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Abstract

Blasius problem deals with the simplest third order non-linear equation of boundary

layer flow. Any approach developed for this problem may be extended to more difficult

hydrodynamics problems. With this motivation current work reviewed some techniques

that solve Blasius problem and extended some techniques. Herman Weyl’s solution is

expanded and applied to Blasius problem by making the use of symmetry properties

of the differential equation. Domb-Sykes method is used to find the location of the

singularity for the series solution of Blasius problem.

Power series solution of Blasius problem is examined and its approximate solution is

analyzed with MATHEMATICA. Approximations for second order boundary condition

of Blasius problem is obtained by method of asymptotic approximants.
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Chapter 1

Introduction

1.1 Background of Blasius Problem

The Blasius problem is one of the most illustrative and celebrated problems of applied

mathematics. It is a simple third order, non-linear ordinary differential equation sub-

ject to boundary conditions. Blasius problem is found in most undergraduate fluid

mechanics books, representing two dimensional, steady, laminar viscous flow over a

semi infinite plate. The solution to Blasius problem is called Blasius function denoted

by f , named after the German fluid dynamicist Paul Richard Heinrich Blasius. He

showed that two PDEs, namely Navier-Stokes equations could be converted to a single

third order ODE by introducing a stream function and using similarity transformation

with appropriate boundary conditions [17].

The reason why it is not easy to find analytic solution of Blasius problem is the absence

of second order boundary condition. In 1908 Blasius found power series solution of the

equation and combined it with asymptotic expansions at finite x to get an approxima-
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tion [8]. Numerical solution of Blasius problem can also be adopted in this direction.

The first to provide a highly accurate numerical solution to Blasius problem was Topfer

[20] in 1912. By using symmetry principles and similarity reduction with Runge-Kutta

method for integrating the ordinary differential equation (ODE) he solved this prob-

lem.

Blasius Problem is foundational to study fluid behaviour. Flows past a solid body

like air rushing past an airplane, ocean currents streaming past an undersea mountain

and even the blood and breath flowing through our own bodies all have thin boundary

layers similar to Blasius flow.

Blasius Problem is now more than a century old and it has cultivated a prodigious

reference list. It has continued to fascinate giants like John P. Boyd [9], Herman Weyl

[21], Von Neuman and many more. As usual the initial interest was to obtain the

qualitative behaviour of the solution of Blasius problem. But in recent years people

have become more interested in the improvement of the analytic or numerical accuracy,

see Klamin [15] and Parlage, Braddock and Sander [19]. Usually in order to obtain an

idea of accuracy involved, the value of wall shear parameter i.e second order derivative

of Blasius function at boundary is quoted. That value is of physical interest since it

defines the skin friction of the plate.

Liao [16] analytical solution by applying a method to the Blasius problem called homo-

topy analysis method (HAM). An improved version of Adomian decomposition method

was used by Abbasbandy [1] to find the numerical solution. Wang [4] used a transfor-

mation made by Crocco in 1940 which later helped to approach Blasius problem from

a different perspective.

K Parand, et al [18] found a comparatively accurate solution of the Problem by Sinc-
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Collocation method in 2009. Beong In Yun [22] has found an analytical solution of

Blasius problem in terms of alogarithm of geometric functions in 2010. S Ghorbani, et

al [13] 2015 combined the Green’s function method the best approximation theorem to

get an approximate analytic solution of the problem.

1.2 Objectives of this Research

In this thesis we have reviewed and discussed papers by F Ahmad [2], M.V Dyke [11],

John P. Boyd [10], H. Weyl [21], N.S Barlow et al [7] from a variety of perspectives.

Main purpose of taking up techniques to bring out various features of the Blasius

problem is to emphasize the fact that such techniques are often useful in dealing with

other nonlinear problems.

Our work does not report any original results. We have only reviewed

several important techniques which have been used to solve the problem.

Such techniques may find some use in solution of other non-linear problems.

1.2.1 Chapters Outline

Chapter 2 consists of some basic concepts and definitions such as boundary layer,

stream function and similarity transformation. We derive an ordinary non-linear dif-

ferential equation with suitable boundary conditions i.e Blasius equation from two

partial differential equations of flow with the help of stream functions and using simi-

larity transformation of differential equations.

In Chapter 3, we convert third order Blasius problem into a second order initial value
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problem by using dilational symmetry property of differential equations by making

some assumptions. Estimated values of second order derivative of Blasius function

for large values of independent variable x are obtained by using Runge-Kutta method

of order four in MATLAB. Our calculated value matches the value of second order

derivative of Blasius function by sixteen digits. In Section 3.1 we examine the solution

of Blasius problem from Herman Weyl [21] and reviewed it in detail and later applied

Herman Weyl’s method to our Blasius differential equation which we had derived in

Chapter 2. The approximate value for second order derivative of Blasius function ob-

tained is close enough to the previous values calculated in the literature.

In Chapter 4, power series solution for the problem is examined with the help of

techniques discussed by Van Dyke [11] “Analysis and Improvement of Perturbation

Series”. A simple pole of the function is located by using Domb-Sykes method [11].

This method is illustrated first by a simple example then applied to Blasius Problem.

Chapter 5 is devoted to application of Crocco-Wang transformation [2], in its first sec-

tion the third order Blasius equation is transformed into second order equation based

on transformation introduced by Crocco and used by Wang. The transformation ap-

plies to boundary conditions as well. Later the method of power series solution is

applied to transformed equation and a large number of coefficients are found for the

series solution of the problem by using MATHEMATICA. We have found an increas-

ing sequence and a decreasing sequence which give bounds for the parameter κ i.e the

second order boundary condition of Blasius problem.

Chapter 6 consists of a review of “method of asymptotic approximants” [7] for Bla-

sius equation. In this review we have devised a suitable approximant for power series

solution of Blasius problem. By equating finite terms of power series solution and fi-
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nite approximant a table of values of practically useful parameters such as wall shear

parameter calculated. This value matches with previously calculated approximations

in this thesis upto four digits.
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Chapter 2

Preliminaries

Boundary Layer:

As a fluid moves past a solid body a thin layer of fluid near the surface of solid body

is formed. This layer is called the boundary layer.

Stream Function:

If u and v are velocities of the flow field, the stream function is defined by:

∂ψ(x, y)

∂x
:= −v,

∂ψ(x, y)

∂y
:= u.

2.1 Blaisus Problem

Let us consider a uniform flow over a flat semi infinite plate. From [17] governing

equations of flow in this case are:

∂u

∂x
+
∂v

∂y
= 0, (2.1)
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u
∂u

∂x
+ v

∂v

∂y
= ν

∂2u

∂y2
, (2.2)

where u,v are components of the velocity vector and ν is the viscosity of the fluid.

Boundary conditions are given

u(x, 0) = 0, v(x, 0) = 0, (2.3)

y →∞⇒ u(x, y)→ U. (2.4)

U is constant speed of fluid outside the boundary layer. Let ψ(x, y) is some stream

function

u =
∂ψ

∂y
, (2.5)

v = −∂ψ
∂x

. (2.6)

This implies

∂u

∂x
=

∂2ψ

∂x∂y
,

∂v

∂y
= − ∂2ψ

∂x∂y
,

and putting above two equations in Eq. (2.1),

∂u

∂x
+
∂v

∂y
=

∂2ψ

∂x∂y
− ∂2ψ

∂x∂y
= 0.

Eq. (2.2) becomes

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂x∂y
= v

∂3ψ

∂y3
. (2.7)

A partial differential equation can be converted into an ordinary differential by sim-

ilarity transformation. Furthermore the method of similarity transformation can be
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used to reduce order of diiferential equations. Blasius introduced following similarity

transformation to transform Eq. (2.7) into and ordinary differential equation.

η = a
y√
x
, (2.8)

ψ(x, y) = b
√
xf(η), (2.9)

where a, b are constants chosen such that f(η) is dimensionless i.e

a =

√
U

ν
, b =

√
νU, (2.10)

where η is a dimensionless similarity variable. By taking derivative of ψ(x, y) with

respect to x,

∂ψ

∂x
= −U

2

y

x
f ′(η) +

1

2

√
νU

f(η)√
x
,

derivatives of ψ(x, y) with respect to y,

∂ψ

∂y
= Uf ′(η),

∂2ψ

∂y2
= Uf ′′(η)

a√
x
,

∂2ψ

∂x∂y
= −U

2

√
U

ν

y

x
3
2

f ′′(η) = − U
2x
ηf ′′(η),

∂3ψ

∂y3
=

U2

νx
f ′′′(η),

substituting above derivatives in Eq. (2.7) we get

−U
2

ay

x
√
x
f ′(η)f ′′(η) +

U

2

ay

x
√
x
f ′(η)f ′′(η),−1

2

√
Uν

a

x
f(η)f ′′(η) =

U

x
f ′′′(η),

which further simplifies as

f ′′′(η) +
1

2
f(η)f ′′(η) = 0. (2.11)
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Eq. (2.11) is called Blasius equation. Also

η(x, 0) = 0,

u(x, 0) = Uf ′(η(x, 0)),

0 = Uf ′(0)⇒ f ′(0) = 0. (2.12)

This is transformed boundary condition of Eq. (2.3). Now

v(x, 0) = −U
2

y

x
f ′(0) +

1

2

√
Uν

f(0)√
x
,

⇒ f(0) = 0. (2.13)

Likewise y → ∞ ⇒ η → ∞

f ′(η) = 1, (2.14)

as η → ∞.

With the help of stream function and using similarity transformation method partial

differential equations of flow over a semi infinite plate are transformed into third order

non-linear ordinary differential equation.

f ′′′(η) +
1

2
f(η)f ′′(η) = 0, (2.15)

with boundary conditions

f(0) = f ′(0) = 0, f ′(∞) = 1.
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Chapter 3

Topfer and Weyl’s Solutions

This chapter includes power series solution, Topfer’s [20] method to find value of f ′′(0)

and Weyl’s [21] solution of Blasius Problem. Power series solution is of limited useful-

ness because its radius of convergence is finite and is found to be approximately 5.69.

Therefor the solution is useless for larger values of η and to overcome this problem

one has to adopt some other means. Topfer’s Method (1912) overcomes the absence

of f ′′(0) by replacing the boundary value problem by an initial value problem and

exploiting its symmetry. Topfer’s method finds κ = f ′′(0) by relying on a numerical

solution of modified problem. Weyl solved the problem analytically which we present

in third section of this chapter, however the accuracy achieved is not of the same order.
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3.1 Power Series Solution of Blasius Problem

For a power series solution of Blasius problem Eq. (2.15) with boundary conditions,

we assume

f(η) =
∞∑
n=0

anη
n, (3.1)

and we assume f ′′(0) = κ.

We can see from boundary conditions

a0 = 0,

a1 = 0,

a2 =
1

2
κ.

By differentiating Eq. (3.1) w.r.t η, we get

f ′(η) =
∞∑
n=1

nanη
n−1,

f ′′(η) =
∞∑
n=2

n(n− 1)anη
n−2,

f ′′′(η) =
∞∑
n=3

n(n− 1)(n− 2)anη
n−3.

Putting in (2.15)

∞∑
n=3

n(n− 1)(n− 2)anη
n−3 +

1

2

∞∑
n=0

anη
n
∞∑
n=2

n(n− 1)anη
n−2 = 0. (3.2)

Let k = n− 3 and m = n− 2, we obtain

∞∑
k=0

(k + 3)(k + 2)(k + 1)ak+3η
k = −1

2

∞∑
n=0

anη
n
∞∑
m=0

(m+ 2)(m+ 1)am+2η
m.
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Above equation can be written as

∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)an+3η
n = −1

2

∞∑
n=0

(n+ 2)(n+ 1)an+2η
n
∞∑
n=0

anη
n,

∞∑
n=0

(n+ 3)(n+ 2)(n+ 1)an+3η
n = −1

2

∞∑
n=0

n∑
i=0

an−i(n+ 2)(n+ 1)an+2η
n,

(n+ 3)(n+ 2)(n+ 1)an+3 = −1

2

n∑
i=0

an−i(n+ 2)(n+ 1)an+2.

Few coefficients are

a3 = 0, a4 = 0, a5 = − 1

240
, a6 = 0,

a7 = 0, a8 =
11

161280
.

We get a non-zero coefficient after every two terms and negative sign with alternating

terms, rest of the series follow the same pattern. The recurrence relation for series

solution can be written as

an+3 =
−∑n

i=0 an−ian+2(n+ 2)(n+ 1)

2(n+ 3)(n+ 2)(n+ 1)
.

Thus we obtain

f(η) =
1

2
κη2 − 1

240
κ2η5 +

11

161280
κ3η8 − 5

4257792
κ4η11 + ... (3.3)

A number of coefficients can be found with MATHEMATICA

a11 = − 5

4257792
κ4, a14 =

9299

464950886400
κ5,

a17 = − 1272379

3793999233024000
κ6,

a20 =
19241647

3460127300517888000
κ7,

a29 = − 1375703592341009

55888668404873177786744832000000
κ10.
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3.2 Topfer’s Solution

Blasius problem possesses two continuous symmetries, translational symmetry and

dilational symmetry.

Dilational symmetry: If f(x) is a solution of Blasius problem then g(x) = λf(λx)

is also a solution of it. To see this, we have

g′(x) = λ2f ′(λx),

g′′(x) = λ3f ′′(λx),

g′′′(x) = λ4f ′′′(λx).

Hence

g′′′(x) +
1

2
g(x)g′′(x) = λ4[f ′′′(λx) +

1

2
f(λx)f ′′(λx)] = 0.

Also

g(0) = λf(0) = 0,

g′(0) = λ2f ′(0) = 0,

g′′(0) = λ3f ′′(0) = λ3κ, (3.4)

g′(∞) = lim
x→∞

λ2g′(λx) = λ2.

Now let g′′(0) = 1. From (3.4)

λ3κ = 1⇒ λ = κ−1/3.

Also let g′(∞) = A, then

g′(∞) = λ2f ′(∞),
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which implies

A = λ2,

which further implies

κ−1/3 = A1/2, and κ = A−3/2.

For large values of x, A can give us an approximate value of κ. In order to find A we

need to solve following initial value problem.

g′′′(x) +
1

2
g(x)g′′(x) = 0,

g(0) = 0, g′(0) = 0, g′′(0) = 1.

On a sufficiently large interval until g′(x) becomes a constant. We solve this problem on

[0, 25] and find that g′(x) will be practically constant for x ≥ 10. We use Runge-Kutta

method of order four for third order differential equation with the help of MATLAB.

Following is table(Table.3.1) of values of κ for different values of x.

Numerical value of κ matches in the first decimal position for x = 3.040. However

first three digits of κ match for x on the interval 4.028 − 5.021. Accuracy increases

rapidly from x equals to 6 and onwards. In interval 7.006− 7.809 first nine digits of κ

are same, this number increases in next interval from 8.023 to 9.895 to fifteen.

3.3 Solution of Blasius Problem by Herman Weyl

Herman Weyl made use of initial value problem discussed in previous section to get an

approximate analytical solution of Blasius problem. Let us consider the problem

ω′′′ + 2ωω′′ = 0. (3.5)
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Sr. no x A κ

1 2.007 1.728794769381651 0.439931277863228

2 3.040 2.034331480130082 0.344641379982161

3 4.028 2.082146271755432 0.332838186111262

4 5.021 2.085329605553927 0.332076342093992

5 6.014 2.085408443437374 0.332057511287537

6 6.900 2.085409171264272 0.332057336217753

7 7.006 2.085409173939981 0.332057336811808

8 7.597 2.085409176384847 0.332057336227868

9 7.809 2.085409176425792 0.332057336218089

10 8.023 2.085409176435273 0.332057336215825

11 8.565 2.085409176437859 0.332057336215207

12 8.895 2.085409176437900 0.332057336215197

13 9.015 2.085409176437902 0.332057336215197

14 10.01 2.085409176437902 0.332057336215197

Table 3.1: Values of parameter κ and A
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with initial conditions,

ω(0) = ω′(0) = 0, ω′′(0) = 1. (3.6)

For ω(z) to be the solution of equation (3.5), mω(mz) will also satisfy the equation

(3.5) by [21], where m is any constant. Let ω = f(z) be the solution determined by

initial conditions Eq. (3.6). Since f(z) is defined over the whole interval [0,∞) and

with z →∞ we can define

ξ =
∫ ∞
0

f ′′(z) > 0. (3.7)

We can define our constant m in such a manner that derivative of ω = mf(mz) ap-

proaches to κ at infinity i.e

m2ξ = κ,

m = (κ/ξ)1/2. (3.8)

Hence,

ω′′(0) = m3 = γκ3/2, γ = ξ−3/2.

In the equation,

df ′′

dz
+ 2ff ′′ = 0, (3.9)

by considering f and f ′′ as two distinct functions,

df ′′

dz
= −2ff ′′,
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df ′′/dz

f ′′
= −2f,∫ z

0

df ′′/dz

f ′′
=

∫ z

0
−2f,

ln f ′′(z) =
∫ z

0
−2f + C,

where C being the constant of integration and using initial condition f ′′(0) = 1, one

then obtain

f ′′(z) = exp(−2
∫ z

0
f(τ)dτ). (3.10)

Sice f(0) = f ′(0) = 0 and partial integration gives,∫ z

0
(z − τ)f ′′(τ)dτ = (z − τ)2f ′(τ)|z0 + 2

∫ z

0
(z − τ)f ′(τ)dτ,∫ z

0
(z − τ)f ′′(τ)dτ = 0 + 2

∫ z

0
(z − τ)f ′(τ)dτ,

2
∫ z

0
(z − τ)f ′(τ)dτ = 2((z − τ)f(τ)|z0 +

∫ z

0
f(τ)dτ),

which implies,

2
∫ z

0
f(τ)dτ =

∫ z

0
(z − τ)2f ′′(τ)dτ. (3.11)

Eq. (3.9) thus becomes

f ′′(z) = exp(−
∫ z

0
(z − τ)2f ′′(τ)dτ).

Introducing f ′′ = g as the unknown function, above expression can be written as

g = Φ{g}. (3.12)

With the operator,

Φ{g} = exp(−
∫ z

0
(z − τ)2g(τ)dτ). (3.13)
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From the definition of operator following properties of operator are obvious

(i) Φ{g} ≥ 0,

(ii) Φ{g} ≥ Φ{g∗}, if g ≤ g∗.

For successive approximation gn, a sequence can be defined as

gn+1 = Φ{gn}, (n = 0, 1, 2, ...), (3.14)

with first approximation be g0(z) = 0, which implies

g1 = Φ{g0} = exp(−
∫ z

0
(z − τ)2g0(τ)dτ),

g1 = 1.

Relations g0 ≤ g1 and g0 ≤ g2 are trivial.

Also,

g0 ≤ g1 ⇒ Φ{g0} ≥ Φ{g1}, g1 ≥ g2

Similarly following arguments can be constructed.

g2 ≤ g3, g3 ≥ g4, g4 ≤ g5, g5 ≥ g6 g6 ≤ g7, ... (3.15)

and,

g0 ≤ g2, g1 ≥ g3, g2 ≤ g4, g3 ≥ g5, g6 ≤ g8... (3.16)

Rearrange,

g0 ≤ g2 ≤ g4 ≤ g6 ≤, ... (3.17)
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and

g1 ≥ g3 ≥ g5 ≥ g7 ≥, ... (3.18)

With a little more explanation it can be seen that decreasing sequence of the odd

approximations exceeds the increasing sequence of even approximations. For instance

g7 ≥ g12, from (3.18) g7 ≥ g9 ≥ g11 implies g7 ≥ g11 and from Eq. (3.15) g11 ≥ g12,

hence g7 ≥ g12 is proved. Again g7 ≥ g100, from (3.18) g7 ≥ g9 ≥ ... ≥ g99 implies

g7 ≥ g99 and from Eq. (3.15) g99 ≥ g100 thus g7 ≥ g100. Similarly any odd gn of

arbitrary order can be proved to be greater than even gn of arbitrary order. Lets define

an abbreviation,

M(z) =
∫ z

0
(z − τ)2g(τ)dτ (3.19)

For 0 ≤ g(z) ≤ g∗(z),

∆g = g∗(z)− g(z), and ∆Φ{g} = Φ{g∗} − Φ{g}

Mean Value Theorem

If f is continuous on [a, b], differentiable on (a, b) then

f(b)− f(a)

b− a
= f ′(c)

for some c ∈ (a, b).

Consider an arbitrary function g(x) = e−x defined on interval (x, y), from mean value

theorem

e−y − e−x

y − x
= −ec
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or,

e−x − e−y

y − x
= ec ≤ 1

From here we are led to the result:

0 ≤ exp(−x)− exp(−y) ≤ y − x if x ≤ y

By using this result we can see

0 ≤ exp(−
∫ z

0
(z − τ)2g(τ)dτ)− exp(−

∫ z

0
(z − τ)2g∗(τ)dτ)

≤
∫ z

0
(z − τ)2g∗(τ)dτ −

∫ z

0
(z − τ)2g(τ)dτ

Implies,

0 ≤ −(exp(−
∫ z

0
(z − τ)2g∗(τ)dτ − exp(−

∫ z

0
(z − τ)2g(τ)dτ))

≤M∗(z)−M(z) = ∆M

Finally,

0 ≤ −∆Φ{g} ≤ ∆M.

Herman deduced if we integrate 2.∆g three times from 0 to z, we can obtain the in-

crement ∆M and the inequality

|gn+1(z)− gn(z)| ≤ (2z3)n/(3n)! (3.20)

Inequality can be proved by induction i.e,

For n = 1, it is true.
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|g1(z)− g0(z)| = |1− 0| = 1.

Assume for n = k we have

|gk+1(z)− gk(z)| ≤ (2z3)k/(3k)! (3.21)

Now, for n = k + 1,

|gk+2(z)− gk+1(z)| = | exp(−
∫ z

0
(z − τ)2gk+1(τ)dτ − exp(−

∫ z

0
(z − τ)2gk(τ)dτ)|

≤ |
∫ z

0
(z − τ)2(gk − gk+1)dτ |

≤ |
∫ z

0
(z − τ)2

(2(τ)3)k

(3k)!
dτ |

= | 2k

(3k)!

∫ z

0
(z2 + τ 2 − 2zτ)(τ 3k)dτ |

= | 2k

(3k)!

∫ z

0
(τ 3kz2 + τ 3k+2 − 2zτ 3k+1)dτ |

= | 2k

(3k)!
(
τ 3k+1z2

3k + 1
+

τ 3k+3

3k + 3
− 2zτ 3k+2

3k + 2
)|z0|

= | 2k

(3k)!
(
τ 3k+3

3k + 1
+

τ 3k+3

3k + 3
− 2τ 3k+3

3k + 2
)|

= | 2k

(3k)!
(

2τ 3k+3

(3k + 1)(3k + 3)(3k + 2)
)|

=
(2τ 3)k+1

(3(k + 1))!
. (3.22)

Thus it is true for n = k + 1 which proves the inequality. Relation (3.21) suffices to

guarantee the convergence of the sequence gn(z)

g(z) = lim
n→∞

gn(z)
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Since series gn is a combination of ascending sequence of odd gn and descending se-

quence of even gn, limit function g(z) would be greater than the even and less than

the odd gn. Furthermore limit of a bounded convergent sequence is unique, uniqueness

can be proved by inequalities

g ≥ g0, g ≤ g1, g ≥ g2, g ≤ g3, ...

Thus g(z) is certainly between even and odd approximations of gn.

Next we will examine the asymptotic behaviour of g(z) as z →∞.

Let for any z0 > 0 we have

∫ z0

0
g2(τ)dτ = c > 0 (3.23)

From Eq. (3.19) M2 is
∫ z0
0 (z − τ)2g2(τ)dτ . Partial integration of the expression gives,

(z − τ)2
∫ z0

0
g2(τ)dτ + 2

∫ z0

0
((z − τ)

∫ z0

0
g2(τ))dτ ≥ (z − τ)2

∫ z0

0
g2(τ)dτ

Using Eq. (3.23) we get,

M2 ≥ c(z − z0)2

Multiply both sides with -1

−M2 ≤ −c(z − z0)2 ⇒ e−M2 ≤ e−c(z−z0)
2

g(z) ≤ g3(z) ≤ e−c(z−z0)
2
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Consequently

∫ ∞
0

g(z)dz = ξ > 0

and,

∫ ∞
0

zg(z)dz = ξ′ > 0

So,

2
∫ z

0
f(τ)dτ =

∫ z

0
(z − τ)2g(τ)dτ.

By partial integration,

∫ z

0
f(τ)dτ = (z − τ)2|z0

∫ z

0
g(τ)dτ + 2

∫ z

0
(
∫ z

0
g(τ))(z − τ)dτ

f(τ)dτ =
∫ z

0
(z − τ)g(τ)dτ.

At infinity

f(z) ∼
∫ ∞
0

(z − τ)g(τ)dτ =
∫ ∞
0

zg(τ)− τg(τ)dτ

= zξ − ξ′.

Hence

ω(z) ∼ mf(mz) = m2ξz −mξ′.
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From Eq. (3.8) m = (κ/ξ)1/2

w(z) = zκ− ξ′.(κ
ξ

)1/2.

Let,

B =
∫ ∞
0

g2(z)dz =
∫ ∞
0

e−z
3/3dz

g(z) ≥ g2(z) implies

∫ ∞
0

g(z)dz ≥
∫ ∞
0

g2(z)dz

ξ ≥ B =
∫ ∞
0

g2(z)dz

=
∫ ∞
0

exp(
∫ z

0
(z − τ)2g1(z)dz)dz

=
∫ ∞
0

exp(
∫ z

0
(z − τ)2dz)dz

=
∫ ∞
0

exp(−1

3
z3)dz (3.24)

Substitution t = 1
3
z3 implies z = (3t)

1
3 , therefore,

dz =
1

3
3

1
3 t−

2
3 .

Substituting these in Eq.(3.24) we get,

B =
3

1
3

3

∫ ∞
0

e−tt−2/3dt

=
3

1
3

3

∫ ∞
0

e−tt
1
3
−1dt

=
3

1
3

3
Γ(

1

3
) (3.25)

Using property of gamma function, Γ(x+ 1) = xΓ(x).

Eq.(3.25) becomes,

B = 3
1
3 .Γ(

4

3
).
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Let us consider our differential equation (2.11) with same boundary conditions as of

Eq.(3.6)

f ′′′(η) +
1

2
f(η)f ′′(η) = 0,

f(0) = f ′(0) = 0, f ′′(0) = 1,

which can be written as

df ′′

dz
+

1

2
ff ′′ = 0,

df ′′

dz

f ′′
=

1

2
f.

Integrating and treating f(z) and f ′′(z) as two distinct functions

ln(f ′′) =
1

2

∫ z

0
f(τ)dτ + C1

C1 is the constant of integration. Using initial condition f ′′(0) = 1,

f ′′(z) = exp(−1

2

∫ z

0
f(τ)dτ). (3.26)

Since partial integration gives

2
∫ z

0
f(τ)dτ =

∫ z

0
(z − τ)2f ′′(τ)dτ,

=⇒ 1

2

∫ z

0
f(τ)dτ =

1

4

∫ z

0
(z − τ)2f ′′(τ)dτ.

Differential equation (3.26) thus becomes

f ′′(z) = exp(−1

4

∫ z

0
(z − τ)2f ′′(τ)dτ)

f ′′ = g gives

g = Φ{g},
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with the operator

Φ{g} = exp(−1

4

∫ z

0
(z − τ)2g(τ)dτ). (3.27)

For successive approximation gn, a sequence can be defined as

gn+1 = Φ{gn}, (n = 0, 1, 2, ...).

|gn+1(z)− gn(z)| ≤ (2z3)n/(3n)!

B =
∫ ∞
0

g2(z)dz =
∫ ∞
0

e−z
3/4.3dz

g(z) ≥ g2(z) implies

∫ ∞
0

g(z)dz ≥
∫ ∞
0

g2(z)dz

ξ ≥ B =
∫ ∞
0

g2(z)dz

=
∫ ∞
0

exp(
1

4

∫ z

0
(z − τ)2g1(z)dz)dz

=
∫ ∞
0

exp(− 1

12
z3)dz.

Substitution t = 1
12
z3 implies z = (12t)

1
3 therefore,

dz =
1

3
(12)

1
3 t−

2
3 .

Substituting these in Eq.(3.24), we get

B =
(12)

1
3

3

∫ ∞
0

e−tt−2/3dt

=
(12)

1
3

3

∫ ∞
0

e−tt
1
3
−1dt

=
(12)

1
3

3
Γ(

1

3
)
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Consequently

B = (12)
1
3 .Γ(

4

3
)

' 2.0445.

From first section of this chapter we can infer that κ = B−3/2, so that we can have an

approximation for κ. It turns out to be κ = 0.3420953217.
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Chapter 4

Domb-Sykes Method

We saw that the series solution has a finite radius of convergence which indicates

existance of a singular point in the complex plane. Now we discuss a method for

the location of such a singularity. This method is called Dom-Syke’s method and is

applicable to problematic series of type above.

4.1 Domb-Sykes Diagram

A series converges for |x| < r having centre at zero, r is distance from origin to nearest

singularity. Let singularity at x0 is of type (x0 − x)α, α 6= 0, 1, 2...

Now let

(x0 − x)α =
∞∑
n=0

cnx
n (4.1)

Implies,

cn
cn−1

= ∓ 1

x0
(1− 1 + α

n
) (4.2)
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FIG. 4.1: Domb Sykes diagram for function in example

If we plot cn
cn−1

against 1
n
, the line will intersect the cn

cn−1
line at ∓ 1

x0
, which gives the

location of singularity. Order of singularity which is α can be inferred from the slop

∓1+α
x0

of line. This idea has been used many times by Domb , Sykes and Punnis. Van

Dyke [11] called the figure Domb-Sykes Diagram.

4.1.1 Example

f(x) =
1− x+ 2x3

(2− x)2
(4.3)

Maclauren series for f(x) denotes by S(x) is given by,

S(x) = 0.25− 0.0625x2 + 0.4375x3 + 0.453125x4 + 0.34375x5 + ... (4.4)

Function gives information that it has a pole of order 2 at x = 2. We shall recover this

information from the series. Line cut the cn
cn−1

approximately at 0.5, thus

x0 = 1/0.5 = 2 and − 1

x0
(α + 1) = 1/2,
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produces α = −2.

We have a pole of order 2 at x = 2. If we set

S(x) = p(x)/(x− 2)2,

then

p(x) = S(x)(x− 2)2 = 1− x+ 2x3.

We indeed have recovered the function from the series.

4.2 Blasius Problem

Assuming the unknown second derivative at origin f ′′(0), to be κ, successive coefficients

cn, in the series solution,

f(x) =
∞∑
n=0

(−1)ncnx
3n+2, (4.5)

are calculated from the recurrence relation,

3n(3n+ 1)(3n+ 2)cn =
1

2

n−1∑
i=0

(3i+ 1)(3i+ 2)cicn−1−i. (4.6)

Series obtained here are

1

2
κx2 − 1

240
κ2x5 +

11

161280
κ3x8 − 5

4257792
κ4x11 + ... (4.7)

Let us make a substitution,

η = κx3 (4.8)

the series (4.7) becomes,

κx2(
1

2
− 1

240
η +

11

161280
η2 − 5

4257792
η3 + ...) (4.9)

The series in powers of η has finite radius of convergence.
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4.2.1 Location of Singularities

If the signs of terms in a series follow a regular pattern it gives an indication of the

location of a singularity. If there is a singularity on the positive real axis the series will

eventually exhibit unchanged signs like the fuction

(1− a)−1 = 1 + a+ a2 + a3 + ... (4.10)

On the other hand a singularity on the negative real axis will give rise to alternating

signs as in (1+a)−1. The pattern in the Blasius series indicate likelihood of a singularity

on the negative real axis. Coefficients in the series κx2
∑∞
n=0 cnηn, are easily found by

using MATHEMATICA. For example,

c4 = 2× 10−8, c5 = −3.35366× 10−10, c6 = 5.5609× 10−12, c99 = −3.97548× 10−178(4.11)

Plot of cn
cn−1

versus 1/n is as follows, The line has slope zero. Thus,

α + 1 = 0, α = −1

Corresponds to a simple pole. It is located approximately at,

η =
c99
c98

= −61.1729

By re-substitution η = κx3 and

κ = 0.33205

We find x3 = −184.224 Hence there are three simple poles one of them located at

x = − 3
√

184.224 = −5.69004. The other two are placed symmetrically in the complex

plane. This is why radius of convergence of Blasius Series is 5.69004.
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FIG. 4.2: Domb Sykes diagram for Blasius function
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Chapter 5

Coroco-Wang Transformation

We shall discuss a method which transforms the Blasius problem with a differential

equation of order two and a finite domain of [0, 1]. We find a series solution and use it to

evaluate f ′′(0). Two dimensional steady-state laminar viscous flow over a semi-infinite

plate is modeled by following Blasius Equation,

f ′′′(η) + β0f
′′(η)f(η) = 0, η ∈ [0,∞), (5.1)

f(0) = f ′(0) = 0, f ′(∞) = 1. (5.2)

Boundary condition at second derivative of f(η) is not obtained which is a constraint in

finding solution of Blaisus Problem. Different scientists found approximate numerical

values of f ′′(0) by using or inventing various techniques. For example Howarth found

f ′′(0) = 0.33206, Asaithambi [6] found f ′′(0) = 0.469600. Fang et al. [12] introduced a

substitution

f(η) =
1

β0
F (

√
β0η). (5.3)
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Blaisus Equation transforms into,

F ′′′ + FF ′′ = 0. (5.4)

5.1 Transformation

Likewise Liao [16] and Abbasbandy [1] found solutions of Blasius Problem at high level

of accuracy. Transformation introduced by Coroco [2] is,

x = f ′(η) (5.5)

⇒ dx

dη
=

f ′(η)

dη
= f ′′(η)

y = f ′′(η) (5.6)

⇒ dy

dx
=

df ′′(η)

dx

=
df ′′(η)

dη

dη

dx

= f ′′′(η)
dη

dx
= f ′′′(η)/f ′′(η) (5.7)

Divide both sides of equation (5.1) with f ′′(η) and using (5.5) and (5.6)

f ′′′(η)/f ′′(η) + β0f(η) = 0

dy

dx
+ β0f(η) = 0

Taking Derivative and using (5.5)

d2y

dx2
+ β0

df(η)

dx
= 0,

⇒ d2y

dx2
+ β0

df(η)

dη

dη

dx
= 0,
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⇒ d2y

dx2
+ β0

f ′(η)

f ′′(η)
= 0,

⇒ d2y

dx2
+ β0x/y = 0,

Blasius problem becomes,

d2y

dx2
+
x

y
= 0, x ∈ [0, 1) (5.8)

For x = 0, we can see from (5.5) that η is zero,x = 0⇒ f ′(η) = 0

η = 0,

y(0) = f ′′(0), y(0) = α. (5.9)

Since x = 0⇔ η = 0. From(5.7)

y′(0) = f ′′′(0)/f ′′(0) = −x(0)/y(0)

y′(0) = 0/α = 0 (5.10)

Also

y(1) = f ′′(∞) = 0.

So boundary conditions of Blasius problem transformed into

y(0) = f ′′(0), y′(0) = 0, lim
x→0

y(x) = 0. (5.11)

Wang solved equation(57) by using Adomian decomposition method and found,

y(x) = α− x3

6α
− x6

180α3
− x9

2160α5
− x12

19008α7
... (5.12)

Here α denotes f ′′(0). Further

y(1) = 0,
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implies

α = 0.453539.

by retaining six terms of series (5.12). Hashim used Adomian decomposition method

and diagonal pade approximation found terms of series (5.12) up to x24 and modified

value of α is α = 0.466799.

5.2 Power Series Solution

Equation(5.8) can be written as,

yy′′ = −x (5.13)

Let the power series solution solution of above problem is

y(x) =
∞∑
n=0

anx
n (5.14)

From (5.6)

a0 = f ′′(0),

a1 = 0.

Differentiate (5.14) twice and we get,

y′(x) =
∞∑
n=1

nanx
n−1,

y′′(x) =
∞∑
n=2

n(n− 1)anx
n−2.
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Put these two values in (5.13)

∞∑
k=0

∞∑
n=2

akann(n− 1)xn+k−2 = −x. (5.15)

Expanding the above summation for first few terms

2αa2 + (2a1a2 + 6αa3)x+ (12αa4 + 6a1a3 + 2a22)x
2 + (20αa5 + 12a1a4 + 8a2a3)x

3 + ... = −x,

Which gives

a2 = 0,

a3 = − 1

6α
,

a4 = 0,

a5 = 0.

Let

m = n+ k − 2,

equation (5.15) becomes

∞∑
m=0

m∑
k=0

akam−k+2(m− k + 2)(m− k + 1)xm = −x.

By comparing both sides of equation we can see that coefficients of each power of x

other than unity must vanish. This implies for m ≥ 2

∞∑
m=0

m∑
k=0

akam−k+2(m− k + 2)(m− k + 1) = 0. (5.16)
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Which can be written as,

(m+ 2)(m+ 1)am+2a0 =
∞∑
m=0

m∑
k=0

akam−k+2(m− k + 2)(m− k + 1). (5.17)

The recurrence relation we obtained is

(m+ 2)(m+ 1)am+2 = − 1

α

m∑
k=1

akam−k+2(m− k + 2)(m− k + 1). (5.18)

m ≥ 2. From above results we see that a0 and a3 are non-zero while a1, a2, a4 and

a5. From Eq. (5.18) follows that a6 is again non-zero but a7 and a8 are zeros. We can

easily show that only those coefficients whose suffixes are multiple of 3 fail to vanish

by mathematical induction. Equation (5.18) can be written as,

3n(3n− 1)a3n = − 1

α

n−1∑
k=1

(3n− 3k)(3n− 3k − 1)a3ka3n−3k (5.19)

n ≥ 2. Starting with

a0 = α (5.20)

and

a3 =
1

6α

Equation(5.19) gives us

a6 = − 1

180α3

, a9 = − 1

2160α5

, a12 = − 1

119008α7

,

a15 = −7.01125× 10−6

α9

, a18 = −1.03002× 10−9

α11

,

a21 = −1.16614× 10−7

α13

, a24 = −2.65906× 10−8

α15

,

a27 = −4.53471× 10−9

α17

, a30 = −7.95335× 10−10

α19

,

Number of coefficients can found easily by using MATHEMATICA of any order with

very little effort. For example

a1500 = −4.1809830× 10−335

α999
(5.21)
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5.2.1 Increasing Sequence

To find α we solved equation y(1) = 0 where,

y(x) =
∞∑
n=0

a3nx
3n (5.22)

This implies

α +
∞∑
n=1

a3n
α2n−1 = 0 (5.23)

Hashim approximated α ≈ 0.463662 truncating the series after seven terms. He further

improved this value to α ≈ 0.466799 by approximating the series for up to x21 using

Pade’ approximation. We can attempt to further improve this value as we have found

arbitrary number of terms. From Eq. (5.23) let

Fk(α) = α +
k∑

n=1

a3n
α2n−1 = 0, k = 1, 2, 3... (5.24)

Let αkdenotes the root of the equation

Fk(α) = 0

Table below represents approximated value of α for different number of terms

5.2.2 Decreasing Sequence

Expression for 1
y

found by Wang and Hashim [14] is

1

y
=

1

α
+

x3

6α3
+

x6

30α5
+

x9

144α7
+

2099

1425600

x12

α9
+ ... =

1

α
+
∞∑
n=1

c3n
x3n

α2n+1
(5.25)

Solution y(x) of Eq. (69) is related to Eq. (95) in following manner

y(x) = α−
∫ x

0

∫ x

0

x

y
dx (5.26)
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k αk k αk

1 0.408248 15 0.467293

2 0.441743 20 0.46798

3 0.452576 30 0.468611

4 0.457674 50 0.469066

5 0.460566 100 0.469365

7 0.463662 300 0.469535

Table 5.1: Values of αk

Using Eq. (5.25) in (5.26) we get,

y(x) = α− x3

6α
−
∞∑
n=1

c3n
x3n+3

(3n+ 3)(3n+ 2)α2n+1
= α−

∞∑
n=0

c3nx
3n+3

(3n+ 3)(3n+ 2)α2n+1
(5.27)

= α−
∞∑
n=1

c3n−3x
3n

3n(3n− 1)α2n−1 (5.28)

Comparison of Eq. (5.22) and (5.28) we get,

c3n−3 = −3n(3n− 1)a3n (5.29)

n ≥ 1 Putting x = 1 in (5.28) and truncating after k terms we obtained

0 = y(1) = α−
k∑

n=1

c3n−3
3n(3n− 1)α2n−1

− c3k
(3k + 3)(3k + 2)α2k+1

... (5.30)

For large k we have approximation,

c3k+3

c3k
= α2 c3k+6

c3k
= α4 (5.31)

Hence equation (5.30) becomes

0 = α−
k∑

n=1

c3n−3
3n(3n− 1)α2n−1 −

c3k
α2k+1

∞∑
n=k

1

(3n+ 3)(3n+ 2)
.
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This implies,

∞∑
n=k

1

(3n+ 3)(3n+ 2)
=

1

(3k + 2)
,

0 = α−
k∑

n=1

c3n−3
3n(3n− 1)α2n−1 −

c3k
(3k + 2)α2k+1

.

Using equation (5.24) we get

Fk(α) +
3k + 3

α2k+1
a3k+3 = 0. (5.32)

Left side of above equation

Gk(α) = Fk(α) +
3k + 3

α2k+1
a3k+3. (5.33)

Let α(k) denotes roots of above equation. Below is table for roots of above equation.

k α(k) k α(k)

5 0.482463 500 0.469665

7 0.478413 900 0.469634

15 0.473268 1000 0.4696298

50 0.470505 1500 0.4696190

100 0.470006 1800 0.4696155

200 0.469784 2100 0.4696130

300 0.469716 4000 0.4696064

Table 5.2: Values of α(k)

From two tables, Table (5.1) and Table (5.2) it is clear that 0.469535 < α < 0.469606.
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Chapter 6

Method of Asymptotic

Approximants

When the infinite power series solution of a problem diverges and/or we only know a

finite number of power series coefficients, a method is devised to find solution of such

problems called Method of Asymptotic Approximants [7]. Many scientists have devel-

oped techniques to accelerate the convergence of divergent or slowly converging series.

For instance Euler’s Transformation,Conformal Mapping and Pade Approximation.

Among all, Pade Approximation is the most frequently used method to approximate

functions. Pade approximation is a method in which we approximate a function by a

rational function of a given order. It’s a quotient of two polynomials PN(x) and QM(x)

of degrees N and M on a small interval [a, b]. The method of asymptotic approximant

has resemblance with pade approximation technique.

Definition Given a power series representation of some function f(x):

44



f =
∞∑
n=0

an(x− x0)n. (6.1)

and an asymptotic behaviour,

f ∼ Cfa(x) as x→ xa,

where C is a constant, an asymptotic approximant is any function FA(x) that may be

expressed analytically in closed form and that satisfies the following three properties:

1. The N − term Taylor expansion of fA about x0 is identical to the N -term

truncation of (6.1).

2. limx→xa(FA/fa) = constatnt for any N .

3. The sequence of approximants converges for increasing N .

Choosing an approximant wisely according to the above conditions of definition will give

us a uniformly converging sequence incorporating the correct asymptotic behaviour.

Approximants with trivially generated unknown coefficients are considered preferable

in order to simplify the process, which is not the case in Pade Approximation. This

technique deals with the simple asymptotic forms possible while preserving the desired

accuracy and precision of the solution. Approximants being the closed form func-

tions lead us to the prediction of physically useful properties. This feature of approxi-

mant makes it a lot easier to solve numerous physical problems i.e Sakiadis Boundry

Layer problem, The Blaisus Boundry Layer Problem and The F lierl Petviashvili

Monopole.

As shown in previous section by similarity transformation the equations of flow and

continuity equation lead to the nonlinear boundary value problem Eq.(5.1) in f(η) with

45



boundary conditions Eq. (5.2).

Let us consider a power series solution to Blaisus Problem

y(x) =
∞∑
n=0

anη
n. (6.2)

Substituting Eq.(6.2) into Eq.(5.1) using boundary conditions Eq.(5.2), we get the

following recurrence relation,

am+3 = −
∑m
k=0 ak+2am−k(k + 1)(k + 2)

2(m+ 1)(m+ 2)(m+ 3)
(6.3)

First two terms of the power series solution are zero due to first two boundary condi-

tions at η = 0, while third term is non-zero. Next two terms are again zero and this

pattern repeats throughout the solution:

1

2
κη2 − 1

240
κ2η5 +

11

161280
κ3η8 − 5

4257792
κ4η11 + ... (6.4)

Where κ = f ′′(0) is wall shear parameter can be obtained from the solution of Eq.(5.1).

In this paper, κ is predicted by asymptotic approximants.

According to Blaisus’s [10] observation

f ∼ η+B x→∞

f − η ∼B x→∞

lim
x→∞

(f − η) ≡ B (6.5)

The Approximant below:

fA = η +B −B(1 +
N∑
n=1

Anη
n)−1 (6.6)

46



is quite appropriate for Blaisus Problem, as it agrees with boundary conditions

Eq.(5.2) and first order asymptotic expansion Eq.(6.5).

As mentioned above unknown physical properties can be predicted by approximants.

The wall shear parameter κ and other unknown coefficients A0, A1...AN and B, by

equating the finite order Taylor Expansion of Approximant Eq.(6.6) about η = 0 and

N -term truncation of assumed power series solution Eq.(6.2) i.e

η +B −B(1 +
N∑
n=1

Anη
n)−1 =

N∑
n=0

anη
n

Rearrange and simplifly,

−B(1 +
N∑
n=1

Anη
n)−1 = −η −B +

N∑
n=0

anη
n,

=⇒ (1 +
N∑
n=1

Anη
n)−1 = 1 +

η

B
− 1

B
(
N∑
n=0

anη
n),

=⇒ 1

(1 + A1η + A2η2 + ...+ ANηN)
= 1 +

η

B
− 1

B
(
N∑
n=0

anη
n),

=⇒ 1 = (1 + A1η + A2η
2 + ...+ ANη

N)(1 +
η

B
− 1

B
(
N∑
n=0

anη
n)),

By equating coefficients we get,

An>0 =
1

B

n∑
j=1

ãjAn−j.

where ã1 = −1 , ãj>1 = aj and A0 = 1

Let

AN = AN−1 = 0
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Implies

N∑
j=1

ajAN−j = 0,

N−1∑
j=1

ajAN−1−j = 0

Which further leads to two nonlinear equations. These equations are solved simulta-

neously to find roots κ and B. For various values of N , corresponding values of κ and

B are given below.

N κ B

5 0.125451 -6.0895

8 0.265756 -2.36178

11 0.309679 -1.91379

14 0.323983 -1.79089

17 0.329037 -1.74806

20 0.330902 -1.73173

23 0.331611 -1.72523

26 0.331884 -1.7226

30 0.332008 -1.72134

Table 6.1: Values of parameter k and constant B
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Chapter 7

Conclusions

We have seen that by using symmetry of differential equation, we can solve a related

boundary value problem in which we assume f ′′(0) = 1, and use its solution to accu-

rately estimate f ′′(0) for the Blasius problem. The technique to find Weyl’s solution

for large values of η maybe helpful for finding asymptotic expressions for similar non-

linear boundary value problems. Series solution for the Blasius problem diverges. This

indicates existance of a singularity on the negative real axis. The sigularity can be

located by using the Domb-Sykes technique [11]. This technique is fairly general and

has been applied to several important problems. Method of asymptotic approximants

is very useful in problems where more than one parameters need to be evaluated.

Methods discussed in this research work can be further extended to similar non-linear

boundary value problems such as Sakiadis problem. These problems are broadly used

in fluid dynamics. Techniques developed here can be used to elucidate various features

of fluid flow.
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