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Abstract

In this dissertation we discuss numerical solutions for steady flow problems

involving nanofluids and regular fluids. The governing partial differential equations

(PDEs) are reduced into the system of non-linear ordinary differential equations

(ODEs), while considering appropriate similarity transformations. The numerical

solution of the resulting non-linear ODEs are obtained by using shooting method

with the fifth order Runge-Kutta time integration technique and the results are com-

pared with the built-in solver bvp4c of MATLAB. Graphs are drawn for the influence

of various parameters on the flow field. The present analysis shows the effects of

velocity ratio on the flow of the field and effect of thermophoresis parameter, Brow-

nian motion, Prandtl and Schmidt numbers on the temperature and concentration

profile, respectively. We find a good agreement between our results and the results

in the literature.



Preface

Nanofluids have become an active field of research due to its applications

in technological and industrial processes. Application of nanofluids includes mi-

croelectronics, fuel cells, biomedicine, engine cooling, domestic refrigerator, chiller,

heat exchanger, nuclear reactor coolant. Research on nanofluids have potential to

improve the heat transfer and energy efficiency in industrial and engineering areas

including industrial coolants, smart fluids, removal of geothermal power, nanofluids

in automobile fuels, brake fluids, car radiator coolant, microelectronics cooling, bio

and pharmaceutical industry. Assorted benefits of the applications of nanofluids in-

clude improved heat transfer, heat transfer system size reduction, minimal clogging,

microchannel cooling, and reduction of systems. It is important to mention here

that nanotechnology is widely used in the industry because the materials having

nanometer sized particles possess unique chemical and physical properties. The size

of these nanoparticles in diameter is less than 100nm. The arrangement of the dis-

sertation is as follows:

Chapter 1 is introductory in nature. It presents some basic definitions. Some

details about the shooting method and bvp4c method is also part of this chapter.

Chapter 2 is the review work of Meraj et al [1]. It is concerned with the numerical

solution for the stagnation-point flow of nanofluid over an exponentially stretching

sheet. First, we convert partial differential equations (PDEs) into a system of non-

linear ordinary differential equation (ODEs) and than solve this system of non-linear

ODEs by using shooting method and bvp4c. The numerical analysis of the obtained

results is presented at the end of this chapter.

Chapter 3 is the review work of Elbashbeshy et al [2]. It is concerned with the

effects of temperature-dependent viscosity on heat transfer over a continuous mov-

ing surface. First we convert partial differential equations (PDEs) into system of

non-linear ordinary differential equation (ODEs) and than solve this system of non-

linear ODEs by using shooting method and bvp4c. The numerical analysis of the

obtained results is presented at the end of this chapter.

Chapter 4 contains the conclusion of the thesis and future work.
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Chapter 1

Introduction

This chapter includes some basic definitions used in this research work.

1.1 Nanofluids

The nanofluids are comparatively new class of fluids which contain base fluid with

nanometer sized particle (1-100 nm) called nanoparticles, suspended within them.

The nanoparticles used in nanofluids are usually made of metals (Cu,Ag,Au,Al, Fe),

oxide ceramics (Al2O3, CuO, T iO2), nitride ceramics (AlN, SiN), carbide ceramics

(SiC, tiC), semiconductors and carbon nanotubes. In general, base fluids include

water, ethylene, glycol and oil. Nanofluids possess better thermophysical proper-

ties such as thermal conductivity, thermal diffusivity, viscosity and convective heat

transfer coefficients compared with base fluids like oil or water. Nanofluids are

valuable in many applications in heat transfer including microelectronics, fuel cells,

biomedicine, engine cooling, domestic refrigerator, chiller, heat exchanger and nu-

clear reactor coolant.
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1.2 Dynamic Viscosity

Dynamic viscosity is defined as the proportion of shear stress to the rate of strain.

It is denoted by µ.

µ =
shear stress

strain rate
(1.2.1)

The unit of dynamic viscosity is kg
ms

.

1.3 Kinematic Viscosity

The ratio of dynamic viscosity µ to the density ρ of the fluid is called kinematic

viscosity. Generally it is denoted by ν.

ν =
µ

ρ
(1.3.1)

The unit of kinematic viscosity is m2

s
.

1.4 Types of Flow

Following are some important types of flows given below.

1.4.1 Steady Flow

If the flow velocity differs from point to point but does not change with time

than the flow is called “ steady”.

1.4.2 Incompressible Flow

If the density ρ does not change with time and space than the flow is called

incompressible. Mathematically, it can be written as

dρ

dt
= 0. (1.4.1)

1.4.3 Laminar Flow

Laminar flow is a kind of fluid flow in which the fluid travels smoothly.
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1.5 Law of Conservation of Mass (Continuity Equa-

tion)

Let us consider a fixed volume in space (see Figure 1.1). The rate of increase of

mass inside the volume is
d

dt

∫
v

ρdV =

∫
v

∂ρ

∂t
dV, (1.5.1)

where V is the volume. Since the volume is fixed, so d
dt
can be use inside the integral.

The rate of mass flow away from the volume is the surface integral∫
A

ρV · dA, (1.5.2)

because of the positive sign ρV.dA is the outward flux. As a result of the law of

conservation of mass“rate of increase of mass within a fixed volume must be equal

to the rate of inflow throughout the boundaries”, that is∫
v

∂ρ

∂t
dV = −

∫
A

ρV.dA. (1.5.3)

Using the divergence theorem a surface integral can be transformed into the volume

integral and so ∫
A

ρV.dA =

∫
v

∇.(ρV )dV. (1.5.4)

From Eqs. (1.5.3) and (1.5.4), we get∫
v

[∂ρ
∂t

+∇.(ρV )
]
dV = 0. (1.5.5)

The above equation is satisfied for any volume which is achievable when the inte-

grand vanishes. This requires

∂ρ

∂t
+∇.(ρV ) = 0. (1.5.6)

The equation (1.5.6) is called Mass conservation equation.

3



Figure 1.1

1.6 Different Forms of Continuity Equation

ρ is constant for incompressible fluid so

∂ρ

∂t
= 0, (1.6.1)

so continuity equation becomes

∇ · (ρV) = 0, (1.6.2)

which represents a steady flow. Since ρ is constant therefore above equation becomes

ρ(∇ ·V) = 0. (1.6.3)

And ρ ̸= 0, so

∇ ·V = 0. (1.6.4)

1.7 Law of Conservation of Momentum

The law of conservation of momentum states that the total linear momentum of

an isolated system remains constant in spite of changes occurring inside the system.

In vector form, it can be written as

ρ
dV

dt
= ∇ ·T+ ρb, (1.7.1)
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where

V = velocity field,

T = stress tensor,

ρb = body force.

1.8 Some Common Useful Non-Dimensional Pa-

rameters

1.8.1 Reynolds Number

The Reynolds number is the ratio of inertial forces to viscous forces. Mathemat-

ically, it can be written as

Re =
inertial force

viscous force
=
ρvL

µ
=
vL

ν
, (1.8.1)

where

v = velocity of the object relative to the fluid,

L = characteristic length,

ρ = mass density,

µ = dynamic viscosity,

ν = kinematic viscosity.

1.8.2 Prandtl Number

The Prandtl number is defined as the fraction of momentum diffusivity to thermal

diffusivity. Mathematically, it can be expressed as

Pr =
momentum diffusivity

thermal diffusivity
=
ν

α
=
Cpµ

k
, (1.8.2)

where

ν = kinematic viscosity =µ
ρ
,

α = thermal diffusivity= k
ρCp

,

µ = dynamic viscosity,

k = thermal conductivity,
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Cp = specific heat,

ρ = density.

1.8.3 Schmidt number

Schmidt number is defined as the ratio of momentum diffusivity (viscosity) to

mass diffusivity. Mathematically, it can be written as

Sc =
viscous diffusion rate

mass diffusion rate
=

ν

D
, (1.8.3)

where

ν = kinematic viscosity,

D = mass diffusivity.

1.8.4 Nusselt Number

The fraction of convective to conductive heat transfer is called Nusselt number.

It is denoted by Nu. Mathematically, it can be expressed as

Nu =
convective heat transfer

conductive heat transfer
=
hL

k
, (1.8.4)

where

L = characteristic length,

h = convective heat transfer coefficient of the fluid,

k = thermal conductivity of the fluid.

1.8.5 Sherwood Number

The proportion of convective to diffusive mass transport is called Sherwood num-

ber. It is denoted by Sh. Mathematically, it can be written as

Sh =
convective mass transfer coefficient

diffusive mass transfer coefficient
=
kL

D
, (1.8.5)
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where

L = characteristic length,

D = mass diffusivity,

k = mass transfer coefficient.

1.9 Boundary Layer

A boundary layer is the layer of fluid in the immediate vicinity of a bounding

surface where the effects of viscosity are significant.

1.10 Laminar Boundary Layer

A laminar boundary layer is one where the flow takes place in layers, i.e., each

layer slides past the closest layers. When the Reynolds numbers are small than

laminar boundary layers are formed.

1.11 Thermal Boundary Layer

The layer of a liquid or gaseous heat-transfer agents between the free stream and

a heat-exchange surface. In this layer the temperature of the heat- transfer agent

changes from that of the wall to that of the free stream.

1.12 Numerical Techniques

1.12.1 Shooting Method for Non-Linear Differential Equa-

tion

We explain shooting method for second order ODE. We consider the following

ODE

y′′ = f(x, y, y′), a ≤ x ≤ b, (1.12.1)

7



with boundary conditions,

y(a) = B1, y(b) = B2. (1.12.2)

In shooting method first we reduce the boundary value problem (BVP) into an

initial value problem (IVP), i.e.

y′′ = f(x, y, y′) for a ≤ x ≤ b,

through

y(a) = B1, y′(a) = α(unknown). (1.12.3)

In Eq (1.12.3) α is unknown which has to be found.

limk→∞ y(b, α) = y(b) = B2. (1.12.4)

We produce a sequence of α1 , α2 ,α3 ,..... through α0 as the initial guess. The

iteration has to be prevented when

y(b, α)−B2 = 0. (1.12.5)

Eq. (1.12.5) is a nonlinear equation in variable α. To produce the sequence αk

we use the Newton-Raphson method. Only initial guess α0 is required in Newton’s

method and produces the left behind terms by

αk = αk−1 −
y(b, αk−1)−B2

dy
ds
(b, αk−1)

. (1.12.6)

For two or more variable the Newton-Raphson formula is

αk = αk−1 −
(y(b, αk−1)−B2)

| J |
. (1.12.7)

where | J | is the Jacobian matrix.

1.12.2 bvp4c

Any nonlinear boundary value problem (BVP) ordinary differential equation

(ODE) can be solved by using MATLAB bvp4c solver. The solver apply collocation

method. It initiates solution with an initial guess supplied at initial mesh points

and changes step-size (hence changes mesh) to obtain the particular accuracy. For

more detail see reference [3].
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Chapter 2

Numerical Solution for

Stagnation-Point Flow of

Nanofluid over an Exponentially

Stretching Sheet

The structure of this chapter is prepared as follows. In section 2.1, the introduction

is given. In sections 2.2 and 2.3, we study the problem and present the governing

equations. In section 2.4, we examine the numerical results with the help of tables

and graphs.

2.1 Introduction

This chapter is the review work of Mustafa et al [1]. The steady flow past a flat

plate with a uniform free stream was investigated by Blasius [4]. In distinguishing

the Blasius problem, the boundary layer flow over a continuously moving plate in a

ambient fluid was discovered by Sakiadis [5]. Crane [6] completed this concept for

a sheet which is stretched with a velocity linearly proportional to the distance from

the origin. The flow analysis over an exponentially stretching sheet has been scarcely

presented. Enhancement of heat transfer is important in improving performance of

9



electronic devices. Heat transfer and thermal energies of usual cooling agents is rel-

atively smaller. Thus it was tried to suspend nanoparticles into fluids to procedure

high effective heat transfer fluids. The term nanofluid was first used by Choi [10] to

refer to the fluids with suspended nanoparticles. Recent investigations on nanoflu-

ids have revealed that the thermal conductivity increases with decreasing grain size.

In recent years, nanofluids have attracted attention as a new generation of heat

transfer fluids in building heating, heat exchangers, plants, and automotive cooling

applications because of their excellent thermal performance. This chapter explains

the numerical solution for stagnation-point flow of nanofluid over an exponentially

stretching sheet. By using similarity transformation we reduce the governing par-

tial differential equations (PDEs) into ordinary differential equations(ODEs). Then

these equations are solved by shooting method with fifth order Runge-Kutta integra-

tion method. The solution is confirmed with the built-in solver bvp4c of MATLAB.

Graphs are integrated for the influence of singular parameters on the stream field.

2.2 Problem Formulation

In this section, we study the laminar boundary layer flow of a nanofluid in the given

region of stagnation-point flowing towards an exponentially stretching sheet placed

at y = 0. The x-axis is taken along the sheet and y-axis is taken perpendicular

to the sheet and the flow is restricted to y ≥ 0. We also incorporate the effects of

Brownian motion and thermophoresis. We denote Uw(x) = ae
x
L and U∞(x) = be

x
L

as the velocities of the sheet and external flow respectively. Let the temperature

and the nanoparticles concentration are to be taken as Tw = T∞ + ce
x
L and Cw =

C∞+de
x
L where T∞ and C∞ represents the ambient temperature and concentration

respectively. The conservation of mass and momentum are governed by the following

boundary layer equation
∂u

∂x
+
∂v

∂y
= 0, (2.2.1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+ νf

∂2u

∂y2
, (2.2.2)

10



where u is the velocity component along x-direction and v is the velocity component

along y-direction, νf is the kinematic viscosity. The boundary conditions for the

given problem are

u = Uw(x) = ae
x
L , v = 0, at y = 0, (2.2.3)

u→ Ue(x) = be
x
L , as y → ∞. (2.2.4)

We introduce the following dimensionless variables [1]

η =

√
a

2νfL
e

x
2Ly, u = ae

x
Lf ′(η), v = −

√
νfa

2L
e

x
2L [f(η) + (η)f ′(η)], (2.2.5)

∂u

∂x
=
a

L
e

x
Lf ′ +

a

2L
e

x
Ly

√
a

2νfL
e

x
2Lf ′′, u

∂u

∂x
=
a2

L
e

2x
L f ′2 +

a2

2L
e

2x
L y

√
a

2νfL
e

x
2Lf ′f ′′,

(2.2.6)

∂u

∂y
= ae

x
Lf ′′

√
a

2νfL
e

x
2L , v

∂u

∂y
= − a2

2L
e

2x
L ff ′′ − a2

2L
e

2x
L y

√
a

2νfL
e

x
2Lf ′f ′′, (2.2.7)

where
dU∞

dx
= be

x
L
1

L
, U∞

dU∞

dx
=
b2

L
e

2x
L , (2.2.8)

∂2u

∂y2
=

a2

2Lνf
e

2x
L f ′′′, νf

∂2u

∂y2
=
a2

2L
e

2x
L f ′′′, (2.2.9)

∂v

∂y
= − a

L
e

x
Lf ′ − a

2L
e

x
Ly

√
a

2νfL
e

x
2Lf ′′, (2.2.10)

u
∂u

∂x
+ v

∂u

∂y
=
a2

2L
e

2x
L [2f ′2 − ff ′′], (2.2.11)

U∞
dU∞

dx
+ vf

∂2u

∂y2
=
b2

L
e

2x
L +

a2

2L
e

2x
L f ′′′. (2.2.12)

By substituting the Eqs. (2.2.6) and (2.2.10) in Eq. (2.2.1), we obtain

a

L
e

x
Lf ′ +

a

2L
e

x
Ly

√
a

2νfL
e

x
2Lf ′′ − a

L
e

x
Lf ′ − a

2L
e

x
Ly

√
a

2νfL
e

x
2Lf ′′ = 0.
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Therefore, Eq. (2.2.1) is identically satisfied. Now, by substituting the Eqs. (2.2.11)

and (2.2.12) in Eq. (2.2.2), we obtain

a2

2L
e

2x
L [2f ′2 − ff ′′] =

b2

L
e

2x
L +

a2

2L
e

2x
L f ′′′,

[2f ′2 − ff ′′] =
2Le−

2x
L

a2

[b2
L
e

2x
L +

a2

2L
e

2x
L f ′′′

]
,

[2f ′2 − ff ′′] =
2b2

a2
+ f ′′′.

⇒ f ′′′ + ff ′′ − 2f ′2 + 2λ2 = 0.
(
where λ =

b

a

)
(2.2.13)

In the last step we convert the boundary conditions into the new variable.

When η = 0, then we get

u = ae
x
Lf ′(η). (2.2.14)

By equating Eqs. (2.2.3) and (2.2.14), we get

ae
x
L = ae

x
Lf ′(0),

f ′(0) = 1. (2.2.15)

When η = 0 then

v = −
√
νfa

2L
e

x
2Lf(0). (2.2.16)

By comparing Eqs. (2.2.3) and (2.2.16) we obtain

f(0) = 0. (2.2.17)

Both values of u compared when y → ∞ and η → ∞.

be
x
L = ae

x
Lf ′(∞),

f ′(∞) =
b

a
,

f ′(∞) = λ, (2.2.18)

where λ = b
a
is the ratio of the velocity of external flow to the velocity of sheet.

12



2.3 Transport Equation

The governing equations of energy and nanoparticles volume fraction are given by

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(∂T
∂y

)2
]
, (2.3.1)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
, (2.3.2)

where

T = temperature,

C = nanoparticles concentration,

α = thermal diffusivity,

DB = Brownian motion coefficient,

DT = thermophoretic diffusion coefficient,

τ = (ρC)p
(ρC)f

is the ratio of heat capacity of the nanoparticle material to heat capacity

of the fluid.

2.3.1 Prescribed Surface Temperature (PST)

In this case the boundary conditions are

T = Tw = T∞ + ce
x
L , C = Cw = C∞ + de

x
L , at y = 0, (2.3.3)

T → T∞, C → C∞, as y → ∞. (2.3.4)

Here c, d > 0 are constants.We introduce the dimensionless temperature θ(η) =
T − T∞
Tw − T∞

and nanoparticles concentration ϕ(η) = C − C∞
Cw − C∞

.

Now we convert the Eq. (2.3.1) into ODE. As given that

T = Tw = T∞ + ce
x
L ,

T = Tw − T∞ = ce
x
L ,

T = ce
x
L θ(η) + T∞, (2.3.5)
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∂T

∂x
=
c

L
e

x
L θ +

c

2L
e

x
Ly

√
a

2νfL
e

x
2L θ′, (2.3.6)

use T = Tw − T∞ = ce
x
L in Eq. (2.3.6) we obtain

∂T

∂x
=

(Tw − T∞)

L
θ +

(Tw − T∞)

2L
y

√
a

2νfL
e

x
2L θ′,

u
∂T

∂x
=
a(Tw − T∞)

L
e

x
Lf ′θ +

a(Tw − T∞)

2L
e

x
Ly

√
a

2νfL
e

x
2L θ′f ′, (2.3.7)

∂T

∂y
= (Tw − T∞)

√
a

2νfL
e

x
2L θ′,

v
∂T

∂y
= −a(Tw − T∞)

2L
e

x
Lfθ′ − a(Tw − T∞)

2L
e

x
Ly

√
a

2νfL
e

x
2L θ′f ′ (2.3.8)

u
∂T

∂x
+ v

∂T

∂y
=
a(Tw − T∞)

L
e

x
Lf ′θ − a(Tw − T∞)

2L
e

x
Lfθ′. (2.3.9)

∂2T

∂y2
=

a

2vfL
(Tw − T∞)e

x
L θ′′, (2.3.10)

∂C

∂y

∂T

∂y
=

a

2vfL
(Tw − T∞)(Cw − C∞)e

x
L θ′ϕ′, (2.3.11)

(∂T
∂y

)2

=
a

2vfL
(Tw − T∞)2e

x
L θ′2. (2.3.12)

By substituting the Eqs. (2.3.9) to (2.3.12) in Eq. (2.3.1), we obtain

a(Tw − T∞)

L
e

x
Lf ′θ − a(Tw − T∞)

2L
e

x
Lfθ′ =α

a

2vfL
(Tw − T∞)e

x
L θ′′ + τDB

a

2νfL
(Tw − T∞)

(Cw − C∞)e
x
L θ′ϕ′ + τ

DT

T∞

a

2νfL
(Tw − T∞)2e

x
L θ′2

a(Tw − T∞)

2L
e

x
L [2f ′θ−fθ′] = a(Tw − T∞)

2L
e

x
L

[
α

νf
θ′′+

τDB(Cw − C∞)

νf
θ′ϕ′+

τDT (Tw − T∞)

νfT∞
θ′2

]
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2f ′θ − fθ′ =
α

νf
θ′′ +

(ρC)pDB(Cw − C∞)

(ρC)fνf
θ′ϕ′ +

(ρC)pDT (Tw − T∞)

(ρC)fνfT∞
θ′2 (2.3.13)

Here Pr =
νf
α

is the Prandtl number, Nb = (ρC)pDB(Cw−C∞)

(ρC)fνf
is the Brownian mo-

tion parameter and Nt = (ρC)pDT (Tw−T∞)

(ρC)fνfT∞
is the thermophoresis parameter. After

substituting all these values in Eq. (2.3.13), it becomes

1

Pr
θ′′ + fθ′ − 2f ′θ +Nbθ

′ϕ′ +Ntθ
′2 = 0. (2.3.14)

Now we convert the Eq. (2.3.2) into ODE.

As given that

C = Cw = C∞ + de
x
L ,

C = Cw − C∞ = de
x
L ,

C = de
x
Lϕ(η) + C∞, (2.3.15)

∂C

∂x
=
d

L
e

x
Lϕ+

d

2L
e

x
Ly

√
a

2νfL
e

x
2Lϕ′ (2.3.16)

Use C = Cw − C∞ = de
x
L in Eq. (2.3.16), we obtain

∂C

∂x
=

(Cw − C∞)

L
ϕ+

(Cw − C∞)

2L
y

√
a

2νfL
e

x
2Lϕ′,

u
∂C

∂x
=
a(Cw − C∞)

L
e

x
Lf ′ϕ+

a(Cw − C∞)

2L
e

x
Ly

√
a

2νfL
e

x
2Lϕ′f ′. (2.3.17)

∂C

∂y
= (Cw − C∞)

√
a

2νfL
e

x
2Lϕ′,

v
∂C

∂y
= −a(Cw − C∞)

2L
e

x
Lfϕ′ − a(Cw − C∞)

2L
e

x
Ly

√
a

2νfL
e

x
2Lϕ′f ′. (2.3.18)

u
∂C

∂x
+ v

∂C

∂y
=
a(Cw − C∞)

L
e

x
Lf ′ϕ− a(Cw − C∞)

2L
e

x
Lfϕ′. (2.3.19)

∂2C

∂y2
=

a

2vfL
(Cw − C∞)e

x
Lϕ′′. (2.3.20)

DT

T∞

∂2T

∂y2
=

DTa

T∞2νfL
(Tw − T∞)e

x
L θ′′. (2.3.21)
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By substituting the Eqs. (2.3.19) to (2.3.21) in Eq. (2.3.2), we obtain

a(Cw − C∞)

L
e

x
Lf ′ϕ− a(Cw − C∞)

2L
e

x
Lfϕ′ =DB

a

2νfL
(Cw − C∞)e

x
Lϕ′′

+
DTa

T∞2νfL
(Tw − T∞)e

x
L θ′′

a(Cw − C∞)

2L
e

x
L [2f ′ϕ− fϕ′] =

a(Cw − C∞)

2L
e

x
L

[
DB

νf
ϕ′′ +

DT (Tw − T∞)

T∞(Cw − C∞)νf

]

2f ′ϕ− fϕ′ =
DB

νf
ϕ′′ +

DT (Tw − T∞)

T∞(Cw − C∞)νf

Dividing both sides of above Eq. by
νf
DB

it becomes

νf
DB

[2f ′ϕ− fϕ′] = ϕ′′ +
DT (Tw − T∞)

T∞(Cw − C∞)DB

θ′′. (2.3.22)

Here Sc =
νf
DB

is the Schmidt number and Nt

Nb
= DT (Tw−T∞)

T∞(Cw−C∞)DB
is the ratio of ther-

mophoresis parameter to the Brownian motion parameter. After substituting all

these values in Eq. (2.3.22), it becomes

ϕ′′ + Sc(fϕ′ − 2f ′ϕ) +
Nt

Nb

θ′′ = 0. (2.3.23)

Now we convert the boundary conditions into the new form. From Eqs. (2.3.3) and

(2.3.4), we know that

T = Tw = T∞ + ce
x
L , C = Cw = C∞ + de

x
L , at y = 0,

T → T∞, C → C∞, as y → ∞.

As given that

η =
√

a
2νfL

e
x
2Ly, when y = 0 then η = 0.

T = (Tw − T∞)θ(η) + T∞, (2.3.24)

C = (Cw − C∞)ϕ(η) + C∞. (2.3.25)
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Substituting η = 0 in Eq. (2.3.24) and both values of T compared when y = 0 and

η = 0

ce
x
L + T∞ = (Tw − T∞)θ(0) + T∞,

we know that ce
x
L = Tw − T∞. So above equation becomes

θ(0) = 1. (2.3.26)

Substituting as η = 0 in Eq. (2.3.25) and both values of C compared when y = 0

and η = 0

de
x
L + C∞ = (Cw − C∞)ϕ(0) + C∞,

we know that de
x
L = Cw − C∞. So above equation becomes

ϕ(0) = 1. (2.3.27)

Substituting η = ∞ in Eq. (2.3.24) and both values of T compared when y → ∞
and η → ∞

T∞ = (Tw − T∞)θ(∞) + T∞,

after simplifying the above equation we obtain

θ(∞) = 0. (2.3.28)

Substituting as η → ∞ in Eq. (2.3.25) and both values of C compared when y → ∞
and η → ∞

C∞ = (Cw − C∞)ϕ(∞) + C∞,

after simplifying the above equation we obtain

ϕ(∞) = 0. (2.3.29)

The skin friction coefficient Cf =
µ( ∂u

∂y
)y=0

ρU2
w

ρU2
wCf = µ(

∂u

∂y
) (2.3.30)
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∂u

∂y
= ae

x
L

√
a

2νfL
e

x
2Lf ′′(η) (2.3.31)

U2
w = a2e

2x
L

Put Eq. (2.3.31) into Eq. (2.3.30) we get

ρa2e
2x
L Cf = µae

x
L

√
a

2νfL
e

x
2Lf ′′(η)

Dividing both sides of above Eq. by a2e
x
2L after simplifying it becomes

ρCf =
µ

ae
x
L

√
a

2νfL
e

x
2Lf ′′(η)

Multiplying both sides of above Eq. by
√

a
2νfL

e
x
2L and after simplification it becomes√

a

2νfL
e

x
2LρCf =

µ

2νfL
f ′′(η)

Inserting ρ = µ
νf

in above equation and after simplifying it becomes√
a

2νfL
e

x
2LCf =

1

2L
f ′′(η) (2.3.32)

Multiplying both sides of Eq. (2.3.32) by 2L we get√
2aL

νf
e

x
2LCf = f ′′(η)

√
2ReCf = f ′′(η), (2.3.33)

at y = 0 ⇒ η = 0

Put η = 0 in Eq. (2.3.33), we get√
2ReCf = f ′′(0),

(
Rex =

Uwx

νf
is the local Reynolds number

)
. (2.3.34)

The local Nusselt number

Nu = −
x(∂T

∂y
)y=0

(Tw − T∞)
(2.3.35)

∂T

∂y
= (Tw − T∞)

√
a

2νfL
e

x
2L θ′(η), (2.3.36)
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Put Eq. (2.3.36) in Eq. (2.3.35), after simplifying we get

Nu = −x
√

a

2νfL
e

x
2L θ′(η) (2.3.37)

Multiplying both sides of Eq. (2.3.37) by 1√
x
we get

1√
x
Nu = −

√
ax

2νfL
e

x
2L θ′(η)√

2L

x
Nu

√
νf
ax
e−

x
2L = −θ′(η) (2.3.38)

at y = 0 then η = 0

Put η = 0 in Eq. (2.3.38) we get√
2L

x

Nu

Re
1/2
x

= −θ′(0) = Nur,
(
Rex =

Uwx

νf
is the local Reynolds number

)
.

(2.3.39)

The local Sherwood number Sh = − x( ∂C
∂y

)y=0

(Cw−C∞)
,

Sh = −
x(∂C

∂y
)y=0

(Cw − C∞)
, (2.3.40)

∂C

∂y
= (Cw − C∞)

√
a

2νfL
e

x
2Lϕ′(η), (2.3.41)

Put Eq. (2.3.41) in Eq. (2.3.40) after simplifying we get

Sh = −x
√

a

2νfL
e

x
2Lϕ′(η),

Multiplying both sides of above Eq.by 1√
x
we get

1√
x
Sh = −

√
ax

2νfL
e

x
2Lϕ′(η),√

2L

x
Sh

√
νf
ax
e−

x
2L = −ϕ′(η), (2.3.42)

at y = 0 then η = 0

Putting η = 0 in Eq. (2.3.42) we get√
2L

x

Sh

Re
1/2
x

= −ϕ′(0) = Shr,
(
Rex =

Uwx

νf
is the local Reynolds number

)
. (2.3.43)
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2.4 Numerical Results and Discussion

Numerical solution of the governing ordinary differential equations (ODEs) for dif-

ferent values of thermophoresis parameter Nt, Brownian motion parameter Nb,

Prandtl number Pr and Schmidt number Sc is obtained by using the shooting

method with fifth order Runge-Kutta integration method and MATLAB built-in

solver bvp4c. To examine the effects of different parameters we have constructed

Tables 2.1 and 2.2. We have also drawn Figures 2.1 - 2.8 for different parameters.

2.4.1 Velocity, Heat and Mass Transfer Rates

In Table 2.1 the dimensionless velocity gradient on the sheet is estimated for dif-

ferent values of λ. Hence skin friction coefficient is compared by assuming suitably

large values of λ. In Table 2.2 we have given the values of Nur and Shr consequent

to singular values of Pr and Sc. We observed that increase in Pr and Sc reduce

the thermal boundary layer thickness and curves become steeper. The reduced Nus-

selt and Sherwood numbers, being proportional to the corresponding initial slopes,

increase with an increase in Pr and Sc respectively.

λ
√

2ReCf = f ′′(0)

shooting method bvp4c

0 -1.2844 -1.2818

0.1 -1.2540 -1.2536

0.2 -1.1952 -1.1951

0.5 -0.8798 -0.8798

0.8 -0.3979 -0.3978

1.2 0.4521 0.4515

Table 2.1: Numerical values of skin friction coefficient f ′′(0) for different values of

velocity ratio parameter λ.
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Pr Sc Nur = −θ′(0) Shr = −ϕ′(0)

shooting method bvp4c shooting method bvp4c

0.4 1 0.7577 0.7499 0.9801 0.9740

0.7 1.0356 1.0343 0.7823 0.7787

1.0 1.2604 1.2602 0.6149 0.6127

1.2 1.3907 1.3907 0.5151 0.5133

1.0 0.4 1.2800 1.2810 -0.0946 0.1173

0.7 1.2686 1.2686 0.2983 0.2922

1.2 1.2561 1.2559 0.7983 0.7969

1.5 1.2508 1.2505 1.0439 1.0432

Table 2.2: Numerical values of Nur and Shr for different values of Pr and Sc when

λ = 0.2,Nb = Nt = 0.1.

2.4.2 Velocity Profile

The effects of velocity profile for different values of velocity ratio λ are shown in

Figure 2.1. It is clear from Figure 2.1 that when λ > 1 the velocity increases and

boundary layer thickness decreases. Figure 2.1 also shows that when λ < 1 the flow

of boundary layer structure is reversed. Here the sheet velocity Uw(x) exceeds the

velocity of external stream U∞(x). It is also noticed that when λ = 1 boundary

layer is not formed.

2.4.3 Temperature Profiles

The effects of Brownian motion and thermophoresis parameters on the temperature

is shown in Figure. 2.2. It is noticed that the temperature and the thermal bound-

ary layer thickness increases by increasing Nb and Nt. The behavior of Prandtl

number Pr on the temperature θ is shown in Figure. 2.3. A larger Prandtl number

result in a comparatively lower thermal diffusivity. As expected, the variation in the

temperature is more obvious for smaller values of Pr than its larger values. Figure.
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Figure 2.1: Influence of λ on f ′(η).

2.4 illustrates the effect of velocity ratio λ on the temperature θ. The temperature

and the thermal boundary layer thickness decrease with an increase in λ .
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Figure 2.2: Influence of Nb and Nt on θ(η).
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2.4.4 Nanoparticles Concentration Profiles

Plotting of the concentration function against η for different values of the Brownian

motion parameter Nb is shown in Figure. 2.5. We observed that concentration ϕ is

only affected for the values of Nb in the range 0 < Nb ≤ 2. Figure. 2.6 illustrate

the influence of thermophoresis parameter Nt on the concentration boundary layer.

It is initiate that concentration ϕ is increase by increasing Nt. This conclusion is

recognized to the fact that an increase in Nt considerably increase the mass flux

due to temperature gradient. Figure. 2.7 shows the behaviour of Schmidt number

Sc on the concentration field ϕ. As Sc steadily increases, this corresponds to a

weaker molecular diffusivity and thinner concentration boundary layer. Figure. 2.8

illustrates that the influence of λ on the nanoparticles concentration ϕ is almost

similar to that accounted for the temperature θ.
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Figure 2.5: Influence of Nb on ϕ(η).
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Chapter 3

The effects of temperature-

dependent viscosity on heat

transfer over a continuous moving

surface

Structured of this chapter is prepared as follows. In section 3.1, the introduction is

given. In section 3.2, we study the problem and present the governing equations. In

section 3.3, we examine the numerical results with the help of graphs.

3.1 Introduction

This chapter is the review of Elbashbeshy et al [21]. This chapter explain the ef-

fects of temperature-dependent viscosity on heat transfer over a continuous moving

surface. By using similarity transformation, we reduce the governing partial dif-

ferential equations(PDEs) into ordinary differential equations(ODEs). Then these

equations have been solved by shooting method with fifth order Runge-Kutta inte-

gration method. The solution have been confirmed with the built-in solver bvp4c of

MATLAB.
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3.2 Problem Formulation

In this section we consider the steady two dimensional laminar flow on a continuous

stretching surface with uniform surface temperature Tw and velocity Uw moving axi-

ally through a stationary fluid. The conservation equations of the laminar boundary

layer are given in [22] and [23] as

∂u

∂x
+
∂v

∂y
= 0, (3.2.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ∞

∂

∂y

(
µ
∂u

∂y

)
, (3.2.2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρ∞Cp

∂2T

∂y2
, (3.2.3)

where u is the velocity component along x-direction and v is the velocity component

along y-direction, T is the temperature inside the boundary layer, ρ∞ is the density

away from the hot plate, µ is the dynamic viscosity, k is the thermal conductivity,

Cp is the specific heat at constant pressure and T∞ is the free stream temperature.

The boundary conditions for the given problem are

u = Uw, v = 0, T = Tw at y = 0, u = 0, T = T∞ as y → ∞. (3.2.4)

For a viscous fluid, Ling and Dybbs [22] suggest a viscosity dependence on temper-

ature T of the form

µ =
µ∞

[1 + γ(T − T∞)]
, (3.2.5)

so that viscosity is an inverse linear function of the temperature T . Equation (3.2.5)

can be written as
1

µ
= α(T − Tr), (3.2.6)

where

α =
γ

µ∞
and Tr =

T∞ − 1

γ
(3.2.7)

In the above Eq. (3.2.7), both α and Tr are constant and their values depend on

the reference state and γ is a thermal property of the fluid.
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We introduce the following dimensionless variables

η = y

√
Uw

2ν∞x
, ν∞ =

µ∞

ρ∞
, ψ(x, y) =

√
2ν∞Uwxf(η), (3.2.8)

θ(η) =
T − T∞
Tw − T∞

(3.2.9)

We choose a stream function ψ(x, y) as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.2.10)

Now we use Eqs. (3.2.8) and (3.2.10) to find u and v.

u =
√
2ν∞Uwxf

′(η)
∂η

∂y

u =
√

2ν∞Uwxf
′(η)

∂

∂y

(
y

√
Uw

2ν∞x

)

u = Uwf
′(η) (3.2.11)

v = − ∂

∂x
(
√
2ν∞Uwxf(η))

v = −
√

2ν∞Uwx
∂

∂x
(f(η))− f(η)

∂

∂x
(
√
2ν∞Uwx)

v = −
√
2ν∞Uwxf

′(η)
∂η

∂x
− f(η)

1

2
√
2ν∞Uwx

2ν∞Uw

v = −
√
2ν∞Uwxf

′(η)
∂

∂x

(
y

√
Uw

2ν∞x

)
− ν∞Uw√

2ν∞Uwx
f(η)

v =
Uwy

2x
f ′(η)− ν∞Uw√

2ν∞Uwx
f(η) (3.2.12)

∂u

∂x
= − U

3
2
w y

2
3
2
√
ν∞x

3
2

f ′′(η), u
∂u

∂x
= − U

5
2
w y

2
3
2
√
ν∞x

3
2

f ′(η)f ′′(η), (3.2.13)
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∂u

∂y
=

U
3
2
w√
ν∞x

f ′′(η), v
∂u

∂y
=

U
5
2
w y

2
3
2
√
ν∞x

3
2

f ′(η)f ′′(η)− U2
w

2x
f(η)f ′′(η), (3.2.14)

u
∂u

∂x
+ v

∂u

∂y
= −U

2
w

2x
f(η)f ′′(η) (3.2.15)

∂

∂y

(
µ
∂u

∂y

)
=

∂

∂y

(
µ

U
3
2
w√
ν∞x

f ′′(η)
)

∂

∂y

(
µ
∂u

∂y

)
=

µU2
w

2ν∞x
f ′′′(η) +

µU2
wθ

′

2ν∞x(θr − θ)

1

ρ∞

∂

∂y

(
µ
∂u

∂y

)
=

µU2
w

2ν∞xρ∞

(
f ′′′ +

θ′

θr − θ
f ′′

)
(3.2.16)

Therefore, Eq. (3.2.1) is identically satisfied. Now, by substituting the Eqs.

(3.2.15) and (3.2.16) in Eq. (3.2.2) we obtain

−U
2
w

2x
f(η)f ′′(η) =

µU2
w

2ν∞xρ∞

(
f ′′′ +

θ′

θr − θ
f ′′

)
− 1

µ
ρ∞ν∞ff

′′ = f ′′′ +
θ′

θr − θ
f ′′.

After simplifying we get,

f ′′′ +
θr − θ

θr
ff ′′ +

θ′

θr − θ
f ′′ = 0. (3.2.17)

Where

θ(η) =
T − T∞
Tw − T∞

T = Tw − T∞θ(η) + T∞

∂T

∂x
= − Uwy

2
3
2ν∞

√
Uw

ν∞x
x2

(Tw − T∞)θ′(η), u
∂T

∂x
= − U

3
2
w y

2
3
2
√
ν∞x

3
2

(Tw − T∞)f ′(η)θ′(η),

(3.2.18)

∂T

∂y
=

√
Uw

2ν∞x
(Tw−T∞)θ′(η), v

∂T

∂y
=

U
3
2
w y

2
3
2
√
ν∞x

3
2

(Tw−T∞)f ′(η)θ′(η)−Uw

2x
(Tw−T∞)f(η)θ′(η),

(3.2.19)

u
∂T

∂x
+ v

∂T

∂y
= −Uw

2x
(Tw − T∞)f(η)θ′(η) (3.2.20)
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∂2T

∂y2
=

Uw

2ν∞x
(Tw − T∞)θ′′(η), (3.2.21)

k

ρ∞Cp

∂2T

∂y2
=

k

ρ∞Cp

Uw

2ν∞x
(Tw − T∞)θ′′(η). (3.2.22)

Now, by substituting the Eqs. (3.2.20) and (3.2.22) in Eq. (3.2.3) we obtain

−Uw

2x
(Tw − T∞)f(η)θ′(η) =

k

ρ∞Cp

Uw

2ν∞x
(Tw − T∞)θ′′(η)

After simplifying we get,

θ′′ + Prfθ′ = 0. (3.2.23)

where Pr = ρ∞Cpν∞
k

.

Now we convert boundary condition from Eq. (3.2.4). From Eq. (3.2.11)

u = Uwf
′(η)

then compare both values when y = 0 and η = 0, which is

Uwf
′(η) = uw

we get

f ′(0) = 1. (3.2.24)

Putting η = 0 we obtain

v =
Uwy

2x
f ′(0)− ν∞Uw√

2ν∞Uwx
f(0) (3.2.25)

By comparing Eqs. (3.2.4) and (3.2.25) we obtain

f(0) = 0. (3.2.26)

Again from Eq. (3.2.4)

T = Tw, when y = 0

T = (Tw − T∞)θ(η) + T∞ (3.2.27)

after comparing both values of T we get,

θ(0) = 1. (3.2.28)
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u = 0 when y → ∞ and from Eq. (3.2.11) when η → ∞, then

u = Uwf
′(∞),

by comparing both values we get,

f ′(∞) = 0. (3.2.29)

Again from Eq. (3.2.4)

T = Tw, when y → ∞

and from Eq. (3.2.27) when η → ∞ then

T = (Tw − T∞)θ(η) + T∞

by comparing both values we get,

θ(∞) = 0 (3.2.30)

Eq. (3.2.24), Eq. (3.2.26), Eq. (3.2.28) to Eq. (3.2.30) are new boundary conditions

subjected to Eq. (3.2.4)

f(0) = 0, f ′(0) = 1, θ(0) = 1, η = 0 (3.2.31)

f ′(∞) = 0, θ(∞) = 0, as η → ∞ (3.2.32)

The skin friction coefficient is defined by

Cf =
2τw
ρ∞U2

w

,

where the shearing stress on the plate is defined by

τw = µ(
∂u

∂y
) |y=0

ρ∞U
2
wCf = 2µUw

√
Uw

2ν∞x
f ′′(η)

after simplifying we get,

CfR
1
2
e =

√
2θr

θr − 1
f ′′(0) (3.2.33)
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The local Nusselt number for heat transfer in the present case is defined by

Nu =
−x(∂T

∂y
) |y=0

Tw − T∞

Nu =
−x

(Tw − T∞)
(Tw − T∞)

√
Uw

2ν∞x
θ′(η)

Nu = −
√
Uwx

2ν∞
θ′(η)

after simplifying we get

NuR
− 1

2
e = −θ′(0). (3.2.34)

3.3 Numerical Results and Discussion

The nonlinear ordinary differential equation (ODEs) given in Eqs. (3.2.17) and

(3.2.23) subject to the boundary condition in Eqs. (3.2.31) and (3.2.32) are solved

numerically by using shooting method and MATLAB built-in solver bvp4c. Figures

3.1 and 3.2 show the variation of the dimensionless velocity f ′(η) for singular values

of θr for both air and water. It is found that the f ′(η) of air and water increases

as the viscosity/temperature parameter θr decreases, whereas decreasing the value

of θr to four and two, in fact of increasing the viscosity within the boundary layer,

tends to increase the velocity value there instead of reducing the velocities within

the layer due to moving the surface. Figures 3.3 and 3.4 show the variation of

the dimensionless temperature parameter θ(η) for different values of θr for both

air and water. It is found that for air, the temperature increases greatly as the

viscosity/temperature parameter θr increases, whereas for water the temperature

increases slightly as θr increases, then the temperature gradient θ′(0) at the stretched

surface is decreased.
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Figure 3.1: Velocity distribution as a function of η for various value of θr at Pr = 0.7.
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Figure 3.2: Velocity distribution as a function of η for various value of θr at Pr = 7.
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Figure 3.3: Temperature distribution as a function of η for various value of θr at

Pr = 0.7.
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Figure 3.4: Temperature distribution as a function of η for various value of θr at

Pr = 7.
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Chapter 4

Conclusion and Outlook

Numerical solution for stagnation-point flow of nanofluid over an exponentially

stretching sheet and the effects of temperature-dependent viscosity on heat transfer

over a continuous moving surface are studied. The developed mathematical model is

solved for the numerical solution by fifth order Runge-Kutta method using a shoot-

ing technique and verify the results with bvp4c. The key point of this work are as

below.

• Temperature and thermal boundary layer thickness increase with an increase

in Nb and Nt.

• Temperature and thermal boundary layer thickness decrease with an increase

in λ.

• Nanoparticle volume fraction decreases with an increase in Sc.

• The velocity f ′(η) increases with a decrease of θr for both air and water.

• The temperature θ(η) increases with an increase of θr for both air and water.

We have only considered the steady flow cases, but unsteady flow can be done

in future. The same is true for compressible boundary layer flow. Moreover, the

Keller-Box method can be developed to solve the incompressible and compressible

flows. In future one can also use other numerical open source software chebfun.
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Appendix

MATLAB code to solve non-linear ODE

function shooting − Asma− numeric

global XSTART XSTOP H Pr lambda Nt Nb Sc

XSTART = 0; XSTOP = 4.4;

Pr = 1.0;

λ = 0.2;

Nt = 0.5;

Nb = 0.5;

Sc = 1.0;

H = 0.1;

freq = 1;

u = [−1 − 1 1];

x = XSTART ;

u = newtonRaphson2(@residual, u);

[xSol, ySol] = runKut5(@dEqs, x, inCond(u), XSTOP,H);

printSol(xSol,ySol,freq)

plot(xSol, ySol(:,4))

functionF = dEqs(x, y)

global lambda Pr Sc Nt Nb

yy1 = 2 ∗ y(2)2 − y(1) ∗ y(3)− 2 ∗ lambda2;
yy2 = Pr ∗ (2 ∗ y(2) ∗ y(4)− y(1) ∗ y(5)−Nb ∗ y(5) ∗ y(7)−Nt ∗ y(5)2);
yy3 = Sc ∗ (2 ∗ y(2) ∗ y(6)− y(1) ∗ y(7))− (Nt/Nb) ∗ yy2;
F = zeros(1, 7);

F (1) = y(2);

F (2) = y(3);

F (3) = yy1;
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F (4) = y(5);

F (5) = yy2;

F (6) = y(7);

F (7) = yy3;

functiony = inCond(u)

y = [0 1 u(1) 1 u(2) 1 u(3)];

functionr = residual(u)

global XSTART XSTOP H lambda

r = zeros(length(u), 1);

x = XSTART ;

[xSol, ySol] = runKut5(@dEqs, x, inCond(u), XSTOP,H);

lastRow = size(ySol, 1);

r(1) = ySol(lastRow, 2)− lambda;

r(2) = ySol(lastRow, 4);

r(3) = ySol(lastRow, 6);

Subroutines for the Shooting Method

Subroutine of Newton-Raphson method

functionroot = newtonRaphson2(func, x, tol)

ifnargin == 2; tol = 1.0e4 ∗ eps; end
ifsize(x, 1) == 1;x = x′; end

fori = 1 : 10

[jac, f0] = jacobian(func, x);

ifsqrt(dot(f0, f0)/length(x)) < tol

root = x;return

end

dx = (jac)/(−f0);
x = x+ dx;

ifsqrt(dot(dx, dx)/length(x)) < tol ∗max(abs(x), 1.0)
root = x; return
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end

disp(i)

end

error(’Too many iterations’)

function[jac, f0] = jacobian(func, x)

h = 1.0e− 4;

n = length(x);

jac = zeros(n);

f0 = feval(func, x);

fori = 1 : n

temp = x(i);

x(i) = temp+ h;

f1 = feval(func, x);

x(i) = temp;

jac(:, i) = (f1− f0)/h;

end

Subroutine of Runge-Kutta method.

function[xSol, ySol] = runKut5(dEqs, x, y, xStop, h, eTol)

if size(y,1) ¿ 1 ;y = y′; end ifnargin < 6; eTol = 1.0e− 6; end

n = length(y);

A = [01/53/103/517/8];

B = [0 0 0 0 0 1/5 0 0 0 0 3/40 9/40 0 0 0 3/10 − 9/10 6/5 0 0

−11/54 5/2 − 70/27 35/27 0 1631/55296 175/51

575/13824 44275/110592 253/4096];

C = [37/3780250/621125/5940512/1771];

D = [2825/27648018575/4838413525/55296277/143361/4];

xSol = zeros(2, 1); ySol = zeros(2, n);

xSol(1) = x; ySol(1, :) = y;

stopper = 0; k = 1;
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forp = 2 : 5000

K = zeros(6, n);

K(1, :) = h ∗ feval(dEqs, x, y);
fori = 2 : 6

BK = zeros(1, n);

forj = 1 : i− 1

BK = BK +B(i, j) ∗K(j, :);

end

K(i, :) = h ∗ feval(dEqs, x+ A(i) ∗ h, y +BK);

end

dy = zeros(1, n);E = zeros(1, n);

fori = 1 : 6

dy = dy + C(i) ∗K(i, :);

E = E + (C(i)−D(i)) ∗K(i, :);

end

e = sqrt(sum(E. ∗ E)/n);
ife <= eTol

y = y + dy; x = x+ h;

k = k + 1;

xSol(k) = x; ySol(k, :) = y;

ifstopper == 1;

break

end

end

ife = 0;hNext = 0.9 ∗ h ∗ (eTol/e)0.2;
else;

hNext = h; end

if(h > 0) == (x+ hNext >= xStop)

hNext = xStop− x; stopper = 1;

end

h = hNext;

end
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Chapter 2 (bvp4c Codes)

This MATLAB program of chapter 2 to find the solution of the numerical and se-

ries solutions for stagnation-point flow of nanofluid over an exponentially stretching

sheet using bvp4c method.

function power − law − problem

clear all

close all

Pr = 1.0;

lambda = 0.2;

Nt = 0.1;

Nb = 0.1;

Sc = 1.0;

functionysol = bvpex1(x, y)

yy1 = 2 ∗ y(2)2 − y(1) ∗ y(3)− 2 ∗ lambda(i)2;
yy2 = Pr(i) ∗ (2 ∗ y(2) ∗ y(4)− y(1) ∗ y(5)−Nb(i) ∗ y(5) ∗ y(7)−Nt(i) ∗ y(5)2);
yy3 = Sc(i) ∗ (2 ∗ y(2) ∗ y(6)− y(1) ∗ y(7))− (Nt(i)/Nb(i)) ∗ yy2;
ysol = [y(2); y(3); yy1; y(5); yy2; y(7); yy3];

end functionres = bcex1(y0, yinf)

res = [y0(1); y0(2)−1; yinf(2)−lambda(i); y0(4)−1; yinf(4); y0(6)−1; yinf(6)];

end sol1 = bvpinit(linspace(0, 5, 15), [1000000]);

sol = bvp4c(@bvpex1,@bcex1, sol1);

x = sol.x;

y = sol.y;

value = deval(sol, o)

end

Chapter 3 (bvp4c Codes)

This MATLAB program of chapter 3 to find the effects of temperature-dependent

viscosity on heat transfer over a continuous moving surface using bvp4c method.
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function power − law − problem

clear all

close all

Pr = 0.7;

thetar = 2;

functionysol = bvpex1(x, y)

yy1 = (y(4)− thetar)/(thetar) ∗ y(1) ∗ y(3)− (y(5))/(thetar − y(4)) ∗ y(3);
yy2 = −Pr ∗ y(1) ∗ y(5);
ysol = [y(2); y(3); yy1; y(5); yy2];

end

functionres = bcex1(y0, yinf)

res = [y0(1); y0(2)− 1; yinf(2); y0(4)− 1; yinf(4)];

end

sol1 = bvpinit(linspace(0, 6, 25), [1 0 0 0 0]);

sol = bvp4c(@bvpex1,@bcex1, sol1);

x = sol.x;

y = sol.y;

figure(1)

plot(x, y(2, :)

xlabel(′η′)

ylabel(′df/dη′)

end

end
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