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Abstract

Since the 1980s the oscillation theory has been developing quite rapidly. Investigation of the oscillation

and non oscillation of delay di�erential equations gained tremendous success.

In this thesis we discuss the theory of oscillation of di�erential equations. We have given basic de�ni-

tions and important results for the oscillation of ordinary di�erential equations. Necessary and su�cient

conditions for the oscillation of the solutions of delay di�erential equations have been given. Moreover, we

have pointed out some major di�erences between ordinary and delay di�erential equations. Some appli-

cations of delay di�erential equations are also given and the method of steps for solving delay di�erential

equations has been discussed.

We have also discussed is the oscillatory behavior of solutions of impulsive di�erential equations of

�rst and second order. In this thesis, the original contribution of the author is the oscillation of class of

fractional di�erential equations with impulsive conditions and fractional-order delay di�erential equations

with constant coe�cients.

The iterative methods such as Daftardar and Jafari method [DJ-method] and Iterative Laplace Trans-

form method [ILTM] for solving fractional di�erential equations with initial and boundary conditions have

been discussed.
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Chapter 1

Introduction

Fractional Calculus is a �eld of mathematics that came out of the traditional de�nitions of the calculus

integral and derivative operators in almost the similar way as fractional exponents is the concept coming

from integer order exponents. When one thinks about the physical meaning of the exponent, according

to general concept exponents are short notation for repeated multiplication of a numerical value. This

concept in itself is easy to understand. However, this physical de�nition can become confused when we

take non integer value of exponents. It is easy to verify that u4 = u.u.u.u, how can we describe the

physical meaning of u3/5, or of the transcendental exponent uπ/2. One cannot conceive what it might be

like to multiply a number or a value by itself 3/5 times, or π/2 times, while these expressions have a

de�nite value for any value u, can be calculated by in�nite series expansion, or more easily, by calculator.

Now, similarly consider the integral and derivative of non-integer order. Although they are more complex

concepts, it is still easy enough to physically explain their meanings. Given the satisfaction of some

conditions (e.g. function continuity), evaluating n integrations can become as logical as multiplication.

But an interested mind can ask, �what if n were not restricted to an integer value?�. Again, the physical

meaning looks complicated, but this report will show, fractional calculus comes out naturally from the

traditional de�nitions of integrals and derivatives. And just as exponents of non integer values, such as the

square root can �nd their way into numerous equations and applications, it will become understandable

that integrations of order 1/2 and beyond have practical importance in many real life problems.

History and mathematical background: Most of the authors will give a �xed date for the birthday of

�Fractional Calculus�. In a letter (dated September 30th, 1695) L'Hopital asked Leibniz about a particular

notation he had used in his publications for the nth-derivative of the linear function f(x) = x, D
nx

Dxn .

L'Hopital asked Leibniz, "what would the result be if n = 1/2.” Leibniz's response: "An apparent paradox,

from which one day useful consequences will be drawn." This was the birth of fractional calculus.

Following L'Hopital's and Liebniz's �rst investigation, fractional calculus was mainly a study for the

brilliant minds in mathematics. Fourier(21 March 1768 - 16 May 1830), Euler(15 April 1707 - 18 September

1783), Laplace(23 March 1749 - 5 March 1827) are among the many that played their active role in

fractional calculus and the mathematical consequences. Many mathematicians using their own notation

and methodology found the de�nitions that gives a justi�cation for the concept of a non-integer order

integrals and derivatives. The most popular de�nitions that have been used in the world of fractional
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calculus are the Riemann-Liouville and Caputo de�nitions. We have discussed Riemann-Liouville and

caputo de�nition in detail in this thesis. Most of the mathematical theory used for the study of fractional

calculus was developed before the 20th century. However, in the past 100 years most interesting �elds in

engineering and scienti�c applications have been found. Caputo redeveloped the more classic de�nition

of the Riemann-Liouville fractional derivative in order to use initial conditions of integer order to solve

his fractional order di�erential equations. Recently in 1996, Kolowankar redeveloped again, the Riemann-

Liouville fractional derivative to di�erentiate nowhere di�erentiable fractal functions. Leibniz's response

has proven almost half right. A large number of applications and physical use of fractional calculus within

the 20th century have been discovered. However, these applications and the mathematical background

associated with fractional calculus are very di�erent from paradoxical. While the physical meaning may

be impossible to understand, the accuracy of these de�nitions is no more accurate than of integer order

analogue.

In this chapter, we remind some basic de�nitions and results. The Gamma function, fractional integrals

and derivatives, properties of fractional derivatives and integrals, The Laplace Transform and useful results

for delay di�erential equations are discussed. We will provide examples to understand the given results

where necessary.

In Chapter 2, we study the oscillation criteria of ordinary di�erential equations. In Chapter 3, we discuss

some results for the oscillatory behavior of the delay di�erential equations. In Chapter 4, we will study

oscillation of solution of impulsive di�erential equations. In Chapter 5, we will study oscillation of solution

of fractional di�erential equations and will establish some new results. In chapter 6, we shall use Daftardar

and Jafari method [DJ-method] for solving di�erential equations, fractional order di�erential equations

and integral equations.

1.1 The Gamma function

Factorial function is de�ned as m! = m(m − 1)(m − 2) . . . (2)(1) for all m ∈ Z+. But to include non-

integer values, how can we extend factorial function? This problem is originally posed by Daniel Bernoulli

and Christian Goldbach in the 1720 and it was eventually solved by Leonhard Euler in 1729. m! is

communicated by Euler as both an in�nite sum and an integral, in his famous paper [1] "De progressionibus

transcendentibus seu quarum termini generales algebraice dari nequeunt".

After a year, in 1730, James Stirling discovered a formula to �nd approximate value of m! as m become

very large. Which is known as Stirling's Formula and was puri�ed right through the years.

From 1730 to the present day, there have been made signi�cant progress. Nearby 1812, Carl Friedrich

Gauss recast Euler's product formula as a limit of a function, also he considered the factorial of a complex

number. After a few years, Karl Weierstras gave another representation, which is now known as the

gamma function.

The gamma function Γ(x) [2] plays an important role in the theory of di�erentiation and integration.

Γ(x) : (0,∞)→ R is de�ned by

Γ(x) =

∫ ∞
0

tx−1e−tdt, x > 0. (1.1.1)
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The integral de�ning Gamma function is uniformly convergent for all x in [a, b] where 0 < a ≤ b < ∞,
and hence Γ(x) is a continuous function for all x > 0.

Relation between Gamma function and factorial

Γ(n) = (n− 1)!, n > 0.

Integration of (1.1.1) by parts yields

Γ(x+ 1) = xΓ(x), x > 0. (1.1.2)

From (1.1.2) we have

Γ(x) =
Γ(x+ 1)

x
, x 6= 0, x > −1.

Similarly

Γ(x) =
Γ(x+ n)

x(x+ 1)(x+ 2) . . . (x+ n− 1)
, n ∈ N.

Thus Γ(x) is de�ned for all x ∈ R except x = 0,−1,−2, . . .

For x = 1, (1.1.1) implies

Γ(1) =

∫ ∞
0

e−tdt = 1

and

Γ(2) = 1Γ(1) = 1!,

Γ(3) = 2Γ(2) = 2.1 = 2!,

Γ(4) = 3Γ(3) = 3.2! = 3!,

...

Γ(n) = (n− 1)!.

So, the Gamma function generalizes the factorial function.

In particular for the Gamma of rational numbers, we put t = u2 in (1.1.1)

Γ(x) = 2

∫ ∞
0

e−u
2
u2x−1du, Re(x) > 0.

Let x = 1
2

Γ

(
1

2

)
=

∫ ∞
0

t−1/2e−tdt.

Substitute t = u2, then dt = 2udu, as t→ 0, u→ 0, and as t→∞, u→∞.
So

Γ

(
1

2

)
= 2

∫ ∞
0

e−u
2
du.

But
∫ ∞

0
e−u

2
du =

∫ ∞
0

e−v
2
dv.

(
Γ

(
1

2

))2

= 4

∫ ∞
0

∫ ∞
0

e−(u2+v2)dudv.
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Let u = r cos θ, v = r sin θ.

Then
(
Γ
(

1
2

))2
= 4

∫ π/2

0

∫ ∞
0

e−r
2
rdrdθ = 2

∫ π/2

0
dθ = π. So Γ(1

2) =
√
π.

Similarly

Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=
√
π/2

and

Γ(−3/2) = Γ(−1/2)/(−3/2) =

[
Γ

(
1

2

)
/

(
−1

2

)]
/(
−3

2
) =

4

3

√
π.

1.2 Fractional derivatives and integrals

In this section we give some de�nitions and important results for fractional derivatives and integrals [3]

as follows:

Riemann-Liouville fractional integral

De�nition 1.2.1. The Riemann-Liouville integral Iαa with fractional order α ∈ R+ of function f ∈ L1[a, b],

for a ≤ x ≤ b, is de�ned as

Iαa f(x) =
1

Γ(α)

∫ x

a
(x− s)α−1f(s)ds.

For α = 0, we set I0
a := I, identity operator.

For some β > −1 and α > 0, the Riemann Liouville integral of f(x) = (x− a)β is given by

Iαa (x− a)β =

∫ x

a

(x− s)α−1

Γ(α)
(s− a)βds.

Let t = s−a
x−a , as s→ a, t→ 0, and as s→ x, t→ 1, so (x− a)dt = ds and s = a+ t(x− a)

Iαa f(x) =
1

Γ(α)

∫ 1

0
[(x− a)(1− t)]α−1[t(x− a)]β(x− a)dt,

Iαa f(x) =
(x− a)α+β

Γ(α)

∫ 1

0
(1− t)α−1tβdt.

Since
∫ 1

0
tα−1(1− t)β−1dt =

Γ(α)Γ(β)

Γ(α+ β)

Iαa f(x) =
Γ(β + 1)Γ(α)

Γ(α+ β + 1)

(x− a)α+β

Γ(α)
,

=
Γ(β + 1)

(α+ β + 1)
(x− a)α+β.

In particular I
1
2x

3
2 =

Γ(1+ 3
2

)

Γ(1+ 3
2

+ 1
2

)
x

1
2

+ 3
2 = 3

√
π

8 .

Riemann Liouville fractional integral has the following properties:
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(i) (Semigroup property) Let α, β ≥ 0 and f ∈ L1[a, b], then,

Iαa I
β
a f = Iβa I

α
a f = Iα+β

a f

holds almost everywhere on [a, b]. If additionally f ∈ C[a, b] or α + β ≥ 1, then the identity holds

everywhere on [a, b].

(ii) Let f and g be two functions de�ned on [a, b] such that Iαa fandI
α
a g exist almost everywhere. Frac-

tional Riemann Liouville integrals are linear almost everywhere i.e. for c, d ∈ R,

Iαa (cf(x) + dg(x)) = cIαa f(x) + dIαa g(x).

Another important property of Riemann Liouville integral is given in following theorem.

Theorem 1.2.2. Let f ∈ L1[a, b] and α > 0. Then the integral Iαa f(x) exists for almost every x ∈ [a, b].

Moreover, the function Iαa f itself is also an element of L1[a, b].

Riemann-Liouville fractional derivative: Let f be continuous on [a, b] and de�ne F : [a, b]→ R as

F (t) =

∫ t

a
f(s)ds.

Then, F is di�erentiable and
d

dt
F (t) = f(t),

or

f(t) =
d

dt

( ∫ x

a
f(s)ds

)
,

or

f = DIaf,

where D = d
dt . Repeated application give f = DnIna f, where D

n = dn

dtn , n = 0, 1, 2, . . .

Replacing n by m− n, with n < m and applying Dn on both sides, we have

Dnf = DnDm−nIm−na f = DmIm−na f.

This relation is still valid if n is replaced by α ∈ R+, provided m− α > 0, that is,

Dα
a f = DmIm−αa f =

1

Γ(m− α)

dm

dtm

∫ t

a
f(s)(t− s)m−α−1ds,

where m− 1 ≤ α < m ∈ Z+.

De�nition 1.2.3. The Riemann Liouville derivative Dα
a with fractional order α ∈ R+ of f with an integer

m such that m− 1 < α ≤ m is de�ned as

Dα
a f(x) =


dm

dtm

[
1

Γ(m−α)

∫ x
0 (x− t)m−α−1f(t)dt

]
, m− 1 < α < m,

dm

dtm f(x), α = m.
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Example 1.2.4. The fractional derivative of order α > 0 of the function f(x) = xβ, β > −1 is given by

Dα
ax

β =
Γ(β + 1)

Γ(β + 1− α)
xβ−α.

In particular,

D
1
2x

3
2 =

3
√
π

4
x.

De�nition 1.2.5. By Am or Am[a, b] we denote the set of functions with absolutely continuous (m− 1)st

derivative, i.e, the functions f for which there exists (almost everywhere) a function g ∈ L1[a, b] such that

fm−1(x) = fm−1(a) +

∫ x

a
g(t)dt.

In this case, we call g the (generalized) nth derivative of f, and we simply write g = fm.

In general, the fractional integral operator do not commute with fractional derivative.

Theorem 1.2.6. [4] Let α > 0 and m = bαc+ 1. Assume that f is such that Im−αa f ∈ Am[a, b]. Then,

IαaD
α
a f(x) = f(x)−

m−1∑
k=0

(x− a)α−k−1

Γ(α− k)
lim
s→a+

Dm−k−1Im−αa f(s).

Speci�cally for 0 < α < 1 we have,

IαaD
α
a f(x) = f(x)− (x− a)α−1

Γ(α)
lim
s→a+

I1−α
a f(s).

Theorem 1.2.7. [5] Let α, β ≥ 0 and f ∈ L1[a, b]. Then, Dβ
a Iαa f = Iα−βa f. In particular, Dα

a I
α
a f = f.

Some other properties of Riemann fractional derivative are as under:

(i) Let α, β ≥ 0 and φ ∈ L1[a, b] and f = Iα+β
a φ. Then,

Dα
aD

β
af = Dα+β

a f.

Note that an unconditional semigroup property of fractional di�erentiation in the Riemann Liouville

sense does not hold.

It is possible to have

Dα
aD

β
af = Dβ

aD
α
a f 6= Dα+β

a f,

Dα
aD

β
af 6= Dβ

aD
α
a f = Dα+β

a f.

For example, let f(x) = x−1/2 and α = β = 1
2 . Then Dα

0 f(x) = Dβ
0 f(x) = 0, and hence also

Dα
0D

β
0 f(x) = 0, but Dα+β

0 f(x) = D1f(x) = −(2x3/2)−1.

And if we let f(x) = x1/2, α = 1/2 and β = 3/2. Then Dα
0 f(x) =

√
π/2 and Dβ

0 f(x) = 0. This

implies Dα
0D

β
0 f(x) = 0 but Dβ

0D
α
0 f(x) = −x−3/2/4 = D2f(x) = Dα+β

0 f(x).

(ii) Let f and g be two functions de�ned on [a, b] such thatDα
a f, D

α
a g exist almost everywhere. Fractional

derivatives are linear almost everywhere i.e. for c, d ∈ R,

Dα
a (cf(x) + dg(x)) = cDα

0 f(x) + dDα
0 g(x).
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1.3 The Caputo fractional derivative

The Riemann-Liouville derivatives have many complications when one try to model real-world problems

with fractional di�erential equations. So, we shall therefore discuss Caputo derivative. As when these

two ideas are compared, Caputo derivative become very suitable to such tasks. It was introduced by

M. Caputo in his 1967 paper. In contrast to the Riemann Liouville fractional derivative, when solving

di�erential equations using Caputo's de�nition, it is not necessary to de�ne the fractional order initial

conditions.

De�nition 1.3.1. [6] The Caputo derivative cDα
a of fractional order α ∈ R+ of function f ∈ Cm+1[a, b],

is given as

cDα
a f(t) = Im−αDmf(x) =

1

Γ(m− α)

∫ t

a
(t− s)m−α−1f (m)(s)(t− s)1+α−mds,

where m− 1 < α ≤ m ∈ Z+.

De�nition 1.3.2. The polynomial

Tn[f(x), x0] = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n

is called the nth degree taylor polynomial of f(x), centered at x = x0.

Theorem 1.3.3. [4] Let α ≥ 0 and m = dαe. Also suppose that f ∈ Am[a, b]. Then,

cDα
a f = Dα

a [f − Tm−1[f ; a]] (1.3.1)

almost everywhere. Here Tm−1[f ; a] denotes the Taylor polynomial of degree m − 1 for the function f,

centered at a, in the case m = 0, we de�ne Tm−1[f ; a] = 0.

Note here the expression on the right of the equation (1.3.1) exists if Dα
a f exists and f possesses m − 1

derivatives at a, the latter condition gives surety to existence of Taylor polynomial. The operator cDα
a is

the Caputo di�erential operator of order α. Theorem 1.3.3 shows the relation of the Riemann Liouville

and the Caputo derivatives.

We note that m = n for n ∈ N and hence

cDn
af = Dn

a [f − Tn−1[f ; a]] = Dnf −Dn(Tn−1[f ; a]) = Dnf,

because Tn−1[f ; a] is a polynomial of degree n− 1 that is annihilated by the classical operator Dn.

Example 1.3.4. Let f(x) = (x− a)β for some β ≥ 0. Then,

cDn
af(x) =


0, β ∈ {0, 1, 2, . . . ,m− 1},

Γ(β+1)
Γ(β+1−n)(x− a)β−n, β ∈ N, β ≥ m,

or β not in N and β > m− 1.

7



Lemma 1.3.5. Let α ≥ 0 and m = dαe. Assume that f is such that both cDα
a and Dα

a exist. Then,

cDα
a f(x) = Dα

a f(x)−
m−1∑
k=0

Dkf(a)

Γ(k − α+ 1)
(x− a)k−α.

Theorem 1.3.6. If f is continuous and α ≥ 0, then

cDα
a I

α
a f = f.

Theorem 1.3.7. Assume that α ≥ 0, m = dαe, and f ∈ Am[a, b]. Then

Iαa
cDα

a f(x) = f(x)−
m−1∑
k=0

Dkf(a)

k!
(x− a)k.

Comparison of the Riemann Liouville and the Caputo derivatives:

(i) The Caputo derivative of a constant c is zero but Riemann Liouville derivative is not. That is,

cDα
a (c) = 0, Dα

a (c) 6= 0.

(ii) Let α ≥ 0 and m = dαe. Assume that f is such that both cDα
a and Dα

a exist. Then, cDα
a f = Dα

a f,

holds if and only if f has an m-fold zero at a, i.e.

Dkf(a) = 0 for k = 0, 1. . . . ,m− 1.

1.4 Mittage-Le�er function

During the last two decades Mittag-Le�er function [7] has come into prominence after about nine decades

of its discovery by a Swedish Mathematician G.M. Mittag-Le�er, due vast potential of applications in

solving the problems of physical, biological, engineering and earth sciences.

De�nition 1.4.1. Let α > 0 the one parameter Mittage Le�er function Eα is de�ned by

Eα(z) =
∞∑
j=0

zj

Γ(jα+ 1)
,

whenever the series converges is called the Mittage Le�er function of order α.

We immediately notice that

E1(z) =

∞∑
j=0

zj

Γ(j + 1)
= exp(z)

is just the well known exponential function.

The two parameter Mittage Le�er function is de�ned as follows.

De�nition 1.4.2. Let α, β > 0. The function Eα,β de�ned by

Eα,β =

∞∑
j=0

zj

Γ(jα+ β)
,

with parameters α and β.
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Remark 1.4.3. It is evident that the one parameter Mittage Le�er functions may be de�ned in terms of

their two parameter counterparts via the relation Eα(z) = Eα,1(z).

Theorem 1.4.4. [4] Consider the two parameter Mittage Le�er function Eα,β for some α, β > 0. The

power series de�ning Eα,β(z) is convergent for all z ∈ C. In other words Eα,β is an entire function.

Example 1.4.5. Let f(x) = cos(x).Applying fractional derivative of order α > 0, we have

Dα
0 f(x) = Dα

0 (cos(x))

= Dα
0

[ ∞∑
k=0

(−1)kx2k

(2k)!

]

=

∞∑
k=0

(−1)k

(2k)!

x2k−α(2k)!

(2k − α)!

= x−α
∞∑
k=0

(−1)k(x)2k

Γ(2k − α+ 1)
.

By de�nition of Mittage Le�er function, we have

Dα
0 f(x) = x−αE2,1−α(−x2).

1.5 The Laplace transform

Let u : [0,∞)→ R be a real valued function. The Laplace transform of u(t) denoted by U(s) is given by

the improper integral

U(s) =

∫ ∞
0

e−stu(t)dt. (1.5.1)

The Laplace transform of a function u′(t) for t ≥ 0 is

L{u′(t)} =

∫ ∞
0

e−stu′(t)dt = sU(s)− u0.

Similarly, the Laplace transform of u(t− τ) is given by

L{u(t− τ)} =

∫ ∞
0

e−stu(t− τ)dt = e−sτU(s) + e−sτ
∫ 0

−τ
e−stu(t)dt,

by substituting x = t− τ.
Consider the Laplace transform of the two formulations of the fractional derivative for 0 < α < 1

L(Dα
0 f(t)) = sF (s)−D0f(t)|0,

L(cDα
0 f(t)) = sF (s)− f(t)|0.

De�nition 1.5.1. (Abscissa of convergence) For given function u(t), the integral in (1.5.1) can behave

one of the following three ways,
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(i) it converges for all complex numbers s,

(ii) it diverges for all complex numbers s,

(iii) there exists a real number such that the integral (1.5.1) converges for all s with Re(s) > σ0 and

diverges for all s with Re s ≤ σ0.

When (iii) holds, the number σ0 is known as the abscissa of convergence of U(s).

When (i) holds, the abscissa of convergence of U(s) is σ0 = −∞, and if (ii) holds then the abscissa of

convergence of U(s) is σ0 = +∞.

Lemma 1.5.2. Let u ∈ C[[0,∞),R], and let us assume that there exists positive constants M and µ such

that

|u(t)| ≤Meµt,

for t ≥ 0. Then the abscissa of convergence σ0 of the Laplace transform U(s) of u(t) satis�es, σ0 ≤ µ.

Furthermore, U(s) exists and it is an analytic function of s for Re(s) > σ0.

Theorem 1.5.3. [8] Let u ∈ C[[0,∞),R]] and assume that the abscissa of convergence σ0 of the Laplace

transform U(s) of u(t) is �nite. Then U(s) has a singularity at the point s = σ0. More precisely, there

exists a sequence

αn + iβn

for n = 1, 2, . . . such that αn ≥ α0 for n ≥ 1, limn→∞ αn = σ0, limn→∞ βn = 0 and limn→∞ |U(sn)| =∞.
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Chapter 2

Oscillation of solutions of di�erential

equations

In this chapter, we will discuss the oscillation criteria of di�erential equations. Oscillation theory was

produced by Jacques Charles Francois Sturm in 1836 while investigating the Sturm-Liouville problems.

Oscillation is the recurring variation, usually in time, of some measure about a central value (often a

point of equilibrium) or between two or more di�erent states. Most common examples include a swinging

pendulum and alternating current power. The term vibration is sometimes used to mean a mechanical

oscillation but is sometimes used in place of "oscillation". Oscillations occur not only in mechanical

systems but also in dynamic systems in almost every area of science: for example the beating human

heart, business cycles in economics, predator-prey population cycles in ecology, geothermal geysers in

geology, vibrating strings in musical instruments and periodic �ring of nerve cells in the brain.

In mathematics, oscillation quanti�es the amount that a sequence or function tends to move between

extremes. There are several related ideas: oscillation of a sequence of real numbers, oscillation of a real

valued function at a point, and oscillation of a function on an open set [9].

Oscillating Sequences: Oscillating sequences are the sequences in which the values of the terms neither

converge nor diverge, they move around. Common types are those which oscillate in sign,for example

(−1)nn begins with −1, 2,−3, 4,−5 etc.

(−1)n−1(2)n−1 begins with 1,−2, 4,−8, 16,−32 etc.

Note that periodic sequences are also oscillating, since they neither converge nor diverge.

If (bn) is a sequence of real numbers, then the oscillation of (bn) is de�ned as the di�erence (possibly ∞)

between the limit superior and limit inferior of

bn : ω(bn) = lim sup bn − lim inf bn.

It is unde�ned if both are +∞ or both are −∞, that is, if the sequence tends to +∞ or to −∞. The

oscillation is zero if and only if the sequence converges.

Oscillation of a function on an open set: Let g be a real-valued function of a real variable. The

oscillation of g on an interval J in its domain is the di�erence between the supremum and in�mum of

g : ωg(J) = sup
t∈J

g(x)− inf
t∈J

g(t).
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More generally, if g : X → R is a function on a topological space X (such as a metric space), then the

oscillation of g on an open set U is ωg(U) = supt∈U g(t)− inft∈U g(t).

Oscillation of a function at a point: The oscillation of a function g of a real variable at a point t0 is

de�ned as the limit as ε→ 0 of the oscillation of g on an ε-neighborhood of

t0 : ωg(t0) = lim
ε→0

ωg(t0 − ε, t0 + ε).

This is the same as the di�erence between the limit superior and limit inferior of the function at t0,

provided the point t0 is not excluded from the limits.

Oscillation of solutions of di�erential equations:

A non-trivial solution to an ordinary di�erential equation

un = F (t, u, u′, . . . , un−1), t ∈ [0,+∞), (2.0.1)

is called oscillatory if it has an in�nite number of roots, if not then is called non-oscillatory.

Formally, we give de�nition for the oscillation of solutions of ordinary di�erential equation [10] as follows:

De�nition 2.0.4. A nontrivial solution u (implying a regular solution always) is said to be oscillatory if

it has arbitrarily large zeros for t ≥ t0, that is, there exists a sequence of zeros tn (i.e., u(tn) = 0) of u

such that limn→∞ tn =∞. Otherwise, u is said to be non-oscillatory.

For non-oscillatory solutions there exists t1 such that u(t) 6= 0 for all t ≥ t1.

More precisely a solution u is oscillatory if it is neither eventually positive nor eventually negative, if not,

is non oscillatory.

2.1 Oscillation and the Sturm separation theorem

Consider the linear homogeneous di�erential equation

u′′ + P (t)u′ +Q(t)u = 0. (2.1.1)

It is tedious to solve this equation in general. However, by the properties of the coe�cient functions, we

can say something about the behavior of the solutions. A necessary characteristic that is the number of

zeros of a solution to (2.1.1). A function having an in�nite number of zeros in an interval [a,∞), is called

oscillatory. So, the oscillatory behavior of a function means analyzing the number and locations of the

zeros of that function.

The second order ordinary di�erential equation

u′′ + u = 0, (2.1.2)

has two solutions u1(t) = sin(t) satisfying u(0) = 0, u′(0) = 1, and u2(t) = cos(t) satisfying u(0) =

1, u′(0) = 0, which are linearly independent. The positive zeros of u1(t) and u2(t) are π, 2π, 3π, · · · , and
π/2, 3π/2, 5π/2, · · · , respectively. Here note that between two consecutive zeros of u1(t), there is a zero

of u2(t), and vice versa.

From the practical point of view the following result is fundamental.
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Theorem 2.1.1. [9] (Sturm separation theorem) If u1(t) and u2(t) are two linearly independent solutions

of

u′′ + P (t)u′ +Q(t)u = 0,

then the zeros of these functions are separate and come alternatively in the sense that u1(t) vanishes exactly

once between any two successive zeros of u2(t), and conversely.

Proof. Let t1 and t2 be two successive zeros of u1 with t1 < t2. Since u1 and u2 are linearly independent,

their Wronskian W (t) = u1(t)u′2(t)− u′1(t)u2(t) never vanishes. It means that u2(t1) 6= 0 and u2(t2) 6= 0,

or else their Wronskian is zero at these points.

Suppose that the conclusion is not true, that is u2(t) 6= 0 for all t ∈ [t1, t2]. Then the function g(t) = u1(t)
u2(t) is

well-de�ned and continuous on [t1, t2], and continuously di�erentiable on (t1, t2). Since u1(t1) = u1(t2) = 0,

so g(t1) = g(t2) = 0. By Rolle's theorem, there exists z ∈ (t1, t2) so that g′(z) = 0. Computing g′(z), we

have that

0 = g′(z) =
u′1(z)u2(z)− u1(z)u′2(z)

[u2(z)]2
=
−W (z)

[u2(z)]2
. (2.1.3)

But this means W (z) = 0, which contradicts the fact that u1 and u2 are linearly independent. Therefore

u2 must have a zero in (t1, t2).

By interchanging the roles of u1 and u2, we note that between any two successive zeros of u2, there is a

zero of u1. As a result, there cannot be more than one zero of u2 between two successive zeros of u1.

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Figure 2.1: Plot of zeros of two linearly independent solutions.

Corollary 2.1.2. Let one nontrivial solution to u′′ + P (t)u′ + Q(t)u = 0 is oscillatory on [a,∞). Then

its all solutions are oscillatory.

Proof. Suppose u1 be a nontrivial solution having in�nite number of zeros on [a,∞). Then by the Sturm

separation theorem, if there is any other solution u2 such that u1 and u2 are not linearly dependent, then

between each successive pair of zeros of u1 there must be a zero of u2, and so u2 must also possess an

in�nite number of zeros on [a,∞). And if u1 and u2 are linearly dependent, then

u2 = λu1, (2.1.4)

for some λ = constant. Since u1 is nontrivial. Thus u2 also has an in�nite number of zeros on [a,∞).

Theorem 2.1.3. [9] Suppose u be a nontrivial solution of u′′+P (t)u′+Q(t)u = 0 on [a, b]. Then on the

interval [a, b], u has at most a �nite number of zeros.

13



Proof. Suppose on the contrary that u has an in�nite number of zeros on the interval [a, b]. By the

Bolzano-Weierstrass theorem "there exist in [a, b] a point t0, and a sequence of zeros tn 6= t0 such that

limn→∞ tn = t0." Since u is continuous and di�erentiable at t0, we have

u(t0) = lim
n→∞

u(tn) = 0

and

u′(t0) = lim
n→∞

(u(tn)− u(t0))

(tn − t0)
= 0.

Theorem 2.1.4. (Existence and uniqueness theorem) Consider the initial value problem:

u(n) + a1(t)u(n−1) + · · ·+ an(t)u = h(t),

u(t0) = u0,

u′(t0) = u1,

...

u(n−1)(t0) = un−1.

(2.1.5)

If aj(t), s and h(t) are continuous on R then for any value of t0 and u0, . . . , un−1, the problem (2.1.5)

possess a unique solution de�ned on R.

u must be the trivial solution which is a contradiction. Therefore, u has at most a �nite number of zeros

in [a, b].

2.2 The Sturm comparison theorem

The equation

u′′ + P (t)u′ +Q(t)u = 0, (2.2.1)

can be written as

w′′ + q(t)w = 0. (2.2.2)

By putting u = wv, where w = e
−1
2

∫
Pdt and q(t) = Q(t) − 1

4P (t)2 − 1
2P (t). Here (2.2.1) is the standard

form and (2.2.2) is the normal form of a homogeneous second order linear equation. Since v(t) > 0 for all

t, so the above transformation of (2.2.1) into (2.2.2) has not any e�ect on the zeros of the solutions, and

consequently the oscillation behavior remains unchanged.

The Sturm Separation Theorem compares the zeros of two solutions to the same equation. For solutions of

two di�erent equations, it may still be possible to relate their zeros. For example, consider the equations

u′′ + m2u = 0 and u′′ + n2u = 0. The �rst has a general solution of the form u1(t) = A1 sin(m(t − θ1))

and the second u2(t) = A2 sin(n(t− θ2)).

The distance between successive zeros of u1 is π/m and of u2 is π/n. Consequently, for n > m, the

distance between two zeros of u1 is more than the distance between two zeros of u2. Thus for n2 > m2,

between two successive zeros of u1, there is a zero of u2. Similar result holds when the constants m2 and

n2 are replaced by functions of t.
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Theorem 2.2.1. [Sturm comparison theorem] Suppose u1 be a nontrivial solution to

u′′ + q1(t)u = 0, a < t < b, (2.2.3)

and u2 be a nontrivial solution to

u′′ + q2(t)u = 0, a < t < b. (2.2.4)

Let q2(t) ≥ q1(t) for all t ∈ (a, b). If t1 and t2 are two successive zeros of u1 on (a, b) with t1 < t2, then

there exists a zero of u2 in (t1, t2), unless q2(t) = q1(t) on [t1, t2] in which case u1 and u2 are linearly

dependent on [t1, t2].

Proof. Suppose u2(t) 6= 0 in (t1, t2). We want to show that q1(t) = q2(t) and u1, u2 are linearly dependent

on [t1, t2].We may suppose that u1(t) > 0 and u2(t) > 0 in (t1, t2). We have

d

dt
(W (u2, u1)) =

d

dt
(u2u

′
1 − u′2u1),

= u′2u
′
1 + u2u

′′
1 − u′′2u1 − u′2u′1,

= u2u
′′
1 − u′′2u1,

= u2(−q1u1)− (−q2u2)u1,

= u1u2(q2 − q1) ≥ 0,

for all t in (t1, t2). Therefore, W (u2, u1) is non-decreasing on (t1, t2). However, since u1(t1) = u1(t2) =

0 and u1 is positive on (t1, t2), we must have u′1(t1) ≥ 0 and u′1(t2) ≤ 0. Hence, W (u2, u1)(t1) =

u2(t1)u′1(t1) ≥ 0 and W (u2, u1)(t2) = u2(t2)u′1(t2) ≤ 0.

Since W (u2, u1)(t) is non-decreasing, the only way for it to be nonnegative at t1 and non-positive at t2 is

W (u2, u1)(t) = 0 for all t in [t1, t2]. This implies d
dt(W (u2, u1)(t)) = 0 in [t1, t2]. That means q1(t) = q2(t)

in [t1, t2]. Then u1 and u2 satisfy the same equation on [t1, t2], and their Wronskian vanishes on this

interval. Hence, u1 and u2 are linearly dependent.

Remark 2.2.2. The Sturm comparison theorem asserts that either u2 has a zero between t1 and t2 or

u2(t1) = u2(t2) = 0 (since u1 and u2 are linearly dependent in the later case).

Corollary 2.2.3. Let q(t) ≤ 0 for all t ∈ [a, b]. If u is a nontrivial solution of u′′ + q(t)u = 0 on [a, b],

then u has at most one zero on [a, b].

Proof. Since u(t) ≡ 1 is a solution to the equation u′′ + 0.u = 0 and q(t) ≤ 0, it follows from (1.2.4) that

if u has two or more zeros in [a, b], then w must have a zero between them. Since w is never zero, u can

have at most one zero in [a, b].

Example 2.2.4. The equation

t2u′′ + tu′ + (t2 − p2)u = 0, t > 0, (2.2.5)

is called Bessel's equation. For a > 0, we discuss the number of zeros in the interval [a, a + π). The

substitution u = wt
−1
2 transforms equation (2.2.5) into the form,
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d2w

dt2
+

(
1−

p2 − 1
4

t2

)
w = 0, t > 0. (2.2.6)

Since u = wt
−1
2 , the distribution of zeros of a solution u to (2.2.6) is the same as the corresponding

solution w to (2.2.6). Let's compare the solutions of (2.2.6) with those of w′′ + w = 0. Observe that

w(t) = A sin(t− a) is a solution of w′′ + w = 0 and has zeros at a and a+ π.

Case 1.(p > 1/2). In this case, 4p2 − 1 > 0 such that 1 − (
p2− 1

4
t2

) < 1 for t in [a, a + π). By the Sturm

comparison theorem 2.2.1, a solution to (2.2.6) cannot have more than one zero in [a, a + π) because

w(t) = A sin(t− a) does not have a zero in (a, a+ π).

Case 2. (0 ≤ p < 1/2). In this case, 4p2 − 1 < 0 such that 1 − (
p2− 1

4
t2

) > 1 for t in [a, a + π). By the

Sturm comparison theorem 2.2.1, a solution to (2.2.6) must have a zero in (a, a + π), since a and a + π

are successive zeros of w(t) = A sin(t− a).

Case 3. (p = 1/2). In this case, (2.2.6) reduces to w′′ + w = 0, which has the general solution w(t) =

A sin(t− a). As a result, it has exactly one zero in [a, a+ π).

Kneser's theorem

In mathematics, in the �eld of ordinary di�erential equations, the Kneser theorem, named after Adolf

Kneser, provides criteria for a di�erential equation is oscillating or not.

Theorem 2.2.5. [11] Consider an ordinary linear homogenous di�erential equation of the form

u′′ + q(t)u = 0,

with

q : [0,+∞)→ R

continuous. The equation is non-oscillating if

lim sup
t→+∞

t2q(t) <
1

4

and oscillating if

lim inf
t→+∞

t2q(t) >
1

4
.

Example 2.2.6. To illustrate the theorem consider

q(t) =

(
1

4
− a
)
t−2 for t > 0,

where a is real and non-zero. According to the theorem, solutions will be oscillating or not depending on

whether a is positive (non-oscillating) or negative (oscillating) because

lim sup
t→+∞

t2q(t) = lim inf
t→+∞

t2q(t) =
1

4
− a.

To �nd the solutions for this choice of q(t), and verify the theorem for this example, substitute

u(t) = tn,
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which gives

n(n− 1) +
1

4
− a =

(
n− 1

2

)2

− a = 0.

This means that (for non-zero a) the general solution is

u(t) = At
1
2

+
√
a +Bt

1
2
−
√
a,

where A and B are arbitrary constants. It is not hard to see that for positive a the solutions do not

oscillate while for negative a = −ω2 the identity

t
1
2
±iω =

√
t e±(iω) ln t =

√
t (cos (ω ln t)± i sin (ω ln t))

shows that they do.

Lemma 2.2.7. (Picone's identity) Let the functions u, v, pu′, p1v
′ be di�erentiable and v(t) 6= 0 in J .

Then the following identity holds:

[
u

v
(vpu′ − up1v

′)]′ = u(pu′)′ − u2

v
(p1v

′)′ + (p− p1)u′2 + p1(v′ − u

v
v′)2. (2.2.7)

Proof. Expanding the left side, we have
u
v (v(pu′)′ + v′pu′ − u(p1v

′)′ − u′p1v
′) + (u

′

v −
u
v2
v′)(vpu′ − vp1zv

′) = u(pu′)′ − u2

v (p1v
′)′ + pu′2 − 2uu′p1v′

v +
u2p1v′2

v2
= u(pu′)′ − u2

v (p1v
′)′ + (p− p1)u′2 + p1(u′ − u

v v
′)2.

Theorem 2.2.8. [12] (Sturm Picone's theorem) If α, β ∈ J are the consecutive zeros of a nontrivial

solution u(t) of

(p(t)u′)′ + q(t)u = 0 (2.2.8)

and if p1(t), q1(t) are continuous and 0 < p1(t) ≤ p(t), q1(t) ≥ q(t) in [α, β], then every nontrivial solution

v(t) of the di�erential equation

(p1(t)v′)′ + q1(t)v = 0 (2.2.9)

has a zero in [α, β].

Proof. Let v(t) 6= 0 in [α, β], then Lemma 2.2.7 is applicable and from (2.2.7) and the DE's (2.2.8) and

(2.2.9), we �nd

[
u

v
(vpu′ − up1v

′)]′ = (q1 − q)u2 + (p− p1)u′2 + p1(u′ − u

v
v′)2.

Integrating the above identity and using u(α) = u(β) = 0, we obtain∫ β

α
[(q1 − q)u2 + (p− p1)u′2 + p1(u′ − u

v
v′)2]dt = 0,

which is a contradiction unless q1(t) ≡ q(t), p1(t) ≡ p(t) and u′ − (u/v)v′ ≡ 0. The last identity is the

same as d
dt(u/v) ≡ 0, and hence u(t)/v(t) ≡ constant. However, since u(α) = 0 this constant must be zero,

and so u(t)/v(t) ≡ 0, or u(t) ≡ 0. This contradiction implies that v must have a zero in [α, β].

Theorem 2.2.9. The only solution of the di�erential equation (2.2.8) which vanishes in�nitely often in

J = [α, β] is the trivial solution.
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Theorem 2.2.10. [12] (Leighton's oscillation theorem) If
∫∞

( 1
p(t))dt =∞ and

∫∞
q(t)dt =∞, then

the DE (2.2.8) is oscillatory in J = (0,∞).

Proof. Suppose u(t) be a non-oscillatory solution of the di�erential equation (2.2.8) which we assume to

be positive in [t0,∞), where t0 > 0. Then the Riccati equation

v′ + q(t) +
v2

p(t)
= 0, (2.2.10)

has a solution v(t) in [t0,∞). This solution satis�es the equation

v(t) = v(t0)−
∫ t

t0

q(s)ds−
∫ t

t0

v2(s)

p(s)
ds. (2.2.11)

Since
∫∞

q(s)ds =∞, we can always �nd an t1 > t0 such that

v(t0)−
∫ t

t0

q(s)ds < 0,

for all t in [t1,∞). Thus, from (2.2.11) it follows that

v(t) < −
∫ t

t0

v2(s)

p(s)
ds,

for all t ∈ [t1,∞). Suppose that

r(t) =

∫ t

t0

v2(s)

p(s)
ds, t ∈ [t1,∞).

Then v(t) < −r(t) and

r′(t) =
v2(t)

p(t)
>
r2(t)

p(t)
, (2.2.12)

for all t in [t1,∞). Integrating (2.2.12) from t1 > t0 to ∞, we get

−1

r(∞)
+

1

r(t1)
>

∫ ∞
t1

1

p(s)
ds,

and therefore ∫ ∞
t1

1

p(s)
ds <

1

r(t1)
<∞,

which is a contradiction. Hence, the solution u(t) is oscillatory.

Example 2.2.11. We consider the di�erential equation (2.2.6). For all a, there exists a su�ciently large

t0 such that 1 + [(1− 4a2)/4t2] > 1/2 for all t ≥ t0, and therefore∫ ∞
(1 +

1− 4a2

4t2
)dt =∞.

Thus, Theorem 2.2.10 implies that (2.2.6) is oscillatory for all a.
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Chapter 3

Delay di�erential equation

In this chapter, we shall discuss the oscillatory behavior of delay di�erential equations. The main purpose

is to introduce some basic concepts from the theory of di�erential equations with oscillatory solutions, to

sketch some important results from the theory of oscillation of ordinary di�erential equations.

Delay di�erential equations are di�erent from ordinary di�erential equations in this regard that the deriva-

tive at current time depends on the solution and possibly its derivative at prior times. The simplest

constant delay equations with multiple delays have the form

u′(t) = f(t, u(t), u(t− τ1), u(t− τ2), . . . , u(t− τk)), (3.0.1)

where the time delays (lags) τj = positive constants. Broadly speaking, state dependent delays may de-

pend on the solution, that is τi = τi(t, u(t)).

Systems of delay di�erential equations play an important role in all �leds of science and mainly in the bio-

logical sciences. Baker, Paul and Wille [13] contains references for many applications for delay di�erential

equations.

It is thought-provoking that traditional point-wise modeling assumptions can be replaced by more realis-

tic distributed assumptions. For example, when the birth rate of predators is a�ected by prior levels of

predators or prey except by only the current levels in a predator-prey model. Because of the considerable

di�erence in the properties of systems of delay di�erential equations and the systems of ordinary di�er-

ential equations, it has become an active area of research. Ruan and Martin [14] and Raghothama and

Narayanan [15] have given the examples of such applications. Further Shampine, Gladwell, and Thomp-

son [16] have given an explanation for several common models.

To specify a system of delay di�erential equations additional information is required. As the derivative in

(3.0.1) depends on the solution at the previous time t− τj so, to state the value of the solution before time

t = 0, it is essential to provide an initial history function. Usually in common models the history function

is a constant vector, but non-constant history functions come across frequently. Most of the problems

have jump derivative discontinuity at the initial time. Additionally, any solution or jump derivative dis-

continuity in the history function at points former to the initial time need to be handled properly because

such discontinuities are propagated to future times.

De�nition 3.0.12. A delay di�erential equation is a di�erential equation where the time derivatives at
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the current time depend on the solution and possibly its derivatives at previous times:

u′(t) = F (t, u(t), u(t− τ1), u(t− τ2), . . . , u(t− τn), u′(t− σ1), u′(t− σ2), . . . , u′(t− σm)), t ≥ t0

u(t) = φ(t), t ≤ t0.

Instead of a simple initial condition, an initial history function φ(t) needs to be speci�ed. The quantities

τi ≥ 0, i = 1, . . . , n. and σi ≥ 0, i = 1, . . . , k are called the delays or time lags. The delays may be constants

functions τ(t) and σ(t) of t (time-dependent delays) or functions τ(t, u(t)) and σ(t, u(t)) (state-dependent

delays). Delay equations with delays σ of the derivatives are referred to as neutral delay di�erential

equations (NDDEs).

Sometimes it is very challenging to solve delay di�erential equations (DDEs) of second or higher orders,

even there are methods to solve (DDEs) but they are laborious. However, we can solve and plot graph of

the some simple (DDEs) using Mathematica.

In this Chapter, we give oscillation criteria for (DDEs), so that we can say something about the solution

of delay di�erential equation without solving it.

3.1 Di�erence between ordinary and delay di�erential equations

The most clear di�erence between ordinary di�erential equations and delay di�erential equations [16, 17]

is the initial data. The solution of an ordinary di�erential equation can be obtained by its value at the

initial point. Though, to solve a delay di�erential equation, we need an initial history to get a solution.

The oscillatory behavior of a functional di�erential equation with a deviating argument and of the asso-

ciated ordinary di�erential equation are not always the same. Indeed, the retarded di�erential equation

u′′(t)− u(t− π) = 0

has sin(t) and cos(t) as oscillatory solutions. On the other hand, the associated ordinary di�erential

equation

u′′(t)− u(t) = 0

has the non-oscillatory solutions e−t and et. Conversely, we see that the delay equation

u′′(t) +
1

2t2
u(
t

4
) = 0, t > 0

has a non-oscillatory solution u(t) =
√
t, while the associated ordinary equation

u′′(t) +
1

2t2
u(t) = 0

has t cos(ln t) and t sin(ln t) as oscillatory solutions.

Consider the equation

u′′(t) +
1

2
u′(t)− 1

2
u(t− π) = 0,
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for t ≥ 0, whose solution u(t) = 1 − sin(t) has an in�nite sequence of multiple zeros. This solution also

has an oscillatory property.

Consider the equation

u′′(t)− u(−t) = 0.

This equation has an oscillatory solution u1(t) = sin(t) and a non-oscillatory solution u2(t) = et + e−t.

Such a change in the oscillatory behavior of a di�erential equation is obviously generated or disrupted by

the delay and so the study of oscillatory solutions of di�erential equations with deviating arguments is

very important in applications.

3.2 Oscillation behavior of delay di�erential equations of �rst order

The simplest delay di�erential equation is given by [18]

u′(t) = −u(t− τ), (3.2.1)

where τ > 0 is called the delay. For τ = 0, we get the simple ODE

u′(t) = −u(t), (3.2.2)

having general solution as, u(t) = u(0)e−t, which decays to zero.

If we prescribe u(t) for −τ ≤ t ≤ 0, then (3.2.1) should have a unique solution for t > 0. Suppose we set

u(t) = 1, − τ ≤ t ≤ 0, (3.2.3)

as "initial history" for (3.2.1). Then, on the interval 0 ≤ t ≤ τ the argument of u on the right side satis�es

t− τ ≤ 0 so,

u′(t) = −u(t− τ) = −1,

and hence

u(t) = u(0) +

∫ t

0
(−1)ds = 1− t, 0 ≤ t ≤ τ. (3.2.4)

On τ ≤ t ≤ 2τ, we have 0 ≤ t− τ ≤ τ so by (3.2.4), we get

u′(t) = −u(t− τ) = −[1− (t− τ)],

and therefore

u(t) = u(τ) +

∫ t

τ
−[1− (s− τ)])ds,

= 1− τ + [−s+
1

2
(s− τ)2|s=ts=τ

= 1− t+ (t− τ)2/2, τ ≤ t ≤ 2τ. (3.2.5)

So generalizing, we have

u(t) = 1 +

n∑
k=1

(−1)k
[t− (k − 1)τ ]k

k!
, (n− 1)τ ≤ t < nτ, n ≥ 1. (3.2.6)
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Therefore, u(t) is a polynomial of degree n on each subinterval of the form [(n−1)τ, nτ ]. It follows that u(t)

is a smooth function, except at each nτ, n > 0. The above method that we used to solve the initial-value

problem (3.2.1) and (3.2.3) is called the method of steps.

We have explored the numerical solution of this initial value problem by the help of MATLAB. Our purpose

is to inspect the behavior of the solution on the interval t > 0 for di�erent values of the delay τ . Fig(1.1)

and Fig(1.2) shows the graph of u(t) and u′(t).
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(e) Undamped oscillation for τ = 2.

Figure 3.1: Solution of equation (3.2.1) for various τ.
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Figure 3.2: Derivative of solution of equation (3.2.1) for various τ.

We can easily observe that when we take τ = 0.25 the solution looks very much like the solution of the

ordinary di�erential equation (3.2.2) with initial condition u(0) = 1, and it does not oscillate. For τ = 0.6

the solution oscillates. Actually, regardless of appearances, it changes sign repeatedly. We can prove that

23



all solutions oscillate whenever τ > e−1. Why does τ > e−1 ≈ 0.36 result in oscillations? We answer

this later in this chapter. As t increases the oscillations appear to be more prominent but still they are

damped. That is, the breadth is decreasing, at least until τ = 2 where now the breadth grows.

Necessary and su�cient conditions for oscillation

We determine necessary and su�cient conditions [19] for the oscillation of all solutions of the delay

di�erential equation.

Theorem 3.2.1. (A necessary condition for oscillation)

Consider a delay di�erential equation

u′(t) +mu(t− τ)− nu(t− σ) = 0, (3.2.7)

where m, n, τ, σ ∈ R+, τ ≥ σ. Then all solutions of (3.2.7) are oscillatory if

mτ − nσ > 1

e
.

Theorem 3.2.2. (A su�cient condition for oscillation)

Suppose

mi, τi ≥ 0, i = 1, 2, . . . , n.

Then
n∑
i=1

miτi >
1

e
,

is su�cient for the oscillation of all the solutions of the delay equation

u′(t) +
n∑
i=1

miu(t− τi) = 0.

Example 3.2.3. Consider a delay di�erential equation

u′(t) + 2u(t− 5

4
π) = 0. (3.2.8)

Here m = 2 and τ = 5
4π. So

mτ = 7.85 >
1

e
.

Thus the necessary condition for oscillation is satis�ed. Hence the (3.2.8) has an oscillatory solution of

the form u(t) = cos(2t).

Example 3.2.4. Consider a delay di�erential equation

u′(t) + 2u(t− 5

2
π)− u(t− 3

2
π) = 0. (3.2.9)

Here m = 2, n = 1, τ = 5
2π and σ = 3

2π. Also

m > n, τ ≥ σ.

Thus the necessary condition for oscillation

mτ − nσ > 1

e

is satis�ed, therefore the (3.2.9) has an oscillatory solution of the form u(t) = cos(t).
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Example 3.2.5. Consider a delay di�erential equation

u′(t) + u(t− 9π

2
) = 0. (3.2.10)

Here m = 1 and τ = 9π
2 . So

mτ =
9π

2
>

1

e
.

Thus the necessary condition for oscillation is satis�ed, hence the (3.2.10) has an oscillatory solution of

the form u(t) = sin(t).

We consider the oscillatory behavior of solutions of the following linear di�erential inequalities and equa-

tions with retarded argument

u′(t) + p(t)u(τ(t)) ≤ 0, (3.2.11)

u′(t) + p(t)u(τ(t)) ≥ 0, (3.2.12)

u′(t) + p(t)u(τ(t)) = 0. (3.2.13)

Here p, τ ∈ C[R+,R+], τ(t) < t, and limt→∞ τ(t) = +∞.
Let us begin with the following result.

Theorem 3.2.6. [20] If

lim
t→∞

∫ t

τ(t)
p(s)ds >

1

e
, (3.2.14)

then

(a) (3.2.11) has no eventually positive solutions,

(b) (3.2.12) has no eventually negative solutions,

(c) all solutions of (3.2.13) are oscillatory.

Proof. Without loss of generality, we assume that τ(t) is nondecreasing, otherwise we set

δ(t) = max(τ(s) = s ∈ [0, t]).

It is easy to prove that (3.2.14) is equivalent with limt→∞
∫ t
δ(t) p(s)ds > 1/e.

First, we prove the validity of statement (a).

Assume that u(t) is an eventually positive solution of (3.2.11) such that u(τ(t)) > 0 for t > t1.

Because of (3.2.14), there exists a t2 ≥ tl such that∫ t

τ(t)
p(s)ds ≥ c > e−1. (3.2.15)

For t ≥ t2. Since u′(t) < 0 for t ≥ t1, from (3.2.11) we get

u′(t) + p(t)u(t) < 0. (3.2.16)
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Dividing (3.2.16) by u(t) and integrating from τ(t) to t, we obtain

ln
u(t)

u(τ(t))
+

∫ t

τ(t)
p(s)ds < 0, t ≥ t2 (3.2.17)

and hence

ln

(
u(τ(t))

u(t)

)
≥
∫ t

τ(t)
p(s)ds ≥ c, t ≥ t2.

Since ex ≥ ex, for x ≥ 0, it follows that

u(τ(t))

u(t)
≥ ec, t ≥ t2.

Repeating the above procedure, there exists a sequence tk such that

u(τ(t))

u(t)
≥ (ec)k, t ≥ tk. (3.2.18)

From (3.2.15), there exists a t∗ such that ∫ t∗

τ(t)
p(s)ds ≥ c/2

and ∫ t

t∗
p(s)ds ≥ c/2 for t ≥ tk.

Integrating (3.2.11) from τ(t) to t∗ yields

u(t∗)− u(τ(t)) +

∫ t

t∗
p(s)u(τ(s))ds ≤ 0.

This implies that

u(τ(t)) ≥ u(τ(t∗)c/2. (3.2.19)

Similarly, we obtain

u(t)− u(t∗) +

∫ t

t∗
p(s)u(τ(s))ds ≤ 0,

and consequently

u(t∗) ≥ u(τ(t))c/2. (3.2.20)

Combining (3.2.19) and (3.2.20), there results the inequality

u(t∗) ≥ u(τ(t∗))(c/2)2. (3.2.21)

From (3.2.18) and (3.2.21), it follows that(
2

c

)2

≥ u(τ(t∗))

u(t∗)
≥ (ec)k, (3.2.22)

for all t ≥ tk. Now we choose k su�ciently large such that

(ec)k > (2/c)2. (3.2.23)

Which is possible because ec > 1. Therefore (3.2.22) is a contradiction. A parallel argument holds for

(3.2.12), therefore we obtain the conclusion (c). The proof is complete.
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We shall next discuss the special case with p(t) ≡ p > 0 and τ(t) ≡ t− τ, τ > 0.

Theorem 3.2.7. Assume that p and τ are positive numbers in (3.2.13). Further, assume that

pτe < 1. (3.2.24)

Then (3.2.13) has a non-oscillatory solution.

Proof. Let us look at a solution of (3.2.13) of the form, u(t) = exp(λt). It follows that

F (λ) = −1

τ
+ p exp(−λτ) = 0.

Observe that F (0) = p > 0 and

F (−1

τ
) = −1

τ
+ pe =

pτe− 1

τ
≤ 0.

Hence there exists a negative real number λ ∈ [−1/τ, 0) such that exp(λt) is a non-oscillatory solution of

(3.2.13).

Corollary 3.2.8. If p and τ are positive numbers in (3.2.13), then

pτe > 1 (3.2.25)

is necessary and su�cient for all solutions of (3.2.13) to oscillate.

Example 3.2.9. The equation

u′(t) +
1

e
u(t− 1) = 0 (3.2.26)

has a non-oscillatory solution u(t) = exp(−t), by 3.3.4, because pτe = 1.

Example 3.2.10. We consider

u′(t) +
1

(eIn2)t
u(
t

2
) = 0, (3.2.27)

where p(t) = 1/(e ln 2)t. Obviously, we have∫ t

t/2
p(s)ds = e−1. (3.2.28)

Hence (3.2.27) does not satisfy condition (3.2.14). In fact, equation (3.2.27) has non-oscillatory solution

u(t) = tα where α = −1
ln 2 . In view of 3.3.4 and above examples, condition (3.4.4) is the best possible

condition for all solutions of (3.2.13) to be oscillatory.

Necessary and su�cient conditions for oscillations

The autonomous case: Consider the linear autonomous delay di�erential equation

u̇(t) +
n∑
i=1

piu(t− τi) = 0. (3.2.29)

Where the coe�cients pi are real numbers and the delays τi are non-negative real numbers. With (3.2.29)

one associates its characteristic equation

λ+
n∑
i=1

pie
−λτi = 0. (3.2.30)

Our �rst aim in this section is to establish the following fundamental result for the oscillation of all

solutions of (3.2.29).
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Lemma 3.2.11. (a) Let u ∈ C[[−τ,∞),R] and let σ0 <∞ be the abscissa of convergence of the Laplace

transform U(s) of u(t). Then the Laplace transform of u(t− τ) has the same abscissa of convergence and

L[u(t− τ)] =

∫ ∞
0

e−stu(t− τ)dt = e−sτU(s) + e−sτ
∫ 0

−τ
e−stu(t)dt.

For all s with Re(s) > σ0.

(b) Let u ∈ C1[[0,∞),R] and let σ0 <∞ be the abscissa of convergence of the Laplace transform U(s)

of u(t). Then the Laplace transform of u̇(t) has the same abscissa of convergence and

L[u̇(t)] =

∫ ∞
0

e−stu̇(t)dt = sU(s)− u(0),

for all s with Re(s) > σ0. ∫ ∞
0

e−stu̇(t)dt = sU(s)− u(0), Re(s) > σ0

and for i = 1, 2, . . . , n.∫ ∞
0

e−stu(t− τi)dt = e−sτiU(s) + e−sτi
∫ 0

−τi
e−stu(t)dt, Re(s) > σ0.

Theorem 3.2.12. [21] Assume that

pi ∈ R

and

τi ∈ R+

for i = 1, 2, . . . , n.

Then the following statements are equivalent.

(a) Every solution of (3.2.29) oscillates.

(b) The characteristic equation (3.2.30) has no real roots.

Proof. The proof that (a) implies (b) is elementary. This is because if the characteristic equation (3.2.30)

has a real root λ0 then eλ0t is a non-oscillatory solution of (3.2.29).

The proof that (b) implies (a) makes use of Laplace transforms and 1.5.3. Assume, for the sake of contra-

diction, that (b) holds and that (3.2.29) has an eventually positive solution u(t). As (3.2.29) is autonomous,

we may (and do) assume that x(t) > 0 for t ≥ −τ where

τ = max
1≤i≤n

τi.

Clearly τ > 0, for otherwise equation (3.2.30) has a real root. And by Lemma 1.5.2 for u ∈ C[[0,∞),R],

there exist constants M and µ such that

|u(t)| ≤Meµt, t ≥ −τ.

Thus the Laplace transform

U(s) =

∫ ∞
0

e−stu(t)dt, (3.2.31)
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exists for Re(s) > µ. Let σ0 be the abscissa of convergence of U(s), σ0 = Inf{σ ∈ R : U(σ) exists}.

Then for any i = 1, . . . , n, the Laplace transform of u(t − τi) exists and has abscissa of convergence σ0.

Furthermore by Lemma 3.2.11 ∫ ∞
0

e−stu̇(t)dt = sU(s)− u(0),Re(s) > σ0

and for i = 1, 2, . . . , n.∫ ∞
0

e−stu(t− τi)dt = e−sτiU(s) + e−sτi
∫ 0

−τi
e−stu(t)dt, Re(s) > σ0.

Therefore, by taking Laplace transforms of both sides of (3.2.29) we obtain

F (s)U(s) = φ(s), Re(s) > σ0 (3.2.32)

where

F (s) = s+

n∑
i=1

pie
−sτi (3.2.33)

and

φ(s) = u(0)−
n∑
i=1

pie
−sτi

∫ 0

−τi
e−stu(t)dt. (3.2.34)

Clearly, F (s) and φ(s) are entire functions. Also by hypothesis, F (s) 6= 0 for all real s. It follows from

(3.2.32) that

U(s) =
φ(s)

F (s)
, Re(s) > σ0. (3.2.35)

We now claim that σ0 = −∞. Otherwise, σ0 > −∞ and by 1.5.3 the point s = σ0 must be a singularity of

the quotient φ(s)
F (s) . But this quotient has no singularity on the real axis (the numerator and denominator

are entire functions and by hypothesis the denominator has no real zeros). Thus σ0 = −∞ and (3.2.35)

becomes

U(s) =
φ(s)

F (s)
(3.2.36)

for all s ∈ R. One can now see that as s approaches to −∞, through real values, (3.2.36) leads to a

contradiction because U(s) and F (s) are always positive while φ(s) becomes eventually negative. The

positivity of U(s) follows from (3.2.31) and the fact that u(t) > 0 for t ≥ 0. The positivity of F (s) follows

from (3.2.33) and the facts that F (∞) =∞ and that the characteristic equation has no real roots. Without

loss of generality we may assume that the delays in (3.2.29) are distinct and that the coe�cients pi are

di�erent from zero. Let τi0 be the maximum delay in (3.2.29). Then the corresponding coe�cient pi0 > 0,

for otherwise lims→−∞ F (s) = −∞ and the dominant term in (3.2.34), as s → −∞, is pi0e−sτi0 . Clearly
lims→−∞ φ(s) = −∞. The proof is complete.

3.3 Oscillation behavior of delay di�erential equations of second order

Example 3.3.1. Consider the second order equation with delay

u′′(t) + u(π − t) = 0. (3.3.1)
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It has both an oscillatory solution ul = sin(t) and a non-oscillatory solution u2 = et − eπ−t.
As we mentioned in chapter one, for second order linear ODE either all solutions oscillate or all solutions

are non-oscillatory. Thus we see that second order equations with delay create some new problems in

oscillation theory. For example, consider

u′′(t) + p(t)u(τ(t)) = 0. (3.3.2)

We need to establish various sets of conditions [22] under which either: (a) all solutions are oscillatory,

(b) all solutions are non-oscillatory, (c) the equation has a non-oscillatory solution, (d) the equation has

an oscillatory solution or (e) the equation has both oscillatory and non-oscillatory solutions.

Example 3.3.2. The equation with delay given by

u′′(t)− u(t− π) = 0, (3.3.3)

has the oscillatory solutions u = sin(t) and u = cos(t). But

u′′(t)− u(t) = 0,

has no oscillatory solution.

3.3.1 Second order neutral delay di�erential equation

In this section the oscillatory properties of the solutions of neutral di�erential equations of the form

d2

dt2
[u(t) + P (t)u(t− τ)] +Q(t)u(t− σ) = 0, t ≥ t0 (3.3.4)

are investigated, where P (t), Q(t) ∈ C([t0,∞);R) and the delays τ and σ are nonnegative real numbers.

Let φ(t) ∈ C([t0 − ρ, t0];R), where ρ = max (τ, σ) , is a given function and let z1 be a given constant.

We have the following conditions:

H1. P (t) ∈ C([t0,∞);R), p1 ≤ P (t) ≤ p2 for t ∈ [t0,∞), where p1 and p2 are constants.

H2. Q(t) ∈ C([t0,∞);R), Q(t) ≥ q = constant. > 0 for t ∈ [t0,∞).

Lemma 3.3.3. Assume conditions H1 and H2 ful�lled. Let u(t) be an eventually positive solution of

equation (3.3.4). Set

z(t) = u(t) + P (t)u(t− τ).

Then the following statement is true: The functions z(t) and z′(t) are strictly monotone and either

lim
t→∞

z(t) = lim
t→∞

z′(t) = −∞,

or

lim
t→∞

z(t) = lim
t→∞

z′(t) = 0, z(t) < 0

and z′(t) > 0. In particular, z(t) is always negative.
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Theorem 3.3.4. [23] Consider the neutral delay di�erential equation (3.3.4) and assume conditions H1

and H2 ful�lled. Furthermore, assume that P (t) is not eventually negative. Then each solution of equation

(3.3.4) oscillates.

Proof. Assume, for the sake of contradiction, that there is an eventually positive solution u(t) of equation

(3.3.4). Set

z(t) = u(t) + P (t)u(t− τ).

Then, eventually, z(t) takes nonnegative values. However, Lemma 3.3.3 implies that z(t) is eventually

negative. This is a contradiction and the proof is complete.

Example 3.3.5. The neutral delay di�erential equation

d2

dt2
[u(t) + (1/2 + sin t)u(t− 2π)] + (3/2 + sin t)u(t− 4π) = 0, t ≥ 0. (3.3.5)

Satis�es the conditions of Theorem 3.3.4. Therefore each solution of equation (3.3.6) oscillates. For

example u(t) = sin t(3/2 + sin t)−1 is an oscillating solution.

Example 3.3.6. For the neutral delay di�erential equation

d2

dt2
[u(t) + (t− 1)−1/2u(t− 1)] +

1

4
t−3/2(t− 2)−1/2u(t− 2) = 0, t > 2. (3.3.6)

All conditions of Theorem 3.3.4, except for H2, hold. Note, however, that u(t) =
√
t is a non-oscillating

solution.

Theorem 3.3.7. Consider the neutral delay di�erential equation (3.3.4) and assume that condition H1

and H2 are satis�ed with

−1 ≤ p1 ≤ p2 < 0.

Suppose also that there exists a positive constant r such that

Q(t)

P (t+ τ − σ)
≤ −r

and

r1/2(
σ − τ

2
) >

1

e
.

Then each solution of equation (3.3.4) oscillates.

Example 3.3.8. For the neutral delay di�erential equation

d2

dt2
[u(t)− (e2 + e−t)u(t− 1)] + e2(e− 1)u(t− 2) = 0, t ≥ 0,

all conditions of Theorem 3.3.7, except for −1 ≤ p1, are satis�ed. Note that u(t) = et is a non-oscillating

solution of this equation.
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3.4 An application of delay di�erential equations

Consider the autonomous delay di�erential equation [24]

dx(t)

dt
= x(t)

a− n∑
j=1

bjx(t− τj)

 , t ≥ 0. (3.4.1)

Where a, bj , τj (j = 1, 2, . . . , n) are positive constants. Equation (3.4.1) corresponds to a generalization

of an equation of the form
dN(t)

dt
= rN(t)

[
1− N(t− τ)

K

]
, (3.4.2)

in which r, τ,K are positive numbers. It has been suggested by Hutchinson [1948] that (3.4.2) can be used

to model the dynamics of a single species population growing towards a saturation level K with a constant

reproduction rate r, the term
[
1− N(t−τ)

K

]
in (3.4.2) denotes a density dependent feedback mechanism

which takes r units of time to respond to changes in the population density represented in (3.4.2) by N.

By a change of variables, (3.4.2) can be brought to an equation of the form

du(s)

ds
= −αu(s− 1) [1 + u(s)] . (3.4.3)

Where α is a positive constant. Eq (3.4.3) has been studied by numerous authors and notably, by Kakutani

and Markus [1958], Jones [1962] and Wright [1955].

It is intuitively expected that, if all the delays τj in (3.4.1) are su�ciently small (relative to a and bj),

then the asymptotic behavior as t→∞ of solutions of (3.4.1) will be similar to that of the solutions of

dx(t)

dt
= x(t)

a−
 n∑
j=1

bj

x(t)

 .
It has been known that if τ is su�ciently large, then nonconstant positive solutions of (3.4.2) oscillate

about its positive equilibrium.

Since �uctuating populations are susceptible to extinction due to sudden and unforeseen environmental

disturbances, a knowledge of the conditions under which population densities �uctuate inde�nitely will be

of some interest in planning and designing control as well as management strategies.

Examples of delay di�erential equations: The well known logistic equation elaborates the growth of

a single population is given by

N ′(t) = N(t)[b− aN(t)].

Here one may assume that population density negatively a�ects the per capita growth rate according

to dN
Ndt = b − aN(t) due to environmental humiliation. Hutchinson [1948] indicated the negative e�ects

that high population densities have on the environment. This directed him towards the delayed logistic

equation

N ′(t) = N(t)[b− aN(t− r)]. (3.4.4)

Where a, b, r > 0. Here r is the delay. Wright's guess, made in 1955, concerning the solutions of (3.4.4)

remains open. Arino, Wang, and Wolkowicz introduced an alternative model that has simpler dynamics.
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May it would be more realistic to assume that the density dependence is distributed over an interval in

the past except concentrated at a single time instant. It will give:

N ′(t) = N(t)[b− a
∫ ∞

0
N(t− s)k(s)ds], (3.4.5)

where kernel k is normalized so that
∫∞

0 k(s)ds = 1. A drawback of the delayed logistic equation is that

the birth and death rates are not clearly distinguished. Nicholson's data on population �uctuations of the

sheep blow�y Lucillia cuprina motivated the model now referred to as the Nicholson's blow�y equation:

N ′(t) = bN(t− r)] exp(−N(t− r)/N0)− δN(t). (3.4.6)

Eggs laid by blow�y develops into larvae that �nally becomes adult �ies. This model is used only for

mature �ies, to which food supply is given at a constant rate. It is supposed that r units of time is

taken by eggs to develop into mature �ies. The �rst term on the right side describes addition of new

adults, it should be taken as a probability of survival from egg to adult: aN(t− r)× c exp(−N(t− r)/N0).

With the increase in population size, the probability rate of survival decreases because intra speci�c food

competition among the immature �ies increases. The �nal term on the right accounts for death.
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Chapter 4

Oscillation of solutions of impulsive

di�erential equations

Impulsive di�erential equations, that is, di�erential equations involving impulse e�ect, represent a real

framework for mathematical modeling to real world problems. Signi�cant progress has been made in the

theory of impulsive conditions. There are many real life processes and phenomena that are characterized

by rapid changes in their state. The duration of these changes is relatively short compared to the overall

duration of the whole process and the changes turn out to be irrelevant to the development of the studied

process. The mathematical models in such cases can be adequately created with the help of impulsive

equations. Some examples of such processes we can found in Physics, Biology, population dynamics, ecol-

ogy, pharmacokinetics, and others.

In the general case, the impulsive equations consist of two parts:

(a) Di�erential equation, that de�nes the continuous part of the solution.

(b) Impulsive part, that de�nes the instantaneous changes and the discontinuity of the solution.

The �rst part of the impulsive equations, that is described by di�erential equations, could consist of

ordinary di�erential equations, integro-di�erential equations, functional di�erential equations, partial dif-

ferential equations, etc.

The second part of the impulsive equations is called a jump condition. The points, at which the impulses

occur, are called moments of impulses. The functions, that de�ne the amount of impulses, are called

impulsive functions.

The type of the moments of impulses de�nes di�erent types of impulsive equations. The two types of

impulsive equations are:

(a) Impulsive equations with �xed moments of impulses (the impulses occur at initially given �xed points).

(b) Impulsive equations with variable moments of impulses (the impulses occur on initially given sets, i.e.

the impulse occurs when the integral curve of the solution hits a given set).

In this chapter, we shall study the oscillation of solutions of impulsive di�erential equations of �rst and

second order.
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4.1 Oscillatory behavior of �rst-order linear equations

Let us consider the linear impulsive di�erential equation

u′ + b(t)u = 0, t 6= tk, ∆u|t=tk + bku = 0, k ∈ N, (4.1.1)

with the following inequalities:

u′ + b(t)u ≤ 0, t 6= tk, ∆u|t=tk + bku ≤ 0, k ∈ N, (4.1.2)

u′ + b(t)u ≥ 0, t 6= tk, ∆u|t=tk + bku ≥ 0, k ∈ N. (4.1.3)

Lemma 4.1.1. If u ∈ C[[0,∞),R] satis�es the impulse equation

u′(t) + b(t)u = 0, t 6= tk,

∆u(t)|t=tk + bku = 0, K ∈ N,

then

u(t) = u(t0)exp(−
∫ t

t0

b(s)ds)
∏

t0≤tk<t
(1− bk).

Proof. Since u ∈ C[[0,∞),R] satis�es

u′(t) + b(t)u = 0, t 6= tk.

Integrating from t0 to t, we have

u(t) = u(t0)e
−

∫ t
t0
b(s)ds

.

For t ∈ [t0, t1]

u(t−1 ) = u(t0)e−
∫ t1
t0
b(s)ds (4.1.4)

and by impulse condition

u(t+1 ) = u(t−1 )− b1u(t−1 ) = u(t−1 )(1− b1).

From (4.1.4) substituting the value of u(t−1 ), we have

u(t+1 ) = u(t0)e−
∫ t1
t0
b(s)ds(1− b1).

Integrating from t1 to t, we have

u(t) = u(t+1 )e
−

∫ t
t1
b(s)ds

,

for t ∈ [t1, t2],

u(t−2 ) = u(t+1 )e
−

∫ t
t1
b(s)ds

. (4.1.5)

From (4.3.2) substituting the value of u(t+1 ), we have

u(t−2 ) = u(t0)e
−

∫ t
t0
b(s)ds

(1− b1).

Again by impulse condition

u(t+2 ) = (1− b2)u(t−2 ),
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substituting the value of u(t−2 ), we get,

u(t+2 ) = u(t0)e
−

∫ t
t0
b(s)ds

(1− b1)(1− b2),

...

u(t) = u(t0)exp(−
∫ t

t0

b(s)ds)
∏

t0≤tk<t
(1− bk).

Theorem 4.1.2. [25] Suppose that b ∈ PLC(I) and 1− bk 6= 0, k ∈ N. Then the following statements

are equivalent.

(1) The sequence {1− bk} has in�nite many negative terms.

(2) The inequality (4.1.2) has no eventually positive solution.

(3) The inequality (4.1.3) has no eventually negative solution.

(4) All non-zero solutions of (4.1.1) are oscillatory.

Proof. (1) implies (2). Suppose that the sequence {1− bk} have in�nite many negative terms. And we let

that the statement (2) is false, it means that we are assuming that the inequality (4.1.2) has an eventually

positive solution u(t), t ≥ T0. Let 1− bk < 0. for tk ≥ T0. Then by (4.1.2) we have,

u(t+k ) ≤ (1− bk)u(tk) < 0,

which contradicts our hypothesis.

(2) implies (3). if u(t) is a solution of the inequality (4.1.2), then −u(t) is a solution of the inequality

(4.1.3) and vice versa. This shows the rationality of this relation.

(2) and (3) implies (4). Actually, if (4.1.1) has no eventually positive and no eventually negative solution,

then every nonzero solution u(t) of (4.1.1) is oscillatory.

(4) implies (1). If u(t) is an oscillatory solution of (4.1.3), then the equality

u(t) = u(t0)exp(−
∫ t

t0

b(s)ds)
∏

t0≤tk<t
(1− bk),

follows that the sequence 1− bk has in�nite many negative terms.

Theorem 4.1.3. [25] Suppose that b ∈ PLC(I) and 1− bk 6= 0, k ∈ N. Then the following statements

are equivalent.

(1) The sequence {1− bk} has �nite many negative terms.

(2) The inequality (4.1.2) has an eventually positive solution.

(3) The inequality (4.1.3) has an eventually negative solution.

(4) All non-zero solutions of (4.1.1) are not oscillatory.

We know that the equation (4.1.1) without impulsive e�ects has non-oscillatory solutions. On the other

hand equation (4.1.1) with impulsive e�ects possess oscillatory solutions. Consequently we have that

impulsive e�ects de�nes the oscillatory properties of linear di�erential equations of the �rst order.
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4.2 Sturmian theory for second-order linear equations

In the investigation of qualitative properties of the solutions of linear and non-linear equations, Sturm

comparison theory plays an signi�cant role. In 1996, the �rst paper on the Strumian theory of di�erential

equations with impulsive e�ect was published .

Consider the second-order linear impulsive di�erential equations

u′′ + a(t)u = 0, t 6= tk, ∆u(tk) = 0, ∆u′(tk) + aku(tk) = 0, k ∈ N, (4.2.1)

v′′ + b(t)v = 0, t 6= tk, ∆v(tk) = 0, ∆v′(tk) + bkv(tk) = 0, k ∈ N, (4.2.2)

where a and b are continuous for t ∈ I, t 6= tk, and they have a discontinuity at the points tk ∈ I, where
they are continuous from the left.

The following theorem is an important result, and is also applicable on the di�erential inequalities.

Theorem 4.2.1. [26] Assume the following.

(1) Equation (4.2.2) possess a solution v(t) so that

v(t) > 0, t ∈ (a, b), v(a+) = v(b−) = 0. (4.2.3)

(2) The following inequalities are valid:

p(t) ≥ q(t), pk ≥ qk, t ∈ (a, b), tk ∈ (a, b). (4.2.4)

(3) p(t) > q(t) in a subinterval of (a, b) or pk > qk for some tk ∈ (a, b). Then (4.2.1) has no positive

solution x(t) de�ned on (a,b).

Proof. Let (4.2.1) has a solution u(t) so that u(t) > 0, t ∈ (a, b). Then

(u′(t)v(t)− u(t)v′(t))′ = u′′(t)v(t)− u(t)v′′(t), t ∈ (a, b), t 6= tk. (4.2.5)

Taking integral, we have

u′(b−)v(b−)− u(b−)v′(b−)− u′(a+)v(a+) + u(a+)v′(a+) =∫ b

a
[u′′(t)v(t)− u(t)v′′(t)]dt+

∑
a<tk<b

[∆u′(tk)v(tk)− u(tk)v
′(tk)].

From (4.2.1) and (4.2.2), condition (1), and the above inequality, we have that

0 ≤
∫ b

a
(q(t)− p(t))u(t)v(t)dt+

∑
a<tk<b

(qk − pk)u(tk)v(tk). (4.2.6)

However, conditions (2) and (3) shows that the right side of the inequality above is negative, which is a

contradiction. Hence the proof is complete.

Corollary 4.2.2. Assume the following.

(1) Equation (4.2.2) has a solution v(t) such that

v(t) 6= 0, t ∈ (a, b), v(a+) = v(b−) = 0. (4.2.7)
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(2) The following inequalities are valid:

p(t) ≥ q(t), pk > qk, t ∈ (a, b), tk ∈ (a, b). (4.2.8)

(3) p(t) > q(t) in some subinterval of (a, b) or pk > qk for some tk ∈ (a, b). Then, every solution u(t) of

(4.2.1) has at least one zero in (a, b).

Corollary 4.2.3. If conditions (1) and (2) of Corollary 4.2.2 are satis�ed, then we can conclude the

following.

(1) Every solution u(t) of (4.2.1) for which |u(a+)|+ |u(b−)| > 0 has at least one zero in (a, b).

(2) Every solution u(t) of (4.2.1) has at least one zero in (a, b).

Corollary 4.2.4. Assume the following.

(1) There exists a solution v(t) of (4.2.2) and a sequence of disjoint intervals (an, bn) ⊂ I such that

lim
n→∞

an =∞, v(a+
n ) = v(b−n ) = 0, v(t) 6= 0, (4.2.9)

for t ∈ (an, bn), n ∈ N.
(2) The following inequalities are valid for t ∈ (an, bn), tk ∈ (an, bn), and n ∈ N,

p(t) ≥ q(t), pk ≥ qk. (4.2.10)

Then (4.2.1) has all the oscillatory solutions, and additionally, they change sign in each interval [an, bn].

Corollary 4.2.5. (Comparison theorem) Let the inequalities p(t) ≥ q(t), pk ≥ qk hold for t > T ≥ α and

tk > T. Then, all solutions of (4.2.2) are non-oscillatory if (4.2.1) has a non-oscillatory solution.

4.3 Oscillation theory for the second-order linear equations

Bainovetal provided a Sturmian type comparison theorem and zeros separation theorem for linear impulsive

second-order di�erential equations. In recent times, this theory has been prolonged in di�erent directions,

special attention has been paid on Picone�s formulas, and Leighton type comparison theorems.

Consider the linear impulsive second-order di�erential equation

u′′ + p(t)u = 0, t 6= tk,∆u(tk) = 0, ∆u′(tk) + pku(tk = 0, k ∈ N, (4.3.1)

v′′ + p(t)v = 0, t 6= tk,∆v(tk) = 0, ∆v′(tk) + qkv(tk = 0, k ∈ N, (4.3.2)

where p and q are continuous for t ∈ I, t 6= tk, and they have a discontinuity at the points tk ∈ I, where
they are continuous from the left. The following theorem is important and is also applicable for di�erential

equations.

Theorem 4.3.1. [26] Assume the following.

(1) Equation (4.3.2) has a solution v(t) so that

v(t) > 0, t ∈ (a, b), v(a+) = v(b−) = 0.
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(2) The following inequalities hold:

p(t) ≥ q(t), pk ≥ qk, t ∈ (a, b), tk ∈ (a, b).

(3) p(t) > q(t) in a subinterval of (a, b) or pk > qk for some tk ∈ (a, b).

Then (4.3.1) has no positive solution u(t) de�ned on (a, b).

Proof. Let (4.3.1) has a solution u(t) so that u(t) > 0, t ∈ (a, b). Then

(u′(t)v(t)− u(t)v′(t))′ = u′′(t)v(t)− u(t)v′′(t), t ∈ (a, b), t 6= tk.

Taking integration, we have

u′(b−)v(b−)− u(b−)v′(b−)− u′(a+)v(a+) + u(a+)v′(a+)

=

∫ b

a
[u′′(t)v(t)− u(t)v′′(t)dt+

∑
a<tk<b

[∆u′(tk)v(tk)− u(tk)∆v
′(tk).

From (4.3.1) and (4.3.2), condition (1), and the above inequality, we get

0 ≤
∫ b

a
(q(t)− p(t))u(t)v(t)dt+

∑
a<tk<b

(qk − pk)u(tk)v(tk.

However, from conditions (2) and (3), it follows that the right side of the above inequality is negative,

which is a contradiction. Hence the proof is complete.

Corollary 4.3.2. Assume the following.

(1) Equation (4.3.2) has a solution v(t) so that

v(t) 6= 0, t ∈ (a, b), v(a+)v(b−) = 0.

(2) The following inequalities hold:

p(t) ≥ q(t), pk ≥ qk, t ∈ (a, b), tk ∈ (a, b).

(3) p(t) > q(t) in some subinterval of (a, b) or pk > qk for some tk ∈ (a, b). Then, every solution u(t) of

(4.3.1) has at least one zero in (a, b).

Corollary 4.3.3. If conditions (1)and (2) of Corollary 4.3.2 are ful�lled, then we have the following.

(1) Every solution u(t) of (4.3.1) for which |u(a+)|+ |u(b−)| > 0 has at least one zero in (a, b).

(2) Every solution u(t) of (4.3.1) has at least one zero in (a, b).

Corollary 4.3.4. Assume the following.

(1) There exists a solution v(t) of (4.3.2) and a sequence of disjoint intervals (an, bn) ⊂ J so that

lim
n→∞

an =∞, v(a+
n ) = v(b−n ) = 0,

and v(t) 6= 0 for t ∈ (an, bn), n ∈ N.
(2) The following inequalities hold for t ∈ (an, bn), tk ∈ (an, bn), and

n ∈ N, p(t) ≥ q(t), pk ≥ qk.

Then (4.3.1) has all the oscillatory solutions, and furthermore, they change sign in each interval [an, bn].

Corollary 4.3.5. Suppose the inequalities p(t) ≥ q(t), pk ≥ qk valid for t > T ≥ α and tk > T. Then, if

(4.3.1) has a non-oscillatory solution then all solutions of (4.3.2) are so.
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Chapter 5

The oscillation of fractional di�erential

equations

Fractional di�erential equations are of great interest because of their applications in real life problems.

Caputo derivatives of fractional order 0 < α < 1 are widely used in modeling several physical phenomena,

and therefore are signi�cant to study. Impulsive fractional di�erential equations represent a real framework

for mathematical modeling to real world problems.

In �rst section of this chapter we shall study oscillation of fractional di�erential equations with impulse

e�ect. Second section is about the oscillation of delay fractional di�erential equations.

5.1 On the oscillation of fractional di�erential equations with impulse

e�ect

In this section, we study oscillation theory for fractional di�erential equations with impulse e�ect. Oscil-

lation criteria are obtained for a class of nonlinear Fractional di�erential equations of the form

cDα
au+ f1(t, u) = v(t) + f2(t, u), t 6= tk, 0 < α < 1.

uk(a) = bk,

∆(u(tk) = Ik(u(tk)), t = tk,

(5.1.1)

and k = 0, 1, 2, . . . ,m− 1. Where cDα
a is the Caputo fractional derivative.

We suppose that f1, f2 and v are continuous. The (5.1.1) is equivalent to the Volterra integral equation

u(t) =

m−1∑
k=0

bk(t− a)k

k!
+

1

Γ(α)

∫ t

a
(t−s)α−1[v(s)+f2(s, u(s))−f1(s, u(s))]ds+

m−1∑
k=0

Ik(u(tk)), t ∈ (tm−1, T ], T > a.

(5.1.2)

In other words every solution of (5.1.1) is a solution of (5.1.2) and conversely. We consider only those

solutions which are continuous on [a,∞], and not identically zero on any half line (b,∞) for some b ≥ a.
S. R. Grace, R. P. Agarwal, P. J. Y. Wong and A. Zafer [27] have developed an oscillating criteria for

fractional di�erential equations with initial condition. The aim of the section is to apply the criteria of [27]

to fractional di�erential equation with impulsive e�ect.
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5.1.1 Main results

Lemma 5.1.1. [28] A function u ∈ C[[0,∞),R] is solution of (5.1.1) if and only if u satis�es (5.1.2).

Proof. we consider (5.1.1)

cDα
au+ f1(t, u) = v(t) + f2(t, u), t 6= tk, 0 < α < 1.

uk(a) = bk,

∆(u(tk) = Ik(u(tk)), t = tk,

and k = 0, 1, 2, . . . ,m− 1. where, cDα
a is the Caputo fractional derivative.

Applying fractional integral operator on both sides of (5.1.1), we have

cIαa
cDα

au = cIαa [v(t) + f2(t, u)− f1(t, u)].

Using Theorem 1.3.7, we have

u(t)−
m−1∑
k=0

uk(a)(t− a)k

k!
=

1

Γ(α)

∫ t

a
(t− s)α−1[v(s) + f2(s, u(s))− f1(s, u(s))]ds,

Applying initial and impulsive conditions , we have

u(t) =

m−1∑
k=0

bk(t− a)k

k!
+

1

Γ(α)

∫ t

a
(t−s)α−1[v(s)+f2(s, u(s))−f1(s, u(s))]ds+

m−1∑
k=0

Ik(u(tk)), t ∈ (tm−1, T ], T > a.

Conversely suppose that u Satis�es (5.1.2), then by applying fractional di�erential operator on both sides

of (5.1.2), we have (5.1.1).

Next we will make use of the conditions

(C1) ufi(t, u) > 0 (i = 1, 2), u 6= 0, t ≥ a,

(C2) |f1(t, u)| ≥ p1(t)|u|β, |f2(t, u)| ≤ p2(t)|u|γ ,

and

(C3)

m−1∑
k=0

|Ik(u(tk))| ≤ (m− 1)l1, u 6= 0, t ≥ a.

Where p1, p2 ∈ C([a,∞),R+) and β, γ > 0 are real numbers.

Lemma 5.1.2. For U ≥ 0 and V > 0, we have

Uλ + (λ− 1)V λ − λUV λ−1 ≥ 0, λ > 1 (5.1.3)

and

Uλ − (1− λ)V λ − λUV λ−1 ≤ 0, λ < 1. (5.1.4)

Where equality holds if and only if U = V.
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Now we may present our �rst theorem when f2 = 0.

Theorem 5.1.3. Let f2 = 0 and condition (C1) hold. If

limt→∞inf t
1−m

∫ t

a
(t− s)α−1v(s)ds = −∞, (5.1.5)

and

limt→∞sup t
1−m

∫ t

a
(t− s)α−1v(s)ds =∞, (5.1.6)

then every solution of (5.1.1) is oscillatory.

Proof. Let u(t) be a non oscillatory solution of (5.1.1) with f2 = 0. Let T > a is large enough such that

u(t) > 0 for t ≥ T.
Suppose that F (t) = v(t)− f1(t, u(t)), then we see from (5.1.2) that

u(t) =
m−1∑
k=0

bk(t− a)k

k!
+

1

Γ(α)

∫ t

a
(t− s)α−1[v(s)− f1(s, u(s))]ds+

m−1∑
k=0

Ik(u(tk)), t ∈ (tm−1, T ], T > a,

substituting (c3), we have

u(t) ≤
m−1∑
k=0

|bk|(t− a)k

k!
+

1

Γ(α)

∫ T

a
(t− s)α−1|F (s)|ds+

1

Γ(α)

∫ t

T
(t− s)α−1v(s)ds+ (m− 1)l1, t ≥ T.

Γ(α)t1−mu(t) ≤ c(T ) + t1−m
∫ t

T
(t− s)α−1v(s)ds, t ≥ T, (5.1.7)

where

C(T ) =

m−1∑
k=0

|bk|(T − a)k

Tm−1k!
Γ(α) + T 1−m

∫ T

a
(T − s)α−1|F (s)|ds+ Γ(α)(m− 1)l1T

1−m, t ≥ T.

The improper integral on the right hand side is convergent. Applying the limit inferior of both sides of

inequality (5.1.7) as t → ∞. We have a contradiction to condition (5.1.5). A similar argument gives a

contradiction with (5.1.6), when u(t) is eventually negative.

Next we have the following results.

The proof of these results are the similar as in [27] with C(T ) as above

Theorem 5.1.4. Let conditions (C1) and (C2) hold with β > 1 and γ = 1. If

limt→∞inf t
1−m

∫ t

a
(t− s)α−1[v(s) +Hβ(s)]ds = −∞

and

limt→∞sup t
1−m

∫ t

a
(t− s)α−1[v(s) +Hβ(s)]ds =∞,

where

Hβ(s) = (β − 1)β
β

1−β p
1

1−β
1 p

β
β−1

2 (s),

then every solution of equation (5.1.2) is oscillatory.
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Theorem 5.1.5. Let conditions (C1) and (C2) hold with β = 1 and γ < 1. If

limt→∞inf t
1−m

∫ t

a
(t− s)α−1[v(s) +Hγ(s)]ds = −∞

and

limt→∞sup t
1−m

∫ t

a
(t− s)α−1[v(s) +Hγ(s)]ds =∞,

where

Hγ(s) = (1− γ)γ
γ
γ−1 p

γ
γ−1

1 p
1

1−γ
2 (s),

then every solution of equation (5.1.2) is oscillatory.

Theorem 5.1.6. Let conditions (C1) and (C2) hold with β > 1 and γ < 1. If

limt→∞inf t
1−m

∫ t

a
(t− s)α−1[v(s) +Hβ,γ(s)]ds = −∞

and

limt→∞sup t
1−m

∫ t

a
(t− s)α−1[v(s) +Hβ,γ(s)]ds =∞,

where

Hβ,γ(s) = (β − 1)β
β

1−β p
1

1−β
1 ξ

β
β−1 (s) + (1− γ)γ

γ
γ−1 ξ

γ
γ−1 p

1
1−γ
2 (s),

with ξ ∈ C([a,∞),R+), then every solution of equation (5.1.2) is oscillatory.

5.2 On the oscillation of fractional-order delay di�erential equations

with constant coe�cients

In this section, we review some oscillation results from [29] including su�cient conditions or necessary

and su�cient conditions for the oscillation of fractional-order delay di�erential equations with constant

coe�cients. For this, α-exponential function which is a kind of functions that play the same role of the

classical exponential functions and Laplace transformation formulations of fractional-order derivatives are

used.

In this section, we will focus on �rst order delay di�erential equation including fractional-order derivative

of the form

u̇(t) + pDαu(t− τ) + qu(t− σ) = 0, (5.2.1)

where p, q, τ, σ ∈ R, 0 < α < 1, and its general form

u̇(t) + pDαu(t− τ) +

m∑
i=1

qiu(t− σi) = 0, (5.2.2)

where p, qi, τ, σi ∈ R, i = 1, 2, . . . ,m, α = odd integer
odd integer

such that 0 < α < 1, some oscillation results are

given.
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In classical calculus, the function eλt plays an important role in solving ordinary di�erential equations

with constant coe�cients, and it satis�es
d

dt
eλt = λeλt.

In fractional calculus, the following α-exponential function:

eλtα = tα−1
∞∑
k=0

λktαk

Γ((k + 1)α)
, (t > 0)

plays an important role as eλt in solving ordinary di�erential equations with constant coe�cients, and eλtα
satis�es the following di�erential equations:

Dα
0 u(t) = λu(t)

and

Dα
0 u(t− τ) = λu(t− τ), (t > 0),

where derivative Dα
0 u(t− τ) has the property of

Dnα
0 u(t− τ) = (D

(n−1)α
0 (Dα

0 )u(t− τ)).

As α is a positive rational number, getting α = k/n = kβ satisfying 0 < α < 1, where 1 ≤ k < n, k 6= n,

we can rewrite equation (5.2.1) in the form

Dnβ
0 u(t) + pDkβ

0 u(t− τ) + qu(t− σ) = 0.

Moreover, for the equation (5.2.1) with constant coe�cients, substituting u(t) = eλtkβ, we have

(Dnβ
0 + pDkβ

0 e−λτkβ + qe−λσkβ )eλtkβ = f1(λ)eλtkβ,

where

f1(λ) = λn + pλe−λτkβ + qe−λσkβ , (5.2.3)

is the characteristic polynomial of equation (5.2.1), and for the equation (5.2.2) with constant coe�cients

(Dnβ
0 + pDkβ

0 e−λτkβ +
n∑
i=1

qie
−λσi
kβ = f2(λ)eλtkβ,

where

f2(λ) = λn + pλe−λτkβ +

n∑
i=1

qie
−λσi
kβ , (5.2.4)

is the characteristic polynomial of equation (5.2.2).

Assume that equations (5.2.1) and (5.2.2) have a solution of the form ceλtα in the sense of Riemann-Liouville

derivative, then λ must be a root of fi(λ), i = 1, 2 in (5.2.3) and (5.2.4). Thus, equations (5.2.1) and

(5.2.2) have a solution ceλtα if and only if λ is a root of fi(λ), i = 1, 2.
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5.2.1 First-order delay di�erential equations with fractional-order derivative

In this subsection we give some oscillation results for the �rst-order delay di�erential equation with

fractional-order derivative and constant coe�cients of the form (5.2.1) and (5.2.2).

Theorem 5.2.1. Assume that p, q, τ, σ ∈ R+ and α = odd integer
odd integer

such that 0 < α < 1.

Then the following statements are equivalent.

(a) Every solution of equation (5.2.1) oscillates.

(b) The characteristic equation (5.2.3) has no real roots.

Proof. (a) implies (b). The proof is obvious. As the statement (a) holds, if the characteristic equation

(5.2.3) has a real root λ0 then eλ0t is a non-oscillatory solution of equation (5.2.1). Which is a contradiction

to the statement (b).

(b) implies (a). We will make the proof using Caputo's Laplace transform formulation of the fractional

derivative. Assume, on the contrary, that (b) holds and that equation (5.2.1) has an eventually positive

solution u(t). Since equation (5.2.1) is autonomous, we may assume that u(t) > 0 for t ≥ −τ. As α is

rational number, we can write α = k/n = kβ satisfying 0 < α < 1, where 1 ≤ k < n, k 6= n. In this

case, equation (5.2.1) can be recast into the following delay di�erential equation with fractional-order

derivatives

Dnβ
0 u(t) + pDkβ

0 u(t− τ) + qu(t− σ) = 0. (5.2.5)

One can show that there exist M and µ such that |u(t)| ≤Meµtα , t ≥ −τ. Thus the Laplace transform

U(s) =

∫ ∞
0

e−stα u(t)dt (5.2.6)

exists for R(s) > µ. Let φ0 be the abscissa of convergence of U(s), that is φ0 = inf
{
φ ∈ R : u(φ) exists

}
.

By taking the Laplace transforms of both sides of the equation (5.2.5) we obtain the characteristic equation

snU(s)− u(0) + qe−sσU(s) + qh(sσ) + pλ[e−sτU(s) + h(sτ)] = 0,

where

h(sσ) = e−sσ
∫ 0

−σ
e−stu(t)dt,

or

F (s)U(s) = Q(s), R(s) > φ0, (5.2.7)

where

F (s) = sn + qe−sσ + pλe−sτ , (5.2.8)

Q(s) = u(0) + qλ(sσ) + pλh(sτ). (5.2.9)

Clearly, F (s) and Q(s) are entire functions. Also by hypothesis, F (s) 6= 0 for all real s. Therefore we can

write from (5.2.7)

U(s) =
Q(s)

F (s)
, R(s) > φ0. (5.2.10)

We now claim that φ0 = −∞. Otherwise φ0 > −∞ and the point s = φ0 must be a singularity of the

quotient Q(s)/F (s). But this quotient has no singularity on the real axis. Because of the numerator and
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dominator are entire functions and by hypothesis the dominator has no real zeros. Thus φ0 = −∞ and

(5.2.10) becomes

U(s) =
Q(s)

F (s)
, (5.2.11)

for all s ∈ R. Now we can see that as s→ −∞, trough real values, (5.2.11) leads to a contraction because

U(s) and F (s) are always positive while Q(s) becomes eventually negative.

Example 5.2.2.

u̇(t) + u1/3(t− π/2) +
√

3u(t− 2π/3) = 0, (5.2.12)

where α = 1/3, p = 1, q =
√

3 and τ = π/2, σ = 3π/2. All the conditions of Theorem 5.2.1 are satis�ed.

Hence all the solutions of the equation (5.2.12) are oscillatory.

Theorem 5.2.3. Assume thatp, qi, τ, σi ∈ R+, i = 1, 2, . . . ,m, and α = odd integer
odd integer

such that 0 < α < 1.

Then the following statements are equivalent.

(a) Every solution of equation (5.2.2) oscillates,

(b) The characteristic equation (5.2.4) has no real roots.

The proof is same as the proof of Theorem 5.2.1.

Example 5.2.4. We consider �rst-order delays di�erential equation with fractional- order derivatives and

constant coe�cients of the form

u̇(t) + 2D1/3u(t− π/4) + (3
√

3− 5)u(t− π/6) +
(9− 3

√
3)√

2
u(t− 3π/4) = 0, (5.2.13)

where α = 1/3, p = 2, q1 = 3
√

3− 5, q2 = 9−3
√

3√
2

and τ = π/4, σ1 = π/6, σ2 = 3π/4. All the conditions of

Theorem 5.2.3 are satis�ed. Hence all the solutions of the equation (5.2.13) are oscillatory.

5.2.2 Second-order delay di�erential equations with fractional-order derivative

We give some oscillation results for the second-order delay di�erential equation with fractional-order

derivative of the general form

ü(t) + pDαu(t− τ) +

m∑
i=1

qiu(t− σi) = 0, (5.2.14)

where p, qi, τ, σi ∈ R, 0 < α < 1.

As we stated above that α is a positive rational number, getting α = k/n = kβ satisfying 0 < α < 1,

where 1 ≤ k < n, k 6= n, we can write equation (5.2.14) as

(D2nβ
0 + pDkβ

0 e−λτkβ +

m∑
i=1

qie
−λσi
kβ )eλtkβ = f3(λ)eλtkβ,

where

f3(λ) = λ2n + pλe−λτkβ +
m∑
i=1

qie
−λσi
kβ , (5.2.15)
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is called the characteristic polynomial of equation (5.2.14). Assume that (5.2.14) has a solution of the

form ceλtα in the sense of Riemann Liouville derivative, then λ must be a root of f3(λ). Thus (5.2.14) has

a solution ceλtα if and only if λ is a root of f3(λ).

Theorem 5.2.5. Assume that p, qi, τ, σi ∈ R+ and α = odd integer
odd integer

such that 0 < α < 1. Then the following

statements are equivalent.

(a) Every solution of equation (5.2.14) oscillates.

(b) The characteristic equation (5.2.15) has no real roots.

Proof. (a) implies (b). The proof is obvious.

(b) implies (a). As α is rational number, we can write α = k/n = kβ satisfying 0 < α < 1, where

1 ≤ k < n, k 6= n. In this case, equation (5.2.14) can be recast into the following delay di�erential equation

with fractional-order derivatives

D2nβ
0 u(t) + pDkβ

0 u(t− τ) +
m∑
i=1

qiu(t− σi) = 0. (5.2.16)

By taking the Laplace transforms of the equation (5.2.16), we obtain the characteristic equation

s2nU(s)− u(0) +
m∑
i=1

qie
−sσiU(s) +

m∑
i=1

qih(sσi) + pλ[e−sτU(s) + h(sτ)] = 0,

where

h(sσi) = e−sτ
∫ 0

−σi
e−stu(t)dt,

or

F (s)U(s) = Q(s), R(s) > φ0, (5.2.17)

where

F (s) = sn + Σm
i=1qie

−sσi + pλe−sτ

Q(s) = u(0) + Σm
i=1qiλ(sσi) + pλh(sτ).

Clearly, F (s) and Q(s) are entire functions. Also by hypothesis, F (s) 6= 0 for all real s. Therefore we can

write from (5.2.17)

U(s) =
Q(s)

F (s)
, R(s) > φ0. (5.2.18)

We now claim that φ0 = −∞. Otherwise φ0 > −∞ and the point s = φ0 must be a singularity of

the quotient Q(s)
F (s) . But this quotient has no singularity on the real axis. Because of the numerator and

dominator are entire functions and by hypothesis the dominator has no real zeros. Thus φ0 = −∞ and

(5.2.18) becomes

U(s) =
Q(s)

F (s)
, (5.2.19)

for all s ∈ R. Now we can see that as s→ −∞, trough real values, (5.2.19) leads to a contraction because

U(s) and F (s) are always positive while Q(s) becomes eventually negative. The proof is complete.
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Example 5.2.6. We consider the fractional-order delay di�erential equation of the form

ü(t) + pD3/5u(t− 13π/10) + qu(t− 17π/10) = 0, (5.2.20)

where α = 3/5, p = 1
4

√
2
√

5−
√

5, q = 1
4

√
5 + 1

4 and τ = 13π/10, σ = 17π/10. All the conditions of

Theorem 5.2.5 are satis�ed. Hence all the solutions of the equation (5.2.20) are oscillatory.
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Chapter 6

Iterative methods for solving fractional

di�erential equations

The Daftardar-Jafari method (DJ-method) developed in [30], has been used by many researchers for solv-

ing linear and nonlinear ordinary and partial di�erential equations of integer and fractional order. The

method converges to the exact solution, if it exists through successive approximations. For concrete prob-

lems, a few number of approximations can be used for numerical purposes with high degree of accuracy.

The DJ-method does not require any restrictive assumptions for nonlinear terms as required by some

existing methods. The aim of this chapter is to e�ectively employ DJ-method to obtain solutions for

di�erent type of equations.

The variational iteration method requires the determination of Lagrange multiplier [31�33] in its compu-

tational algorithm, DJ-method is independent of any such requirements. Moreover, unlike the Adomian

decomposition method [34�42], where the calculation of the tedious Adomian polynomials is needed to

deal with nonlinear terms, DJ-method handles linear and nonlinear terms in a simple and straightforward

way without any additional requirements.

Many problems in chemistry, physics and biology have their mathematical setting as fractional di�erential

equations. Therefore, methods to solve fractional di�erential equations, are receiving signi�cant attention

in recent years. In this chapter we utilize the DJ-method to obtain solutions of nonlinear fractional equa-

tions. The method when unite with algebraic computing software (Mathematica, e.g.) turns out to be

powerful.

6.1 Method for solving fractional di�erential equations

In this section we use the Daftardar and Jafari method for solving fractional di�erential equations.

A variety of problems in physics, chemistry and biology have their mathematical setting as integral equa-

tions. Therefore, developing methods to solve integral equations, is receiving increasing attention in recent

years. In this chapter we describe an iterative method which can be utilized to obtain solutions of nonlin-

ear functional equations. The method when combined with algebraic computing software (Mathematica,

e.g.) turns out to be powerful.
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6.1.1 DJ-method

Considering the following general functional equation [43]:

u = f +N(u), (6.1.1)

where N is a nonlinear operator from a Banach space B → B and f is a known function. We are looking

for a solution u of (6.1.1) having the series form

u =
∞∑
i=0

ui. (6.1.2)

The nonlinear operator N can be decomposed as

N(
∞∑
i=0

ui) = N(u0) +
∞∑
i=1

N(
i∑

j=0

uj)−N(
i−1∑
j=0

uj)

 . (6.1.3)

From (6.1.2) and (6.1.3), the eq (6.1.1) is equivalent to

∞∑
i=0

ui = f +N(u0) +

∞∑
i=1

N(

i∑
j=0

uj)−N(

i−1∑
j=0

uj)

 .

We de�ne the recurrence relation:

u0 = f,

u1 = N(u0),

u2 = N(u0 + u1)−N(u0),

u3 = N(u0 + u1 + u2)−N(u0 + u1),

...

um+1 = N(u0 + · · ·+ um)−N(u0 + · · ·+ um−1),

where

m = 1, 2, . . .

and

u = f +

∞∑
i=0

ui

If N is a contraction, i.e. ||N(x)−N(u)|| ≤ K||x− u||, 0 < k < 1, then

||um+1|| = ||N(u0 + · · ·+ um)−N(u0 + · · ·+ um−1)|| ≤ K||um|| ≤ Km||u0||, m = 0, 1, 2, . . . ,

and the series
∑∞

0 ui absolutely and uniformly converges to a solution of (6.1.1), which is unique, in view

of Banach �xed point theorem.

50



6.2 Nonlinear fractional di�erential equations

Consider the fractional di�erential equation

cDαu− f(t, u(t)) = g(t), (6.2.1)

u(a) = c1, u
′(a) = c2.

For 1 < α ≤ 2, |g(t)| ≤M. Applying Caputo integral, we have

u(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s, u(s))ds+

∫ t

a

(t− s)α−1g(s)

Γ(α)
ds+ c1 + c2t,

where |t− a| ≤ h, f is a continuous function of its arguments and satis�es Lipschitz condition,

|f(t, φ(t))− f(t, ψ(t))| < K|φ− ψ|. Let |f(t, φ(t))| < M ′.

De�ne

u0(t) =

∫ t

a

(t− s)α−1g(s)

Γ(α)
ds+ c1 + c2t,

u1(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s, u0(s))ds,

um+1 =

∫ t

a

(t− s)α−1

Γ(α)
|f(s, u0 + · · ·+ um)− f(s, u0 + · · ·+ um−1)|ds, m = 1, 2, . . .

We prove
∑∞

i=1 ui(x) is uniformly convergent.

|u1(t)| ≤
∫ t

a

(t− s)α−1

Γ(α)
|f(s, y0(s))|ds ≤ M ′

Γ(α)

(t− a)α

α
≤M ′ hα

Γ(α+ 1)
,

|u2(t)| ≤
∫ t

a

(t− s)α−1

Γ(α)
|f(s, u0 + u1)− f(s, u0)|ds ≤ K

∫ t

a

(t− s)α−1

Γ(α)
|u1|ds ≤

M ′Khα+1

Γ(α+ 2)

...

|um+1(t)| ≤
∫ t

a

(t− s)α−1

Γ(α)
|f(s, u0 + u1 + · · ·+ um)− f(s, u0 + · · ·+ um−1)|ds ≤

K

∫ t

a

(t− s)α−1

Γ(α)
|um−1|ds ≤

M ′Kmhα+m

Γ(α+m+ 1)
.

Hence
∑∞

i=0 ui(t) is absolutely and uniformly convergent and u(t) satis�es the di�erential equation (6.2.1).

If equation (6.2.1) does not possess unique solution, then this iterative method will give a solution among

many other solutions.
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6.3 Illustrative examples

Initial and boundary value problem:

(1) Consider the following non linear di�erential equation [43]

u′ = −u2, (6.3.1)

u(1) = 1.

With exact solution u = 1/x.

Applying Riemann Liouville integral, the corresponding Volterra integral equation is

u = 1−
∫ x

1
u2dt.

By DJ-method:

u0 = 1,

u1 = N(u0) = −
∫ x

1
u2

0dt = 1− x,

u2 = N(u0 + u1)−N(u0) =
4

3
− 3x+ 2x2 − x3

3
,

u3 = N(u0 + u1 + u2)−N(u0 + u1) =
113

63
− 64x

9
+

34x2

3
− 85x3

9
+

41x4

9
− 4x5

3
+

2x6

9
− x7

63
,

...

u = u0 + u1 + u2 + . . .

= 2− x+
4

3
− 3x+ 2x2 − x3

3
+ . . .

We have solved this Volterra integral equation using DJ-method and results are compared with exact

solution of (6.3.1) in the following �gures. These �gures shows the graphs of numerical solution and

the exact solution of (6.3.1). In the table 6.1, after �ve iterations by DJ-method, we compare the

result with exact solution of (6.3.1) for di�erent values of x.

1.2 1.4 1.6 1.8 2.0

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6.1: Exact and approximate solution of (6.3.1) after three iterations
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Figure 6.2: Exact and approximate solution of (6.3.1) after four iterations
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Figure 6.3: Exact and approximate solution of (6.3.1) after �ve iterations

x Exact.Sol App.Sol Error%

1.0 1.0 1.0 0.0

1.1 0.909090 0.909091 0.00011

1.2 0.833333 0.833332 0.00012

1.3 0.769231 0.769216 0.00195

1.4 0.714286 0.714222 0.0089608

1.5 0.66667 0.666472 0.0297087

1.6 0.625 0.624530 0.0752

1.7 0.588235 0.587268 0.164661

1.8 0.55556 0.55378 0.321427

1.9 0.526316 0.523328 0.570923

2.0 0.5 0.4953 0.94

Table 6.1: Percentage error of equation (6.3.1) for di�erent values of x after �ve iterations.

(2) Consider the following di�erential equation

u′′ + u = 0, (6.3.2)

u(0) = 1, u′(0) = 2.

With exact solution u = 2 sin t+ cos t.

The initial value problem in (6.3.2) is equivalent to the integral equation

u(t) = −
∫ t

0

(t− s)
Γ(2)

u(s)ds+ 1 + 2t.
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Applying DJ-method, we have,

u0 = 1 + 2t,

u1 = N(u0) = −
∫ t

0
(t− s)u0(s)ds

= −
∫ t

0
(t− s)(1 + 2s)ds

=
−t2

2
− t3

3
,

u2 = N(u0 + u1)−N(u0)

= −
∫ t

0
(t− s)[u0(s) + u1(s)]ds+

∫ t

0
(t− s)u0(s)ds

=
t4

4!
+
t5

60
.

...

so

u = u0 + u1 + u2 + . . .

= 1 + 2t− t2

2!
− t3

3
+
t4

4!
+
t5

60
+ . . .

= 2t− 2
t3

3!
+ 2

t5

5!
+ 1− t2

2!
+
t4

4!
+ . . .

= 2(t− t3

3!
+
t5

5!
+ . . . ) + (1− t2

2!
+
t4

4!
+ . . . )

= 2 sin t+ cos t.

(3) Consider the following fractional order di�erential equation

cDαu(x) + u(x) = 0, (6.3.3)

u(0) = 1, u′(0) = 0.

With exact solution

u(x) =
∞∑
k=0

(−xα)k

Γ(αk + 1)
.

Let α = 1.2. Then we have,

cD1.2u(x) = −u(x),

u(0) = 1, u′(0) = 0.

Applying Riemann Liouville integral, we have

u(x) = −
∫ x

0

(x− s)0.2

Γ(1.2)
u(s)ds+ 1.
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By DJ-method, we have

f(x) = 1, N(u) = −
∫ x

0

(x− s)0.2

Γ(1.2)
u(s)ds

so,

u0 = 1,

u1 = N(u0) = −
∫ x

0

(x− s)0.2

Γ(1.2)
u0(s)ds

= −0.90760x1.2,

u2 = N(u0 + u1)−N(u0)

= 0.335435x2.4,

u3 = N(u0 + u1 + u2)−N(u0 + u1)

= −0.0747313x3.6

...

u = u0 + u1 + u2 + . . .

u =
∞∑
k=0

(−xα)k

Γ(αk + 1)
.

(4) Consider the following boundary value problem

u′′ + u = 0, (6.3.4)

u(0) = 1, u(π/2) = 2,

with exact solution u = 2 sin t+ cos t.

Applying Riemann Liouville integral the corresponding integral equation is:

u(t) = 1 +
2

π
t+

2t

π

∫ π
2

0
(
π

2
− s)u(s)ds−

∫ t

0
(t− s)u(s)ds.

By DJ-method,

u0 = 1 +
2t

π
,

u1 = N(u0) =
πt

3
− t2

2
− t3

3π
,

u2 = −πt
3

+
2(π

2

6 + 11π4

2880 )t

π
− πt3

18
+
t4

24
+

t5

60π
,

u3 = −
2(π

2

6 + 11π4

2880 )t

π
+

2(π
2

6 + 11π4

2880 + 47π6

483840)t

π
− 11π3t3

8640
+
πt5

360
− t6

720
− t7

2520π
,

...

u = u0 + u1 + u2 + . . .

= 1 +
2t

π
+
πt

3
− t2

2
− t3

3π
− πt

3
+

2(π
2

6 + 11π4

2880 )t

π
− πt3

18
+
t4

24
+

t5

60π
+ . . .
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Using DJ-method, following �gures shows the graphs of numerical solution and exact solution after

three and four iterations.
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Figure 6.4: Exact and approximate solution of (6.3.4) for m = 3.
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Figure 6.5: Exact and approximate solution of (6.3.4) for m = 4.

6.3.1 Boundary value problem with variable coe�cients

(5) Consider the boundary value problem [44]

cDαu(x)− (1− x)

(1 + x)2
u(x) =

1

(1 + x)2
, 1 < α ≤ 2

u(0) = 1, u(1) =
1

2
.

With exact solution 1/1 + x.

For α = 2 corresponding integral equation is:

u(x) = 1− x

2
+ x ln 2 + x− ln(1 + x) +

∫ x

0

(x− s)(1− s)
(1 + s)2

u(s)ds− x
∫ 1

0

(1− s)2

(1 + s)
u(s)ds.

By DJ-method we have the following iterations. Here Log stands for ln .

u0 = 1 - x/2 + x Log[2] - Log[1 + x],

u1 = -(1/4) x (19 + (-27 + 20 Log[2]) Log[4]) + 1/4 (x (18 + x - 20

Log[2] - x Log[4]) + 2 Log[1 + x] (-9 + x (-7 + Log[64]) + Log[1024]

+ (3 + x) Log[1 + x])),

u2 = 1/4 x (19 + (-27 + 20 Log[2]) Log[4]) - 1/4 x (19 - 56 Log[2] +

8 Log[2]^2 + Log[4] + x (-3 - 2 Log[2] (-53 + 54 Log[4]) + 40
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Log[2]^2 (-1 + Log[16])) + Log[16] Log[256] + x^2 (3 + Log[4]

Log[16] - Log[1024]) - 2 (-3 + Log[16]) (-9 + x (-7 + Log[64]) +

Log[1024]) Log[1 + x] - 2 (3 + x) (-3 + Log[16]) Log[1 + x]^2) + 1/4

(x^2 (-1 +34 Log[2] - 40 Log[2]^2) + x (17 - 50 Log[2] + 40

Log[2]^2) - x (-1 - 30 Log[2] + 40 Log[2]^2) - x^2 (1 - 66 Log[2] +

80 Log[2]^2) - x^3 (-1 + Log[4]) - x^3 (-2 + Log[16]) + 2 (1 + 2 x)

(-9 + x (-7 + Log[64]) + Log[1024]) Log[1 + x] + x (-15 - 102 Log[2]

+ 120 Log[2]^2 + x^2 (-1 + Log[4]) + 2 x (-8 + 20 Log[2]^2 -

Log[256]) + Log[1048576]) Log[1 + x] + 2 (3 + 7 x + 2 x^2) Log[1 +

x]^2 - 2 (3 + x) (-9 + x (-8 + Log[64]) + Log[1024]) Log[1 + x]^2 -

2 (3 + x)^2 Log[1 + x]^3) + 1/4 (-x (18 + x - 20 Log[2] - x Log[4])

- 2 Log[1 + x] (-9 + x (-7 + Log[64]) + Log[1024] + (3 + x) Log[1 +

x])),

u = u0+u1+u2+...

=1 - x/2 + x Log[2] - Log[1 + x] - 1/4 x (19 - 56

Log[2] + 8 Log[2]^2 + Log[4] + x (-3 - 2 Log[2] (-53 + 54 Log[4]) +

40 Log[2]^2 (-1 + Log[16])) + Log[16] Log[256] + x^2 (3 + Log[4]

Log[16] - Log[1024]) - 2 (-3 + Log[16]) (-9 + x (-7 + Log[64]) +

Log[1024]) Log[1 + x] - 2 (3 + x) (-3 + Log[16]) Log[1 + x]^2) + 1/4

(x^2 (-1 + 34 Log[2] - 40 Log[2]^2) + x (17 - 50 Log[2] + 40

Log[2]^2) - x (-1 - 30 Log[2] + 40 Log[2]^2) - x^2 (1 - 66 Log[2] +

80 Log[2]^2) - x^3 (-1 + Log[4]) - x^3 (-2 + Log[16]) + 2 (1 + 2 x)

(-9 + x (-7 + Log[64]) + Log[1024]) Log[1 + x] + x (-15 - 102 Log[2]

+ 120 Log[2]^2 + x^2 (-1 + Log[4]) + 2 x (-8 + 20 Log[2]^2 -

Log[256]) + Log[1048576]) Log[1 + x] + 2 (3 + 7 x + 2 x^2) Log[1 +

x]^2 - 2 (3 + x) (-9 + x (-8 + Log[64]) + Log[1024]) Log[1 + x]^2 -

2 (3 + x)^2 Log[1 + x]^3) + 1/4 (-x (18 + x - 20 Log[2] - x Log[4])

- 2 Log[1 + x] (-9 + x (-7 + Log[64]) + Log[1024] + (3 + x) Log[1 +

x])) +

1/4 (x (18 + x - 20 Log[2] - x Log[4]) +2 Log[1 + x] (-9 + x (-7 + Log[64]) +

Log[1024] + (3 + x) Log[1 + x])),

.

.

.

Graph of the solution by DJ-method on Mathematica is given below.
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Figure 6.6: Exact and approximate solution of (4) after three iterations.

6.4 Numerical solutions for system of non linear fractional di�erential

equations by the DJ-method

Example 6.4.1. Consider the following non linear system of fractional di�erential equations [45]:
cDαu1 = −u1 + u2u3, u1(0) = 1

cDαu2 = u1 − u2u3 − 2u2
2, u2(0) = 2

cDαu3 = u2
2, u3(0) = 0.

(6.4.1)

For α = 1 system becomes,

cDu1 = −u1 + u2u3, u1(0) = 1

cDu2 = u1 − u2u3 − 2u2
2, u2(0) = 2

cDu3 = u2
2, u3(0) = 0.

The corresponding system of integral equations is:

u1 = 1 +

∫ t

0
[u2(s)u3(s)− u1(s)]ds

u2 = 2 +

∫ t

0
[u1(s)− u2(s)u3(s)− 2u2

2(s)]ds

u3 =

∫ t

0
u2

2(s)ds.

Applying DJ-method with the help of Mathematica we have,

N1 =

∫ t

0
[u2(s)u3(s)− u1(s)]ds,

N2 =

∫ t

0
[u1(s)− u2(s)u3(s)− 2u2

2(s)]ds,

N3 =

∫ t

0
u2

2(s)ds.

u10 = 1, u20 = 2, u30 = 0 and

u11 = N1(u10, u20, u30) =

∫ t

0
[u20(s)u30(s)− u10(s)]ds = −t,

u12 = N1(u10 + u11, u20 + u21, u30 + u31)−N1(u10, u20, u30)

=

∫ t

0
[(u20 + u21)(u30 + u31)(s)− (u10 + u11)(s)]ds−

∫ t

0
[u20(s)u30(s)− u10(s)]ds

=
9t2

2
− 28t3

3
.
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As u21 = N2(u10, u20, u30) =
∫ t

0 [u10(s)− u20(s)u30(s)− 2u2
20(s)]ds = −7t

and u31 = N3(u10, u20, u30) =
∫ t

0 u
2
20(s)ds = 4t.

...

so,

u1 = u10 + u11 + u12 + · · · = 1− t+ 9t2

2 −
28t3

3 + . . .

u2 = u20 + u21 + u22 + · · · = 2− 7t+ 47t2

2 −
70t3

3 + . . .

u3 = u30 + u31 + u32 + · · · = 4t− 14t2 + 49t3

3 + . . .

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

6

Figure 6.7: Approximate solution of system (6.4.1) after three iterations.

6.5 An approach for solving a system of fractional partial di�erential

equations

In this section we use the Iterative Laplace Transform method [ILTM] [46,47] for solving systems of linear

and nonlinear fractional partial di�erential equations. The Iterative Laplace transform method is a mixture

of the Laplace transform method and the DJ-method. Iterative laplace transform method has no round-o�

errors and therefore, the numerical computations are reduced. The fractional derivative is described in

the Caputo sense. Illustrative examples are given to understand the e�ectiveness of this method.

De�nition 6.5.1. The Laplace transform L[f(t)], of the Riemann-Liouville fractional integral is de�ned

as

L[Iµf(t)] = s−µF (s).

De�nition 6.5.2. The Laplace transform L[f(t)], of the Caputo fractional derivative is de�ned as

L[Dµf(t)] = sµF (s)−
n−1∑
k=0

s(µ−k−1)f (k)(0), n− 1 < µ ≤ n.

6.5.1 ILTM and system of fractional partial di�erential equations

Consider the following system of fractional partial di�erential equations (FDEs) with the initial conditions

of the form:

Dαi
t ui(x̄, t) = Ai(u1(x̄, t), . . . , un(x̄, t)), mi − 1 < αi ≤ mi, i = 1, 2, . . . , n, (6.5.1)

∂(ki)ui(x̄, 0)

∂t(ki)
= hiki(x̄), ki = 0, 1, . . . ,mi − 1, mi ∈ N, (6.5.2)

59



where Ai are nonlinear operators and ui(x̄, t) are unknown functions. Taking the laplace transforms L on

both sides of (6.5.1), we obtain

L [Dαi
t ui(x̄, t)] = L[Ai(u1(x̄, t), . . . , un(x̄, t))], i = 1, 2, . . . , n.

Using initial condition (6.5.2) and by the Laplace transform of the Caputo fractional derivative, we obtain

sαiL[ui(x̄, t)]−
mi−1∑
k=0

sαi−k−1u
(k)
i (x̄, 0) = L[Ai(u1(x̄, t), . . . , un(x̄, t))], i = 1, 2, . . . , n. (6.5.3)

Operating with the Laplace inverse on both sides of (6.5.3) we get

ui(x̄, t)] = L−1

[
mi−1∑
k=0

s−k−1u
(k)
i (x̄, 0)

]
+ L−1[s−αiL[Ai(u1(x̄, t), . . . , un(x̄, t))]], (6.5.4)

ui(x̄, t)] = fi +Ni(u1(x̄, t), . . . , un(x̄, t)) i = 1, 2, . . . , n.

where

fi = L−1

[
mi−1∑
k=0

s−k−1u
(k)
i (x̄, 0)

]
, i = 1, 2, . . . , n,

Ni(u1(x̄, t), . . . , un(x̄, t)) = L−1[s−αiL[Ai(u1(x̄, t), . . . , un(x̄, t))]].

We now look for a solution u of (6.5.4) having the series form

ui(x̄, t) =
∞∑
j=0

uij(x̄, t) i = 1, 2, . . . , n.

The nonlinear operator Ni can be decomposed as

Ni

[∑∞
j=0 u1j(x̄, t), . . . ,

∑∞
j=0 unj(x̄, t)

]
= Ni(u10(x̄, t), . . . , un0(x̄, t))

+
∑∞

j=1[Ni(
∑j

k=0 u1k(x̄, t), . . . ,
∑j

k=0 unk(x̄, t))−Ni(
∑j−1

k=0 u1k(x̄, t), . . . ,
∑j−1

k=0 unk(x̄, t))].

We de�ne the recurrence relation

ui0(x̄, t) = L−1

[
mi−1∑
k=0

s−k−1u
(k)
i (x̄, 0)

]
,

ui1(x̄, t) = L−1[[s−αiL[Ai(u10(x̄, t), . . . , un0(x̄, t))]],

ui(m+1)(x̄, t) = L−1[[s−αiL[Ai(u10(x̄, t), . . . ,+u1m(x̄, t)), . . . , (un0(x̄, t) + · · ·+ unm(x̄, t))]]−

L−1[[s−αiL[Ai(u10(x̄, t) + · · ·+ u1(m−1)(x̄, t)), . . . , , . . . , (un0(x̄, t) + · · ·+ un(m−1)(x̄, t))]].

Then

ui1(x̄, t) + · · ·+ ui(m+1)(x̄, t) = L−1[[s−αiL[Ai(u10(x̄, t), . . . ,+u1m(x̄, t)), . . . , (un0(x̄, t) + · · ·+ unm(x̄, t))]].

The n-term approximate solution of (6.5.1)-(6.5.2) is given by

ui(x̄, t) ∼= ui1(x̄, t) + · · ·+ uin(x̄, t), i = 1, 2, . . . , n.

The above series solution generally converges very rapidly.
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Example 6.5.3. Consider the following FDEs:

cDα
t u− vx + v + u = 0,

cDβ
t v − ux + v + u = 0, (0 < α, β ≤ 1),

with initial conditions

u(x, 0) = sinhx, v(x, 0) = coshx.

The exact solution, when α = β = 1 is

u(x, t) = sinh(x− t), v(x, t) = cosh(x− t).

The system of linear FDEs corresponds to the following Laplace equations:

u(x, t) = L−1[s−1u(x, 0)] + L−1[s−αL[vx(x, t)− v(x, t)− u(x, t)]],

v(x, t) = L−1[s−1v(x, 0)] + L−1[s−βL[ux(x, t)− v(x, t)− u(x, t)]].

First few terms of u(x, t) and v(x, t) are

u0(x, t) = sinhx, v0(x, t) = coshx

u1(x, t) = N1(u0, v0) = L−1[s−αL[v0x(x, t)− v0(x, t)− u0(x, t)]]

= −Iα coshxt0 = − coshxtα

Γ(α+ 1)
,

v1(x, t) = N2(u0, v0) = − sinhxtβ

Γ(β + 1)
,

u2(x, t) = N1(u0 + u1, v0 + v1)−N1(u0, v0)

= L−1[s−αL[
− coshxtβ

Γ(β + 1)
+

sinhxtβ

Γ(β + 1)
+

coshxtα

Γ(α+ 1)
]]

= Iα[
− coshxtβ

Γ(β + 1)
+

sinhxtβ

Γ(β + 1)
+

coshxtα

Γ(α+ 1)
]

− coshxtα+β

Γ(α+ β + 1)
+

sinhxtα+β

Γ(α+ β + 1)
+

coshxt2α

Γ(2α+ 1)
.

Similarly,

v2(x, t) =
− cosh(x)tα+β

Γ(α+ β + 1)
+

sinhxtα+β

Γ(α+ β + 1)
+

coshxt2α

Γ(2α+ 1)
.

The series solution is then given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + . . .

= cosh(x)[1 +
tα+β

Γ(α+ β + 1)
+ . . . ]− sinhx[

tβ

Γ(β + 1)
+

tα+β

Γ(α+ β + 1)
− t2β

Γ(2β + 1)
+ . . . ].

Setting α = β = 1, we reproduce the solution as follows:

u(x, t) = sinh(x− t), v(x, t) = cosh(x− t).
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Example 6.5.4. Consider the following nonlinear system for 0 < α, β < 1.

cDα
t u− uxx − 2uux + (uv)x = 0,

cDβ
t v − vxx − 2vvx + (uv)x = 0.

u(x, 0) = sin(x), v(x, 0) = sin(x).

For α = β = 1; exact solution of system is:

u(x, t) = v(x, t) = sin(x)e−t.

Since

ui(x, t) = L−1

[
mi−1∑
k=0

s−k−1u
(k)
i (x, 0)

]
+ L−1[s−αL[Ai(u1(x, t), . . . , un(x, t))]], i = 1, 2, . . . , n.

u(x, t) = L−1
[
s−1u(x, 0)

]
+ L−1

[
s−αL [uxx + 2uux − (uv)x]

]
,

u0(x, t) = sin(x), u0x = cos(x), u0xx = − sin(x),

u1(x, t) = N1(u0, v0)

= L−1[s−αL[u0xx + 2u0u0x − (u0v0)x]]

= −Iα(sin(x))t0 = − sin(x)
Γ(1)

Γ(α+ 1)
tα.

u1 = − sin(x)tα

Γ(α+ 1)
, u1x = − cos(x)tα

Γ(α+ 1)
, u1xx

=
sin(x)tα

Γ(α+ 1)
.

For α = 1

u1 = − sin(x)t

u2(x, t) = N1(u0 + u1, v0 + v1)−N1(u0, v0)

For α = β = 1

u2(x, t) = L−1[s−1L[sin(x)t]] = sin(x)I(t1) =
t2

2!
sin(x)

...

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + . . .

= sin(x)[1− t+
t2

2!
− . . . ] = sin(x)e−t.

6.6 Convergence of the iterative method

An iterative method [48] can also be stated as:

u = f +N(u),
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where N is a nonlinear operator from a Banach space B → B, and f is a given element of the Banach

space B. u is assumed to be a solution of u = f +N(u). having the series form

u =
∞∑
0

ui.

The operator N is decomposed as

N(u) = N(u0) + [N(u0 + u1)−N(u0)] + [N(u0 + u1 + u2)−N(u0 + u1)] + . . .

Let G0 = N(u0) and

Gn = N

(
n∑
i=0

ui)−N(
n−1∑
i=0

ui

)
, n = 1, 2, . . . .

Then

N(u) =
∞∑
i=0

Gi.

u0 = f

un = Gn−1, n = 1, 2, . . . ,

then

u =
∞∑
i=0

ui

is a solution of u = f +N(u).

6.6.1 Convergence of DJ-method

We state some conditions [48] for DJ-method to be convergent.

Theorem 6.6.1. If N is C∞ in a neighborhood of u0 and

||Nn(u0)|| = Sup{Nn(u0)(h1, . . . , hn) : ||hi|| ≤ 1, 1 ≤ i ≤ n} ≤ L,

for any n and for some real L > 0 and ||ui|| ≤M < 1/e, i = 1, 2, . . . , then the series
∑∞

n=0Gn is absolutely

convergent, and moreover,

||Gn|| ≤ LMnen−1(e− 1), n = 1, 2, . . .

Theorem 6.6.2. If N is C∞ and ||Nnu0|| ≤ M ≤ e−1, for all n, then the series
∑∞

n=0Gn is absolutely

convergent.
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Example 6.6.3. Consider the nonlinear initial value problem,

u′(t) =
1

2
+

1

8
u2(t), u(0) =

1

2
, t ∈ [0, 1]. (6.6.1)

By taking integration of both sides of (6.6.1), we have

u(t) =
1

2
+
t

2
+

1

8

∫ t

0
u2(s)ds.

Here we have u0 = (1+t)
2 and N(u)(t) = (1

8)
∫ t

0 u
2(s)ds then [49]

(N ′(u)y)(t) =
1

8

∫ t

0

∂

∂u
(u2y)ds

=
1

8

∫ t

0
2u(s)y(s)ds.

Similarly, (N ′′(u)(y1, y2))(t) = ( t4)y1(t), y2(t) and N (k)(u) = 0 for k ≥ 3. Since t ∈ [0, 1],

||N(u0)(t)|| = ||1
8

∫ t

0

(1 + s)2

4
ds|| ≤ 7

96
<

1

e
,

||N ′(u0)(t)|| = ||1
4

∫ t

0

(1 + s)

2
ds|| ≤ 3

16
<

1

e
,

||N ′′(u0)(t)|| = || t
4
|| ≤ 1

4
<

1

e
,

||N (k)(u0)(t)|| = 0, k ≥ 3.

As the conditions of Theorem 6.6.2 are ful�lled, the series solution u =
∑∞

i=1 ui obtained by DJ-method

is convergent for t ∈ [0, 1].

Conclusion

An iterative method for solving fractional equations has been discussed. The result for the convergence of

solution for nonlinear fractional di�erential equations is presented. Illustrative examples dealing with initial

value problems, boundary value problems, Volterra integral equations, nonlinear fractional di�erential

equations and partial di�erential equations have been given. The method proves to be simple in its

principles and convenient for computer algorithms.
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