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Abstract
In applications such as self-driving cars and swarms of aerial vehicles involving
a network of sensors, the concept of track-to-track association plays an impor-
tant role in their accurate surveillance and threat evaluation. The basic idea is
to efficiently group together redundant tracks associated with the track of an
object in a network of multiple sensors tracking multiple objects. Tracks are
either local tracks (observed by the sensor itself) or shared tracks (shared by
other sensors in the network), and they record the location of the objects under
observation. Due to sensor inaccuracies and network biases, the shared tracks
and local tracks are often mismatched, and it is not clear whether the objects
being tracked are the same or different. Various researchers have worked on the
problem of track-to-track association and have developed multiple association
algorithms with the primary focus on increasing the accuracy as the number
of sensors and targets increases. Among these approaches, the HAC algorithm
has been used for some specific scenarios but not generalized to multiple sen-
sors and targets. In this thesis, an indigenously developed scenario generator
has been utilized to create scenarios and perform HAC-based associations on
the corresponding network packets. The performance measurement of the HAC
algorithm in different scenarios in terms of quantified accuracy calculation using
ground truth data is the main contribution of this work. The HAC algorithm
starts with the pre-processing of network packets, which involves extraction of
tracks; conversion of location from latitude, longitude, and altitude (LLA) to
Earth-Centered Earth-Fixed (ECEF) frame and then to sensor local frame; fi-
nally, computation of sensor-specific standard deviations. The next step is time
synchronization, where each track is estimated at a fixed association time using
a Kalman filter or other estimation technique. This means that the track data
from shared and local tracks have been estimated/projected at a specific time.
The next step is hierarchical top-down cluster formation based on a predefined
threshold, allowing the merger of clusters to obtain the resulting associated clus-
ters/tracks. The final step is accuracy calculation, where the associated tracks
and ground truth data are compared to validate the association results. Mul-
tiple scenarios have been created to validate the performance of track-to-track
association, and the clustering algorithm’s accuracy has been computed for each
scenario. The accuracy varies with estimation and threshold calculations. It is
shown that by carefully selecting the threshold, the hierarchical agglomerative
clustering (HAC) algorithm results in an accuracy of more than 95%. This is
also observed in multiple sensors and multiple target cases.

Keywords: Track-to-Track Association, Multi-Object, Multi-Sensor, Sen-
sor Biases, Hierarchical Agglomerative Clustering (HAC).
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Chapter 1

Introduction

In this chapter, the fundamental concepts related to our research work will be
introduced, followed by the problem statement, research objectives, and the
motivation or applications of the research work. The chapter concludes with an
overview of the entire thesis.

1.1 Track-to-Track Association

In this section, we introduce the concept of track-to-track association and briefly
discuss some related terminologies. We begin with the idea of track formation,
which monitors the object of interest. While in motion in specific directions, the
sensor and the object under observation can be tracked through measurements.
Track formation begins when the object enters the sensor’s detection range.
Once the object is within this range, the sensor starts to observe and record
its location. Multiple objects can be observed, and each object is assigned a
unique label (ID) for identification. The sensor continuously records their path
as the objects move around as long as they remain in the sensor’s range. It’s
like tracing their journey on a map. Typical dimensions for the location of the
objects are the latitude, longitude, and altitude of the objects. This continuous
set of observations of the object locations is called the ’track’ and is available
at each sensor sampling time.

Sensors are designed to detect and observe the objects of interest. Local
tracks are specific to a single sensor. They capture the movements of objects
within that sensor’s field of view. It’s like the sensor’s personal diary of the
things it monitors.

On the other hand, shared tracks go beyond a single sensor. They represent
the combined efforts of multiple sensors, collaborating to track objects that move
across their observation areas. Shared tracks provide a more comprehensive view
of an object’s journey as various sensors contribute to the story.

Track-to-track Association: The track-to-track association uses observa-
tions and collected data from local and shared tracks to establish meaningful
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connections. It commences with the initial observations recorded by multiple
sensors, such as radars and lidars, collaborating to detect and monitor objects
in their respective views. These sensors have unique data processing systems
that introduce uncertainties that cause deviations between perceived and actual
object positions, which may be influenced by sensor biases or data noise.

These sensors can share information through a process that includes es-
tablishing a wireless data link that connects these sensors to facilitate com-
munication, enabling them to share position and object information through
data packets. However, challenges arise as these packets of tracks arrive out
of sequence due to latency in sensor systems, the data link, and environmental
factors. The data collected from these tracks enhances the collective observa-
tional capacity of sensors, which helps understand the tracked objects and their
journeys on the map. The important task of track-to-track association emerges
among sensor biases and asynchronous data complexities. This task aims to de-
termine whether the data from multiple sensors, influenced by biases, represents
the same or different objects.

Figure 1.1: Two sensors tracking one object

A fundamental scenario is depicted in Figure 1.1, in which two sensors ac-
tively monitor a shared area of interest. Their combined efforts focus on tracking
a single object of interest. Once they establish a data link amongst their local
and shared tracks at a time instance, they collaborate by sharing information
regarding their respective positions and the object they are tracking in their
field of view. This sharing of information is facilitated through the transmission
of data packets. This approach is essential for effectively associating the data
and making sense of the information.

Following this exchanged information, each sensor’s display exhibits two sep-
arate tracks. These duplications result from the inherent noise introduced by
each sensor’s processing system, the network, and the surrounding environment.
The challenge of track-to-track association arises in this context, aiming to de-
termine whether the objects being tracked by both sensors are the same or
distinct entities. Utilizing track-to-track association techniques here can help
determine whether the observed data/tracks correspond to the same or different
targets by comparing them to the ground truth.

Considering the scenario in Figure 1.2, three sensors are strategically posi-
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Figure 1.2: Sensors sharing data via common link

tioned in a formation, each overseeing distinct areas of interest. In this scenario,
Sensor 1 and Sensor 3 diligently track a single object, while Sensor 2 doesn’t
track any objects within its field of view. Figure 1.2 portrays the packets of
each sensor in distinctive colors corresponding to their respective sensors. Once
these sensors establish a data link, they engage in a collaborative exchange of
information for their tracks. This shared data encompasses details about their
positions and the objects they track within their field of view, conveyed as data
packets.

After sharing their track’s information, each sensor’s display exhibits two
distinct tracks. These dual representations arise due to the intrinsic noise in-
troduced by each sensor’s processing system, the network, and environmental
factors. The challenge of track-to-track association arises at this point. The
goal is to determine if the objects tracked by Sensor 1 and Sensor 3 are the
same entity or distinct objects. Following the implementation of track-to-track
association techniques, the results yield a clear verdict: Sensor 1 and Sensor 3
are indeed tracking different objects. Consequently, it is established that the
total number of objects present within the environment is two.

1.2 Motivation

This research project’s primary motivation is to analyze hierarchical cluster-
ing algorithms for track-to-track association in various scenarios. It addresses
the challenge of dealing with varying numbers of sensors and objects while
dealing with fluctuating thresholds. The study evaluates the HAC algorithm’s
resilience, particularly in sensor bias scenarios, as understanding and mitigating
these biases is crucial for accurate and reliable track-to-track associations. The
research also aims to identify and rectify constraints within current track as-
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sociation methodologies, leading to progressive advancements. The study aims
to develop more refined and effective track association techniques by imple-
menting optimal thresholds and filters. This aligns with my MS Computational
Sciences and Engineering academic background, offering a unique opportunity
to explore the intersection of sophisticated algorithms and track association,
potentially revolutionizing surveillance and tracking system optimization.

Figure 1.3: Growth in Sensor Deployment and Data Generation (2014–2019)
[44]

Figure 1.3 depicts the increase in the number of sensors and the magnitude
of data generated within a designated five-year period very well. The provided
visual depiction is a compelling illustration of the considerable rise in the de-
ployment of sensors and data generation during the specified time frame.

1.3 Problem Statement

The rapid advancement of technology has led to the widespread use of sensors
for tracking objects in multi-sensor, multi-object environments. With diverse
characteristics, these sensors often operate in overlapping roles, increasing the
likelihood of multiple sensors tracking the same object. They communicate via
wireless data links, exchanging information about their positions and detected
objects through data packets. Effective data analysis from these sensors is
crucial for determining the total number of objects and distinguishing whether
the tracks obtained from different sensors represent the same or different objects
within the environment. Research on various variants of HAC was needed, which
could increase the accuracy in multi-sensor multi-target scenarios, which has not
been explored in the literature.

This scenario has given rise to the challenge of track-to-track association,
especially when dealing with systematic biases in the data. To address this
complexity in track-to-track association, this research analyses a Hierarchical
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Clustering Algorithm to resolve the multi-sensor, multi-object track association
problem in diverse scenarios characterized by sensor biases. The goal is to inves-
tigate the performance of this algorithm across multiple scenarios and evaluate
its robustness in the presence of sensor biases by comparing it with the ground
truth. It is important to note that sensor biases can lead to distinct representa-
tions of a single target within shared or associated tracks. This research employs
hierarchical clustering techniques with a configurable threshold for associated
tracks in realistic scenarios. The aim is to develop the accuracy computation
framework from the association results of HAC by utilizing ground truth data
and identifying multiple scenarios for which the accuracy computations and
association results can be validated.

1.4 Research Objectives

The primary objectives of this research include:

• Implementation of the HAC algorithm for the problem of track-to-track
association on VOS-generated scenarios.

• Modification in VOS to generate ground truth data for each scenario in a
specific format

• Development of an accuracy computation framework from the association
results of HAC by utilizing the ground truth data.

• Identifying multiple scenarios for which the accuracy computations and
association results can be validated.

1.5 Areas of Application

Track-to-track association technology is a versatile technology that has applica-
tions across various fields. It is crucial in the automotive industry to enhance
safety and navigation in intelligent vehicles. It also improves monitoring and
threat detection in security and surveillance systems by tracking the movement
of people or objects over time. Satellite tracking is essential for accurate mon-
itoring and management of satellites, crucial for space missions. Military avia-
tion enhances air combat and tactical operations, allowing for better situational
awareness and decision-making during complex missions. In naval applications,
it optimizes underwater navigation and communication, tracking underwater
terrain and other vessels for safe and efficient operations. Overall, the track-to-
track association is a versatile tool with applications ranging from vehicle safety
to military operations and space exploration, each benefiting from improved
tracking and monitoring capabilities.
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1.6 Thesis Layout

The thesis structure offers a logical and thorough examination of the research
subject. The Introduction in Chapter 1 establishes the framework by provid-
ing a synopsis of the research question and outlining the particular goals that
direct the investigation. Building on the introduction, Chapter 2’s Literature
Review critically assesses the research already done in the area, providing a
comprehensive picture of the academic environment. The core of the thesis is
covered in Chapter 3, Methodology, which explores the complexities of the
system model and scenario generator. This chapter discusses the effects of sys-
tematic biases. It clarifies the track-to-track association algorithm and breaks
down the intricate flow of track synchronization. Results and Discussions in
Chapter 4 focus on presenting the findings. This chapter illustrates the ben-
efits of the suggested algorithm with simulation and detailed analysis, offering
a sophisticated view of its effectiveness and ramifications. Chapter 5, Conclu-
sion and Future Work summarizes the research’s main conclusions. It provides
a summary of the findings and, in looking ahead, considers possible future di-
rections for this work. This well-organized outline guarantees a logical flow of
thoughts, making it easier to investigate the research topic thoroughly.
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Chapter 2

Literature Review

This chapter will start by exploring the basics that form the research foundation
from the background and context of what other studies have discovered in the
field, followed by key concepts and theories like sensors and how we track moving
objects. The previous research and findings will set the stage for understand-
ing the challenges and possibilities we will tackle. This chapter is a roadmap,
guiding through what’s already known and pointing toward Algorithms and
Theoretical frameworks for our research objectives.

2.1 Sensors Basics

Tracking systems depend on sensors to convert inputs into actionable data.
They convert environmental cues like light, sound, and electromagnetic waves
into electrical signals or digital data. Sensors capture vital environmental and
object-tracking data. They consistently gather data on position, movement,
and other relevant attributes to provide critical insights into monitored objects.
Sensors play a foundational role within tracking systems by delivering compre-
hensive reports on target tracks. These reports include timestamps, identifica-
tion numbers, state estimates (e.g., position and velocity), and error covariance
matrices. Every sensor incorporates an internal tracking module that tailors
reports to its specific coordinate system. To achieve comprehensive tracking,
spatial and temporal alignment prove indispensable. Spatial alignment estab-
lishes a unified coordinate system, while temporal alignment synchronizes sensor
timestamps. Data validation filters ensure the transmission of only reliable in-
formation. Sensor meta-data, encompassing identification and field of view,
significantly contributes to effective data association and synchronization. The
track data format typically contains timestamps, sensor meta-data, track ID,
state estimates, and estimation error covariance matrices [19].

Using different principles, sensors capture physical properties like light, sound,
or electromagnetic waves and convert these into usable data, consistently gather-
ing crucial information about an object’s attributes [21]. This continuous moni-
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toring is fundamental for recording essential data about tracked objects. Various
sensors employ diverse methodologies for efficient object tracking. For instance,
specific sensors leverage clustering algorithms, enabling real-time data process-
ing in dense target environments, thereby enhancing effective object tracking
[5]. Hierarchical clustering techniques enhance multi-target tracking accuracy
and efficiency within data association [34]. These algorithms optimize object-
tracking systems by precisely associating measurements and tracks. In dense
target environments, advanced techniques like leader-follower online clustering
enhance track association [21].

Sensors in object-tracking systems use many algorithms and methods. These
methods enable data collection, processing, and association, enabling precise
object tracking in various environments. Many types of sensors detect environ-
mental cues and convert them into understandable data. RADAR, LIDAR, and
ESM are examples. RADAR systems emit radio waves and analyze their reflec-
tions for location and speed. However, LIDAR measures distances and creates
3D maps using laser pulses. ESM listens to electromagnetic signals from elec-
tronic devices to identify and classify radar and communication signals. Sensor
types serve different applications in defense, autonomous vehicles, and environ-
mental monitoring.

2.1.1 RADAR

Radio Detection and Ranging (RADAR) uses electromagnetic signals, mostly
radio waves, to detect objects’ presence, location, and movement within their
range. Its operational modes make this system versatile. Pulsed and continu-
ous wave RADAR detects objects by intermittently emitting waves and tracking
them through uninterrupted signal transmission and reception. The fusion of
these modes suits diverse applications and environmental conditions. Advanced
signal processing methods like matched filtering and waveform diversity boost
RADAR efficiency. Aligning received echoes with transmitted waveforms im-
proves signal-to-noise ratios for more accurate object detection with matched
filtering. Waveform diversity broadens the transmitted signal spectrum, improv-
ing object-background clutter discrimination. RADAR systems’ robustness and
precision are attributed to their integration of operational modalities and signal
processing methods, enabling rapid, accurate, and detailed object detection and
tracking across various domains [14].

According to Ryde and Hillier, RADAR can withstand harsh environmental
conditions. Their study compares RADAR and LIDAR ranging devices in ad-
verse conditions, highlighting RADAR’s robustness, especially in bad weather.
It shows RADAR’s accuracy in detecting and tracking targets despite challeng-
ing environmental conditions. RADAR excels in challenging weather conditions,
demonstrating its accuracy, reliability, and importance in various applications
[12]. J. Wang, A. von Trojan, and S. Lourey’s study on RADAR technology for
active sonar target tracking in anti-submarine warfare uses acoustic waves to lo-
cate and monitor submerged objects, particularly submarines. Emitting sound
pulses into the water and analyzing the echoes reveals the object’s character-
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istics and movements. Range resolution, target detection, and signal strength
for underwater tracking depend on pulse repetition frequency, pulse width, and
transmitted power. The study emphasizes the importance of RADAR in defence
systems, as it accurately detects and tracks underwater targets in complex mil-
itary environments [15].

Figure 2.1: Block diagram of a RADAR system [32]

RADAR has simple steps. Transmitters emit radio signals first. Antennas
detect object-reflected signals. Deciphering these echoes requires the receiver
to eliminate interference and amplify desired signals. A processor then analyzes
these signals to determine the object’s distance, identity, and motion. For op-
erators to understand the RADAR’s environment, processed data is presented
or transmitted to other systems. The diagram shows how RADAR systems
transmit, receive, and analyze signals to gain a complete understanding of their
surroundings[15]. RADAR systems are versatile and widely used. They accu-
rately detect, track, and localize objects in military operations, weather mon-
itoring, and autonomous navigation systems. The technology’s adaptability,
operational modes, and signal-processing methods make it important in mod-
ern sensing and tracking. Several fundamental principles and equations govern
RADAR technology’s operation and capabilities.

2.1.1.1 RADAR Range Equation

The primary equation for RADAR receiver power from targets is as follows. The
result depends on transmitted power, antenna gains, target radar cross-section,
and range. This equation is essential to understanding RADAR operation and
constraints [49]:

Pr =
PtGtGrλ

2σ

(4π)3R4
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2.1.1.2 Doppler Shift Equation

By comparing the reflected signal’s frequency to the transmitted signal, RADAR
systems calculate a target’s relative velocity using Doppler shift. Defense and
weather monitoring require speed detection [14]:

fd =
2vrft
c

Where:

• fd is the Doppler frequency shift.

• vr is the target’s radial velocity relative to the RADAR.

• ft is the transmitted frequency.

• c is the speed of light.

2.1.1.3 RADAR Cross-Section (RCS)

The Radar Cross Section (RCS) measures radar object detection. Intricate
value depends on target dimensions, configuration, composition, and texture.
The maximum target detection distance depends on the RCS [50]:

σ =
Pr(4π)

3R4

PtGtGrλ2

2.1.1.4 Ambiguity Function

The RADAR ambiguity function analyzes RADAR system resolution and dis-
crimination in range and velocity. It is essential for RADAR system design and
analysis [8]:

χ(τ, fd) =

∫ ∞

−∞
s(t)s∗(t− τ)e−j2πfdtdt

Where:

• χ is the ambiguity function.

• τ is the time delay.

• fd is the Doppler frequency.

• s(t) is the transmitted signal.

• s∗(t− τ) is the time-shifted complex conjugate of the transmitted signal.
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2.1.1.5 Signal-to-noise ratio (SNR)

RADAR performance depends on signal strength relative to background noise
(SNR). It affects RADAR signal detection and processing and is essential for
RADAR image and data interpretation [47]:

SNR =
Psignal

Pnoise

These equations serve as the foundational principles underlying RADAR sen-
sor technology. These devices enable scientists and engineers to create RADAR
systems with optimized range, resolution, detection capabilities, and depend-
ability for various applications.

2.1.2 LIDAR

LiDAR, or Light Detection and Ranging, is a remote sensing technology that
uses laser pulses to measure distances accurately. It evolved after the discovery
of lasers in the 1960s and involves the emission of laser beams toward a tar-
get and the measurement of the time it takes for these beams to reflect. This
method allows for precise distance calculations, which is essential for various
applications. The core components of a LiDAR system include a laser source,
a scanner or mirror, a photodetector, and a GPS receiver. These components
provide a highly accurate and reliable method of measuring distances, facilitat-
ing applications in topographic mapping, urban planning, and environmental
management. LiDAR is primarily used in geographical mapping, terrain mod-
eling, forestry, urban planning, and environmental monitoring due to its ability
to create detailed 3D maps and spatial data.

Figure 2.2: Structure of conventional LiDAR sensors [43]

It signifies a crucial leap forward in research, likely discussing essential ad-
vancements and applications within LiDAR technology [3]. The focus may delve
into radar ESM track-to-track association techniques, enhancing accuracy by
linking tracks from various sensors. Specifically, it emphasizes merging radar
and LiDAR sensors for applications like highway car-following systems. Diverse
methodologies and algorithms have surfaced, aiming to blend sensor data effec-
tively, enhancing automotive sensor fusion capabilities [16]. LiDAR technology,
including ground-based and airborne types, has numerous applications in var-
ious fields. Ground-based LiDAR systems, using lasers with wavelengths of
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500 to 600 nm, are crucial for topographic mapping, environmental monitoring,
and forest ecosystem research. These systems are used for precise mapping,
environmental surveillance, and the analysis of forest ecosystems, making Li-
DAR technology a widely documented and widely used tool [1][37]. Airborne
LiDAR systems are essential for terrain mapping, surveys, and land develop-
ment projects because they capture detailed 3D information about the Earth’s
surface while utilizing wavelengths between 1000 - 1600 nm. These systems
use laser pulses to measure the time light returns after hitting objects or the
Earth’s surface. The near-infrared spectrum provides a comprehensive terrain
view, allowing high-resolution mapping while maintaining accuracy [27].

LiDAR sensors are crucial in forest management, disaster management, ar-
chaeological surveys, and urban planning. They provide precise tree height
estimation, vegetation density analysis, and high-resolution data for assessing
terrains, mapping hazards, and planning disaster response strategies. Their
ability to penetrate dense foliage and uncover hidden features is essential for
archaeological site documentation. Their 3D modeling capabilities also aid in-
frastructure development, land use planning, environmental impact assessment,
and urban environment management [33]. Airborne LiDAR is a special kind of
technology where machines on planes or drones use laser beams to see things on
the ground. They shoot these lasers down and measure how long the light can
bounce back. This helps make detailed maps, check plants and trees, and even
helps during disasters or when planning cities. It’s famous because it accurately
pictures the Earth’s surface, helping in forests, city planning, and many other
areas. It’s all about quickly making 3D pictures, and there are some cool new
ways to make it work even better, like using a special laser. This technology is
important because it helps us see and understand our world better by taking
really good pictures from up high [45].

2.1.2.1 LiDAR Range Equation

LiDAR technology and its modeling principles often involve the LiDAR range
equation, which defines the relationship between the flight time of laser pulses
and the distance to the target, generally represented as:

r =
ct

2

Where:

• r is the distance between the LiDAR system and the target.

• c is the speed of light.

• t is the time-of-flight of the laser pulse.

LiDAR applications require this equation to calculate precise distances be-
tween the system and target objects for mapping and spatial understanding.
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2.1.2.2 The Role of Poisson Probability Distribution in LiDAR De-
tection Reliability

Another equation that might be involved is the Poisson probability distribution
equation, which describes the probability of a given number of events occurring
in a fixed interval of time or space. In the context of LiDAR and photon
detections, it could relate to the probability pj of the avalanche photodiode
(APD) being triggered, given the number of incoming photons.

pj =
λj · e−λ

j!

Where:

• pj is the probability of j photons triggering the APD.

• λ represents the average number of photons in a given interval.

These equations offer crucial outcomes for LiDAR applications. The Li-
DAR range equation computes precise distances between the system and tar-
get objects, enabling accurate mapping and spatial understanding. Meanwhile,
the Poisson probability equation aids in assessing the reliability of photodiode
triggers by incoming photons, influencing the quality and fidelity of LiDAR-
generated data and ensuring dependable image formation and data collection.

2.1.3 ESM

Electronic Support Measures (ESM) sensors track and identify radar signals
for surveillance, situational awareness, military operations, and air traffic man-
agement. Early remote sensing technologies like laser-based and radar signal
interception helped develop ESM sensors. These sensors intercept, identify, and
locate radar signals to detect presence, type, and location. Information is cru-
cial for implementing countermeasures, especially in military situations where
radar-based threats must be detected and countered for operational success and
safety [1][6][49]. LiDAR technology has significantly improved the capabilities of
Electronic Support Measures (ESM) sensors by providing accurate 3D imaging
and mapping of the environment, enabling them to identify and locate elec-
tronic signals. In 2021, 3D imaging models for airborne LiDAR systems were
developed, enhancing ESM sensor capabilities in complex and dynamic envi-
ronments. LiDAR’s contribution to object tracking, especially in challenging
environments like forests, has highlighted its significant improvement in ESM
sensor performance [28][45][36].

Evolution of electromagnetic support measures (ESM) sensors, essential to
modern surveillance and defense systems. ESM sensors detect and analyze radar
electromagnetic signals to improve object tracking. They also fuse sensor data
to improve environmental perception. ESM sensors can capture electromag-
netic signals from military radar systems and commercial navigation radars due
to their 2 GHz to 40 GHz operating frequency range. Defense systems can
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distinguish radar emissions for threat assessment and situational understand-
ing [49]. Integrating advanced signal-processing algorithms has advanced ESM.
Emitter detection and identification advancements have led to improved track-
to-track association methods [8]. In signal-interference-rich environments, the
algorithms remove noise and accurately associate radar tracks from sensors. Ma-
chine learning techniques improve ESM systems’ precision by enabling real-time
adaptation to new signals and countermeasures [50]. Advances have made ESM
sensors more practical and flexible, making them essential for electronic warfare
and intelligence gathering. Combining them with optical or infrared sensor data
boosts their effectiveness. This improvement aids strategic decision-making and
offers a complete operational view [12].

Algorithmic and statistical improvements have improved ESM sensor func-
tionality. Track initiation methods use statistical analysis to detect and track
objects accurately. Track-to-track fusion and association algorithms have rev-
olutionized ESM sensor data interpretation and management. Scholars have
used advanced data association techniques to improve precision in recent re-
search [2][8][4][52]. ESM sensors adapt to different environments, showing their
versatility. These technologies are used in automotive safety systems, maritime
surveillance, and other fields, proving their versatility. ESM technologies’ adapt-
ability is crucial for application in diverse sectors, highlighting their importance
in various operational contexts [3][17][50]. Despite these advances, sensor biases
and data precision in dense target environments remain issues. For ESM tech-
nologies to be effective in complex scenarios, future advancements should focus
on real-time track association and managing large sensor data sets [12][14][51].

2.1.3.1 Radar Range Equation for ESM

The radar range equation is important in ESM as it connects the received power
of an ESM system to the transmitted power, antenna gains, and target dis-
tance. The equation is crucial for the ESM operation as it aids in assessing the
detectability of radar emitters [49]:

Pr =
PtGtGrλ

2σ

(4π)3R4

Where:

• Pr is the power received by the ESM receiver.

• Pt is the power transmitted by the radar.

• Gt and Gr are the gains of the transmitting and receiving antennas, re-
spectively.

• λ is the wavelength of the radar signal.

• σ is the radar cross-section of the target.

• R is the range to the target.
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2.1.3.2 Signal-to-noise ratio (SNR) for ESM Detection

Signal processing in ESM systems heavily depends on the signal-to-noise ra-
tio (SNR), which quantifies signal strength compared to background noise. A
high signal-to-noise ratio (SNR) is crucial for the effective identification and
processing of radar signals by the electronic support measures (ESM) receiver,
particularly in the presence of environmental noise [14]:

SNR =
Psignal

Pnoise

Where:

• Psignal is the power of the received signal.

• Pnoise is the power of the background noise.

2.1.3.3 Angle of Arrival (AoA) Estimation

The angle of arrival (AoA) is a crucial aspect of Electronic Support Measures
(ESM) as it helps determine the direction of incoming signals. The AoA estima-
tion can be achieved by measuring the time difference of signal arrival between
two spatially separated antennas. This technique has been investigated in vari-
ous studies on ESM and radar systems [47]:

∆t =
d · sin(θ)

c

Where:

• - ∆t is the difference in arrival time of the signal at two antennas.

• d is the distance between the antennas.

• θ is the signal’s arrival angle.

• c is the speed of light (since radar waves travel at the speed of light).

2.1.3.4 Probability of Intercept (PI)

The probability of intercept (PI) is a crucial metric for ESM systems. It quanti-
fies the probability of detecting a specific radar signal by the ESM system over
a defined time interval. PI is influenced by various factors such as scan rate,
sensitivity, and bandwidth [8].

2.1.3.5 Ambiguity Function

The ambiguity function evaluates ESM systems’ time delay and Doppler fre-
quency resolution and performance. ESM systems can differentiate between
closely spaced signals in time or frequency [50]. These equations establish the
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mathematical framework that governs ESM systems’ design, development, and
operational capabilities. They facilitate the accurate detection, identification,
and localization of various signal types essential for surveillance, reconnaissance,
and electronic warfare. Theoretical foundations offer a comprehensive under-
standing of the principles and capabilities of modern ESM systems.

2.1.4 Object Tracking

Automotive, military, and aviation industries depend on object tracking, which
detects, tracks, and associates objects using radars and lidars. These range- and
resolution-specific sensors face biases and noise interference. Sensor performance
has improved quantitatively in range, accuracy, and resolution as tracking tech-
nologies have evolved. Laser technology improved lidar systems’ range, possibly
extending detection distance by several kilometers. These systems may have
improved accuracy, lowering error margins. Lidar systems may have improved
resolution, crucial for detailed mapping and object detection. These improve-
ments in distance measurement, error rates, and spatial resolution marked a
major leap in Lidar technology, laying the groundwork for its many applica-
tions in the decades that followed [1]. Statistical performance analysis of track
initiation methods is used in object tracking. This extensive study likely com-
pared nearest-neighbor tracking, probabilistic data association, and multiple
hypothesis tracking. The authors likely assessed these methods using detection
probability, false alarm rates, and track accuracy. The paper would have shown
how each technique performs under different noise, object density, and move-
ment patterns using simulations. This analysis would have helped determine
the best track initiation methods, advancing sensor-based tracking systems [2].

Object tracking requires multiple sensors, making track-to-track association
crucial. Radar and ESM integration for track association is documented. ESM
systems detect, intercept, and classify radar signals for military use. Correlating
radar-detected objects with ESM-detected signals for accurate tracking is the
main challenge in this domain. Tracks can be matched using algorithms or
statistics using velocity, direction, and electromagnetic signal characteristics.
Accurate identification and tracking of airborne or maritime targets are crucial
for surveillance and defense applications [3].

Figure 2.3 shows that rain fades can significantly affect the accuracy and
reliability of measurements from sensors like radar or lidar, leading to errors or
data loss in object-tracking systems. Higher frequency bands like Ka and Ku
are more susceptible to rain fade due to their smaller size. Understanding this
impact is crucial for designing and optimizing object-tracking systems. Miti-
gating its impact includes adaptive algorithms or switching to less susceptible
frequency bands. Key concepts for object tracking include antenna, datum,
antenna height, elevation angle, rain height, slant range, and h rain [38].

Automotive safety and autonomous vehicle development require multiple
sensor fusions to detect and track road obstacles. The integration and associa-
tion of radar, lidar, and camera data were examined. A complete and accurate
vehicle environment representation is needed to detect and track pedestrians,
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Figure 2.3: Earth-space slant range of signal below freezing point [38]

other vehicles, and road hazards. Sensor data alignment, discrepancy resolu-
tion, and real-time processing for dynamic obstacle tracking are proposed [4].
Clustering algorithms are necessary for tracking multiple targets at once. Mul-
tiple data points (or ’tracks’) are clustered by similarities like spatial proximity
or motion patterns by these algorithms. Clustering algorithms simplify tracking
by grouping similar tracks. This approach improves object distinction in dense
object populations and reduces track mis-association [5]. Sequential nonlinear
tracking follows objects using nonlinear methods, which are better at handling
real-world targets’ unpredictable movements. Sequential nonlinear tracking al-
gorithms are more robust and reliable than linear tracking methods because
they can handle sudden trajectories or speed changes. Algorithms update and
adjust object paths based on sensor data, ensuring accurate tracking in dynamic
environments [8].

Association commonly uses fuzzy logic, a form of many-valued logic that
uses approximate rather than fixed logic and exact reasoning for track-to-track
association. The fuzzy track-to-track association handles sensor data uncertain-
ties and ambiguities with fuzzy logic. Traditional crisp association methods may
fail or produce accurate results with complete or noisy sensor data. Fuzzy logic
improves tracking accuracy under uncertain conditions by associating tracks
from different sensors, allowing flexibility and tolerance [9]. The fusion of radar
and lidar data improves object-tracking systems. Lidar’s high resolution and
precision in mapping and object detection are enhanced by radar’s long-range
detection and weather resistance. This combination increases the tracking sys-
tem’s detection range and accuracy in identifying and positioning objects. Lidar
may struggle in bad weather, while radar may lack resolution. By integrating
sensor data, their limitations can be overcome. A more reliable and comprehen-
sive tracking system is crucial in complex environments like autonomous vehicle
navigation, where accurate obstacle detection is crucial [16][35].

Object tracking systems must process massive sensor data. This data is ideal
for machine learning algorithms, which find patterns and insights that improve
tracking accuracy. Machine learning in object tracking allows systems to learn

17



from data and improve over time. As more scenarios and data are collected, the
system improves in predicting and tracking object movements and behaviors.
Machine learning algorithms handle object tracking’s complexities and variables
well. They can adapt to changes in object behavior, environmental conditions,
and sensor inputs, making tracking more robust and flexible [34][40]. The fusion
of radar and lidar data with machine learning has transformed object tracking.
This synergy improves tracking systems’ range, accuracy, and ability to learn
from data, making them more sophisticated, efficient, and reliable for various
applications. Advances in sensor technology, algorithms, and data fusion have
transformed object tracking. This evolution has improved tracking systems’
accuracy and reliability, making them essential in modern technology.

2.2 Frames of References

Reference frames are essential in navigation, space exploration, and environ-
mental monitoring for accurate ranging measurements, safe navigation systems,
and precise localization in applications like autonomous vehicles and robotics.
They also provide standardized descriptions of positions and movements, en-
abling accurate communication across platforms. However, challenges persist
in accuracy and computational efficiency. ECI, LLA, and ECEF frames are
crucial for accurate navigation and coordinates. Researchers have found that
accurate frames of reference are crucial for reliable range-finding equipment in
autonomous navigation and environmental monitoring, especially in adverse en-
vironmental conditions. These frames provide a stable and consistent reference
point, preventing errors and inaccuracies from weather and terrain variations.
They recommend implementing calibration, correction, and compensation tech-
niques to enhance these devices’ performance and reliability [12].

The study emphasizes the significance of frames of reference in interpreting
radar and lidar sensing data for localization and mapping. Frames of reference
provide a consistent basis for interpreting data, especially in dynamic environ-
ments. Radar uses radio waves to detect objects and measure distances, while
lidar uses laser beams to create 3D maps. Accurate localization and mapping re-
quire alignment of sensor data with a common frame of reference, enabling data
fusion and integration [35]. Frames of reference are crucial in airborne LiDAR
systems, which use laser beams to create detailed 3D maps of the environment.
These frames represent coordinate systems and orientations used to interpret
and analyze data collected by LiDAR sensors. A consistent frame of reference
ensures accurate interpretation and integration of captured measurements with
other sensor data or mapping systems. A reliable frame of reference allows re-
searchers to accurately determine objects’ position, orientation, and shape in
LiDAR point cloud data, essential for applications like terrain mapping, ur-
ban planning, and environmental monitoring [45]. LiDAR (Light Detection and
Ranging) uses laser beams to create detailed 3D maps of the environment. A
consistent frame of reference is crucial for data processing and analysis, allow-
ing accurate positioning and mapping of objects in the data. Researchers can
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determine objects’ position, orientation, and shape by aligning captured mea-
surements with a common frame of reference. This alignment ensures proper
integration with other data sources or mapping systems, enabling the seam-
less combination of LiDAR data with other geospatial information like satellite
imagery or GPS data [1].

The authors propose a sequential nonlinear tracking algorithm using the
Unscented Kalman Filter (UKF) and raw range-rate measurements to estimate
the position and velocity of an object in a three-dimensional space. They em-
phasize using different frames of reference, particularly the Earth-Centered In-
ertial (ECI) frame, to estimate the object’s position and motion accurately.
The algorithm’s mathematical formulation is presented, and its effectiveness
is demonstrated through simulations and experiments [42][8]. The literature
explores track fusion in a distributed multisensor system, introducing a fuzzy
logic-based approach to handle uncertainties and complexities in track associa-
tion and fusion. It presents mathematically and evaluates the method through
simulations and experiments, focusing on distributed multisensor-multitarget
tracking challenges and discussing its advantages and limitations [9]. An algo-
rithm was proposed for track association in radar and ESM systems, focusing on
hierarchical clustering to address bias. It emphasizes the importance of frames
of reference and how a shared frame aligns data from different sensors, enabling
accurate track association and improving the overall reliability of the tracking
system [31].

The literature discusses clustering techniques in multiple target-tracking al-
gorithms, focusing on grouping targets based on their characteristics. Frames
of reference, such as position, velocity, or size, are crucial in defining a con-
sistent frame of reference for accurate target grouping and effective tracking,
thereby enhancing the overall algorithm’s performance. [5]. The literature also
introduces a track-to-track association method for automotive perception sys-
tems, addressing the challenges of associating tracks from different sensors in
dynamic environments. It emphasizes the importance of frames of reference for
accurate track association, establishing a common reference frame like a global
coordinate system, thereby ensuring reliable track association and improving
the perception system’s accuracy in automotive settings [19].

2.2.1 Earth Centered Inertial (ECI)

Earth-Centred Inertial (ECI) is a reference frame used in aerospace to describe
the position and motion of objects relative to Earth. It is fixed in space, con-
sidering Earth’s rotation and position in other celestial bodies. ECI allows for
accurate tracking and prediction of satellites and spacecraft, providing a stable
reference point. It eliminates Earth’s rotation effects and allows precise calcu-
lations of an object’s trajectory. ECI also aids in the accurate estimation of
an object’s position and velocity in three-dimensional space. The frame of ref-
erence, including the celestial sphere, North Pole, Equatorial Plane, and other
celestial objects, is crucial for object tracking due to its stable, non-rotating
reference system. It simplifies calculations related to celestial mechanics, such
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as determining gravitational influences on satellites. ECI is a reliable and con-
sistent way to understand space movement.

Figure 2.4: Earth-Centered Inertial (ECI) Frame [22]

The Earth-centered inertial (ECI) frame of reference is used for precise spa-
tial measurement and tracking in satellite-based applications and space missions.
It provides a stable, non-rotating reference frame in space, offering absolute
positioning for precise measurements of satellite positions, velocities, and tra-
jectories. Understanding the performance of laser and radar ranging devices
under adverse conditions is crucial for accurate measurements. Satellite track-
ing is often conducted within the ECI frame due to its stability and non-rotating
nature. The accuracy and reliability of spatial measurements within the ECI
frame impact activities conducted within the frame [12]. The literature on radar
and lidar sensing for localization and mapping highlights the importance of the
Earth-Centered Inertial (ECI) frame of reference for satellite-based radar and
lidar systems. The ECI frame provides a stable reference system for precise
spatial localization and mapping, enhancing the precision of sensing and map-
ping activities. The choice between radar and lidar sensing methods affects
the quality and precision of spatial data [35]. Qiao and Zhao emphasize the
significance of the Earth-Centered Inertial (ECI) frame of reference in aligning
LiDAR data with global satellite positioning systems. ECI provides a stable,
non-rotating reference frame, ensuring spatial accuracy and consistency. The
paper focuses on developing a 3D imaging model for airborne LiDAR systems,
integrating them with satellite-based positioning systems for accurate alignment
and georeferencing [45].

ECI has been used in Lidar systems to calibrate global positions precisely
for atmospheric measurements and alignment with satellite observations. It
provides a stable and non-rotating reference, ensuring accurate and consistent
measurements across different locations. This frame also enables accurate align-
ment and comparison of Lidar measurements and satellite observations, improv-
ing the reliability of atmospheric data. Lidar applications and techniques rely
on a stable reference frame like ECI for accurate global positions and align-
ment with satellite data [1][6]. In satellite tracking and position prediction, ECI
provides a stable reference frame at Earth’s center, offering precise orbital pre-
dictions and consistent navigation for multiple satellites or constellations. ECI
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is essential for aerospace applications like communication, navigation, and Earth
observation. Using UKF and range-rate measurements for sequential tracking
requires a stable reference frame like ECI for accurate and reliable satellite po-
sition predictions [8]. Ashraf M. Aziz’s research explores using ECI parameters
in fuzzy track-to-track association and track fusion in multisensor-multitarget
environments. ECI provides a stable reference frame for space-based assets, in-
corporating satellite track information to influence the association process. It
also offers a global, inertial reference, enabling consistent sensor data integra-
tion. This could enhance global understanding of multisensor data, improve
target association and fusion algorithms, and broaden multisensor fusion scope
[9].

The fixed coordinate system (ECI frame) is commonly used for tracking
satellites and celestial bodies, but these principles are not directly applied to
ECI frame applications. Research suggests track-to-track association methods
for automotive perception systems, clustering algorithms for space tracking, and
an anti-bias track association algorithm using hierarchical clustering. If applied
to space surveillance radar systems, these algorithms could be relevant to ECI
frame applications. The impact of this research on ECI frame applications
could be significant, enhancing orbit determination and prediction, improving
situational awareness, and aiding in collision avoidance maneuvers. The analysis
underscores the importance of interdisciplinary approaches in scientific research,
as innovations in one field can influence practices in another [19][5][31]. The ECI
frame is a stable coordinate system unaffected by Earth’s rotation or orbital
movement, making it crucial for consistent satellite tracking over time. Accurate
satellite tracking is essential for communication, weather forecasting, navigation,
and other critical space-based applications.

2.2.2 Earth Centered Earth Fixed Frame (ECEF)

The Earth-Centered Earth-Fixed (ECEF) frame of reference is a global Carte-
sian coordinate system used in satellite navigation, aerospace, and geodesy. It
has fixed axes relative to the Earth’s surface, with the X-axis pointing towards
the Prime Meridian and the Equator, the Y-axis at 90° longitude, and the Z-axis
aligned with the Earth’s rotational axis (North Pole). This frame is crucial in
applications such as Lidar technology, track initiation techniques, track-to-track
fusion methods, and satellite orbit determination. It accurately represents the
position and motion of Lidar sensors and objects, ensuring alignment of position
and motion data. ECEF coordinates are used in radar, lidar, and sensor tracking
systems to ensure accurate positioning, integration, and data fusion. Radar sys-
tems use ECEF coordinates for high precision in determining target positions,
while lidar systems use ECEF coordinates for geospatial mapping and coordi-
nate transformation. Sensor tracking systems unify positional data obtained
from various sensors, ensuring coherent and accurate tracking. R. T. H. Collis
explores integrating Lidar systems with GPS, highlighting the need for a global
coordinate system like the Earth-Centered Earth-Fixed (ECEF) framework for
precise georeferencing. Lidar systems use GPS technology to assign real-world
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coordinates to captured points, ensuring latitude, longitude, and altitude accu-
racy. The Earth-Centered, Earth-Fixed (ECEF) coordinate system is inherent
in Lidar systems, providing accurate position data. By integrating Lidar and
GPS, Lidar data is guaranteed to be highly accurate worldwide, allowing for
consistent and precise placement of points within the ECEF reference frame.
This integration benefits applications like mapping, surveying, and navigation
systems [1].

Figure 2.5: Earth-Centered Earth-Fixed (ECEF) coordinates [48]

Figure 2.5 shows an Earth-Centered, Earth-Fixed (ECEF) coordinate sys-
tem with a geocentric frame of reference that remains constant relative to the
Earth’s surface despite its rotation. It is represented as an ellipsoid with a
semi-major axis (a) and a semi-minor axis (b), accounting for Earth’s oblate-
ness. This system is widely used in applications requiring a fixed coordinate
relative to Earth, such as GPS satellite positions and navigation systems. It
accurately represents positions and movements on the Earth’s surface and is
essential for geodesy and navigation. The ECEF coordinate system is a cru-
cial tool for understanding the evolution and transformation of objects, pro-
viding a visual representation of their evolution and changes over time. The
literature also discusses the statistical performance analysis of track initiation
techniques in satellite tracking or navigation systems. ECEF coordinates can
indirectly benefit these techniques: coordinate handling, algorithm validation,
and performance metrics. Coordinate handling is crucial for accurately handling
position and velocity data in satellite tracking systems. Algorithm validation
involves simulations using known positions and velocities, often defined in an
Earth-centered coordinate system like ECEF. Using ECEF coordinates allows
for precise measurement comparisons and evaluation of performance metrics
across different techniques, leading to improved accuracy, standardization, and
enhanced algorithm performance [2]. The Earth-Centered Earth-Fixed (ECEF)
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frame of reference is used for road obstacle detection in track-to-track fusion. It
converts data from various sensors into a common global frame, enabling consis-
tent analysis. Global positioning accuracy is achieved by providing a reference
system for accurate georeferencing of obstacles detected by different sensors.
Track association helps associate corresponding tracks across different sensor
sources, accurately representing the same obstacle. ECEF’s potential impact
could enhance accuracy and reliability in detecting and localizing road obsta-
cles, aiding in better decision-making for navigation and autonomous driving
systems [4].

The ECEF frame is crucial in satellite tracking and navigation due to its
position representation, sensor fusion, trajectory prediction, and compatibil-
ity. Lei and Han’s paper suggests transforming raw range-rate measurements
into ECEF coordinates, enabling data from multiple satellites or sensors in a
consistent reference frame. This helps accurately predict satellite trajectories
and orbits, refining orbit calculations and prediction algorithms. The aim is to
improve accuracy, consistency, and compatibility in processing and predicting
satellite positions, potentially leading to more precise trajectory predictions,
enhanced sensor data fusion, and increased overall accuracy in satellite tracking
systems [8]. The Earth-Centered Earth-Fixed (ECEF) frame of reference has
also been applied in radar systems for precise positioning and tracking of targets.
It provides a global reference frame, allowing radar systems to determine tar-
get positions relative to the Earth’s center, ensuring measurement consistency
and accuracy. ECEF coordinates also benefit navigation and surveillance ap-
plications by facilitating seamless integration of radar data with other systems
or sensors using the same reference frame. Applying ECEF in radar systems
leads to enhanced accuracy in determining target position and consistency in
positioning across various systems, enhancing their performance and accuracy
in tasks like target positioning, navigation, and surveillance [49].

2.2.3 Local Geodetic Frame

The Local Geodetic Frame of reference is a coordinate system used for mapping
and surveying a specific area on Earth’s surface, accounting for Earth’s curva-
ture. It provides a local reference frame for measurements and distances, with
the X-axis pointing towards the East, the Y-axis pointing towards the North,
and the Z-axis pointing towards the Up direction. This coordinate system is
crucial in applications like Lidar technology, track initiation techniques, track-
to-track fusion methods, radar ESM track-to-track association, and multiple
target tracking algorithms, accurately representing the position of the Lidar
sensor and objects being scanned. From the literature, the emphasis on the
significance of precise positioning in road environments for obstacle detection
suggests using a local geodetic frame or local coordinate system. This frame
is often used for high-precision positioning in situations like track-to-track fu-
sion. The need for precise localization suggests the potential of incorporating a
local geodetic frame of reference for accurate mapping and tracking within the
road environment [4]. Dong and Chen emphasize the significance of the Local
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Geodetic Frame of Reference in LiDAR remote sensing for precise mapping,
point cloud generation, and geospatial applications. They discuss using geode-
tic frames, including local, global, or projected coordinate systems, to represent
and interpret data accurately. They also discuss the transformation between co-
ordinate systems, geoid models, projections, and datums to align the acquired
LiDAR data with the Earth’s surface [28].

Figure 2.6: Local Geodic Frame of Reference [25]

Figure 2.6 illustrates a local geodetic frame of reference used in geodesy and
navigation to define an object’s position and orientation on Earth’s surface. It
consists of a sphere representing Earth, the equator, the prime meridian, three
orthogonal axes (x, y, z), and the symbol ωie. The geodetic frame is likely a
local tangent plane, approximating the Earth’s surface at a specific location. It
is defined by the x-axis (True North), y-axis (East), and z-axis (Normal/Down).
The symbol ωie represents the Earth’s angular velocity concerning inertial space,
suggesting rotation with the Earth. This frame is commonly used in applica-
tions like GPS, where a clear local coordinate system is crucial for navigation and
mapping [25] Mielle et al. emphasize the significance of local geodetic frames or
references when comparing radar and LiDAR sensing for localization and map-
ping. These frames provide a spatial reference system for precise positioning,
aligning sensor data, and mapping accurate coordinates onto a given space. The
choice of frame significantly impacts data accuracy, affecting localization and
mapping precision. Understanding how different sensors align their data to a
specific reference frame is crucial for accurate comparison and analysis. Apply-
ing local geodetic frames underscores the importance of standardized reference
systems for mapping and localization technologies [35].

The study on track-to-track association in Intelligent Transportation Sys-
tems suggests using a Local Geodetic Frame of Reference to localize automotive
sensors precisely. This frame enhances spatial understanding and aids in bet-
ter decision-making algorithms for navigation, collision avoidance, and safety
measures. It also contributes to more robust track association algorithms, min-
imizing errors due to sensor data inaccuracies and improving system reliability.
The research emphasizes the importance of incorporating a local geodetic frame
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for accurate sensor fusion [23][24]. The Local Geodetic Frame of reference is
crucial in Lidar systems, enabling precise ground measurements and accurate
mapping of Earth’s surface features. It accounts for Earth’s curvature and lo-
cal variations in the gravitational field, ensuring highly accurate measurements.
This frame is essential in terrain mapping, urban planning, forestry, and en-
vironmental monitoring applications. The use of local geodetic frames in 3D
imaging models of airborne LiDAR systems enhances the precision of LiDAR-
based 3D imaging, enabling more accurate representation and measurement of
surface features and terrain [1][6][45].

Lei and Han’s study on sequential nonlinear tracking using Unscented Kalman
Filter(UKF) and raw range-rate measurements suggests using a ”Local Geodetic
Frame of Reference.” This frame of reference allows for precise localization of
tracked objects within a specific geographic area, improving the accuracy and
reliability of the tracking algorithm. Their study suggests that using a local
geodetic frame could significantly impact the precision and reliability of object
tracking within a defined geographic region [8]. The Local Geodetic Frame
of Reference is crucial for sensor fusion and tracking in multi-object environ-
ments. It aligns sensor data to a common reference system, ensuring precise
local positioning. This frame can aid in accurate track association between
radar and Electronic Support Measures data. The application of the Local
Geodetic Frame in this research could enhance track association accuracy by
providing a consistent frame of reference for radar and ESM data, mitigating
biases and improving reliability in multi-sensor environments, thereby enhancing
precise and trustworthy tracking in complex scenarios [9][31]. The Local Geode-
tic Frame of Reference is a concept that can significantly impact methodologies
and algorithms for track-to-track association and tracking in sensor fusion sys-
tems. It improves spatial accuracy and precision, especially in urban or confined
spaces. Local geodetic frames can also adapt tracking and sensor fusion algo-
rithms to specific local environments, enhancing their robustness and efficiency.
This adaptability can significantly impact research related to autonomous nav-
igation, sensor fusion, and local traffic management, enhancing accuracy and
efficiency [11][13][24]. Local Geodetic Frames are defined by local authorities
or organizations to serve specific regions, aligning with the Earth’s surface for
accurate measurements. They are crucial for high-precision applications over
small areas, such as land parcel measurements and infrastructure construction.
They ensure all measurements and derived data are relevant and precise within
the local context. To apply the concept, one must examine how local measure-
ments and sensor data are integrated and adapted to create a Local Geodetic
Frame for enhanced local precision.

2.3 Filtering for Object Tracking

Filtering is a crucial process in object tracking that estimates the position and
velocity of moving objects based on noisy sensor data. Filtering algorithms like
the Kalman Filter or Particle Filter analyze this data to predict an object’s cur-

25



rent and future states accurately. These algorithms update predictions with new
data, gradually refining the object’s estimated trajectory and reducing uncer-
tainty. Filtering is critical in applications like autonomous vehicles, aerospace
tracking, and robotics for reliable and safe operation. The literature explores
the statistical performance of track initiation techniques for object tracking,
focusing on their effectiveness in initial stages like data association and state
estimation and filtering in object tracking. Z. Hu, H. Leung, and M. Blanchette
discuss using the Probabilistic Data Association Filter (PDAF) for object
tracking and statistical performance analysis. PDAF is a variant of the Bayesian
filter used for multi-object tracking and estimation. It addresses the associa-
tion problem in object tracking, where sensor measurements must be associated
with predicted object states. The authors use PDAF to analyze and evaluate
various track initiation techniques, determining their effectiveness in initializing
and maintaining tracks under noise, uncertainties, and varying conditions [2].

Wang et al. propose a Consensus-Based Track Association methodology
using multi-static sensors in a Nested Probabilistic-Numerical Linguistic Envi-
ronment. They use an adaptive filtering technique called theConsensus Filter
for object association and trajectory estimation, which integrates information
from multiple sensors while considering uncertainties. The filter dynamically
adapts to changing environmental conditions and varying sensor characteristics
to improve association accuracy. The Track-to-Track Association Algorithm
based on an Adaptive Clustering Threshold uses clustering techniques to group
track information and adjust the clustering threshold, optimizing the associ-
ation process [33][37]. Kalman Filters or variants like the Extended Kalman
Filter (EKF) or Unscented Kalman Filter (UKF) are used in object tracking
and sensor fusion to improve accuracy and reliability. They are particularly
useful in car-following scenarios because they can process noisy sensor data,
estimate an object’s state, and handle uncertainties. These filters iteratively
update predictions based on sensor measurements, refining the estimated tra-
jectory of objects being tracked. They are commonly used in radar/Lidar sensor
fusion for data preprocessing, measurement fusion, filter-based object tracking,
and state prediction and update [16].

2.3.1 Kalman Filter (KF)

The mathematical algorithm Kalman Filter estimates dynamic system state
from incomplete and noisy measurements. Prediction and update are its two
steps. The filter uses a system model to predict the next state in the predic-
tion phase and new measurement data to correct it in the update phase. This
process accurately tracks object position and velocity for navigation, robotics,
and signal processing. Iterating these steps ensures long-term refinement and
tracking. The Kalman Filter is a powerful technique used in object tracking to
combine radar and Lidar sensors for car-following applications on highways. It
handles noisy measurements and uncertainties in dynamic systems, enabling the
estimation of vehicle states. The filter continuously updates and refines state
estimates based on sensor measurements, resulting in more accurate and robust
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estimations of vehicles’ positions, velocities, and trajectories. This is crucial
for safe and effective car-following maneuvers, especially in highway scenarios
where accurate tracking of surrounding vehicles is essential [16].

The literature explored using sensor fusion systems in automotive radar sen-
sors to enhance object tracking accuracy and reliability. It suggests that Kalman
Filters are likely employed in this context, as they can process noisy sensor data
and accurately estimate an object’s state. These filters are suitable for track-
ing applications, especially in the automotive domain, as they can handle linear
dynamic systems affected by Gaussian noise. Integrating data from multiple sen-
sors can improve object tracking accuracy, reduce uncertainties, and enhance
safety and decision-making in autonomous or assisted driving systems [27]. The
Kalman Filter is a widely used technique for object localization and mapping,
predicting dynamic system states despite uncertainties and noise. It estimates
object parameters using radar and lidar measurements. The effectiveness of each
sensor type in providing data suitable for filtering-based object tracking is eval-
uated through a comparative analysis, assessing their effectiveness in different
scenarios [35].

The Kalman Filter algorithm is utilized in object tracking to improve trajec-
tory estimation and association. It integrates information from various sensors,
enhancing accuracy and reliability. This method is used within a multi-sensor
track-to-track association framework, ensuring accurate and precise tracking
even in incomplete or unreliable measurements. It effectively estimates the state
of a linear dynamic system under Gaussian noise [46]. Duraisamy, Schwarz, and
Wöhler suggest that filtering techniques like Kalman Filters or its variants are
likely best used in automotive sensor fusion and track association. These filters
are best for their ability to merge data from multiple sources, account for noise
and uncertainties, and provide optimal estimates [23][24]. Kalman Filter has
also been used in recursive estimation algorithms to predict and update track
state. This helps align and associate tracks, ensuring a consistent representation
of the object being tracked [11].

The study focuses on the challenge of associating tracks from different sen-
sors in road environments, emphasizing the importance of filtering for accurate
object tracking. Conventional filters like the Kalman Filter can facilitate this
process for road obstacle detection or vehicle tracking. The research contributes
to understanding the challenges in track association and emphasizes the signif-
icance of filtering techniques in handling noisy and uncertain sensor data [10].
The Kalman filter is a widely used algorithm for state estimation in dynamic
systems, particularly in noisy input data and measurement uncertainty. It is
used to fuse data from radar and Lidar sensors for car-following applications on
highways, improving object tracking accuracy and reliability. The Kalman filter
considers past measurements and probabilistic models, enhancing precision in
car-following scenarios [16].

Kalman Filter predicts, updates, and associates tracks or observations from
different sensors or time instances in track-to-track association. State predic-
tion, correction, and association criteria are involved. The state prediction and
update steps forecast and the state estimate at k-1. Association criteria link
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tracks using Mahalanobis distance. This is the mathematical notation: Step 1:
Prediction State

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Here:

• x̂k|k−1 is predicted estimate at time that give observations k up to time
k − 1.

• uk is the control vector.

• Pk|k−1 is the predicted covariance matrix.

• Bk is the control-input matrix.

• Fk is the state transition matrix.

• Qk is the process noise covariance.

Step 2: Update State (Correction)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1)

Pk|k = (I −KkHk)Pk|k−1

Where:

• x̂k|k is updated state estimate at time k incorporating the new measure-
ment zk.

• Kk is Kalman gain.

• Rk is measurement noise covariance.

• Hk is measurement matrix.

• Pk|k is updated covariance matrix.

Step 3: Association Criteria The association step determines the relation-
ship between tracks using criteria such as the Mahalanobis distance, a common
distance metric.

D = (x̂1 − x̂2)
T (P1 + P2)

−1(x̂1 − x̂2)

Where:

• covariance matrices are P1 and P2.

• And estimated states are x̂1 and x̂2.

This mathematical representation of the Kalman Filter for track-to-track
association shows prediction, update, and association criteria for linking tracks
or observations from different sensors or time instances.
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2.3.2 Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) is used in object tracking to estimate state
using raw range-rate measurements. It handles nonlinearity and non-Gaussian
noise in raw data, allowing for more accurate state estimation in radar tracking
scenarios. The UKF approximates nonlinear transformations more accurately
than the linear Kalman Filter, enhancing the robustness of object-tracking ca-
pabilities. This adaptation is crucial for effective object tracking, as it handles
noisy sensor data and uncertainties, making the UKF a valuable tool in object
tracking [8]. UKF is a nonlinear filtering method used in object tracking sys-
tems to accurately approximate state distributions in nonlinear environments.
It is crucial for estimating multiple targets distributed sensors observed in com-
plex environments. UKF handles nonlinearities more effectively than traditional
Kalman Filters, making it suitable for nonlinear target dynamics or system un-
certainty. Its adaptive nature and ability to capture complex system behavior
improve object trajectory estimation accuracy in noisy and uncertain environ-
ments [9].

The Unscented Kalman Filter (UKF) improves the accuracy and reliability
of tracking systems by addressing the limitations of the standard Kalman Filter
in dealing with highly nonlinear systems. It approximates mean and covari-
ance propagation through nonlinear functions using a deterministic sampling
approach called unscented transformation. This makes the UKF suitable for
systems with nonlinearity and uncertainty, enabling accurate state estimation
even in the presence of highly nonlinear dynamics [46] The literature explored
the UKF for object tracking that accurately captures the posterior distribution
of state variables. The UKF manages nonlinearities and uncertainties intro-
duced by sensor biases, enhancing track-to-track association and reducing am-
biguity in trajectories. This approach improves the reliability and accuracy of
object tracking systems by effectively managing inherent biases [13].

The study compares radar and Lidar sensing methodologies for localization
and mapping using the Extended Kalman Filter (EKF). The EKF fuses data
from both sensors, evaluating their accuracy, robustness, and suitability. It
enables estimation in non-linear systems and integrates data from multiple sen-
sors, accounting for noise characteristics and uncertainties. The EKF was used
to estimate the robot’s position and map the environment, providing insights
into their strengths and limitations in real-world contexts [35]. The Unscented
Kalman Filter (UKF) is also used in the Combi-Tor framework for automotive
sensor fusion. It effectively handles nonlinearities and non-Gaussian noise in
real-world tracking scenarios. UKF is used to fuse data from various automotive
sensors, such as Lidar, radar, and cameras, and perform track-to-track associa-
tion to estimate object trajectories in a dynamic environment accurately. This
enhances object tracking accuracy by providing more reliable state estimates,
contributing to the Combi-Tor framework’s efficiency in associating tracks from
different sensors [23][24].

The Unscented Kalman Filter (UKF) is a modified version of the traditional
Kalman Filter, specifically designed to handle non-linearities in system models
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or measurements effectively.
Prediction State
Step 1: Sigma Point Generation:
The UKF uses sigma points to represent the probability distribution, deter-

ministically capturing the mean and covariance information of state and error
vectors.

X
[i]
k =


x̂k|k−1 if i = 0

x̂k|k−1 + (
√
(n+ λ)Pk|k−1)i if 1 ≤ i ≤ n

x̂k|k−1 − (
√

(n+ λ)Pk|k−1)i−n if n < i ≤ 2n

In these equations, sigma points are X
[i]
k , n represents the state vector’s

dimension, and the predicted mean state estimate is x̂k|k−1, and Pk|k−1 is the
predicted state covariance matrix. while - λ is just a scaling factor [18].

Step 2: Propagation through Process Model

The sigma points X
[i]
k are propagated through the nonlinear process model

to obtain predicted sigma points X
[i]
k+1|k:

X
[i]
k+1|k = f(X

[i]
k , uk)

Where uk is the control vector and f is the process model function.
Step 3: State Prediction

Using the predicted sigma points X
[i]
k+1|k, estimate the predicted mean state

x̂k+1|k and covariance Pk+1|k:

x̂k+1|k =

2n∑
i=0

W
[m]
i X

[i]
k+1|k

Pk+1|k =

2n∑
i=0

W
[c]
i (X

[i]
k+1|k − x̂k+1|k)(X

[i]
k+1|k − x̂k+1|k)

T +Qk+1

Here, W
[m]
i and W

[c]
i are the weights used for computing the mean and

covariance, respectively, and Qk+1 is the process noise at time k + 1.
Update State
The update step corrects the predicted state estimate based on received mea-

surements, using equations that use sigma points to update the state estimate

based on the measurement model. The sigma points Y
[i]
k+1|k are computed using

the predicted sigma points X
[i]
k+1|k and the measurement model:

Y
[i]
k+1|k = h(X

[i]
k+1|k)

Where the measurement model function ish. The updated mean state esti-
mate x̂k+1|k+1 and covariance Pk+1|k+1 are then computed similarly using the

measurement sigma points Y
[i]
k+1|k and weights [29].
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The Unscented Kalman Filter’s core steps involve sigma points for captur-
ing state estimation and uncertainty through deterministic sampling, enabling
efficient handling of non-linearities in system models or measurements.

2.3.3 Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) is a filtering approach used in object track-
ing, specifically for nonlinear system models. It linearizes the system model at
each time step, estimating the state of nonlinear systems by approximating non-
linear functions with linear functions. In object tracking, the EKF recursively
updates state estimates as new measurements become available, incorporating
dynamic model predictions and radar measurement correction. This filtering
approach improves track-to-track associations, particularly in surveillance sce-
narios involving radar observations, even in noisy data [50].

The Extended Kalman Filter (EKF) uses an equation to calculate the Kalman
Gain, which is determined by the equation:

K = Pk|k−1 ·HT · (H · Pk|k−1 ·HT +R)−1

Here, Kalman Gain K predicts the covariance of the state Pk|k−1 at time k,
where R is noise covariance matrix measurement and H is Jacobian measure-
ment. This equation influences the updated state estimate during the correction
step.

The Extended Kalman Filter (EKF) is used in automotive sensor fusion sys-
tems to enhance object tracking accuracy. It is a variant of the Kalman Filter,
designed to handle nonlinearities in system dynamics and measurement models.
EKF is crucial in processing data from next-generation radar sensors, estimat-
ing the state of moving objects by predicting their positions and velocities while
considering noisy sensor measurements and system dynamics. This refines es-
timates of object positions and velocities, improving object tracking accuracy,
which is crucial for automotive safety and autonomous driving functionalities
[27].

2.3.4 Particle Filter

The Particle Filter, also known as the Sequential Monte Carlo (SMC) method,
is a probabilistic technique used in computer vision and signal processing for
object tracking. It uses a set of random particles to represent the probability
density function of a system’s state. The algorithm starts with an initialization
step and then estimates the next state for each particle based on motion models
or dynamic equations. The weights of the particles are adjusted based on the
likelihood of observed measurements, representing their relative importance in
the state estimation process.

The main particle filter weight update equation is:

w
(i)
t =

p(zt|x(i)
t )∑N

j=1 p(zt|x
(j)
t )
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Equation updates or corrects Particle Filter algorithm. To calculate particle

weights w
(i)
t at time t, divide the estimated likelihood of the observed mea-

surement zt by the sum of all particles’ likelihood. These weights indicate how
important each particle is in resampling and estimating the system’s true state.

The study explores using the particle filter in Maritime Tactical Data Sys-
tems to handle large sensor data. The Particle Filter, also known as the Sequen-
tial Monte Carlo (SMC) method, is a Bayesian filtering technique for nonlinear
and non-Gaussian state estimation problems. It approximates the posterior
probability distribution using particles or samples, evolving them through time
using the system’s dynamics and updating their weights based on observed mea-
surements. This filter is suitable for scenarios where traditional methods like
the Kalman Filter struggle due to non-Gaussian noise or complex dynamics [51].

2.4 Track-to-Track Association

The track-to-track association is a crucial process in multi-object tracking sys-
tems, linking or coordinating observations across different sensors or time frames
that correspond to the same physical object or target. It is essential in fields
like radar, Lidar, and sensor fusion for applications ranging from surveillance to
autonomous vehicles. The core concept of track-to-track association is to create
a coherent and consistent trajectory for each detected object. The methodology
for this process includes data representation, feature extraction, and association
algorithms. Geometric methods use spatial proximity or geometry-based criteria
to associate detections, while probabilistic approaches estimate the likelihood of
associations based on prediction models and measurement uncertainties. Clus-
tering techniques group detections into clusters, assuming observations within
the cluster correspond to the same object. Challenges include ambiguity, noise
uncertainty, and complexity as the number of objects or sensors increases. De-
spite these challenges, the track-to-track association can be effectively used in
various fields, such as radar, sonar, object tracking, and surveillance systems.

The study proposes fuzzy logic-based approaches for track-to-track associa-
tion and fusion in distributed multisensor-multitarget environments, addressing
uncertainties from sensor variability. Fuzzy logic allows for flexible decision-
making, accommodating imprecise or uncertain information. It reconciles dis-
crepancies caused by sensor differences, aiding in correct track association de-
spite variations in sensor characteristics. The proposed algorithms use hier-
archical clustering to group similar observations or tracks together, aiming to
identify and associate tracks from different sensors while compensating for bi-
ases inherent in sensor data [9][31]. The challenges of handling uncertainties in
nontraditional measurements in the track-to-track association are essential to
improve the accuracy and reliability of associating uncertain measurements with
existing tracks, enabling a more comprehensive understanding of the target’s
behavior or movement. This need to investigate assignment costs for multiple
sensor track-to-track association, focusing on measurement uncertainty in the
context of track-to-track association across different sensors. This emphasizes

32



the importance of robustly handling measurement uncertainties in track-to-track
association [17][20].

Track-to-track association faces challenges due to data clutter and occlu-
sions in dense target environments. A leader-follower online clustering algo-
rithm was proposed to mitigate data clutter and enhance accuracy. In 2019, the
Combi-Tor framework was introduced for automotive sensor fusion to address
occlusions caused by surrounding vehicles or objects. This framework com-
bines multiple association methods, leveraging spatial and temporal information
or data from various sensor modalities. The study contributes methodologies
specifically tailored to address these challenges, aiming to improve the accuracy
and reliability of track association despite challenging environmental conditions
[21][24]. The track-to-track association is crucial for accurate target tracking
but faces challenges like missing or noisy observations. Sensor bias and ambi-
guity management are key issues, as unreliable data can introduce ambiguity.
Strategies to handle these include data fusion techniques, sophisticated filtering,
and maintaining track consistency. Predictive modeling, correction mechanisms,
historical data, alternative sensors, and signal processing techniques can be used
to address signal degradation due to rain fade. Addressing these challenges is
essential for maintaining track consistency and preventing signal degradation
[13][38].

The literature emphasizes the significance of statistical analysis in track-
to-track association, focusing on the performance of track initiation techniques
and assignment costs for multiple sensor tracking. The analysis evaluates the
accuracy, robustness against noise, sensitivity to conditions, and effectiveness of
these techniques. The role of assignment costs in quantifying track association
is crucial for improving accuracy and reliability, ultimately improving the effec-
tiveness of multi-sensor tracking systems [2][11]. Track-to-track association links
observations from different sensors over time, establishing correspondences with
multiple targets or objects. Clustering techniques group similar observations or
tracks based on characteristics or spatial proximity. A plot-track association al-
gorithm uses hierarchical and density clustering analysis to associate plots with
existing tracks. This is particularly useful for automotive sensor fusion, where
tracks from various sensors are linked together, identifying and linking tracks
belonging to the same physical object or target [7][23].

The track-to-track association is crucial for understanding environment and
object behavior as well. The literature explores sensor data fusion, focusing on
ambiguity management and adaptive clustering threshold algorithms to improve
the accuracy and reliability of association results by managing biases and ambi-
guities caused by sensor characteristics. By dynamically adjusting parameters
based on sensor data characteristics, these strategies ensure more accurate and
reliable track-to-track associations, essential for applications like surveillance,
autonomous vehicles, and target tracking systems [16][33]. Track-to-track as-
sociation links observations from different sensors to the same physical object
or target, considering sensor variability and uncertainties. Advanced filtering
methods, particularly Kalman filters, are used for estimating and associating
tracks in complex scenarios, such as sequential nonlinear tracking and passive
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multisensor systems [8][47].

2.4.1 Clustering Based Approaches

Clustering-based approaches are techniques used to group observations or tracks
based on similarities, aiding in track association. These approaches for track-
to-track association use algorithms to group tracks or observations with similar
spatial, temporal, or feature characteristics.

2.4.1.1 Hierarchical Clustering

Hierarchical clustering is used in various fields, including plot-track association,
leader-follower online clustering, and track-to-track data association for auto-
motive sensor fusion. It organizes data points based on spatial characteristics,
facilitating track association based on proximity. In dense target environments,
it groups tracks exhibiting similar movement patterns, facilitating association
in complex and crowded environments. In automotive sensor fusion, it clusters
sensor data based on feature similarities, aiding in accurate track association.
Hierarchical clustering is crucial in track association, organizing observations,
grouping tracks in dense target environments, and simplifying the association
or linking of related tracks in various scenarios [7][21][23].

Researchers M. Lei and C. Han have found that Hierarchical Agglomerative
Clustering (HAC)-based approaches are effective in improving track association
in multi-target tracking systems. HAC’s versatility allows for grouping tracks
based on factors like spatial proximity or temporal consistency, enhancing the
tracking process in multi-target scenarios. This efficient association and fuse of
track data aids in more accurate target tracking and estimation. HAC’s versatil-
ity is particularly beneficial in road obstacle detection, where diverse sensor data
must be integrated and associated effectively [17][4]. The hierarchical aggrega-
tion clustering (HAC) algorithm is used in applications like automotive sensor
fusion and radar-based track association. It uses single linkage and complete
linkage methods to merge clusters based on distance measures. Single linkage
emphasizes minimum distance, resulting in elongated clusters, while complete
linkage prioritizes maximum distance, potentially resulting in compact clusters.
These methods are chosen based on application requirements [24][31].

Hierarchical Agglomerative Clustering (HAC) uses distance metrics like Eu-
clidean or Manhattan distances to group tracks with similar spatial or feature
characteristics. Euclidean distance, calculated as the straight-line distance be-
tween two points in space, is suitable for grouping tracks based on spatial prox-
imity or similarity in three-dimensional space. Manhattan distance, computed
along orthogonal axes, can capture spatial relationships between tracks consider-
ing their positional differences. In celestial mechanics and dynamical astronomy,
Euclidean distance captures overall positional or feature differences, while Man-
hattan distance emphasizes differences along specific attributes [36][41]. HAC’s
hierarchical structure enables it to adapt to changing track similarities, making
it useful in multi-sensor fusion systems or environments with changing track
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characteristics. It can dynamically group tracks based on spatial, temporal,
or feature similarities, enabling effective track association in dynamic scenar-
ios. HAC’s adaptability is particularly important in spatial registration and
multi-sensor track association, where it integrates data from multiple sensors,
considering evolving similarities or changing spatial relationships [37][46].

HAC’s hierarchical structure enables it to adapt to changing track similari-
ties, making it useful in multi-sensor fusion systems or environments with chang-
ing track characteristics. It can dynamically group tracks based on spatial, tem-
poral, or feature similarities, enabling effective track association in dynamic sce-
narios. HAC’s adaptability is particularly important in spatial registration and
multi-sensor track association, where it integrates data from multiple sensors,
considering evolving similarities or changing spatial relationships [34][35][47].

2.4.1.2 Density-based Clustering

Density-based clustering methods like DBSCAN identify clusters based on dense
regions of data points, defining them as continuous regions with high-density
data points separated by lower-density regions. DBSCAN identifies core points
and expands clusters by adding reachable points within their neighborhood.
Density clustering is robust against irregular data densities, making it suitable
for scenarios where targets might have different data point concentrations [21].
Hierarchical and density-based clustering helps identify similar tracks or ob-
servations spatially or feature-wise, aiding in track association in multi-target
tracking scenarios. The study examines statistical performance analysis of track
initiation techniques, which involve clustering observations or measurements
based on spatial or temporal proximity. It explores an algorithm based on hier-
archical clustering for multi-target tracking of multi-sensor data fusion, optimiz-
ing track association by considering spatial and temporal relationships among
measurements [2][5][26].

2.4.2 Statistical Analysis Methods

Statistical analysis methods are essential for evaluating the performance, reli-
ability, and efficacy of track initiation techniques in target tracking systems.
These methods involve quantitative assessment techniques, using metrics like
accuracy, false alarm rate, detection and miss rates, and efficiency measures.
They help assess the correctness of associations made by track initiation tech-
niques, reducing false positives and ensuring accurate tracking. Monte Carlo
simulations provide robust performance evaluation under various scenarios, such
as sensor noise, clutter, or target dynamics. These methods help evaluate the
accuracy and robustness of track initiation algorithms in associating tracks cor-
rectly, especially in noisy sensor data or complex environments. Researchers
can refine these algorithms by identifying weaknesses or inefficiencies, improv-
ing reliability, and reducing false associations or missed tracks. These methods
provide decision support, providing critical insights for selecting or designing
track initiation methods suitable for specific applications [2].
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2.4.3 Fusion Methods

Fusion methods are essential for improving track-to-track association by com-
bining data from various sensors, such as radar and Lidar, to enhance accu-
racy and reliability. These methods include radar/Lidar Fusion, which provides
robustness in adverse conditions, and track fusion, which merges information
from individual tracks into a comprehensive track. Feature-level fusion extracts
specific features from each sensor’s data to improve association accuracy. Prob-
abilistic fusion uses Bayesian methods to calculate the probability of associa-
tion between tracks from different sensors. Hierarchical clustering groups are
tracked based on similarity or proximity in a multi-dimensional space. Machine
learning approaches like Deep Learning optimize the fusion process and improve
association accuracy. Fusion methods offer enhanced accuracy, robustness, com-
prehensive information, and reduced ambiguity. They mitigate the weaknesses
of individual sensors and provide a holistic view of target movements [4].
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Chapter 3

Methodology

This chapter describes the research methodology of our work, including how our
study goals are achieved. Our methodology’s key steps are the pre-processing of
network packets, time synchronization, threshold-based cluster formation, and
accuracy calculation. The specific clustering approach used in this research is
the hierarchical clustering algorithm. Different scenarios have been developed to
demonstrate the performance of the hierarchical clustering-based track-to-track
association algorithm in terms of accuracy computation compared to ground
truth. The following figure shows the key stages of our methodology, which are
discussed individually in this chapter.

Figure 3.1: Block Diagram of Methodology
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3.1 Preprocessing

Each scenario will generate a set of packets used to perform track-to-track asso-
ciation. These packets often include multiple attributes that are not necessarily
required for the track-to-track association, or they are first modified before their
utility in the association algorithm. Extracting the tracking data such as lat-
itude, longitude, and altitude of the target objects at each time instant and
converting these tracks in different coordinate systems to incorporate useful
information is crucial for processing and analysis. The process also involves
identifying and isolating specific information related to the monitored tracks,
such as positional, velocity, and trajectory-specific data points. The extracted
information is organized in a format suitable for further analysis and track asso-
ciation algorithms, such as creating track histories or profiles from the received
packets. Track association algorithms use this stage as a filter to improve data
quality and reliability. This preliminary step greatly affects the precision and
efficiency of track association.

3.1.1 Data Extraction

In an object-tracking sensor network, data processing begins with collecting
and packaging sensor data into a High Priority Target (HPT) and Secondary
Priority Target (SPT). The initial phase will involve handling network packets
containing tracking data. These packets undergo multiple network processing
stages. First, sensor data is collected and packaged into High Priority Target
(HPT) or Secondary Priority Target (SPT) packets based on target priority.
HPT tracks contain critical tracking data like real-time positional, velocity, and
trajectory data, which is essential for time-sensitive applications. They are
used for applications where rapid decision-making based on accurate, up-to-
date tracking data is crucial. SPT tracks are used for less urgent objects or
those with less frequent tracking data updates, containing essential tracking
information but prioritized differently in the network due to targets’ importance
or resource allocation constraints. The data processing workflow begins with
collecting and packaging raw sensor data, sorted into different types of packets
based on the priority level of tracked objects. HPT and SPT tracks are classified
and extracted based on their specific positions in the network packets with their
priority levels highlighted within the tracking system. In addition to HPT and
SPT data, sensor’s own position in LLA is also tracked, extracted and in some
cases used for track-to-track association to overcome the issue of locking friendly
object as potential target.

3.1.2 Data Conversion

The extracted data stores the location information of sensors and their tracked
object in Latitude, Longitude, and Altitude (LLA). Latitude measures the dis-
tance from the equator, Longitude measures the position east or west from
the Prime Meridian, and Altitude refers to the height above or below a refer-
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ence point. LLA coordinates help map targets or objects accurately, improve
object tracking through track-to-track fusion methods, and determine satellite
position and motion. The data from LLA will then be converted into Earth-
Centered, Earth-Fixed (ECEF) coordinates, a common coordinate system used
in geodesy and navigation. Converting LLA data to ECEF coordinates is es-
sential to tracking data processing. LLA is a geodetic coordinate system that
measures latitude, longitude, and altitude above the Earth’s reference ellipsoid
in angular and linear units. This format is intuitive for human interpretation
and widely used in mapping and navigation. It is not ideal for calculating dis-
tances and angles between points, especially when they are not on Earth, or
precision tracking is needed over long distances.

In contrast, ECEF coordinates are Cartesian coordinates (X, Y, Z) in three
dimensions with the Earth as the origin. This system simplifies the mathemat-
ical operations used in association, making it useful for computation. Simple
linear algebra can calculate distance, velocity, and angular direction between any
two points in ECEF. Using a high-precision application like satellite tracking,
ballistic trajectories, and data integration is crucial. The conversion to ECEF
creates a uniform data format compatible with global positioning systems and
satellite navigation data. The ECEF system is constant, while the LLA sys-
tem depends on the reference ellipsoid, which varies by region. ECEF grounds
all data points in a consistent frame of reference, eliminating ambiguity from
multiple geodetic models. Air traffic control, military operations, and global
surveillance systems need this consistency for reliability and accuracy. The
tracking system will operate reliably, integrate data more seamlessly, and pre-
cisely perform complex analysis and decision-making calculations by converting
LLA to ECEF.

3.1.3 Local Tracks Formation

Local track formation is essential in sensor networks that track objects, es-
pecially with multiple sensors, to perform association. Integrating sensor data
creates a continuous and coherent track of an object’s trajectory over time. The
network’s sensors detect an object’s location, velocity, and direction. These sen-
sor readings may need to be completed or obstructed by environmental factors
or object movement. Thus, multiple sensors will be combined to understand
the object’s behavior. It is crucial because sensors have different capabilities
or fields of view as they complement each other’s data to fill gaps and reduce
uncertainties. The data and sensor performance of the network create a ’local
track’ for each object that is precise and reliable.

3.1.4 Error Mitigation Using Standard Deviation

The standard deviation is crucial for assessing data precision and accuracy in
sensor and object tracking.
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σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2

Standard deviation (σ) measures the variability or dispersion of sensor read-
ings around an average value. To calculate, we subtract the mean µ from each
sensor measurement xi, square the deviation to address negative values, and
emphasize larger differences. The variance is the average of these squared devi-
ations, and the standard deviation is its square root. This statistical measure is
crucial when sensor readings must accurately approximate an object’s position.
A low standard deviation indicates that sensor readings are close to the mean,
indicating reliability and data precision. A high standard deviation indicates a
wide range of measurements, suggesting sensor inaccuracies, environmental fac-
tors affecting sensor performance, or unpredictable object movements. System
quality can be tracked using standard deviation calculations on sensor data.
If the standard deviation exceeds acceptable thresholds, sensors, filtering algo-
rithms, or the deployment environment will be calibrated to mitigate external
variables. Understanding and minimizing standard deviation improves object
tracking system robustness and reliability.

3.2 Time Synchronization

Object tracking requires sensor data time synchronization to match sensor read-
ings at a specific time instance to perform association. Kalman Filtering has
been used in this research to perform this synchronization. The statistical
method minimizes the difference between predicted and actual sensor measure-
ments to estimate a system’s state dynamically. Due to latencies, sensors collect
data at slightly different times. The Kalman Filter helps align this data by pre-
dicting the system state at specific instances and updating these predictions
with sensor readings. It creates a coherent and synchronized dataset that ac-
curately tracks the tracked object’s position and motion at that specific time
instant.

Sensor networks need temporal synchronisation to combine sensor readings
for a thorough analysis of the monitored environment. The data fusion module
combines intermittent information from three sensors in Figure 3.2 to gain a
complete understanding of the observed environment. These sensors are not
fully synchronised; thus, the module sometimes has to wait for all sensors to
read. Figure 3.2 part b displays the same sensors with state prediction. Assumes
sensors took the module’s synchronised readings simultaneously. Thus, data
flows more easily, which is crucial in real-time sensor-based decision-making
systems. Finally, sensor networks need temporal synchronisation to accurately
combine sensor readings into a complete image of the environment.
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Figure 3.2: Asynchronous and Synchronized Tracks

3.2.1 Kalman Filtering

The Kalman Filter is a method that efficiently estimates process states while
minimizing mean squared error, estimating past, present, and future states even
when the modeled system’s nature is unknown, using Predict and Update steps
to deal with uncertainty or data noise.

Prediction of estimation state:

x̂k|k−1 = Fkxk − 1 +Bkuk

Model the covariance estimate:

Pk|k−1 = Fk|k−1F
T
k +Qk

x̂k|k−1 is the predicted state estimate, Fk is the state transition model,
x̂k−1|k−1 is the previous state estimate, Bk is the control-input model, uk is
the control vector, Pk|k−1 is the predicted covariance estimate, Pk−1|k−1 is the
previous covariance estimate, and Qk is the process noise covariance. The filter
uses a system model to predict its next state in this step. A filter will track a
moving object and predict its location in the future in a short time based on
its speed and direction. Prediction error or uncertainty exists because this is a
prediction.

Calculate Kalman gain:

Kk = Pk|k−1H
T
k (Hk +Rk)

−1

State estimate update:

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1)

Update covariance estimate:

Pk|k = (I −KkHk)Pk|k−1
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Kk represents the Kalman gain, Hk represents the observation model, zk
represents the actual measurement, Rk represents the measurement noise co-
variance, and I represents the identity matrix. Here, the filter corrects its
predictions with updated measurements, just like a GPS giving the object an
updated location. The filter adjusts its prediction to be more accurate using
the updated data. A compromise is reached between its prediction and updated
data. This step reduces system state estimate uncertainty, improving tracking
accuracy.

The Kalman Filter equations are iterated at each time step, updating the
predicted state and covariance estimates with updated measurements. This
Predict-Update cycle is crucial to improve the accuracy of sensor data in track-
ing systems. Environmental conditions and technical limitations can cause noisy
or incomplete sensor data. The Kalman Filter blends previous state predictions
with updated sensor data to address such uncertainties while tracking the ob-
jects. Despite data errors, it keeps the system’s understanding of the object’s
state as accurate as possible, which is necessary for this research to calculate
and improve the accuracy of our algorithm. Navigation systems, automated
vehicles, and aerospace engineering require this process for precision.

3.3 Cluster Formation using HAC Algorithm

The problem statement addressed in this research is to analyze the problem
of track-to-track association by applying the hierarchical agglomerative cluster-
ing algorithm to different scenarios in a network of multiple sensors detecting
multiple targets. The reason to implement Hierarchical Agglomerative Cluster-
ing (HAC) has been influenced by many reasons, especially in object tracking,
where understanding object relationships and groupings is crucial. First, HAC
is an easy way to build a cluster hierarchy for this application, where data ob-
servation at different granularities is required. This hierarchical structure makes
data analysis flexible and shows which objects (or tracks) are similar and how
these groups can be clustered at higher levels. We want to see how objects form
groups and clusters in tracking applications.

HAC is easy to implement as it doesn’t need initial guesses like k-means
clustering. In this research, we have real-world tracking scenarios that involve
an unknown number of clusters. HAC is flexible and adaptable to different data
and similarity measures. Tracking applications requires adaptability because
data can take many forms, and similarities can vary depending on the task.
HAC clustering is deterministic and simple. The agglomerative process is sim-
ple: merge the closest clusters. This determinism is useful to explain how the
algorithm clustered a result. HAC requires computing and updating distances
between all pairs of clusters in each iteration, making it computationally inten-
sive, especially with large datasets. HAC is still preferred in many practical
applications, especially where hierarchical clustering precision outweighs com-
putational constraints. SO HAC’s ability to reveal data structure at multiple
levels, ease of implementation, adaptability to different data types, determinis-
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tic nature, and intuitive understanding of the clustering process make it useful
in many applications, including object tracking.

The Hierarchical Agglomerative Clustering (HAC) algorithm requires several
steps to form clusters, especially with a single linkage. Each step helps cluster
tracks (like moving objects) by similarity. This method groups similar objects,
starting with each track as a cluster and then merging these clusters as one
rises.

3.3.1 Distance Matrix Formulation

Distance Matrix formulation is important to determine how close each track is
to others before cluster formation. Creating a distance matrix in Hierarchical
Agglomerative Clustering (HAC) is essential to understanding the relationships
between each dataset pair of tracks (or data points). Like a table with each cell
representing the distance between two tracks, the distance matrix determines
how clusters will be merged in HAC. It starts with each track as a cluster with
N tracks. An N ×N distance matrix will be created, with d(i, j) representing
the distance between tracks i and j. This distance will be calculated for each
pair of tracks.

The data type and distance matrix determine the distance formula. For
geometric data, the Euclidean distance will be calculated between two points xi

and xj with m dimensions (or features), using the formula:

d(i, j) =

√√√√ m∑
k=1

(xik − xjk)2

The kth feature values for tracks i and j are xik and xjk, respectively. If co-
ordinates represent tracks at a given time, the Euclidean distance will measure
their distance in space for object tracking. Depending on the data and analysis
needs, Manhattan distance, Minkowski distance, or domain-specific metrics can
also be used. Distances are calculated and entered into the matrix. This matrix
will be symmetric (since d(i, j) = d(j, i)) and has zero diagonal elements (repre-
senting track distances). The clustering process begins with this matrix. Each
HAC iteration merges the clusters with the smallest distance in the matrix and
updates it. Thus, the distance matrix formulation is essential for capturing all
track pairs’ initial similarities or dissimilarities before hierarchical clustering.
It contains the dataset’s essential spatial or feature-based relationships, which
HAC will use to build the cluster hierarchy iteratively.

3.3.2 Global Threshold Calculation

After calculating all track distances, a global threshold will be applied. This
threshold determines how similar or close tracks should be clustered. Tracks
lying within this threshold will be grouped. The HAC algorithm process relies
on this global threshold calculation to form clusters. This threshold is based on
the distances between each pair of tracks in the data set to group only nearby
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tracks. To calculate the threshold, we will begin with the distance matrix, each
element representing a track separation. Zero values in the matrix are replaced
with a large number (the average of all the values in the distance matrix in
this research) to remove them from affecting the threshold calculation since a
track is zero distance from itself. Importantly, the threshold will only consider
different track distances, not track distances to themselves.

Next, the algorithm will find each track’s minimum non-zero distance, the
closest distance to any other track. Setting the global threshold to the maximum
of these minimum distances. The threshold is the largest minimum distance be-
tween any track and its nearest neighbor, calculated as maxi(minj ̸=i(dij)). This
method ensures that the threshold will not be too low to merge only similar
tracks or too high to merge distinct tracks. This threshold is crucial to cluster-
ing. It determines the nearest tracks needed to form a cluster. This mechanism
helps in datasets with a non-uniform scale of similarity or proximity or unknown
preliminary assumption. The algorithm will adapt to the data structure and
create meaningful and representative clusters by dynamically calculating the
threshold based on dataset distances. This adaptive threshold setting ensures
coherent clusters that reflect the tracks’ spatial or feature-based relationships.

3.3.3 Single Linkage Method

The single-linkage method, also known as the Nearest Neighbor Technique,
forms and merges clusters focusing on the closest pair of points (or tracks)
between two clusters; this method defines distance differently. It calculates the
distance between two clusters as the shortest distance from any member (or
data point) to any other member in the distance matrix. Each cluster is a point
group, and this method finds the closest two points from each cluster. These
two nearest neighbors will determine the cluster distance. In the single-linkage,
the distance between two clusters C1 and C2 is calculated as follows:

d(C1, C2) = min
x∈C1,y∈C2

d(x, y)

where d(x, y) is the distance between points x and y. This formula finds the
minimum distance between all possible pairs of points, one from each cluster.
Single-linkage clustering is best for detecting natural, linear clusters or well-
separated clusters. Since it links clusters along nearest neighbors, it identifies
stretched or elongated clusters.

3.3.4 Cluster Formation

The clustering started by treating each track as its cluster using Hierarchical
Agglomerative Clustering (HAC), especially with the single-linkage approach.
The algorithm then merged these clusters iteratively based on proximity using
a single linkage. The key was repeatedly combining the closest cluster pairs.
The algorithm compared the distances between all pairs of clusters to find the
pair with the shortest distance between any of their members at each step. A
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threshold has been applied to compare this distance. A single cluster has formed
where the distance was less than this threshold. And for higher distances,
clusters stay separate. This merging continues iteratively, and after each new
cluster formation, the algorithm recalculates the distances between the new
cluster and all other clusters and searches for the closest pair of clusters to
merge. The process continues until no more cluster pairs can be merged without
exceeding the distance threshold. This threshold controls cluster combination
by ensuring that only clusters that meet the closeness criteria are clustered.

Clusters decrease in number and grow in size as the algorithm progresses.
The hierarchy of clusters is formed by combining clusters based on proximity.
HAC’s hierarchical structure shows how these clusters are formed and combined
at each stage, not just the final clustering. The single-linkage method merges
clusters based on their closest points, creating a chaining effect. It helps find
elongated or linear clusters. It’s sensitive to outliers because a single distant
point can significantly affect clustering. The clustering process in HAC with
single linkage groups tracks or data points based on their similarities, with the
flexibility to define ’closeness’ through the distance matrix. This systematic ap-
proach is ideal for natural data point clustering when the clusters have irregular
directions or densities.

3.4 Accuracy Calculation

The accuracy of clusters is calculated by comparing predicted classifications to
ground truth data using a confusion matrix. This method measures algorithm
performance while considering all clustering outcomes. This calculation relies on
True Positives (TP), which occur when the predicted classification and ground
truth agree that certain objects belong to the same cluster. It’s the total count
of all pairs of objects; the algorithm correctly classifies it as the same group after
comparing it to the ground truth. Conversely, True Negatives (TN) occur when
the predicted classification and ground truth agree that certain objects are not
in the same cluster. This count shows the algorithm’s accuracy in identifying
non-group objects. False Positives (FP) occur when the predicted classification
groups two objects together when the ground truth places them in separate
clusters. These numbers show how the algorithm groups objects incorrectly.
False Negatives (FN) occur when the predicted classification places two objects
in different clusters when the ground truth places them in the same cluster. The
algorithm’s missed group members are counted here.

This formula calculates the accuracy of the clustering algorithm:

Accuracy =
Correctly Classified Values

Total Predicted Values
× 100%

Accuracy =
TP + TN

TP+ TN+ FP + FN
× 100%

This formula calculates the percentage of correct TP and TN classifications
out of all classifications. A higher accuracy percentage means the clustering
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algorithm better identifies object groups according to ground truth. This accu-
racy calculation method shows the algorithm’s performance in grouping objects
and identifying non-objects.

3.4.1 Ground Truth Comparison

Accurate and reliable measurements or observations determine the ground truth.
It comes from precise sensors and well-documented observations in real life.
Scenario generators simulate tracking conditions, which can be ground truth
in simulations. Ground truth data accurately represents the actual scenario
or the most reliable data of an object’s positions and movements confirmed
by reliable sources or measurements. Each object or track in the clustering
results is matched to the ground truth data to compare them. The algorithm’s
classification (i.e., an object’s cluster) is then compared to the ground truth.
This process involves checking whether the algorithm placed pairs of objects in
the same cluster as the ground truth.

Accuracy is a simple and quantifiable measure of clustering algorithm per-
formance. For refining the algorithm and understanding its applicability in real-
world scenarios, the accuracy metric compares clustering results to a known or
established ground truth to assess its reliability and effectiveness under different
conditions.

3.5 Computational Aspects of Association

The computational aspect of the association algorithm is important from a prac-
tical implementation point of view. In our setup, we perform a track-to-track
association after every 200 milliseconds. This means that the processing time of
the association algorithm should be less than 200 milliseconds. If the processing
time exceeds 200 milliseconds, the processor will miss some associations and af-
fect the results. This is shown in Figure 3.3, where it is clear that after the first
association phase, the processing time is less than 200 milliseconds. Therefore,
before the second association time, the algorithm is ready for the second phase
of association.

Figure 3.3: Computational Aspects of Association
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Similarly, this process will continue as long as the processing time of the
association algorithm is less than 200ms. In our HAC algorithm implementa-
tion, the computational time/ processing time is always less than 60 ms, which
means it isn’t missing any associations, and the results generated from our HAC
algorithm are accurate and lie within our association time limit.
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Chapter 4

Results and Discussion

In this chapter, we presented the results of the simulations used to evaluate the
HAC algorithm in different scenarios. The scenarios were carefully designed so
that the sensors tracked a fixed number of targets throughout their journey. This
means that we will already know how the output of our association algorithm
will vary. This will help us identify the HAC algorithm’s performance in the
given scenario. The clusters involved in each scenario are also plotted, and the
accuracy computations are shown for each association time.

4.1 Two Sensors One Target

We first consider a scenario with two moving sensors and one moving target
observed/measured by both sensors throughout its journey. The path followed
by both the sensors (green and blue triangles) and the object (red star) is shown
in Figure 4.1.

Figure 4.1: Scenario 1: Two Sensors One Target
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Since both sensors S1 and S2 observe the object throughout its journey, each
sensor will have one local track for that object. When these sensors share their
tracks, they will have one local and one shared track. With no association, it is
possible that the two sensors falsely show two different objects. The association
algorithm should associate the tracks and cluster them in one group. If the
association algorithm shows two different objects at any time in the trajectory
of the target object, the algorithm will be in error. To observe the accuracy
in this case, we developed a scenario similar to Figure 4.1 in the validation
optimization system (VOS). The visualization of the VOS-generated scenario is
shown in Figure 4.2.

Figure 4.2: VOS scenario 1

Notice that VOS assigns blue colors to the sensors’ path and red to the target
path. The green cones show the range of the sensors, and the highlighted red
path of the target in turquoise shows that the target is measured throughout its
journey. The packets associated with the scenario will contain local and shared
tracks of the two sensors. These packets will extract the track information and
implement the HAC algorithm discussed in Section 3.3. If the association is
accurate, the dendrogram for this scenario will involve one cluster of S1 and S2.
This is shown in Figure 4.3.

The dendrogram shows that the shared and local tracks of the sensor are on
the x-axis and clustered in one group. The y-axis shows the distance between
the two tracks in meters (m). Since only one cluster is formed in this scenario,
the two tracks with sensors 1 and 2 represent the same object.

On implementation of the HAC algorithm and comparison of the association
results with ground truth, the accuracy for this scenario is computed to be 100%.
This means that the proposed association algorithm detects the correct number
of objects and the sensors observe it throughout its journey without error. The
HAC algorithm detects only one object at each time instance, and there’s zero
error throughout the scenario simulation.
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Figure 4.4: Accuracy of 2 sensors tracking 1 object

4.2 Two Sensors Two Targets

In this scenario, two moving sensors are tracking two moving objects/targets.
The first target is observed by only sensor 1, while the second target is measured
by both sensors throughout its journey. The path followed by the two sensors
and the two objects is shown in Figure 4.5.

Since S1 observes two objects while S2 observes only one object throughout
its journey, S1 will have 2 local tracks for each object while S2 will have only
one local track. When these sensors share their tracks, S1 will have two local
tracks and one shared track, while S2 will have one local and two shared tracks.
Without association, it is possible that the sensors S1 or S2 falsely report three
numbers of objects based on the given tracks. The association algorithm should
group these tracks into two clusters, one of which will have two associated tracks.
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Figure 4.5: Scenario 2: Two Sensors Two Targets

If the association algorithm shows more or less than two different clusters at
any time in the complete trajectory, the algorithm will be in error.

To observe the accuracy in this case, we developed a scenario similar to
Figure 4.5 in the validation optimization system (VOS). The visualization of
the VOS-generated scenario is shown in Figure 4.6.

Figure 4.6: VOS scenario 2

The packets associated with this scenario will contain local and shared tracks
of the two sensors. These packets will extract the track information and imple-
ment the HAC algorithm in Section 3.3. The dendrogram for this scenario will
involve two clusters, with one containing the tracks of S1 and S2 and the other
containing a single track of S1 if the association is accurate. This is shown in
Figure 4.7.

The dendrogram shows the shared and local tracks of the sensor on the x-
axis, and the blue line shows that they are clustered in one group. Since only two
clusters are formed in this scenario, sensor 1 and sensor 2 tracks are associated,
while the track with sensor 1 is not associated.

On implementation of the HAC algorithm and comparison of the association
results with ground truth, the accuracy of this scenario is 66.67%, which shows
that the proposed association algorithm is detecting the two objects 66.67% of
the association time, while the remaining 33.33% of the time, it is detecting
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Figure 4.8: Accuracy of 2 sensors tracking 2 objects

3 or 1 object. The convergence of the accuracy to 66.67% is shown against
association time in figure 4.8. However, by changing the threshold, we can get
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the accuracy of 100%, which is also shown in figure 4.8.

4.3 Two Sensors Four Targets

In this scenario, we have two moving sensors tracking four moving objects. The
first target is observed by the only sensor 1; both sensors observe the second and
third targets, while the fourth target is measured by only sensor 2 throughout
its journey. The path followed by the two sensors and the four objects is shown
in Figure 4.9.

Figure 4.9: Scenario 3: Two Sensors Four Targets

In this case, we have addressed a limitation: one sensor can only observe
two targets in one scenario. So, it will ignore any third target detected in its
trajectory and continue observing the two targets it has been observing. In
this particular scenario, S1 observes three objects while S2 observes two objects
throughout its journey. So, S1 will have two local tracks for each object, as it
can track a maximum of two objects so that it will ignore the third one. And S2

will also have two local tracks. When these sensors share their tracks, S1 will
have two local tracks and two shared tracks, and likewise, S2 will also have two
local and two shared tracks. Without association, it is possible that the sensors
S1 or S2 falsely report the numbers of objects based on the given tracks. The
association algorithm should group these tracks into two clusters, one of which
will have two associated tracks. If the association algorithm shows more or less
than two different clusters at any time in the complete trajectory, the algorithm
will be in error.

To observe the accuracy in this case, we developed a scenario similar to
Figure 4.9 in the validation optimization system (VOS). The visualization of
the VOS-generated scenario is shown in Figure 4.10

The packets associated with this scenario will contain local and shared tracks
of the two sensors. These packets will extract the track information and imple-
ment the HAC algorithm in Section 3.3. The dendrogram for this scenario will
involve four clusters, with one containing the tracks of S1 and S2 and the other
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Figure 4.10: VOS scenario 3

three containing single tracks of S1 if the association is accurate. This is shown
in Figure 4.11.
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Figure 4.11: Dendrogram for Scenario 3

The dendrogram shows the shared and local tracks of the sensor on the x-
axis, and the blue line shows that they are clustered in one group. Since only
a cluster is formed in this scenario, only one track of sensor 1 and sensor 2 is
associated, while the other tracks from booth sensor 1 and sensor 2 are not.

On implementation of the HAC algorithm and comparison of the association
results with ground truth, the overall accuracy of this scenario with a predefined
threshold is only 20%, which shows that the proposed association algorithm is
detecting four objects only 20% of the association time, while the remaining
80% of the time, it is detecting more or less than 4 objects. The convergence of
the accuracy to 20% is shown against association time in figure 4.12. However,
by changing the threshold, we can get the optimal accuracy of 100%, which is
also shown in figure 4.12.
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Figure 4.12: Accuracy of 2 sensors tracking 4 objects

4.4 Three Sensors Four Targets

In this scenario, we have three moving sensors and four moving targets. The
first target is observed by sensors 1 and 2; the second target is measured by only
sensor 2; the third target is measured by sensors 2 and 3; and the fourth target
is only measured by sensor 3 throughout its journey. The path followed by all
three sensors (green, blue, and brown triangles) and four objects (red, purple,
black, and yellow) is shown in Figure 4.13.

Sensor S1 observes only one object, while the other sensors S2 and S3 observe
two objects each. So, S1 will have one local track for that object, while S2 and
S3 will have two local tracks each. When these sensors share their tracks, S1 will
have one local and four shared tracks, while S2 and S3 will have two local tracks
and three shared tracks. With no association, it is possible that the three sensors
falsely show more than four different objects. The association algorithm should
associate the tracks and cluster them in groups. If the association algorithm
shows more than four different objects at any time in the trajectory of the target
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Figure 4.13: Scenario 4: Three Sensors Four Targets

objects, the algorithm will be in error. To observe the accuracy in this case,
we developed a scenario similar to Figure 4.13 in the validation optimization
system (VOS). The visualization of the VOS-generated scenario is shown in
Figure 4.14.

Figure 4.14: VOS Scenario 4

Notice that VOS assigns blue colors to the sensors’ paths and red to the
targets’ paths. The green cones show the range of the sensors, and the high-
lighted red path of the target in turquoise shows that the target is measured
throughout its journey. The packets associated with the scenario will contain
the three sensors’ local and shared tracks. These packets will extract the track
information and implement the HAC algorithm discussed in Section 3.3. The
dendrogram for this scenario will involve two clusters, one amongst S1 and S2

and the other amongst S2 and S3 if the association is accurate. This is shown
in Figure 4.15.

The dendrogram shows that the shared and local tracks of the sensors are on
the x-axis and clustered in a hierarchy. The y-axis shows the distance between
the two tracks in meters (m). Since two clusters are formed in this scenario, the
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Figure 4.15: Dendrogram for Scenario 4

four tracks, one with sensor 1 and sensor 2, represent the same object, and the
other with sensor 2 and sensor 3 represent the same object.
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Figure 4.16: Accuracy of 3 sensors tracking 4 objects
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On implementation of the HAC algorithm and comparison of the association
results with ground truth, the overall accuracy of this scenario with a predefined
threshold is 63.6%, which shows that the proposed association algorithm is
detecting four objects 63.6% of the association time, while the remaining 36.4%
of the time, it is detecting more or less than 4 objects. The convergence of the
accuracy to 63.6% is shown against association time in figure 4.16. However,
by changing the threshold, we can get the optimal accuracy of 99.8667%, also
shown in figure 4.16.

4.5 Three Sensors Three Targets

In this scenario, we have three moving sensors and three moving targets. The
first target is observed by only sensor 1, the second target is observed by sensors
2 and 3, and the third target is observed by only one sensor throughout its jour-
ney. The path followed by the three sensors (green, blue, and brown triangles)
and the objects (red, purple, and yellow) is shown in Figure 4.17.

Figure 4.17: Scenario 5: Three Sensors Three Targets

Sensors S1 and S2 observe only one object, while S3 observes two objects.
So, S1 and S1 will have one local track each for the objects they observe, while
S3 will have two local tracks. When these sensors share their tracks, S1 and
S2 will have one local and three shared tracks each, while S3 will have two
local tracks and two shared tracks. With no association, it is possible that the
three sensors falsely show more than three different objects. The association
algorithm should associate the tracks and cluster them in associated groups. If
the association algorithm shows more than three different objects at any time in
the trajectory of the target objects, the algorithm will be in error. To observe
the accuracy in this case, we developed a scenario similar to Figure 4.17 in the
validation optimization system (VOS). The visualization of the VOS-generated
scenario is shown in Figure 4.18.
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Figure 4.18: VOS scenario 5

Notice that VOS assigns blue colors to the sensors’ path and red to the target
path. The green cones show the range of the sensors, and the highlighted red
path of the target in turquoise shows that the target is measured throughout its
journey. The packets associated with the scenario will contain the three sensors’
local and shared tracks. These packets will extract the track information and
implement the HAC algorithm discussed in Section 3.3. If the association is
accurate, the dendrogram for this scenario will involve one cluster of S2 and S3.
This is shown in Figure 4.19.

2 3 1

Tracks

0.126

0.128

0.13

0.132

0.134

0.136

D
is

ta
n

c
e

3 Sensors 3 Targets Dendrogram

Actual Threshold

Desired Threshold

Figure 4.19: Dendrogram for Scenario 5

The dendrogram shows that the shared and local tracks of the sensor are on
the x-axis and clustered in one group. The y-axis shows the distance between
the two tracks in meters (m). Since only one cluster is formed in this scenario,
the two tracks with sensors 2 and 3 represent the same object.

On implementation of the HAC algorithm and comparison of the association
results with ground truth, the overall accuracy of this scenario with a prede-
fined threshold is 68%, which shows that the proposed association algorithm is
detecting four objects 68% of the association time, while the remaining 32% of
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Figure 4.20: Accuracy of 3 sensors tracking 3 objects

the time, it is detecting more or less than 4 objects. The convergence of the
accuracy to 68% is shown against association time in figure 4.20. However, by
changing the threshold, we can get the optimal accuracy of 99.33%, which is
also shown in figure 4.20.

4.6 Accuracy Computations in HAC Algorithm

The proposed HAC algorithm has been tested on 5 different scenarios with
varying numbers of sensors and targets, and it has demonstrated high accuracy
in simple scenarios, but the accuracy is very low in scenarios with increased
noise, number of sensors and targets, and complexity. However, this accuracy
of complex scenarios can be improved with the tuning of the threshold, and
we have tested it on different threshold settings to find the best accuracy and
make it suitable for various practical applications in dynamic and multi-object
tracking environments. I achieved 100% accuracy in the simplest scenario with-
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out threshold adjustment, and this calculation is validated through the ground
truth data, showing the accuracy computation is working fine. The accuracy
drops to 66.67% in Scenario 2, 20% in Scenario 3, 99.8667% in Scenario 4, and
68% in Scenario 5. On comparison of the clustering data and the ground truth
data, it is observed that the variation in accuracy is exactly as per expecta-
tions. The issue is related to threshold value as it is giving us wrong clusters,
and therefore, on comparison with ground truth, we are getting accuracy drops.
On adjusting the threshold value, it is observed that in each of the 4 scenarios,
we can improve the accuracy to almost 100%. This means that the accuracy
computed by comparison with ground truth is working fine.
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Chapter 5

Conclusion and Future
Work

5.1 Conclusion

This thesis explores the challenges of multi-sensor and multi-object track-to-
track association problems, focusing on biases. The Hierarchical Clustering
Algorithm (HAC) is used as an unsupervised machine learning approach to un-
derstand these problems, especially in environments with multiple sensors and
objects. The study developed various scenarios to test the HAC algorithm’s ca-
pabilities, ranging from simple to complex situations. The Validation and Opti-
mization System (VOS) was used to generate these scenarios, providing a con-
trolled yet diverse testing environment. The HAC algorithm demonstrated very
diverse accuracies across tested scenarios. However, proper threshold imple-
mentation for each scenario demonstrates impressive efficacy in handling these
complexities. As the scenarios increased in complexity, which means when the
number of sensors and objects increased, the algorithm faced challenges, result-
ing in varying degrees of accuracy. The study also found that noise levels in
tracked objects significantly impacted the algorithm’s performance, emphasizing
the importance of considering environmental factors and sensor characteristics
in the algorithm’s deployment. Overall, the thesis successfully navigates the
complex domain of multi-sensor and multi-object tracking, providing a thor-
ough and insightful analysis of the HAC algorithm’s performance.

5.2 Future Work

The thesis explores the future of the Hierarchical Clustering Algorithm (HAC)
to improve its accuracy and threshold settings. It suggests areas for further
research, including noise management, dynamic threshold optimization, com-
plex scenario analysis, computational efficiency, integration with other machine
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learning techniques, real-world application and testing, user interface for pa-
rameter management, and cross-disciplinary applications. The thesis empha-
sizes the importance of noise in tracked objects and suggests that future work
could focus on improving the algorithm’s robustness to noise through advanced
noise-filtering techniques or integrating noise-resistant models. Dynamic thresh-
old optimization could involve creating algorithms that automatically adjust
thresholds based on real-time data and environmental factors. Complex scenario
analysis could involve creating scenarios with a higher number of sensors and
objects, varied sensor types, and dynamic object movements. Computational ef-
ficiency could be optimized through algorithmic refinements, parallel processing,
or efficient data structures. Real-world application and testing could provide
valuable feedback on the algorithm’s performance and areas for improvement.
A user-friendly interface for parameter management could make the algorithm
more accessible to users without extensive technical expertise.
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