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Abstract

In this dissertation we generate a method to find approximate similarity soluion of nonlinear

PDEs. The method of solving PDEs via similarity transform mostly results in ODEs whose

analytical solution is difficult to find. Such situations require solving reduced ODEs numer-

ically. Since there is no pratical approach to use the numerical solution of reduced ODE to

govern solution of original PDE. In this dissertation we have given a systematic procedure to

deal with such situations.

In the first chapter we provide a brief review of some basic concepts of Symmetry Anal-

ysis then an algorithm of finding symmetries of PDEs is given and at the end we discuss

symmetry method to solve boundary value problems of PDEs.

In second chapter we have discussed methods to solve the reduced BVPs of ODEs numerically.

In the third chapter we have provided a method to find approximate similarity solution

of nonlinear PDEs and implemented our method to find approximate similarity solution for

non linear diffusion equation and for different cases of IBVP of unsteady gas flow through

porous semi-infinite medium.

The thesis is concluded in fourth chapter.



Chapter 1

Introduction to Symmetry Analysis

In this chapter, some background of symmetry analysis and algorithm which generates the

Lie symmetries of partial differential equations is provided [1–6]. We consider the reduction

of partial differential equations (PDEs) to ordinary differential equations (ODEs) using the

silmilarity variables. This method is used to find an exact solution of PDE via invariance

of differential equation under a particular group. Later in this chapter we highlight the

systematic procedure of extending the symmetry method for a PDE to investigate boundary

value problems of PDE.

1.1 Definitions

1.1.1 Group:

A group G is defined to be a set of elements with a law of composition ψ between elements

which satisfy following axioms [7]:

• Closure law: For any g1, g2 ∈ G, Ψ(g1, g2) ∈ G.

• Associative Property: For any g1, g2, g3 ∈ G,

Ψ(g1,Ψ(g2, g3)) = Ψ(Ψ(g1, g2), g3). (1.1.1)

• Identity element: There exists a unique element e ∈ G such that for all g ∈ G

Ψ(g, e) = Ψ(e, g) = g. (1.1.2)
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• Inverse element: For any g ∈ G there exists a unique g−1 ∈ G such that

Ψ(g, g−1) = Ψ(g−1, g) = e. (1.1.3)

A group G is said to be Abelian group if for all g1, g2 ∈ G,

Ψ(g1, g2) = Ψ(g2, g1).

A Subgroup of G is a subset of G whose elements form a group with the same law of

composition Ψ.

1.1.2 Group of transformations:

Let us consider x = (x1, x2, ...., xn) which lie in region A ⊂ Rn. Then set of transformations

[7]

x∗ = X(x; ϵ), (1.1.4)

which is defined for each x ∈ A and parameter ϵ ∈ W ⊂ R and ψ(ϵ, δ) defines law of

composition of parameters ϵ, δ ∈ W , forms a 1-parameter group of transformations in A if

following holds:

• For each ϵ ∈W , the transformation is one-to-one onto A. (Hence x∗ ∈ A.)

• W forms a group with law of compostion ψ.

• For each x ∈ A, we have x∗ = x, when ϵ = ϵo corresponds to identity element e.

• If x∗ = X(x; ϵ) and x∗∗ = X(x∗; δ), then we have

x∗∗ = X(x;ψ(ϵ, δ)). (1.1.5)

1.1.3 One-parameter Lie group of transformations:

A 1-parameter Lie group of transformation [7] in addition to the definition 1.1.2 satisfies

• The parameter ϵ is continuous, that is W is an interval in R. Without loss of generality,

ϵ = 0 corresponds to identity e.

• X is infinitely differentiable w.r.t x ∈ A and is an analytic function of ϵ ∈W .

• ψ(ϵ, δ) is an analytic function of δ and ϵ where δ, ϵ ∈W .
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1.1.4 Symmetry:

A symmetry is defined to be a one-parameter group of transformations which maps solutions

into solutions.

The infinitesimal generator of one-parameter Lie group of transformations is the operator

X = X(x) = ζ(x)×∇ =
n∑

i=1

ζi(x)(
∂

∂xi
), (1.1.6)

where ∇ is the gradient operator.

1.1.5 Lie algebra:

A Lie algebra is defined to be a vector space T over R or C with a bilinear bracket operation

(the commutator)[., .] : T × T −→ T satisfying the following properties.

• Bilinearity:

[c1X1+c2X2,X3] = c1[X1,X3]+c2[X2,X3], [X3, c1X1+c2X2] = c1[X3,X1]+c2[X3,X2],

(1.1.7)

for all c1, c2 ∈ R or C and X1,X2,X3 ∈ T .

• Antisymmertry:

[X,X] = 0, (1.1.8)

for all X ∈ T .

• Jacobi’s identity:

[X1, [X2,X3]] + [X2, [X3,X1]] + [X3, [X1,X2]] = 0, (1.1.9)

for all X1,X2,X3 ∈ T .

1.1.6 Invariant functions:

An infinitely differentiable function G(x) is an invariant function [7] of the Lie group of

transformation (1.1.3) iff, for any group of transformations,

G(x) ≡ G(x∗).
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Theorem 1.1.1. G(x) is invariant under the Lie group of transformation (1.1.3) iff

XG(x) = 0.

Proof. First of all we compute G(x∗). Taylor series expansion gives us

G(x∗) =

∞∑
0

ϵk

k!
[
dk

dϵk
G(x∗)]ϵ=0,

=

∞∑
0

ϵk

k!
(
dk−1

dϵk−1
[
d

dϵ
G(x∗)])ϵ=0,

=

∞∑
0

ϵk

k!
(
dk−1

dϵk−1
[

i=1∑
n

∂

∂x∗i
G(x∗)

dx∗i
dϵ

])ϵ=0,

=
∞∑
0

ϵk

k!
(
dk−1

dϵk−1
[ζi(x

∗)
i=1∑
n

∂

∂x∗i
G(x∗)])ϵ=0,

=
∞∑
0

ϵk

k!
(
dk−1

dϵk−1
[X(x∗)G(x∗)])ϵ=0,

=
∞∑
0

ϵk

k!
(
dk−2

dϵk−2
[
d

dϵ
(X(x∗)G(x∗))])ϵ=0,

=

∞∑
0

ϵk

k!
(
dk−2

dϵk−2
[X(x∗)(X(x∗)G(x∗))])ϵ=0,

=

∞∑
0

ϵk

k!
(
dk−2

dϵk−2
[(X2(x∗)G(x∗))])ϵ=0,

.

.

.

G(x∗) =
∞∑
0

ϵk

k!
([Xk(x∗)G(x∗)]ϵ=0).

Then,

G(x∗) =
∞∑
0

ϵk

k!
Xk(x)G(x). (1.1.10)

Now suppose that XG(x) = 0, now we need to prove that G(x∗) = G(x)

XG(x) = 0 ⇒ XnG(x) = 0, (1.1.11)
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then from Eq. (1.1.10) it follows that G(x∗) = G(x).

Converesely, suppose that G(x∗) = G(x) we need to prove that XG(x) = 0.

G(x∗) = G(x) ⇒ G(x) = G(x) +

∞∑
1

ϵk

k!
Xk(x)G(x),

⇒
∞∑
1

ϵk

k!
Xk(x)G(x) = 0.

Therefore, XG(x) = 0.

1.2 Algorithm: Finding point symmetries of PDE:

In Lie point symmetry methods we find all the symmetries of the PDE. Let us consider an

nth order PDE,

F (t, x, v, vt, vx, ....) = 0. (1.2.1)

Now to find one-parameter Lie group of transformation for above equation, consider the

transformations

t = t+ ϵτ(t, x, v),

x = x+ ϵξ(t, x, v),

v = v + ϵη(t, x, v),

vi = vi + ϵηi(t, x, v, v1),

.

.

.

vi1i2...ik = vi1i2...ik + ϵηi1i2...ik(t, x, v, v1, ...vk),

where ϵ is called group parameter. Corresponding generator is

H = τ(t, x, v)∂t + ξ(t, x, v)∂x + η(t, x, v)∂v, (1.2.2)

where,

(
∂t

∂ϵ
)ϵ=0 = τ(t, x, v), (

∂x

∂ϵ
)ϵ=0 = ξ(t, x, v), (

∂v

∂ϵ
)ϵ=0 = η(t, x, v). (1.2.3)
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We require an nth extension of H to apply on an nth order PDE, i.e.

H[n]F |F=0 = 0, (1.2.4)

where,

H[n] = H+ ηi(t, x, v, v1)∂vi + ...+ ηi1,i2...ik(t, x, v, v1, v2, ...vk)∂vi1,i2,...,ik , (1.2.5)

is the nth order prolongation of the generator H. ηi, ..., ηi1,i2...ik are called the prolongation

coefficients and are defined as

ηi = Diη − (Diτ)vt − (Diξ)vx, (1.2.6)

ηi1,i2...ik = Dikηi1,i2...ik−1
− (Dikτ)vi1,i2...ik−1t − (Dikξ)vi1,i2...ik−1x, (1.2.7)

and

Dx = ∂x + vx∂v + vxx∂vx + vxt∂vt + ..., (1.2.8)

Dt = ∂t + vt∂v + vxt∂vx + vtt∂vt + .... (1.2.9)

For n = 2 the form of H[2] is given by

H[2] = τ(t, x, v)∂t + ξ(t, x, v)∂x + η(t, x, v)∂v + η1∂vt + η2∂vx + η11∂vtt + η12∂vtx + η22∂vxx ,

(1.2.10)

where,

η1 = Dt(η)− vtDt(τ)− vxDt(ξ),

= ηt + (ηv − τt)vt − ξtvx − τv(vt)
2 − ξvvtvx, (1.2.11)

η2 = Dx(η)− vtDx(τ)− vxDx(ξ),

= ηx + (ηv − ξx)vx − τxvt − ξv(vx)
2 − τvvtvx, (1.2.12)

η11 = Dt(η1)− vttDt(τ)− vtxDt(ξ),

= ηtt + [2ηtv − τtt]vt + [ηvv − 2τtv](vt)
2 − τvv(vt)

3 − 3τvvtvtt − ξttvx − 2ξvtvtvx

−2ξtvtx − ξvvvx(vt)
2 − ξvvxvtt − 2ξvvtvxt, (1.2.13)
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η12 = Dx(η1)− vttDx(τ)− vtxDx(ξ),

= ηtx + [2ηtv − ξtx]vx + [ηvx − τtx](vt) + [ηvv − τtv − ξvx]vtvx + [ηv − τt − ξx]vtx

−τvx(vt)2 − τvvvx(vt)
2 − ξvvtvxx − ξtv(vx)

2 − ξtvxx − τxvtt − ξvvvt(vx)
2

−2ξvvxvtx − τvvxvtt − 2τvvtvxt, (1.2.14)

η22 = Dx(η2)− vtxDx(τ)− vxxDx(ξ),

= ηxx + [2ηxv − ξxx]vx − τxxvt + [ηv − 2ξx]vxx − 2τxvtx + [ηvv − 2ξxv](vx)
2

−2τxvvtvx − ξvv(vx)
3 − τvvvt(vx)

2 − 3ξvvxvxx − τvvtvxx − 2τvvxvtx, (1.2.15)

Condition (1.2.4) gives a system of nonlinear PDEs in τ, ξ and η. Also τ, ξ and η must

depend only on t, x and u since we are dealing with point symmetries. After comparing the

coefficients of powers of derivatives of v we get system of PDEs. The solution of this system

yields the value of τ, ξ and η. The number of constants in H determines the dimension of the

Lie algebra.

1.2.1 Example:

Let us consider heat equation [7, 8]

vt = vxx. (1.2.16)

Applying 2nd extension of H, we get

η1 = η22. (1.2.17)

Following the algorithm given in Section (1.2), we get following system of equations.

τv = 0, (1.2.18)

τx = 0, (1.2.19)

ξv = 0, (1.2.20)

−2ξx + τt = 0, (1.2.21)

ξt + 2ηxv − ξxx = 0, (1.2.22)

ηvv = 0, (1.2.23)

−ηxx + ηt = 0. (1.2.24)
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Solving above system we get the general solution given below

τ = c1 + c3t+
1

4
c4t

2, (1.2.25)

ξ = c2 +
1

2
(c3 + c4t)x+ c6t, (1.2.26)

η = (−1

8
c4x

2 − 1

4
c4t−

1

2
c6x+ c5)v + V (t, x), (1.2.27)

where

Vt = Vxx, (1.2.28)

is function of integration.

Taking one of the constants to be 1 and remaining constants to be zero we get all the

symmetries as follows

H1 =
∂

∂t
, H2 =

∂

∂x
, H3 = t

∂

∂t
+

1

2
x
∂

∂x
,

H4 =
1

2
tx

∂

∂x
+

1

2
t2
∂

∂t
− (

1

8
x2v +

1

2
tv)

∂

∂v
,

H5 = v
∂

∂v
, H6 = t

∂

∂x
− 1

2
xv

∂

∂v
, H7 = V (t, x)

∂

∂v
. (1.2.29)

1.3 Group reductions and point transformations:

Once we obtain the generators, we solve the following invariant surface condition to reduce

PDEs to ODEs for each symmetry

dt

τ(t, x, v)
=

dx

ξ(t, x, v)
=

dv

η(t, x, v)
. (1.3.1)

When we solve Eq. (1.3.1), we will get two first integrals denoted by u and z. Thus the

reduction variables will be

u = w(z). (1.3.2)

When we substitute Eq. (1.3.2) in Eq. (1.2.1) we obtain an ODE. Its solution gives us the

value of w.
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1.3.1 Example:

In Example (1.2.1) the invariant surface condition for H3 gives us

dt

t
= 2

dx

x
=
dv

0
. (1.3.3)

Now,

2
dx

x
=
dt

t
⇒ z =

x2

t
, (1.3.4)

dv

0
= 2

dx

x
⇒ v = u. (1.3.5)

Using Eq. (1.3.2) the reduction variables can be written as

v = w(
x2

t
), (1.3.6)

and after substituting in Eq. (1.2.16) we get

4zw′′ + (2 + z)w′ = 0. (1.3.7)

The solution of ODE given by Eq. (1.3.7) is

w(z) = 2
√
πk1erf(

1

2

√
z) + k2, (1.3.8)

where k1 and k2 are arbitrary constants and erf represents the error function.

Substituting Eq. (1.3.8) in Eq. (1.3.6) we get the exact solution given below

v(x, t) = 2
√
πk1erf(

1

2

√
x2

t
) + k2. (1.3.9)

Sometimes it is hard to find the exact solution of reduced ODE. In such cases we consider

the numerical approach. Once we get the solution of reduced ODE, we get the solution of

initial PDE by using the reciprocal bijection of point transformation.

The symmetries obtained above generates the point transformations which leave the differ-

ential equation invariant. In order to get these point transformations we solve

∂t

∂ϵ
= τ(t, x, v),

∂x

∂ϵ
= ξ(t, x, v),

∂v

∂ϵ
= η(t, x, v), (1.3.10)

subject to conditions

t|ϵ=0 = t, x|ϵ=0 = x, v|ϵ=0 = v. (1.3.11)

9



1.3.2 Example:

Let us find the point transformation for H3 in Example (1.2.1). Eq. (1.3.10) implies

∂t

∂ϵ
= t,

∂x

∂ϵ
=

1

2
x,

∂v

∂ϵ
= 0, (1.3.12)

which implies

t = eϵa1, x = e
1
2
ϵa2, v = a3. (1.3.13)

where a1, a2 and a3 are arbitrary constants. Using conditions given in Eq. (1.3.11) the point

transformation obtained from H3 gives us the Lie scaling group.

t = eϵt, x = e
ϵ
2x, v = v. (1.3.14)

Thus we have illustrated the algorithm by finding symmetries of heat equation and using

one of these symmetries to find exact solution of heat equation. Again we used the same

symmetry to find point transformation which leave the differential equation invariant.

1.4 Lie symmetry solution of initial-boundary value problem:

In this section a review of process of finding Lie symmetry solution of Initial boundary value

problems (IBVPs) is given [9, 10]. The process of applying Lie symmetry method to IBVPs

of PDE requires finding a one parameter group of transformations that leaves the problem

invariant and then using these transformations either to obtain similarity reduction or to

construct invariant solution.

The process consists of following steps:

Step 1. Symmetry Algebra of PDE:

Determining Lie symmetries of governing PDE.

Step 2. Invariance of boundaries:

Finding the conditions under which most general symmetry operator H obtained in step 1

leaves the boundaries invariant.
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Step 3. Invariance of boundary conditions:

Finding restrictions which are imposed on H due to invariance of boundary conditions.

Above three steps determine symmetry operator that leaves the IBVP invariant.

Step 4. Reductions or construction of similarity solutions:

Finding the similarity reductions and similarity solution of the IBVP by using the similarity

variables of symmetry operator of IBVP.

We consider a test problem to describe above procedure.

1.4.1 Example:

Transient condition in a semi-infinite solid with constant surface temperature.

∂T

∂t
= β

∂2T

∂x2
, (1.4.1)

subject to initial and boundary conditions,

T |t=o = Ti, T |x=0 = Ts, T |x→∞ = Ti. (1.4.2)

The symmetry algebra of Eq. (1.4.1) is well known and is spanned by the vecor field,

H1 =
∂

∂t
, H2 =

∂

∂x
, H3 = 2t

∂

∂t
+ x

∂

∂x
, H4 = 2t

∂

∂x
− 1

β
xT

∂

∂T

H5 = 4t2
∂

∂t
+ 4xt

∂

∂x
− 1

β
(x2 + 2βt)T

∂

∂T
, H6 = T

∂

∂T
, H∞ = g(t, x)

∂

∂T
.

We consider general symmetry operator of Eq. (1.4.1)

H = c1H1 + c2H2 + c3H3 + c4H4 + c5H5 + c6H6,

and look for the operator that will preserve boundary and boundary conditions given by Eq.

(1.4.2)

The invariance of the boundaries x = 0, t = 0 or equivalently we can say

[H(x− 0)]x=0 = 0,

[H(t− 0)]t=0 = 0,
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which implies

c1 = c2 = c4 = 0. (1.4.3)

Thus, H must be

H = c3H3 + c5H5 + c6H6.

Also the invariance of initial and boundary conditions i.e

[H(T − Ti)]t=0 = 0, on T = Ti,

[H(T − Ts)]x=0 = 0, on T = Ts,

implies

c5 = 0 = c6. (1.4.4)

Thus under symmetry given below, the IBVP given by Eqs. (1.4.1), (1.4.2) is invariant

H = 2t
∂

∂t
+ x

∂

∂x
, (1.4.5)

where we have chosen c3 = 1.

Now solving the characteristic system for HI = 0, we get I1 = x2

t and I2 = T as differential

invariants of Eq. (1.4.5). Thus the similarity variables for H are

V (x, t) =
x2

t
, W (V ) = T. (1.4.6)

When we substitute similarity variables in Eq. (1.4.1), we get corresponding similarity solu-

tion of Eq. (1.4.1) of the form T =W (V ) where W (V ) satisfies the ODE

4V
d2W

dV 2
+ (2 +

V

β
)
dW

dV
= 0. (1.4.7)

We integrate Eq. (1.4.7) by substituting

U =
dW

dV
.

Thus we get

W (V ) = k1

∫
e

−V
4β

√
V
dV + k2. (1.4.8)

If we make change of variable

y2 =
V

4β
,

12



the above solution becomes

W = 4k1
√
β

∫
e−y2dy + k2,

= 2k1
√
β
√
π · erf(y) + k2. (1.4.9)

Where erf represents the error function. Hence from above equations the exact solution of

Eq. (1.4.1) that is invariant under Eq. (1.4.5) is given below

T (x, t) = 2k1
√
β
√
π · erf(

x√
t

2
√
β
) + k2. (1.4.10)

Applying initial and boundary conditions we get

k1 =
Ti − Ts

2
√
βπ

, k2 = Ts,

so the solution of the IBVP given by Eqs. (1.4.1) and (1.4.2) becomes

T (x, t) = (Ti − Ts)erf(
x

2
√
βt

) + Ts. (1.4.11)

Remark:

In case of non-linear problems sometimes it happens that the reduced ODE obtained from

similarity variables cannot be integrable in terms of known functions. In such cases reduced

BVP of ODE can be solved numerically to understand the solution.
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Chapter 2

Numerical solution of boundary
value problems for ordinary
differential equations

There are many methods to find the numerical solutions of BVPs for ODEs. In this chapter

we will illustrate ”Shooting method” for solving BVPs numerically. Later we will discuss

solution of BVPs in MATLAB with bvp4c.

2.1 Existence and uniqueness of solution of BVP:

Consider a BVP for the 2nd order ODE of the form [11],

y′′ = g(x, y, y′), a ≤ b, y(a) = α, y(b) = β. (2.1.1)

Theorem 2.1.1. Suppose g is continuous on set

H = (x, y, y′); a ≤ x ≤ b,−∞ < y <∞,−∞ < y′ <∞.

and partial derivatives gy and gy′ are continuous on H.

If gy(x, y, y
′) > 0, for all (x, y, y′) ∈ H, and there exist a constant m such that |gy′(x, y, y′)| ≤

m, for all (x, y, y′) ∈ H then the BVP given by Eq. (2.1.1) has unique solution.
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Example:

Determine if the following BVP has a unique solution

y′′ + sin(y′) + e−xy = 0, 1 ≤ x ≤ 2, y(1) = y(2) = 0.

First of all we rewrite above BVP, i.e.

y′′ = − sin(y′)− e−xy, so g(x, y, y′) = − sin(y′)− e−xy.

Now we check conditions of uniqueness.

g(x, y, y′) = − sin(y′)− e−xy, gy(x, y, y
′) = xe−xy, gy′(x, y, y

′) = − cos(y′),

are continuous on

H = (x, y, y′); 1 ≤ x ≤ 2,−∞ < y <∞,−∞ < y′ <∞.

Also

1. gy(x, y, y
′) = xe−xy > 0 on H.

2. |gy′(x, y, y′)| = | − cos(y′)| ≤ 1 = m.

So the above BVP has a unique solution in H.

Example:

In this example we will check conditions under which a linear BVP has a unique solution.

Consider a linear BVP of the form

y′′ = p(x)y′ + q(x)y + r(x), a ≤ x ≤ b, y(a) = α, y(b) = β.

Observe that

g(x, y, y′) = p(x)y′ + q(x)y + r(x), gy(x, y, y
′) = q(x), gy′(x, y, y

′) = p(x),

are continuous on H iff p(x), q(x) and r(x) are continuous for a ≤ x ≤ b. Next we check

conditions (1) and (2).
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1. gy(x, y, y
′) = q(x) > 0 for a ≤ x ≤ b.

2. Since gy′ is continuous on [a, b], so gy′ is bounded.

Thus the linear BVP has a unique solution if p(x), q(x) and r(x) are continuous and q(x) > 0

for a ≤ x ≤ b.

2.2 Shooting Method:

Shooting method is a method used to solve BVPs of ODEs by reducing them to solutions of

IVPs. It is used to solve both linear and nonlinear BVPs. This method is called Shooting,

by analogy to the procedure of firing objects at a stationary target.

2.2.1 The Linear Shooting method:

Consider a linear BVP of the form [11]

y′′ = p1(x)y
′ + p2(x)y + p3(x), a ≤ x ≤ b, y(a) = α1, y(b) = α2. (2.2.1)

where p1(x), p2(x) and p3(x) are continuous and p2(x) > 0 for a ≤ x ≤ b. Now find the

solution of following two initial value problems (IVPs)

y′′ = p1(x)y
′ + p2(x)y + p3(x), a ≤ x ≤ b, y(a) = α1, y

′(a) = 0, (2.2.2)

y′′ = p1(x)y
′ + p2(x)y, a ≤ x ≤ b, y(a) = 0, y′(a) = 1. (2.2.3)

Say the solutions are y1(x) and y2(x) respectively. Consider the following linear combination

of y1(x) and y2(x) and call it y(x).

y(x) = y1(x) +
α2 − y1(b)

y2(b)
y2(x). (2.2.4)

Then y(x) is the solution of the BVP given by Eq. (2.2.1).
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Verification:

In order to verify whether y(x) is solution of BVP given by Eq. (2.2.1), we consider

y′′ = y′′1(x)+
α2 − y1(b)

y2(b)
y′′2(x) = p1(x)y

′
1+p2(x)y1+p3(x)+

α2 − y1(b)

y2(b)
(p1(x)y

′
2+p2(x)y2+p3(x)),

= p1(x)(y
′
1(x) +

α2 − y1(b)

y2(b)
y′2(x)) + p2(x)(y1(x) +

α2 − y1(b)

y2(b)
y2(x)) + p3(x).

Thus y(x) is solution of y′′ = p1(x)y
′ + p2(x)y + p3(x).

Now we will check the boundary conditions of BVP.

y(a) = y1(a) +
α2 − y1(b)

y2(b)
y2(a) = α1 +

α2 − y1(b)

y2(b)
(0) = α1,

y(b) = y1(b) +
α2 − y1(b)

y2(b)
y2(b) = α2.

Thus Linear shooting method requires solution of two independent IVPs given by Eqs. (2.2.2)

and (2.2.3) in order to solve BVP given by Eq. (2.2.1).

Example:

Consider the BVP given by

y′′ =
2

x2
lnx− 2

x2
y − 4

x
y′, 1 ≤ x ≤ 2, y(1) =

1

2
, y(2) = ln 2. (2.2.5)

Exact solution is given by

y(x) = − 1

x2
(−x2 lnx+

3

2
x2 − 4x+ 2). (2.2.6)

Here in this BVP, p1(x) = − 4
x , p2(x) = − 2

x2 and p3(x) = 2
x2 lnx are continuous on [1, 2].

Since we have p2(x) � 0 so we cannot say about uniqueness of above BVP.

Now solving following two IVPs,

y′′1 =
2

x2
lnx− 2

x2
y1 −

4

x
y′1, 1 ≤ x ≤ 2, y1(1) =

1

2
, y′1(1) = 0,

y′′2 = − 2

x2
y2 −

4

x
y′2, 1 ≤ x ≤ 2, y2(1) = 0, y′2(1) = 1.
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Next we setup these initial value problems into a system of four 1st order differential equations

given by

v′1 = v2,

v′2 =
2

x2
lnx− 2

x2
v1 −

4

x
v2, v1(1) =

1

2
, v2(1) = 0,

v′3 = v4,

v′4 = − 2

x2
v3 −

4

x
v4, v3(1) = 0, v4(1) = 1.

Above system can be easily solved byMATLAB build in function ode45 which solves by using

variable step RKF45-method. The solution to above BVP is shown by following graphs.

1 1.2 1.4 1.6 1.8 2
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0.2
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0.7
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x

y

Figure 2.1: Solid line represent numerical solution of BVP and dotted lines

represent solution of two IVPs
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Figure 2.2: Difference between numerical and exact solution

2.2.2 Shooting method for non-linear problems:

Let us consider BVP of 2nd order ODE of the form [11]

y′′ = g(x, y, y′), a ≤ x ≤ b, y(a) = α1, y(b) = α2, (2.2.7)

where g(x, y, y′) is not linear in y and y′. Assume y(x) to be the unique solution of above

BVP then it can be found out by solving sequence of following IVPs

y′′ = g(x, y, y′), a ≤ x ≤ b, y(a) = α1, y
′(a) = wk, (2.2.8)

where wk are real numbers. Let y(x,wk) be the solution of IVP given by Eq. (2.2.8). We

need to find a sequence wk such that

lim
k→∞

y(b, wk) = y(b).

We can choose w0 to be

w0 = y′(a) ≈ y(b)− y(a)

b− a
=
α2 − α1

b− a
.
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If y(b, wo) is not sufficiently close to α2 we correct our approximation by finding w1, w2 and

so on until we reach a w from a sequence wk such that

y(b, w)− α2 = 0, (2.2.9)

Our aim is to find this w that is the solution of the equation. Observe that y(b, w)− α2 = 0

is a one variable non-linear equation. Using Newton’s method to approximate solution of Eq.

(2.2.9)

wk = wk−1 −
y(b, wk−1)− α2

dy
dw (b, wk−1)

,

Since we do not have y(x) explicitly so in order to determine dy
dw (b, wk−2) let y(x,w) be the

solution of IVP given by Eq. (2.2.8). Then we have

y′′(x,w) = g(x, y(x,w), y′(x,w)), a ≤ x ≤ b, y(a,w) = α1, y
′(a,w) = w.

Differentiating above equation w.r.t w we have,

∂y′′(x,w)

∂w
=

∂g(x, y(x,w), y′(x,w))

∂w
,

= gxxw + gy
∂y(x,w)

∂w
+ gy′

∂y′(x,w)

∂w
.

Since x and w are independent, so xw = 0. Hence we have

∂y′′(x,w)

∂w
= gy

∂y(x,w)

∂w
+ gy′

∂y′(x,w)

∂w
, (2.2.10)

for a ≤ x ≤ b. The initial conditions are

∂y(a,w)

∂w
=

d

dw
[α1] = 0,

∂y′(a,w)

∂w
=

d

dw
[w] = 1.

Define z(x,w) = ∂y(x,w)
∂w . Since

∂3y(x,w)

∂x2∂w
=

∂

∂w
[
∂2y(x,w)

∂x2
] =

∂

∂w
[y′′(x,w)].

Let us denote

z′′(x,w) =
∂

∂w
[y′′(x,w)],
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Thus IVP given by Eq. (2.2.10) becomes

z′′(x,w) = gyz(x,w) + gy′z
′(x,w), a ≤ x ≤ b, z(a,w) = 0, z′(a,w) = 1. (2.2.11)

Using the information from z(x,w) we can update wk as follows

wk = wk−1 −
y(b, wk−1)− α2

z(b, wk−1)
.

Algorithm:

Thus the shooting method for non-linear BVP consists of following steps

y′′ = g(x, y, y′), a ≤ x ≤ b, y(a) = α1, y(b) = α2.

Step 1:

Compute

w0 =
α2 − α1

b− a
.

Step 2:

For k ≥ 1, Solve the system of two IVPs for y(x) and z(x)

y′′ = g(x, y, y′), a ≤ x ≤ b, y(a) = α1, y
′(a) = wk−1,

z′′(x,w) = gyz(x,w) + gy′z
′(x,w), a ≤ x ≤ b, z(a,wk−1) = 0, z′(a,wk−1) = 1.

Step 3:

Update

wk = wk−1 −
y(b, wk−1)− α2

z(b, wk−1)
.

For a given ϵ , terminate the algorithm if |y(b, wk−1)− α2| < ϵ.
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Example:

Solve the BVP given by

y′′ =
1

8
(2x3 + 32− yy′), 1 ≤ x ≤ 3, y(1) = 17, y(3) =

43

3
. (2.2.12)

Here

g(x, y, y′) =
1

8
(2x3 + 32− yy′),

gy = −y′, gy′ = −y.

Solve system of two 2nd order IVPs given by

y′′ =
1

8
(2x3 + 32− yy′), 1 ≤ x ≤ 3, y(1) = 17, y′(1) = wk,

z′′ = gyz + gy′z
′ = −1

8
(y′z + yz′), 1 ≤ x ≤ 3, z(1) = 0, z′(1) = 1.

Let v1 = y, v2 = y′, v3 = z and v4 = z′. Now solve system of four 1st order IVPs

v′1 = v2,

v′2 =
1

8
(2x3 + 32− v1v2),

v′3 = v4,

v′4 = −1

8
(v2v3 + v1v4).

with initial conditions

v1(1) = 17, v2(1) = wk, v3(1) = 0, v4(1) = 1.

We use MATLAB function ode45 to solve above system of IVPs. The graph of numerical

solution and exact solution of BVP is shown in following Fig.
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Figure 2.3: Numerical solution and exact solution of BVP

2.3 Solving boundary value problems in MATLAB with bvp4c

The MATLAB function bvp4c is a BVP solver used to solve two point boundary value prob-

lems [12]. It requires introduction of new variables to convert differential equation into a

system of first order ODEs of the form

w′ = g(x,w), a ≤ x ≤ b,

subject to boundary conditions

h(w(a), w(b)) = 0,

It also solves the problems involving an unknown parameter q.

w′ = g(x,w, q), a ≤ x ≤ b,

subject to boundary conditions

h(w(a), w(b), q) = 0,
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bvp4c implements collocation method to solve BVPs. The approximate solution W (x) is

continuous cubic polynomial on each subinterval of a mesh a = x0 < x1 < x2 < ..... < xN = b

that satisfies the boundary conditions and (collocates) satisfies the differential equation at

mid point and both ends of each subinterval

W ′(xn) = g(xn,W (xn)),

W ′(
(xn + xn+1)

2
) = g(

(xn + xn+1)

2
,W (

(xn + xn+1)

2
)),

W ′(xn+1) = g(xn+1,W (xn+1)).

This results in a nonlinear system of algebraic equations for coefficients defining W (x). This

system is solved iteratively by linearization. The basic method of bvp4c is Simpsons method.

After we compute W (x) on a mesh then it can be evaluated at any point of the mesh by

using bvpval function. The collocation at end points of each subinterval and continuity of

W (x) implies that W (x) has continuous derivative also on [a, b]. The residual r(x), for such

an approximation is defined by

r(x) =W ′(x)− g(x,W (x)),

It says that W (x) is exact solution of ODEs

W ′(x) = g(x,W (x))) + r(x).

Also h(W (a),W (b)) is residual in boundary conditions. bvp4c also controls size of residuals.

For uniformly small residuals, W (x) is good solution rather exact solution close to the one

supplied to BVP solver.
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Chapter 3

Approximate similarity solutions of
nonlinear PDEs

A method to solve PDEs via similarity method mostly leads to reduction to ODEs which

are not easily integrable in terms of known functions. In such situations we solve reduced

ODEs numerically. However there is no systematic approach to use this numerical solution

to find solution of the original PDE. In this chapter we describe a practical procedure to deal

with such situations and apply it to different cases of IBVP of unsteady gas flow through

semi-infinite porous medium and nonlinear diffusion equation.

The modeling of many physical processes like chemical kinetics, diffusion, wave mechanics,

fluid mechanics and general transport problems leads to such nonlinear PDEs whose analytic

solution is hard to find. Thus the approach of reduction of PDEs to ODEs is quite important

and helps in understanding many physical processes. A powerful technique to analyze such

nonlinear PDEs and their reduction to ODEs is given by Lie symmetry method also called

similarity method. The similarity method makes use of natural symmetries in a PDE to

determine similarity variables which give rise to reducion to ODE. A detailed review of this

technique is given in chapter one.

There are many notable contributions in application of similarity method to IBVPs. Success

of this method relies upon success of solving the reduced ODEs. In many cases such ODEs

are not easily integrable thus it demands solving them numerically. There is lack of practical

approaches to utilize these numerical solutions to obtain solution of original PDE. Due to

this restriction the method has not been utilized in great deal. The aim of this work is to
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provide a practical way of dealing with such situations.

3.1 Description of the method:

The main idea of our method is to find an approximation of the solution of the reduced

ODE so that it can be used to generate approximate solution of the original PDE via inverse

similarity transformation. This approximate solution of PDE has more advantages over

numerical solution as it displays variables and parameters of the problem, thus it requires

less processing time and it can be more useful in real time applications.

The process consists of following steps:

Step 1:

Reduce IBVP of PDE to BVP of ODE by applying similarity transformations.

Step 2:

Find numerical solution of reduced BVP.

Step 3:

Obtain an initial guess for approximate solution of BVP of ODE.

Step 4:

Improve initial guess to get approximate solution upto desired level of accuracy.

Step 5:

Use inverse similarity transform to get approximate solution of IBVP of PDE.

In following subsections we will demonstrate our method by giving some examples.
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3.2 Unsteady gas flow through semi-infinite porous medium

using transformation z = x√
t
(B4 )

1
2 , u(z) = α−1(1− (q(x, t))2)

Consider a problem of unsteady gas flow through semi-infinite porous medium [13–15], ini-

tially that was filled with gas at uniform pressure q0 > 0 at time t = 0. At the outflow

face pressure is suddenly reduced from q0 to q1 > 0 and is thereafter maintained at q1. The

nonlinear partial differntial equation that describe above phenomenon is

∇2(q2) = 2B
∂q

∂t
,

where B is contant given by properties of the medium. In case of one dimensional medium

extending from x = 0 to x = ∞ the above equation reduces to

∂

∂x
(q
∂q

∂x
) = B

∂q

∂t
,

with

q(x, 0) = q0, q(0, t) = q1 < q0, q(∞, t) = q0.

Without loss of generality we assume q0 = 1. Thus IBVP under study is

∂

∂x
(q
∂q

∂x
) = B

∂q

∂t
, (3.2.1)

with initial and boundary conditions given below

q(x, 0) = 1, 0 < x <∞ (3.2.2)

q(0, t) = q1(< 1), 0 ≤ t <∞ (3.2.3)

q(∞, t) = 1. 0 < x <∞ (3.2.4)

First of all we apply Lie symmetry method to above IBVP to obtain a one-parameter group

of transformations that leaves the problem invariant and then we use these transformations

to obtain similarity reductions.

Applying 2nd extension of generator H and Eq. (1.2.4) to above PDE (3.2.1), we get

−Bη1 + ηqxx + η22q + 2η2qx = 0.
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According to algorithm we put values of η1, η2 and η22, then we equate coefficients of deriva-

tives of q to zero. Thus we get following system of equations

−Bηt = 0, (3.2.5)

−Bηq +Bτt +Bηq − 2Bξx = 0, (3.2.6)

2ηx +Bξt = 0, (3.2.7)

Bτq = 0, (3.2.8)

Bξq − 2τx = 0, (3.2.9)

η = 0, (3.2.10)

ηxx = 0, (3.2.11)

2ηxq − ξxx = 0, (3.2.12)

−τxx = 0, (3.2.13)

−2τx = 0, (3.2.14)

ηqq − 2ξxq = 0, (3.2.15)

−2τxq = 0, (3.2.16)

−ξqq = 0, (3.2.17)

−τqq = 0, (3.2.18)

−3ξq = 0, (3.2.19)

−τq = 0, (3.2.20)

−2τq = 0, (3.2.21)

2(ηq − ξx)− ηq + 2ξx = 0, (3.2.22)

−2ξq = 0, (3.2.23)

−2τq = 0. (3.2.24)

Solving above system we get

ξ = ax+ b, τ = 2at+ c, η = 0.
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Taking one of the constants to be one and remaining to be zero we get all the symmetries as

follows.

H1 =
∂

∂t
, H2 =

∂

∂x
, H3 = 2t

∂

∂t
+ x

∂

∂x
. (3.2.25)

Now we consider general symmetry operator as follows

H = c1H1 + c2H2 + c3H3,

and look for the operator which preserve boundary and boundary conditions. The invariance

of boundaries x = 0, t = 0 or equivalently we say

[H(x− 0)]x=0 = 0,

or

(c2 · 1 + x · c3)|x=0 = 0, ⇒ c2 = 0.

Also

[H(t− 0)]t=0 = 0,

or

(c1 · 1 + 2t · c3)|t=0 = 0, ⇒ c1 = 0.

Also the invariance of initial and boundary conditions i.e.

[H(q − 1)]t=0 = 0,

[H(q − q1)]x=0 = 0,

implies that under symmetry given below, the IBVP is invariant

H = 2t
∂

∂t
+ x

∂

∂x
. (3.2.26)

Here we choose c3 = 1.

Now solving
dt

2t
=
dx

x
=
dq

0
.

Thus
dx

x
=
dt

2t
, ⇒ z =

x2

t
.
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and
dq

0
=
dx

x
, ⇒ q = v.

Thus reduction variables will be v = u(z). So we have

z(x, t) =
x2

t
, u(z) = q. (3.2.27)

Applying following similarity transformation [13,14] to IBVP (3.2.1)

z =
x√
t
(
B

4
)
1
2 , u(z) = α−1(1− (q(x, t))2), (3.2.28)

with α = 1− q21.

From Eq. (3.2.28) we can write

q =
√
1− αu. (3.2.29)

Again from Eq. (3.2.28)

z =
x√
t
(
B

4
)
1
2 (3.2.30)

Differentiating Eq. (3.2.30) partially w.r.t x and t respectively, we have

∂z

∂x
=

1√
t
(
B

4
)
1
2 , (3.2.31)

∂z

∂t
=

−x
2(t)

3
2

(
B

4
)
1
2 . (3.2.32)

Now differentiating Eq. (3.2.29) partially w.r.t x we have

∂q

∂x
=

1

2
√
1− αu

∂u

∂x
,

or
∂q

∂x
=

1

2
√
1− αu

du

dz

∂z

∂x
. (3.2.33)

Multiplying Eq. (3.2.29) with Eq. (3.2.33) we get

q
∂q

∂x
=

√
1− αu

2
√
1− αu

(
1√
t
(
B

4
)
1
2 )
du

dz
, (3.2.34)

Now differentiating Eq. (3.2.34) partially w.r.t x we get

∂

∂x
(q
∂q

∂x
) =

1

2
√
t

√
B

4

d2u

dz2
∂z

∂x
. (3.2.35)
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Using Eq. (3.2.31) in Eq. (3.2.35) we get

∂

∂x
(q
∂q

∂x
) =

1

2
√
t

√
B

4

d2u

dz2
(
1√
t
(
B

4
)
1
2 ),

or
∂

∂x
(q
∂q

∂x
) =

B

8t

d2u

dz2
. (3.2.36)

Again differentiating Eq. (3.2.29) partially w.r.t t we get

∂q

∂t
=

1

2
√
1− αu

∂u

∂t
,

or
∂q

∂t
=

1

2
√
1− αu

du

dz

∂z

∂t
,

or
∂q

∂t
=

1

2
√
1− αu

(
−x
2(t)

3
2

(
B

4
)
1
2 )
du

dz
. (3.2.37)

Substitute (3.2.36) and (3.2.37) in (3.2.1) we get

d2u

dz2
= (

−8xt

4(t)
3
2
√
1− αu

√
B

4
)
du

dz
,

or
d2u

dz2
=

−2√
1− αu

(
x√
t

√
B

4
)
du

dz
,

or

u′′ +
2z√

1− αu
u′ = 0.

And the boundary conditions are

When t = 0, q(x, 0) = 1 implies z → ∞, u(z → ∞) = α−1(1− 1) = 0.

When x→ ∞, q(∞, t) = 1 implies z → ∞, u(z → ∞) = α−1(1− 1) = 0.

When x = 0, q(0, t) = q1 implies z = 0, u(z = 0) = α−1(1− q21) = 1.

Thus the similarity transformation reduces IBVP given by Eq. (3.2.1) to Eq. (3.2.4) to BVP

of ODE given below

u′′ +
2z√

1− αu
u′ = 0, (3.2.38)

u(z = 0) = 1, u(z → ∞) = 0. (3.2.39)
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Next step is to find the numerical solution of reduced BVP (3.2.38) and (3.2.39). In this

example we have taken lower solution of BVP (3.2.38) and (3.2.39) as our initial guess. As

shown in calculations below, lower solution in just few iterations leads to an approximate

solution. Thus it is a good initial guess. Thus the initial guess for all cases discussed below

is taken to be

initial approximation = ulower = 1− erf( z√
q1
),

where erf denotes error function.

We adopt following procedure to improve our initial approximation. The lower solution has

form

1− erf(cz), (3.2.40)

with c = c0 = 1√
q1

gives us initial approximation uc0 i.e the lower solution. Numerical

simulations tells us that as we decrease value of c from c0 by a small decrement, lower

solution moves towards the numerical solution.

Given a function W (z) and ϵ > 0, we say that g(z) lies within ϵ−band of W (z) on interval J

if

|g(z)−W (z)| < ϵ. ∀z ∈ J

For numbers ϵ > 0, δi > 0 and a suitable value n, use sequence of values

c = ci = c0 − δi, (i = 1, 2, ..., n)

in equation (3.2.40) which generates a sequence of curves uci which approach uniformly

towards the numerical solution, finally results in the curve

uapprox = ucn ,

lying in an ϵ−band of numerical solution unum. We choose ϵ according to our desired accu-

racy and value of cn is approximated by numerical simulations.

In following subsection we implement above procedure and find approximate similarity solu-

tion for some cases of values of q1.
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3.2.1 Approximate similarity solution of IBVP for q1 = 0.9

Here in this case c = 1√
0.9

and the lower solution of BVP of ODE becomes

ulower = 1− erf(cz) ≈ 1− erf(1.05409z),

which is our initial approximation uc0 . To approximate solution of BVP of ODE, we first

solve BVP (3.2.38), (3.2.39) numerically by applying nonlinear Shooting method defined in

Section (2.2.2). We call this solution unum. The problem is also solved numerically with

MATLAB function bvp4c. The graph is not shown here. We get same approximate solution

in both cases. Therefore all the rest of problems in this dissertation are solved only by using

bvp4c. The graph of numerical solution and initial guess i.e the lower solution is shown in

Fig. (3.1)
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Figure 3.1: Graphs of unum and ulower for case q1 = 0.9.
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Max|unum − ulower| = 0.0196.

Error(z) = unum(z)− ulower(z),

is shown in following Fig (3.2).
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Figure 3.2: Error between unum and ulower.

By applying the procedure explained in previous subsection we improve the approximation

uci uniformly to get an approximate solution of ODE given below

uapprox(z) = 1− erf(1.0122z),

The graph of numerical solution unum(z), initial approximation ulower(z) and the approximate

solution uapprox(z) are shown in Fig. (3.3). The dotted curve is taken from a sequence of

curves uci approaching uniformly towards the numerical solution.
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Figure 3.3: Graph of unum(z), ulower(z) and uapprox(z).

Max|unum − uapprox| = 0.0014.

Error(z) = unum(z)− uapprox(z),

is given in Fig. (3.4).
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Figure 3.4: The solid line represents error between lower solution and numer-

ical solution whereas dotted line gives error between approximate solution and

numerical solution.
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When we repeat above procedure by using upper solution

uupper = 1− erf(z),

we get same approximate solution given by

uapprox(z) = 1− erf(1.0122z).

In this case the graph of numerical solution unum(z), initial approximation uupper(z) and the

approximate solution uapprox(z) are shown in Fig. (3.5).
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Figure 3.5: Graphs of unum, uupper and uapprox for case q1 = 0.9.

Finally by using similarity variables given by Eq. (3.2.28) we find the approximate solution

of IBVP (3.2.1)-(3.2.4) given as

q(x, t) =

√
0.81 + 0.19erf(1.0120

x√
t
(
B

4
)
1
2 ).
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3.2.2 Approximate similarity solution of IBVP for q1 = 0.3

Here we have c = 1√
0.3

and the lower solution becomes

ulower = 1− erf(cz) ≈ 1− erf(1.852574z),

which is taken as initial approximation uc0 . The graph of numerical solution and initial guess

i.e the lower solution is shown in Fig. (3.6)
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Figure 3.6: Graphs of unum and ulower for case q1 = 0.3.

Max|unum − ulower| = 0.2499.

Error(z) = unum(z)− ulower(z),

is shown in following Fig.
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Figure 3.7: Error between unum and ulower.

Approximate solution of BVP of ODE is given below

uapprox(z) = 1− erf(1.0800z),

The graph of unum(z), ulower(z) and uapprox(z) for case q1 = 0.3 are shown in Fig. (3.8)
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Figure 3.8: Graphs of unum, ulower and uapprox for case q1 = 0.3.
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Max|unum − uapprox| = 0.0105.

Error(z) = unum(z)− uapprox(z),

is given in Fig. (3.9).
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Figure 3.9: The solid line represents error between lower solution and numer-

ical solution whereas dotted line gives error between approximate solution and

numerical solution.

When we use upper solution

uupper = 1− erf(z),

we get same approximate solution given by

uapprox(z) = 1− erf(1.0800z).

In this case the graph of uupper(z), unum(z) and uapprox(z) are shown in Fig. (3.10).
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Figure 3.10: Graphs of unum, uupper and uapprox for case q1 = 0.3.

The approximate solution of IBVP (3.2.1)-(3.2.4) is given below

q(x, t) =

√
0.09 + 0.91erf(1.0800

x√
t
(
B

4
)
1
2 ).

3.2.3 Approximate similarity solution of IBVP for q1 = 0.1

Here c = 1√
0.1

. Thus the lower solution becomes

ulower = 1− erf(cz) ≈ 1− erf(3.162277z),

which is taken as initial approximation uc0 . The graph of numerical solution and initial guess

i.e the lower solution is shown in Fig. (3.11)
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Figure 3.11: Graphs of unum and ulower for case q1 = 0.1.

Max|unum − ulower| = 0.4601.

Error(z) = unum(z)− ulower(z),

is shown in following Fig.
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Figure 3.12: Error between unum and ulower.
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The approximate solution is given below

uapprox(z) = 1− erf(1.0920z),

The graph of unum(z), ulower(z) and uapprox(z) are shown in Fig. (3.13). The dotted curves

represents some intermediate curves involved in simulations of the uniform approximation

process from ulower to uapprox.
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Figure 3.13: Graphs of unum, ulower and uapprox for case q1 = 0.1.

Max|unum − uapprox| = 0.0123.

Error(z) = unum(z)− uapprox(z),

is shown in Fig. (3.14).
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Figure 3.14: The solid line represents error between lower solution and numer-

ical solution whereas dotted line gives error between approximate solution and

numerical solution.

Repeating above procedure by using upper solution

uupper = 1− erf(z),

gives us same approximate solution i.e

uapprox(z) = 1− erf(1.0920z).

In this case unum(z), uupper(z) and uapprox(z) are shown in Fig. (3.15).
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Figure 3.15: Graphs of unum, uupper and uapprox for case q1 = 0.1.

Finally for q1 = 0.1 by using similarity variables we get the approximate solution of IBVP

(3.2.1)-(3.2.4) given below

q(x, t) =

√
0.01 + 0.99erf(1.0920

x√
t
(
B

4
)
1
2 ).

3.3 Nonlinear diffusion equation

Consider nonlinear diffusion equation [16]

u
∂u

∂t
=
∂2u

∂x2
, (3.3.1)

which occurs in problem of thermal expulsion of fluid from slender, long heated tube. The

quantity u gives us the flow velocity which is induced in fluid by heating the tube wall. The

initial and boundary conditions are

ux(0, t) = −b, t > 0 (3.3.2)

u(x, 0) = 0, x > 0 (3.3.3)

u(∞, t) = 0, t > 0 (3.3.4)
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where constant b is related to heating of tube started at t = 0. We assume the PDE is

invariant to one-parameter family of groups given by

u′ = γau,

t′ = γbt, 0 < γ <∞ (3.3.5)

x′ = γx,

subject to linear constraint

a− b = −2.

The invariant relation which connects u, x and t is given by

u = t
a
bw(

x

t
1
b

).

The boundary condition (3.3.2) requires that a = 1, so b = 3. Thus we have

u = t
1
3w(

x
√
3t

1
3

). (3.3.6)

The factor
√
3 is introduced for our convenience. Apply following tranformation to IBVP

(3.3.1)-(3.3.4)

z =
x

√
3t

1
3

, w(z) =
u

t
1
3

. (3.3.7)

Now consider

u = t
1
3w(z). (3.3.8)

Differentiating Eq. (3.3.8) partially w.r.t t we get

∂u

∂t
=

1

3
t
−2
3 w(z)− x

3
√
3t
w′(z). (3.3.9)

Again differentiating Eq. (3.3.8) twice w.r.t x we get

∂2u

∂x2
=

1

3t
1
3

w′′(z). (3.3.10)

Now substituting Eq. (3.3.9) and Eq. (3.3.10) in Eq. (3.3.1) we get an ODE given below

w′′(z) = w(z)(w(z)− zw′(z)),
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with boundary conditions

w′(0) = −
√
3b, w(∞) = 0.

Taking b = 1 in above boundary condition. Thus we finally have boundary value problem

given by

w′′ = w(w − zw′), (3.3.11)

with boundary conditions

w′(0) = −
√
3, w(∞) = 0. (3.3.12)

We need to find the approximate solution wapprox. Following the steps mentioned in section

(3.1) first of all we will find numerical solution wnum of above BVP. By using MATLAB

function bvp4c we get the numerical solution shown in Fig. (3.16).
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Figure 3.16: Graph of wnum.

When we look at the curve of the numerical solution, the highest value it takes on w-axis

is 1.5112 and the curve is similar to the graph of an exponential function so our approximate

solution can be of the form of 1.5112e−az. The solution must also satisfy the boundary

conditions as well so if we take

w(z) = 1.5112e−az.
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Differentiating w.r.t z we get

w′(z) = −1.5112ae−az,

and

w′(0) = −1.5112a = −
√
3.

This gives us the value of a given below

a =

√
3

1.5112
.

Thus we take approximate function as

f(z) = 1.5112e
−
√

3z
1.5112 . (3.3.13)

Fig. (3.17) shows graph of wnum and f(z).
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Figure 3.17: Graph of wnum and f(z).

Next we calculate maximum error which is calculated to be 0.1073. Fig. (3.18) gives the

error graph.

47



0 5 10 15 20 25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

z

Figure 3.18: Error between wnum and f(z).

In order to reduce the maximum error we find the function g(z) which approximate the

error graph and then add up this function to f(z) to get approximate solution which will

reduce the error. When we look at the error curve it is similar to the graph of function of

the form g(z) = azbecz. In order to find values of a, b and c we take three points on curve i.e

(z1, w1), (z2, w2) and (z3, w3). Thus we get following three equations

w1 = azb1e
cz1 , (3.3.14)

w2 = azb2e
cz2 , (3.3.15)

w3 = azb3e
cz3 . (3.3.16)

Dividing Eq. (3.3.14) by Eq. (3.3.15) and then taking log

ln(
w1

w2
) = b ln(

z1
z2

) + c(z1 − z2). (3.3.17)

Similarly dividing Eq. (3.3.14) by Eq. (3.3.16) and then taking log we get

ln(
w1

w3
) = b ln(

z1
z3

) + c(z1 − z3). (3.3.18)

Multiplying Eq. (3.3.17) by (z1 − z3) and Eq. (3.3.18) by (z1 − z3) and subtracting the two
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equations we get

b((z1 − z3) ln(
z1
z2

)− (z1 − z2) ln(
z1
z3

)) = (z1 − z3) ln(
w1

w2
)− (z1 − z2) ln(

w1

w3
),

or

b =
(z1 − z3) ln(

w1
w2

)− (z1 − z2) ln(
w1
w3

)

(z1 − z3) ln(
z1
z2
)− (z1 − z2) ln(

z1
z3
)
.

Now from Eq. (3.3.17)

c =
ln(w1

w2
)− b ln( z1z2 )

z1 − z2
.

From Eq. (3.3.14)

a =
w1

zb1e
cz1
.

Now taking points as follows

z1 = 0.8794, z2 = 2.1357, z3 = 7.5377,

w1 = 0.0596, w2 = 0.1073, w3 = 0.0304.

Substituting values we get

a = 0.12009, b = 1.4836, c = −0.57982.

Thus

g(z) = 0.12009z1.4836e−0.57982z.

The approximate solution = wapprox = f(z) + g(z).

Now the maximum error is reduced to 0.0148. Fig. (3.19) shows error graph and g(z). Fig.

(3.20) represents graph of wnum, f(z) and wapprox.
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Figure 3.19: Graph of error and g(z).
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Figure 3.20: Graph of wnum, f(z) and wapprox.

Fig. (3.21) shows graph of error between numerical solution and initial guess and error

between numerical solution and approximate solution.

50



0 5 10 15 20 25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

z

 

 
Difference between Initial guess
and Numerical solution
Difference between Approximate solution
 and Numerical solution

Figure 3.21: Solid line shows graph of error between numerical solution and

initial guess and dotted line represents error between numerical solution and

approximate solution.

Finally by using similarity variables given by Eq. (3.3.7) we find the approximate solution

of IBVP (3.3.1)-(3.3.4) given as

u(x, t) = t
1
3 (1.5112e

− x

1.5112t
1
3 + 0.12009(

x
√
3t

1
3

)1.4836e
−0.57982 x

√
3t

1
3 ).

3.4 Unsteady gas flow through semi-infinite porous medium

using transformation z = x√
t
, w(z) = q

Consider again IBVP (3.2.1)-(3.2.4) of unsteady gas flow through semi-infinite porous medium.

Now we apply a different similarity transformation and observe how the result varies. Ap-

plying following transformation

z =
x√
t
, (3.4.1)

w(z) = q. (3.4.2)
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Differentiating Eq. (3.4.2) partially w.r.t x and simplify to get

∂q

∂x
= w′(

1√
t
). (3.4.3)

Multiplying Eq. (3.4.3) with (3.4.3) we get

q
∂q

∂x
=
ww′
√
t
. (3.4.4)

Differentiating Eq. (3.4.4) partially w.r.t x

∂

∂x
(q
∂q

∂x
) =

1

t
((w′)2 + ww′′). (3.4.5)

Again differentiating Eq. (3.4.2) partially w.r.t t and simplifying we get

∂q

∂t
=

−x
2t

3
2

dw

dz
. (3.4.6)

Substituting Eq. (3.4.5) and Eq. (3.4.6) in Eq. (3.2.1) and solving we get an ODE given

below

ww′′ + (w′)2 +
B

2
zw′ = 0, (3.4.7)

With boundary conditions

w(0) = q1, w(∞) = 1.

Taking q1 = 0.9 and B = 1. The boundary condition becomes

w(0) = 0.9, w(∞) = 1. (3.4.8)

Our aim is to find the approximate solution wapprox. First of all we will find numerical

solution wnum by using bvp4c shown in Fig. (3.22)
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Figure 3.22: Graph of wnum.

The curve of the numerical solution is similar to that of an exponential function so we

can take an exponential function as our approximation. Since the approximate function must

also satisfy the boundary conditions so we take

f(z) = 1− (1− 0.9) exp(−bz).

We take a point on curve of numerical solution in order to find b. Taking z = 1.5015 and

w = 0.9728 gives

f(z) = 1− (1− 0.9) exp(−0.8671z).

Fig. (3.23) shows graph of wnum and f(z). The maximum error is calculated to be 0.0060.

Fig. (3.24) gives the error curve.
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Figure 3.23: Graph of wnum and f(z).
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Figure 3.24: Error between wnum and f(z).

Our next step is to find a function g(z) which approximates the error curve and then add

up this function to f(z) to get the approximate solution which will reduce error and give us
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better approximation. The error curve is similar to graph of function of the form

g(z) = az(z − 1.5015) exp(bz).

In order to find values of a and b, we take two points (z1, w1) and (z2, w2) on the error curve

and solve following system of two equations.

w1 = az1(z1 − 1.5015) exp(bz1),

w2 = az2(z2 − 1.5015) exp(bz2).

Solving above system we get

b =
ln(w1

w2
)− ln( z1(z1−1.5015)

z2(z2−1.5015))

z1 − z2
.

a =
w1

z1(z1 − 1.5015) exp(bz1)
.

Now take z1 = 0.4805, z2 = 2.7528, w1 = −0.0060 and w2 = 0.0044.

Substituting values we get a = 0.0197 and b = −0.9942. Thus

g(z) = 0.0197z(z − 1.5015) exp(−0.9942z)

The approximate solution = wapprox = f(z) + g(z)

Now the maximum error is reduced to 0.0012. Fig. (3.25) shows graph of error and g(z).

Fig. (3.26) shows curves of numerical solution, f(z) and the approximate solution.
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Figure 3.25: Graph of error and g(z).
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Figure 3.26: Graph of wnum, f(z) and wapprox.
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Fig. (3.27) shows graph of error between numerical solution and initial guess and error

between numerical solution and approximate solution.
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Figure 3.27: Solid line shows graph of error between numerical solution and

initial guess and dotted line represents error between numerical solution and

approximate solution.

Finally by using similarity variables given by Eq. (3.4.1) we find the approximate solution of

IBVP (3.2.1)-(3.2.4) given as

q(x, t) = 1− (1− 0.9) exp(
−0.8671x√

t
) +

0.0197x√
t

(
x√
t
− 1.5015) exp(

−0.9942x√
t

).
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Chapter 4

Conclusion

In this dissertation a practical method is presented to obtain approximate solution, in form

of function, for a class of PDEs which can be reduced through similarity variables to an ODE

but that reduced ODE cannot be easily integrable in terms of known functions.

In chapter one, we have given a brief review of Symmetry Analysis. In the beginning of

chapter we have given some basic definitions, later an algorithm of finding Lie symmetries

of a PDE is provided. At the end of the chapter we have studied the symmetry analysis of

BVP of PDE.

Chapter two is devoted to numerical techniques of BVPs of ODEs. There are many methods

to solve BVPs numerically. We have used Shooting Method and MATLAB in built function

bvp4c in this dissertation. In chapter two we have provided a brief review of these two meth-

ods.

In chapter three, we have given a practical way to find approximate solution of nonlinear

PDEs. The method involves five steps. First step is to reduce IBVP of PDE to BVP of ODE

via similarity variables. Second and third step involves finding numerical solution of reduced

ODE and use this to obtain an initial guess for approximate solution. In step four the initial

guess is improved upto desired level of accuracy to obtain approximate solution of BVP of

ODE. Finally in fifth step with the help of this approximate solution we find the approximate
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solution of original PDE by using the similarity variables.

Later in this chapter we have given three examples to demonstrate our method. In ex-

ample one we consider the different cases of IBVP of unsteady flow of gas through porous,

semi infinite medium. In this example we take lower and upper solutions as our initial. The

combination of numerical solution, simulations and initial approximations are utilized to get

approximate solution of the curve u(z) which generated readily, via similarity transform, the

approximate solution of surface q(x, t). The idea we present here is to obtain approximate

solution of PDE, i.e. approximation of the surface q(x, t) practically involve approximation of

the curve u(z) which is easy to deal with as compared to approximation of surface q(x, t) itself.

In second example we consider nonlinear diffusion equation. Here we do not have lower

or upper solution so we take a different approach to obtain the initial guess. We first cal-

culate the numerical solution and then by looking at the curve of the numerical solution we

guessed a function, considering in mind the boundary conditions, which perfectly fits the

curve of the numerical solution. We take this as our initial guess, then we calculate error.

In order to improve our initial approximation we guessed the function which fits our error

curve and then add up this function to our initial guess to obtain approximate solution. The

error in this process reduces significantly from 0.1073 to 0.0148. In the end we obtain the

approximate solution of PDE in function form by applying similarity transform.

In third example we consider the problem one again and this time we apply different trans-

formation to see how the things change. Again in this problem we follow the same steps as

we already done in example two and reduced the error significantly. It is also suggested that

the error may be reduced by fitting an approximate function in the Least Square sense.

The approximate solution of PDE obtained through this method has more advantage over

numerical solution. Since it displays parameters and variables of problem, so it requires less

time for processing and is more useful in real time problems.
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For further work it will be quite interesting to find the numerical solution of PDE and

compare this with the approximate solution obtained through this method to see how better

our approximation is.
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