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Abstract

Two-sided matching problem is well known in mathematical economics. The pri-

mary objective of two-sided matching problem is the formation of stable partnership

between set of participants. The marriage model and the assignment game are con-

sidered two standard models in the theory of two-sided matching problems. Both

models are given as two disjoint sets of participants, M and W , and have to match

or assign the participants of M to the participants of W . The goal is to find a

stable matching between the participants of M and the participants of W . The

exact definition of what constitutes a stable matching depends on the model under

consideration. Participants in the marriage model are rigid because no participant

will negotiate on side payments. While, in assignment game participants are flexi-

ble because side payment are permitted between participants of both sets. In this

thesis, we generalize a one-to-one matching model from linear valuation functions to

non-linear valuation functions and bounded side payments. We use algorithmic ap-

proach to show the existence of pairwise stable outcome for our one-to-one matching

model. Our model includes discrete one-to-one matching model of Ali and Farooq.
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Preface

Over the last few decades, a lot of research has been done in the two-sided matching

problem by a large number of scholars. In a two-sided matching problem, the set of

participants are divided into two disjoint sets, say M and W . The primary objective

of two-sided matching problem is the formation of stable partnership between the

participants of M and W . A matching X, is a one-to-one correspondence between

the participant of one set to the participant of other set. Main requirement in a

two-sided matching problems is that of stability of matchings.

The concept of finding two-sided stable matching was first given by Gale and Shap-

ley [7] in their paper “College Admissions and the Stability of Marriage”. In the

course of presenting an algorithm for matching applicants to college places, they

introduced and solved stable marriage problem. This problem consists two disjoint

sets of participants M and W . Each participant ranks a subset of other set of

participants in order of preferences. The aim is to form a one-to-one matching X

of the participants such that no two participants would prefer each other to their

partner in X. The authors used their solution to this problem as a basis for solving

the extended problem where one of the sets consists of college applicants, and the

other consists of colleges, each of which has a quota of places to fill. The monetary

transfer is not permitted in their model. For this reason, participants in this model

are called rigid. Many additional variants of the stable marriage problem have been

discussed in the literature. Guessfield and Iriving [8] published a book that covers

many variants of original stable marriage problem such as if the preferences of par-

ticipants may include ties, incomplete preferences and roommate problem.

Shapley and Shubik [14] presented the one-to-one buyer-seller model known as “as-

signment game”. In their model participants are flexible, because exchange of money



is permitted among participants of both sets. Each participant on one side can sup-

ply exactly one unit of some indivisible good and exchange it for money with a

participant from the other side whose demand is also one unit. Shapley and Shubik

[14] showed that the core of the game is always non-empty and can be identified with

the set of stable outcomes, which is a solution set based upon a linear programming

formulation of the model.

After this, two-sided matchings have been studied extensively. Different ap-

proaches have been made by many researchers in which they generalize the marriage

model of Gale and Shapley [7] and assignment game of Shapley and Shubik [14].

Main aim of these researchers was to find common result for both of [7] and [14] mod-

els in a more general way. Erikson and Karlinder [5] and Sotomayor [15] presented

the hybrid models. These models are the generalization of the discrete marriage

model [7] and the continuous assignment game [14]. Existence of stable outcome

and the core is discussed in [5, 15]. Farooq [6] presented a one-to-one matching

model in which he identified the preferences of participants by strictly increasing

linear functions. He proposed an algorithm to show the existence of pairwise stable

outcome in his model by taking money as a continuous variable. His model includes

the marriage model of Gale and Shapely [7], assignment game of Shapely and Shubik

[14] and Erikson and Karlander [5] hybrid model as special cases. The motivation

of our work from the stable matching literature is the model of Ali and Farooq [1].

Ali and Farooq [1] presented a one-to-one matching model by taking money as a

discrete variable in linear increasing function. They designed an algorithm to show

that pairwise stable outcome always exists. The complexity of Ali and Farooq’s

[1] algorithm depends on the size of those intervals where prices fall. Our model

is the generalized form of Ali and Farooq [1] model. We consider the preferences

of participants by general increasing functions that are non-linear in the whole real

line and showed that a pairwise stable outcome also exists in our model.

In Chapter 1, we give some basic introduction of two-sided matching problems and

complexity of algorithms. The second chapter constitutes a brief review of the two-

sided matching problems: the marriage model due to Gale and Shapley [7], the

assignment game due to Shapley and Shubik [14] and Ali and Farooq [1] model.

An example is also included to understand these models and working of algorithm.



In Chapter 3, we extend the model of Ali and Farooq [1] by generalizing valuation

functions. We also discuss correctness and termination of the algorithm.
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Chapter 1

Preliminaries

1.1 Introduction

Stable matching theory in two-sided market, the term “two-sided” refers to the fact

that participants in such markets belong to two disjoint sets, has been extensively

employed across various disciplines to deal with numerous economical problems.

These economical problems include formation of marriages among unmatched indi-

viduals, interaction between unemployed workers and vacancies opened by organi-

zations or dealing between buyers and sellers in public sale. The matching markets

have as primary object; the formation of partnerships. Stable matching algorithms

are also a hotspot for research. These algorithms connect the two major branches of

studies that are algorithmic theory and combinatorial optimization. Graph theory

is one of the most important tools to analyze these algorithms which already mark

an extensive level of use in combinatorial optimization. In this chapter, our focus

is to accommodate two conflicting goals. On one side, we believe that an introduc-

tory text should be lean and concentrate on the essential, so as to offer guidance

to those who are new in this field. On the other hand, it has been my particular

concern to write with sufficient detail to make the text easy to read and understand.

Brief explanation of two-sided stable matching and basic definitions related to it

will be given in section 1.2. In section 1.3, we will discuss the algorithms and their

complexities.
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1.2 Matching and Stability

In this section, we will discuss stability in a two-sided matching market. In a two-

sided matching market, we have to find stable matching between two disjoint sets of

participants M and W , in which each participant of M has strict preferences over

each participant of other set. Preferences of participants represent the choice that

he or she would make when faced with different alternatives. A participant m ∈M
is said to prefer w ∈ W to w′ ∈ W if he chooses w when faced with a choice between

the two. Thus, we can say that stability in a two-sided matching market depends

upon the preferences of the participants.

A matching in a two-sided market is said to be stable when the following two con-

ditions are not satisfied:

(i) some given participant A of a matched pair prefers a participant B of the other

matched pair over the participant to which A is already matched and,

(ii) B also prefers A over the participant to which B is already matched.

In other words, a matching X is said to be stable if there does not exist any pair

(A,B) in which A and B are not matched to each other under the matching X, but

both A and B prefers one another to their current partner. Such a pair is called

blocking pair. In order to have a stable matching between the participants of two

disjoint sets we have to avoid the formation of blocking pair. In other words, we

can say that a criteria of stability in a two-sided matching is that there exists no

blocking pair in a matching. Here, we will discuss some properties of preferences

that will be helpful in the subsequent parts of this thesis.

Consider two disjoint and finite sets of participants, say men M and women W ,

where

M = {m1,m2, . . . ,mr},

and

W = {w1, w2, . . . , ws}.

Participants of these two sets have a preference list over each other. Preference

list shows that the participant of one set has a choice to select the most preferable
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one when faced with different alternatives. Generally, the preference list of each

m ∈M is denoted by Pl(m), and can be represented as rank order lists of the form

Pl(m) = w3, w2,m, . . . , w4, denoting that m′s first choice is w3, second choice is w2,

third is to remain unmatched. Participants that appear after m in the preference

list of m are not acceptable for m. Hence m likes to marry his first choice w3, if w3 is

not available for m then m will select w2 if possible otherwise he will like to remain

unmatched. Thus, we can say that in the preferences list of m, woman w is said to

be acceptable for m if m likes her at least as well as remaining single. If m prefers to

remain single than being matched to women w then w is said to be unacceptable for

m, and m′s preference only include the acceptable partners. We use >i to denote

the ordering relationship of participants (on either side of the market),that is, if

w >m w
′

then it means that in the preference list of m participant m prefers w

to w
′
, and w ≥ w

′
means that m prefers w at least as well as w

′
or is indifferent

between them. Now, if the preference list of m ∈M is given by

Pl(m) = w3, [w2, w1],m, . . . , w4.

Then this list shows that m′s likes to match with w3 first and likes both w2 and

w1 but is indifferent between them or in other words he has tied preferences over

w2 and w1. Third preference of m shows that man m prefers to remain single. If

a participant is not indifferent between any two acceptable mates, then we will say

that he/she has strict preferences. Similar assumptions are for Pl(w).

Since we have two disjoint set of participants each participant of these two sets have

complete and transitive preference ordering over each other. Transitive preferences

means that if man m likes w1 at least as well as w2, and m likes w2 at least as well

as w3 then m likes w1 at least as well as w3. Complete ordering means that any

two participants can be compared but the participant is never confronted with the

choice that he is unable to make. When the preferences of the participants form a

compete ordering and are transitive then these participants are called rational.

A matching X : M ∪W → M ∪W is a one-to-one correspondence between set of

participants such that m = X(w) if and only if w = X(m), read as under matching

X if w is matched to m then m is matched to w. Or we can say that m and w are

matched with each other under matching X. If m = X(m) then m is said to be
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unmatched or self-matched under the matching X. Here w and m are said to be

mutually acceptable if both are acceptable for each other. It is not always possible

to match all the participants. If the individual does not get the participant of his

or her choice then he or she are likely to remain unmatched instead of getting the

participant that he or she doesn’t like.

A matching X is blocked by a pair of participants (m,w) if they prefer each

other to the partner they receive under the matching X, that is,

w >m X(m) and m >w X(w) but (m,w) 6∈ X.

Such kind of pairs is called a blocking set in general. If there is a blocking set

in the matching, the participants involved have an incentive to break up and form

new marriages. Therefore such an “unstable” matching is not desirable.

1.2.1 One-Sided and Two-Sided Matching Market

In the above section, we had discussed that in two-sided matching participants of

both sets have a list of preferences over each other and each participant has a consent

to match his self with a participant of other set. Two-sided matching market usually

includes labor market in which the participants of one-side (men, worker, and buyer)

need to be matched with participants on the other side (women, firm, and seller) and

participants of both sides have preferences over each other. This two-sided structure

allows us to draw strong conclusions about the matching mechanism and properties

of matching.

There also exists matching markets that are one-sided in which our goal is to allocate

n items to n participants in such a manner that each participant have a complete

preference list and a unit demand over the items. For example, when people need to

be assigned rooms in a dormitory, or places in a public school that does not itself has

preferences or strategic actions. These markets matches people to places, but only

on one side people are active participants in this market. Since the preferences are

complete, so there exists truthful (strategy proof) mechanisms in which participants

do not have an incentive to misrepresent their preferences. Sometimes one-sided
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matching markets have such allocation mechanisms that do not involve monetary

compensations/payments among participants.

Some markets can also be hybrid, with both two and one sided properties. Hybrid

markets are those that contain both rigid and flexible participants. Rigid in the

sense that monetary transfer is not allowed between participants and in flexible

monetary transfer is allowed between participants of both sets. Now, we will give

an example of stable matching in which we have two sets, M and W , such that the

participants are mutually acceptable and they have strict preference list.

Example 1.2.1. Consider two disjoint sets of participants

M = {a, b, c, d},

and

W = {α, β, γ, δ}.

The preference list of these participants is defined in Table 1.1.

According to this preference list we have three matchings in which two are stable

Men’s list Women’s list

Pl(a) : β, δ, α, γ P l(α) : b, a, d, c

P l(b) : γ, α, δ, β P l(β) : d, c, a, b

P l(c) : β, γ, α, δ P l(γ) : a, d, c, b

P l(d) : δ, α, γ, β P l(δ) : b, a, d, c

Table 1.1: An instance of size k = 4

and one is not stable. We denote these three matchings as X, X∗ and X∗∗ where

X = {(a, δ), (b, γ), (c, β), (d, α)},

X∗ = {(a, α), (b, γ), (c, β), (d, δ)},

X∗∗ = {(a, δ), (b, α), (c, β), (d, γ)}.

The matching X is stable because it contains no blocking pair. However a could

form a blocking pair if a is matched with β because β prefers c to a. Matching X∗
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is not stable because X∗(a) = α but in the preference list of a we have δ > α this

implies δ > X∗(a). Also X∗(δ) = d in matching X∗ but in the preference list of

δ we have a > d this implies a > X∗(δ). This is a contradiction so (a, δ) forms

a blocking pair. Matching X∗∗ is also stable. Thus, we conclude that X and X∗∗

are only stable matchings with this preference list but there may be many unstable

matchings other than X∗.

Remark: Since in this example we have same number of men and women so we

have total 4! = 24 matchings in which only two are stable and all of the rest are

unstable. Since each men and women appear only once in these matchings so it is

called marriage.

1.2.2 The Optimal Assignment Game

Assignment game is related to graph matchings particularly bipartite graphs. If in

a bipartite graph (U1, U2, E) each edge is assigned a non-negative weight w(e), here

w(e) is the weight of each edge in a bipartite graph, then the optimal assignment

problem is the problem of finding a matching X such that the sum of the weight of

the matching X is as large as possible. Here, we have assumed that the weight of an

edge is a non-negative integer, that is, w(e) > 0. The weight matrix of the bipartite

graph Kn,n = (U1, U2, E) is denoted as A = [aij] where aij represents the weight

of the edge joining vertex i in U1 to vertex j in U2. Thus, an optimal assignment

problem consists of the solution of n such elements from the matrix such that

(i) no two selected elements lie in the same row or same column,

(ii) the sum of the n selected entries is as large as possible.

The selection of n such elements then defines an optimum matching X, also known

as an optimal assignment .

The core of the game between two disjoint set of participants is an optimal assign-

ment. A matching X is called Pareto Optimal if there exists no matching X
′

such

that some participant prefers X
′

to X and no participant prefers X to X
′
.
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1.3 Complexity Theory

In this section, we will analyze algorithms in graphs. We will concentrate more on

graph-theoretical aspects of these algorithms than on their actual implementation on

a computer. Sometimes we will not be able to prove the best possible complexity of

an algorithm. So, in most such cases we will provide reference to a better complexity.

Also, some very basic notation of data structure and algorithms are required and

will be given below.

1.3.1 Algorithm

There are many general classes of problems that arise in game theory and discrete

mathematics. To solve such general classes of problems we first need to construct the

model that translates any given problem into a mathematical context. Moreover,

to find solution of such problems a method is needed that solves the general prob-

lem using the defined model. This method is generally called algorithm because it

contains a sequence of steps that leads us to the desired answer. Thus, a procedure

that contains finite set of precise instructions for performing computational tasks

or for solving a problem is called algorithm. There exists several ways of defining

algorithm but simplest one is to use the English language to describe the sequence

of steps. In this thesis we will also define the algorithms in this way.

1.3.2 Complexity of Algorithm

Every algorithm has its complexity. Complexity of an algorithm is the efficiency

of algorithm or the running time of algorithm. There exists many methods that

check the running time of algorithm and one of them is to check how much time

computer is taking to solve a particular problem when input values are of specified

size. An analysis of the time required to solve a problem of particular size involves

the time complexity of an algorithm that depends on the size of its input. The

time complexity of an algorithm is the maximum number of computational steps

used by the algorithm when the input has a particular size. Time complexity is

often expressed as O(f) where f is a function of the given size of input and O(f)
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denotes the set of functions g such that |g(x)| 6 c|f(x)| here |x| > a and a, c are

constants. When function f is quadratic polynomial we typically abuse notation by

writing O(n2) instead of O(f) to describe function that grows at most quadratically

in terms of n. Here big O notation estimates the number of operations an algorithm

uses when size of input grows. Moreover, by using big O notation we can compare

two algorithms to determine which one is more efficient if the input size grows. Also

big O notation often describes the growth of function, but it has limitations. In

particular, when we are saying the growth of f(x) is O(g(x)), then f(x) has upper

bound in terms of g(x), for the size of f(x) for large value of x. However, for large

value of x big O notation does not provide lower bound for the size of f(x). In

that case, we use big Ω notation and when we want to give both an upper bound

and lower bound on the size of function f(x), relative to reference function g(x) we

use big Θ notation. Since we do not know how long a particular operation may

take time on a particular computer, so constant factor in running time have little

meaning. Hence big O notation O(f) is convenient to use. Donald Knuth in 1970

observed that big O notation is often used by careless writers and speakers as if it

had the same meaning as big Θ notation. For more details about this section reader

is advised to review the book of H. Rosen [13].
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Chapter 2

A Selective Review of Stable

Matching Literature

In this chapter, we will review some well-known models of two-sided matching prob-

lem. These models involve two disjoint sets of participants, say M and W , each of

whom ranks a subset of the other set of participants in order of preference. First of

all we will review very famous model introduced by Gale and Shapely [7] in 1962.

This model is known as marriage model. The second model we will review in this

chapter is due to Shapley and Shubik [14] which was published in 1972 and is known

as assignment game. The third model which we will completely review is the model

of Ali and Farooq [1]. This model is also the motivation of our work.

2.1 The Classical Stable Marriage Problem

The concept of stable marriage problem was first introduced by Gale and Shapely

[7] in the paper “College Admissions and the Stability of Marriage”. This paper is

considered to be one of the most interesting abstractions in the matching market.

In this paper, the stability of marriage problem is a game in which we have equal

number of men and women as participants. The aim is to find a one-to-one matching

between men and women such that there is no unmatched couple each of whom

prefers the other to their partner in the matching. Marriage problem is the most
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common example of one-to-one two-sided matching market. The authors used their

solution to this problem as a basis for solving the extended problem where one of

the sets consists of college applicants, and the other consists of colleges, each of

which has a quota of places to fill. We will first discuss the marriage model and

then college admissions problem.

2.1.1 One-to-One Matchings: The Marriage Model

In the marriage model, there are two disjoint sets of participants, men M and women

W of equal size n, each of whom has complete and transitive preferences over the

participants of the opposite set. The task is to find a stable matching, that is, a

set of pairs of acceptable participants such that no two participant of opposite set

who would both rather be matched with each other than their current partners.

If there are no such participants, all the marriages are said to be stable. In [7],

Gale and Shapley proved that it is always possible to find a matching that makes

all marriages stable, and provided a polynomial time algorithm widely known as

Deferred Acceptance Algorithm. This algorithm can be used to find one of two

extreme stable marriages, the so-called men-optimal or women-optimal marriages.

A matching in the marriage model is called men-optimal if every man likes his

partner to any other partner that he could possibly have in the matching. Also,

a matching is called women-optimal if every women likes her partner to any other

partner that she could possibly have in matching.

2.1.2 Deferred Acceptance Algorithm: (with men propos-

ing)

At the start of the algorithm, each person is free and becomes engaged during the

execution of the algorithm.

Step 1: (a) Each man who is not engaged proposes to the most preferred woman

in his preference list.

(b) Each woman engages with the most preferred proposal and rejects all

other if she receives more than one proposal.

10



Step 2: If all the men are matched or rejected by all the women then stop. Else go

to Step 3.

Step 3: Each rejected man deletes the woman who has rejected him. Go to Step 1.

This algorithm is said to be men-oriented algorithm or men-optimal because se-

quence of proposals is from men to women. If we reverse the sequence of proposals

from women to men then the algorithm is said women-oriented algorithm that will

produce the women optimal matching. Thus, Gale and Shapley [7] algorithm has

only two possible versions, that is, men-oriented algorithm and women-oriented algo-

rithm. The complexity of above algorithm is O(n2). Gale and Shapley [7] guarantee

that two important results arise from this algorithm:

1. This algorithm always produces a stable set of marriages.

2. This algorithm produces an optimal set of marriages which implies that in

each matching, every man is at least as well under the assignment given by

Deferred Acceptance Algorithm as he would be under any other assignment.

In the men oriented algorithm, each man proposes to an acceptable woman in his

preference list and no woman will ever be engaged with an unacceptable man. If

there exists some man who is matched but prefers some other woman, but by the

above algorithm, he must have already proposed to her and she has rejected him.

This means, she has already a man to whom she strictly prefers than this man.

Thus, they do not form a blocking pair.

Theorem 2.1.1 (Gale and Shapley [7]). The men proposing Deferred Acceptance

Algorithm always gives a stable marriage for each marriage problem.

To prove this theorem Gale and Shapley [7] devised the above deferred acceptance

algorithm. This theorem guarantees that if the number of men and women coincide,

and all participants express a strict order over all the participants of the other set,

everyone gets married, and the returned matching is stable.

Now, we will discuss the following examples to implement the above algorithm

first taking men as proposers and then women as proposers.
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Example 2.1.1. Consider two disjoint sets of participants, set of men M and set

of women W . Let M = {A,B,C,D} and W = {α, β, γ, δ}. The symbol −→ is the

sign of proposing. Preference list of each participant is showed in Table 2.1

Men’s list Women’s list

Pl(A) : α, β, γ, δ P l(α) : C,D,A,B

P l(B) : α, β, γ, δ P l(β) : D,A,B,C

P l(C) : β, γ, α, δ P l(γ) : A,B,C,D

Pl(D) : γ, α, β, δ P l(δ) : C,D,A,B

Table 2.1: An instance of size k = 4

First, we find the matching X when men are proposers. Initially all men and women

are unmatched and matching X is empty.

At Step 1(a) of First iteration, A −→ α, B −→ α, C −→ β, D −→ γ. Now,

α has two proposals A and B and A >α B in the preference list of α therefore B

is rejected at Step 1(b) and X = {(A,α), (C, β), (D, γ)}. Since B is rejected, the

algorithm will not stop. We will move to Step 3. At Step 3 B deletes α and goes

to Step 1(a). At Step 1(a) of Second iteration, B −→ β and B >β C in the

preference list of β so β switches to B and X = {(A,α), (B, β), (D, γ)}. In Third it-

eration, C −→ γ and C >γ D, so γ switches to C and X = {(A,α), (B, β), (C, γ)}.
In Fourth iteration, D −→ α and D >α A, so α switches to D and X =

{(D,α), (B, β), (C, γ)}. In Fifth iteration, A −→ β and A >β B, so β switches to

A and X = {(D,α), (A, β), (C, γ)}. In Sixth iteration, B −→ γ and B >γ C,

so γ switches to B and X = {(D,α), (A, β), (B, γ)}. In Seventh iteration,

C −→ α and C >α D, so α switches to C and X = {(C, α), (A, β), (B, γ)}.
In Eighth iteration, D −→ β and D >β A, so β switches to D and X =

{(D, β), (B, γ), (C, α)}. In Ninth iteration, A −→ γ and A >γ B, so γ switches

to A and X = {(D, β), (A, γ), (C, α)}. In Tenth iteration, B −→ δ and δ −→ B

so X = {(A, γ), (B, δ), (C, α), (D, β)}. Thus, when the men do the proposing, the

stable pairings is X = {(A, γ), (B, δ), (C, α), (D, β)}.
Now, if we apply the algorithm when the women do the proposing using the same
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preference lists then we can find the stable pairing X∗ obtained by following the

same Steps as above.

At Step 1(a) of First iteration, α −→ C, β −→ D, γ −→ A, δ −→ C. Now C

has two proposals α and δ. Since α >C δ therefore δ is rejected at Step 1(b) and

X∗ = {(α,C), (β,D), (γ,A)}. Since δ is rejected the algorithm will not stop. We

will move to Step 3. At Step 3, δ deletes C and goes to Step 1(a). At Step 1(a) of

Second iteration, δ −→ D and β >D δ so β stays with D and δ is rejected again

and X∗ = {(α,C), (β,D), (γ,A)}. In Third iteration, δ −→ A and γ >A δ so γ

stays with A and δ is rejected and X∗ = {(α,C), (β,D), (γ,A)}. In Fourth itera-

tion, δ −→ B and B −→ δ so X∗ = {(α,C), (β,D), (γ,A), (δ, B)}. Thus, when the

women do the proposing, the stable pairings is X∗ = {(α,C), (β,D), (γ,A), (δ, B)}.

As we have demonstrated with our above example, using the Gale-Shapely algo-

rithm we sometimes find more than one stable solution: one when men are proposers

or one when the women are proposers. However, this algorithm sometimes produces

the same result. Thus, when we get the same result where the members of either

set are proposing, this is called unique stable pairing. Now, we give an example in

which men-optimal and women-optimal matching is not same as above just to show

that the case that has come in above example will not be true always.

Example 2.1.2. Consider two sets, set of men and set of women denoted by M

and W , respectively. Let M = {A,B,C,D} and W = {α, β, γ, δ}. Preference list

of each participant is showed in Table 2.2.

Men’s list Women’s list

Pl(A) : γ, α, β, δ P l(α) : A,C,D,B

P l(B) : δ, β, γ, α P l(β) : D,C,A,B

P l(C) : α, β, γ, δ P l(γ) : D,A,B,C

P l(D) : δ, α, β, γ P l(δ) : C,A,B,D

Table 2.2: An instance of size k = 4

If men do the proposing the stable matching isX = {(A, γ), (B, δ), (C, α), (D, β)}.
If women do the proposing the stable matching isX∗ = {(α,C), (β,B), (γ,A), (δ,D)}.
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Clearly, we can see that men-optimal and women-optimal stable matchings X

and X∗ are not the same using the preference list defined in Table 2.2. The above dis-

cussion depends on two-sided nature of problem. Gale and Shapley [7] also showed in

contrast a one-sided nature that is roommate problem with even cardinality. Room-

mate problem is also rephrased as same sex stable marriage problem.

In this problem, there is only one group of participants, each participant has strict

preferences over all other participants, and each participant would make their pref-

erence list from 1 to n− 1. Set of matchings in this problem is also unstable if there

exists any blocking pair.

The following lemma of Guesfield and Iriving [8] shows that roommate problem is

the generalization of marriage problem.

Lemma 2.1.2 (Guess and Iriving [8]). Given an instance of stable marriage problem

with same no of participants in two disjoint sets, there is an insistence of stable

roommate problem with even cardinality of participants such that the stable roommate

matchings are precisely the stable matchings for original stable marriage instance.

Now, we present an example which shows that it is not possible that stable

marriage always exists.

Example 2.1.3. Consider an even number of potential roommates {a, b, c, d} such

that a prefers b first in his or her preferences, b prefer c first and c prefer a first but

all a, b, and c prefers d last, that is,

Pl(a) = b, c, d

P l(b) = c, b, d

P l(c) = a, b, d

P l(d) = b, a, c.

In this case, with such a preference list, we cannot find a stable roommate pair,

because a prefers b, b prefers c and c prefers a, and whoever is matched with d

would prefer to be paired with one of the other two who would also prefer to be

paired with that person than the person they are paired with.
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The above examples of one-to-one matching are helpful to start many-to-one

matching. Because many-to-one (college admission problem) matching is closely

related to it. Although there is only a slight difference between college admission

problem and marriage problem, in the next section we will categorize this difference.

2.1.3 Many to One Matching: The College Problem

The college problem is widely studied by economists and game theorists and it is the

most well-known application of stable marriage problem. The mechanism that is

used to solve a marriage problem and a college admission problem share some prop-

erties. This mechanism guarantees that resulting outcome is optimal stable for one

of the party but not optimal stable for both parties. Here, this point is worth noting

that in marriage problem men-optimal stable mechanism and women-optimal stable

mechanism are symmetric of each other. While in the college admission problem,

student optimal stable matching and college optimal stable matching, are not. Like

in the marriage problem, the college admission problem also has two disjoint sets

of colleges and students. Suppose there are n students, that is, S = {s1, s2, . . . , sn}
who are applying to get admission in k colleges, that is, C = {c1, c2, . . . , ck}. Each

student has a strict order preferences over colleges. It is not possible for each col-

lege to give admission to all students who are applying because of limited resources

which means that each cj ∈ C has a specific quota of enrollment in each academic

year, that is, q(cj) ≥ 1. Here q(cj) represents the maximum number of students that

a college cj can enroll. This is known as quota of college cj. Each college has some

specific criteria of giving admission. The criteria is to enrol best q qualified students

but this criteria is not generally satisfied because it is not possible that all of the

q students who are accepted will accept the offer of college because they may also

have applied to some other college. Since each college has strict preference list so if

the college offers admission to only q students then it may be the case that some of

these q students had applied to more than one college. Consequently, these other

colleges might also offer them admission. So, in order to fulfill the admission quota

colleges introduce the concept of waiting lists. The purpose of giving the concept of

waiting list is that if more than q students applied then college will give the admis-
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sion to the best q students and place rest of them in the waiting list such that they

may not be admitted yet but may be admitted later if some vacancy occurs. This

introduction of waiting list creates new problems for students as well as for colleges.

Suppose student is getting admission offer from the college that he prefers least and

the college that he prefers most placed his name in the waiting list. Now suppose if

the student gets admission in the college that he prefers least but later the college

that he prefers most, on not fulfilling its quota, offers him admission. If he accepts

the offer and withdraws his admission from least preferred college to enroll in most

preferred then this action of student will not please the least preferred college. On

the other side if the student restricts himself to be enrolled in most preferred college

then it will hurt other students because the least preferred college has already ful-

filled its quota of best q students and has rejected the students who were in waiting

list. To solve these kind of difficulties Gale and Shapley [7] introduced the mecha-

nism known as Assignment Game. They observed that the same deferred acceptance

algorithm (college ci offered admission at each point to its qi most preferred students

who hadn’t yet rejected it in the college-proposing version, or rejecting all but the

qi most preferred applications it had received at any point of the student-proposing

version) would produce a stable matching defined in the above section. Basically

the mechanism is to assign students to colleges which should satisfy both groups

and remove all uncertainties and difficulties. The outcome produced by the algo-

rithm would not admit any student-college blocking pairs defined precisely as for

the marriage model.

2.1.4 Assignment Criteria

Consider a set of k colleges and a set of n students. Each student has strict order

preferences (there are no ties) over the colleges, has eliminated all those colleges

that he would never accept at any cost and finally each student can accept only one

offer of admission at a time. Each college also has strict preferences over students

who have applied to it and eliminated all those students that he would never have

enrolled in any case even its admission quota remains unfilled. The goal is to find

such an assignment between colleges and students that it satisfies criteria of fairness.

16



To find such an assignment is not simple in actual because complications may arise.

For example: we have two colleges A and B and two students a and b, a prefers A

to B and b prefers B to A. But A prefers b to a and B prefers a to b. In such a

case there exists no assignment that satisfies all preferences. But, by philosophical

principle, colleges exist to serve the students so a should get admission in A and

b in B that is each student should get consideration over colleges. Whatever the

assignment will be eventually, the following situation should not occur.

We have two students a, b and two colleges A, B. Student a is assigned to college A

and b is assigned to college B but college A prefers student b to student a and college

B prefers student a to student b. If this kind of situation occurs in the assignment

then such an assignment is called unstable.

Hence, when we try to find any assignment between two disjoint sets our first criteria

will be that this assignment should be stable, which means that there exists no

blocking pair. So a question arises here will it always be possible to find such a

stable assignment? And if such an assignment exist we still have to decide which

stable solution is to be preferred among many stable solutions.

Suppose we have set of stable assignments. There is an assignment in which each

applicant is at least as well off as compared to any other assignment. Then that

assignment is called optimal assignment. But the existence of stable assignment

doesn’t guarantee that they are optimal stable assignment. However if there exists

an optimal assignment then it must be unique.

2.2 Assignment Game by Shapely and Shubik

In the above section, we have discussed the marriage model of Gale and Shapely [7]

that has at least three assumptions: (1) monetary transfer between participants is

not allowed (2) no participant of same set can make a partnership (3) every partic-

ipant can have at most one partner. Now, if we relax the condition (1) and allow

monetary transfer between participants then we get a problem that is called Assign-

ment Problem designed by Shapely and Shubik [14]. Special feature of Shapely and

Shubik [14] model is that the participant set is separated into two different type of

sets, the set of sellers and the set of buyers, monetary transfer is allowed between
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participants of both sets. Involvement of money in the assignment game of Shapely

and Shubik [14] makes it different from the marriage model of Gale and Shapely [7].

Each seller in assignment game of Shapely and Shubik [14] has a unit of indivisible

goods and each buyer needs exactly one unit of indivisible goods. Differentiations on

the units of indivisible goods are allowed and therefore buyer might place different

valuation on the unit of different sellers. The main economic assumption of Shapely

and Shubik [14] model are:

• identification of utility with money,

• side payments are permitted between participants,

• the objects of trade between participants are indivisible,

• supply and demand functions are inflexible.

2.2.1 Model Description

Let we have two disjoint sets, N1 and N2, where N1 denotes the set of homeowners

and N2 denotes the set of prospective purchasers. Here homeowners are sellers and

purchasers are buyers. The ith seller values his house at ci dollars and the jth buyer

value the same house at hij dollars. If hij > ci then there exists a favorable price for

both of the parties buyer and seller but it cannot be assumed that this inequality

always holds in all cases. The possible move in the game includes that a house is

transferred from its owner to any buyer and the transfer of money from buyer to

seller. Let ith seller sells his house to jth buyer for price pi, and if no one is ready to

deal with third party, then ith seller final profit is

pi − ci

and the jth buyer final profit is

hij − pi.
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2.2.2 Coalition Form

Let N = {1, 2, . . . , n} denote the set of players in a game and n ≥ 2 denote the

number of players in a game. Any subset of set N is called a coalition or alliance

and the set of all coalitions is denoted by 2N . The empty set φ is also a coalition

called Empty Coalition and the set N is called Grand Coalition. A pareto optimal

matching X has the property that there exists no coalition of participants who want

to improve their allocations(say by exchanging items with one another), without

requiring some other participant to be worse off.

Example 2.2.1. In the set N we have three participants N = {a, b, c} that is n = 3

then the total number of coalitions are eight

• three one participant coalition {a, b, c},

• three two participant coalition {(a, b), (a, c), (b, c)},

• grand coalition N ,

• empty coalition φ.

In two-sided matching market the set of players is partitioned into two disjoint

sets say N1 and N2. A coalition S, in two-sided matching market, is defined as the

subset of N1 ×N2 where N1 ×N2 denotes the set of all possible players.

Definition 2.2.1. The core of the game is the set of efficient and individual rational

payoff vectors under which no coalition can receive a greater value then the sum of

its members payoffs.

2.2.3 The Characteristic Function

The maximum value for the coalition S is called the characteristic function of S and

is denoted as ν(S). If the coalition S consists of less then two players then ν(S) = 0.

In the coalition it is not possible to have a profitable deal between the players that

are from the same set.

The characteristic function ν : 2N → R maps every subset S of N to a non-negative

real number. ν(S) is called the worth of coalition S, denoted this worth by αij and
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aij = ν({i, j}) for i, j ∈ S, is defined by

ν({i, j}) =

{
max{0, hij − ci} if i ∈ N1 and j ∈ N2

0 if {i, j} ∈ N1 or {i, j} ∈ N2 .

If the coalition S consists of more than two players then the value of such larger

mixed coalition is obtained by maximizing the coalition total gain. Mathematically

we write it as

ν(S) = max[ai1j1 + ai2j2 + . . .+ aikjk ]. (2.2.1)

where k > 2 and {i1, i2, . . . , ik} ∈ S ∩ N1 and j1, j2, . . . , jk ∈ S ∩ N2 with k =

min{|S ∩N1|, |S ∩N2|}.
The expression given by (2.2.1) is called optimal assignment problem for the assign-

ment game. Now, we give few examples for an optimal assignment game.

Example 2.2.2. Consider a matrix with entries aij where (i ∈ S∩N1 and j ∈ S∩N2)

for an assignment game: 
0 6 0

6 0 6

0 6 0

 .

The bold face entries in the below matrix represent the four optimal assignments

with a total profit of 12 units, that is, ν(S) = 12:
0 6 0

6 0 6

0 6 0




0 6 0

6 0 6

0 6 0




0 6 0

6 0 6

0 6 0




0 6 0

6 0 6

0 6 0

 .

Example 2.2.3. Consider the matrix with entries (aij), where i ∈ S ∩ N1 and

j ∈ S ∩N2) for an assignment game:
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
5 8 2

7 9 6

2 3 2

 .

In this example we have only one optimal assignment, that is


5 8 2

7 9 6

2 3 2

 .

The bold face entries represent the optimal assignment with a total profit of 17

units, that is, ν(S) = 17.

2.2.4 Standard Linear Programming Terminology

Shapely and Shubik [14] used the linear programming theory developed by Dantzig

[4] to solve the assignment problem given in (2.2.1). Consider the coalition of all

players of assignment game. Our aim is to determine the worth of N1 ∪N2. For op-

timal assignment game, we introduce mn non-negative real variables xij and impose

m+n constraints on them. These non-negative real variables represent the quantity

of good i allocated to buyer j where i ∈ N1 and j ∈ N2. Then the linear program-

ming is used to find an assignment of indivisible goods to buyers to maximize the

total value achieved such that no buyers get more than one unit of indivisible good

and no seller sell more than one unit of indivisible good. So the linear programming

is:
maximize p =

∑
i∈N1

∑
j∈N2

aijxij

subject to
∑
i∈N1

xij ≤ 1 ∀ j ∈ N2,∑
j∈N2

xij ≤ 1 ∀ i ∈ N1,

xij ≥ 0, ∀ i ∈ N1, j ∈ N2.

(2.2.2)

The first constraint of above linear programming ensures that no seller supplies more

than they have. Second constraint shows that no buyer is interested in acquiring

more than one unit in total. Maximum value of
∑
i∈N1

∑
j∈N2

aijxij is attained when
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all the variables xij are either 0 or 1. So that the continuous linear programming

problem effectively coincides with discrete assignment game. Now we have

pmax = ν(N1 ∪N2).

Each linear programming problem is associated with another unique linear program-

ming problem called dual linear programming having the form

minimize d =
∑
i∈N1

ui +
∑
j∈N2

vj

subject to ui + vj ≥ aij (∀ i ∈ N1, j ∈ N2).
(2.2.3)

Here ui be the dual variable associated with each constraint
∑
i∈N1

ui and vj be the dual

variable associated with each constraint
∑
j∈N2

vj. The above linear program in (2.2.2)

is sometimes called the primal problem and the program in (2.2.3) is called the dual

problem of (2.2.2). Primal problem and its dual form a fundamental relationship

between their solutions. This relationship states that ‘If the primal or dual problem

contain a feasible solution then the other problem also acquires a feasible solution

and the optimum solution of the objective function of both the problems coincides’,

that is,

pmax = dmin.

Let the vector (u, v) = (u1, . . . , um, v1, . . . , vn) minimizes the dual problem defined

in (2.2.3). Then we have

∑
i∈N1

ui +
∑
j∈N2

vj = dmin = pmax = ν(N1 ∪N2). (2.2.4)

The constraints of the dual problem defined in (2.2.3) show that for each pair

(i, j) with i ∈ N1 and j ∈ N2 we have

ui + vj ≥ aij = ν(i, j).

Thus for coalition S we have∑
i∈S∩N1

ui +
∑

j∈S∩N2

vj ≥ ν(S). (2.2.5)
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Equation (2.2.4) guarantees the feasibility of payoff vector (u, v) and equation (2.2.5)

guarantees its optimality by an alliance S. Thus, the feasibility of payoff vector (u, v)

in (2.2.4) and optimality of the solution in (2.2.5) ensures that it is the core of the

game .

In other sense, we can say that any payoff vector in the core that satisfies equation

(2.2.4) and equation(2.2.5) clearly fulfills the conditions for a solution to the dual

LP problem. The following theorem of Shapely and Shubik [14] summarizes the

above whole discussion.

Theorem 2.2.1 (Shapely and Shubik [14]). The set of solutions of the dual LP

assignment problem of the associated assignment problem and core of the assignment

game coincide with each other.

2.3 A Review of Two-Sided Matching Models with

Linear Valuations and Discrete Side Payments

In 2008, Farooq [6] presented a one-to-one matching model that includes the mar-

riage model of Gale and Shapely [7], assignment game of Shapely and Shubik [14]

and Erikson and Karlander [5] hybrid model as special cases. Important features of

Farooq model [6] are:

• set of participants is partitioned into two disjoint sets,

• each participant has at most one partner of opposite set,

• monetary transfers are allowed and are bounded by lower and upper bounds,

• the preferences of participants are identified by strict increasing linear function

of money,

• money is considered as a continuous variable.

Farooq [6] designed an algorithm to show that there always exists a pairwise stable

outcome for his matching model with linear valuation and bounded side payments.
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A careful analysis of his algorithm reveals that a proper implementation solves the

problem in O(n7).

Theorem 2.3.1 (Farooq [6]). The complexity of Stable-Outcome is O(n7) where

n denotes the number of participants.

Motivated by his work, Ali and Farooq [1] presented a one-to-one matching model

with linear valuations and bounded side payments. The work done in this thesis

is motivated by the work of Ali and Farooq [1], so in the remaining part of this

chapter, we will review the model of Ali and Farooq [1]. Following are the main

features of Ali and Farooq model [1]:

• set of participants is partitioned in to two disjoint sets,

• each participant has at most one partner of opposite set,

• monetary transfer are allowed and are bounded by lower and upper bounds,

• the preferences of participants are identified by strict increasing linear function

of money,

• money is considered as a discrete variable.

Consider a finite set of buyers and sellers. Set of all possible buyer-seller pairs is

given by E = P ×Q, where P and Q denotes the respective set of buyers and sellers.

For each buyer-seller pairs upper and lower bound of prices is defined by two vectors

π, π ∈ ZE where lower bound is always less than or equal to upper bound. Initially

price vector p = (pij ∈ Z | (i, j) ∈ E) for each pair (i, j) ∈ E1, must be feasible and

is defined by2:

pij =

 πij if νji(−πij) ≥ 0

max
{
πij,

⌊
βji
αji

⌋}
otherwise.

(2.3.1)

The preferences of participants are given by the linear increasing function of money,

that is,

νij(x) = αijx+ βij, νji(−x) = −αjix+ βji, (2.3.2)

1The notation Z stand for set of integers and notation R stand for set of real numbers. The

notation ZE stands for integer lattice whose points are indexed by E.
2bxc = sup{n ∈ Z | x ≥ n}.
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where βij, βji ∈ R and αij, αji ∈ R+ and x ∈ Z.

Ali and Farooq [1] specified an outcome by a 4 tuple (X, p, q, r) and described

that an outcome is pairwise stable if it satisfies the following two conditions (ps1)

and (ps2) given below:

(ps1) q ≥ 0 and r ≥ 0,

(ps2) νij(c) ≤ qi or νji(−c) ≤ rj for all c ∈ [πij, πij]Z and for all (i, j) ∈ E.3

Here (q, r) ∈ RP × RQ is defined by

qi =

{
νij(pij) if (i, j) ∈ X for some j ∈ Q
0 otherwise

(i ∈ P ), (2.3.3)

rj =

{
νji(−pij) if (i, j) ∈ X for some i ∈ P
0 otherwise

(j ∈ Q). (2.3.4)

Before describing the algorithm mathematically, exclude all those buyer-seller pairs

that are not mutually acceptable from set E and such excluded pairs are defined by:

L0 = {(i, j) ∈ E | νji(−pij) < 0}, (2.3.5)

E0 = {(i, j) ∈ E | νij(pij) < 0}. (2.3.6)

The set of mutually acceptable buyer-seller pairs is given by

Ẽ = E \ {E0 ∪ L0}. (2.3.7)

Define q̃i for each i ∈ P , and ẼP by (2.3.8) and (2.3.9)

q̃i = max{νij(pij) | (i, j) ∈ Ẽ}, (2.3.8)

and

ẼP = {(i, j) ∈ Ẽ | νij(pij) = q̃i}. (2.3.9)

The maximum over an empty set is taken to be zero by definition. Here the set

ẼP contains those buyer-seller pairs which are mutually acceptable and the buyer is

3For any x, y ∈ Z, we define [x, y]Z = {a ∈ Z | x ≤ a ≤ y}.
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most preferred for seller out of all acceptable buyers. Initially, consider vector r = 0

and the subset ÊP of ẼP is defined by

ÊP = {(i, j) ∈ ẼP | νji(−pij) ≥ rj}. (2.3.10)

Initially, ÊP will coincide with ẼP . However, in the further iterations of the algo-

rithm ÊP may be a proper subset of ẼP . Since we have no matching X at the start

of the algorithm, so consider Q̃ = ∅, where Q̃ denotes the set of matched buyers in

X, that is,

Q̃ = {j ∈ Q | j is matched in X}. (2.3.11)

Ali and Farooq [1] defined that at each step in the algorithm the matching X in the

bipartite graph (P,Q; ÊP ) must satisfy the following two conditions:

(a1) X matches all members of Q̃,

(a2) X maximizes
∑

(i,j)∈X νji(−pij) among the matchings having (a1).

Since initially Q̃ = ∅, so any matching satisfies (a1). Upto these steps an outcome

(X, p, q, r) obviously satisfies the condition (ps1). To satisfy the condition (ps2),

define the set U by

U = {(i, j) ∈ ẼP | i is unmatched in X}. (2.3.12)

Here U is the set of all those seller-buyer pairs which are mutually acceptable and

the buyer is most preferred for the seller but the seller is unmatched in X. If U = ∅
then there is no need to modify price vector p. But if U 6= ∅ then find an integer

nij by4 (2.3.13), to modify price vector p.

nij = max

{
1,

⌈
rj − νji(−pij)

αji

⌉}
. (2.3.13)

The modified price vector is denoted by p̃ and is defined by

p̃ij :=

{
max{πij, pij − nij} if (i, j) ∈ U
pij otherwise

(i, j) ∈ E. (2.3.14)

4dye = inf{n ∈ Z|y ≤ n}.
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Modified price vector must also be feasible and the condition (ps1) remain preserved.

Since, initially the price vector p is as large as possible so modified price vector p̃

defined in (2.3.14) monotonically decreases p, and hence preserves νji(−pij) ≥ 0 and

r ≥ 0 for all (i, j) ∈ U . Also define the subset L and Ẽ0 of U by

L = {(i, j) ∈ U | pij − nij < πij}, (2.3.15)

and

Ẽ0 := {(i, j) ∈ U | νij(p̃ij) ≤ 0}. (2.3.16)

Ali and Farooq [1] considered money as a discrete variable in their model and de-

veloped an algorithm to show the existence of pairwise stable outcome. The reason

for taking money as a discrete variable in their model is useful in auction market

because each bid should increase the price of the item by, say, 1 USD. Also, in Ali

and Farooq [1] model when upper and lower bounds are set to zero, it coincides with

Gale and Shapley [7] model.

Algorithm for finding a pairwise stable outcome:

Step 0: Set r = 0 and Q̃ = ∅. Initially define (X, p, q, r), L0, E0, Ẽ, q̃, ẼP and ÊP

by using (2.3.5)−(2.3.10), respectively. Find a matching X in the bipartite

graph (P,Q; ÊP ) that satisfies the condition (a1) and (a2). Again define r, Q̃

and U by (2.3.4), (2.3.11) and (2.3.12), respectively

Step 1: If U = ∅ then, all sellers are matched in matching X, define q by (2.3.3)

and stop. Otherwise go to Step 2.

Step 2: For each (i, j) ∈ U calculate nij by (2.3.13) and new price vector p̃ by

(2.3.14). Define L and Ẽ0 by (2.3.15) and (2.3.16), respectively and update

E0 by E0 := E0 ∪ Ẽ0 and L0 by L0 := L0 ∪ L.

Step 3: Replace price vector p by p̃ and modify Ẽ by

Ẽ := Ẽ \ {L0 ∪ E0}. (2.3.17)
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Again define q̃ by (2.3.8) and modify ẼP , ÊP by (2.3.9) and (2.3.10) respec-

tively, for the updated p and Ẽ. Find a matching X in the bipartite graph

(P,Q; ÊP ) that satisfies the conditions (a1) and (a2). Again define r, Q̃ and

U by (2.3.4), (2.3.11) and (2.3.12), respectively. Go to Step 1.

The complexity of this algorithm depends on the size of those intervals where price

falls.

Theorem 2.3.2 (Ali and Farooq [1]). After a finite number of iterations the algo-

rithm always terminates.

In the given example we followed the algorithmic approach of Ali and Farooq [1]

model and find a stable matching X that satisfies the conditions (ps1) and (ps2).

Example 2.3.1. We have two sets of participants, that is, set of buyers P and set

of sellers Q where P = {io, i1, i2, i3} and Q = {jo, j1, j2, j3}. Let E = P ×Q denotes

the set of all buyers and sellers and lower and upper bounds for each (i, j) ∈ E is

defined as

πij = −2 ∀(i, j) ∈ E,

πij0 = 3 = πij1 ∀i ∈ P,

πij2 = 2 = πij3 ∀i ∈ P.

To find the values of valuation function νij(x) and νji(−x) define in (2.3.2), we fix

the values of αij and αji as αij = 3, αji = 4, and the values of βij and βji for each

(i, j) ∈ E is shown in Table (2.3), (2.4). Now we apply the algorithm starting with

βij j0 j1 j2 j3

i0 2 −2.5 5 6

i1 7 1 3 9

i2 3 8 10 6

i3 6 4 2 −4

Table 2.3: βij for (i, j) ∈ E

βji i0 i1 i2 i3

j0 6 −15 4 9

j1 1 10 11 12

j2 7 6 12 −3

j3 11 0 −1 14

Table 2.4: βji for (i, j) ∈ E
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Step 0. At Step 0, we have r = 0 and Q̃ = ∅. By (2.3.1), corresponding components

of price vector is

p = (1, 0, 1, 2,−2, 2, 1, 0, 1, 2, 2,−1, 2, 3,−1, 2).

Now by using the values of αij, αji, βij, βji and the price vectors obtained at Step

0 we find the values of νij(pij) and νji(−pij) for each (i, j) ∈ E in the Table (2.5),

(2.6).

νij(pij) j0 j1 j2 j3

i0 5 −2.5 8 12

i1 1 7 6 9

i2 6 14 16 3

i3 12 13 −1 2

Table 2.5: νij(pij) for (i, j) ∈ E

νji(−pij) i0 i1 i2 i3

j0 2 −7 0 1

j1 1 2 3 0

j2 3 2 4 1

j3 3 0 3 6

Table 2.6: νji(−pij) for (i, j) ∈ E

From the values given in Table (2.5), (2.6) we obtain νi0j1(−pi0j1), νi3j2(−pi3j2)
and νj0i1(−pi1j0) are negative, therefore we get L0 = {i1, j0} and E0 = {(i0, j1), (i3, j2)}.
Exclude these pairs from set E and set of mutually acceptable buyer-seller pairs is:

Ẽ = E \ {(i1, j0), (i0, j1), (i3, j2)}.

Using (2.3.8), we obtain

q̃i0 = 12, q̃i1 = 9, q̃i2 = 16, q̃i3 = 13.

Also by (2.3.9), we find

ẼP = {(i0, j3), (i1, j3), (i2, j2), (i3, j1)}.

As the subset ÊP of ẼP is defined in (2.3.10) and initially r = 0, so we have

ÊP = ẼP . From the bipartite graph (P,Q, ÊP ), find a matching X that satisfies the

condition (a1) and (a2). Thus, the required matching that satisfies both conditions

is X = {(i0, j3), (i2, j2), (i3, j1)}. From the matching X we find r by (2.3.4) and get

rj0 = 0, rj1 = 0, rj2 = 4, rj3 = 3.
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Also from the matching X updating Q̃, that contains matched buyers in X, thus

Q̃ = {j1, j2, j3}.

Since set U , defined in (2.3.12), contain such pairs in which we have νij(−pij) ≤ rj.

Thus U = {(i1, j3)}. As U 6= ∅, so we move to Step 2 of algorithm and find ni1j3 by

(2.3.13) we get ni1j3 = 1.

Modifying the corresponding components of price vector p̃ for the pairs that are in

U by (2.3.14). All the components of price vector p̃ remain unchanged except p̃i1j3

so:

p̃ = (1, 0, 1, 2,−2, 2, 1,−1, 1, 2, 2,−1, 2, 3,−1, 2).

Also all the valuations in Table (2.5), (2.6) remain unchanged except νi1j3(p̃i1j3)

and νj3i1(p̃i1j3). Thus modified value of these valuations are νi1j3(−1) = 6 and

νj3i1(1) = 4. Both sets L0 and Ẽ0 are empty. So L0 and E0 remain unchanged

for the modified price vector p̃, therefore modified Ẽ remain unchanged at Step 3.

Again by (2.3.8) we have

q̃i0 = 12, q̃i1 = 7, q̃i2 = 16, q̃i3 = 13.

Updating ẼP and ÊP we get

ẼP = {(i0, j3), (i1, j1), (i2, j2), (i3, j1)}.

and ẼP = ÊP . The matching X in the bipartite graph (P,Q, ÊP ) that satisfies (a1)

and (a2) condition is

X = {(i0, j3), (i1, j1), (i2, j2)}.

Again update r by (2.3.4), we have

rj0 = 0, rj1 = 2, rj2 = 4, rj3 = 3.

Updated Q̃ is

Q̃ = {j0, j1, j3}.

And updated U is

U = {(i3, j1)}.
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Since U 6= ∅, we move to Step 2 and calculate the value of ni3j1 by (2.3.13) which

is ni3j1 = 1. All the components of modified price vector p̃ remain unchanged except

p̃i3j1 so:

p̃ = (1, 0, 1, 2,−2, 2, 1,−1, 1, 2, 2,−1, 2, 2,−1, 2).

Again all the valuations in Table (2.5), (2.6) remain unchanged except νi3j1(p̃i3j1) and

νj1i3(p̃i3j1). Thus modified value of these valuations are νi3j1(2) = 10 and νj1i3(−2) =

4.

Again both sets L0 and Ẽ0 are empty. So L0 and E0 remain unchanged for the

modified price vector p̃. Thus Ẽ remains unchanged. Again by (2.3.8) we have

q̃i0 = 12, q̃i1 = 7, q̃i2 = 16, q̃i3 = 12.

Updated ẼP and ÊP is

ẼP = {(i0, j3), (i1, j1), (i2, j2), (i3, j0)},

ÊP = {(i0, j3), (i1, j1), (i2, j2), (i3, j0)}.

The matching X in the above bipartite graph is

X = {(i0, j3), (i1, j1), (i2, j2), (i3, j0)}.

Here U = ∅ that is all the buyers and sellers are matched so algorithm terminates.

Matching X obviously satisfies (ps1) and (ps2) conditions. So X is pairwise stable

outcome.

In the next section we will discuss some important results of Ali and Farooq

[1] model. The proofs of these results can be seen in the original paper of Ali and

Farooq [1]. So we will not prove them here. In section (2.3.1), we will just give the

statements of lemma’s and theorem’s of Ali and Farooq model [1].

2.3.1 Main Results

Lemma 2.3.3 (Ali and Farooq [1]). There exists a matching X in the bipartite graph

(P,Q, ÊP ) that satisfies condition (a1) and (a2) in each iteration of the algorithm

at Step 3.
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The next lemma of Ali and Farooq [1] helps in proving the subsequent lemmas

because it describes the important features of algorithm.

Lemma 2.3.4 (Ali and Farooq [1]). In each iteration of the algorithm, following

holds:

(i) The price vector p decreases or remains the same. In particular, if U\{L∪Ẽ0} 6=
∅ at Step 2 then pij decreases at Step 3 for all (i, j) ∈ U \ {L ∪ Ẽ0}.

(ii) Ẽ reduces or remains the same. In particular, if L 6= ∅ or Ẽ0 6= ∅ at Step 2

then Ẽ reduces at Step 3.

(iii) The vector r increases or remains same.

The following lemma of Ali and Farooq [1] illustrates that in each iteration of

algorithm at Step 3 for each (i, j) ∈ L we have (new)pij = πij and νji(−(new)pij) ≤
(old)rj.

Lemma 2.3.5 (Ali and Farooq [1]). In each iteration of the algorithm at Step 3,

we have (new)pij = πij and νji(−(new)pij) ≤ (old)rj for each (i, j) ∈ L, where L is

defined at Step 2.

The next two lemmas of Ali and Farooq [1] must hold in each iteration of algo-

rithm at Step 3.

Lemma 2.3.6 (Ali and Farooq [1]). In each iteration of the algorithm at Step 3, we

have νji(−((old)pij − nij)) ≥ (old)rj for each (i, j) ∈ (old)U , where nij is calculated

at Step 2. Furthermore, if νji (−((old)pij − nij)) > (old)rj for some (i, j) ∈ (old)U

then (old)pij − nij is the maximum integer for which this inequality holds.

Lemma 2.3.7 (Ali and Farooq [1]). In each iteration of the algorithm at Step 3,

we have νji(−(new)pij) ≥ (old)rj for each (i, j) ∈ (old)U \ L, where L is defined at

Step 2. Furthermore, if νji(−(new)pij) > (old)rj for some (i, j) ∈ (old)U \ L then

(new)pij is the maximum integer in [πij, πij]Z for which this inequality holds.

The given theorem of Ali and Farooq [1] states that the four tuples (X, p, q, r)

must satisfy conditions (ps1) and (ps2) when algorithm terminates.
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Theorem 2.3.8 (Ali and Farooq [1]). If the algorithm terminates then (X; p, q, r)

must satisfy (ps1) and (ps2).
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Chapter 3

Pairwise Stability in Two-sided

Discrete Matching Market with

General Increasing Valuation

Function

Since the matching problems are associated with outcomes that need to be evaluated

in terms of utility and the utility of a matching is the function of productivity of a

pair of participants trading together. The primary objective of two-sided matching

problem is the formulation of stable partnership between participants. In two-sided

matching market, the matching X is said to be stable if there does not exist any

alternative pair in X that is individually better off or like some other participant

then the one to whom he or she is currently matched.

The motivation of our work from the stable matching literature is the matching

model of Ali and Farooq [1]. Their model was arguably the simplest exchange of

money one could think of. Preferences of participants in their model are given by

strictly increasing linear function of prices. The objective of their model was to

show that there indeed exists a pairwise stable outcome with linear valuations and

bounded side payments, and to achieve this objective they proposed an algorithm.

Money is considered as a discrete variable in their model. Motivated by their work,
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we also consider a one-to-one matching model. In our model, preferences of partici-

pants are given by general increasing functions that are nonlinear in the whole real

line. Because, during the recent years, the inflation rate has been very fast that is

not increasing linearly. This hyper-inflation has endangered the stability of national

and individual economy. So, in the current scenario linear valuations with discrete

prices are not so much effective. Thus, it is natural to generalized a strictly increas-

ing linear function of price from νij(x) and νji(−x) to strictly increasing nonlinear

function of price fij(x) and fji(−x) for each (i, j) ∈ E. Thus, in this chapter we

extend the idea of Ali and Farooq [1] paper by generalizing the utility functions.

We organize this chapter as fellows. We first give the description of our model

briefly, in section 3.1. In section 3.2 and 3.3, we describe the buyer-seller sequential

mechanism and supply and demand characterization of stable matchings. An algo-

rithm for finding a pairwise stability is discussed in section 3.4. In section 3.5, we

will discuss the main results of our model.

3.1 The Model Description

Throughout in this chapter, we model matching markets as trading platforms where

buyers and sellers interact. Moreover, each buyer as well as seller can trade with

at most one participant on the other side of the market at a particular time. This

matching market consists two types of participants one type of participants is sellers

U and second type of participants is buyers V . The negotiation and side payments

between participants of both sides are allowed. Naturally, each participant wants

to gain as much profit as possible from his/her partner. Let E = U × V denotes

the set of all possible pairs of seller-buyer. Also when buyer and seller interact with

each other in auction market they have some upper and lower bounds of prices. We

express these bounds by vector π, π ∈ ZE where always πij ≤ πij for each (i, j) ∈ E.

The price vector is denoted by p and define as p = (pij ∈ Z|(i, j) ∈ E) always

satisfies πij ≤ pij ≤ πij.

Since each participant has preferences over the participants of the other set, so

the preferences of sellers over buyers and buyers over sellers is given by the utility

function fij(x) and fji(−x) for each (i, j) ∈ E. Here fij(x) denotes the utility to
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seller i ∈ U , when he or she trade with buyer j ∈ V , and get an amount x from

buyer j ∈ V . Similarly, fji(−x) represents the utility to buyer j ∈ V , when he or

she trade with seller i ∈ U , and pays an amount x of money. Here the preferences

of participants are not strict because it is based on monetary transfer. So, if we

decrease money monotonically then the participants will change their preferences

according to the new price.

3.2 The Buyer Seller Sequential Mechanism

Since preferences of participants are given by general increasing valuation functions

fij(x) and fji(−x) so if fij(x) ≥ 0, then we shall say that seller i is ready to make

a partnership with buyer j at amount x. This means that buyer j is acceptable to

seller i at amount x. Also, if fji(−x) ≥ 0 then we say that buyer j is ready to make a

partnership with seller i at amount x of money. If fi0j0(x1) > fi0j1(x1), then we can

say that seller i0 prefers buyer j0 to buyer j1 at money x1 where i0 ∈ U and j0, j1 ∈ V
and x1 ∈ Z. If fj0i0(−x1) > fj0i1(−x1), then we can say that j0 prefers i0 to i1 at

money x1 where i0, i1 ∈ U and j0 ∈ V and x1 ∈ Z. If fi0j0(x1) = fi0j1(x1), then seller

i0 is indifferent between j0 and j1 at money x1. Also, if fj0i0(−x1) = fj0i1(−x1), then

buyer j0 is said to be indifferent between i0 and i1 at money x1. If fij(x) = 0, then

seller i is indifferent between the buyer j and himself at x. If fji(−x) = 0 for some

x ∈ Z, then buyer j is indifferent between the seller i and himself at x. Preferences

of participants are not strict in our model because the monetary transfer is allowed

between participants of both sets.

3.3 The Supply and Demand Characterization of

Stable Matchings

In this section, we describe the characteristic of an outcome for which it would be

stable.

Let E is the set of all possible buyer-seller pairs. A subset X, of a set E, is called

matching if every agent appear at most once in X. A matching X is said to be
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pairwise stable if it is individually rational and is not blocked by any buyer-seller

pair. A 4-tuple (X; p; q; r) of a matching X and a feasible price vector p is said to

be a pairwise-stable outcome if the following two conditions are satisfied:

(p1) q ≥ 0 and r ≥ 0,

(p2) fij(c) ≤ qi or fji(−c) ≤ rj for all c ∈ [πij, πij]Z and for all (i, j) ∈ E.

Where (q, r) ∈ RU × RV is defined by

qi =

{
fij(pij) if (i, j) ∈ X for some j ∈ V
0 otherwise

(i ∈ U), (3.3.1)

rj =

{
fji(−pij) if (i, j) ∈ X for some i ∈ U
0 otherwise

(j ∈ V ). (3.3.2)

Condition (p1) says that the matching X is individually rational. Condition (p2)

means (X; p, q, r) is not blocked by any buyer-seller pair. A matching X is said to

be pairwise-stable if (X; p, q, r) is pairwise-stable.

To show the existence of pairwise-stable outcome in the model defined in section

(3.1), we first need to calculate price vector p for each buyer-seller pairs. Since prices

should be feasible and pij ∈ Z for each (i, j) ∈ E, so initially we define it by

pij =

{
πij if fji(−πij) ≥ 0

max
{
πij,

⌊
−f−1ji (0)

⌋}
otherwise.

(3.3.3)

Before describing the algorithm mathematically, we define few subsets of set E that

help us to find a matching X satisfying condition (p1). Firstly, we define the subset

K0 and T0 of set E, that contain those buyer-seller pairs from the set E that are

not mutually acceptable, as:

K0 = {(i, j) ∈ E | fji(−pij) < 0}, (3.3.4)

T0 = {(i, j) ∈ E | fij(−pij) < 0}. (3.3.5)

K0 is the set of all those pairs where buyer is not ready to trade with seller and T0

is the set of all those pairs where seller is not ready to trade with buyer. Now the

set of mutually acceptable buyer-seller pairs is defined as:

Ẽ = E \ {K0 ∪ T0}. (3.3.6)
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Define q̃i for each i ∈ U , and ẼP by (3.3.7) and (3.3.8)

q̃i = max{fij(pij) | (i, j) ∈ Ẽ}, (3.3.7)

and

ẼP = {(i, j) ∈ Ẽ | fij(pij) = q̃i}. (3.3.8)

The maximum over an empty set is taken to be zero by definition. Here the set

ẼP contains those buyer-seller pairs which are mutually acceptable and the buyer is

most preferred for seller out of all acceptable buyers. Initially consider vector r = 0

and the subset ÊP of ẼP is defined by:

ÊP = {(i, j) ∈ ẼP | fji(−pij) ≥ rj}. (3.3.9)

Initially ÊP will coincide with ẼP . However, in the further iterations of the algorithm

ÊP may be a proper subset of ẼP .

Since we have no matching X at the start of the algorithm, so consider Ṽ = ∅,
where Ṽ denotes the set of matched buyers in X, that is,

Ṽ = {j ∈ V | j is matched in X}. (3.3.10)

If Ṽ = ∅, then there is no matched buyer in matching X. At each step in the algo-

rithm, the matching X in the bipartite graph (U, V ; ÊP ) must satisfies the following

conditions:

(s1) X matches all members of Ṽ ,

(s2) X maximizes
∑

(i,j)∈X
fji(−pij) among the matchings that satisfy (s1).

Initially Ṽ = ∅, so any matching satisfy (s1). Upto these Steps the outcome

(X, p, q, r) obviously satisfies the condition (p1). To satisfy the condition (p2) we

define the set K of all those buyer-seller pairs that are mutually acceptable and the

buyer is most preferred for seller but the seller is unmatched in X by

K = {(i, j) ∈ ẼP | i is unmatched in X}. (3.3.11)

Since the set ẼP contains such pairs that are mutually acceptable and the buyer is

most preferred for seller out of all acceptable buyers. So there may exists a case in
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ẼP when seller i is indifferent between two distinct buyers. Thus it is totally based

on the seller i to which particular buyer he wants to trade and the rest of unmatched

pairs will go in set K.

If K = ∅, then there is no need to modify price vector p and define further sets

but if K is not empty then we will modify price vector at each iteration of Step 3 by

keeping condition (p1) preserved. The new price vector must also be feasible, that

is, πij ≤ p̃ij ≤ πij. Since we are considering increasing functions therefore we can

find a real number m∗ij ∈ R++ for each (i, j) ∈ K, to modify price vector p, such

that

fji(−(pij −m∗ij)) = rj.

Since we are dealing with discrete prices so we will define an integer mij as follows:

mij = max
{

1, dm∗ije
}
. (3.3.12)

Now, we have

fji(−(pij −mij)) ≥ rj,

where pij −mij is an integer and mij is the minimum positive integer that satisfies

the above condition. This means that

fji(−(pij − (mij − 1))) ≤ rj.

Here the integer mij for each (i, j) ∈ K helps us in finding the new price vector

such that condition (p2) also satisfies. Now we define a subset L of K that contain

those pairs from the set K for which modified price does not remain feasible.

L = {(i, j) ∈ K | pij −mij < πij}. (3.3.13)

The modified price vector p̃ must also be feasible and is defined by:

p̃ij :=

{
max{πij, pij −mij} if (i, j) ∈ K
pij otherwise

(i, j) ∈ E. (3.3.14)

We also define a subset T̃0 of K by:

T̃0 := {(i, j) ∈ K | fij(p̃ij) < 0}. (3.3.15)

Remark Throughout in the algorithm our modified price vector will be always

decreasing and the size of matching X will be increasing. Also, the participants will

change their preferences according to new price vector.
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3.4 An Algorithm for Finding a Pairwise Stability

In this section, we propose an algorithm for finding a pairwise stable outcome for

the model described in Section 3.2.

Input: Two disjoint and finite sets U and V , the set of ordered pairs E = U × V ,

price vector p ∈ ZE, two vectors π ∈ ZE and π ∈ ZE where π ≤ π, general

increasing functions .

Output: Vectors (q, r) ∈ RU × RV , and p ∈ ZE must satisfy (p1) and (p2).

Step 0: Firstly put Ṽ = ∅ and r = 0. Initially define p, K0, T0, Ẽ, q̃, ẼP and ÊP

by (3.3.3)−(3.3.9), respectively and find a matching X in the bipartite graph

(U, V ; ÊP ) satisfying (s1) and (s2). Define r, Ṽ and K by (3.3.2), (3.3.10) and

(3.3.11), respectively.

Step 1: If K = ∅ then define q by (3.3.1) and stop. Otherwise go to Step 2.

Step 2: For each (i, j) ∈ K calculate mij by (3.3.12) and new price vector p̃ by

(3.3.14). Define L and T̃0 by (3.3.13) and (3.3.15), respectively and update T0

by T0 := T0 ∪ T̃0 and K0 by K0 := K0 ∪ L.

Step 3: Replace price vector p by p̃ and modify Ẽ by:

Ẽ := Ẽ \ {K0 ∪ T0}. (3.4.1)

Again define q̃ by (3.3.7) and modify ẼP , ÊP by (3.3.8) and (3.3.9) respectively,

for the updated p and Ẽ. Find a matching X in the bipartite graph (U, V ; ÊP )

that satisfies the conditions (s1) and (s2). Again define r, Ṽ and K by (3.3.2),

(3.3.10) and (3.3.11), respectively. Go to Step 1.

We illustrate with an example the mechanism of the above algorithm and introduce

briefly our results.

Example 3.4.1. Assume n = 4 and U = {io, i1, i2, i3}, V = {jo, j1, j2, j3} where U

and V are set of buyers and sellers. Let E = U × V denote the set of all possible
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buyer-seller pairs. Lower and upper bounds for each (i, j) ∈ E is defined as

πij = −2 ∀(i, j) ∈ E,

πij0 = 3 = πij1 ∀i ∈ U,

πij2 = 2 = πij3 ∀i ∈ U.

To find the valuations of fij(x) = αije
x + βij and fji(−x) = αjie

−x + βji, we fixed

the values of αij and αji as αij = 3, αji = 4 for each (i, j) ∈ E and the values of βij,

βji for each (i, j) ∈ E is shown in Table (3.1), (3.2):

Now we apply the algorithm starting with Step 0. At Step 0 we have r = 0 and

βij j0 j1 j2 j3

i0 2 −61 5 42

i1 0 1 3 40

i2 30 8 47 6

i3 6 7 −5 −4

Table 3.1: βij for (i, j) ∈ E

βji i0 i1 i2 i3

j0 6 12 −15 9

j1 1 10 8 12

j2 7 6 12 −3

j3 11 0 −1 14

Table 3.2: βji for (i, j) ∈ E

Ṽ = ∅. By (3.3.3), corresponding components of price vector is

p = (3, 3, 2, 2, 3, 3, 2, 2, 1, 3, 2,−1, 3, 3,−1, 2).

Now by using the values of αij, αji, βij, βji and the price vectors obtained at Step

0 we find the values of fij(pij) and fji(−pij) for each (i, j) ∈ E in the Table (3.3),

(3.4).

fij(pij) j0 j1 j2 j3

i0 62.25 −0.74 27.16 64.17

i1 60.25 61.25 25.17 62.17

i2 38.15 68.25 69.16 7.10

i3 66.25 67.25 −3.89 18.16

Table 3.3: fij(pij) for (i, j) ∈ E

fji(−pij) i0 i1 i2 i3

j0 6.19 12.19 −13.52 9.20

j1 1.20 10.20 8.20 12.19

j2 7.54 6.54 12.54 7.87

j3 11.54 0.54 9.87 14.54

Table 3.4: fji(−pij) for (i, j) ∈ E
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From the values given in Table (3.3), (3.4) we find that fi0j1(−pi0j1), fi3j2(−pi3j2)
and fj0i2(−pi2j0) are negative, therefore we getK0 = {i2, j0} and T0 = {(i0, j1), (i3, j2)}.
Exclude these pairs from set E and set of mutually acceptable buyer-seller pairs is:

Ẽ = E \ {(i2, j0), (i0, j1), (i3, j2)}.

Using (3.3.7), we obtain

q̃i0 = 64.17, q̃i1 = 62.17, q̃i2 = 69.16, q̃i3 = 67.25.

Also by (3.3.8), we find

ẼP = {(i0, j3), (i1, j3), (i2, j2), (i3, j1)}.

As the subset ÊP of ẼP is defined in (3.3.9) and initially r = 0, so we have

ÊP = ẼP . From the bipartite graph (U, V, ÊP ), find a matching X that satisfies the

condition (s1) and (s2). Thus the required matching that satisfies both conditions

is X = {(i0, j3), (i2, j2), (i3, j1)}. From the matching X we find r by (3.3.2) and get:

rj0 = 0, rj1 = 12.19, rj2 = 12.54, rj3 = 11.54.

Also from the matching X updating Ṽ , that contains matched buyers in X, Thus

Ṽ = {j1, j2, j3}.

Since set K, defined in (3.3.11), contain such pairs in which we have fij(−pij) ≤
rj. Thus K = {(i1, j3)}. Here the set K contain such pair in which buyer is

most preferred for seller but seller is unmatched in X. As K 6= ∅, so we move to

Step 2 of algorithm and find the integer mi1j3 by (3.3.12). Since we are taking the

general function particularly exponential function. There must exist a number mi1j3

such that fj3i1(−(pi1j3 − mi1j3)) ≥ rj3 . So mi1j3 = 1. To find matching X that

satisfies condition (s2), define a subset L of K by (3.3.13). Here L = ∅. Modify the

corresponding components of price vector p̃ for the pairs that are in K by (3.3.14).

All the components of price vector p̃ remain unchanged except p̃i1j3 so :

p̃ = (3, 3, 2, 2, 3, 3, 2, 1, 1, 3, 2,−1, 3, 3,−1, 2).
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Also all the valuations in Table (3.3), (3.4) remain unchanged except fi1j3(p̃i1j3)

and fj3i1(p̃i1j3). Thus modified value of these valuations is fi1j3(1) = 48.15 and

fj3i1(−1) = 1.47.

For the pairs in K we define the set T̃0 by (3.3.15). Since fi1j3(−1) is not less than

0 so T̃0 = ∅ . As both sets L0 and T̃0 are empty. So L0 and E0 remain unchanged

for the modified price vector p̃, therefore modified Ẽ remain unchanged in Step 3.

Again by (3.3.7) we have

q̃i0 = 64.17, q̃i1 = 61.25, q̃i2 = 69.16, q̃i3 = 67.25.

Updating ẼP and ÊP by (3.3.8) and (3.3.9), respectively, we get

ẼP = {(i0, j3), (i1, j1), (i2, j2), (i3, j1)},

and

ÊP = {(i0, j3), (i1, j1), (i2, j2), (i3, j1)}.

The matching X in the above bipartite graph (U, V, ÊP ) that satisfies both (s1) and

(s2) condition is:

X = {(i0, j3), (i3, j1), (i2, j2)}.

Again update r by (3.3.2) we have

rj0 = 0, rj1 = 12.19, rj2 = 12.54, rj3 = 11.54.

Updated Ṽ is

Ṽ = {j1, j2, j3}.

Also updated K is

K = {(i1, j1)}.

Since K 6= ∅, we move to Step 2 and calculate the value of mi1j1 by (3.3.12)

we get mi1j1 = 4 by equation (3.3.12). All the components of modified price vector

remain unchanged except pi1j1 so:

p̃ = (3, 3, 2, 2, 3,−1, 2, 2, 1, 3, 2,−1, 3, 3,−1, 2).

Again all the valuations in Table (3.3), (3.4) remain unchanged except fi1j1(p̃i1j1)

and fj1i1(p̃i1j1). Thus modified value of these valuations are fi1j1(−1) = 2.10 and
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fj1i1(1) = 20.87. Both sets L and T̃0 are empty. So L0 and E0 remain unchanged

for the modified price vector p̃. At Step 3, Since both E0 and L0 were unchanged

therefore modified Ẽ remain unchanged. Again by (3.3.7) we have

q̃i0 = 64.17, q̃i1 = 60.25, q̃i2 = 69.16, q̃i3 = 67.25.

Updating ẼP and ÊP by (3.3.8) and (3.3.9), respectively, we get

ẼP = {(i0, j3), (i1, j0), (i2, j2), (i3, j1)},

and ẼP = ÊP . The matching X in the bipartite graph (U, V, ÊP ) is

X = {(i0, j3), (i1, j0), (i2, j2), (i3, j1)}.

Here K = ∅, that is all the buyers and sellers are matched so algorithm terminates.

The matching X obviously satisfy (p1), (p2) conditions. So matching X is pairwise

stable.

3.5 The Main Results

In this section we will show that the core is non-empty by replacing the preferences

of participants from linear increasing function to general increasing function. The

common argument can be expressed in the same language as expressed in Ali and

Farooq [1]. It turns out that the proof of the lemma’s and theorems for their discrete

model are compatible to the model treated here up to some small changes. The small

changes lie essentially in the fact that the preferences of participants are replaced

from linear increasing function to general increasing function. We will add prefixes

(old)∗ and (new)∗ to sets/vectors/integers before and after update, respectively, in

any iteration of the algorithm. The key result is Lemma 3.5.1 which will be proved

here using the assumption defined in equation 3.3.12. The proof of Lemma 3.5.2

is the direct consequence of Lemma 3.5.1 that can be proof by following the same

steps of Ali and Farooq [1] Lemma 3.4 but uses general increasing function instead

of linear function. The remaining results follow from it. The proof of Theorem 3.5.5

can be seen in the paper of Ali and Farooq [1] in the original version. So we will

not prove them here.
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Lemma 3.5.1. In each iteration of the algorithm at step 3 we have fji(−(pij −
mij)) ≥ rj for each (i, j) ∈ K. Furthermore, if fji(−(pij − mij)) > rj for some

(i, j) ∈ K then pij −mij is the maximum integer for which this inequality holds.

Proof. Let at Step 2 there exist pair (i, j) ∈ K such that fji(−(old)pij) ≤ rj. At

Step 2 we calculated an integer mij by (3.3.12) with the property for each (i, j) ∈ K
at Step 3 we have

fji(−((old)pij −mij) ≥ rj.

Next, we prove the second part of theorem that if fji(−((old)pij −mij)) > rj then

(old)pij − mij is the maximum integer for which this holds. Since by (3.3.12) we

have mij ≥ 1 so we first consider the case when m∗ij < 1, that is mij = 1 by (3.3.12).

By (3.3.11) we have

fji(−(old)pij) ≤ rj

but

rj < fji(−(old)pij − 1).

So for this case results holds. Now, consider when m∗ij > 1 then mij = dm∗ije ≥ m∗ij

by (3.3.12). Since m∗ij is a real number for which we have

rj = fji(−(old)pij +m∗ij).

Also for δ > 0, we have

fji(−((old)pij − (m∗ij + δ))) > rj > fji(−((old)pij − (m∗ij − δ))). (3.5.1)

Since

mij = dm∗ije ≥ m∗ij. (3.5.2)

Therefore, by (3.5.2) we can say that (old)pij −mij is the maximum integer for

which (3.5.1) holds.

Lemma 3.5.1 is the main result of our model because it permits us to create a

new price vector by keeping the condition of mutually acceptability and feasibility

of price vector.
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Lemma 3.5.2. For each (i, j) ∈ L we have (new)pij = πij and fji(−(new)pij) ≤
(old)rj , where L is defined at Step 2.

Proof. Since the set L contain those pairs from set K where price is not feasible.

So, by (3.3.13), for each (i, j) ∈ L we get the first part of the assertion that is

(new)pij = πij. Next, we prove the second part of lemma. Since (new)pij >

(old)pij−mij, therefore, fji(−(new)pij) < fji(−((old)pij−mij)). By lemma 3.5.1, we

have fji(−(pij−mij)) ≥ rj. If fji(−(pij−mij)) = rj then the result trivially holds. If

fji(−(pij−mij)) > rj then by lemma 3.5.1, pij−mij is the maximum integer for which

this inequality holds. Since (new)pij > pij − mij, therefore, fji(−(new)pij) ≤ rj.

This completes the proof.

The next result shows that in the bipartite graph (U, V ; ÊP ) we can find a match-

ing X that satisfies the condition (s1) and (s2).

Lemma 3.5.3. There exists a matching X in the bipartite graph (U, V ; ÊP ) that

satisfy condition (s1) and (s2) in each iteration of the algorithm at Step 3.

Proof. If we show that (old)X ⊆ (new)ÊP in each iteration at Step 3 then lemma

is proof. Since at Step 0 we find the set T0 by (3.3.5) and at Step 2 we updated

T0 by T0 := T0 ∪ T̃0 if T̃0 is nonempty then use updated value of T0 otherwise it

will remain the same. Also L, T̃0 ⊆ K and K ∩ (old)X = ∅ at Step 2. Therefore,

(3.3.14) and (3.4.1) imply that (old)X ⊆ (new)ẼP at Step 3. By (3.3.9), (old)rj is

the lower bound of fji(−(new)pij) for each (i, j) ∈ (new)ÊP , therefore, (old)X ⊆
(new)ÊP .

Lemma 3.5.4. In each iteration of the algorithm, following hold:

(i) The price vector p decreases or remains same. In particular, if K \{L∪ T̃0} 6= ∅
at Step 2 then pij decreases at Step 3 for all (i, j) ∈ K \ {L ∪ T̃0}.

(ii) Ẽ reduces or remains same. In particular, if L 6= ∅ or T̃0 6= ∅ at Step 2 then Ẽ

reduces at Step 3.

(iii) The vector r increases or remains same.
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Proof. (i) Initially the price vector p is defined by (3.3.3) and in each iteration it is

modified by (3.3.14). From (3.3.14), one can easily see that p decreases or remains

same at Step 3. If K 6= ∅ then we find p̃ by (3.3.14) at Step 2. For each (i, j) ∈ K,

mij is a positive integer. Now, if K \ {L ∪ T̃0} 6= ∅ then one can easily see from

(3.3.14) that p̃ij = (old)pij −mij for all (i, j) ∈ K \ {L∪ T̃0} at Step 2. This proves

the assertion.

(ii) Initially Ẽ is defined by (3.3.6) at Step 0 and it is modified by (3.4.1) at

Step 3 in each iteration. If L = T̃0 = ∅ at Step 2 then Ẽ remains same at Step 3. If

L 6= ∅ at Step 2 then Ẽ reduces at Step 3. If T̃0 6= ∅ at Step 2 then T0 enlarges at

Step 2 and consequently, Ẽ reduces at Step 3.

(iii) By Lemma 3.5.3, we have (old)X ⊆ (new)ÊP in each iteration at Step

3 and from the above lemma we see that for each (i, j) ∈ (new)ÊP , we have

fji(−(new)pij) ≥ (old)rj and (old)rj = 0 for each j ∈ V \ (old)Ṽ by (3.3.2). Since

(new)X ⊆ (new)ÊP and by (s1), we have (old)Ṽ ⊆ (new)Ṽ therefore, (new)rj =

fji(−(new)pij) ≥ (old)rj for each (i, j) ∈ (new)X. Further, (new)rj = (old)rj = 0

for each j ∈ V \ (new)Ṽ . Hence, the vector r increases or remains same.

Theorem 3.5.5. The outcome (X, p, q, r) must satisfies the condition (p1) and (p2)

if algorithm terminates.

Theorem 3.5.6. The algorithm terminates after finite number of iterations.

Proof. In each iteration of the algorithm at Step 2, set L and T̃0 both are empty or at

least one of them is non-empty. First consider the case when both sets L = T̃0 = ∅.
Since p is discrete and bounded so by Lemma 3.5.4 (i), for each (i, j) ∈ K price vector

pij decreases or remain the same. Therefore, the price vector p can be decreased

finite number of times.

Next, consider the case when L 6= ∅ or T̃0 6= ∅. Now by Lemma 3.5.4 (ii) either Ẽ

reduces or remain the same in each iteration of the algorithm at Step 3. Therefore,

this case is possible at most |E| times. This completes the proof.
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3.6 Open Problem

• We have generalized a one-to-one matching model of Ali and Farooq from linear

valuations to non linear valuations. In our generalized model, we assume that

the feasible price vector p is an integer vector, that is, p ∈ ZE and showed the

existence of pairwise stable outcome in our generalized model.

• It is an open problem to find a pairwise stable outcome in our model by

assuming p ∈ RE. In such a case Farooq and Ali and Farooq models become

a special case for our generalized model.
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