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Abstract

In this dissertation a brief review of the information loss paradox has been discussed. Information
loss was an old problem in physics which puzzled physicists for decades. This paradox was first
raised by Hawking and then finally solved by Susskind using quantum mechanics. It may be
possible to solve the problem using general relativity only. For this purpose I have reviewed the
work of Qadir and Wheeler, i.e, “the suture model”. Foliation of this model by hypersurfaces of
constant mean extrinsic curvature showed that the distance between denser and rare Friedmann
regions increased to infinity. The asymptotic behaviour of length and volume has been discussed
which showed that as the length increases to infinity the volume shrinks to zero. The asymptotic
behaviour of a Schwarzschild black hole has been discussed separately without referring to the
suture model, which showed that the length increases to infinity more rapidly than the suture model.
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Chapter1
Introduction

General relativity (GR) is Einstein’s theory of gravity in which the idea of the Newtonian gravi-
tational force was replaced by the curvature of the spacetime. Newton believed that every body
in the Universe attracts every other body with some force, F, which is directly proportional to the
product of their masses and inversely proportional to the square of the distance from their centers.
It can be defined as

F = −Gm1m2

r3
r, (1.1)

where F is the force, G is the gravitational constant, m1 is the first mass andm2 is the second mass,
r is the position vector of the center of one body relative to the other and r is the distance between
their centers.

Einstein presented his theory in 1915, over a hundred years ago. Before the idea of relativity
theory the space and time was considered to be the two separate entities. The concept about the
time was as an absolute, i.e, time is the same for every observer. Einstein said it is not absolute, but
relative, varying for different observers. Further he explained that space and time are not separate
entities and he merged the space and time into a single entity known as spacetime. The spacetime
is a 4-dimensional object in which there are three space and one time directions. Time only flows in
forward direction, which means that one cannot go backward in time. The theory mainly describes
the motion of the macroscopic objects with more accuracy than the Newtonian theory. A massive
body bends the spacetime around it and consequently the spacetime becomes curved there, i.e, it
produces curvature in the spacetime. So the bodies move on the curved spacetime and their motion
is described by its curvature. GR is described by the geometry of spacetime. Some predictions
of the theory were then tested experimentally, which verified that it works perfectly well. One of
the predictions of GR was that there are regions in the spacetime where due to the gravitational
collapse of a massive body leads to an object from which even light can not escape. These regions
of spacetime are commonly known as black holes. This name was coined by John Wheeler [1].
Since the physics of a black hole is described by GR which is the theory of gravity. The language
of GR is the language of tensors. In order to understand the theory itself and the Einstein Field
Equations one must have a knowledge of tensors.

5



In this chapter, I will discuss some basic definitions of GR and then I will discuss Friedmann
universe. I will finish chapter 1 with basic terminologies of thermodynamics. In chapter 2, I
will briefly review the background of information loss paradox with Hawking’s argument of the
information loss paradox and then resolution to the paradox in the end. In chapter 3, a detail
procedure of the foliation will be discussed. After that in the same chapter mathematical procedure
for the foliating hypersurfaces will be discussed. I will conclude the thesis in chapter 4 with a
brief review of asymptotic behaviour of the length and the volume of the “suture model” with
hypersurfaces of constant mean extrinsic curvature and then asymptotic behaviour of the length of
Schwarzschild singularity with hypersurfaces of constant mean extrinsic curvature.

1.1 Curvature Tensors and Scalars

On a flat space, if a vector is transported parallely to itself on some closed curve then on returning to
the starting point it will match with the original vector. But in a curved space, if the same procedure
is repeated then we get two different values at the starting point of the parallely transported vector.
This difference suggests that the space has some curvature in it. Riemann generalized Gauss’s
invariant intrinsic curvature to higher dimensional spaces by carrying a basis vector along two
different directions in opposite order and taking the difference of the two results [2].

Aa;c;d − Aa;d;c = (Aa,c + ΓabcA
b);d − (Aa,c + ΓadbA

b);c, (1.2)

= (Γabc,d − Γadb,c)A
b + (ΓacfΓ

f
db − ΓadfΓ

f
cb)A

b,

= 2[Γab[c,d] + Γaf [cΓ
f
d]b]A

b,

Aa;c;d − Aa;d;c := Ra
bcdA

b. (1.3)

Since the left hand side is a tensor, so right hand must also be a tensor,
where

Ra
bcd = 2[Γab[c,d] + Γaf [cΓ

f
d]b], (1.4)

or

Ra
bcd = Γabc,d − Γadb,c + ΓacfΓ

f
db − ΓadfΓ

f
cb, (1.5)

is called the Riemann-curvature (or Riemann Christoffel) tensor. The Christoffel symbols appeared
in the above expression are given by the following formula

Γabc =
1

2
gad
(
gbd,c + gcd,b − gbc,d

)
. (1.6)

Thus curvature tensor measures the curvature of the space. A manifold is flat if Ra
bcd = 0 or it is

locally flat in some region if curvature tensor is zero there.
Ra

bcd can also be written as

Rabcd = gaeR
e
bcd. (1.7)
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It is skew-symmetric in the first two indices, i.e.

Rabcd = −Rbacd. (1.8)

It is also skew-symmetric in the last two indices, i.e.

Rabcd = −Rabdc. (1.9)

If two pairs of indices are interchanged then it is symmetric, i.e.

Rabcd = Rcdab. (1.10)

It satisfies the following identity

Rabcd +Racdb +Radcb = 0, (1.11)

which is also known as the first Bianchi identity. The second Bianchi identity is given by the
following form

Ra
bcd;e +Ra

bec;d +Ra
bde;c = 0. (1.12)

The trace of the Riemann tensor gives the Ricci tensor which is obtained by contracting the two
indices of Riemann tensor, i.e.

Rab = Rc
acb, (1.13)

where Rab is a symmetric tensor, i.e,

Rab = Rba. (1.14)

By contracting the Ricci tensor, we get the Ricci Scalar as

R = Ra
a = gabRab. (1.15)

1.2 The Geodesic Equation and Geodesic Deviation

In flat spacetime the shortest path between two points is the straightest path. On the curved space-
time, the shortest path between two points is called the “geodesic”. On such a spacetime the
tangent vector on a curve maintain the same direction. This can be assured by transported parallely
the tangent vector along the curve, i.e,

tbta;b = 0, (1.16)

where

tb = ẋb =
dxb

ds
. (1.17)
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Above equation can be written as

tbta;b = tbta,b + Γabct
btc, (1.18)

this implies that

ẍa + Γabcẋ
bẋc = 0, (1.19)

which is called the geodesic equation. The solution of this equation is known as geodesic.

Let us consider two neighbouring geodesics with tangent vectors t and these two geodesics are
connected by a separation vector p. For a separation vector p to be transported parallely along the
curve, we require that

£tp = 0, (1.20)

tdpa;d − pdta;d = 0, (1.21)

or

tdpa;d = pdta;d. (1.22)

The geodesic deviation is given by the acceleration vector, A, as

Aa =
d2pa

ds2
= tc[tdpa;d];c. (1.23)

By using Eq. (1.22), we get

Aa = tc[pdta;d];c, (1.24)

Aa = tcpd;ct
a
;d + tcpdta;d;c, (1.25)

Aa = pctd;ct
a
;d + tcpdta;d;c, (1.26)

Aa = pc(td;ct
a);d − pctdta;d;c + tcpdta;d;c, (1.27)

Aa = −pctdta;d;c + tcpdta;d;c, (1.28)

or

Aa = tcpdta;d;c + pctdta;d;c. (1.29)

Interchanging c and d in first term of above equation, we get

Aa = tdpcta;c;d + pctdta;d;c, (1.30)

Aa = Ra
bcdt

bpctd. (1.31)

This equation gives the acceleration which arises due to the curvature.
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1.3 The Einstein Field Equations

GR deals with the gravitation field, this field depends upon the distribution of matter and its evolu-
tion [2]. Energy can be stored in a field or it can be carried with a matter . If matter is present in a
spacetime then it would not be flat. All stresses present in the field and total energy and momentum
can be represented by the following tensor.

T ab = ρuaub + σijδai δ
b
j , (1.32)

where T ab is the stress-energy momentum tensor, ρ is the density, ua = ẋa is 4-velocity and σij is
called the stress-tensor. The laws of conservation of mass-energy and momentum required that the
stress-energy tensor be divergence free, i.e, its divergence is zero.

T ab;c = 0. (1.33)

As matter wraps the spacetime around it and produces the curvature. To find relationship between
matter (and energy) and curvature, consider the relationship is expressed by

εab[gαβ, R
α
βrs] = κT ab, (1.34)

where εab is a tensor function of the metric tensor and the curvature tensor, κ is the constant
of proportionality. Here we will find εab which must be divergence free so that stress-energy
momentum is conserved. The simplest function which we require is εab = gab. This function is
not only divergence free but also gradient free. For the function to be divergence free we consider
the contraction of Eq. (1.12) over a and c.

Rbd;e +Rbe;d +Ra
bde;c = 0, (1.35)

multiply by gad the above equation takes the form

R;e + 2Ra
e;a = 0, (1.36)

which reduces to

(
Rab − 1

2
gabR

)
;a

= 0. (1.37)

For 4-dimensional spacetime the linear, symmetric, divergence free function of the curvature is

εab = Rab − 1

2
Rgab, (1.38)

where εab is called Einstein tensor. Eq. (1.34) becomes

Rab − 1

2
Rgab = κT ab, (1.39)

which is called the Einstein field equations. Later, Einstein introduced a constant of integration to
his equations, because when he applied GR to cosmology he could not get the satisfactory solution.

Rab − 1

2
Rgab − Λgab = κT ab, (1.40)

where Λ is called the cosmological constant.
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1.3.1 Schwarzschild Solution for the Einstein Field Equations

Karl Schwarzschild was a German physicist and an astronomer. He was one who gave the first
exact solution of the Einstein’s field equations (EFEs) soon after the discovery of GR. Since it was
difficult to solve these equations directly so he took some assumptions. Schwarzschild’s solution
describes the vacuum solution of EFEs which is spherically symmetric and static for a point mass
m with no charge. Static means that metric tensor gµν is independent of time and there exist a
time reversal symmetry, i.e, the metric tensor is invariant under the time transformation t → −t.
Spherically symmetric spacetime means that it is invariant under rotation and vacuum solution is
the one which satisfies the equation Tab = 0, which shows that there are no stresses or energy in
that region. The most general static and spherically symmetric metric in spherical polar coordinates
(t, r, θ, ϕ) can be written as

ds2 = −ev(t,r)dt2 + eλ(t,r)dr2 + r2dθ2 +R2(t, r)dΩ2, (1.41)

where v, λ and R are the functions of the time coordinate, t, and the radial coordinate, r, and

dΩ2 = dθ2 + sin2 θdϕ2, (1.42)

is the metric of a unit sphere. The gravitational field for a point mass do not vary with time and
hence remains the same. Consequently, there would be no time dependence and Eq. (1.41) reduces
to

ds2 = −ev(r)dt2 + eλ(r)dr2 +R2dΩ2. (1.43)

Here we have two cases for R2(r), either it is a constant function or a varying function. In case of
constant function the area subtended by a given solid angle will be independent of r which is not
realistic. Whereas, in the case of varying function the radial coordinate can be considered to be R
instead of r. Taking new coordinate as r, Eq. (1.43) becomes

ds2 = −ev(r)dt2 + eλ(r)dr2 + r2dΩ2. (1.44)

The metric tensor for the above line element is given by

gab =


−ev(r) 0 0 0

0 eλ(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (1.45)

And the inverse metric tensor is

gab =


−e−v(r) 0 0 0

0 e−λ(r) 0 0
0 0 1

r2
0

0 0 0 1
r2 sin2 θ

 . (1.46)
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For vacuum solution Eq. (1.39) can be written as

Rab −
1

2
gabR = 0, (1.47)

gab
(
Rab −

1

2
gabR

)
= 0,

gabRab −
1

2
gabgabR = 0,

R− 1

2
R = 0,

R = 0. (1.48)

Equation (1.47) reduces to

Rab = 0, (1.49)

which are the vacuum Einstein’s field equations. The non-zero Christoffel symbols are

Γ0
01 = Γ0

10 =
1

2v′
, Γ2

12 = Γ2
21 =

1

r
,

Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 = cot θ,

Γ1
11 =

1

2λ′
, Γ1

00 =
1

2v′
ev−λ,

Γ1
33 = −re−λ sin θ, Γ2

33 = − sin θ cos θ. (1.50)

The surviving Einstein’s vacuum field equations are

R00 = 0⇒ v
′′

+
1

2v′

(
v
′ − λ′ + 2v

′

r

)
= 0, (1.51)

R11 = 0⇒ −v′′ − 1

2v′

(
v
′ − λ′ − 2λ

′

r

)
= 0, (1.52)

R22 = 0⇒ 1− e−λ +
1

2r

(
λ
′ − v′

)
e−λ = 0, (1.53)

R33 = 0⇒ R22 sin2 θ = 0. (1.54)

Adding Eqs. (1.51) and (1.52), we get

2v
′

r
+

2λ
′

r
= 0, (1.55)

v
′
+ λ

′
= 0. (1.56)

Integrating, we get

v + λ = constant. (1.57)

Setting v = −λ, and using this value in Eq. (1.55), we get

−ev − revv′ + 1 = 0, (1.58)
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or

v
′ − 1

rev
= −1

r
. (1.59)

By solving Eq. (1.59), we get

ev = 1 +
α

r
, (1.60)

since v = −λ, so we have

e−λ = 1 +
α

r
, (1.61)

where

α = −2m. (1.62)

For this value of α, Eqs. (1.60) and (1.61) become

ev = 1− 2m

r
, (1.63)

e−λ = 1− 2m

r
. (1.64)

Putting the values of ev and e−λ in Eq. (1.44)

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2dΩ2, (1.65)

where

dΩ2 = dθ2 + sin2 θdϕ2. (1.66)

Eq. (1.65) is known as Schwarzschild solution of EFEs and also known as Schwarzschild metric.
rs = 2m is called the Schwarzschild radius. As r →∞ the metric reduces to flat spacetime.

1.4 Singularities of the Schwarzschild Metric

There are two types of singularities, i.e, the essential singularity and the coordinate singularity.
The singularity which is actually present in the manifold and can not be removed by any choice
of the coordinate system is called an essential singularity. At this point, all the spacelike, null, or
timelike geodesics terminate after a lapse of finite proper time [3]. The singularity which arises due
to the bad choice of the coordinates and which can be removable by an appropriate choice of the
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coordinates is known as the coordinate singularity. The nature of the singularity can be determined
by the curvature invariants as

R1 = R = Ra
a, (1.67)

R2 = Rab
cdR

cd
ab, (1.68)

R3 = Rab
cdR

cd
efR

ef
ab. (1.69)

One can check these curvature invariants which are regular at rs = 2m, and are undefined at r = 0.
The Schwarzschild solution shows that it has two singularities. The singularity which is located at
r = 0 is the essential singularity whereas at r = rs is the coordinate singularity. The values of the
curvature invariants obtained for the Schwarzschild solution are given as under [2].

R1 = 0, (1.70)

R2 =
12r2s
r6

, (1.71)

R3 =
8r3s
r9
. (1.72)

This shows that r = rs is not the actual or the physical singularity. It appears due to inappropriate
choice of the coordinates. For r > rs, the metric (1.65) gives a static vacuum solution but for
r < rs, the metric does not give any physical information since it is singular at r = rs. So the
Schwarzschild’s (t, r) coordinates system becomes singular at r = rs. This mathematical boundary
is known as the event horizon for the Schwarzschild metric. We need some appropriate coordinates
to solve this which will be discuss in the coming section.

1.5 The Eddington-Finkelstein Coordinates

Eddington [4] constructed a new coordinate system which was then rediscovered by Finkelstein [5].
They used the following transformations

(t, r, θ, φ)→ (v, u, θ, φ) (1.73)

To avoid the singularity they defined a new radial coordinate such that the singularity at rs = 2m
disappears.

r∗ =

∫
dr

1− 2m
r

. (1.74)

After integrating, we get

r∗ = r + 2m ln |r − 2m

2m
|. (1.75)
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The constant of integration is chosen so that to make the argument of the logarithm dimensionless.
They also introduced two retarded and advanced coordinates as

u = t− r∗, v = t+ r∗, (1.76)

where u and v play the role of retarded and advanced time respectively.

Using (1.76), the advanced time can be written as

dv = dt+ dr∗. (1.77)

Using Eq. (1.74), we can write

dv = dt+
dr

1− 2m
r

. (1.78)

Eq. (1.78) can be written as

dt = dv − dr

1− 2m
r

. (1.79)

After squaring Eq. (1.79), we get

dt2 = dv2 +
dr2(

1− 2m
r

)2 −
2dvdr

1− 2m
r

. (1.80)

Substituting Eq. (1.80) into Eq. (1.65), we get

ds2 = −
(

1− 2m

r

)
dv2 + 2dvdr + r2dΩ2. (1.81)

This is the Schwarzschild metric in advanced coordinates. The metric tensor for this line element
is given by

gab =


−(1− 2m

r
) 1 0 0

1 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (1.82)

For retarded time u, Eq. (1.76) can be written as

du = dt− dr∗, (1.83)

du = dt− dr

1− 2m
r

. (1.84)

Squaring and re-arranging, we get

dt2 = du2 +
dr2(

1− 2m
r

)2 +
2dvdr

1− 2m
r

. (1.85)
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Substituting Eq. (1.85) into Eq. (1.65), we get

ds2 = −
(

1− 2m

r

)
dv2 − 2vdvdr + r2dΩ2. (1.86)

This is the Schwarzschild metric in the retarded coordinates, and the metric tensor is given by

gab =


−(1− 2m

r
) −1 0 0

−1 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (1.87)

Adding and subtracting Eqs. (1.77) and (1.83), we get

dt =
1

2
(dv + du), (1.88)

dr

1− 2m
r

=
1

2
(dv − du). (1.89)

After squaring Eq. (1.88) and (1.89), we get

dt2 =
1

4
(dv2 + du2 + 2dvdu), (1.90)

dr2(
1− 2m

r

)2 =
1

2
(dv2 + du2 − 2dvdu). (1.91)

Inserting Eqs. (1.90) and (1.91) into Eq. (1.65) and simplifying, we get

ds2 = −
(

1− 2m

r

)
dvdu+ r2dΩ2. (1.92)

This form of the metric is called double null form. The metric tensor for this line element is given
by

gab =


0 −1

2
(1− 2m

r
) 0 0

−1
2
(1− 2m

r
) 0 0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 . (1.93)

These coordinates are good to study the value of r ≥ 2m but not convenient for r < 2m. To study
the behaviour inside the surface r = 2m, we required another coordinate system.

1.6 Kruskal Coordinates

The above coordinate system seems asymmetrical in that the diagonal term in the radial part of the
metric tensor has been replaced by an off diagonal term, which is singular at r = 2m. Since deter-
minant of the metric tensor is zero there. For this purpose we need a new coordinate system which
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is symmetrical looking and is non-singular. As singularity arises due to zero in the metric. To
describe the interior region of the Schwarzschild black hole, Kruskal coordinates can be used [4].
Kruskal exponentiated the advanced and retarded (v, u) coordinates and A.Qadir [2] introduced
two new constants α and β such that the entire manifold of the maximally extended Schwarzschild
solution is covered by a single coordinate patch. Thus

V = αev/β, (1.94)
U = −αe−u/β. (1.95)

Hence V U can be written as

V U = −α2e
v−u
β , (1.96)

V U = −α2e
2r∗
β , (1.97)

V U = −α2e
2
β
(r+2m ln | r

2m
−1|). (1.98)

After simplifying Eq. (1.98), we get

V U = −α2

(
r

2m
− 1

)4m/β

e2r/β. (1.99)

And

dV =
α

β
ev/βdv =

V

β
dv, (1.100)

dU =
α

β
e−u/βdu = −U

β
du. (1.101)

So

dV dU = −V U
β2

dvdu, (1.102)

dvdu = −vu
β2
dV dU. (1.103)

Inserting Eq. (1.103) into Eq. (1.92) and simplifying, we get

ds2 = − 32m3

rer/2m
dV dU + r2dΩ2, (1.104)

where

V U =

(
r

2m
− 1

)
er/2m. (1.105)

If we put r = 2m, then we get the coefficient 16m2/e which is regular there. This is the
Schwarzschild metric in Kruskal coordinates. Hence there is no singularity at r = 2m and g 6= 0.
Normally α is chosen to be unity but if we want U , V to have units of length it is more convenient
to take α = 2m, in which case g01 = 2m = g10.
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1.7 Kruskal-Szekeres Coordinates

A convenient coordinate system which can be obtained from Kruskal coordinates is called Kruskal-
Szekeres coordinates and the metric in these coordinates is in diagonal form. Kruskal-Szekeres
coordinates have a timelike coordinate T and spacelike coordinate R. One question is solved that
at r = 2m, the coefficient is not zero,

T = V − U ⇒ dT = dV − dU, (1.106)
R = V + U ⇒ dR = dV + dU. (1.107)

Adding and subtracting we have,

dV =
1

2
(dT + dR), (1.108)

dU = −1

2
(dT − dR). (1.109)

And

dV dU =
1

4
(−dT 2 + dR2). (1.110)

Since

R = V − U ⇒ R2 = V 2 + U2 − 2V U, (1.111)

T = V + U ⇒ T 2 = V 2 + U2 + 2V U. (1.112)

And

R2 − T 2 = −4V U. (1.113)

Inserting in metric, we get

ds2 =
32m3

rer/2m
(−dT 2 + dR2) + r2dΩ2, (1.114)

where

R2 − T 2 = 4

(
r

2m
− 1

)
er/2m. (1.115)

1.7.1 Compactified Kruskal-Szekeres (CSK) Coordinates

The Kruskal-Szekeres coordinates can be converted into a Compactified Kruskal-Szekeres (CKS)
coordinates by the following transformations [6].

v + u = tan
1

2
(ψ + ξ), (1.116)

v − u = tan
1

2
(ψ − ξ). (1.117)
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The above transformation becomes

dv + du =
1

2
sec2

1

2
(ψ + ξ)(dψ + dξ), (1.118)

dv − du =
1

2
sec2

1

2
(ψ − ξ)(dψ − dξ). (1.119)

The Schwarzschild line element can be written in these coordinates as

ds2 = f 2(r)

[
−dψ2 + dξ2

4 cos2 1
2
(ψ + ξ) cos2 1

2
(ψ − ξ)

]
+ r2dΩ2. (1.120)

This line element is singular at r = 0, and at the coordinate singularities (ψ, ξ) ranges from -π/2 to
π/2 with end points not included. These coordinates can be compactified to [−π/2, π/2]. Carter
and Penrose developed a method to represent such a spacetime on a two dimensional plane and is
known as Carter-Penrose diagrams.

Figure 1.1: The Carter-Penrose diagram of a Schwarzschild black hole (taken from [7] ).

1.8 The Friedmann Model of the Universe

Friedmann was a Russian mathematician and physicist and was famous for his idea about the
expanding universe. Friedmann gave a homogeneous, isotropic model for the universe as solution
to Einstein’s field equations [6]. The model is given by the following metric

ds2 = −dη2 + a2(η)[dχ2 + f 2
k (χ)dΩ2], (1.121)

where

f+1 = sinχ, (0 ≤ χ ≤ π), (1.122)
f0 = χ, (0 ≤ χ ≤ ∞), (1.123)
f−1 = sinhχ, (0 ≤ χ ≤ ∞). (1.124)
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k = +1, shows that the model has a positive curvature, k = 0, for zero curvature and k = -1, for
the negative curvature. The term a(η) is known as the expansion factor and it depends upon time
parameter t. a(η) can be expressed parametrically by the following relations.

For k = +1, we have

a(η) =
a0
2

(1 + cos θ), (−π ≤ η ≤ π), (1.125)

t(η) =
a0
2

(π + η + sin θ), (−π ≤ η ≤ π). (1.126)

For k=0, we have

a(η) =
a0
2

(π + η)2, (−π ≤ η ≤ ∞), (1.127)

t(η) =
a0
2

(π + η)3, (−π ≤ η ≤ ∞). (1.128)

For k = -1, we have

a(η) =
a0
2

[cosh(η + π)− 1], (−π ≤ η ≤ ∞), (1.129)

t(η) =
a0
2

[sinh(η + π)− η], (−π ≤ η ≤ ∞). (1.130)

In the case k = 0, we have a flat space but not flat spacetime. The entire curvature then comes from
the factor a2(η). For k = 0, the geometry corresponds to a 3-cone (hypercone). For k = +1, the
corresponding to a 3-sphere or S3 whereas for k =-1, represents the geometry of 3-hyperboloid or
H3.

In all the cases, the model universe starts at η = −π and then expand. The 3-sphere which is also
known as the closed Friedmann model universe starts from the big bang at η = −π, and expand
to the maximum size at η = 0. It then shrinks and and collapse to a big crunch at η = π. For k
= 0, represents an eternal universe expanding forever and referred to as a flat universe. For k = -1,
the model universe starts from the big bang and does not have an end referred to as an open model
universe. The three cases are shown in the figure 1.2.

1.9 Thermodynamics

Thermodynamics deals with the study of relationship between heat and temperature and their re-
lation to energy and work [8]. It defines the properties of matter such as volume, temperature and
pressure. These are the properties of matter in bulk rather than that of individual isolated molecules
and are, therefore, called macroscopic properties as opposed to microscopic properties [8]. It pro-
vides the most general and efficient methods for studying and understanding complex physical and
chemical phenomena. Thermodynamics does not provide the microscopic view of the physical
and chemical properties of the matter. On the other hand statistical mechanics deals with such
microscopic properties of the matter. Classical thermodynamics is based on four laws. Here I shall
discuss them in brief.
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Figure 1.2: The Friedmann model universe for different values of k (taken from [9]).

1.9.1 The Zeroth Law of Thermodynamics

The zeroth law defines the relationship between two systems in thermal equilibrium. A system is
in thermal equilibrium if the properties of the system remain unchanged with time. It states that
“Two systems which are both in thermal equilibrium with a third system are in thermal equilibrium
with each other”. Two bodies are said to be in thermal equilibrium if heat does not flow from one
body to the other when they are in thermal contact.

To understand the zeroth law let we consider three systems A, B and C. If system A is in thermal
contact with system C and system B is in thermal contact with system C. After some time this
whole system will be in thermal equilibrium with each other by exchanging heat energy. So A is
in thermal equilibrium with C and C is in thermal equilibrium with B. When we brought both A
and B in thermal contact we see they do not exchange any heat energy. So they too are in thermal
equilibrium with each other. It is known as the zeroth law of thermodynamics. It also gives the
equivalence relation, as two bodies are in thermal equilibrium if they both have the same tempera-
tures. If TA = TC and TB = TC then TA = TB. Zeroth law is therefore gives us the definition of
temperature which does not depend on physical feelings of hotness or coldness. It is based on the
observations and experience that systems in thermal contact are not in complete equilibrium with
one another until they have the same measure of sensation of heat, i.e. the same temperature. This
law was developed after the first three laws of thermodynamics and the importance of this law was
not completely realized until the other important properties of thermodynamics had not developed.
Due to its more fundamental nature it was then ranked as a basic law of thermodynamics, i.e, the
zeroth law.
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1.9.2 The First Law of Thermodynamics

The first law of thermodynamics is a form of the law of conservation of energy, which states that the
total energy of an isolated system remains conserved, energy can never be created nor be destroyed
but it can be transformed from one form to another. It deals with the macroscopic properties of
the system that is heat, work and internal energy. In a more formal way this law can be stated as
follow: “In any thermodynamical process the change in internal energy ∆E of the system is equal
to the amount of heat Q added to the system minus work W done by the system ” [8]. It can be
written as

∆E = Q−W, (1.131)

where ∆E is the change in the internal energy of the system, Q is the heat added to the system and
W is the work done by the the system. The sum of all the energies of all the particles of a system
is called the internal energy of the system. The sign of Q is positive if heat is added to the system
and is negative if its is given out of the system. Similarly the sign of W is positive if it is done on
the system and is negative if it is done by the system. The above equation for the first law can be
define in the form of differentials

dE = dQ− dW, (1.132)

where dQ and dW are the non exact differentials because they are path dependent. Because they do
not depend on the initial and final states of the system rather they depend on the path that followed
by the system between the initial and final states. Thus dQ and dW have infinitely many values
between initial and final states depending upon the path followed by the system, but their sum dE
is path independent and only depends upon the initial and final states of the system. The first law
of thermodynamics enables to calculate the energy changes during a chemical reaction. But it does
not consider whether the reaction occurs or not. For example heat spontaneously flows from a hot
body to a cold one until a uniform temperature is reached and the energy is conserved during the
flow. One can observe, in the reverse process energy would still remain conserved but naturally we
have no such observations in which heat flow from hot to cold without external work. It seems that
Nature goes in preferred direction. To understand this natural flow of heat we need another law to
explain this phenomenon.

1.9.3 The Second Law of Thermodynamics and the Concept of Entropy

The first law of thermodynamics tells us about the internal energy of the system, whereas the
second law of thermodynamics describes another important thermodynamical property called “en-
tropy” which further help us to understand the flow of heat. The thermodynamical definition of
entropy is the change in entropy dS of a system which exchange a small amount of heat dQ with
its surroundings at temperature T given by the following relation

dS = dQ/T. (1.133)
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The above relation tells us that the entropy and heat are directly related to each other. Entropy
changes with change in heat. The second law of thermodynamics states that “In any thermody-
namic process that proceeds from one equilibrium state to another the entropy of the system and
that of the environment either remains unchanged or increases” [8]. If dSsys is changed in the en-
tropy of the system and dSenv is changed in the entropy of the environment then the total entropy
according to the second law of thermodynamics would be

dSsys + dSenv ≥ 0. (1.134)

This expression describes that if we decrease the entropy of a system the entropy of the environ-
ment would increase in greater amount than it decrease. But the total sum is always greater than
zero and the equality only holds for a reversible process. The entropy increases when heat is added
into the system and decreases when it is taken out from the system.

As we know all the spontaneous precesses that occur in nature are irreversible [8] and we can
only make some of them reversible by using energy. Water flows from uphill to the downhill, heat
flows from hot body to the cold one and it is never observed that water spontaneously flows from
downhill to the uphill or the heat flows from cold to the hot body. Therefore no spontaneous process
can take place that results in the decrease in the total entropy of the system and environment. We
can decrease the entropy of a system by doing some work on the system but at the same time the
entropy of the environment increases more than the decrease of the entropy of the system, so the net
change in the entropy of the system is positive. The second law of thermodynamics does not allow
those processes in which the entropy of the system plus the entropy of the environment decreases.
That is the reason why water does not flow to uphill by its own. We can use the definition of
entropy and re-write the first law of thermodynamics as follows

dE = TdS − dW. (1.135)

The entropy dS is a state variable, it does not depend on the path that is taken between the states of a
system rather it only depends on the initial and final states of a system. Statistical thermodynamics
gives the better way to understand the concept of entropy. It links the information about a system
to the entropy, i.e, the measure of disorder in a system. The more the entropy of a system the
less we have the information about the system means we are ignorant about the system. Lack of
information about a system results greater entropy of the system. If the known information about
the internal configuration of a system is that it may be found in any of a number of available states.
If pn is the probability of the nth state, then the entropy associated with the system is given by the
following relation.

S = −
∑

pn ln pn. (1.136)

This is the statistical definition of the entropy.

1.9.4 The Third Law of Thermodynamics

The third law of thermodynamics can be stated as “ by no finite series of processes the absolute zero
is attainable” [10] . Experiment shows that the fundamental feature of all the cooling processes
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is that, the lower the temperature attained, the more difficult it is to cool further. For example,
the colder a liquid is the lower the vapour pressure, and harder it is to produce further cooling by
pumping away the vapour. The above statement of third law of thermodynamics is also known as
the principle of unattainability.
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Chapter2
Information Loss Paradox

Quantum mechanics (QM) and GR are two fundamental theories of nature. Both theories have
been developed in the 20th century. Einstein was the father of GR and one of the founders of QM.
The latter one deals with the motion of macroscopic objects and describes phenomena with great
accuracy, whereas, the former one deals with the motion of objects at atomic and subatomic level
perfectly. Both theories have their limitations and are incompatible with each other. There have
been numerous attempts to combine them but they did not succeed. It is hoped that there will be
a theory of quantum gravity which can possibly solve these issues. Stephen A. Fulling [11] tried
to combine these two but he did not consider gravity, rather he quantized scalar fields in a linearly
accelerating frame. The expectation value he obtained for the number operator has a fractional
value which was defined in the Schwarzschild background in the Minkowski space vacuum states.
There was an ambiguity in the quantization procedure for gravity. Hawking repeated the procedure
for curved spacetime, i.e, for the Schwarzschild black hole. Surprisingly, his result gave the Planck
spectrum. Further, by using the Feynman path integral he calculated the temperature of the black
hole.

2.1 Black Holes and Entropy

Apparently the concepts of entropy and black holes have nothing to do with each other. Around
1967, Penrose constructed a paradox regarding entropy and black holes [12]. In a thought exper-
iment, he visualized a civilization living around a black hole whose means of producing energy
for themselves is by lowering a box full of thermal radiation into the vicinity of a black hole with
the help of a spring and throwing the radiation in. As the radiation has an equivalent mass, when
the empty box is brought back up, the spring has stored more energy which can be used. In this
process, the civilization will not only get the free energy but will also reduce the thermal pollution
in the surroundings. It seems that entropy around the black hole decreases which is a violation
of the second law of thermodynamics. Penrose argued that the only way to save the second law
of thermodynamics is to require that the black hole has an entropy that rises more in the above
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process than is lost by the surroundings. This was the first connection made of entropy with black
holes. A black hole’s surface area increases when it undergoes any transformation [13]. Hawking
proved that the surface area of a black hole cannot decrease by any process. When two black holes
merge, the area of the resultant black hole can never be smaller than the sum of the areas of the
two. Let A1 be the area of a first black hole and A2 be the area of second black hole. When both
of these black holes merge, the area A3 of the final would be greater than the sum of the individual
areas [14].

Figure 2.1: Merging of two black holes (taken from [14]).

A3 ≥ A1 + A2. (2.1)

In the recent detection of gravitational waves, two black holes of 35 and 29 solar masses merged to
give a black hole of 61 solar masses [15]. There is a difference of 3 solar masses between final black
hole and its constituents that was radiated away as gravitational waves. As such, M3 < M1 + M2

but it is easy to see thatM2
3 > M2

1 +M2
2 and hence the area theorem holds as for the Schwarzschild

black hole the area is given by

A = 4πr2s . (2.2)

Penrose and his student Floyd [2] developed a mechanism to extract energy from a Kerr black
hole. This procedure is now known as the Penrose process. There is a region outside the Kerr
black hole which is called the “ergosphere”. As the Kerr black hole rotates, anything inside the
ergosphere will also rotate with it. This is called inertial frame dragging. If a particle splits into
two pieces inside the ergosphere of the Kerr black hole in such a way that one piece falls into the
hole and other goes to infinity from the ergosphere with an energy greater than the rest energy of
the original particle. One can extract energy in this way from a rotating black hole. Independently,
Christodoulou had shown that no process whose ultimate outcome is capture of a particle by a
Kerr black hole can result in the decrease of a quantity which he named the irreducible mass of the
black hole [13]. In most processes the irreducible mass, mir, increases but for a class of processes
called reversible processes in which mir remains unchanged. The irreducible mass is related to the
area by

mir =
√
A/16π, (2.3)
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where A is the area of the Kerr black hole given by

A = 4π[r2+ + a2/c2], (2.4)

where r+ is the outer horizon of the Kerr black hole, a is the angular momentum and c is the speed
of light. Christodoulou’s conclusion also supports Penrose and Floyd conjuncture.

2.2 Energy and Entropy

Energy changes its forms. It can be converted from one form to another. Heat is the form that
most of the energy is converted into. But the sum of all of its forms never changes and hence
remains conserved. Heat is a form of energy which is not easily understandable. Earlier, physicists
and chemists thought that it was a substance and behaved like a fluid and called it phlogiston
[16], but heat is not a new substance, it is one of the forms of energy. If we heat a box filled
with gas, first its molecules start moving in a random motion. If we add more heat into the box,
their motion become more random and chaotic. At this stage, it is difficult to find the velocity
or position of a molecule because of random motion. This system would be highly disordered.
Entropy is a measure of the disorder in a system. The order in a system is considered to be the
information stored in it. According to the second law of thermodynamics, entropy of a system
always increases, which means that with the passage of time, information is lost about the internal
configurations of a system. Thus, entropy is microscopic hidden information about the system.
The information is measured in bits. Heat and entropy has a deep connection. Heat is the energy
of random chaotic motion and entropy is the amount of hidden microscopic information [16].
To understand the connection between heat and entropy, let us consider a bath tub full of hot
water. If we remove all of the heat from the tub at absolute zero, then all the atoms would be in
a perfect order. At this moment, one can find the position of each atom precisely and there would
be no hidden information. Temperature, energy and entropy are all zero at this particular moment.
On the contrary, if a small amount of heat is added, the molecules will start to move and there
configuration will break down and as a result, a small amount of information will be lost. So by
adding heat information is lost, which means that as energy increases, entropy also increases.

2.3 Bekenstein Entropy of Black Holes

Soon after the discovery of Hawking, a doctoral student of John Wheeler named Jakob Bekenstein
discovered [13] the entropy associated with a black hole which is directly proportional to the
change in surface area of a black hole in Planck units. He was not interested in calculating how
much information can be stored into a black hole. Instead, he calculated the change in entropy
of a black hole when a single bit of information is thrown into it. The expectation was that the
change in entropy of a black hole must be proportional to the volume of the black hole, similar to
the procedure if someone wants to calculate how many drops of water there are in a bathtub. The
number of drops is directly proportional to the volume of the bath tub. If the volume is doubled
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then the number of drops becomes double. But surprisingly, it comes out directly proportional to
the change in the area of the horizon of the black hole.

Bekenstein considered the simplest (Schwarzschild) black hole of a certain size. Now the
problem was how to choose a single bit of information. He considered a photon of appropriate
wavelength such that it can fit into the black hole. Otherwise, if its wavelength is greater than the
diameter of the black hole, it will not fit into the hole. So, he considered the wavelength equal
to the Schwarzschild radius, i.e, λ = rs . Since a photon has energy, and according to Einstein’s
mass-energy relationship, a photon has an equivalent mass. So when a photon is thrown into the
hole, it increases the black hole mass, which results in an increase in the area. Since area of a black
hole is directly proportional to its Schwarzschild radius, i.e, A = 4πr2s . He calculated the change
in area of the horizon which comes out, i.e,

dA = 16π2l2p, (2.5)

where lp =
√
G~/c3 is the Planck’s length and lp ∼ 1033m.

When Hawking came to know about the discovery of Bekenstein, it did not make any sense to
him. He described in his book The theory of everything how Bekenstein’s discovery irritated him
and that Bekenstein has mis-applied his area theorem, but he finally accepted that Bekenstein was
correct [17]. However, Bekenstein was unable to find the complete formula for the entropy of the
black holes. It was Hawking who managed to find an exact relation between entropy and area of
the black hole which is defined as

S =
A

4
, (2.6)

where S is the entropy and A is the surface area of the black hole.

Later, Hawking was studying black holes in the context of quantum field theory in a curved
background [13]. Before the discovery of Hawking, everyone thought that black holes are black
bodies but at absolute zero, i.e, they have no temperature at all and they were considered to be the
coldest objects in the Universe. After the discovery of Hawking, everything has changed about
black holes. I will not go into details of his discovery but he concluded that black holes are not as
black as we once thought. He further explained that every black hole has a temperature which is
inversely proportional to its mass. Massive black holes have a very low temperature and smaller
black holes have a very high temperature. The mathematical expression of his formula about the
temperature of a black hole is given below

TH =
~c3

16π2Gmk
, (2.7)

where TH is the Hawking temperature, ~ is the Plank’s constant, c is the speed of light, G is the
gravitational constant, m is the mass of the black hole and k is the Boltzmann constant.
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2.4 Black Hole Thermodynamics

From these developments, it was recognized that there is a deep connection between thermody-
namics and black hole physics. Bardeen, Carter and Hawking formulated the laws of black hole
mechanics. They considered the analogy between black holes and thermodynamics as suggestive
but purely formal, reflecting no deep relationship of the two subjects and being disconnected with
the quantum [18].

2.4.1 The Zeroth Law of Black Hole Mechanics

The zeroth law of thermodynamics states that if the system is in thermal equilibrium then its
temperature is constant. The corresponding statement for the zeroth law of black hole mechanics
is “the surface gravity k, of a stationary black hole is constant over the horizon”. So, the law
suggests that there is an analogy between the statements that “the temperature of different parts of
a system in thermal equilibrium is the same and the surface gravity is constant over the horizon of
a stationary black hole”.

2.4.2 The First Law of Black Hole Mechanics

According to the first law of black hole mechanics when a particle is thrown into a stationary black
hole then it changes from one stationary state to another. The change in the mass of the black hole
will be defined as

dM =
κ

8π
dA+ “work terms”. (2.8)

The work terms could be different for different black holes. However, for the Schwarzschild black
hole, the work term would be zero and the expression becomes

dM =
κ

8π
dA. (2.9)

As energy is directly proportional to the mass, the area of a black hole will only change when the
mass of the black hole changes. From the first law of thermodynamics, the expression for the law
when work is zero can be written as

dE = TdS. (2.10)

By comparing the last two equations, we also get the expression for the entropy of the black hole,
i.e,

S =
A

4
. (2.11)

The expression for the first law of black hole thermodynamics for the Kerr-Newman black hole
would be

dM =
κ

8π
dA+ ΩdJ + ΦdQ, (2.12)
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where Ω is the angular velocity, J is the angular momentum, Φ is the electrostatic potential and Q
is the electric charge.

The first law of thermodynamics gives the energy conservation and in the case of black hole,
it tells us that if a particle is thrown into the black hole then the change in the energy of the black
hole is equal to the energy of the particle minus the energy that is radiated away from the infalling
particle.

2.4.3 The Second Law of Black Hole Mechanics

According to the second law of black hole thermodynamics, the area A of an event horizon never
decreases with time. It either increases or still remains the same, i.e,

dA ≥ 0. (2.13)

Classically, since nothing can come out from the black hole so it does not lose its mass,
therefore, the black hole area A never decreases by any process. In thermodynamics, the second
law ensures that in any thermodynamical process, the entropy is always non-decreasing. This
establishes the analogy between the area of event horizon and the entropy. The statement of the
second law of black hole mechanics is a little stronger than the corresponding thermodynamic law.
Thermodynamically, entropy can be transferred from one system to another in such a way that the
total entropy must not decrease. However, one cannot transfer area from one black hole to another
since black holes cannot bifurcate [10]. So the area of individual black hole must not decrease as
required by the second law of black hole mechanics.

2.4.4 The Third Law of Black Hole Mechanics

The third law of black hole mechanics states that:
“It is impossible by any procedure, no matter how idealized, to reduce κ to zero by a finite sequence
of operations [3]."

2.4.5 The Generalized Second Law

There may be some situations in which the second law of thermodynamics could have been vio-
lated. For example, if we throw an object having some entropy into the black hole then the entropy
of the Universe decreases. Classically we have no longer any access to anything that has crossed
the event horizon of a black hole. The entropy seems to decrease in this process as it has gone from
the outside world. But an outside observer cannot make any measurement to show that the entropy
of the total universe decreases. It seems contradictory to the second law of thermodynamics. It
was then conjectured by Bekenstein that there should be a more general law [18]. The second law
was then generalized to
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“The common entropy in the black hole exterior plus the black hole entropy never decreases”
[13]. If the black hole entropy is represented by Sbh and the exterior entropy is by Se then the
generalized second law of black hole mechanics can be written as

Sbh + Se ≥ 0. (2.14)

Since the ordinary second law of thermodynamics was violated by the argument that when an
object has fallen into the black hole the entropy of the Universe decreases. Thus the generalized
second law of black hole mechanics makes the statement valid for the total entropy of the Universe
would increase when something is thrown into the black hole.

2.5 Information Loss Paradox

In classical theory, the loss of information is not a problem. A classical black hole would last
forever and information could be thought of as preserved inside it, but just not very accessible [19].
It is permanently lost from the outside world but it is still inside it. But Hawking’s discovery has
changed everything. Black holes are not so black as was once thought. Now, a black hole has a
temperature T , so if a body has a temperature it must radiate its energy. According to Einstein’s
mass-energy relation, if a body reduces its energy then it also reduces its mass. So, quantum theory
causes the black hole to radiate its energy. As a result, a black hole loses all of its mass and hence
evaporates. All the information that was inside the black hole has gone with the radiations. Here
the details of the discovery will not be presented instead his argument will be summarized in the
following subsection.

2.5.1 Hawking’s Argument of Information Loss

There are two types of fluctuations in nature, i.e, thermal fluctuations and quantum or vacuum
fluctuations. Quantum field theory provides a way to understand both. Thermal fluctuations are
due to excess energy and are produced due to the real pairs of photons. Quantum fluctuations, on
the other hand, are produced due to virtual pairs of photons, which are created and quickly absorbed
back into the vacuum [16]. This phenomenon takes place in empty space even at absolute zero.
Hawking used the complex mathematics of quantum field theory and showed that a black hole
emitted photons due to the vacuum fluctuations. These photons are known as Hawking radiation.
In the Hawking formula Eq. (2.7), the temperature of the black hole is inversely proportional to its
mass m. The smaller the black hole, the larger would be its temperature. By the time its mass is
about Planck size, it would be the hottest object in the Universe. Finally, it would lose all its mass
and evaporates away. Everything that was inside the black hole would go with Hawking radiation.

Hawking asked if a pure quantum state is thrown into the black hole then what would happen
to it? Classically, nothing would happen, it would stay inside the black hole forever and nothing
would come out of it. But, quantum mechanically, as a black hole radiates its energy so anything
inside it must come out and would no longer be inside. The information which comes out with the
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Hawking radiations is thermal which is totally mixed and completely different from the information
that was thrown in. So it is lost. In other words, elementary quantum evolution is unitary and
unitary evolution of a pure state should yield a pure state [12]. Contrarily, it comes out as a mixed
state. Hawking concluded that in the presence of a strong gravitational field, QM violates its own
principles, so it needs to be modified. On the other hand, Leonard Susskind a theoretical physicist
from the USA and a Dutch Nobel Laureate t’ Hooft did not accept the argument and came with
their own idea. In the next section, I will explain their proposal to the resolution of the paradox.

2.6 Black Hole Complementarity

The information loss paradox puzzled physicists for decades. However, Susskind and ’t Hooft
believed that there must be something wrong with the argument and they started to figure it out.
According to them, the information could not be lost. If it was lost, then it violates one of the
fundamental principles of QM. Susskind argued that this principle is more fundamental than one
of the basic laws of physics, i.e, the law of conservation of energy. How can it be violated? This
principle is known as “reversibility” or “information conservation”. It simply states that if one
knows the present with full precision, one can predict the future at all time. The law also says that
if one knows the present absolutely, then one can be very clear on the past as well. The law goes
forward as well as backward in time. In QM, this reversibility is known as unitarity. The quantum
logic would not hold without it [16], and if information is lost then all the fundamentals of physics
would break down. So they started formulating, the counter arguments to fix the problem, but
could not succeed at that time.

In 1993, Susskind came up with the “Black hole complementarity” idea. This idea is similar to
Bohr’s complementarity principle which says that in an experiment one can either see a particle or a
wave but not both. Similarly, no observer can make an experiment from outside the black hole that
can describe the physics of black hole from inside, and no observer from inside the black hole can
make an experiment to show that the black hole can evaporate. Both the classes of observers are
apparently contradictory but actually complementary to each other. In this situation, there would
be no paradox. It still remained to answer for an outside observer that whether the information is
lost or not. To answer this, they presented another principle.

2.6.1 The Holographic Principle

Bekenstein’s argument says that the entropy of a black hole is proportional to the surface area
of the horizon and not to the volume of the black hole. Susskind and ’t Hooft put forward the
idea of holographic principle, according to which the maximum amount of information that can
be stored in a region of space cannot be greater than that which can be stored on the boundary
of the region [16]. It was argued that just like the hologram can store a 3-dimensional image of
an object on a 2-dimensional film, so all the information inside a black hole can be thought of as
stored on the surface of the horizon, it was then known as the Maldacena conjecture [20]. Using
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a (2+1) dimensional black hole, this conjecture was proved in the context of superstrings [21].
The spacetime that was used for this purpose was “anti-de Sitter”. In this spacetime it can be
demonstrated [16] that all the information inside the Universe can be stored on the outer horizon
of the Universe. So in this context, information can never be lost.
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Chapter3
Foliation

The word foliation comes from the Latin word “folia” for leaf [2]. The spacetime geometry can be
understood by slicing the spacetime into hypersurfaces having some constant value of “time” for
each hypersurface. An n-dimensional manifold can be split or decomposed into sub-manifolds in
such a way that the dimension of each sub-manifold remains the same. Thus each sub-manifold is
the leaf of the foliation. If a manifold is foliated in such a way that the dimension of each slice is
one less than the dimension of the original manifold then it is called foliation by hypersurfaces.

We can foliate a two-dimensional xy-plane by straight lines. Generally the foliation is not
unique. If the foliation covers the entire manifold by sequence of non-intersecting sub-manifolds
or slices then it is said to be complete.

Mean Extrinsic Curvature:

The ratio of the second fundamental form to the first fundamental form describes the normal cur-
vature of the surface. On the surface, there are a large number of curves. The curvature of these
curves is independent of the nature of the surface. The normal curvature depends which curve we
choose on the surface. However, some quantities are invariant and independent of the choice of the
curve. These quantities are called maximum K+ and minimum K− values of the normal curvature
along two perpendicular directions and known as the principle curvatures. Their productK+K− is
known as Gaussian curvature and is invariant under coordinate transformation. Also their average
(K+ +K−)/2 is an invariant quantity and known as mean curvature.

The curvature which is described entirely by living within the surface is called intrinsic cur-
vature and is given by the first fundamental form. Intrinsic means one do not need to go off from
the surface and then measure the curvature of the surface. It can be measured within the surface.
This fact is known as the Gauss’s theorem [2]. Whereas the extrinsic curvature is measured when
a curved surface is embedded in one higher dimension. It is extrinsic to the surface and given by
the second fundamental form. The mean extrinsic curvature describes the curvature of a hypersur-
face (which is embedded in one higher dimension) relative to the enveloping geometry. It can be
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defined as

K = −divn = −na;a, (3.1)

where na is the unit normal to the hypersurface.

3.1 Foliation by Spacelike Hypersurfaces

A spacetime manifold can be foliated by hypersurfaces which may be timelike, nulllike or space-
like. The first fundamental can be written as

ds2 = gabn
anb. (3.2)

These hypersurfaces can be classified uniquely by the metric g as:

• If gabnanb > 0, then it will be a timelike hypersurface;

• If gabnanb = 0, then it will be a lightlike hypersurface;

• If gabnanb < 0, then it will be a spacelike hypersurface.

A W-universe (W stands for Wheeler) is a closed, compact, big bang and a big crunch
model universe [22]. This universe has a positive spatial curvature. If we foliate such a model
universe by spacelike hypersurfaces then every spacetime event lies on the unique spacelike hy-
persurface at a unique value of the time. A time parameter is then provided which vary with each
hypersurface. Since this foliation is obtained by hypersurfaces of constant mean extrinsic curva-
ture so hereafter it is referred to as K-slicing. Thus trK = K has the same valve everywhere but
differ from one slice to another. It was then referred to as the York time [6]. K varies with each
hypersurface just like the time parameter. So there is a 1 − 1 correspondence between different
values of K and the time parameter.

3.2 York-Slicing or K-Slicing

In a closed universe, the difference between inside and outside of a black hole is not clear or in
other words distinction between black hole singularity and final cosmological singularity is not
clear. Penrose pointed out that by a conformal transformation the black hole singularity can be
viewed as part of the final singularity or in an open universe part of the compactification of the
spacetime at future infinity [23]. The picture he proposed was to view that black hole singularity
as stalactites on the roof of a cave, and the cave which represented the final singularity. If roof
can be straightened out appear smooth by some appropriate conformal transformation [24]. This
also means that spacetime should be K-foliated by means of spacelike hypersurfaces which would
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Figure 3.1: In the Penrose’s picture the black hole singularity is to the final singularity as a stalactite
is to the ceiling of the cave [24].

approach the singularity without cutting it anywhere. The entire spacetime would be foliated.
The limit of some parameter going to some specific value should yield the entire singularity. The
Penrose’s idea can be depicted in the above figure.

Initial attempts founded on foliation by maximal slicing [23]. Maximal slicing means that
foliation by hypersurfaces of zero mean extrinsic curvature. Some problems arising in maximally
slicing a spacetime even the simplest of the spacetime, i.e, the Schwarzschild black hole could not
be foliated completely. The hypersurface ran out into a boundary, i.e, it didn’t cover the whole
spacetime. This shows that either the Penrose conjecture was incorrect or the maximal slicing was
not enough to foliate the whole spacetime [24]. It was argued that foliation by hypersurfaces of
constant mean extrinsic curvature would be more appropriate [25]. These hypersurfaces foliated
the entire spacetime as was expected.

3.3 K-Slicing of the Closed Model Universe

In a closed model universe the distinction of the principle between inside and outside of a black
hole event horizon breaks down. This is done by foliation of two model W-universes by hyper-
surfaces of constant mean extrinsic curvature. One of the simplest examples of the W-universe
is the Schwarzschild lattice [26]universe in which black hole represented by the Einstein-Rosen
bridge [27]. The other model consists of a black hole part away through the evolution of the Fried-
man universe. By this foliation it was concluded that a W-universe has two singularities the big
bang and the big crunch.
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3.3.1 Foliation of the Schwarzschild Lattice Universe

Schwarzschild lattice universe is one of the simplest models of W-universe. Such model has 5,
16, 20, 120 or 600 black holes in it (they choose 120 for definiteness) having identical masses as
shown in the figure below.

Figure 3.2: Different Schwarzschild regions are joined together to form a closed universe (taken
from [26]).

The basic analysis required for this purpose has already been set out by Lindquist and Wheeler
[26]. This model is foliated by a sequence of K = constant hypersurfaces by breaking each cell
independently as a Schwarzschild geometry and requiring that the foliating hypersurfaces have
zero derivative on the boundary, B. For the solution to be unique condition provided at B and the
centre of the cell. As the hypersurface must be non-singular anywhere, so a proper treatment had
to be made at the center of the lattice cell since the black hole singularity is located there. However
by requiring that extrinsic curvature and hence the York time become infinity at the singularity no
hypersurface of finite mean extrinsic curvature will hit the singularity. This foliation should have
the character of many one-finger gloves applied one over the other to a finger. No glove except the
last one should touch the finger, while the last one should fit on it [24]. More mathematically none
of the sequence of the hypersurfaces should touch the singularity but their limit should coincide
with Schwarzschild singularity which is located at the zero of Schwarzschild radial parameter,
r = 0.

The foliation runs smoothly with no problem anywhere else, this demonstrating that K-slicing
rather than the maximal slicing is more appropriate foliation procedure as noted by Brill, Cavollo
and Insenberg [28]. The problem with this model is that in the process of formulating the initial
condition the black hole singularity which was sheathed has been lost. In effect this model has
“mass without mass” as the singularities has been removed from the universe and replaced by
Einstein Rosen Bridges. In terms of Penrose’s picture there is no stalactite on the ‘cave roof’ here.
As there is no black hole in the model, so the problem is tackled by providing some mass in the
form of dust. This can be done by replacing one of the lattice cells considered by a thin shell of
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Figure 3.3: Expected gloving of a black hole singularity by a sequence of spacelike hypersurfaces
of increasing mean extrinsic curvature, trK, shown highly schematically (taken from [6]).

dust [6]. The geometry exterior to the shell is the Schwarzschild geometry while the geometry
interior to the cell is the Minkowski. The geometry of such a thin shell of dust in an asymptotically
flat spacetime has been studied by Israel [29]. A jump condition connects the Minkowski geometry
with the Schwarzschild due to the shell. The same foliation procedure was followed for this model
and again proceeded without any problem. However, the model, while more realistic than the
previous one, still lacked physical clarity. Then they developed a W-universe model in which the
physics comes out more clearly [24].

3.4 The Sandwich Model

Friedmann universe is homogeneous and our assumption about the model is that it should have
black hole in it. So cut and paste method is used to build such a model from the well understood
Friedmann and Schwarzschild geometries. To provide such inhomogeneity two closed friedmann
matter filled universes considered. One of the higher and the other of lower densities. A section
cut out from the lower density model and replaced by the section of higher densities model in such
a way that the mass of the model remains unchanged [24].

The empty region between the two possessed the features of the Schwarzschild geometry.
The model clearly has a picture of Schwarzschild geometry sandwich between the two slices of
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Figure 3.4: The ‘sandwich’ model (taken from ( [24]).

Friedmann universes, one of the higher density and less mass (the enveloped region) and the other
of lower density and greater mass (the enveloping region). To avoid the two regions ‘crossing into
each’ as must occur before the Schwarzschild region appears. The two sections of the Friedmann
models arrange in such a way that they fit perfectly together at the Big bang. The requirement is
that the three regions join together so that no crack appears between them in the entire evolution
of the model from the bang to crunch. The foliation procedure for such a model has a geometry of
3-spheres. This model is also called “The Suture Model” and will be discussed in the next section.

3.5 The Sandwich Model of a Black Hole in a Friedmann Uni-
verse

A W-model universe starts from a big bang, it then expands, this expansion does not go forever,
it reaches at its maximum size, shrinks and ends in a big crunch. In the Friedmann universe, the
big crunch may be everywhere at the same time. Whereas in a W-universe, the crunch happened
earlier in some parts than in the others. As this model consists of a Friedmann universe whose 1/N
sections has been cut out and replaced by a section of another Friedmann universe having the same
mass but different density than that of the low density Friedmann universe. Due to the different
densities the denser region collapse faster than the rare one and similarly the collapse occur earlier
than that of the rare one. Therefore, the denser region has a shorter life than that of the rare one.
Here time does not mean that the proper time, rather it means that the York time, K, as defined by
the trace of the extrinsic curvature tensor.
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3.5.1 Formation of the Suture Model

In a closed universe, the black hole singularity and the final big crunch singularity are the same.
This has been discussed in the context of few inhomogeneous cosmological models by Bril, Cav-
allo and Isenberg [28]. Qadir and Wheeler studied the dynamics of inhomogeneous cosmological
model by considering two closed matter filled universe model, one with high and the other with
low density [30]. They studied this model and showed that there is no difference of principle be-
tween inside and outside of a black hole. The black hole singularity is a part of final singularity.
Finally, they concluded that in such a model universe there are only two singularities, i.e, the big
bang and the big crunch.

They used a ‘cut and paste’ method to build such a model from the well understood Fried-
mann and Schwarzschild geometries. The desired inhomogeneity was provided by considering
two Friedmann universes of different densities. One is rare Friedmann and the other is dense
Friedmann. 1/N sections from rare Friedmann universe was removed and replaced by denser
Friedmann universe of same mass. These two sections were considered to be purely matter filled.
Both of the portions are so arranged that the mass of the model remains unchanged. Higher density
region has a short life-time than the lower density region. It will evolve at a much faster rate and
collapse to less than its Schwarzschild radius as seen from the lower density region. Thus a black
hole has formed in the lower dense Friedmann universe [30]. Comparison can be made with the
Schwarzschild lattice universe model, they took the size of the section removed from the lower
density model to be 1/120 of the total. For definiteness the proper-life of the denser Friedmann
model chosen to be 1/2 that of the less dense Friedmann model. Other fractions can be chosen
instead of 1/2 to obtain results numerically different but qualitatively with same behaviour. The
choice of 1/2 has no further significance.

Figure 3.5: The ‘cut and past’ view of the model universe with two dimensions suppressed. The
smaller and denser Friedmann universe contains the hyperspherical angle χs as the radial parame-
ter, whereas χl stands as the radial parameter of the larger, the less dense domain (taken from [30]).

Clearly if the two models join together purely at an instant, due to their different densities and
hence different evolutions they can not do before or afterwards. Once they start to separate off,
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they can be joined together by a region of pure Schwarzschild geometry. Thus the Schwarzschild
geometry sandwich between the two slices of Friedmann universes. To avoid the two regions
crossing into each other as must occur before the Schwarzschild region appears, so they arranged
the two sections of the Friedmann models to fit perfectly together at the big bang. They required
that the three regions fit together, so that no crack appears between them in the entire evolution
of the model from big bang to the big crunch. Therefore, they have a well defined model. They
foliated this model with a sequence of hypersurface of constant curvature K.

3.6 The Foliation Procedure and the Suture Model Parameters

The foliating spacelike hypersurfaces are spherically symmetric and independent of the angles θ
and ϕ. Therefore, we are only left with two parameters in the Friedmann region η and χ, where η is
the Friedmann angle-like parameter and χ is the spherical angle. Whereas in the Schwarzschild re-
gion r and t are the radial and time parameters respectively or in the Kruskal-Szekeres coordinates,
the equivalent parameters are u and v or in the Penrose compactified coordinates the corresponding
parameters are ξ and ψ. The evolution would proceed normally in the higher density Friedmann
universe from the point of view of an observer which is located in the enveloped Friedmann uni-
verse given by the following metric [6].

ds2 = a2(η)[−dη2 + dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)], (3.3)

where a(η) is given by

a(η) = (as/2)(1 + cos ηs), (3.4)

ηs being the ‘time’ parameter for the enveloped region, going from -π to π at the big bang, through
0 at the phase of maximum expansion, to π at the big crunch and as is the radius of the denser
Friedmann universe at the phase of maximum expansion. The radial parameter, χs, goes from 0
at the center of the region to some χM at the boundary with the Schwarzschild region. For the
section of the denser Friedmann region to remain unchanged χM has to be constant over the entire
evolution of the model. The evolution proceeds normally in the less Friedmann region as shown
by the Eq. (3.3) but with aη given by

a(η) = (al/2)(1 + cos ηl), (3.5)

where ηl and al are the corresponding quantities for the enveloping less dense Friedmann region.
The radial parameter ηl , here goes from some constant ηp to π as shown in the figure 3.6.

Now we have a model W-universe which satisfies all over requirements. It is fully satisfied
from big bang to big crunch and has a black hole form in an essentially matter-filled closed Fried-
mann model universe. Our foliating hypersurfaces must start in the enveloped Friedmann region
at χs = 0. So that it is smooth when χ = 0 is approached from any direction, i.e, for all values
of θ and ϕ. In terms of an appropriate ‘angle’ parameter it must be flat at ηs = 0. The hyper-
surfaces then proceed out ward till it hits boundary between the enveloped Friedmann and the
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Schwarzschild region. The requirement is now that it does not develop a ‘kink’ at the boundary.
In other words, its ‘angle’ to the boundary remains the same on the either side of the boundary.
The same requirement must be met at the other boundary where the hypersurface emerges into the
enveloping Friedmann region. Finally, it must be smooth at χl = π regardless of which direction it
is approached from. Thus it must be ‘flat’ also at χl = π in that the angle parameter again becomes
zero.

Figure 3.6: Matching the three regions of the ‘sandwich’, region A has a Friedmann geometry
for 0≤ χs ≤ χM and π ≤ ηs ≤ π. A tracer particle at χM follows the ‘boundary’ MN as ηs
varies. Region C in the Kruskal-Szekeres coordinate is shown bounded by two tracer particles one
going from M to N, the other from P to Q. The two tracer particles coincide at the big bang so that
M and P are identified. In terms of v and u the two tracers get two ‘different places’ at the big
crunch. In region B, we have again a Friedmann universe, twice as long (in proper time) as A with
χp ≤ χl ≤ π, π ≤ ηl ≤ π and boundary PQ (taken from [30]).

Now to obtain the system of first order, first degree non-linear differential equations for the
spacelike hypersurfaces of constant trK in each of the three regions. They started with the given
initial conditions at some guess value of ηs at χs = 0, call it η0. Now they solved the equations
in the enveloped Friedmann region numerically till they hit the inner boundary at some value of
ηl, call it η1, and some angle. The value of η1 and χM give some initial values of t and r in the
Schwarzschild region. Using these values and angle already obtained they solved the equations
and the Schwarzschild region numerically till they hit the outer boundary at some final values of t
and r and the angle. Now they converted these values of t and r into the values of η1 and χp, call
it η2. With these as the initial conditions they solved the equations in the enveloping Friedmann
region till they reached χl = π. The mathematical procedure will be discuss in the next section.
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3.7 Mathematical Formulation for the Foliating Hypersurfaces

We need the mathematical equations for the suture model and then to solve them numerically and
get results. We will only discuss the mathematical formulation of the foliating hypersurfaces in
the Friedmann and the Schwarzschild regions of the suture model separately. The foliating hy-
persurfaces starts in the denser Friedmann region, A. But here we will discuss the mathematical
procedure for foliating hypersurfaces in the Schwarzschild region, C, first in the following subsec-
tion.

3.7.1 Foliation in Region C

The mean extrinsic curvature of a hypersurface trK, is given by

K = −divn, (3.6)

where n is the unit normal to the hypersurface. As the hypersurface is spacelike so n is the timelike
and a unit tangent to the hypersurface, t, is spacelike.

n.n = −1, (3.7)

t.t = 1. (3.8)

As this region consists of Schwarzschild geometry. Here we take θ = π/2 and ϕ = 0 for the
convenience, so that dθ and dϕ neglected throughout the equation, then the Schwarzschild metric
becomes

ds2 = −
(
1− 2m/r

)
dt2 +

(
1− 2m/r

)2
dr2. (3.9)

The components of the tangent vector are

tµ = (dt/ds, dr/ds, 0, 0). (3.10)

The orthogonality between t and n require that ‘time’ and ‘space’ components of n must be like
that

nt =
(
1− 2m/r

)−1
dr/ds, (3.11)

nr =
(
1− 2m/r

)
dt/ds. (3.12)

The requirement is that n satisfy the equation (3.7) can be ensured by expressing the components
in terms of an imaginary angle, β, so that

nt = |1− 2m/r|1/2 cosh β, (3.13)

nr = |1− 2m/r|1/2 sinh β. (3.14)
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The expression for the mean extrinsic curvature can be expressed as

−K = nµ;µ, (3.15)

= nµ,µ + [ln
√
|g|],µnµ, (3.16)

= nt,t + nr, r + [ln
√
|g|],tnt, (3.17)

= nt,t + nr,r + (2 ln r),rn
r. (3.18)

Now differentiating Eqs. (3.13) and (3.14) with respect to t and r respectively and using Eqs.
(3.11), (3.12) and (3.13), (3.14) to eliminate nt and nr leads to

dβ

ds
= −K −

(
2

r
− 3m

r2

)
dt

ds
. (3.19)

The initial conditions for the system of equations given by Eqs. (3.11) - (3.14) and (3.16) are
obtained by choosing an ‘initial time’, r0, at the throat of the Einstein-Rosen bridge t = 0. At this
point the hypersurface must be ‘flat’, namely the ‘time’ coordinate must be unchanging and the
angle parameter must vanish.

dt

ds
|r=r0 = (2m/r0 − 1)−1/2, (3.20)

dr

ds
|r=r0 = 0, (3.21)

β|r=r0 = 0, (3.22)
dβ

ds
|r=r0 = −K +

(
2m/r0 − 1

)1/2(
3/2r0 − 1/4m

)
. (3.23)

Eqs. (3.11) - (3.14) and (3.16) subject to Eqs. (3.17) - (3.20) can be integrated till r = 2m but they
become singular there due to the Schwarzschild coordinate singularity.

To avoid this problem we have used Kruskal-Szekeres coordinates which are regular at the event
horizon and hence the character of time and space rather than null coordinates.

u =

(
1− 2m

r

)1/2

er/4m sinh(t/4m), (3.24)

v =

(
1− 2m

r

)1/2

er/4m cosh(t/4m), (3.25)

u =

(
2m

r
− 1

)1/2

er/4m cosh(t/4m), (3.26)

v =

(
2m

r
− 1

)1/2

er/4m sinh(t/4m), (3.27)

where t has been assumed to be greater than zero. For t < 0 the signs of u and v have to be
changed. In these coordinates the metric is of the form

ds2 = f 2(−dv2 + du2) + r2(dθ2 + sin2 θdϕ2), (3.28)
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where

f 2 =
32m3

r
e−r/2m. (3.29)

Corresponding to Eqs. (3.11)-(3.14) and (3.16) we now have

nv = f−1 cosh γ = f−1
du

ds
, (3.30)

nu = f−1 sinh γ = f−1
dv

ds
, (3.31)

dγ

ds
= −K −

(
6m

r
− 1

)(
f

4m

)2(
u
dv

ds
− vdu

ds

)
. (3.32)

In these coordinates the initial conditions are

dv

ds
|r=r0 = 0, (3.33)

du

ds
|r=r0 = f−1|r=r0 , (3.34)

γ|r=r0 = 0, (3.35)

dγ

ds
|r=r0 = −K −

(
6m

r
− 1

)(
f

4m

)2

. (3.36)

The final condition is that the hypersurface is orthogonal to the boundary where they meet. Thus
b is the unit vector tangent to the geodesic representing the development of the position of the
boundary between two cells, satisfies the equations

b.b = 1, t.t|boundary = 0. (3.37)

In Kruskal-Szekeres coordinates the latter equation is

(du/dsB)bµB = (dv/dsB)bνB. (3.38)

The components of b are obtained by differentiating the equations for the boundary given by
Lindquist and Wheeler respect to the proper time, to obtain

bt =
(
1− 2m/R

)1/2(
1− 2m/r

)−1
, (3.39)

br =
(
2m/r − 2m/R

)1/2
, (3.40)

whereR is the maximum value that r can take in the lattice cell. In the Kruskal-Szekres coordinates
Eqs. (3.39) and (3.40) become

bv =
v
(
2m/r − 2m/R

)1/2 − u(1− 2m/r
)1/2

4m
(
1− 2m/r

) , (3.41)

bu =
u
(
2m/r − 2m/R

)1/2 − v(1− 2m/r
)1/2

4m
(
1− 2m/r

) . (3.42)
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The subscript ‘B’ in Eq. (3.38) indicates that the relevant quantities are evaluated where the hyper-
surface meets the boundary.

The procedure is now straightforward. With some guess value of r0 for a given constant K, they
integrated Eqs. (3.27), (3.28) and (3.29) with the initial conditions (3.30)-(3.33) and check whether
the resulting values of (dv/ds) and (du/ds) satisfy Eqs. (3.35) and (3.38), (3.39). For some values
of r0 the left hand side of Eq. (3.35) will be greater than the the right, while for others it will be
less. They iterated above till they found a good enough fit.

3.7.2 Foliation in Region A

In the Schwarzschild model we started in the Friedmann region. The equations for the foliating
hypersurfaces for the constant, K, expressed in terms of an imaginary angle , analogous to Eqs.
(3.11)-(3.14) and (3.16) are

nη =
dχ

s
= a−1(η) coshα, (3.43)

nχ =
dη

s
= a−1(η) sinhα, (3.44)

dα

ds
= −K − 3

1

a(η)

da(η)

ds
− 2 cotχ

dη

ds
. (3.45)

The initial conditions are stated at some guess value of η0 at χ = 0. Eq. (3.42) is singular at this
point. However since the hypersurface is ‘flat’, α = 0 at χ = 0 and so the last term becomes
indeterminate. We use the l’Hospital’s rule to evaluate this indeterminate expression to obtain the
initial conditions.

dη

ds
|χ=0 = 0, (3.46)

dχ

ds
|χ=0 = a−1(η), (3.47)

α|χ=0 = 0, (3.48)
dα

ds
|χ=0 = −1

3
K − a−2(η)

da(η)

dη
. (3.49)

By integrating Eqs. (3.40)-(3.42) subject to the initial conditions (3.43)-(4.46) till we reach χM .

We now require that the hypersurface makes the same angle with the boundary between the Fried-
mann and Schwarzschild regions, on both sides of the boundary. Let the unit, timelike vector
tangent to the boundary be T. Then we require that t.T be the same in both regions. There is no
coordinate transformation available from the Friedmann to the Schwarzschild coordinates as the
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two geometries are essentially different. We are therefore forced to calculate the expression on
both sides of the boundary and equate them. In the Friedmann region

T = (a1, 0, 0, 0), (3.50)

as T has unit magnitude and is purely timelike in the rest-frame for the Friedmann universe model.
Thus the invariant quantity is

t.T = −a2(η)(dη/ds)a−1(η) = sinhαM , (3.51)

where αM is the angle, worked out at the boundary.

Corresponding to Eqs. (3.40)-(3.43), in the Schwarzschild region the equations for the foliating
hypersurface for a given constant K are already given by (3.11)-(3.14) and (3.16). Writing T in
terms of new imaginary ‘angle’

Tµ =
(
(1− 2m/r)1/2 cosh δ, (1− 2m/r)/2 sinh δ, 0, 0

)
. (3.52)

We see that

t.T = sinh(βM − δ), (3.53)

where

δ = tanh

[
dR/dη

dtb/dη
(1− 2m/r)−1

]
, (3.54)

dR

dη
= −(Rs/2) sin η, (3.55)

dtb
dη

= (Rs/2m+ 2)(Rs/2m− 1)1/2 +
Rs

2m

(
(Rs/2m− 1)1/2

)
sinh η

+2

(
Rs/2m− 1

)1/2
sec2(η/2)

(Rs/2m− 1)1/2 − tanh2(η/2)
. (3.56)

Thus, knowing αM we can compute βM by using Eqs. (3.48) and (3.51)-(3.54).

We now solve numerically the Eqs. (3.48), (3.49) and (3.51) with the initial value of β, till we
come to the outer boundary. Again converting back to the Friedmann geometry, setting χ = χp
at the boundary, we integrate numerically out till χ = χf < π. For the first guesses for η0 for a
given value of K, we keep χf small (say about 1 or 1.5) and use relatively large step sizes. Once
a rough range of η0 has been obtained we gradually increase χf till it reaches 3 and decrease step
size till the results are sufficiently stable against changes in step size and in changes of η0 over a
sufficiently small range.

This procedure cannot be followed as stated here when Rs < 2m as we would then have to in-
tegrate across the coordinate singularity at r = 2m. For this purpose we use Kruskal-Szekeres
coordinates r < 2m. It is not convenient to use these coordinates for all values as they become too
large to maintain the required accuracy. After crossing the horizon we therefore need to convert
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from the Kruskal-Szekeres coordinates Eqs. (3.27), (3.28) and (3.30)-(3.33) to the Schwarzschild
coordinates equations. Here we can actually perform the coordinate transformation and compare
the angle obtained by coordinate transformation from Schwarzschild to Kruskal-Szekeres coordi-
nates with that obtained by computing throughout in the Kruskal-Szekeres coordinates.

This computation leads to

γ = β + t/4m. (3.57)
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Chapter4
The Qadir-Wheeler Suture Model and the
Information Loss Paradox

In this chapter we will discuss the connection between the Qadir-Wheeler suture model [24] and
the information loss paradox. But, before going to discuss we will briefly review the “asymptotic
behaviour of length and volume of suture model” [30] and “asymptotic behaviour of length and
volume of Schwarzschild’s singularity” [31].

4.1 Asymptotic Behaviour of Length and Volume of Suture Model

The Schwarzschild geometry between the Friedmann regions can be described by the following
line element

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2. (4.1)

We want to analyse how his geometry changes with the evolution of the model near the final singu-
larity r = 0. Since the Schwarzschild (t, r) coordinates are not well behaved, so we convert them
into Kruskal-Szekeres coordinates by using the transformations (3.24) and (3.25). The transformed
evolution equation is given by

dr

ds
= −K −

(
3rs
r
− 1

)(
f

2rs

)2(
u

dv

ds
− vdu

ds

)
. (4.2)

The Kruskal-Szekeres coordinates can be converted into compactified form by using the following
transformation

v + u = tan
1

2
(ψ + ξ), (4.3)

v − u = tan
1

2
(ψ − ξ). (4.4)
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The Schwarzschild line element in compactified Kruskal-Szekeres coordinates can be written as

ds2 = f 2(r)

[
−dψ2 + dξ2

4 cos2 1
2
(ψ + ξ) cos2 1

2
(ψ − ξ)

]
+ r2dΩ2. (4.5)

Due to spherical symmetry, the expansion will be the same along any θ and ψ, so the line element
becomes

ds2 = f 2(r)

[
−dψ2 + dξ2

4 cos2 1
2
(ψ + ξ) cos2 1

2
(ψ − ξ)

]
. (4.6)

By simplifying the term in the denominator

cos
1

2
(ψ + ξ) cos

1

2
(ψ − ξ) = cos2

ψ

2
cos2

ξ

2
− sin2 ψ

2
sin2 ξ

2
, (4.7)

2 cos
1

2
(ψ + ξ) cos

1

2
(ψ − ξ) = 2

(
cos2

ψ

2
cos2

ξ

2
− (1− cos2

ψ

2
) sin2 ψ

2

)
, (4.8)

= 2
(

cos2
ψ

2
cos2

ξ

2
− sin2 ξ

2
+ cos2

ψ

2
sin2 ξ

2

)
, (4.9)

= 2
(

cos2
ψ

2
− sin2 ξ

2

)
. (4.10)

The proper distance between two Friedmann regions can be obtained by integrating the following
equation

∆s =

∫ s2

s1

ds, (4.11)

∆s =

∫ s2

s1

f(r)

2
(

cos2 ψ
2
− sin2 ξ

2

)[− (dψ
ds

)2
+
(dξ
ds

)2] 1
2

ds. (4.12)

4.2 Asymptotic Behaviour of ∆s with K

As K takes the higher values the hypersurfaces become flatter, so dr/ds tends to zero as final
singularity approaches, so Eq. (4.2) becomes

K =

(
1− 3rs

r

)(
f

2rs

)2(
u

dv

ds
− vdu

ds

)
. (4.13)

By using Eqs.(4.3) and (4.4), we can write

du

ds
=

1

4

[
sec2

1

2
(ψ + ξ)(

dψ

ds
+

dξ

ds
)− sec2

1

2
(ψ − ξ)(dψ

ds
− dξ

ds
)

]
, (4.14)

dv

ds
=

1

4

[
sec2

1

2
(ψ + ξ)(

dψ

ds
+

dξ

ds
) + sec2

1

2
(ψ − ξ)(dψ

ds
− dξ

ds
)

]
. (4.15)
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So

u
dv

ds
− vdu

ds
=

1

4

[
tan

1

2
(ψ + ξ) sec2

1

2
(ψ − ξ)

(dψ

ds
− dξ

ds

)
− tan

1

2
(ψ − ξ) sec2

1

2
(ψ + ξ)

(dψ

ds
+

dξ

ds

)]
. (4.16)

Now

tan
1

2
(ψ + ξ) sec2

1

2
(ψ − ξ) =

sin 1
2
(ψ + ξ)

cos 1
2
(ψ + ξ)

.
1

cos2 1
2
(ψ − ξ)

, (4.17)

=
sin2 1

2
(ψ + ξ)

sin 1
2
(ψ + ξ) cos 1

2
(ψ + ξ)

.
1

cos2 1
2
(ψ − ξ)

, (4.18)

=
1− cos(ψ + ξ)

2 sin 1
2
(ψ + ξ) cos 1

2
(ψ + ξ)

.
2

cos2 1
2
(ψ − ξ)

, (4.19)

=
1− cos(ψ + ξ)

sin(ψ + ξ)
.

2

cos2 1
2
(ψ − ξ)

, (4.20)

=
2(1− cos(ψ + ξ))

(
1 + cos(ψ + ξ)

)
sin(ψ + ξ) cos2 1

2
(ψ − ξ)

(
1 + cos(ψ + ξ)

) , (4.21)

=
2
(
1− cos2(ψ + ξ)

)
sin(ψ + ξ) cos2 1

2
(ψ − ξ)

(
1 + cos(ψ + ξ)

) , (4.22)

=
2 sin(ψ + ξ)

cos2 1
2
(ψ − ξ).2 cos2 1

2
(ψ + ξ)

, (4.23)

=
sin(ψ + ξ)(

cos2 ψ
2
− sin2 ψ

2

)2 . (4.24)

Also

tan
1

2
(ψ + ξ) sec2

1

2
(ψ − ξ) =

sin(ψ + ξ)(
cos2 ψ

2
− sin2 ψ

2

)2 . (4.25)

u
dv

ds
− vdv

ds
=

sin(ψ + ξ)(
cos2 ψ

2
− sin2 ψ

2

)2 (dψ

ds
− dξ

ds

)
− sin(ψ − ξ)

(cos2 ψ
2
− sin2 ψ

2
)2

(dψ

ds
+

dξ

ds

)
, (4.26)

which is simplified to

u
dv

ds
− vdu

ds
=

1(
cos2 ψ

2
− sin2 ψ

2

)2[ cosψ sin ξ
dψ

ds
− sinψ cos ξ

dξ

ds

]
. (4.27)

For higher values of K, we can approximate ψ by

ψ =
π

2
− ε, 0 < ε� 1 (4.28)
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dψ

ds
= 0. (4.29)

Eq. (4.27) becomes

u
dv

ds
− vdu

ds
=

− sin(π
2
− ε) cos ξ(

cos2(π
4
− ε

2
) sin2 ξ

2

)2 dξds
− cosψ cos ξ(

cos2(π
4
− ε

2
) sin2 ξ

2

)2 dξds. (4.30)

The term in the denominator can be simplified as(
cos2(

π

4
− ε

2
) sin2 ξ

2

)2
=

(1

2
(1 + sin ε)− 1

2
(1− cos ξ)

)2
. (4.31)

Eq. (4.30) becomes

u
dv

ds
− vdu

ds
=

− cosψ cos ξ(
1
2
(1 + sin ε)− 1

2
(1− cos ξ)

)2 dξds, (4.32)

=
− cosψ cos ξ

1
4

[
(1 + sin ε− 1− cos ξ)2

] dξ
ds
, (4.33)

=
−4 cosψ cos ξ(
sin ε+ cos ξ

)2 dξds. (4.34)

Expanding ‘sin ε’ and ‘cos ε’ by using Taylor series and neglecting higher powers, we get

sin ε = ε+O(ε3), (4.35)
cos ε = 1 +O(ε2). (4.36)

From Eqs. (4.35) and (4.36), Eq. (4.34) becomes

u
dv

ds
− vdu

ds
=

−4 cos ξ(
ε+ cos ξ

)2 dξds +O(ε2), (4.37)

=
−4 cos ξ(

ε2 + cos2 ξ + 2ε cos ξ
) dξ
ds

+O(ε2), (4.38)

=
−4 cos ξ

cos2 ξ
(
1 + 2ε sec ξ +O(ε2)

) dξ
ds

+O(ε2), (4.39)

=
−4

cos ξ
(
1 + 2ε sec ξ +O(ε2)

) dξ
ds

+O(ε2), (4.40)

=
−4 sec ξ(

1 + 2ε sec ξ
) dξ
ds

+O(ε2), (4.41)

= −4 sec ξ
(
1 + 2ε sec ξ

)−1dξ
ds

+O(ε2), (4.42)

= −4 sec ξ
(
1− 2ε sec ξ

)dξ
ds

+O(ε2). (4.43)
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For the value of ψ = π
2
− ε, Eq. (4.6) becomes

1 =
f(r)2(

ε+ cos ξ
)2(dξ

ds

)2

, (4.44)

(
dξ

ds

)2

=

(
ε+ cos ξ

)2
f(r)2

, (4.45)

dξ

ds
=

(
ε+ cos ξ

)
f(r)

, (4.46)

dξ

ds
=

cos ξ
(
1 + ε sec ξ

)
f(r)

. (4.47)

Now

u =
(
1− r

rs

)1/2
er/2rs sinh(t/2rs), (4.48)

v =
(
1− r

rs

)1/2
er/2rs cosh(t/2rs). (4.49)

Squaring and subracting the above two equations, we get

v2 − u2 =
(
1− r

rs

)
e
r
rs , (4.50)

The asymptotic regions contain the values of r that are close to r = 0, so by taking r = ε1rs, where
ε1 is a very small positive number, we get

v2 − u2 =
(
1− ε1

)
eε1 . (4.51)

Expanding eε1 as a Taylor series, we get

v2 − u2 = 1− ε21
2
− ε31

3
− ε41

8
+O(ε51). (4.52)

Putting u = 0 in the above equation, we get

v2 = 1− ε21
2
− ε31

3
− ε41

8
+O(ε51). (4.53)

Multiplying Eqs. (4.3) and (4.4), we get

v2 − u2 = tan
1

2
(ψ + ξ) tan

1

2
(ψ − ξ). (4.54)

At ξ = 0 and u = 0, we get

v = tan
ψ

2
. (4.55)

As ψ = π
2
− ε, thus from above equation we have

v = tan
(π

4
− ε

2

)
. (4.56)
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After simplifying, we get

v = 1− ε+
ε2

2
− ε3

3
+O(ε4). (4.57)

Squaring above equation and simplifying, we get

v2 =
[
1− 2ε+ 2ε2 +O(ε3)

]
. (4.58)

Comparing Eq. (4.53) with Eq. (5.58), we get

ε1 = 2ε1/2, (4.59)

let

ε =
ε21
4

(1 + δ), (4.60)

with this value of ε, solving Eqs. (4.53) and (4.58), we get

δ =
2

3
ε1 +O(ε21). (4.61)

Putting the value of δ in Eq. (4.60) and simplifying, we get

ε =
ε21
4

(
1 +

4

3
ε1/2 +O(ε)

)
, (4.62)

or

ε1 = 2ε1/2
(
1− 4

3
ε+O(ε)

)
. (4.63)

From Eqs. (4.59) and (4.63), we can see

ε1 ∼ ε1/2. (4.64)

Now we again take ψ = π
2
− ε, with the value of ξ chosen to be π

4
in the following equation.

v2 − u2 = tan
1

2
(ψ + ξ) tan

1

2
(ψ − ξ), (4.65)

we get

v2 − u2 = 1− 22/3ε+ 4ε2 − 11

3
21/2ε3 +O(ε4). (4.66)

Comparing Eq. (4.66) with Eq. (4.52), we get

ε1 = 25/4ε1/2. (4.67)

And for the second order approximation, we get

ε1 = 25/4ε1/2
(
1− 29/4 ε

1/2

3
+O(ε)

)
. (4.68)
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The second order approximation also supports Eq. (4.67), similarly this equation holds for other
values of ξ and π

2
. In general for ψ = π

2
− ε, Eq. (4.65) yields

v2 − u2 = 1− 2ε sec ξ + 2ξ2 sec2 ξ + ξ3 sec3
ξ

3
+O(ε4). (4.69)

Comparing Eq. (4.69) with Eq. (4.53) for any u, we get

ε1 = 2ε1/2
(

sec ξ
)1/2

. (4.70)

Let us choose this ξ as ξ0 whose value lies between ξ1 and ξ2, choosing ξ0 = (ξ1 + ξ2)/2, i.e, the
boundry values of ξ for the enveloped and the enveloping Friedmann regions.

By the equation

ak =
[
R3
k/rs

]1/2
, (4.71)

we see that

r = Rs, (4.72)

we get

r = Rs = a2/3r1/3s . (4.73)

For this value of rs, we have

ξ = ξ1. (4.74)

Here

r = ε1rs, (4.75)

we get

r = 2rs
(
ε sec ξ

)1/2
. (4.76)

Comparing Eq. (4.75) with (4.72), we get

cos ξ1 = 4ε

[
a
−4/3
s

r
−4/3
s

]
, (4.77)

or

ξ1 = cos−1
[
4ε
(
as/rs

)−4/3]
. (4.78)

Similarly

ξ2 = cos−1
[
4ε
(
al/rs

)−4/3]
. (4.79)
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Also

cos ξ2 = 4ε
(al
rs

)− 4
3 , (4.80)

ε =
1

4

cos ξ2(
al
rs

)− 4
3

, (4.81)

ε =
1

4

(al
rs

) 4
3 cos ξ2, (4.82)

cos ξ1 = 4.
1

4

(al
rs

) 4
3
(as
rs

)− 4
3 cos ξ2, (4.83)

cos ξ1 =
(al
as

) 4
3 cos ξ2. (4.84)

As
as
al

= p−1, (4.85)

al
as

= p. (4.86)

Therefore

cos ξ1 = p
4
3 cos ξ2, (4.87)

ξ1 = cos−1[p
4
3 cos ξ2]. (4.88)

This equation gives us the value of ξ1 in terms of ξ2, where ξ2 can be calculated for a given η by
matching the following two equations

v2 − u2 =
(
1− r

rs

)
e
r
rs , (4.89)

v2 − u2 = tan
1

2
(ψ + ξ) tan

1

2
(ψ − ξ), (4.90)

and solving the boundary conditions,

Rk = a sinχk, (4.91)

m =
1

2
ak sin3 χk, (4.92)

with

a(η) =
a0
2

(1 + cos η), (4.93)

t(η) =
a0
2

(π + η + sin η), (−π ≤ η ≤ π). (4.94)

The purpose to solve all these equations is to find ξ2. Comparing Eq. (4.52) with Eq. (4.69), we
get

1− ε21
2
− ε31

3
− ε41

8
+O(ε51) = 1− 2ε sec ξ + 2ξ2 sec2 ξ + ξ3 sec

ξ

3
+O(ε4), (4.95)

ε21
2

= 2ε sec ξ, (4.96)

ε1 = 2ε
1
2

(
sec ξ

) 1
2 , (4.97)

ε1 = bε
1
2 , (4.98)

55



where b is a constant and its value is

b = ε
1
2

(
sec ξ0

) 1
2 . (4.99)

Hence when r = ε1rs, we get

r = brsε
1
2 . (4.100)

With this value of r = brsε
1
2 , the following equation

f 2(r) =
4r3s
r
e
−r
rs , (4.101)

transformed into

f 2(r) =
4r3s

brsε
1
2

e−bε
1
2 , (4.102)

f 2(r) = 4r2sb
−1ε−

1
2

[
1 + bε

1
2 +O(ε)

]
, (4.103)

f(r) = 2rsb
−1ε−

1
4

[
1 +

1

2
bε

1
2 +O(ε)

]
. (4.104)

Inserting the value of f(r) in the following equation

dξ

ds
=

cos ξ(1 + ε sec ξ)

f(r)
, (4.105)

we get

dξ

ds
=

cos ξ(1 + ε sec ξ)

2rsb
−1
2 ε−

1
4

[
1 + 1

2
bε

1
2 +O(ε)

] , (4.106)

dξ

ds
=

1

2
r−1s b

1
2 ε

1
4 cos ξ(1 + ε sec ξ)

[
1 +

1

2
bε

1
2 +O(ε)

]−1
, (4.107)

dξ

ds
=

1

2
r−1s b

1
2 ε

1
4

(
cos ξ + cos ξε sec ξ

)[
1− 1

2
bε

1
2 +O(ε)

]
, (4.108)

dξ

ds
=

1

2
r−1s b

1
2 ε

1
4 cos ξ

(
1− 1

2
bε

1
2 +O(ε)

)
. (4.109)

Substituting Eq. (4.109) into Eq. (4.43), we get

u
dv

ds
− vdv

ds
= −2r−1s ε

1
4 b

1
2 (1− 1

2
bε

1
2 +O(ε)). (4.110)

Substituting Eq. (4.110) into Eq. (4.13), we get

K =

(
1− 3rs

r

)(
f

2rs

)2[
− 2r−1s ε

1
4 b

1
2 (1− 1

2
bε

1
2 +O(ε))

]
, (4.111)

K =
3

2
r−3s ε−

1
4 b−

1
2

(
1− 5

6
bε

1
2 +O(ε)

)
f 2. (4.112)
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This equation gives us f(r) as f(ξ) which is

f 2 =
2

3
Kr3sε

1
4 b

1
2

(
1− 5

6
bε

1
2 +O(ε)

)−1
, (4.113)

f(ξ) =

√
2

3
K

1
2 r

3
2
s ε

1
8 b

1
4

(
1 +

5

12
bε

1
2 +O(ε)

)
. (4.114)

Taking
√

2
3
b

1
4 rs = A0, we get

f(ξ) = A0(Krs)
1
2 ε

1
8

(
1 +

5

12
bε

1
2 +O(ε)

)
. (4.115)

Note that as ψ → π
2

the time parameter for the Friedmann region η → π, therefore at ψ = π
2
− ε,

we take η = π − λ. Obviously 0 < λ < 1. For this value of η, the following equation

a(η) =
a0
2

(1 + cos η), (4.116)

becomes

a(η) =
a0
2

(1 + cos(π − λ)), (4.117)

a(η) =
a0
4
λ2 +O(λ4). (4.118)

And its derivative

da

dη
= −a0

2
sin η, (4.119)

= −a0
2

sin(π − λ), (4.120)

= −a0
2

sinλ, (4.121)

da

dη
= −a0

2
λ+O(λ3). (4.122)

By substituting Eq. (4.122) into the following equation (which was discussed in last chapter), we
get [

dα

ds

]
χ=0

= −K
4
− 3

4a2
da

dη
, (4.123)

we get [
dα

ds

]
χ=0

= −K
4
− 3

4(
a20λ

4

16
)

(
− a0

2
λ+O(λ3)

)
, (4.124)

= −K
4

+
6

a0λ3
. (4.125)
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The initial conditions imply that as the hyperspherical angle χ → 0, the inclination parameter α
also approaches to zero. Then the above equation gives

0 = −K
4

+
6

a0λ3
, (4.126)

K =
24

a0λ3
, (4.127)

or

λ = 2

(
a0
3

)− 1
3

K−
1
3 . (4.128)

Now the matching conditions between the Friedmann and Schwarzschild regions give the “r” value
of the hypersurface from equation (Rk = a sinχk).
Inserting the value of a(η) and λ in equation (Rk = a sinχk) by taking a0 = ak, we get

r = Rk = 3
2
3a

1
3
kK

− 2
3 sinχk. (4.129)

Now we have the equation

m =
1

2
ak sin3 χk, (4.130)

2m = ak sin3 χk, (4.131)
rs = ak sin3 χk, (4.132)

sinχk =

(
rs
ak

) 1
3

. (4.133)

Now Eq. (4.129) becomes

r = Rk = 3
2
3a

1
3
kK

− 2
3 sinχk, (4.134)

= 3
2
3a

1
3
k k
− 2

3

(
rs
ak

) 1
3

, (4.135)

r = 3
2
3 rs
(
Krs

)− 2
3 . (4.136)

This equation matches with

r = ε1rs, (4.137)

if and only if

ε1 = 3
2
3

(
Krs

)− 2
3 , (4.138)

we insert this equation in the following equation

ε1 = bε
1
2 , (4.139)
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and get

3
2
3

(
Krs

)− 2
3 = bε

1
2 . (4.140)

Inserting the above equation into

f(ξ) = A0

(
Krs

) 1
2 ε

1
8

[
1 +

5

12
bε

1
2 +O(ε)

]
, (4.141)

= A0b
− 1

4

(
Krs

) 1
3
[
1 +

5

12
3

2
3

(
Krs

)− 2
3 +O

(
Krs

)− 4
3
]
, (4.142)

f(ξ) = A1

(
Krs

) 1
3
[
1 +O

(
Krs

)− 2
3
]
, (4.143)

where

A1 = A0b
− 1

4 3
1
6 =

√
2

3
1
3

rs. (4.144)

Now we have to put the value of f(ξ) from Eq. (4.143) and using Eqs. (4.28) and (4.29) into Eq.
(4.12), we get

∆s =

∫ s2

s1

f(ξ)

2
(

cos2(π
4
− ε

2
)− sin2 ξ

2

) dξ

ds
, (4.145)

=
1

2
A1

(
Krs

) 1
3
[
1 +O(Krs)

− 2
3

] ∫ ξ2

ξ1

dξ(
cos2(π

4
− ε

2
)− sin2 ξ

2

) . (4.146)

Simplifying the above equation, we get

∆s =
1

3
1
3

√
2
rs ln

[
tan ξ2 + sec ξ2
tan ξ1 + sec ξ1

](
Krs

) 1
3
(
1 +O(Krs)

− 4
3

)
, (4.147)

where ξ1 can be obtained from ξ2 by the following equation

ξ1 = cos−1
[
p

4
3 cos ξ2

]
. (4.148)

The above equation is shown explicitly.

∆s ∼ K
1
3 . (4.149)

Therefore one can say rigorously that as K goes to∞, ∆s also increases without bound and tends
to a line of infinite length as the cube root of K [30].
The two Friedmann universes which have now collapsed to a point are infinitely separated from
each other. This gives the first part of the proof of Qadir’s conjecture [12] but with the separation
varying as one-third power of K instead of one-half.

59



4.3 Asymptotic Behaviour of Volume of the Suture with K

To workout an expression for the volume of the Schwarzschild region of the model, we need the
full Schwarzschild metric in compactified coordinates by the following equation

ds2 = f 2(r)

[
−dψ2 + dξ2

4 cos2 1
2
(ψ + ξ) cos2 1

2
(ψ − ξ)

]
+ r2dΩ2, (4.150)

g =
−f 4(r)r4 sin2 θ

16 cos4 1
2
(ψ + ξ) cos4 1

2
(ψ − ξ)

, (4.151)

|g| =
f 4(r)r4 sin2 θ

16 cos4 1
2
(ψ + ξ) cos4 1

2
(ψ − ξ)

, (4.152)

√
|g| =

f 2(r)r2 sin θ

cos2 ξ(1 +O(ε))
. (4.153)

By substituting the value of f and r, we get

√
|g| =

A2
1

(
Krs

) 2
3
[
1 +O(Krs)

− 2
3

]2
3

4
3 r2s
(
Krs

)− 4
3 sin θ

cos2 ξ
(
1 +O(ε)

) , (4.154)√
|g| = A2

13
4
3

(
Krs

)− 2
3
[
1 +O(Krs)

− 2
3

]
sin θ sec2 ξ. (4.155)

Now we can use this equation in the expression for the volume of the schwarzschild region, which
is

V =

∫ ξ1

ξ1

∫ π

0

∫ 2π

0

√
|g|dψdθdξ, (4.156)

= A2
13

4
3

(
Krs

)− 2
3
[
1 +O

(
Krs

)− 2
3
] ∫ ξ1

ξ1

∫ π

0

∫ 2π

0

(sin θ sec2 ξ)dψdθdξ, (4.157)

= 4πA2
13

4/3r2s
(
Krs

)−2/3(
1 +O(Krs)

)−2/3
tan ξ|ξ2ξ1 . (4.158)

Since

A1 =

√
2

3
1
3

rs. (4.159)

Therefore

A2
1 =

2

3
1
3

r2s . (4.160)

Putting the above value in Eq. (4.158) and simplification gives

V = 8πr4s
(
32
)1/3(

Krs
)−2/3

[tan ξ2 − tan ξ1
][

1 +O(Krs)
]−2/3

. (4.161)

Which shows that

V v K−2/3. (4.162)

Therefore the volume of the Schwarzschild region goes to zero as the inverse two third power of
K.
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4.3.1 Second Order Approximation

Here I will not go into the detail derivation of second order approximation for length and volume.
The second order approximation can easily be calculated by the same procedure as discussed above
and it comes out to be

∆s =

√
2

31/3
rs sec ξ0(ξ2 − ξ1)(Krs)1/3

[
1 +

5

12
32/3(Krs)

−2/3 +O(Krs)
−4/3]. (4.163)

Similarly the expression for volume can easily be calculated as

V =
2

3−2/3
r4s sec2 ξ0(ξ2 − ξ1)(Krs)1/3

[
1 +

5

12
32/3(Krs)

−2/3 +O(Krs)
−4/3]. (4.164)

Both these above equations agree with the first order approximation.

4.4 Asymptotic Behaviour of the Proper Length and Volume of
the Schwarzschild Singularity

Since we have discussed the proper length and volume of the suture model with increasing values
of K. Here we will review the behaviour of the proper length and volume of the Schwarzschild
singularity separately, apart from the suture model. As it is clear to everyone that the Schwarzschild
singularity is spacelike and not timelike. Hence it is not a point, rather it is a line. If it is a line then
what is its length? Since it is singular it must have an infinite or zero length. As the singularity
is not a point so it cannot have a zero length, hence its length must be infinite. Here we have
two questions. First, how does the collapse occur if the length is infinite? Second, [31] how does
the length approach infinity as the singularity is approached? The answer to the first question is
that the volume approaches to zero even though the length approaches to infinity. The second
question cannot be answered without the foliation of the spacetime. Qadir and Siddiqui had been
obtained earlier [32] the foliation of the Schwarzschild spacetime by K-slices and then proved to
be complete [33]. The second question will be discussed in the next section.

4.4.1 Asymptotic Behaviour of the Proper Length of the Schwarzschild Sin-
gularity in CSK

To find the proper length of the Schwarzschild singularity we will use the following metric in the
CSK coordinates

∆s =

∫ s2

s1

f(r)

2
(

cos2 ψ
2
− sin2 ξ

2

)[− (dψ
ds

)2
+
(dξ
ds

)2] 1
2

ds, (4.165)

where

f 2(r) =
4r3s
r
e
−r
rs . (4.166)
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Consider the hypersurface close to ψ = π
2
, thus putting ψ = π

2
− ε in the denominator of the above

expression, we get

2
(

cos2
ψ

2
− sin2 ξ

2

)
= (sin ε+ cos ξ), (4.167)

∆s =

∫ π/2+ε

−π/2−ε

f(r)

(sin ε+ cos ξ)
dξ, (4.168)

and f 2(r) can be calculated as

f 2(r) = 4r2sc
2ε−1/4

[
1 + ε1/2 +O(ε)

]
, (4.169)

where c is a constant. Solving the Eqs. (4.168) and (4.169), we get

∆s = 2crsε
−1/8 ln

(
2

ε

)[
1 + ε1/2 +O(ε)

]
. (4.170)

4.4.2 Length and Volume of Schwarzschild Singularity Along K

The basic analysis of the proper length and volume for the suture model has been discussed in the
previous section. There we have used the boundaries of the Schwarzschild region so that spacelike
coordinate ξ to lie between a certain given ξ1 and ξ2. For our present purpose −π ≤ ξ ≤ π at
r = 0. By taking ξ1 = 0 and ξ2 = ψ − 2δ, with ψ = π

2
− ε, and using the extreme value of δ i.e.

δ = ε, we obtain

∆s = 3−1/68
√

2rs
(
Krs

)1/3
ln
(
Krs

)[
1 +

5

4
3−1/3

(
Krs

)−2/3
+O(Krs)

−4/3], (4.171)

and the volume V is given by the following equation.

V = 3−1/68
√

2πrs
(
Krs

)−1
ln
(
Krs

)[
1 +

5

4
3−1/3

(
Krs

)−2/3
+O(Krs)

−4/3]. (4.172)

4.5 Conclusion

Qadir-Wheeler Suture Model and Information Loss:
Since the suture model is based on a closed Friedmann universe, whereas in the black hole com-
plementarity principle and information loss paradox there is a concept of inside and outside of a
black hole for all time, an open universe is needed. For an open universe, the suture model can be
modified by taking the rare part of the model to be rare enough to be open. For this model, the
foliation would proceed in the same way as for a closed model but here we would lose the point
of principle that was proved by the suture model. On the other hand, foliation of open universe by
York time would conclude that the black hole singularity never forms [12]. As in the case of an
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open universe, if the outside universe goes on forever then there would not be enough York time
for the black hole singularity to form. By a conformal transformation the outside universe can be
made compact. Now, by using the result of the suture model one can prove that the big crunch
and the black hole singularity are simultaneous. On the other hand, if we reverse the conformal
transformation then there would be no end of the universe and hence the black hole singularity
never forms.

Foliation of the Schwarzschild spacetime by K-slices proved that the proper length of the
Schwarzschild region increases as K4/3 during which the area decreases as K2, consequently
the volume decreases as K−2/3. As the radius of the foliating hypersurface contracts, the cross-
sectional area reduces but it can never go less than 1 Planck unit. So there would be a point at
which the foliation cannot go further. As relativity is invariant under time reversal, so when we get
to the lowest value the only possibility for the hypersurfaces to emerge again. The black hole at
this point of the York time would turn into a white hole and pour out all the stuff. Never would any
information that had gone in be lost [12]. There is a notable similarity between this view of the end
result of the black hole and the information it holds with Susskind’s black hole complementarity
principle. Besides, there is a radical difference between these two views. That principle concludes
that the final result depends upon the view of the observer, here we have reached a definite answer
for all observers. Also there is a notable resemblance between this notion to the Hawking radiation
idea. Both agree on that the black hole will finally come to an end. According to both the views,
a massive black hole will take longer time to an end. However, Hawking’s approach was totally
different than this one.
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