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Abstract

In this dissertation a review of [1] and [2] is presented. In particular the propagation

of plane waves in an anisotropic elastic medium possessing monoclinic and transversly

isotropic symmetry are discussed, respectively. The phase velocities for the quasai

longitudinal and transverse waves propagation in the plane of elastic symmetry are

given [1]. It is studied that in this case that there do not exist any purely longitudinal

and transverse waves. Pure longitudinal and transverse waves may be found in some

specific and ideal directions and conditions. The precise form of reflection coefficients

are obtained that are used to prove the mentioned statement and also to proved that

in monoclinic medium, the angle of incidence is not equal to angle of reflection. The

problem of propagation for the guided waves in a fluid loaded transversely isotropic

cylinder is discussed [2]. Graphs are presented for both the problem for illustration

purposes.

v



Contents

1 Introduction 1

2 Preliminaries 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The basics of elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 The concept of continuum . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Representation of physical properties by tensor . . . . . . . . . . . . . . 4

2.5 Strain, stress and their relationship . . . . . . . . . . . . . . . . . . . . 4

2.6 Transversely isotropic material . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 Monoclinic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Basics of monoclinic system . . . . . . . . . . . . . . . . . . . . . . . . 8

2.9 Propagation equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.10 Wave propagation in solids . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.11 Longitudinal and transverse wave motion . . . . . . . . . . . . . . . . . 11

2.12 Longitudinal waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.13 Transverse waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.14 Rayleigh surface waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.15 Hook’s law in cylindrical coordinates . . . . . . . . . . . . . . . . . . . 12

2.16 Buchwald representation in cylindrical coordinates . . . . . . . . . . . . 13

2.17 Laplacian operator in cylindrical coordinates . . . . . . . . . . . . . . . 14

vi



3 Reflection of longitudinal and transverse waves at surface of a mono-

clinic medium 18

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Reflection of longitudinal and transverse waves . . . . . . . . . . . . . . 21

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Guided wave in an isotropic elastic solid with fluid interaction 35

4.1 Guided waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Transverse isotropic materials . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Derivation through the displacement equation . . . . . . . . . . . . . . 36

4.5 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 Dispersion relation of the free cylinder . . . . . . . . . . . . . . 42

4.6 Secular equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



Chapter 1

Introduction

Waves are disturbance in a medium which carry information from one place to another

place. Being carriers of information, waves find primary importance in our daily life.

Sound, heat and light are all the type of waves and no one can ignore the importance of

the waves for all of us. All the wireless communication uses electromagnetic waves for

transmitting and receiving information. Electromagnetic waves are not only fastest but

also the quick and reliable source of sending the information from one place to other.

Heat comes from sun to earth in the form of electromagnetic radiation, thus enabling

life to sustain on earth. Radars and ultrasonics use sound waves for communications.

Even we can listen to a person when the sound waves from his/her mouth reaches to

our ears. Waves are indeed very important for nature to sustain its periodicity.

The study of guided waves propagation can be tracked back to early in 1920 mainly

inspired by the field of seismology. Since then there has been an increase effort on

the analytical and critical study of guided waves propagation in cylindrical structures.

It was early 1990s that guided waves were considered as a practical method for the

non-destructive testing for engineering structure. Today guided waves are working and

functioning in the field of oil gas and chemical industries [3]. For compressible, under-

ground system and navigation in the sea or testing the situations, Guided waves was

first developed in Joint Industry Project (JIP) at Russia in 1920 with funding from

many oil and power companies is US, Japan and Korea. The wave property in the

pipe is the same once the ultrasonics waves is generating in the pipe. Guided waves

testing has many capabilities and limitations in the field applications. Its success de-
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pends highly on the support from the manufacturer or selling company and capability

of guided waves system. The underground construction companies took a huge contri-

bution in advertising the guided waves system which also has many characteristics [3].

Using the previous other many experiments and method the guided waves are proved

best method for solving and testing many hidden facts like underground situation and

laying the pipes that are several kilometres long. With the help of guided waves, one

can detect the internal and external metal loss. Likewise on the other hand the guided

waves system has some drawbacks that in this system, the interpretation of data is

totally operator dependent and difficult to find small pitting defects [4].

There are many types of waves like longitudinal, transverse, Rayleigh and Love waves

which travel in a medium and their propagation in mediums like monoclinic, hexago-

nal and many others, depends on the material properties. Monoclinic medium is one

of all the crystallographic structure in which the waves propagate with a certain be-

haviour due to the symmtry of the material. In the paper by Singh and Khurana [1]

discussed the reflection and the propagation of waves along the surface of a monoclinic

medium and derive the expression that is the correction of the previous result done by

the author Chattopadhyay and Choudhury [1] in (1995). Basic concept of continuum

mechanics are used to derive explicit expression of the reflection coefficients for quasi

P and SV waves.

Chapter 2 is concerned with the basic definitions and concepts of the theory of elas-

ticity. This chapter also contains the basic concept related to crystall systems and the

details of mathematics required throughout the thesis.

Chapter 3 contains the review of citeSingh propagation of waves in a monoclinic

medium. The mathematical expressions and various approaches are used in this setting

to study waves propagating behaviour, that signifies and explain useful properties of

waves. After review the previous research work of authors and by studying the new

research work on that problem we obtain a reflection coefficients for the waves. This

will help to examine the true relation of the waves with the monoclinic medium.

Chapter 4 gives the review of [2]. Various algebric expression for both the cases of fluid

loaded cylinder and empty cylinder are presented in [2].
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we make the review of the very basics of the theory of elasticity. The

first portion is a simple review of the early development of the theory and also its

importance today. The next portion consists of the basics and compelling definition

the yet to come description in the rest of dissertation. The last part consists of a brief

introduction to the Guided and the concept of longitudinal waves.

2.2 The basics of elasticity

The dynamic theory of elasticity contain the study of wave propagation in elastic solids.

This field has gained enormous attention in the mid of 19th century. The early efforts

involved the study of a concept that light could be considered as the propagation of a

disturbance in a elastic aether. Cauchy and Poisson did a lot of work on the same idea

and their efforts hence resulted in the theory of elasticity. Further, Ostrogadsky, Green,

Lame, Stocks, Clebsch and Christoffel added their contribution in the extension of the

theory [7]. In the later year of 19th century, the theory gained huge popularity through

the work in the field by Rayleigh, Lamb and Love. Wave propagation in elastic solid has

been an active area for investigation of the earthquake phenomena and recording the

nuclear explosion. It is a significant science in the engineering applications, ultrasonics,

applied mathematics, electromagnetic theory and acoustics.

3



2.3 The concept of continuum

Although the matter comprises of the atoms, molecules etc in such a way that there

exist many gaps between them, but we assume the matter is uniformly and continuously

distributed i.e density is a continuous function of position and therefore it is meaningful

to take derivative.

2.4 Representation of physical properties by tensor

By definition, a tensor of rank r is a set of 3r components denoted by r indices which

transform as follow
A′...ijk.... = alia

m
j a

n
k ....A..lmn.., (2.1)

where aβα denotes the transformation matrix from the unprimed to primed frame of

reference and the indices i,j,k,l varries from 1–4. Formally, a matrix is used for the

tensor representation. The tensor analysis is a mathematical tool to deal with the

physical properties of materials. A physicist W. Voigt introduce the idea in the 19

century with a view to describe the strain field of the solid. When such a change of

axes is symmetry element of the crystal, the identity of physical properties in each set

if co-ordinates provides relation between the components of the tenor that describe

those physical properties, and finally reduce the number of independent components.

2.5 Strain, stress and their relationship

This section contains the idea of stress, strain and the constants that characterize

the properties of an elastic material. By definition a medium is called a flexible or

elastic medium if it go back to its preliminary state when the external forces are

eliminated. This return to the initial state is due to internal forces. When force

is applied to a material, it undergoes a change of shape or a deformation. These

measures of deformation is referred to as strain. Let the field defining the displacement

of particles be denoted by u(x, t). As a direct implication of a notion of a continuum,

the deformation of the medium can be expressed as the gradient of the displacement
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vector u(x,t). The restriction of the linearized theory the deformation is simply defined

through the strain tensor S, with components,

Sij =
1

2
(ei,j + ej,i). (2.2)

It is clear that Sij = Sji i.e S is a symmetric tensor of rank 2. External forces are

essential to produced deformation in a solid. Those forces may be exerted on the

surface, by using the mechanical contact, or inside the solid by force field. The effect

of this force field in or at the medium can be measured by a force per unit volume

(gravitational field) or by torque per unit volume (electric field in a polar crystal).

Mechanical tension, or stresses appear in the distorted solid tending to restore it to

rest state and therefore enduring the equilibrium of the medium. This stress propagates

via the bending force among atoms, the range of which few inter-atomic distances is a

totally small microscopic scale. Therefore, the medium surrounding any given volume

acts on it via boundary surface, we intend to define at a given point of a surface

perpendicular to a coordinate axis. The stress tensor Tik, in an orthonormal frame, is

mathematically given by
Tik = lim

∆ek

→ 0 lim(
∆Fi
∆ek

), (2.3)

Where ∆Fi is the i-th part of force ∆F applied on the surface element ∆ek (perpen-

dicular to k axis) by the medium in the positive direction. Tik is the i-th component of

the force applied on a unit surface perpendicular to the k-axis. It can be easily proved

that Tik = Tki. In an elastic material, there is one to one correspondence between

stress and pressure in elastic solid. It’s far recognised that the elastic behaviour of

most substances is adequately (for small deformation) by using first order term in a

Taylor expansion of the equation,

Tik(ekl) = Tik(0) + (
∂Tij
∂ekl

)ekl=0 ekl +
1

2
(

∂2Tij
∂ekl∂emn

)ekl=0 eklemn + · · · , (2.4)

or , since Tij(0) = 0, (2.4) gives Tij = cijklekl, (2.5)

Where cijkl = (
∂Tij
∂ekl

)ekl= 0. (2.6)

The coefficient cijkl, that mention the most common linear relationship between the

second rank tensor Tij and ekl, are the components of the fourth rank tensor called the
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elastic stiffness tensor, and is therefore called Hook’s law. A fourth rank tensor has

34 = 81 components. But since Tij and Skl are symmetric tensor, the elastic constants

defined by Eq (2.5) does not change under a permutation of i and j or k and l which

therefore gives,
cijkl = cjikl; cijkl = cijlk (2.7)

Hooks law (2.5) can be written in terms of displacements, after using Eq (2.2)

Tij =
1

2
cijkl

∂uk
∂xl

+
1

2
cijkl

∂ul
∂xk

, (2.8)

and since cijkl = cjikl, (2.8) gives

Tij = cijkl
∂ul
∂xk

. (2.9)

From the above equations, we are therefore left with 36 independent elastic constants

instead of 81. An ordered pair of indices (i, j) takes only six distinct values, which are

numbered from 1 to 6 in the following way

(11)↔ 1, (22)↔ 2, (33)↔ 3,

(23) = (32)↔ 4, (13) = (31)↔ 5, (12) = (21)↔ 6. (2.10)

Equation (2.10) defines the famous voigt notations and the independent elastic modulli

are thus labelled by only two indices α and β, ranging from 1 to 6 can be written as

cαβ = cijkl, (2.11)

where α↔ (ij), β ↔ (kl). The medium is elastically homogenous if the coefficient Cijkl
are constant. The material is elastically isotropic wherein there aren’t any preferred

direction in the material, and the elastic constant must be the same whatever the

orientation of the cartesian coordinate system be. The elastic isotropy means that the

steady cijkl may be expressed as

cijkl = λδijδij + µ(δikδjl + δilδjk). (2.12)

Hooks law then take the form,

Tij = λSkkδij + 2µSij. (2.13)

(2.12) and (2.13) are two elastic constant λ and µ, which are Lame elastic constants.
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2.6 Transversely isotropic material

The elements of the matrix cαβ, αβ = 1, 2, · · · 6 for transversely isotropic material

(hexagonal crystal) can be written as

cijkl = ami a
n
j a

o
ka

p
l cmnop. (2.14)

Now the hexagonal crystal has at least one diad axis and one A6 axis. If Ox3-axis is

put along the diad axis, the matrix a for the frame change is diagonal:

[a] =

−1 0 0
0 −1 0
0 0 1

 (2.15)

using (2.14) and (2.15) becomes
cijkl = ami a

n
j a

o
ka

p
l cijkl. (2.16)

This means that all coefficient with a odd index (for which ami a
n
j a

o
ka

p
l = −1) vanish.

Therefore cαβ have thirteen elastic constants, for which the set of indices includes zero,

two or four times appearence of the index 3. The crystals of trigonal, tetragonal,

hexagonal classes have only one direct or inverse axis of order greater then two. The

rotation matrix a is no more diagonal (axis points in the x3 direction).

a =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

with φ = 2π
n
6= π , (2.17)

where φ is an angle so the invariant relation (2.14) is now more tough to judge for it

involves many components at the same time. For this purpose, we have to diagonalize

matrix in (2.15), finally we cαβ take the form,

cijkl =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 (c11 − c11)/2

 . (2.18)
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2.7 Monoclinic system

The monoclinic system is one of the structural classes in which crystal solids can be

assigned. Crystals that belong to this class are referred to have three axes of unequal

lengths say, a, b, and c of which a is perpendicular to b and c, however b and c are not

perpendicular to each other.

If the atoms or group atom organizations in the solid are shown by points to points

and if they are linked, the resulting lattice consist of an orderly stacking of blocks, or

unit cells. The monoclinic unit is recognised via a single axis, known as an axis of two

fold of symmetry, approximately which the cellular can be rotated through 180 without

changing its shape and structure. Many crystals belonging to the monoclinic system

than to any other. Beta, Sulphur, Gypsum, Borax lie in the monoclinic system.

2.8 Basics of monoclinic system

We consider the homogenous anisotropic elastic medium of a monoclinic type and as

we know that monoclinic material is the sole plane of flexible direction,

the components of the fourth order elasticity tensor for a monoclinic system is

[a] =

1 0 0
0 −1 0
0 0 −1

 , (2.19)

when x1 axis is parallel to the axis of symmtry

c′ijkl = qpiqqjqrkqslcpqrs, (2.20)

where qpi is +1 or -1 if p=i, q=j, r=k, s=l. If the index 1 or 2 or 3 appear odd times in

monoclinic system then it tend to zero on choosing which plane we are dealing with.

c′ijkl = −cijkl (2.21)

For example if we are taking x2x3 plane then there is one plane x1 that is fixed and

the index 1 if appear odd times then it tends to zero in the whole monoclinic system.

c′ijkl = −(1)31cpqrs, (2.22)
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So in this way we will have the elasticity matrix of the monoclinic medium and after

solving all the 36 components of the elasticity matrix we have only 13 independent

components left in the monoclinic medium matrix. Here the matrix and notation are

given as For instance, if we calculate c15′ , we get

c′1113 = qp1qq1qr1qs3cpqrs. (2.23)

Now apply summation on r and s

c1113′ = q11q11q11q13c1111 + q11q11q31q13c1131 + q11q11q11q33c1113 + q11q11q31q33c1133, (2.24)

Using Eq 2.19 we get
c′15 = (1)(−1)c15 + 0 + 0 + 0,

c′15 = (1)(−1)c15,

2c15 = 0,

which implies that
c15 = 0. (2.25)

Similarly other components can be found.

c′ijkl =


c11 c12 c13 c14 0 0
c12 c22 c23 c24 0 0
c13 c23 c33 c34 0 0
c41 c42 c43 c44 0 0
0 0 0 0 c55 c56

0 0 0 0 c56 c66

 (2.26)

2.9 Propagation equation

The displacement of any point is considered as time independent i.e.
ui = ui(xk, t). (2.27)

The force density per unit volume of stressed material is given by

Fi =
∂Tij
∂xj

. (2.28)

Where (2.28) is the equation of motion and we ignore the effect of gravity and say that

this force gives rise to the acceleration along the i− th axis for the unit volume mass

ρ,
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ρ
∂2ui
∂t2

=
∂Tij
∂xj

. (2.29)

Here ρ is the density so making use of Hooks law the equation of motion becomes

ρ
∂2ui
∂t2

= cijkl
∂2ui
∂xj∂xk

. (2.30)

This is a set of three-second order differential equations, which govern the wave motion

in a fluid in three dimensional case. For a homogeneous, isotropic, linearly elastic body,

equation of motion (2.30) after using (2.12) and (2.13) and (2.14) can be written in

the form,
µui,jj + (λ+ µ)uj,ij = ρüi, (2.31)

when there are no internal body forces acting on the body. Similarly for transversely

isotropic material (2.30) takes the form
1

2
(c11 − c12) + uα,ππ +

1

2
(c11 + c12) + uπ,απ + c44uα,33 + (c13 − c44)uπ,απ = ρüα, (2.32)

the above Eq (2.30) has a general solution of the form

ui = f(n.x− vt)p, (2.33)

where n and p are unit vector and v has the dimensions of velocity. The unit vector n

is the direction in which wave travels with the rate v. This vector is called propagation

vector and the unit vector p shows the displacement u and is known as polarization

vector.

2.10 Wave propagation in solids

There is a great variety of elastic waves. Certainly, similar to the propagation situa-

tions, which will talk over with, amongst Rayleigh waves, lamb waves, love waves and

Stoneley waves. Basically there exist different of waves as follows.

The longitudinal or compression waves are characterized by using a particle displace-

ment parallel to the direction of propagation, i.e a polarization parallel to the vector. A

longitudinal wave creates the variation in the distance among parallel plane containing

given particles, in order that the volume occupied by a given wide variety of particle

is not constant. The transverse of shear waves are such that particle displacement is

perpendicular to the wave vector.
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The velocities of the longitudinal and transverse waves are denoted through cL and cT
respectively. These waves travel in an unbound medium by way of which we suggest in

practise that the size of the medium is a greater than the beam size and that surface

effects are negligible.

2.11 Longitudinal and transverse wave motion

Mechanical waves are waves which propagate through a material medium (solid, liq-

uid, or gas) at a wave speed which depends on the elastic and inertial properties of

that medium. There are fundamental forms of wave movement for mechanical waves:

longitudinal waves and transverse waves [13].

2.12 Longitudinal waves
In a longitudinal wave the particle displacement is parallel to the direction of wave

propagation. The particles do not move up and down with the wave but they simply

oscillate back and forth about their equilibrium positions. Examples of P Waves (Pri-

mary Waves) in the earthquake is longitudinal waves. P waves travel with high speed

and travel first as compared to S waves [14, 15].

2.13 Transverse waves

In a transverse wave the displacement of the particles is perpendicular to the direction

of wave propagation. The particles do not move along with the wave, they simply

oscillate up and down about their individual equilibrium positions as the wave passes

by.

The S waves (secondary waves) in an earthquake are examples of transverse waves. S

waves propagate with a pace slower than P waves, arriving several seconds later.

2.14 Rayleigh surface waves

A particles in solid, through which a rayleigh surface passes, moves in elliptical path,

with the most important axis of ellipses on a solid surface. As depth into the solid
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increases, "width" of elliptical direction decreases. Rayleigh waves in a elastic solid are

different from surface waves in water in a completely critical way. In the water wave

all the particles travel in the counter clockwise direction. But, in rayleigh the surface

wave, the particles on the floor shows a clock wise direction, However particles in a

depth of more than 1/5th of a wavelength trace out clock watch ellipse [11].

The Rayleigh surface waves make the most harm during the earthquake. They travel

with the velocity slower then S waves, and arrive later but with much greater ampli-

tude. These are also waves that are most easily felt during an earthquake and involve

both up-down and side to side motion.

2.15 Hook’s law in cylindrical coordinates

In this section we re-wright hooks law from equation (2.6). Now the respective compo-

nent in cylindrical coordinates with the repressntation are computed so applying the

summation on the values of i,j,k,l accordingly we have

T11 = c11klekl. (2.34)

c1111e11 + c1112e12 + c1113e13 + c1121e21 + c1122e22 + c1123e23 + c1131e31 + c1132e32 + c1133e33,

but due to symmetry as

T11 = c1111e11 + 2c1112e12 + 2c1113e13 + 2c1132e32 + c1122e22 + c1133e33. (2.35)

Now the respective component in cylindrical coordinates with the repressntation are

and the notation are shown in Eq (2.10). Thus after simplification we have

r = 1, θ = 2 and z = 3. (2.36)

So the equation becomes after expanding them according to (2.34)

Trr =c11
∂ur
∂xr

+ c16

(
∂ur
∂xθ

+
∂uθ
∂xr

)
+ c15

(
∂ur
∂xz

+
∂uz
∂xr

)
+ c14

(
∂uθ
∂xz

+
∂uz
∂xθ

)
+ c12

∂uθ
∂xθ

+ c13
∂uz
∂xz

.

(2.37)
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Like wise we can solve other stress and normal components also and we get

Tθθ =c21
∂ur
∂xr

+ c26

(
∂ur
∂xθ

+
∂uθ
∂xr

)
+ c25

(
∂ur
∂xz

+
∂uz
∂xr

)
+ c24

(
∂uθ
∂xz

+
∂uz
∂xθ

)
+ c23

∂uz
∂xz

+ c22
∂uθ
∂xθ

,

(2.38)

Tzz =c12
∂ur
∂xr

+ c34

(
∂uθ
∂xz

+
∂uz
∂xθ

)
+ c36

(
∂ur
∂xθ

+
∂uθ
∂xr

)
+ c35

(
∂ur
∂xz

+
∂uz
∂xr

)
+ c32

∂uθ
∂xθ

+ c33
∂uz
∂xz

,

(2.39)

and one of the shear component is

Trθ =c16
∂ur
∂xr

+ c66

(
∂ur
∂xθ

+
∂uθ
∂xr

)
+ c46

(
∂uθ
∂xz

+
∂uz
∂xθ

)
+ c56

(
∂uz
∂xr

+
∂ur
∂xz

)
+ c26

∂uθ
∂xθ

+ c36
∂uz
∂xz

.

(2.40)

2.16 Buchwald representation in cylindrical coordi-
nates

As we know the Helmholtz representation which is given by

u = ∇φ+∇∧ ψ, (2.41)

where ψ andφ are differential operator and is given by

∇ =
e1

h1

∂

∂q1

+
e2

h2

∂

∂q2

+
e3

h3

∂

∂q3

, (2.42)

The scale factors hi are in general functions of the coordinates qj and the unit vector

ei generally vary in direction from point to point in space. After apply the ∇ operator

we get

∇φ =
e1

h1

∂φ

∂q1

+
e2

h2

∂φ

∂q2

+
e3

h3

∂φ

∂q3

, (2.43)

and the

∇∧ ψ =
1

h1h2h3

∣∣∣∣∣∣
h1e1 h2e2 h3e3
∂
∂q1

∂
∂q2

∂
∂q3

h1ψr h2ψθ h3ψz

∣∣∣∣∣∣ (2.44)
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The corresponding scale factor and unit bases are h1 = 1, h2 = r, h3 = 1 and e1 =

er, e2 = eθ, e3 = k. After using the value of h1 , h2, h3 and e1, e2, e3 in (2.44) we

get the expression

er

(
∂ψz
∂θ
− r∂ψθ

∂z

)
− reθ

(
∂ψz
∂r
− ∂

ψ r

∂z

)
+ k

(
r
∂ψθ
∂r
− ∂ψr

∂θ

)
. (2.45)

By combining (2.44) and (2.37) of helm Holtz together we get the selective term of u,

v and w that is

u =
∂φ

∂r
+

1

r

∂ψz
∂θ
− ∂ψθ

∂z
, (2.46)

similarly for v and w expression

v =
1

r

∂φ

∂θ
+
∂ψr
∂z
− ∂ψz

∂r
, (2.47)

and like wise the w component and now due to the nature few terms are not linked

and they vanish so after simplification the terms are

ur =
∂φ

∂r
+

1

r

∂ψχ
∂θ

, (2.48)

uθ =
1

r

∂φ

∂θ
− ∂χ

∂r
, (2.49)

and

uz =
∂ψ

∂z
. (2.50)

2.17 Laplacian operator in cylindrical coordinates

Here we make the conversion of cartesian coordinate to cylindrical coordinate. For this

first we define the basic of cartesian and polar coordinates respectively. Organize a

point x and y measure a couple of pairs of points from the point of view the durable

linear lines in the plane are called a nuclear assistant axis actually meet. Polar coordi-

nation system, a two dimensional systematic system using a row grid. The r and θ from

the point of viewpoint approaches between the original and angle line and row axis.

The Laplacian operator is very important in mathematics. It is nearly ubiquitous. Its

form is simple and symmetric in Cartesian coordinates

∇2 =
∂

∂x2
+

∂

∂y2
+

∂

∂z2
, (2.51)
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and in the polar co-ordinate it is given by

∇2 =
∂

∂r2
+

1

r

∂

∂r
+

1

r2

∂

∂θ2
+

∂

∂z2
, (2.52)

Converting them to cylindrical coordinates, the details of calculating itsform in cylin-

drical co-ordinates is follows. It is good to begin with the simpler case.The z component

does not change and for the x and y components, the transformations are V = V (x, y)

where

x = r cos θ and y = r sin θ. (2.53)

By partial derivative with respect to r we have

∂V

∂r
=
∂V

∂x

∂x

∂r
+
∂V

∂y

∂y

∂r
, (2.54)

∂V

∂r
= cos θ

∂V

∂x
+ sin θ

∂V

∂y
. (2.55)

Same for the case in θ
∂V

∂θ
=
∂V

∂x

∂x

∂θ
+
∂V

∂y

∂y

∂θ
, (2.56)

∂V

∂θ
= −r sin θ

∂V

∂x
+ r cos θ

∂V

∂y
. (2.57)

Eq (2.55) and (2.57) when solved for x give

∂V

∂x
= cos θ

∂V

∂r
− sin θ

r

∂V

∂θ
, (2.58)

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (2.59)

Also we get with respect to y

∂V

∂y
= sin θ

∂V

∂r
+

cos θ

r

∂V

∂θ
, (2.60)

∂

∂y
= cos θ

∂

∂r
+

sin θ

r

∂

∂θ
. (2.61)

∂V 2

∂x2
=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
, (2.62)
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taking the second derivative we have

∂V 2

∂x2
= cos θ2∂V

2

∂r2
+ 2

sin θ cos θ

r2

∂V

∂θ
− 2 sin θ cos θ

r

∂V

∂θ∂r

+ 2
sin2 θ

r2

∂V 2

∂θ2
+

sin2 θ

r2

∂V

∂r
.

(2.63)

Similarly with respect to y we have

∂V 2

∂y2
=

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
, (2.64)

which implies

∂V 2

∂y2
= sin θ2∂V

2

∂r2
− 2

sin θ cos θ

r2

∂V

∂θ
+

2 sin θ cos θ

r

∂V

∂θ∂r

+ 2
cos2 θ

r2

∂V 2

∂θ2
+

cos2 θ

r2

∂V

∂r
,

(2.65)

by addition of (2.63) and (2.65) we have

∂V 2

∂x2
+
∂V 2

∂y2
=
∂V 2

∂r2
+

1

r2

∂V 2

∂θ2
+

1

r

∂V

∂r
. (2.66)

and the laplacian in (r, θ) can be written as

∇2V =
1

r

∂

∂r
(r
∂V

∂r
) +

1

r

∂V 2

∂θ2
, (2.67)

cylindrical coordinates (r, θ, z) the same method we can derive the laplace operator in

cylindrical coordinates

V = V (x, y, z), x = r cos θ, y = r sin θ, z = z. (2.68)

By partial derivative selective term of u,v and w are

∂V

∂r
=
∂V

∂x

∂x

∂r
+
∂V

∂y

∂y

∂r
, (2.69)

∂V

∂r
=
∂V

∂x
cos θ +

∂V

∂y
sin θ. (2.70)

Likewise in θ
∂V

∂θ
=
∂V

∂x

∂x

∂r
+
∂V

∂y

∂y

∂r
, (2.71)
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∂V

∂θ
= −∂V

∂x
r sin θ +

∂V

∂y
rcosθ. (2.72)

At the same time in z we have,

∂V

∂z
=
∂V

∂x

∂x

∂z
+
∂V

∂y

∂y

∂z
+
∂V

∂z

∂z

∂z
, (2.73)

∂V

∂z
=
∂V

∂z
. (2.74)

After simplification we have

∇2V =
1

r

∂

∂r
(r
∂V

∂r
) +

1

r

∂V 2

∂θ2
+
∂V 2

∂z2
. (2.75)
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Chapter 3

Reflection of longitudinal and
transverse waves at surface of a
monoclinic medium

In an anisotropic elastic solid medium, three types of waves with the equal time or-

thogonal particles movement may be propagated. In reality, the particle movement is

neither simply longitudinal nor simply transverse. Because of this, three types of body

waves in a isotropic medium known as as q(P), q(SV) and q(SH), in place of P, SV

and SH, the symbols used for propagation in an isotropic medium. Here the symbol

q is used for the quasi, means a similar properties and behaviour and P and SV are

representing as the longitudinal and transverse wave.

The monoclinic medium contain one plane of elastic symmetry. For wave propagation

inside a plane of symmetry, SH movement is decoupled from the P-SV motion. At the

same time because the particle movement of SH waves are purely transverse, it is not

completely longitudinal nor transverse in the case of P-SV waves.

3.1 Problem formulation

We take the homogenous anisotropic monoclinic elastic medium. Taking plane symme-

try as the x2x3 plane the hooks law shown in equation (??) and (??) so in displacement

form, the component in the matrix form are

T11 = c11e11 + c12e22 + c13e33 + 2c14e23, (3.1)
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T22 = c12e11 + c22e22 + c23e33 + 2c24e23, (3.2)

T33 = c13e11 + c23e22 + c33e33 + 2c34e23, (3.3)

T23 = c14e11 + c24e22 + c34e33 + 2c44e23, (3.4)

T13 = 2(c55e13 + c56e12), (3.5)

T12 = 2(c56e13 + c66e12). (3.6)

Here Tij is showing stress tensor and eij showing strain tensor. For plane wave propa-

gating in the x2x3 plane we have

T11 = c12
∂u2

∂x2

+ c13
∂u3

∂x3

+ c14(
∂u2

∂x3

+
∂u3

∂x2

), (3.7)

since we are taking the x2x3 plane, the derivative with respect to x1 are zero. Now

using equation of motion (2.29) without body force. Now the summation is applied

on Eq (2.29), so after comparing the equation of motion and all the components with

respect to x1 will cancel and remaining are

c66
∂2u1

∂x2
2

+ 2c56
∂2u1

∂x2∂x3

+ c55
∂2u1

∂x2
3

= ρ
∂2u1

∂t2
, (3.8)

c22
∂2u2

∂x2
2

+c44
∂2u2

∂x2
3

+c24
∂2u3

∂x2
2

+c34
∂2u3

∂x2
3

+2c24
∂2u2

∂x2∂x3

+(c23+c44)
∂2u3

∂x2∂x3

= ρ
∂2u2

∂t2
, (3.9)

c24
∂2u2

∂x2
2

+c34
∂2u2

∂x2
3

+c44
∂2u3

∂x2
3

+c33
∂2u3

∂x2
3

+2c34
∂2u3

∂x2∂x3

+(c23+c44)
∂2u2

∂x2∂x3

= ρ
∂2u3

∂t2
. (3.10)

Consider p(0, p2, p3) represents the unit propagation vector, c the phase velocity and

k the wave number of plane waves propagating in x2x3-plane. A solution of equation

of motion (3.3) representing a plane wave is of the form

u1 = A exp[ik(ck − x2p2 − x3p3)]. (3.11)

So inserting equation above equation (3.8) in (3.5) we get

c66p
2
2 + 2c56p2p3 + c55p

2
3 = ρc2. (3.12)

This equation gives the phase velocity of an SH wave propagating in a different direction

in the plane symmetry of monoclinic medium in an arbitrary direction. We want to
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solve plane wave solution of Eq (3.9) and (3.10) in the form (3.8)

[u2, u3] = A[d2, d3] exp [ik(ct− x2p2 − x3p3)], (3.13)

here d(0, d2, d3) the unit displacement vector. Putting above expression for u2 and u3

in the equations of motion (3.9) and (3.10) we have

(U− ρc2)d2 + Vd3 = 0, (3.14)

Vd2 + (Z− ρc2)d3 = 0, (3.15)

where

U = c22p
2
2 + c44p

2
3 + 2c24p2p3, (3.16)

V = c24p
2
2 + c34p

2
3 + (c23 + c44)p2p3, (3.17)

Z = c44p
2
2 + c33p

2
3 + 2c34p2p3. (3.18)

Eq (3.14) and (3.15) yeild

d2/d3 = V/(ρc2 − U) = (ρc2 − Z)/V. (3.19)

Therefore, ρc2 satisfies quadratic equation

ρ2c4 − (U + Z)ρc2 + (UZ− V2) = 0, (3.20)

with solutions

2ρc2(p2, p3) = (U + Z)± [(U− Z)2 + 4V2]1/2. (3.21)

The upper sign in (3.21) is for longitudinal and lower sign is for transverse waves.

Eliminating ρc2 from the two equations in (3.19) we find

(d2
2 − d2

3)V = d2d3(U-Z), (3.22)

inserting the expression for U V and Z from Eq (3.18) we obtain

[c24(d2
3 − d2

2) + (c22 − c44)d2d3]p2
2 + [c34(d2

3 − d2
2) + (c44 − c33)d2d3]p2

3

+ [(c23 + c44)(d2
3 − d2

2) + 2(c24 − c34)d2d3]p2p3 = 0,
(3.23)
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we may write Eq (3.22) in the form

d2d3

d2
3 − d2

2

= V/Z-U. (3.24)

Note that U = U(p2, p3) etc., Eq (3.24) can be used to find the direction of the dis-

placement vector d for a given direction of a propagation p. Substituting tan e= p2/p3,

tanφ=d2/d3, we have

φ =
1

2
tan−1(Ω),

π

2
+

1

2
tan−1(Ω), (3.25)

where

Ω = 2
c24 tan2e + (c23 + c44)tane + c34

[(c44 − c22)tan2e + 2(c34 − c24)tane + c33 − c44]
. (3.26)

3.2 Reflection of longitudinal and transverse waves

Take a homogenous, elastic half-space that occupying the area x3=0 (fig 3.1). Elastic

plane symmetry can be written as x2x3 plane. Plane qP or qSV waves are an incident

on traction free boundary x3 = 0 [13, 14]. We consider the plain strain problem for

which

u1 = 0, u2 = u2(x2, x3, t), u3 = u3(x2, x3, t). (3.27)

Incident q(P) and q(SV) waves will create reflected q(P) and q(SV) waves. So total

displacement is mention by

u2 =
4∑
j=1

Aje
iPj u3 =

4∑
j=1

Bje
iPj , (3.28)

where

P1 = ω[t− (x2 sin e1 − x3 cos e1)/c1],

P2 = ω[t− (x2 sin e2 − x3 cos e2)/c2],
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P3 = ω[t− (x2 sin e3 + x3 cos e3)/c3],

P4 = ω[t− (x2 sin e4 + x3 cos e4)/c4], (3.29)

ω is representing the angular frequency. We mention the elements corresponding to

the variety of waves by taking notation.

(1) for incident longitudinal waves and e1 for incidence angle of longitudinal,

(2) for incident transverse waves and e2 for incidence angle of transverse,

(3) for reflecting longitudinal waves and e3 for reflecting angle of longitudinal,

(4) is for reflecting transverse waves and e4 for reflecting angle of transverse.

Thus for example, for the incident qP waves, c1 representing the phase velocity, e1 the

incidence angle, P1(x2, x3, t) phase factor, A1 the amplitude factor of the u2 displace-

ment and B1 that of the u3 component [12].

Figure 3.1: Reflect the (qP) and SV waves on the planes free boundary at (x3 = 0) of
mono-clinic space.

So qP and qSV for each incidence, it appears that the qP and qSV must satisfy

equation of motion,

Ai = FiBi (i = 1, 2, 3, 4; no summation), (3.30)
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where

Fi = Vi/(ρc
2
i − Ui) = (ρc2

i − Zi)/Vi, (i = 1, 2, 3, 4), (3.31)

2ρc2
i = (Ui + Zi) + [(Ui − Zi)2 + 4V 2

i ]1/2 (i = 1, 3), (3.32)

2ρc2
i = (Ui + Zi)− [(Ui − Zi)2 + 4V 2

i ]1/2 (i = 2, 4). (3.33)

The expression for Ui, Viand Zi are collected from the basic algebric expression. For

incident longitudinal waves, p2 = sin e1, p3 = − cos e1; for incidence transverse waves,

p2 = sin e2, p3 = − cos e2; for reflected longitudinal waves, p2 = sin e3, p3 = cos e3 and

for reflected transverse waves, p2 = sin e4, p3 = cos e4.

Look the figure after putting the values we have,

U1 = c22 sin2 e1 + c44 cos2 e1 − 2c24 sin e1 cos e1, (3.34)

V1 = c24 sin2 e1 + c34 cos2 e1 − (c23 + c44) sin e1 cos e1, (3.35)

Z1 = c44 sin2 e1 + c33 cos2 e1 − 2c34 sin e1 cos e1, (3.36)

U3 = c22 sin2 e3 + c44 cos2 e3 + 2c24 sin e3 cos e3, (3.37)

V3 = c24 sin2 e3 + c34 cos2 e3 + (c23 + c44) sin e3 cos e3, (3.38)

Z3 = c44 sin2 e3 + c33 cos2 e3 + 2c34 sin e3 cos e3. (3.39)

Similarly (U2, V2, Z2) are taken with help of (U1, V1, Z1) by exchanging e1 by e2 and

(U4, V4, Z4) are collected by (U3, V3, Z3) on exchanging e3 by e4. We only solve one of

all the equation in order to understand and for getting the relation.

Now the overall displacement given by Eq (3.28) and it must obey the traction free

boundary because in monoclinic system we have τ23 = τ33 = 0 at x3 = 0. The simple

algebric equations thus yields,

[
(c24A1 + (c44B1)) sin e1/c1 − (c44A1 + (c34B1)) cos e1/c1

]
eip1(x2,0)

+
[
(c24A2 + (c44B2)) sin e2/c2 − (c44A2 + (c34B2)) cos e2/c2

]
eip2(x2,0)

+
[
(c24A3 + (c44B3)) sin e3/c3 + (c44A3 + (c34B3)) cos e3/c3

]
eip3(x2,0)

+
[
(c24A4 + (c44B4)) sin e4/c4 + (c44A4 + (c34B4)) cos e4/c4

]
eip4(x2,0) = 0 (3.40)
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similarly [
(c23A1 + (c34B1)) sin e1/c1 − (c34A1 + (c33B1))cose1/c1

]
eip1(x2,0)

+
[
(c23A2 + (c34B2)) sin e2/c2 − (c34A2 + (c33B2)) cos e2/c2

]
eip2(x2,0)

+
[
(c23A3 + (c34B3)) sin e3/c3 + (c34A3 + (c34B3)) cos e3/c3

]
eip3(x2,0)

+
[
(c23A4 + (c34B4)) sin e4/c4 + (c34A4 + (c33B4)) cos e4/c4

]
eip4(x2,0) = 0 (3.41)

Since above two equation must obeyed for each value of x2, we have

P1(x2, 0) = P2(x2, 0) = P3(x2, 0) = P4(x2, 0), (3.42)

equation (3.29) and (3.42) imply

sin e1

c1(e1)
=

sin e2

c2(e2)
=

sin e3

c3(e3)
=

sin e4

c4(e4)
=

1

ca
, (3.43)

here ca the apparent phase is the speed or velocity. It’s kind of snell’s law for a mono-

clinic medium.

From (3.32) (3.36) and (3.39) we notice that if e1 = e3, c1 6= c3. Therefore,the re-

flection angle of qP waves does not identical just like incidence angle of (qP) waves.

Likewise, reflection angle of qSV waves does not identical to the incidence angle of

qSV waves. Assuming the reflection angle of qP (qSV ) waves is similar to incidence

angle of qP (qSV ) waves, this is a reason the reflected coefficient collected in these

studies are wrong. Consequently, c1 = c3 if e1 = e3. Above (3.43) highlights that angle

of reflection of qP (qSV ) waves is identical to angle of incidence qP(qSV ) waves. By

taking help from the relation (3.30), (3.42) and (3.43) in Eq (3.40) and (3.41) we have

a1B1 + a2B2 + a3B3 + a4B4 = 0 (3.44)

b1B1 + b2B2 + b3B3 + b4B4 = 0 (3.45)

here

a1 = c24F1 + c44 − (c44F1 + c34) cot e1, (3.46)
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a2 = c24F2 + c44 − (c44F2 + c34) cot e2, (3.47)

a3 = c24F3 + c44 + (c44F3 + c34) cot e3, (3.48)

a4 = c24F4 + c44 + (c44F4 + c34) cot e4, (3.49)

b1 = c23F1 + c34 − (c34F1 + c33) cot e1, (3.50)

b2 = c23F2 + c34 − (c34F2 + c33) cot e2, (3.51)

b3 = c23F3 + c34 + (c34F3 + c33) cot e3, (3.52)

b4 = c23F4 + c34 − (c34F4 + c33) cot e4. (3.53)

In the case of qP waves A2 = B2 = 0 and Eq (3.44) and (3.45) becomes

a1B1 + a3B3 + a4B4 = 0 (3.54)

b1B1 + b3B3 + b4B4 = 0 (3.55)

After doing, we get the amplitude ratio in the form of

B3

B1

= a4B1 − a1B4/∆, (3.56)

B4

B1

= a1B3 − a3B1/∆, (3.57)

where

∆ = a3B4 − a4B3, (3.58)

referring Eq (3.30) we have

A3

A1

=
F3

F1

(
B3

B1

)
,
A4

A1

=
F4

F1

(
B4

B1

)
. (3.59)

In sense of incident qSV waves A1 = B1 = 0 so that we have

a2B2 + a3B3 + a4B4 = 0 (3.60)

b2B2 + b3B3 + b4B4 = 0 (3.61)
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and the same process as above gives us the amplitude ratios of qSV waves which is

A3

A2

=
F3

F2

(
B3

B2

)
,
A4

A2

=
F4

F2

(
B4

B2

)
. (3.62)

As we know that for isotropic medium

c1 = c3 = [λ+ 2µ/ρ]1/2 = α, (3.63)

c2 = c4 = (µ/ρ)1/2 = β, (3.64)

e1 = e3, e2 = e4 = f, (3.65)
sin e
α

=
sin f
β
, (3.66)

F1 = −F3 = − tan e, F2 = −F4 = cot f, (3.67)

a1 = a3 = 2µ, a2 = a4 = −µ cos 2f/ sin2 f, (3.68)

b1 = −b3 = −2µ(α/β)2 cos 2f/ sin 2e, (3.69)

b2 = −b4 = −2 µ cot f. (3.70)

Substituting those values in the equation in (3.56), (3.59) and (3.62) we get the ampli-

tude ratio for isotropic half space in the shape of

A3

A1

= −B3

B1

=
sin 2e sin 2f − (α/β2) cos2 2f

sin 2e sin 2f + (α/β2) cos2 2f
, (3.71)

A3

A1

=
cot f

tan e

(
B4

B1

)
=

(α/β2) cos2 4f

sin 2e sin 2f + (α/β2) cos2 2f
, (3.72)

A3

A2

=
tan e

cot f

(
B3

B2

)
=

4 sin2 e cos 2f

sin 2e sin 2f + (α/β2) cos2 2f
, (3.73)

A4

A2

= −B4

B2

= −A3

A1

=
B3

B1

. (3.74)

The above equations or expression signifies the ratios for amplitude for an isotropic

half space matched by the accompanying results of Ben-Menahem and Singh [14].

3.3 Results and discussion

The reflection coefficients given via Chattopadhyay and Choudhary (1995) for the re-

flection of longitudinal and transverse waves at the plane free boundary of a monoclinic
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elastic half-space are wrong, because of two assumptions done via those authors, that

is qP are longitudinal and (qSV ) are transverse waves and the angle of reflection of

the waves of qP (qSV ) is the same as an angle of incidance of qP (qSV ). In current

study, we got the right reflection coefficients by evaluating the problem.

Eqs (3.56) and (3.59) are showing the amplitude ratios when qP waves are incident on

a monoclinic elastic half space. From these equation, A3/A1 and A4/A1 are dimensions

for components that are horizontal of the displacement and B3/B1 and B4/B1 are the

ratios for components that are vertical of the displacement. Likewise, (3.59) gives the

amplitude ratios for incident qSV waves. Equally by these (3.28) and (3.30), we notice

for instance, entire displacement of the incident qP waves is

(A2
1 +B2

1)1/2eiP1 , (3.75)

using equation (3.30) we have after applying summation i=(1,2,3,4) for i=1,

A1 = F1B1, (3.76)

using this in above equation we found

(F 2
1B

2
1 +B2

1)1/2eiP1 , (3.77)

B2
1(1 + F 2

1 )eiP1 , (3.78)

similarly using index for 2, 3 ,4 we have

B2
2(1 + F 2

2 )eiP2 , (3.79)

B2
3(1 + F 2

3 )eiP3 , (3.80)

B2
4(1 + F 2

4 )eiP4 , (3.81)

so on comparison and cancellation of above mentioned coefficients and upon division

of (3.80) and (3.78) and (3.81) and (3.78) the reflective classes can be expressed indi-

vidually

RPP =

(
1 + F 2

3

1 + F 2
1

)1/2

∗ B3

B1

, RPS =

(
1 + F 2

4

1 + F 2
1

)1/2

∗ B4

B1

, (3.82)
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for incident qP waves and

RSP =

(
1 + F 2

3

1 + F 2
2

)1/2

∗ B3

B2

, RSS =

(
1 + F 2

4

1 + F 2
2

)1/2

∗ B4

B2

, (3.83)

for incident qSV waves.

The reflections coefficients present here are in means of four angles and velocities ei
and ci(ei), i = 1, 2, 3, 4. If we have incident qP wave, e1 and, thats why, c1(e1) is meant

to find. We have to find e3 and e4 for provided e1. The velocities c3(e3) and c4(e4) may

then be calculated from precise algebric formula. We provide underneath the technique

for solving e3 and e4 for given e1 in the case of incident (qP) waves and for given e2 in

the case of incident qSV waves.

There is a Snell’s law for monoclinic medium provided by (3.14) in which apparent

velocity, may be taken as ca = c/p2, where p(0, p2, p3) is the propagation vector. We

specify the dimensionless apparent velocity through the relationship,

c̄ = ca/β = c/(p2β), (3.84)

so the equation becomes

c̄4 − (Ū + Z̄)c̄2 + (Ū Z̄ − V̄ 2) = 0 (3.85)

here

Ū = p2 + 2c̄24 + c̄22, (3.86)

V̄ = c̄34p
2 + (1 + c̄23)p+ c̄24, (3.87)

Z̄ = c̄33p
2 + 2c̄34 + 1. (3.88)

for qP incidents, p= -cot e1; for qSV incident, p =-cot e2, for qP reflected, p= -cot e3;

for qSV reflected , p= -cot e4, equation (3.85) done for two c̄2, two solutions for (qP)

and (qSV ) waves. After putting the above expression we have

g0p
4 + g1p

3 + g2p
2 + g3p+ g4 = 0, (3.89)
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where

g0 = c̄33 − c̄34
2, (3.90)

g1 = 2(c̄24c33 − c̄34c23), (3.91)

g2 = 1 + c̄22c33 + 2c̄24c34 − (1 + c̄23
2)− (1 + c̄33

2)c̄2, (3.92)

g3 = 2[c̄22c34 − c̄23c24 − (c̄24 + c̄34)c̄2], (3.93)

g4 = c̄4 − (1 + c̄22)c̄2 + c̄22 − c̄24
2. (3.94)

If we define q= 1/p then (3.89) transform into

g0q
4 + g3q

3 + g2q
2 + g1q + g0 = 0, (3.95)

so above equation consist of two positive roots say q3 and q4. According to reflective

SV and reflective P waves.

e3 = tan−1(q3), e4 = tan−1(q4). (3.96)

In case of isotropic medium we have

g0 = γ, g1 = 0, (3.97)

g2 = 2γ − (1 + γ)c̄2, g3 = 0, (3.98)

g4 = (c̄2 − 1)(c̄2 − γ), (3.99)

so equation (3.89) reduces to

γp4 + [2γ − (1 + γ)c̄2]p2 + (c̄2 − 1)(c̄2 − γ) = 0, (3.100)

i.e,

γ(p2 − c̄2 + 1)(p2 − c̄2/γ + 1) = 0. (3.101)

however in the current scenario, the snell law take the form

sin e

α
=

sin f

β
=

1

ca
, (3.102)
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so from this Eq (3.84) shows that

c̄ = ca/β = cosecf =
√
γcosec e. (3.103)

Therefore the root are given by

p2 = c̄2 − 1 = cot2 f, (3.104)

according to SV waves, and more

p2 = c̄2/γ − 1 = cot2 e, (3.105)

instead to P waves. So, w e can select (q = 1/p),

q1 = − tan e, q2 = − tan f , q3 = tan e, q4 = tan f .

This factor helps us in finding the reflection angle of longitudinal and transverse

waves. In case of monoclinic medium (3.95) makes the form of quadratic in q2 so

q1 = −q3, q2 = −q4, so for monoclinic medium the angle of qP (qSV ) waves is

not identical to the incidence angle of qP (qSV ) waves but it may be right for

other classes but not for monoclinic. For numerical calculation, we supposed that

c22/c44 = 19.8/6.67, c33/c44 = 24.9/6.67, c23/c44 = 7.8/6.67, c24/c44 = c34/c44 = C.

Figure (3.2) shows the reflection angle of longitudinal waves for the various values of

incidence angle of qP waves after putting three values of C. In figure (3.2), for C > 0, the

reflection angle is larger then incidence angle. On other hand, if the value of C < 0,

the reflection angle is smaller then incidence angle. Figure (3.3) is representing the

reflection angle of qSV (transverse) waves for the different values of angle of incidence

of longitudinal waves. Similarly figure (3.4) and (3.5) are representing incident qSV

waves. The changing of the reflection coefficients Rpp for the incident qP-reflected qP

waves along with the incidence angle of qP waves is representing in graph (3.6). The

variation of the reflection coefficients Rps, Rsp and Rss is being representing in the

figure (3.7-3.9). From figure (3.6-3.9) we notice that the anisotropy has a magnificent

and clear influence on reflection coefficients [18].
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Figure 3.2: Change in reflection angle (e3) of qP together with angle of incidence (e1)
of qP waves.

Figure 3.3: Change in reflection angle (e4) of qSV waves together with incidence angle
(e1) of qP waves.
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Figure 3.4: Change in reflection angle (e3) of qP waves together with incidence angle
(e2) of qSV waves.

Figure 3.5: Change in reflection angle (e4) of qSV waves together with incidence angle
(e2) of qSV waves.

32



Figure 3.6: Change in reflection angle Coefficient |Rpp| together with incidence
(e1)angle of qP waves.

Figure 3.7: Change in reflection angle Coefficient |Rps| together with incidence (e1)angle
of qP waves.
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Figure 3.8: Change in reflection angle Coefficient |Rsp| together with incidence (e2)angle
of qSV waves.

Figure 3.9: Change in reflection angle Coefficient |Rss| together with incidence (e2)angle
of qSV waves.
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Chapter 4

Guided wave in an isotropic elastic
solid with fluid interaction

4.1 Guided waves

In this chapter we cover the basic definition of guided wave: Guided waves are those

that travel a long distance with little loss in energy. Guided wave method is a non-

destructive evaluation method, from which the hidden information can be find out like

under ground or in the depth of the oceans and also in the underground pipes. Guided

waves are fitted best in the detection of internal or external metal loss. Guided waves

are basically very different from conventional ultrasonic testing. The frequency used

in the inspection depends on the thickness of the structure, but guided wave testing

typically uses ultrasonic frequencies in the range of 10 kHz to several MHz Below the

figure is representing the guided wave [3, 16].

Figure 4.1: Guided wave
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4.2 Crystal structure

A crystal shape is a different and regular arrangements of atoms in a crystal. A

crystal shape consists of a unit cellular, and atoms are organized in a selected way;

that’s periodically repeated in 3 dimensions on a lattice. We can also say that crystals

structure has been ordered manage nuclear, ions or invasions in a crystalline cloth.

This system is ordered by it internal nature of the constituent rearrangement to shape

symmetric styles that repeat along the major instructions of three-dimensional area.

The smallest group of the inside of the cloth is the unit which reproduce the unit Shape

cellular. The unit cell defines exactly the crystalline formula and shape flexibility, which

is created by translating unit cell repetition with its most important axis. Repeated

patterns are kept on the perspective Bravis flexible. The most important axis, or edges

of unit seals and angle lengths and there are elastic obstacles between them, it is also

called as an lattice parameters [8, 17].

4.3 Transverse isotropic materials

The transverse transmission is one with isotropic material bodily homes that are sym-

metric about an axis that is regular to a plane of isotropy. This transverse plane has

infinite planes of symmetry and for that reason, inside this plane, the material resi-

dences are the same in all instructions. A transversely isotropic fabric has countless

rotational symmetry about a completely unique route. In different words, there’s a

route about which you can rotate it with out changing its appearance [7, 9].

4.4 Derivation through the displacement equation

For the derivation further we take the displacement equation and as we know that

Tij,j = ρui, (4.1)

where
Tij = cijkl

∂uk
∂xl

. (4.2)
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The expression of u is

u =
∂φ

∂r
+

1

r

∂ψz
∂θ
− ∂ψθ

∂z
, (4.3)

similarly for v and w are

v =
1

r

∂φ

∂θ
+
∂ψr
∂z
− ∂ψz

∂r
. (4.4)

Now due to the nature few terms are not linked and they vanish so after simplification

the terms are

ur =
∂φ

∂r
+

1

r

∂ψχ
∂θ

, (4.5)

uθ =
1

r

∂φ

∂θ
− ∂χ

∂r
, (4.6)

and

uz =
∂ψ

∂z
. (4.7)

So now expanding the Eq (4.1)

T11,1 + T21,1 + T31,1 = ρü1, (4.8)

T12,2 + T22,2 + T32,2 = ρü2, (4.9)

T13,3 + T23,3 + T33,3 = ρü3. (4.10)

We solve (4.8) according to the r θ and z

T11,1 =
∂

∂xl
=

(
c11kl

∂uk
∂xl

)
, (4.11)

so collecting all terms w.r.t "r"

∂

∂r

[
c11kl

∂uk
∂xl

+ c21kl
∂uk
∂xl

+ c31kl
∂uk
∂xl

]
= ρü1, (4.12)

like wise with respect to θ and z we have,

∂

∂θ

[
c12kl

∂uk
∂xl

+ c22kl
∂uk
∂xl

+ c32kl
∂uk
∂xl

]
= ρü2, (4.13)

∂

∂z

[
c13kl

∂uk
∂xl

+ c23kl
∂uk
∂xl

+ c33kl
∂uk
∂xl

]
= ρü3. (4.14)
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In order to prevent from long calculation we would solve them one by one and then

compile in the end for the sake of convineance, so apply summation on k and l we get

∂

∂xl
.
∂uk
∂xl

(
c11kl + c21kl + c31kl

)
,

T11,1 =
∂

∂xr

[
∂u1

∂xl
+

(
c111l + c211l + c311l

)
+
∂u2

∂xl
+

(
c112l + c212l + c312l

)
+

∂u3

∂xl

(
c113l + c213l + c313l

)]
. (4.15)

Like wise we apply the summation on l and we get a lots of terms in which we pre-define

the terms that are going to zero. According to the property of hexagonal any indices

of 1, 2, 3 if coming odd times tends to be zero and hence this would reduce our number

of components. The only components that exist after cancellation of others are

c11, c12, c44, c66, c13. (4.16)

These are only five components that exists, so the Ist equation of r is

∂

∂r

[
∂ur
∂r

c11 +
∂uθ
∂r

c66 +
∂uz
∂r

c44 +
∂ur
∂θ

c66 +
∂uθ
∂θ

c12 + 0 +
∂ur
∂z

c44 + 0 +
∂uz
∂z

c13

]
. (4.17)

Here 1, 2 and 3 are representing r θ and z now the next term according to θ

∂

∂x2

.
∂uk
∂xl

(
c12kl + c22kl + c32kl

)
,

apply the same method for θ and z as above gives,

∂

∂θ

[
∂ur
∂r

c21 +
∂uθ
∂r

c66 +
∂ur
∂θ

c66 +
∂uθ
∂θ

c22 +
∂uz
∂θ

c44 + 0 +
∂uθ
∂z

c44 + 0 +
∂uz
∂z

c23

]
. (4.18)

∂

∂z

[
∂ur
∂θ

c31 +
∂uz
∂r

c55 +
∂uθ
∂θ

c23 +
∂uz
∂θ

c44 +
∂ur
∂z

c55 + 0 +
∂uθ
∂z

c44 + 0 +
∂uz
∂z

c33

]
. (4.19)

Now substitution of the values in (4.17) to (4.19)

ur =
∂φ

∂r
+

1

r

∂ψχ
∂θ

, (4.20)

uθ =
1

r

∂φ

∂θ
− ∂χ

∂r
, (4.21)
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and

uz =
∂ψ

∂z
. (4.22)

Picking up the first term of r we have

∂

∂r

[
∂ur
∂r

c11 +
∂uθ
∂r

c66 +
∂uz
∂r

c44 +
∂ur
∂θ

c66 +
∂uθ
∂θ

c12 + 0 +
∂ur
∂z

c44 + 0 +
∂uz
∂z

c13

]
= ρ

∂2ur
∂t2

.

(4.23)

Now using the values of Eq (4.20) to (4.22) in (4.23).

Trr,r =
∂

∂r

[
∂

∂r

(
∂φ

∂r
+

1

r

∂ψχ
∂θ

)
c11 +

∂

∂r

(
1

r

∂φ

∂θ
− ∂χ

∂r

)
c66 +

∂

∂r

(
∂ψ

∂z

)
c44

+
∂

∂θ

(
∂φ

∂r
+

1

r

∂χ

∂θ

)
c66

]
+

[
∂

∂θ

(
1

r

∂φ

∂θ
− ∂χ

∂r

)
c12 +

∂

∂z

(
∂φ

∂r
+

1

r

∂ψχ
∂θ

)
c44

+
∂

∂z

(
∂ψ

∂z

)
c13

]
. (4.24)

Also we know that

c66 = (c11 − c12)/2, (4.25)

and we replace the value ahead and now expanding the derivative of r accordingly we

get

Trr,r =
∂

∂r

(
∂2φ

∂r
+

1

r

∂2χ

∂θ∂r
− 1

r2

∂χ

∂θ

)
c11 +

(
1

r

∂2φ

∂θ∂r
− 1

r2

∂φ

∂θ
− ∂2χ

∂r2

)
c66

+

(
∂2φ

∂r∂z

)
c44 + c66

(
∂2φ

∂r∂θ
+

1

r

∂2χ

∂θ2

)
+ c12

(
1

r

∂2φ

∂θ2
− ∂2χ

∂θ∂r

)
+ c44

(
∂2φ

∂r∂z
+

1

r

∂2χ

∂θ∂z

)
+ c13

(
∂2ψ

∂z2

)
= ρ

∂2ur
∂t2

. (4.26)

Similarly in the same way we do for the next two equations so after comparing the

external derivative which cancel with the right hand side derivative and re-arranged

will gives us

c11∇2φ+ c44(
∂2φ

∂z2
) + (c13 + c44)

∂2ψ

∂z2
= ρ1

∂2φ

∂t2
. (4.27)

The other two terms are

(c13 + c44)∇2φ+ c44∇2ψ + c33
∂2φ

∂z2
= ρ1

∂2ψ

∂t2
, (4.28)

and
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c44
∂2χ

∂z2
+ (c11 − c12)/2∇2χ = ρ1

∂2χ

∂t2
. (4.29)

Where c11 and others are elastic constants for the material. Now assume that any point

in the cylinder,

ϕ =
∑

BnJn(βr) cos(nθ)exp i(kz − ωt), (4.30)

likewise (4.31)

ψ =
∑

cnJn(βr) cos(nθ)exp i(kz − ωt), (4.32)

χ =
∑

DnJn(γr) sin(nθ)exp i(kz − ωt). (4.33)

where J is showing the bessel function of the first kind and βr and γr are to be deter-

mine. The k and ω are the wave number and the frequency of the waves propagating in

the cylinder. We have assume these equation for the sake of continuous functions and

their continuous derivatives, because the equations we found earlier actually demands

double derivatives in order to found the ratio like amplitude and other values. So this

is a type of bessel function from which we can get a continuous functions. Now if we

put all the above three assumed functions in the earlier found equations we can get the

solution in the form of square matrix after simplification.
c11β

2 − (ρ1ω
2 − c44k

2) (c13 + c44)k2 0
(c13 + c44)β2 c44β

2 − (ρ1ω
2 − c33k

2) 0
0 0 1

2
(c11 − c12)γ2−
(ρ1ω

2 − c44k
2)


Bn

cn
Dn

 =

0
0
0


(4.34)

This is the matrix formed after solving and re-arranging all the terms of the solved

three equations. The next task is to find the values of the unknown from the above

matrix. For extraordinary or non-trivial solutions β must be determined from equation,

c11c44β
4 − Eβ2 + F = 0. (4.35)

This equation is found by solving the above matrix after taking its determinant and

re-arranging the terms for the sake of convenance, we named the equation like

E = (c13 + c44)K2 + c11(ρ1ω
2 − c33k

2) + c44(ρ1ω
2 − c44k

2), (4.36)

and
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F = (ρ1ω
2 − c44k

2)(ρ1ω
2 − c33k

2). (4.37)

Also the parameter γ is found to be

γ2 =
2(ρ1ω

2 − c44k
2)

c11 − c12

, (4.38)

similarly
β2

1 = (E −∆)/(2c11c44), β2
2 = (E + ∆)/(2c11c44). (4.39)

Where

∆ =
√
E2 − 4c11c44F , (4.40)

and the amplitude ratios q1 and q2 are found by

q1 =
c11β

2
1 + (c44k2 − ρ1ω

2)

(c13 + c44)k2

, (4.41)

q2 = − (c13 + c44)k2

c11β2
1 + (c44k2 − ρ1ω2)

. (4.42)

This is the whole method in order to find the amplitude and the values of other given

parameters from the above (4.34) square matrix.

4.5 Dispersion relation

The dispersion relation for the extensional wave propagation for fully saturated, homo-

geneous, isotropic, porous, round cylinders, subjected to stress-loose open-pore bound-

ary situation was first studied by way of Gartner (1962). Under the attention that the

related axial wavelengths are large than the radius of the cylinder in bodily sciences

and electric engineering. Dispersion members of the family describes the impact of

dispersion in a medium on the residences of a wave journeying inside that medium. A

dispersion relation relates the wavelength or wave quantity of a wave to its frequency,

from this relation the segment pace and institution pace of the wave have handy ex-

pressions which then determine the refractive index of the medium.
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4.5.1 Dispersion relation of the free cylinder

In order to find the dispersion relation for the free cylinder we again take the help

from previous solved Hooks law (??) Also for the transverse isotropic material the

components are founded by the hooks law as given below

Trr = c1111e11 + c1112e12 + c1113e13 + c1121e21

+ c1122e22 + c1123e23 + c1131e31 + c1132e32 + c1133e33. (4.43)

Now we contract (4.70) and get

Trr = c11e11 + c16e12 + c15e13 + c16e21 + c12e22 + c14e23 + c15e31 + c14e32 + c13e33, (4.44)

and these are already discussed above and as per the value of the hexagonal, any index

of 1 2 and 3 if comes odd times tends to zero and finally we obtain

δrr = c11e11 + c12e22 + c13e33. (4.45)

So if we give r=1 θ=2 and z=3 we have

δrr = c11err + c12eθθ + c13ezz, (4.46)

like wise we also get the other two equations

δrθ = (c11−c12)erθ, (4.47)

δrz = 2c44erz. (4.48)

The next step is to put the potential functions that we discussed previously and before

apply we replace "r" that is radius of the cylinder with "a" because this is operating

on the free rod and there is no change in the radius so this is the reason of replacing

for the sake of convenance and our potential function becomes

ϕ =
∑

BnJn(βa) cos(nθ)expi(kz − ωt), (4.49)

Like wise
ψ =

∑
cnJn(βa) cos(nθ)expi(kz − ωt), (4.50)

χ =
∑

DnJn(γa) sin(nθ)expi(kz − ωt). (4.51)
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So there are total nine components for which we have solved three of them and we

put the potential functions (4.49) to (4.51) in all nine components and among all the

components one of them is given below

δrr = c11e11 + c12e22 + c13e33, (4.52)

basically it would be solved by the hooks law as

δrr =
∂

∂a

[
∂

∂a

(
∂φ

∂a
+

1

a

∂χ

∂θ

)
c11 +

∂

∂θ

(
1

a

∂φ

∂θ
− ∂χ

∂a

)
c12 +

(
∂ψ

∂z

)
c13

]
, (4.53)

now put the potential functions in (4.53)

δrr =
∂

∂a
c11

[
∂

∂a

(
∂

∂a

(∑
BnJn(βa) cos(nθ)expι(kz − ωt)

))]
+

1

a

∂

∂θ

(∑
DnJn(γa) sin(nθ)expι(kz − ωt)

)
+ c12

[
∂

∂θ

1

a

(
∂

∂θ

(∑
BnJn(βa) cos(nθ)expι(kz − ωt)

))]
− ∂

∂a
(
∑

DnJn(γa) sin(nθ)expι(kz − ωt))

+ c13
∂

∂z
(
∑

cnJn(γa) cos(nθ)expι(kz − ωt)) = ρ
∂2ua
∂t2

. (4.54)

After operating all the derivatives and cancellation of the repeated expression on both

sides of the equations and going through the same methods for all the nine components

for which one of them is solved above, we would separate and make the matrix showing

all the values of nine components. The matrix is given belowa11 a12 a13

a12 a22 a23

a31 a32 a33

 Bn

cn
Dn

 =

0
0
0

 (4.55)
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where the elements aij of the matrix are founded and values are given below.

a11 =c11J
′′

n(β1a)(β1a)2 + c12J
′

n(β1a)β1a− n2Jn(β1a)− c13(ka)2q1Jn(β1a),

a12 =c11q2J
′′

n(β2a)(β2a)2 + c12q2J
′

n(β2a)β2a− q2n
2Jn(β2a)− c13(ka)2Jn(β2a),

a13 =− n(c11 − c12)[J
′

n(γa)− (γa)J
′

n(γa)],

a21 =2nJn[(β1a)− (β1a)J
′

n(β1a)],

a22 =2nq2[Jn(β2a)− (β2a)J
′

n(β2a)],

a23 =− J ′′

n(γa)(γa)2 + J
′

n(γa)γa− n2Jn(γa),

a31 =(1 + q1)β1aJ
′

n(β1a),

a32 =(1 + q2)β2aJ
′

n(β2a),

a33 =nJn(γa).

(4.56)

4.6 Secular equation

Secular equation is used in matrices and is every other call of the feature equation. The

cause is secular because it become first utilized in calculation referring to the planetary

motion. Here secular method give one direction of change with time as opposed to

periodic. If u have
f(t) = at+ b sin t, (4.57)

then the "a" is the secular part and ”b sint” is the periodic part.

Figure 4.2: The display is curved for the first four long-term modes of cobalt cylinder.

44



Figure 4.3: The display is curved for the first six long-term modes of cobalt cylinder.
(i.e, n = 1) of flexural modes

These are the figure that demonstrate the behaviour of the waves at different modes.

Figure 4.2 representing the dispersion curves for the longitudinal waves for a cobalt

cylinder. Similarly Fig 4.3 is represented the behaviour of six curves of flexural mode.
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