr) of 96 W. The protagonist,

an adept electrical engineer, ventures into the heart of the lumped transmission line’s

intricacies, navigating the distributed resistance, inductance, and capacitance to construct

a robust state-space model and implemented few techniques of model order reduction.

This reduced-order model opens the door to previously unheard-of efficiency benefits

in power system analysis while also illuminating the complex behavior under changing

conditions. Considering the state space model in (3.5.1) of a π-model transmission line
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shown in figure [3.3],

A =



0 −5 · 106

30 −70 −30

2.5 · 106 0 −2.5 · 106

30 −70 −30

2.5 · 106 0 −2.5 · 106

30 −70 −30

5 · 106 −5.2 · 104



X0(t) = [73902.6 − 31.6 43680 − 58.2 15574 − 112.3 − 10778]

BT = [ 1
Ls

0 ... 0],

Where A is system matrix of 100Km transmission line network, u(t) is the 220-KV

voltage source/excitation vector, X0(t) is our state vector and C is our output matrix.

All the parameters have been defined for state space model of the transmission line. In

the next section, we will apply different techniques of model order reduction on it to

analyse how it performs for different methods.

4.2 Implementation of MOR Techniques

Before delving into the specifics of each model order reduction (MOR) technique, a

holistic overview of their application to the lumped parameter model of the 100 km

transmission line reveals an intricate exploration into optimizing computational efficiency

without compromising the precision of the system’s dynamics. The collective goal across

all techniques — Iterative Krylov Subspace Algorithm (IRKA), Balanced Truncation

(BT), and their iterative combinations — is to distill the complexities of the original

model while ensuring that the reduced representation faithfully captures the essential

behavior of the transmission line. Each technique introduces its unique methodology,

contributing to a comprehensive understanding of how MOR strategies impact error

convergence and model fidelity. The forthcoming discussions will scrutinize the specific

outcomes of applying IRKA, BT, BT-BT, and IRKA-IRKA techniques, shedding light on

their individual strengths, convergence characteristics, and their collective implications

on enhancing the computational efficiency of the lumped parameter transmission line

model.
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4.2.1 Balanced Truncation

The Balanced Truncation (BT) technique applied to our transmission line model offers

a unique perspective on system reduction. The order of system matrix ’A’ of original

model of transmission line shown in figure (3.3) is 7 × 7. We want to reduce it to r=2,

keeping all the dynamics of the system same.
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Figure 4.1: Original and Reduced Model of TL in case of BT

Analysing the graph shown in figure (4.1a), it can be clearly noticed that BT does not

converge to the original model and its error ∥ yr − y ∥ can be viewed here in figure (4.1b).

4.2.2 Iterative Rational Krylov Algorithm (IRKA)

Model order reduction for the 100 km transmission line, the exploration extended from

Balanced Truncation (BT) to the Iterative Rational Krylov Algorithm (IRKA) with a

targeted rank (r=2). The original system, encapsulated in a 7 × 7 matrix, set the stage
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for examination of the IRKA method. The first graph (4.2a) in this section visually

encapsulates the essence of the reduction, displaying the side-by-side comparison of the

original and the reduced models. A striking visual alignment between the two underscores

the efficiency of IRKA in distilling the complexity of the transmission line while retaining

its intrinsic dynamics.
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Figure 4.2: Original and Reduced Model of TL in case of IRKA

The second graph (4.2b), dedicated to error analysis ∥ yr − y ∥, meticulously charts the

evolution of errors throughout the reduction process. This graph serves as a quantitative

lens into the convergence behavior, revealing how the error systematically diminishes

with each iteration, affirming the precision of the reduced model. The combination

of these graphical representations affords a comprehensive understanding of the IRKA

technique’s impact on the 100 km transmission line. It can be noted that error has been

reduced and convergence is better in case of IRKA but the error is still there.

33



Chapter 4: Results and Discussion

4.2.3 BT-BT method of MOR

In order to approximate the output y(t) for transmission line network with x0 = X0z0,

we implement the BT-BT method on it. Again the system matrix for transmission line

model shown in figue [3.3] is 7 × 7 and the target reduced size for it is (r=2).
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Figure 4.3: Original and Reduced Model of TL in case of BT-BT

Implementing the BT-BT method involves a balance between achieving significant model

order reduction and maintaining the fidelity of the system’s response, particularly in

the presence of non-zero initial conditions. Throughout the process, the BT-BT method

accounts for the impact of non-zero initial conditions, ensuring that the reduced-order

models capture the system’s response to these conditions accurately. The error in case

of BT-BT is showm in (4.3b).
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4.2.4 IRKA-IRKA

The implementation of the IRKA-IRKA (Iterative Rational Krylov Algorithm) model

order reduction technique on our transmission line network model, particularly con-

sidering non-zero initial conditions, has yielded commendable results. The original

model, characterized by a higher-order system, underwent an iterative refinement process

through IRKA-IRKA, resulting in a doubly-reduced model that remarkably outperforms

other techniques. Figure (4.4a) in our results depicts the convergence behavior of both

the original and doubly-reduced models. Visually comparing the responses of the two

models highlights the striking alignment, affirming the capability of the IRKA-IRKA

technique in faithfully preserving the essential dynamics of the transmission line network.

This graphical representation underscores the successful reduction from the higher-order

system to a more computationally efficient form while maintaining accuracy, particularly

crucial in scenarios with non-zero initial conditions.
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Figure 4.4: Original and Reduced Model of TL in case of IRKA-IRKA

35



Chapter 4: Results and Discussion

The second graph (4.4b) focuses on the error ∥ yr −y ∥ evolution throughout the iterative

application of IRKA-IRKA. This error plot showcases an impressive reduction in error,

emphasizing the technique’s efficacy in achieving significant model order reduction. The

diminishing error signifies that the doubly-reduced model closely approximates the

behavior of the original system, demonstrating the power of the Iterative Rational Krylov

Algorithm in capturing essential dynamics while minimizing computational complexity.

The evaluation of Model Order Reduction (MOR) techniques, namely BT, IRKA, BT-BT,

and IRKA-IRKA, on our transmission line model with a system matrix of 7 × 7 reduced

to (r=2), has yielded compelling insights. As depicted in the (4.5a), which showcases

the convergence and response of the original and reduced models, it is evident that both

BT-BT and IRKA-IRKA techniques exhibit remarkable performance. The responses of

the doubly-reduced models closely align with the original, affirming their effectiveness in

capturing the essential dynamics of the transmission line network.
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In the accompanying error plot (4.5b), it provides a quantitative perspective on the

reduction achieved by each technique. Here, the substantial decrease in error ∥ yr −y ∥ for

BT-BT and IRKA-IRKA becomes apparent, underscoring their proficiency in achieving

significant model order reduction. This observation is particularly noteworthy in the

presence of non-zero initial conditions, emphasizing the resilience of these techniques in

accurately representing the system’s behavior. The superiority of BT-BT and IRKA-

IRKA in both the convergence and error aspects suggests their heightened efficacy for our

specific transmission line model. This observation opens avenues for further exploration

and underscores the potential of these techniques to streamline computational complexity

while maintaining precision in scenarios involving non-zero initial conditions.
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Conclusion and Future Work

In this chapter, we presented the conclusion and future direction of our work by extending

Model Order Reduction in power networks for its enhanced efficiency and coping with

new world challenges. With growing technology, robustness in power networks is required

for efficient flow of energy. In future, power distribution network of a whole city can

be modeled and then integrated with ArcGIS. It will increase the efficiency of the

network by immediate detection of faults, reduce line losses and quality management of

electricity where load-shedding or power blackouts are major areas of concern. Through

proper communication setup at different nodes of transmission or distribution network of

transmission lines, real-time data can be optimized at one central system and monitored

for further analysis accordingly. MOR can also be further applied to other non-linear

parts of the power networks like generating side of it to increase its efficiency as well and

especially dealing with systems having non-zero initial conditions.

5.1 Conclusion

This study presents an interesting development in the field of model order reduction

with a specific application on the analysis of a π-model of power transmission lines.

In particular, it is shown that the performance of standard model order reduction

techniques may not be accurate for systems with nonzero initial condition. In such

cases, it is shown that splitting the system into two parts and utilizing model order

reduction on each of the subpart is more useful and accurate. The integrated response

of the two reduced subsystems match very well with the actual system as compared
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to direct reduced system response. In terms of the computational cost, the simulation

of the reduced system is much faster than the original large scale system. The study

analyzes the intricate dynamics of the brief transmission line segment, offering insightful

information about how the network behaves in various scenarios. The application of

model order reduction methods, including IRKA, BT, BT-BT, and IRKA-IRKA, provides

an extensive understanding of applications and constraints associated to power system

modeling.

5.2 Future Work

Moving forward, the research agenda broadens to encompass various dimensions, ensuring

a holistic approach that aligns with the complexities of real-world power networks.

In terms of scalability and diversity, future research endeavors should delve into the

scalability of the developed model order reduction framework to handle large scale

nonlinear power networks. The challenge lies in ensuring that model order reduction

techniques remain effective and accurate as they transition from localized linear segments

to entire nonlinear power networks.

An essential aspect is to explore the robustness and resilience of the developed models

under different scenarios. This includes analyzing the performance of reduced-order

models under varying network conditions, ensuring adaptability to dynamic changes

in the power grid. To address the multi-faceted nature of power systems, data science,

machine learning, and data assimilation can be used to update physics-based models

resulting in high-fidelity models.
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