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Abstract

This thesis comprises the discussion on generalized separation of variables method. Some exact solutions
have been obtained by applying generalized separation of variables method. In this context, we suggest
a method to construct the exact solutions of nonlinear partial differential equations(PDEs). The method
involves searching for transformations that reduce the dimensionality of the equation. New families of
exact solutions of nonlinear second-order partial differential equations that govern processes of heat and
mass transfer are illustrated.

Exact solutions of hyperbolic-type equation, Korteweg-De-Vries type, and nonlinear wave equation are
constructed by applying this method. Obviously, the generalized separation of variables method can also
be effective for constructing exact solutions of many other nonlinear PDEs, as well.

The thesis also discusses about the construction of the exact solutions of nonlinear PDEs, by applying
an efficient method, commonly known as % expansion method. This method appears to be effective in

seeking exact solutions of nonlinear equations.
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Chapter 1
Introduction

In scientific research, seeking the exact solution of nonlinear equations is a hot topic. We outline generalized
separation of variables which is applied to second order partial differential equations(PDEs). To solve linear
heat -and mass transfer equations and other linear equations of mathematics, the method of separation of
variables is the most widely used. Moreover the method make it possible to construct exact solutions of
nonlinear wave equations [7].

Exact solutions of heat and mass transfer equations play a vital role in forming a proper understanding of
qualitative features of various thermal and diffusion processes. Four basic approaches are most frequently
encountered for searching the exact solution of nonlinear differential equations:

(1) searching the travelling wave solution, (2) searching the self similar solutions, and (3) solution in the
form of the sum or product of two functions of different arguments, (4) application of groups to search for
symmetries of the equation.

The method of separation of variables that is outlined below includes the first two approaches as its special

cases and quite often allows finding exact solutions that cannot be obtained by application of groups.

1.1 Structure of exact solutions for heat and mass transfer equations

1.1.1 Self similar solution

There are various techniques to reduce the PDE into an ODE (or at least a PDE in a smaller number
of independent variables), which includes various integral transforms, when we are dealing with linear
PDEs. Such techniques are much less prevalent when we deal with nonlinear PDEs. However, there is an
approach that identifies equations for which the solution depends on certain groupings of the independent
variables rather than depending on each of the independent variables separately. Firstly, we will describe
this technique for a linear PDE. For our convenience we consider the one dimensional case. Self similar

solutions of one dimensional heat equation are solution of the form

Uz, t) = tag(%), (1.1.1)

where a and A are arbitrary constants. The unknown function g(;%) is identified by an ODE, which is

obtained by substituting the solution of equation (1.1.1) into the original PDE. Generally, self similar



solution are said to be the solution of the form [8|.

Uz, t) = x(t)g(%) (1.1.2)

where x(t) and ¢(t) are selected for the reason of simplicity in some particular problem.
1.1.2 Separation of variables for linear equations

Most of the linear PDEs can be solved by the separation of variables. We consider the linear second order
PDE of the form

2 2 2
oUu oU 07U 07U 8U>:0’ (1.1.3)

Ox’ Ot 0x2’ 02 Qxot

with two independent variables x and ¢ and an unknown function U = U(z, t), that is to be determined.

G(az,t, U,

Procedure for solving equation of the type Eq. (1.1.3) involves some stages.
Let us consider the examples of particular solution by using the method described for constructing exact
solutions of linear equations .

(1). Firstly, we search for the particular solution of the form
Uz, t) = x(x)A(t). (1.1.4)

Now substituting expression (1.1.4) into Eq. (1.1.3) for the function x(z) and A(¢), rewriting the equation,
if possible, such that the left hand side of the resulting equation depends only on z, x, X%, x4, and its right
hand side depends only on ¢, A\, A}, \};. Thus in non degenerate case, both sides are equal to some constant
C, which is called as the separation constant. Thus the solution of Eq. (1.1.4) can be determined by ODE
obtained for x(x) and A(t). This method is called as the separation of variables in linear equations.

(2). Since a linear combination of exact solutions of a linear equation is also an exact solution of this
equation, which is called as the principle of linear superposition. Here we restrict our consideration to the
equation in two independent variables x and ¢, and one dependent variable U.

Thus, the separable linear equations have exact solution in the the form of the sum

U(x,t) = 1(z)x1(t) + Pa(x)x2(t) + .. + Pm(2) X (2)- (1.1.5)

Some of the linear equation admit the exact solutions of the form [9]

Uz, t) = ¢(z) + x(1), (1.1.6)

where ¥ (x) and x(¢) can be determined by the corresponding ODE obtained by substituting Eq. (1.1.6)
into linear equation.
Example. Let us consider a linear equation
ou 0 ou ou
ou _ oy . oU ov , 1.1.
50 = 1a 1) ] U@ G, X (1.17)
Eq. (1.1.7) admits more complicated solution of the form

Uz, t) = ¥(z)¢1(t) + ga(t), (1.1.8)

where ¢1(t) = e and ¢o(t) can be identified by solving the first order ODE

Py(t) = bda(t) + x(1).



1.1.3 Separation of variables for nonlinear equations

Ezact Solution of a PDE is a solution, which is defined in the whole domain where a PDE is defined,
which can be represented as a finite expression. The exact solution of a nonlinear PDE is redundant, if
there exist more general solution then such redundant solution can be considered as a particular case of
general solutions of nonlinear PDEs [10].

Much effort has been spent to construct the exact solutions of nonlinear PDEs, because of their vital
role in understanding the nonlinear problems. Since some of the nonlinear PDEs admit exact solution of
the type given in Eq. (1.1.4). In this case unknown function y(x) and A(¢) can be identified by using
ODES, those are obtained by substituting Eq. (1.1.4) into the original equation and followed by nonlinear
separation of variables.

Let us consider particular examples related to the method described for constructing exact solutions of
nonlinear equations by separation of variables.

Example 1. The nonlinear heat equation

oU 9. ,OU
=5 U ) (1.1.9)

admits the exact solutions of the form (1.1.4). Here the term SU¥ is defined as the thermal diffusivity,
where 8 and k are constants.
Example 2. The nonlinear heat equation

oU

oU
o )

% (/QQWUi

o (1.1.10)

admits the ansatz of the form (1.1.6). Here the term BeV is defined as the thermal diffusivity, where /3
and v are constants.
Let us consider some examples for constructing exact solutions of nonlinear PDEs by generalized separation

of variables.

1.1.4 Generalized separation of variables

We restrict our consideration to the nonlinear PDEs involving two independent variables x and ¢ and one
dependent variable u [9]. Most of the nonlinear PDEs involving quadratic and higher order derivatives of
the form

aq(x)by (6)1 (u) + ag(x)ba(t)a(u) + ... + @m ()b ()1, (u) = 0, (1.1.11)

(where II; (u) are the products of powers of functions u and their partial derivatives) have the exact solution

of the form

w(a t) = 1 (@)1 (1) + Sa(@)bat) + o+ b (@) (). (1.1.12)

Such solutions are called as generalized separable solution.
General form of functional differential equation
Substituting Eq. (1.1.11) into Eq. (1.1.12), we obtain the differential equation of the form

Oy (X)W1 (T) + Do(X)Wo(T) + ... 4+ Oy (X) U, (T) = 0, (1.1.13)



for ¢;(t) and ¢;(x), where the functionals ®;(X) and ¥;(7") depend on variables = and ¢ respectively such
that

(p’L(X) :(Di($,¢,(b/1, /1/7'“7¢;na ;;1)7

(1.1.14)
U(T) = Wit 00, V107 oo Vs Ui) -

Now we describe two different methods for solving functional differential equations [7].

Generalized separation of variables: Differentiation method

The procedure for solving functional differential equation involves three steps:
(1). We can assume that ®,,(X) # 0. Dividing (1.1.14) by ®,,(X) and differentiating the result with
respect to x yields an equation which is of the same form as Eq. (1.1.14) but consisting of less number of
terms. Thus

O (X)W (T) + Po(X)Wo(T) + ... + Py 1 (X)Wpp—1(T) = 0, (1.1.15)

where

Bi(X) = [®:(X)/;(X)];

x’

continuing the similar procedure, finally we are left with the separable equation in two-terms only, as given
below
(I)l(X)\I/l(T)—I-(I)Q(X)\I/Q(T) =0. (1.1.16)

Now we consider two situations:
Non degenerate case: U1 (T) + Us(T) # 0 and &1 (X) + $o(X) 0.
The solution of Eq. (1.1.16) can be identified by the resulting ODEs as given below

U (T) +CUy(T) =0, By (X)— CPy(X) =0, (1.1.17)

where C' is an arbitrary constant.

Degenerate case:

If ¥1(T) =0,Uy(T) =0, when ®;(X), P2(X) are arbitrary.

If &1(X)=0,P2(X) =0, when ¥;(T"), ¥o(T') are arbitrary.

(2). Thus the solutions of the two term Eq. (1.1.16) should be substituted into the original functional
differential Eq. (1.1.13), to eliminate the unwanted integration constants.

(3). The case for ®,,(X) = 0 must be considered separately.

Generalized separation of variables: Splitting method

To avoid the difficulties while applying the differentiating method, it is convenient to split the initial
problem into two simpler subproblems. Below we briefly describe the major steps of splitting method.

Case 1: Functional differential equation consisting of an even number of terms: m=2k



(1). In the first step, one can show by differentiation and induction, that the functional Eq. (1.1.13) has

the following solution [9].

q)z(X) = Ailq)k+1(X) + Ai2¢)k+2<X) + ...+ Alk‘pgk(X), (Z =1,2,3.... k‘),
Ui (T) = =AU (T) — AiWUs(T) — oo — AUp(T), (i =1,2,3....%), (1.1.18)

where ®1(X), ..., Px(X), Y 1(T), ..., ¥or(T') are unknown functions, whereas @1 (X), ..., Pox(X),
Uy (T),...,Ui(T) are known quantities. Expression (1.1.18) is consisting of k% arbitrary constants A;;.

Example: Consider the functional equation consisting of an even number of terms of the form
O (X)W (T) 4+ Po(X)WUo(T) + $3(X)U3(T) + Py (X)Wy(T) = 0. (1.1.19)

Thus Eq. (1.1.19) has the solution

O = B1P3 + By, ®y = B3®3 + ByPy,
Uy = B0y — ByWy, Uy = —Byly — ByTy. (1.1.20)

Comparing Egs. (1.1.18) and (1.1.20) for k = 2, we get Ay;; = By, Ao = Ba, Aa = B3 and Ay = By
as arbitrary constants, whereas ®;(X) are functions of one arguments and ¥;(7") are functions of another
argument.

Case 2. Functional differential equation consisting of an odd number of terms: m =2k — 1
Two different solutions exist for Eq. (1.1.13), if it is consisting of odd number of terms which includes
k(k — 1) arbitrary constants.

Example: Let us consider the functional equation consisting of an odd number of terms of the form
D (X)W (T) + Po(X)Wo(T) + $3(X)U3(T) = 0. (1.1.21)
Eq. (1.1.21) has the solution

O = B1P3, P9 =DBsP3, Y3 =-B1V— ByVy,
Uy = B1¥3, Uy =DBoW¥3, &3=-B1P — ByPs.

(1.1.22)

Thus, in the first solution, the arbitrary constants are given the names as follows: B; = Ay1, and By = Aoy
for k = 2, whereas, for finding the second solution, one can use a simple technique, since By = —1/A12
and By = Aj1/A12, we obtain

®3 = —B1P1 — B9,

substituting above equation in (1.1.21), we have
q)l(X)\Ifl(T) + (I)Q(X)\IJQ(T) + (_qu)l — BQ‘I’Q)\Ifg(T) =0,

or

1 (X)[V1(T) — B1U3(T)] + 2 X)[¥o(T) — B2Ws(T)] = 0.

6



Equating the expressions in parentheses with zero, we obtain the following
\I’l(T) = Bl\I’g(T) and \IJQ(T) = BQ\I’g(T),

where B; and By are arbitrary constants [9].

1.1.5 Functional separation of variables

Structure of solutions:

It is important to note that, most of the nonlinear PDEs have the exact solution of the form
n
u(z,t) = F(2), 2= dm(@)m(D). (1.1.23)
m=1

Such solution are called as functionally separable solutions, where the functions ¢, (x), ¥, (t) and F(z)
are unknown in advance, and must be determined to find the solution.

We consider two simplest functional separable solutions
U=G(2), z =1(x)x(t), (1.1.24)

or

U =G(z), z=(x) + x(t), (1.1.25)

where G(z) is some function.

Functional separation of variables of a special form

For easiness, one can specify some functions in solution (1.1.23) in advance and other unknown functions
can be identified. Such solutions are called as functionally separable solutions of a special form.
A generalized separable solution is a functional separable solution of a special form corresponding to

F(z) = z. Now we consider functionally separable solutions of Eq. (1.1.23) of special form [10]
w = G(z), z = ¢(t) + zo(t), (1.1.26)

w=G(2), z=1tYi(x)+ P2(x). (1.1.27)

The arguments z and ¢ in solution (1.1.27) can be eliminated, such solution will be called as generalized
travelling wave solution of the original equation. Substituting expression (1.1.23) into the original equation
and then eliminating ¢ by using the expression for z, thus a functional differential equation will be formed
in two variables x and z.

Remark: Functional separation of variables of a special form are given below
w=G(2) z=t"Yi(z)+Pa(x), (2 is quadratic in t),

w=G(z) z=1(x)eM +a(x), (2 contains an exponential of t).



Functional separation of variables: Differentiation method

In general, substituting solution (1.1.23) into the PDE which is under consideration, yields a functional

differential equation with three arguments, two simple variables x and t and one composite argument

z. In some cases, the resulting equation can be reduced by using differentiation method to a functional

differentiation equation containing two variables (either variable z or ¢ is eliminated).

Functional separation of variables: Splitting method

The procedure for constructing exact solutions of functional differential equations consists of some steps,

which are outlined below.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Substitute solution (1.1.23) into the nonlinear PDE to produce a functional differential equation
in three arguments (where the two arguments = and ¢ are simple, whereas the third variable z is

composite.

With the help of elementary differential substitution (by selecting and renaming terms with deriva-
tives), transforming the functional differential equation into pure functional equation in three argu-

ments z, t and z.

Reducing the functional equation containing three arguments into a functional equation in two

arguments (the variables x or t is swapped) by the differentiation method.

Constructing a solution for the two argument functional differential equation, obtained in step (3)

(by using the formula discussed in section (1.1.4)).

Constructing a solution by solving the set of ODEs, obtained by the step 4 solutions, and differential

substitution made in step 2.

Substituting the solution set obtained in step 5 into the original functional differential equation of

step 1, to determine the unknown quantities.

Analyze separately the degenerate cases (which arise due to violation of assumption made in the

solution procedure), which are possible.

Example: Let us consider the unsteady-state heat equation with a nonlinear source term [9]

Up = Uy + f(u). (1.1.28)

To find the exact solution of Eq. (1.1.28) by functional separation of variable method, considering the

ansatz of the form

u=u((), ¢=aot)x+ x(t), (1.1.29)



which is consisting of three variables z, t and (. Now to determine the unknown functions u(¢), ¢(t) and

x(t), differentiating the Eq. (1.1.29) with respect to x and ¢

O QI W+ X (1),

O = w0, (1130
82u " 2

902 U Q)7 (t).

Substituting Eq. (1.1.30) into the Eq. (1.1.28), we obtain

u (O (D + X' (1)) = u" () (1) + f(w). (1.1.31)
Dividing the Eq. (1.1.31) by «/(¢) # 0, thus we have

u”(¢) f(w)
w'(¢) u'(¢)

Now substituting the value of = from Eq. (1.1.29) in Eq. (1.1.32), we get the functional differential

¢t +x' = ¢* + (1.1.32)

equation in two variables ¢ and (

d)x )¢ () o f(u)
—— + £) + ~0, 1.1.33
o0 X e Two” T —
comparing the functional differential Eq. (1.1.33) with Eq. (1.1.19), we obtain
Px ¢'(t) 2
by = X, By=-— Dy = Oy =1
1 ¢(t) X Y 2 ¢(t) 9 3 ¢ ) 4 9y
u”(¢) f(u)
1 ) 2 C’ 3 ’U//(g) ) 4 ’U/(C)
Substituting the above expressions into the Eq. (1.1.19), we get
/
t
sb;)x —X/(t) = B1®3 + Bo®, = B1¢* + Bo. (1.1.34)
Dividing the Eq. (1.1.34) by ¢, thus we have
¢'(t)x X't By
- = Bio(t) + —=,
g7 e PUTEy
or
d x\ Bo
“arly) =P gy
Integrating the above equation with respect to t, we get
dt
x(t) = —¢(t)[ B /gb(t)dt + By / o0 + c2). (1.1.35)
Substituting Eq. (1.1.33) into the Eq. (1.1.19) produces
—¢ 3¢/ (t) — By¢ % = Bs. (1.1.36)



Taking w = ¢~ 2(t), and %’ = —2¢73¢(t) in Eq. (1.1.36), we obtain

d
a(wedB“t) = 2672341533.
Integrating the above equation with respect to ¢ produces w(t) = cje?54t — g—i.
Substituting w(t) = ¢~ 2(¢) in Eq. (1.1.35), we get
B3\ —1/2
o(t) = i(c1e234t - —3) . (1.1.37)
By
Now to solve u((), we have the following equation
u"(¢)
— _B; — BsC. 1.1.38
w(0) 1 3¢ ( )
The solution of Eq. (1.1.38) can be identified by integrating with respect to ¢, thus we have
u(C) = C4/€[BlCéng“2] d¢ + cs. (1.1.39)
and ()
flu
=—-B,—B
u/(C) 2 4(7
or

f(u) = —c3(B2 + B4C)€(_Blc_%BBCQ),

where ¢1, ca, c3, ¢4 are arbitrary constants. Now substituting Eqgs. (1.1.35), (1.1.37) and (1.1.39) in Eq.
(1.1.29), ¢ in Eq. (1.1.29) takes the form

(- i<6162B4t _ gi)mx—w) [Bl/¢(t)dt+32/£) +CQ] (1.1.40)

Thus from the above example, it is to be noted that

(i) The splitting method reduces the three argument functional differential equation solution into the

pure functional equation solution (by reducing it into a functional equation in two arguments).

(ii) Solving the system of ODEs by splitting the original problem into several subproblems.

1.1.6 Exact travelling wave solutions of nonlinear equations

A travelling wave is a wave of permanent form in which the medium is travelling in the direction of
propagation of wave. Commonly, solution of nonlinear equation are determined in terms of travelling

wave solution, where waves are represented by the form [15]
U(z,t) =U(§), E=x+ M\, (1.1.41)

where A is speed of the wave. Since it is possible to reduce the PDE (in z.t) into an ODE (in ¢), which
can be solved by particular methods. A travelling wave solution occurs in different kinds of mathematical

problems.

10



The travelling wave solution of a linear wave equation was first obtained by d’Alembert in 1747.

Methodology: Suppose that a nonlinear equation in two variables x and ¢ is given by
F(u7 Uy, Uty Uggy Ugt, Utt, Ugzx, Wttt ) - 07 (1142)

where u(z,t) is an unknown function, F' is a polynomial in w and its partial derivatives involving the
highest order derivatives and other nonlinear terms. Major steps of this method are given below [16].

Step 1: We use generalized wave transformation of the form
u(z,t) =u(), £=x— vt (1.1.43)
Eq. (1.1.43) permits us to reduce Eq. (1.1.42) to an ODE
Flu, —vu' o, v*u”, —vu” u”..] = 0. (1.1.44)

Step 2: Suppose that the ODE (1.1.44) has the formal solution [4].

u(€) = i&(:c)(f;)i, (1.1.45)
=0

where B;(z) are functions of z, the functions F'(£) and B;(x) are unknown, and are to be identified later,
and By(x) # 0.

Step 3: The positive integer k can be identified by considering the homogenous balance between the
highest degree derivative and nonlinear terms in Eq. (1.1.44).

Step 4: Substitute Eq. (1.1.45) into the Eq. (1.1.44), obtain the function F’(£), calculate all the necessary
derivatives u/(€), u”(€),... of the unknown function u(¢).

As a result, we obtain a polynomial of %, and its derivatives, gathering all the terms of same powers of %’
and its derivatives, and equating with zero all the coefficients of this polynomial, which produces a system
of equations, which on solving yields the values of B;(z) and F(§), using the values in Eq. (1.1.45), we
can obtain the exact solution of Eq. (1.1.42).

The outline of the thesis is as follows.

Chapter 2 discusses about how we can use generalized separation of variables and structures of ansatzes
which are admitted by the nonlinear hyperbolic type equation to determine the exact solutions.

Chapter 3 of this thesis illustrates the approaches to find the exact solution of nonlinear equations namely
Korteweg-De-Vries equation and nonlinear wave equation.

Chapter 4 comprises discussion on the exact travelling wave solution method to determine the exact
solution of PDEs, particularly Benjamen Bona Mohany equation by applying %—expansion approach [15].

A conclusion chapter highlighting the contributions made in this thesis are given at the end.

11



Chapter 2

Generalized separation of variables for

nonlinear partial differential equations

A method of separation of variables is one of the important methods that is widely used in mathematics
to seek the exact solutions of linear equations. This method is used to find exact solutions of equations
with two independent variables  and ¢ and an unknown function w in the form of product of functions

of different variables.

w = 6(x)B(t). (2.0.1)

Solution structure (2.0.1) can be regarded as an ansatz that transforms the equation under study to an
ODE with an unknown function é(x) or an unknown function 3(¢). Exact solutions of nonlinear PDEs

can be constructed by arranging the k terms in the form of a finite sum

k
w(z,t) = Z gi(x)a(t), (2.0.2)

to determine the unknown functions g;(z) and a;(t) . To construct the exact solution of nonlinear PDE,

the following generalization of ansatz (2.0.1) is

m

u=>Y wi(t)di(x) + g(x,1), m > 1. (2.0.3)
i=1

used. Ansatz (2.0.3) contains an unknown function g(x,t), m unknown function d;(z) and m unknown

functions w;(t), which are to be determined with the condition that anastz (2.0.3) reduces the given

equation to a system of m ODEs with unknown functions a;(t).

If we consider m = 1 in Eq. (2.0.3), this system becomes an ODE with an unknown function w;(¢). We

consider an ansatz which is similar to Eq. (2.0.3) and obtained by replacing u by =, z by u, whereas t will

remain same in Eq. (2.0.3)

z =Y wi(t)di(u) + g(u,t). (2.0.4)
=1

Solution structure Eq. (2.0.3) or (2.0.4) are called solution with separated variables, and the method used

for their construction is called the generalized procedure of separation of variables [2]. We use the ansatzes
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of the type Eq. (2.0.3) and Eq. (2.0.4) to construct the exact solution of the nonlinear hyperbolic-type

equation.

2.1 Exact solutions of the nonlinear hyperbolic-type equation

Consider the general form of second order linear partial differential equation in two variables with constant
coefficients:

Augy + 2Bugy + Cuyy + Duy + Euy + F =0,

which satisfies the condition

B? — AC > 0 is known as hyperbolic equation.

Let us consider hyperbolic equation of the form [2]
0%w 0*w
ZC _ qw—
ot? Ox?

+b(g—:)2+c. (2.1.1)

We will also consider the following generalizations of equation (2.1.1), when ¢ = 0, and ¢ = ¢(t), i.e

P _ 00
o2 0z2 Oz

)2 + d(t)w. (2.1.2)

2.1.1 Exact solutions by separation of variables of nonlinear hyperbolic-type equation
when (¢ =0)

Consider the special case of Eq. (2.1.1), when ¢ =0, i.e

0*w 0*w ow\ 2
s = AW b(—) . 2.1.3
oz~ “orz T\ an (2.1.3)
Now to construct the exact solution of Eq. (2.1.3), we use the ansatz
w=u(t)d(z) + g(z,t), u(t) #O0. (2.1.4)

Above solution structure is some times used to construct the exact solution of nonlinear equations.

Now by differentiating Eq. (2.1.4) with respect to t and z

82
P _ g (2.15)
0
8—: = ud + gg, (2.1.6)
0w
2 = ud” + gux- (2.1.7)
Substituting Eq. (2.1.5)-(2.1.7) into Eq. (2.1.1), we obtain the equation

u"d + gy = a(ud + g)(ud” + goz) + blud’ + g2)?, (2.1.8)

or

u"d + gy = a(u®dd") + augd” + audgey + agges + bu?(d')? + b(gz)? + 2bug.(d),

13



or

u"d + gy — u(ageed + 2bged + agd”) — u?[add” + b(d')?] — aggee — b(gz)* = 0.
Above equation must be an ODE with u = u(¢) as an unknown function. Thus
add" +b(d')? = ad, aeR, (2.1.9)
and

adgzy + 2bd' g, + ad” g = (t)d. (2.1.10)

For a =0, Eq. (2.1.9) becomes

ad(d)” +b(d)? =0,
which has a particular solution d = z*, when a = %, a=0and p # 1.
Now substituting d = z* and b = akT” into Eq. (2.1.10), we obtain

1— N
azt guy + 2auTMw“_1gz +ap(p — 1) %g = (t)a,

9z g ()
Gz +2(1 — M); + plp — 1)@ =g
Y(t
22ger +2(1 — p)2ge + p(u — 1)g = v(t)z?,  where ’yi) = ~(t). (2.1.11)

Let us consider following three cases:

Case 1: For p = 2, substituting d = 2 and @ = —2b in Eq. (2.1.11), it reduces to the following form
2% gpy — 219, + 29 = y(t)x%, (2.1.12)
Since Eq. (2.1.12) is Cauchy Euler equation, let x = €%, then Eq. (2.1.12) becomes
(A% —3A +2)g = ~y(t)e*,
where 2D = A, and 2°D? = A(A —1).
The solution for homogenous equation: (A? — 3A +2) =0, is
ge = B(t)a* +n(t)z.

The particular solution of Eq. (2.1.12): (A% — 3A + 2)g, = v(t)e%, is given by

(A —2)g, = y(t)e™,

or

/ j€<e %g,) = 7(H)e,

or
gp = 7()€e* = (1) In(x)2”.
Thus the general solution of Eq. (2.1.12) is
gz, t) =~(t)2®In | z | +B(t)x? + n(t)z. (2.1.13)

14



Substituting Eq. (2.1.13) in Eq. (2.1.4) by using d(z) = 22, we obtain
w(z,t) =~y(t)z?In |z | +8(t)x2 + n(t)x, where AB(t) = B(t) + u(t).
Establishing n(t) = 0 in Eq. (2.1.14), we obtain
w=y(t)z?In | x| +8(t)x>.

Now differentiating Eq. (2.1.15) with respect to t and =

2
o = §/(0a () | |
ow
2 = (o) + 20| @ ) + B2,
0w

7 =yt)(3+2In |z |) + 28.

x
Substituting above equations in Eq. (2.1.3) produces

' ()2 In | x| +6"(t)x* = —2b(y2iin | x| +6(t)x*)(3y 4+ 2vin | x | +28)
+b(y(t)x + 2zvin | z | +28x)?).

Using Eq. (2.1.16), we obtain the following system of equations for v(t) and 3(t)

V() = =200%(1),  B(t) = =268y + by (1).

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

In order to get a particular solution of 7" (t) = —2bv2(t), let us consider v(t) = At" and v"(t) = An(n —

1)t"~2. Now substituting these values in Eq. (2.1.17), we obtain
n(n —1)t""% = —2bAt?", which is satisfied by n = 3.

Thus using A = ;t—g, ~(t) is given by

—3t2
t) = .
(1) 2
Substituting Eq. (2.1.18) in B"(t) = —2bBy + by?(t), we obtain
t_4
B"(t) = 6Bt + 97
or
2
t2/B//(t) - 6,8 - 97,

(2.1.18)

(2.1.19)

which is a nonhomogenous Cauchy Euler equation. Thus the solution of corresponding homogenous

equation is:

Yo = c1t 2 + cot?,

and particular solution of Eq. (2.1.19) can be obtained by letting y; = ¢t~2, and yo = t® in above equation,

and taking their Wronskian, since W{y1, y2] = y1y4 — y2y; = 5, thus we have

o [mWemdt | [utg®dt [ POENE L [ 0rd
yp_yl(t)/ w(yL, o) “’2/ Wl y) / 5b ”/ 55

15



=9t 2Int N 92
T 25b
General solution of Eq. (2.1.17) is

9t=2 9t 2Int

9 9t—2Int
t) = 1t + ot 2 - P ( 7)t—2 _
Blt) = eit’ + et "+ S 50 at+{2* 95 5b
Intt—2
=ctP +egt ™ — ) n5b where c¢3 = <02 + 2%)()) (2.1.20)

Now using Egs. (2.1.20) and (2.1.18), exact solution of Eq. (2.1.15) is given by

—3t722%In | z |

w(z,t) = 5

—2
M)xz, (2.1.21)

3 72—
+ <C1 +c3 5

where ¢; and c3 are arbitrary constants.

Case 2: For y = 3, Eq. (2.1.11) reduces to a following form by using d = 23

22 gpe — Axg, + 69 = y(t)2?, (2.1.22)
which is Cauchy Euler equation, which reduces to the form
(A% —5A 4 6)g = y(t)e*.
The solution of homogenous equation: (A? —5A 4 6) = 0, is given by
ge = B(t)z? +7(t)x>.

For particular solution of Eq. (2.1.22), we proceed as follows

(A =2)gp = = —y(t)e*,

/ jé(e‘zfgp) = - / ~(t)de,

Ip = _’Y(t)§€2£ = —7(t)3:2 Inz.

thus from above equation, we obtain

or

Finally general solution of Eq. (2.1.22) is given by
g(x,t) = —y(t)x? Inz + B(t)z? + 7(t)x>. (2.1.23)
Now substituting Eq. (2.1.23) in Eq. (2.1.4), we have
w(z,t) = B(t)x? +n(t)z® — y(t) Inz 22, where n(t) = u(t) + 7(t). (2.1.24)
Substituting Eq. (2.1.24) into Eq. (2.1.3), and establishing ~(¢) = 0, we get

w(z,t) = B(t)x? + n(t)z>. (2.1.25)
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Differentiating the Eq. (2.1.25) with respect to ¢ and =

2
= B0 + (1),
% = 228(t) + 32°n(t),
32
a—;; = 25(t) + 6zn(t).

Now substituting the above equations in Eq. (2.1.3), we obtain

B"(t)x? + 0" (t)z® = a<252332 + 86nz> + 6772:c4> + b<452x2 + 92zt + 1251}:1;3).

Thus from above equation, we have following system of equations for 5(¢) and n(t), by taking, a = _TSb

B =bB?, n" = 0. (2.1.26)

The equation n” = 0, has the solution: 7(t) = ¢1t + ca.
Now we search for the particular solution of 3” = b3?, by substituting 8 = At"*2? and 8" = A(n+2)(n+1)t"
in 8" = b2, of Eq. (2.1.26), it reduces to

A(n +2)(n + 1)t" = bA%*" ™ for  n=1,

thus for A = b%, Eq. (2.1.26) becomes

8 = 317

Substituting B(t) and 7(t) in Eq. (2.1.25), thus we have
-2

w(zx,t) = 6%3:2 + [ert + eo)a?, (2.1.27)

where ¢; and ¢y are arbitrary constants. The ansatz w = 8(¢)x? + n(t)z3 is a special case of more general
ansatz 14|
w(z, t) = 83(t)x® + da2(t)x? + 61 (t)x + do(t),
where 0;1(t) = 0 and do(t) = 0.
Case 3: Now consider p # 1,2,3 in Eq. (2.1.11), thus we have

22 gra + 2(1 — p)agy + p(pn — 1)g = y(t)2”.

To find the general solution of Eq. (2.1.11), since the homogenous part of the above equation is Cauchy

Euler equation:
2290 + 2(1 — p)age + plp —1)g = 0,
or

[AA=1)+2(1 = p)A + p(p—1))]lg =0,

or

A~ =20 V(1 =2p)? —A(w? — p)
5 7
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e = 5~2(t) zH + 60(15):6“_1.

_ ~(t)e* or
[A2+A—2p)+p—p]’

Now particular solution of Eq. (2.1.11) is given by: g,

(t)z?
= . 2.1.28
N TR TEE) (2129
Consequently the general solution of Eq. (2.1.11) is
(t)z? S -1
g(x,t) = ———F—— + 9a2(t) =" + do(t)x" . 2.1.29
(010) = I 1) 0 4 () (2.1.20)
Now substituting (2.1.29) in Eq. (2.1.4), we obtain
w = Sa(t)at + e H)a*~Y,  where  u(t) + 6a(t) = da(t)
’ (h=3)(u—2) " ’ ST
Using the Eq. (2.1.4), we get
=4 " 2 pn—1 _ V(t)
w = Q(t)l' -+ (51(t)$ + (50(t)x , (51(15) = (2.1.30)

(n=3)(n—2)
Now to find the exact solution of Eq. (2.1.30), differentiating the Eq. (2.1.30) with respect to = and ¢,

thus we have the following equations

*w 1" 2 1" m 1" p—1

g: — 51(6)2 + Sa(D) e + o (t) (1 — 1)z 2, (2.1.31)
&w n—2 n—3
e = 201(t) + d2(t)pu(pe — D)aH ™= + 5o () (0 — 1) (1 — 2)" .

Substituting Eq. (2.1.31) in Eq. (2.1.3)
81 (t)z? + 8U(t)ah + Sl (1) = a [52(15).@“ + o ()22 + 50(75)95#—1} [zal(t) ()l — D24
2
So(t) (1t — 1) (1 — 2)95#—3} + b[&l(t)Qw () + So(t) (1 — 1)95#—2} : (2.1.32)
Using Eq. (2.1.32), we obtain the following system of equation for d1(¢) and da(¢)

67 (t) = (2a + 4b)63. (2.1.33)

55(t) = (2a + ap(p — 1) + 4bu)d162,  where a=——, p=
Substituting p = i3 in above equation, we get

—a?b n 2a® + 6ab
(a+0b)? a+b

5U(t) = ( )5152. (2.1.34)

Now to find the particular solution of Eq. (2.1.33) by considering §; = A¢"*3 and
§1(t) = A(n + 3)(n + 2)t" !, thus we have

(n+3)(n + 2)At" ™ = (2a + 4b)A%t*" 6 gatisfied by n =0.

18



Thus by using A = ( solution of Eq. (2.1.33) is

a+2b)t5’
3
6 = t2 2.1.
YT a2 (2.1.35)
Using Eq. (2.1.35), Eq. (2.1.34) reduces to the following form
8 (t) = (6 — 5 + p?)ad1d,.
Thus we have ) ( )
3at™ a(l—pu
S5(t) = (6—5 2 5 b=~
2() ( /’L+/’L)a+2b 2 1 )
or
t265(t) = (9 — 31%)do. (2.1.36)

For the solution of Eq. (2.1.36), let e® =&, o =In¢ and £264(t) = (A? — A)d2 and substituting these
values in Eq. (2.1.36), thus we have

(A% — A —9p + 3u%)52 = 0. (2.1.37)

Solving Eq. (2.1.37), we consider following two cases;
Case 3a: When 3u% — 9y > %,
1 1 1
(A—§)2+3u2—9u—1 =0 impliess A= 5 T,

where o = 4/3p% — 9 — 1.

Thus in this case, Eq. (2.1.37) has the following solution
5y = e2 (c1cosox + cosinox).

or

dy = fé [c1 cos(0In&) + cosin(oIn )], (2.1.38)

where o? = (3u® -9 % > 0.

Case 3b: When 3u? — 9u <
impliesA:%ia, a:\/9u—3/ﬂ+i>0,

(A—3)—(9u+ 5 —3p?) =
8y = £2(c1€7 + c267°), (2.1.39)

where 02 = 9u — 3% + % > 0. Substituting yu = gﬂ\ﬁ in Eq. (2.1.36) produces

#G = PO ()
Substituting ¢265(t) = (A% — A) in above equation, we have (4A? — 4A +1)5, = 0, or A = 3, 7, thus we
obtain
5a(t) = e2 (c1 + ca),
or
0a(t) = €2 (c1 + c2 ), (2.1.40)
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where ¢; and ¢y are arbitrary constants.
Now substituting d1(¢) and d2(¢) in Eq. (2.1.11), we obtain the following exact solutions:
(a). Since

w = 822 + ot

Therefore exact soluton of Eq. (2.1.11) using Eq. (2.1.35) and Eq. (2.1.38) is given by

w(z,t) = (

(b). The exact solution of Eq. (2.1.11) by substituting Eqs. (2.1.35) and (2.1.39) is given by

=y zbt_2>x2 + [5% (c1cos(oIng) + co(sinoIn f)] . (2.1.41)

3 2\ 2 1 o\ 9+ 2v21
=(— o g h = — 2.1.42
w (a—|—2bt )w +£2(1€7 + € %)x?, where u 5 > 0, ( )
and 0% = 9u — 3p* + 1 > 0.
(c). The exact solution of Eq. (2.1.11) by using Egs. (2.1.35) and (2.1.40) is given by
—2 1 1
w = (a - 2b)x2 + a3 (cy + coIn€),  where o2 = (3;3 —p— Z)’ (2.1.43)

where ¢, and ¢y are arbitrary constants.

2.1.2 Exact solution by separation of variables of nonlinear hyperbolic-type equation
(c#0)

Consider the hyperbolic equation for ¢ # 0

0w 0%w Ow\ 2
S = awss + b<%> +e (2.1.44)

Exact solution of Eq. (2.1.44) can be constructed by using the ansatz of the form
w = u(t) + g(z, ). (2.1.45)

The above ansatz is obtained by taking a special case ¢ = 1 in general ansatz (2.0.3), where g(z,t) is

generalization of ¢(x) in ansatz of the form

w(z,t) = ¢(z) + x(b),

differentiating Eq. (2.1.45) with respect to x and ¢, we have

ow _

a.fU - g:ra
0%w
el = Grz, (2.1.46)
0w
W = U”(t) + git-

Now substituting Eq. (2.1.46) into the Eq. (2.1.44), we have

u"(t) + gu = a(u+ 9)guw + b(g:)* + ¢, (2.1.47)
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which must be an ODE with u = u(t) as an unknown function, that is to be determined.

Let us consider the function g(z,t) is of the form
gz, t) = do(t)x? 4 51(t)x + do(t). (2.1.48)
Substituting Eq. (2.1.48) in Eq. (2.1.46), we have
w(z, t) = u(t) + 6o (t)2? + 61 (t)x + do(t).
Thus we obtain the following ansatz

w(z,t) = 5(t)a2 + 61(t)x + do(t),  where  do = u(t) + do(t). (2.1.49)

Differentiating Eq. (2.1.49) with respect to t and x, we have

o

8;‘; = 205(t)x + 61(¢),

2
?);} = 255(t), (2.1.50)
0w
oF = S () + 87 (t)x + 55 ().

Now substituting Eq. (2.1.50) in Eq. (2.1.44), it reduces to the following form thus we have
Shx? + 01w + 6 = 2a(63x% + 51692 + S902) + 4bdax? + 4bS3 4 4b61 692 + .

Thus from above equation, we have the following system of equation for the functions d;(t)

84 = (2a + 4b)3, (2.1.51)

87 = (2a + 4b)61 62, (2.1.52)

854 = 2a600a + 4b6? + c. (2.1.53)

Now solving Eq. (2.1.51) by substituting dy = At" ™ and 85 (¢t) = A(n+3)(n+2)t"*!. Using A = (a++b)t5,
Eq. (2.1.51) has the following solution

3
52 (t) = 2 2.1.54
()= o (2.1.54)

Now substituting Eq. (2.1.54) in Eq. (2.1.52), we obtain Cauchy Euler equation in the form as given
below
257 — 66, = 0.
Thus we have the following solution
51(t) = 13 + coe™ 2. (2.1.55)
Now solving Eq. (2.1.53) by substituting Eq. (2.1.54) and Eq. (2.1.55), we obtain

6a

n 2b50 = 4bt2(6163t + 6267%)2 + t2e,

t26// o
0 a

which is nonhomogenous Cauchy Euler equation, thus we have
6a

(AZ - A - m)éo = bt2(01€3t + CQGiZt)Q + tQC,
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The solution of homogenous equation: (A? To5) =0 1is

bt <—>] byt
ge = 5 ¢ T ;

where a and b are constants. Now let us consider a special case for a = b = 1 in above equation, which
gives A = 2, —1. Thus

ge = k1e® + kype™?

(A2 — A — 8%)g, = bt (c1e® + cpe )2 +#%¢,  wherea=b=1
(A —2)(A+1)f, = t2c3e% + t2c3e~4 + 2t2czel + t2¢

t2 2 6? t2 2 —4t 2t2C36t t2C
9 = G T BaHa T Gy arn T Goear)
t2 2 ()t t2 2 —4t 2 t c
9p = —35 e —tC3e—7

Thus the general solution of Eq. (2.1.53) is given by

o —t t2 2 Gt tQC%efllt . t2
60(t) = ke + koe 28 + 18 —¢? cze’ — 7 (2156)

Using Egs. (2.1.54)-(2.1.56) in Eq. (2.1.49), we have exact solution of the form
1225 12364

2.t 42
28 18 —t7cge’ —cqt”. (2.1.57)

w(zx, t) = (

mtiz)xz + (01€3t + 626727&)% + klemL + k267t

2.1.3 Exact solution by separation of variables of nonlinear hyperbolic-type equation
[c = o(t)]
Now considering a special case for [2]

0w 0w ow\ 2
S = aw s+ b(%) + ot (2.1.58)

We consider following cases,
Case 1: For = 2 and a = —2b, the ansatz Eq. (2.1.14) for n(t) = 0 takes the form

w=(t)z?In | x | +8(t)z?, (2.1.59)
O (0 47 (Da | 2|,
(';1;) W)z + 20T | 3 |) + A2, (2.1.60)
g?g =v(t)(3+2In |z |) + 28.

Using Eq. (2.1.60) in Eq. (2.1.58), we get
')z In | z | +8"2* = =2b[yzPIn | x| +B22][3y + 2yIn | x | +28]+
blyz + 2avin | © | +28z)° + ¢[ya®In | x | +827], (2.1.61)
comparing the coefficients in Eq. (2.1.61), we obtain

Y'(t) = —207*(t) + .

(2.1.62)
B (t) = —2bBy + by2(t) + .
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Case 2: For y=3 and a = _T?’b, considering a special case of Eq. (2.1.24) when v(¢) = 0.

w = B(t)x® +n(t)x>. (2.1.63)

Differentiating the Eq. (2.1.63) with respect to ¢ and z, thus we have

82

S = B0 + 0" (0",

(Z;% = 2243(t) + 32%n(t), (2.1.64)
32

8—;;) = 2B(t) + 6an(t).

Substituting Eq. (2.1.64) in Eq. (2.1.58), we obtain
B ()% + 1" (t)z> = a[ﬁ(t):cQ + n(t)x?’] [28 4 62n] + b[228 + 377:1:2]2 + o(t) [5332 + nw3]. (2.1.65)

Comparing coefficients of z? and 3 in Eq. (2.1.65), thus we have

5" = b8 + 98,
) (2.1.66)
n = on.
Case 3: Establishing do(t) = 0, thus Eq. (2.1.28) reduces to the following form
w = So(t)xH + 51 ()22 (2.1.67)
Now differentiating Eq. (2.1.67) with respect to ¢ and x , we have
0w
Frie 87 (t)2% + &5 (t)a*,
0
00 bi(ty2e + ba(tyuar (2168
0w _
Spz = 200(t) + o2 (t)p(p — 1),
x
Substituting Eq. (2.1.68) in Eq. (2.1.58) produces
37 (t)a? + 85 (t)a = a[da(t)x" + 61(£)2?)[201(8) + Sa(t)u(p — L)2* 2]+
b[61 ()2 + 6o () a1 )? + () [daa + 6122 (2.1.69)
Comparing coefficients of 22 and z* in Eq. (2.1.69), we obtain the following equations
6 = (2a + 4b)67 + $d;. (2.1.70)
8 = (2a + ap(p — 1) + 4pb)d102 + $2,
where a = ﬁ Now substituting the value of u = ;%5 in above equation, we get
—a’b 2a® + 6ab
syt = (— 5162 + 2. 2.1.71
10~ (s + 28, e

Since ¢(t) is some general function. By knowing ¢(¢) and by solving Egs. (2.1.70) and (2.1.71) and
substituting the result in Eq. (2.1.58) we can obtain the exact solution of Eq. (2.1.58).
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Chapter 3

Exact solutions of nonlinear partial

differential equations

In this chapter, we continue the investigation that was started in previous chapter to construct the exact
solution of nonlinear equation. By replacing w — x, = +— w, t+—— t in Eq. (2.0.3), we obtain an

ansatz which is similar to Eq. (2.0.3) and is of the form

z = ui(t)di(w) + g(w,1).
=1

We use the above ansatz to construct the exact solution of the nonlinear Korteweg-De-Vries equation and

nonlinear wave equation.

3.1 Generalized separation of variables for Korteweg-De-Vries equation

Korteweg-De-Vries equation was first introduced by Boussinesq (1877), and rediscovered by Diederik Ko-
rteweg and Gustav de Vries (1895) for a mathematical explanation of the solitary wave phenomenon

discovered by S. Russell in 1844. They take the general form [12]
dyw + 2w + 9,G(w) = 0,

where w(z,t) is a function of one space and one time variable, and G(w) is some polynomial of w.
Korteweg -De-Vries equation is [2]

ow ow\k  PPw

L au(20) P 11

ot +Gw) Ox + ox3 ( )
where k is a real parameter. In Eq. (3.1.1), G(w) is an unknown function that is to be determined. To

determine G(w), we use ansatz of the form
x = uy(t)d(w) + ua(t). (3.1.2)

In above ansatz the unknown terms are uy(t), u2(t) and d(w). Differentiating the Eq. (3.1.2) with respect

to x, we have

ow 1
— = . 1.
ox  ui(t)d (3.13)
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Differentiatin the Eq. (3.1.2) with respect to z
uy (1)d" (wy)* 4 uy () d'wey = 0,

or
d//

St (d)E

Now differentiating the above equation with respect to x

Wey =

wy (1) d" () + 3uy (8)d" wpwey + uy (£)d Wege = 0,

or

aSw dl// (d//)2
= — 3 . 3.14
0~ W@y @) (344
Differentiating the Eq. (3.1.2) with respect to ¢
—uy (t)d'wy = uy (t)d(w) + ub(t),
or ) )
ot (75} (t)d,
Now substituting Egs. (3.1.3)-(3.1.5) in Eq. (3.1.1), we have
/d ! 1 d//l dl/ 2
s LA Ty W™ _, (3.1.6)

wd ~wd Ty T dm@y ey

To check the linear independence of functions y; = %, and yo = %, which are coefficients of _Tull and _TI?
We observe that Wronskian = Wy, ya] # 0, so y1, yo are linearly independent.

Assume that k # 3, we require that the coefficients of the functions - can be represented as a linear

uf
combination, over the field of the real numbers of the functions % and %. Thus we have

d/// ( d// ) 2 d 1

“a s =Ag (3.1.7)
or
—d"d +3(d")* = Md(d)* + u(d)*. (3.1.8)
Now inserting Eq. (3.1.7) in Eq. (3.1.6), we obtain
/ /
e o
In viewing the Eq. (3.1.9), G(w) is
G(w) = [uyuf= = Mt 3)d(d)F 1 + [uhut ™t — pulb =3 (a1 (3.1.10)
Therefore
wjul ™ — b =5y, (3.1.11)
ubut ™t — b3 = 5y, (3.1.12)
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where d; and do are constants.

For k # 3, Korteweg-de-vries equation admits ansatz (3.1.2) for G(w) of the form
G(w) = &1d(d)* " + 8o (d)F 1, (3.1.13)

where d = d(w) is an arbitrary solution of the Eq. (3.1.8).

Considering some special cases for d = d(w), A and p in Eq. (3.1.8):

Case a: Ford=Inwif A=0and p=1;

Case la: When k # 2. Taking d = Inw in Eq. (3.1.13), G(w) takes the form

G(w) = (61 Inw + &p)w' ", (3.1.14)

Now d(w) can be determined by using Eq. (3.1.2) as given below

x ua(t)
ui(t)  wa(t)’
where u;(t) and us(t) are unknowns, and can be determined by using Eq. (3.1.11), thus by substituting
A =0in Eq. (3.1.11), we obtain

d(w) =

(3.1.15)

! k—1
wjuy =01,

or

ui(t) = k(kéyt + c1)*. (3.1.16)
Now we find ug(t) by substituting g =1 in Eq. (3.1.12)

/1, k—1 k=3 _ 5

upuy T — Uy 2.
Dividing above equation by Eq. (3.1.11)
ubuk =t — k=3 _ 0
wjuk=1 o
or
J
uh(t) — iug (t) = u;2(t). (3.1.17)

Using a special case ¢; = 0, Eq. (3.1.16) reduces to the following form
wi(t) = k(kdit)F. (3.1.18)

Substituting u;(t) = k(kdlt)% in Eq. (3.1.17) and integrating the Eq. (3.1.17) with respect to ¢

us(t) — g—zul(t) = /k(kélt)fdt, (3.1.19)
1
—2
P _ k(ké1)F k2
ua(t) aul(t) =3 t* +co (3.1.20)
Dividing Eq. (3.1.20) by w;(t)
t@(t) (52 k(k&l)% t% C2

w® 5 k=2 w@ Twme (3.1.21)
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Thus by rearranging, Eq. (3.1.21) takes the form

’LLQ(t) (52 k(kﬁél)? k=3 —1 -1

ul(t) (51 k—2

Substituting Eq. (3.1.22) in Eq. (3.1.15), we obtain

-3

= E(ké1)® ke _
k—2 51
As we know that in this case
d(w) = Inw, implies w = e[d(w)]7

thus after substituting Eq. (3.1.23) in above equation, w(z,t) takes the form

-3
=1 gksy) R k=3 =1 5
zk(kdrt) & — L1 t k 4c(t)F —32
w(z,t)=e 2 nl k#£2

Thus (3.1.24) is the exact solution of Eq. (3.1.1), where ¢ is an arbitrary constant.
Case 2a: When k = 2. Taking A = 0 in Eq. (3.1.11), it reduces to the following form

ujutl = 4.
Integrating with respet to ¢, Eq. (3.1.25) reduces to the following form
wr(t) = (261t + c3)3.
Taking c3 = 0, in above equation, we have
ur(t) = (2611)2.

Now substituting Eq. (3.1.26) in Eq. (3.1.17), we get

'LLQ(t) — 6—u1(t) = (251)71 Int + cy4.
1
us(t) 9o -3 -1 -1 -1
= — 20 t2 Int t = c4(20 .
w (t) 5, PO Int b=, c=cy(20)7
Substituting Eq. (3.1.29) in Eq. (3.1.15) , we have
-1 -3 -1 -1 02
dlw) =x(201t)2 —(201)2t2 Int+ct2 — 5
1
As a result, we obtain the following exact solution of Eq. (3.1.1).
2(2610) T —(261) 242 Intder T — 22
w(z,t) =e k=2
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(3.1.22)

(3.1.23)

(3.1.24)

(3.1.25)

(3.1.26)

(3.1.27)

(3.1.28)

(3.1.29)

(3.1.30)

(3.1.31)



Case b: Ford =w® if A=0and p= —1, Eq. (3.1.13) implies
G(w) _ 51wa(awa71)k71 _’_('52(0”“[]0471)16717

or
G(w) = [§jw® + dhlwe=DE=1), (3.1.32)
where 0 = a*716; and 8y = a*1dy. Using pu = —1 in Eq. (3.1.12), we have
uéulffl + ulff?’ = d3.

Dividing above equation by Eq. (3.1.25), we get

ub(t) — Zu(t) = —up?(t). (3.1.33)

us(#) — %ul(t) _ / k(kort) ot (3.1.34)
1
or L
5 k(ko)) P e
up(t) = Zu(t) + ko) ® ez Co. (3.1.35)
5 2k

Dividing Eq. (3.1.35) by w;(t), produces

-2

UQ(t) . 09 k(k:&l)T t% C2

= = + . 3.1.36
U1 (t) (51 2 —k (75} (t) (75} (t) ( )
Using Eq. (3.1.36) in Eq. (3.1.15), d(w) takes the form
-3
_ SO % we _
d(w) = skt 7 — FEODE aes st %2 (3.1.37)
2—k 01
As we know that in this case
d=w* and w(z,t)=[d(w)a.
Thus substituting Eq. (3.1.37) in above equation, Eq. (3.1.1) has following exact solution
-3
v k(k6y)E ke 1 )
w(z,t) = |zk(kst) T — (QI)k’“t’%f Fet)® — 63} , (3.1.38)
- 1

where « is some integer.

Case c: Fora=1ind=wif \=p=0. Using d = w? in Eq. (3.1.13), G(w) takes the following form

1 - 1 -
Glw) = Sw? (w2 P 4 p(Cw? )

\V)

or
1-k

G(w) = 53111% + w2, (3.1.39)
where 7 = 2'7%§; and &5 = 217%6,5. For u =0, Eq. (3.1.12) has the following form
ubul 1t = ;. (3.1.40)
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Dividing Eq. (3.1.40) by Eq. (3.1.25), we obtain

/. k=1

= —. 3.1.41
Wkl o ( )
Integrating the Eq. (3.1.41) with respect to t, we get
02
?m(t) = 5—u1 (t) + o (3.1.42)
1
Dividing Eq. (3.1.42) by w;(t), we have
UQ(t) 52 =1
= — k(koqt 3.1.43
u1(t) 51—1_02 (k0st)® ( )
Using Eq. (3.1.43) in Eq. (3.1.15), d(w) takes the following form
-1 0 =1 -1
d(w) = xk(kdt)® — 5 ctF ¢ = cok(kdy) " . (3.1.44)
1
Since, in this case
d=w? and w(z,t) = [d(w)]?,
Using above equation, Eq. (3.1.1) has the following exact solution
_ 1 5o12
w(z,t) = [xk(kalt)% AT - 53] L k#2,
1
_ _ 2
- [m(251t)71 —etT — gﬂ . k=2, (3.1.45)
1
where ¢ is an arbitrary constant.
Case d: For d = sin"'w and d’' = 1iw2 if A=0and p=—1, Eq. (3.1.13) reduces to the following
form
G(w) =9 sin_1w< ! )kgl + 6 (1>k;1 = [0y sin ™ w + 6] (1 — w2)% (3.1.46)
Using 1 = —1, Eq. (3.1.12) takes the form
uhu ™t b3 = 6. (3.1.47)
Dividing the Eq. (3.1.47) by Eq. (3.1.25), we obtain
1., k=1 k—3
)
U _ %2 (3.1.48)
ujuy o1
/ 52 / -2
uy(t) — 5—1u1(t) = —uj “(t). (3.1.49)
By using Eq. (3.1.18), integrating the Eq. (3.1.49) with respect to t
02 —2
ug(t) — 5—u1(t) = — [ k(kdért)* dt, (3.1.50)
1
Rearranging Eq. (3.1.50), it takes the following form
-2
) k(ko1)® k=
un(t) = 2y (t) 4 RO F o2 (3.1.51)
01 2—k



Now dividing Eq. (3.1.51) by u;(t), we obtain

k=2

UQ(t) . 0 " k(kél)_TQ tk C2

Ui (t) 51 2—k ui (t) Ui (t) ( )
or »
UQ(t) 09 k(k&l)T k-3 -1 -1
= -+ — t = cok (ko . 3.1.53
) PP - Eotc(t)F, ¢ = cak(kdr) ™ ( )
Substituting Eq. (3.1.53) into Eq. (3.1.15), d(w) has the following form
-3
-1 k(kdé1)F® k- -1 0
d(w) = (ko) 7 — FEOT s | gyt %2 (3.1.54)
2 —k o1
Since in this case
d=sin"'w, implies w(z,t) = sind(w).
Thus using above equation, Eq. (3.1.1) has the following exact solution
-3
w(z,t) = sin [sh(koy) 7 — PR ees st %] (3.1.55)
2 —k 01
Case e: For d = arccoshw/2 and d' = W if A\=0and =0, Eq. (3.1.13) takes the form
G(w) = [0y arccos hw /2 + 3] (w? — 4)% (3.1.56)
Case f: For d = efj—il and d' = ﬁ, if \=0and p =0, Eq. (3.1.13) takes the following form
eW —eW %
= Aya— . 1.
Gw) = [ — + 52] ( e 1)2) (3.1.57)
For =0, Eq. (3.1.12) reduces to the form as given below
ubuh 1t = ;. (3.1.58)
Dividing Eq. (3.1.58) by Eq. (3.1.25), we get
k—1
ubuy 52
==, 3.1.59
u’lu]ffl o1 ( )
)
uh = 5—?1/1 (3.1.60)
Integrating the Eq. (3.1.60) with respect to ¢, we obtain
)
UQ(t) = 5—u1 (t) + ¢o. (3.1.61)
1
Dividing Eq. (3.1.61) by w;(t), we have
UQ(t) (52 -1
= — k(kdit)* . 3.1.62
u1(t) f51+c2 (hort)® ( )
Substituting Eq. (3.1.62) in Eq. (3.1.15), d(w) has the following form
-1 02 -1 -1
d(w) = zk(kdit) ® — = —ct® c=cok(kdy)* . (3.1.63)

o1
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Since in this case (
w d(w
d— m, and w(x,t) —hl [W}

Thus using above equation, Eq. (3.1.1) has following solution

xk(kélt)_?l —ctF — g—f }

w(z,t) =1In - — ,  k#2. (3.1.64)
[xk(k:dlt)kl - §—2 —ctF® —1
1
201t 7 ctz 7 &
w(z,t) =In | 2(201t)= n [, k=2 (3.1.65)
:):(2(5116)7 —ctT — ﬁ -1
where c is an arbitrary constant.
Special Case:
For k = 3, Eq. (3.1.1) takes the following form
ow ow PBw
—— — =0. 3.1.
T )(ax> T =Y (3.1.66)
Substituting Egs. (3.1.3)-(3.1.5) in Eq. (3.1.66), we get
uld ul, G(w) d" (d")?
— - — 3 = 0. 3.1.67
nd " ud TA@ T @o@r T EO@r (3167
Using Eq. (3.1.67), G(w) has the following form
d/// d/l 2
G(w) = uhudd(d)? + uhu3 (d')? +w—3id;. (3.1.68)

Considering 31 = d(d')? and gy = (d')? in Eq. (3.1.68), we observe that Wronskian W (y1,%2) # 0, so

using the linear independence of the functions d(d’)? and (d’)?, we obtain
1,2 _ I 2
where 0; and Jy are arbitrary constants. Using Eq. (3.1.69), Eq. (3.1.68) takes the form
da" (d//)Q

G(w) = 61d(d)* 4 62(d)* + — — 3-—~2

7 3@ (3.1.70)

where d(w) is an arbitrary smooth function. Considering the following special cases for Eq. (3.1.70):
Case 1: Ford=¢", d =¢€v¥, d"=¢€" d" =e" in Eq. (3.1.70), we obtain

G(w) = §1€3" + §2e*¥ — 2. (3.1.71)

Using Eq. (3.1.71) in Eq. (3.1.66), we get

00 | (5163 4 Gpe — 2 ( ) L) (3.1.72)
ot
Now to find d(w), we use the ansatz (3.1.2). Integrating the Eq. (3.1.69) with respect to t, we get

w\»-.

ui(t) = (301t + c2)3. (3.1.73)
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UQ(t) = gjul (t) +c1. (3.1.74)

Using (3.1.73) and (3.1.74) in Eq. (3.1.15), d(w) takes the following form

0
d(w) = —2F %2 (3.1.75)
(361t +cz)3 01
Since, in this case
d=e", implies w = Ind(w).

Thus using above equation, exact solution of Eq. (3.1.66) is given by

)
w(z,t) =1In [Lﬁl - —2}, (3.1.76)
(3(51t + 02)5 o1
where ¢, and ¢y are arbitrary constants.
Case 2: Ford=w™!, d = —w™2, d’" =2w™3, and d"" = —6w™*, Eq. (3.1.70) takes the form
G(w) = 61w ™" + Sqw™* + 6w — 12w 2. (3.1.77)
inserting Eq. (3.1.77) into Eq. (3.1.66), we have [2]
ow ow\3  w
S5+ (BT 4 s bw = 1207 (S5) S5 =0, 3.1.78
8t+(1w + dow ™ + 6w w>8x + 5.3 ( )
Exact solution of Eq. (3.1.78) is given by using w = ﬁ, ie
)
w(z,t) = ! . (3.1.79)
51(1‘ + Cl)(361t + 02)T — (52
Theorem 1 [13].
ow ow\k 3w
— + G(w,t)| =— —F =0. 3.1.80
o +CwD(5) + o (3.1:80)

The solution of Eq. (3.1.80) can be found by using the ansatz (3.1.1), if the following conditions are
satisfied:
(1). In viewing the Eq. (3.1.80), the function G(w,t) has the form

Glw, t) = [y ™ = b= (d)E !+ [k — pd3)(@)F = a(t)d(@)F 4 b)), (3.1.81)

where d = d(w) is an arbitrary solution of Eq. (3.1.8), a(t) and b(¢) are functions of ¢, whereas u; = u;(t)

and ug = ua(t) satisfy the system of equations

wuf =t — b3 = a(t), (3.1.82)
ubut ™1 — b3 = b(1). (3.1.83)

(2). For k =3, function G(w,t) has the following form

G _rageme oaeome 7 (d7)?
(w,t) = wquid(d)* + uyui(d)* + 7 3(d’)2

= a(t)d(d')* +b(t)(d)? + 02:/ — 3((65,,));, (3.1.84)

32



where d = d(w) is an arbitrary smooth function, a(t) and b(t) are functions of ¢, with uq(¢) and ua(t)
satisfy the system of equations
uhut = a(t), ubud = b(t). (3.1.85)

Consider the following special cases of Eq. (3.1.8):
Case la: Ford =¢e" if A=0and p =1, Eq. (3.1.84) has the following form
G(w,t) = [a(t)e” +b(t)](e”)* .

Using above equation, Eq. (3.1.80) takes the form [2]

ow w k1 (OWNE  DPw
S+ lal®)e” +b(B)](e") (%) 5 = 0. (3.1.86)
For A =0, Eq. (3.1.82) takes the form
wput =l = a(t). (3.1.87)
Integrating the Eq. (3.1.87) with respect to t, we get
1
() = [k/a(t)qu] . (3.1.88)
For p =1, Eq. (3.1.83) reduces to the form
ubut ™t — kT3 = b(1), (3.1.89)
or
uh = b(t)ul=F +ur?
Integrating the above equation with respect to t produces
ug(t) = /b(t)ui—kdt+/u;2(t)dt+c2.
Substituting Eq. (3.1.88) in above equation, we obtain
1k —2
us(t) = /b(t) [k/a(t)dwcl} ; dt+/ [k/a(t)dwrcl} b+ e, (3.1.90)

where ¢; and ¢y are arbitrary constants. Since d(w) = e¥, thus Eq. (3.1.80) has the following exact

solution

where 1 (t) and us(t) can be substituted by using Eqgs. (3.1.87) and (3.1.89).
Case 1b: For d(w) = wa if A= p =0, Eq. (3.1.82) has the following form

Gw,t) = [ar(H)wa + by ()] (w = )F 1, (3.1.91)

where a;(t) = a'*a(t) and b1(t) = o' ~*b(t). Using Eq. (3.1.91), Eq. (3.1.80) take the form

%+l + b))

3
ot aﬂ)k 5

5n) tom =0 (3.1.92)
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Thus the exact solution of Eq. (3.1.80) is given by

t
wiz,t) = [ _ )r, (3.1.93)
ui(t)  ua(t)
where us(t) is an unknown function. Now to determine wus(t) by considering = —1 in Eq. (3.1.83), we
have
ubu™1 4 uh T3 = b(t). (3.1.94)
Integrating the Eq. (3.1.94) with respect to t, we get
ug(t) = /b(t)u}"‘?dt— /ul_Q(t)dt—i—cQ.
Substituting Eq. (3.1.88) in above equation, we obtain
1k =2
us (1) :/b(t) [k/a(t)dtﬂl} F dt—/[k:/a(t)dtJrcl} dt + e, (3.1.95)

where ¢; and ¢g are arbitrary constant. Thus by substituting Egs. (3.1.88) and (3.1.95) into Eq. (3.1.93),
we can find the exact solution of Eq. (3.1.80).

Case 1¢: For d(w) = arctan 2w and d’ = Hiwg if A=0and p=0, Eq. (3.1.82) takes the form

1 k—1
G(w, 1) = [a1(t) arctan 2w + by ()] (m) , (3.1.96)

where a1 (t) = 2a(t) and by (t) = 2b(t). Using Eq. (3.1.96), Eq. (3.1.80) takes the form

ow + [a1(t) arctan 2w + by (t)] (

a0 ) (5) s

— —_— = 0. 3.1.97
1+ 4w? ox ok ( )
Solution of Eq. (3.1.80) is obtained by using the function w(z,t) = 1[tand(w)], where d(w) is given by
Eq. (3.1.15)

1 x u(t)
w(x,t) = = tan [ — }, 3.1.98
(2,1) 2 ui(t)  wa(t) ( )
where u1(t) can be substituted by using Eq. (3.1.87), and usa(¢) is given by
ubuk =t = b(t), p=0. (3.1.99)
Integrating Eq. (3.1.99) with respect to ¢
us(t) = / b(t)yulFdt + cs.
Substituting Eq. (3.1.88) in above equation, we have the following result
1-k
us(t) = /b(t) [k/a(t)dt + cl] dt + oo, (3.1.100)

where ¢ and co are arbitrary constants.
Case 1d: For d(w) = arcsin hw and d'(w) = ——— if A\=0and u =1, Eq. (3.1.82) takes the form

T Vitw?
G(w,t) = a(t) arcsin hw(\/1%1—7w2>k1 + b(t) (\/1_11_7102)161 - [a(t) arcsin hw + b(1)| (1 + wg)%.
(3.1.101)
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Using Eq. (3.1.101), Eq. (3.1.80) takes the form

ow

5t #(50) + 5 -

[a(t) arcsin hw + b(t)} (1+w?)z or 03 0.

Thus the solution of Eq. (3.1.80) is obtained by using d(w) = arcsin hw, where d(w) is obtained by using
Eq. (3.1.15)

w(z,t) = sinh {uit) - Zigg] (3.1.102)

where u;(t) and ug(t) are obtained by using Egs. (3.1.88) and (3.1.90).

3.2 Generalized separation of variables for nonlinear wave equation

In this section, we want to construct the exact solution of nonlinear equation with the generalized sepa-
ration of variables [2|. By replacing w — ¢, x +—— w, t+— x in Eq. (2.0.3), we obtain an ansatz which

is similar to Eq. (2.0.3), and is of the form

E= 3 wilw)di(w) + f(w,2).
i=1

We use the above ansatz to construct the exact solutions of the nonlinear equations.
Consider the nonlinear equation [3]

9w

2
oy = b (w) 7) +G(w)

- (3.2.1)

which has many applications especially in the field of liquid crystal theory, wave and gas dynamics.

The purpose of this section is to searching for the set of functions G(w), for which Eq. (3.2.1) admits the
following ansatz.

1. Exact solution of the form ¢ = uj(x)d(w) + ug(x)

Let us consider an ansatz for Eq. (3.2.1)
t = (z)d(w) + ua(x). (3.2.2)

Differentiating the Eq. (3.2.2) with respect to ¢, we obtain

ow 1
—_— = 3.2.3
ot uy(x)d (w) ( )
Again differentiating Eq. (3.2.2) with respect to t, thus we have
0%w d’
= — . 3.2.4
ot? u?(d')3 ( )
Now differentiating the Eq. (3.2.1) with respect to & produces
/ / ow ’
uy(x)d(w) + vy (x)d (w)a + uy(z) = 0.
Ox up(z)d' (w) o
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Again differentiating the Eq. (3.2.5) with respect to z, we obtain

ow

2 2
o () + 2 () () " o O

()" (w) (55 + (@) (w) 55 + ub(a) =0,

or
O*w _ uy  ujd 2d(u})?  2ubuf B (u’1)2d2d”_
81'2 ’U,ld, uld’ d’(u1)2 (ul)Qd’ (’u,l)Q(d,)g
(u/2)2d// 2U1dd//

(w)2(d)? (w)X(d)*
Inserting (3.2.3), (3.2.5) in Eq. (3.2.1)

d’ u’1d+u’2]2 uy  uid N 2d(uy)* | 2ubuy
u?(d')3 urd wd  wd  d'(w)? 0 (up)3d
(u) )2d2d” (uh)2d” B 2u’2u’1dd”}
(u)?(@)® (u)*(d)®  (uw1)*(d')?

G’[ +G[—

or

Guyuly(d')? + Guiuld(d)? — [2Gd(d')* + bG'd*d' — Gd*d"](u})*—
[2G(d)? + 2bdd' G’ — 2Gdd" |ujuly — [~Gd" + bG'd'](uh)* — d” = 0.

(3.2.6)

(3.2.7)

(3.2.8)

The coefficient functions Gd(d')?* and G(d')?, which multiply uju) and ubu; are linearly independent over

R. To check their linear independence, let Y1 = Gd(d')? and Y2 = G(d')2.

We observe that WY1, Y] # 0, which implies, Y; = Gd(d')? and Yo = G(d’)? are linearly independent.

We restrict the coefficients of (u})?, u}ub, (uh)? and function d”, that they can be represented as a linear

combination of functions Gd(d’)? and G(d')? over R, then we get the following form

bG'd?d — Gd*d" = on Gd(d)* + M G(d')?
bG'dd — Gdd" = aGd(d)? + M\ G(d')?,
bG'd — Gd" = a3Gd(d')? + X\3G(d)?,
d" = aGd(d)* + \G(d')?,
where o, aij, \, \; € R, i =1,2,3. Now using system of equations of Eq. (3.2.9), we obtain
(azd — a)Gd(d)? + (N3d — A\2)G(d)? =0
(od — a1)Gd(d)* + (Mad — X\1)G(d')? = 0,
(d®az — ay)Gd(d)? + (d®X3 — \)G(d)* =0

(3.2.9)

As we know from above system of equations that, Gd(d’)? and G(d')? are linearly independent, thus we

have the following system of six equations
Oégd — g = 0, and )\3(1 - )\2 == 0,
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Oégd — ] = 0, and )\Qd - )\1 == 0, (3211)
d’as —a1 =0, and d?X\3— )\ =0. (3.2.12)

Since determinant of the coefficient matrix of system of Eqgs. (3.2.10)-(3.2.12) is non zero, it follows that,
a;, A\ =0fori=1,2,3.
Solving first three equations of Eq. (3.2.9), we obtain

bG'd — Gd" = 0. (3.2.13)
Integrating Eq. (3.2.13) with respect to w, we have
G(w) = B(d)?, (3.2.14)

where 3 # 0, is a constant.
If (3.2.1) admits the ansatz (3.2.2), then the function G(w) can be obtained by using (3.2.12). Now
inserting Eq. (3.2.14) in

d" = aGd(d')* + \G(d')?,

thus we obtain
14+2b

d" = Blad +N)(d) o, (3.2.15)

where d(w) is an arbitrary solution of ODE (3.2.15). d(w) can be determined by integrating the Eq.
(3.2.13) with respect to w. Let us consider the case for o = 0.

Case 1: If b # —1, let us consider a transformation in Eq. (3.2.15)

B\ = eb—il’ €= =+1.
Thus Eq. (3.2.15) reduces to the form
d" = eberl(d’)U“b)/b, b# —1, (3.2.16)
. b
(@)~ (20) /g — T

Now integrating the Eq. (3.2.16) with respect to w, we obtain
d' = (—ew + )Y+, (3.2.17)
Integrating the Eq. (3.2.17) with respect to w, we have
d(w) = —e(1 4 b)(—ew + a)/0+Y) 4 ¢, (3.2.18)
where @ and c are arbitrary constants. Substituting (3.2.17) in Eq. (3.2.14), we have
G(w) = B(—ew 4+ a) VO £ 1,
Now substituting —ew 4+ a = W in above equation, we get
G=pwa+h) o, (3.2.19)
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Eq. (3.2.1) after transforming from the function w — W = W (x, t) takes the form

*wW -1/ aan) W B any a4y (OW
S = BW o~ W ( = ) (3.2.20)

Since from Eq. (3.2.17), d’ = (W)=Y (%% which gives on substituting in Eq. (3.2.16)
d" = eb/(b+ 1)W1+ ()2,

Now to find the u;(z) and ua(x), inserting above equation and Eq. (3.2.12) into the (3.2.8), thus we have

the following form

BW_l/(1+b)U u"(d/)Z—f—,BW_I/(IH’)u u//d(d/)2_
|:2BW 1/( 1+b)d(d/) b/(b+ 1)W (24b)/(1+d) d2d/ 6W 1/( 1+b)d2d//i|( ) o
[QBW VA8 (N2 — 2dd'b/ (b + 1)W =@/ 040 _ 9gp-1/(1+b) g d”]u wly—

— WY G (b 4 1)W*(2+b)/(1+b)d’} (uh)? —eb/(b+ )W+ = 0. (3.2.21)

From Eq. (3.2.21), we obtain the equation for the functions u; and us

b
d(d)? |uquf — 2 }—|— d’2[uu”—2u'u'—67
(@ [ = 200)2] 4 (@ [ure ~ 2y — 5
Since d(d’)? and (d')? are linearly independent.
wll — 22 =0, ) — Wiy — — ¢, (3.2.22)
B(b+1)
The solution of ujuf = 2(u})? is given by
C1 / —C1
m= and  uj CETSE
Now we will find the solution of
u eb
uy — 2—ub — =0,

U wBb+1)

or
" 2 Eb(ZU + 02)

2 (v + Cz)ué T aBfb+1)

2
Multiplying the above equation with I.F = ] T — (z + c2)?, we obtain

2 1 eb(x + 02)3
2 = ——
(z + c2)"ub + 2(x + c2)uf T
Thus we have , 5
UQ(LU) = ¢ ($+CZ) + c3.

12¢18(b + 1)

Now dividing above equation by u;(x), we obtain

ur(z)  12¢28(b+1) a1

uz(x) eb(x + co)? c3(x + c2) '
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And d(w) can be determined by using Eq. (3.2.2)

d(w) = w wn(z)

or by using above results, d(w) takes the following form

d(w) = (x + 62)t _eb(z + c2)? 3z + 02)'

cl Cg,@(b + 1) Ccl
Using Eq. (3.2.18), we have W = e(;}b) [d(w)]'*?. Thus the exact solution of Eq. (3.2.20) is given by
_ 4 1+b
W 1 [(x—i-cz)t_ eb(z + )" c3(z+ ) 7 (3.2.23)
e(l1+b)L ¢ c3B(b+1) c1

where ¢y, c9, c3, c4 are arbitrary constants.

Now taking a transformation  — 7, t — v, and W = U*? in Eq. (3.2.20). Differentiating W = U+?

with respect to t and z, thus we have

%—VZ —(1+ b)Ub@Z)’
%TQ/ = b(1+ b)U! (‘?;)2 +(1+ b)Ub(g;g),
8;2/ = b(1 + b)UP! (25)2 +(1+ b)Ub@QVCz])-

After substituting the above equations, Eq. (3.2.20) takes the form

o ~ 8" T3

U 19U b(&U)Q
ov/

The Eq. (3.2.24) is a hyperbolic-type equation [2].
2. Exact solution of the form U = w(n)d(v) + g(n, v)
To find the exact solution of Eq. (3.2.24), we use ansatz of the form

U=wn)dv)+gn,v).

Now by differentiating Eq. (3.2.25) with respect to 1 and v, we have

Bw"d — w(gyyd + 2bg,d + gd") — w?(dd" + b(d')?) + Bgny — agguy — b(gy)* = 0.

Eq. (3.2.26) must be an ODE with unknown function w(n), thus we have
dd" +b(d')* = éd, SR

and
(guvd + 2bg,d + gd") = a(n)d.

Eq. (3.2.27) has the following particular solution:

(3.2.24)

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)



Substituting d = v* and b = % into Eq. (3.2.28), we get
Vg +2(1 = Mgy + A\ — 1)g = a(n)v>. (3.2.29)

Let us consider following three cases:

Case a: For A\=4,d=v* and b= %, Eq. (3.2.28) takes the form

V2o — 6vgy + 129 = a(n)v?, (3.2.30)

Thus the general solution of Eq. (3.2.30) is given by

g(n,v) = 5 4y + St (3.2.31)

Substituting Eq. (3.2.31) in Eq. (3.2.25), we have

U =22t ot o) = wln) + ) (3:232)

We consider that ¢(n) =0 in Eq. (3.2.32), we obtain

aln) 2

U=—v +y(n)v?,

substituting the above equation into Eq. (3.2.24), we get

" 2
3
B%VQ + 8y"V3 = [%1/2 + day® + 6")/2V4} ~1 [aQVQ + 6ay® + 99204,

Thus we obtain the following system of equations for the functions a(n) and ~(n)

2
, —Q -1

_ T« n_ —*

let a(n) = An™, solutions of above equations are given by
al) = and () = + e
Thus the exact solution of Eq. (3.2.24) is given by
U= 260"+ [e1n? + con 03, (3.2.33)

where ¢; and ¢y are arbitrary constants.
Case b: For A =3, d=1%and b= =2 , Eq. (3.2.28) has the following form

V2 gy — 4vg, + 69 = a(n)v’. (3.2.34)

Thus the general solution of Eq. (3.2.34) is
9(n,v) = —a(mv’ nv +5(n)v° + o(n)v*.
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Now using above equation in Eq. (3.2.25), it takes the form

U(v,n) = v(nv* + ¢(n)v* — a(n)v’ Inv, v(n) = w(n) +~(n). (3.2.35)

Establishing a(n) = 0, in Eq. (3.2.35), we get

Uv,n) = v(n)v* + ¢(n)v*.

Substituting above equation in Eq. (3.2.24), we obtain the following system of equations for v(n) and ¢(n)
=2
=33

The above equations have the following particular solutions

" (n) ¢*,  4"(n)=0.

3

7(77) = c1n + ¢z, ¢("7) = 772

Thus the exact solution of the Eq. (3.2.24) has the following form
Uv,n) = lein + cov® = 387207, (3.2.36)

where ¢; and ¢y are arbitrary constants.
Case ¢: For A =2, d=1? and b= 3, Eq. (3.2.28) has the form

V29 — 2vg, + 29 = a(n)v?, (3.2.37)
which has the general solution of the form
g(v,n) = amr*In| v | +é(n)v +3(n)v*. (3.2.38)
By inserting Eq. (3.2.38), Eq. (3.2.25) takes the form

U=~mv?+omv+amriin|v],  y(n) =wln)+7(). (3.2.39)

Establishing ¢(n) = 0 in Eq. (3.2.39), we obtain the following system of equations for a(n) and ~(n)

1
Ba":a2, 5'7”:@'7_*0‘2-

2
The above equation have the following particular solutions
a(n) = i{j, v(n) = e’ + e + liﬁn‘g 7).
Now the exact solution of Eq. (3.2.24) is given by
U= [01773 +c3n 2+ %U*Z In|n| |+ ?gyzln v . (3.2.40)

Case d: Now considering A # 1,2,3 in Eq. (3.2.25), thus we have
V290 +2(1 = Nvg, + A(A = 1)g = a(n)v?,
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which has the following general solution

g(n,v) = _alm? Sa(m)v™* + do (). (3.2.41)
7 A=3)(A-2)
Now inserting (3.2.41) into Eq. (3.2.25), it takes the form
Uln,v) = (A_?;)(g_Q)VZ + G2 (M + S, w(n) + d2(n) = d2(n),
U = 51 (n)v? + So(n)v* + do(n)v*™t,  where  d1(n) = ()\_(;)(27))\_2). (3.2.42)

Establishing dg(n) = 0, Eq. (3.2.42) takes the form
U = 61(n)v” + b ()

Substituting above equation in Eq. (3.2.24), we have following system of equations for §;(n) and da2(n)

2+ 4b 1
6 (n) = ( 3 )5'{’, A= T (3.2.43)
64 = [6 — BX 4+ A%]0105. (3.2.44)

Now the particular solution of Eq. (3.2.43) is

51(n) = a iﬂ%) n 2. (3.2.45)
And the particular solution of Eq. (3.2.44) is obtained by considering two cases:
Case 1d: When €2 = 3A2 — 9\ > 1;
d2(n) = 77% [c1 cos&lnn + cosin & Inn]. (3.2.46)
Thus in this case, the exact solution of Eq. (3.2.24) is given by
U(n,v) = 36 n 2t 42 [01 cos£Inn + cosin & Iyl (3.2.47)
(1+ 2b)
Case 2d: When £2 =3)\2 — 9\ < %;
d2(n) = 77%(01?7£ +eonY),  where A= Qiz\/ﬁ (3.2.48)
Thus in this case, the exact solution of Eq. (3.2.24) is given by
U(n,v) = i iﬁ%) n 2+ 77%(61776 + con (3.2.49)
Now substituting A = 22221 iy the Eq. (3.2.44), we obtain
da(n) = 77%(61 +c21lnn). (3.2.50)

Thus in this case, we obtain the following exact solutions

38 99

Un,v) = TR + 173 (1 + eaIny),
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where ¢; and ¢y are arbitrary constants.
Now returning to the variables from U — W, v — z and n — ¢, Eq. (3.2.22) has the following exact
solution

3
W1+ — (1+ﬂ2b)f6‘2t2 + 22 [c1 cos(¢ Inx) + casin(¢ Inx)]t,

Case 2: For b= —1, and a = 0, Eq. (3.2.15) reduces to the form
d" =kd, k=B (3.2.51)
The solution of Eq. (3.2.51) is the function
1 kw
d= e +b, (3.2.52)

k
where b is a constant. Taking b = 0 in Eq. (3.2.52) and for &’ = e**, Eq. (3.2.14) takes the form

G(w) = Be kv, (3.2.53)
Inserting (3.2.53) into Eq. (3.2.1), we have
0*w o 020 o  OWN 2
— = fe " — — R —) . .2.54
ot? be 0z bkpe (8:1;> (3:2:54)

Substistuting G(w) = Be ", G'(w) = —Bke ¥ and d" = ke **(d’')? in Eq. (3.2.8), we obtain

Buyui(d)? + Buyufd(d')* — [2Bd(d')* — bpkd*d — Bd*d")(u})*~

[2B(d')? — 2bdd' Bk — 2Bdd"|uyul — [—Bd" — bBkd|(ub)* — k(d)? = 0. (3.2.55)
Thus we have
k
AP ures] = 200 )?] + ()2 [uaesf — 200y~ 5] =0.

Since d(d’)? and (d')? are linearly independent, so their cofficient are

k
wpuf = 2(u})? =0,  wuh — 2ujul — = =0.

B

Integrating the above system of equation with respect to x, we have

C1 / —C1
d =——. 2.
P, and  uj CETSE (3.2.56)

uyp =

Now we will find the solution of

or

2
Multiplying the above equation with I.F = el TrepdT — (z + c2)?, we obtain

E(z + c)3
/B )

(x + 62)21/2’ +2(z + c2)ub =
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and f[%(x + c2)2ubldx = [ de, or uh = k(”IBCZ)Q, thus we have

B k(z + c2)3
U = T + c3.

Now dividing Eq. (3.2.57) by Eq. (3.2.56) produces

uy /{:c%(sc—l—cz)4
= 195 + c3(z + ¢2).

Since for b = 0, Eq. (3.2.52) has the form

1 1
d= %ekw, and  w(z,t) = %ln[kd(w)].

Now substituting Eqgs. (3.2.56) and (3.2.58) in Eq. (3.2.2), d(w) takes the following form

k2c3(z + co)*
123
Inserting Eq. (3.2.60) into (3.2.59), the exact solution of (3.2.54) has the following form

d(w) = kei(x + eo)t — [ + c3(x + c2) —|—C4:|.

k23 (x + c2)?

1
w(z,t) = z In [kq(a: + o)t — 195

+cs(x+ o) + 64]7

where ¢y, o, c3, c4 are arbitrary constants.
Case 3: For a #0, A =0 and b= —1, Eq. (3.2.15) reduces to the integration of an ODE

d’ = Badd' .
Assuming Sa = 2, the above equation has the following particular solution:

d(w) = atan(aw + dp), or d(w)= —atanh(aw + dy).

(3.2.57)

(3.2.58)

(3.2.59)

(3.2.60)

(3.2.61)

Now consider that function d = d(w) in above equation is defined to a transformation d — p1d + g,

such that pu; =a~ ! and g =0
d(w) = a~ ! tan(aw + &), or d(w)=—a"!tanh(aw + ).

Thus differentiating the above equation with respect to w, we have

d'(w) = sec®(aw + &), or  d(w)= —sec? h(aw + dy).
Substituting Eq. (3.2.62) in (3.2.14), G(w) takes the form

G(w) = Beos?(aw + dy), or G(w) = —pcosh?(aw + &).
Replacing the variable aw + g = W in Eq. (3.2.63)

G =pfcos*W, or G =—Bcosh’*(W).
Now differentiating the above equations, thus we have
G' = pBcos? WtanW, or G’ = Bcosh? W tanh W.
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After transformation from the function w to W = W (x,t), (3.2.1) takes the form

2w L, OPW ) AW \ 2

o = Beos? WS 4 2B cos Wtanw(—ax) . (3.2.64)
oW , W ) AW\ 2
2 = —f cosh* W 922 + 23 cosh WtanhW(%) . (3.2.65)

Since d” = 25,d(d')?, now substituting d” = 2b? cos*(W)d(d’)* and (3.2.63) in Eq. (3.2.8), thus we have

wuly (d')? + wufd(d)? — [d(d)? + 2btan Wd%d' — d*d")(u})*—
202

[2(d')? + 4bdd tan W — 2dd"|uyuby, + [d" — 2btan Wd'](uf)? — 7d(d’)2 =0. (3.2.66)

Substituting d” = —2b? cosh?(W)d(d')? and Eq. (3.2.63) in Eq. (3.2.8), thus we have

wyuly (d')? + wyld(d)? + [—d(d)? + 2btanh Wd2d' + d?>d"](u))*+

2 2
[—2(d")? + 4bdd' tanh W + 2dd"|u)july + [d” 4 2btanh Wd')(ub)? — ;d(d')2 =0. (3.2.67)

So we obtain the the equation for the functions uq and ug

2
8

Since d(d’)? and (d')? are linearly independent, so their coefficient are

d(d)? |uyu] — 2(u})? + (d)?[uyuly — 2ufub] = 0.

2b2 " !,
5 =0, wuuy —2ujuy, = 0. (3.2.68)

Now solving first equation of Eq. (3.2.68), we have

uruy — 2(up)?

Blex + c2)? + 128b2
16561

(3.2.69)

uyp =

Therefore, solution of the second equation of Eq. (3.2.68) can be identified by using the solution of the

first equation

Uy = ﬁ +c
2= 3 4,
" Blex + caf? + 12857
c 1 Blex + es]* + 128673
= = . 3.2.70
w=g| 1681 T (3:2.70)
2 12 2\2 1
uy c(Bex + ¢ —i—2 8b°) n c4168c; . (3.2.71)
(0 768032ct Blex + 2] + 128b2
Since

d(w) = atan(W), implies W = arctan[d(w)/a].
d(w) can be determined by using ansatz (3.2.2)

c(Blex + co)® + 128b%)? n (t — ca)168c1

d = — .
(w) 768628 Blex + o] + 12802

(3.2.72)
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Now using Eq. (3.2.72), exact solution of Eq. (3.2.64) has the following form

_ c(Blez + ca)? + 128b%)2 (t — c4)168cy

W = arct . 3.2.73
arctatt 768062 aBcz + o] + 12802 (3:2.73)
As we know that
d(w) = —atanh W, or W = arctan h[—d(w)/a].
Thus the exact solution of Eq. (3.2.65) using above equation has the form
c(Blcx + c2)? + 128b%)2 (t — c4)168c1
W = arctan h - ] 3.2.74
arcan 7680528 aBcx + ca]? 1 12862 (8:2.74)
where ¢y, ¢, ¢4, ¢ are arbitrary constants.
Case 4: For a # 0 and b # _71 in Eq. (3.2.15), assuming that
2b
fa = —, €= =+1,
€
considering A = 0, Eq. (3.2.15) takes the form
2b
d" = Zd(d)+r, (3.2.75)
€
Integrating Eq. (3.2.75) with respect to w, we obtain (d’)*l/b = %d2, integrating again the above equation
with respect to w, we get
d = e(1+ 2b)(ew + b)Y/ 1+2, (3.2.76)

Differentiating Eq. (3.2.76) with respect to w, we obtain d’ = (ew—l—b)l%bb, substituting this in Eq. (3.2.14)
produces

—2
G(w) — 5(671) + b)72/1+2b7 G/<’LU) _ : +§b(€w + b)f(3+2b)/l+2b. (3.2.77)

Now by taking a transformation ew + b= W, Eq. (3.2.21) takes the form 3]

W _ o142 PW 20 3+2b) /1426 (OW
oz~ PW) dx2 1+ W) ( oz ) (3:2.78)

Thus the problem is now reduced to integrate Eq. (3.2.78). Now substituting Eq. (3.2.77) and
d" = —2%d(d')’G(w) in Eq. (3.2.8)

B(W)_2/1+2bu1ug(d/)2+ﬁ( )—2/1+2bu1u/1/d(d/)2_

_2/8(W)_2/1+2bd(d/) + bl +§b (W)—3—2b/1+2bd2d/ o 5(W)_2/1+26d”:| (u/1)2_
_ZIB(W)_Q/H—Zb(d/) +2[)dd/1+§b( )1+2b _2/8( ) 2/1+2bdd//} / /2

[ 2/142b g1 20 =52 / —~2/142b _

| BW) R g b (W) d]( V2 4 2bd(d')2(W)~2/1+2 — (3.2.79)

Therefore, we obtain the following equations for u1(z) and ug(x)

2b

a(d)? [wrf — 2(uh)? + :

} + (d)? [ulug - 2u/1u'2} =0. (3.2.80)
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Since d(d’)? and (d')? are linearly independent, so we have

2b
upu — 2(u))? + 3 =0, and wuy—2uju, =0.

duq d?uy

Now solving first equation of Eq. (3.2.81), let us consider p = 2+ and %3 = p

dp 9 2b
7—2 — = U.
wmpg - (p)” + 3 0

Since I.F = -1, so
ut

Integrating with respect to u; produces

Vb
VB

Now solving second equation of Eq. (3.2.81), uz(z) has the following form

Uy = +c¢1 where ¢ =0.

Uy = 03(\/\/%:)3 + 4.

ur _csb o cavi

Uy B Vo
Inserting Egs. (3.2.82) and (3.2.83) into Eq. (3.2.2), d(w) has the form

d(w) = K}/Bz - C;;a:Q - C\A‘[\b/f].

Substituting (3.2.85) in Eq. (3.2.76), we have

— ( 1 [t\fﬁ b C4\/B])1+2b
2¢(1+2b) Lo B NG :

which is the exact solution of Eq. (3.2.78), where c3 and ¢4 are arbitrary constants.

Now considering a transformation by changing the variable W = U'*?? in Eq. (3.2.78)

%%/ _ 1+ 2b)U2bg—Z,
%2;/ — 2b(1 + 26)U2L (gg)Q 1+ 2b)U2baig,
athV = (1+ 2b)U2baag,
8;2/ — 2b(1 + 2b) U2 (%—3)2 +(1+ 2b>U2b3;fj.

Now substituting (3.2.87) in Eq. (3.2.78), we obtain following equation [3]

U 2b

o) "B o

Now to construct the exact solution of Eq. (3.2.88), we use ansatz of the form
U = u@)d(t) + gla,t),  u(z) 0.
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Now by differentiating Eq. (3.2.89) with respect to ¢ and =

0*U

92 u'd + gz,
ou

o*U

5z = ud’ =+ gu-

Substituting Eq. (3.2.90) into Eq. (3.2.88), we obtain the equation

1 2b
W'd+ gur = B(ud + 9)%(ud” + g4) + E(Ud + 9)(ud' + g¢)?,

or

(u'd + gor) B = (Wd® + g° + 2udg) (ud” + gu) + 2b(ud + g)(u*(d')* + g7 + 2ud'gy),

or

(u'd + gor) B = wd?d" + g*ud” + 2u*dgd” + v d*gu + g gir + 2udggu+
2b[(u*d(d')? + udg? + 2u?dd g, + u?g(d)? + ggi + 2ud'ggr)], (3.2.91)

or

(u"d)B — u[d*d" 4 2bd(d')?] — u*[2dgd” + d*gs + 4bdd g; + 2bg(d')*]—
ulg®d” + 2dggu + 2bdg; + 4bd'gg:] — 9% gu — 2b997 + gaufB = 0. (3.2.92)

The above equation must be an ODE with v = u(x) as an unknown function. Hence
d?d" + 2bd(d')* = ~d, v ER, (3.2.93)

2dgd" + d*gy; + 4bdd' g, + 2bg(d')? = a(z)d. (3.2.94)

For v =0, Eq. (3.2.93) becomes
dd" + 2b(d')* = 0,

which has a particular solution: d = t#, b=1£ ~=0, p#0,1.

2u
Now substituting d = t#, and b = 12_7“ into Eq. (3.2.94), we obtain
t2g: + 2(1 — p)tge + p(p — 1)g = a(x)t> =~ (3.2.95)

To find general solution of Eq. (3.2.95), let us consider three cases for d = t#:
Case 1: For p =2, we get
t2gy — 2tg, + 29 = o(x). (3.2.96)

The solution for homogenous equation:

gec = S‘(w)tZ + 77(:6>t‘
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Thus the general solution of Eq. (3.2.95) is
g(z,t) = @)t + n(2)t + a(z). (3.2.97)
By substituting Eq. (3.2.97) in Eq. (3.2.89), we obtain

U = M)t +n(z)t + a(z), AMz) = Mz) + u(x). (3.2.98)

Taking a(z) = 0 in Eq. (3.2.98) and differentiating with respect to ¢ and x, we have

-1 2
N (2)t2 + 0 (2)t = %[4>\3($)t4 + 4AN2n(2)t3 + BAN*? + Bt + 43N] + B[)\?’(yc)t4 + M ()% 4 2X2nt3).
(3.2.99)

As a result, we obtain the following system of equations for A(z) and n(x)

-1 -1
" 2 1" 3
= — = — . 2.1

M) = gghn (@), n'(z) = gn"() (3.2.100)

System (3.2.100) can be solved completely in the implicit form. The second equation of Eq. (3.2.100) can
be determined by applying Jacobi elliptic function method [6], and using the solution of first equation, we
can obtain the solution of first equation in system (3.2.100).

Case 2: Now consider p # 1,2,3 in Eq. (3.2.95)

g+ 2(1 — p)tge + p(p — 1)g = a(x)t> .
Homogenous part of the above equation has the solution:
ge = 0a(2)tH + Gg(2)t* L.

Now particular solution of Eq. (3.2.95) is given by
afx)eHE
2(2p=3)(n— 1)
Consequently the general solution of Eq. (3.2.95) has the following form
a(z)t>+
2p—=3)(p—1)
Using Eq. (3.2.101), Eq. (3.2.89) reduces to the following form

9p =

gz, t) = N + Oy (@)t + S (z)th L. (3.2.101)

U = o)t + — O ot where  u(z) + Ga(x) = ba(2),
2(2p = 3)(n — 1)
Uz, t) = do(x)th + &, (:v)tQ—u + 50(30)75“_1, 01(x) = N _O[é:)v()u 1y (3.2.102)

Establishing dp(z) = 0, in Eq. (3.2.102) and differentiating the Eq. (3.2.102) with respect to = and ¢, thus

we have the following equations

82U
oz = 01 (@) 4 sy (@)t
U - -
B = 2= o (@)t 4 b ()t (3.2.103)
o2U iy -
Tz = 2= 0 A =)o (@)t + oa(w)p(p — I
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Substituting (3.2.103) in Eq. (3.2.88), we obtain the following system of equations for d;(z) and d2(z)

2
03(2) = = (2% — 50+ 3) 8103,

B
8 (x) = 4 (,LLS —2u® + 1) 6255.
Bu
Inserting p = ﬁ into above equations, we have
4b(6b + 1
() = VL 5183,
B(20+1)2
, (3.2.104)
5(z) 4((26+1) —4b—1)525
€T = — .
! B3 (26 + 1)2 172
Using b = %, in above equation, Eq. (3.2.104) reduces to the form
a(z oz
s =2 s = g
System (3.2.104) has the particular solution
01(x) = 1zt + e, and do(x) = 0133502934‘
Thus, Eq. (3.2.102) takes the form
U(x,t) = <¢>t“ + (clx_l + 02x2>t2_“
’ c1x + coxt ’
which is the exact solution of Eq. (3.2.88).
Now returning to the variables from U — W, Eq. (3.2.78) has the following exact solution
Wi/t (7ﬁ )t“ + <C1x’1 + 02x2>t2*“.
c1x + coxt
For b = =, the exact solution of Eq. (3.2.78) takes the form
W(x,t) = [(L)t“ + (crz 1 + 02w2)t2*“r.
’ c1x + coxt
3. Exact solution of the form:
Uz, t) =u(z) + g(z,t). (3.2.105)

The above ansatz is obtained by taking a special case of solution structure (2.0.3). Let us consider the
function g(x,t) is of the form
g(x,t) = do(a)t* + ¢1(2)t + o(). (3.2.106)
Substituting (3.2.106) in (3.2.105), we obtain the following ansatz
Uz, t) = go()t* + dr(x)t + do(x),  do(x) = u(z) + do(). (3.2.107)

Establishing ¢g(z) = 0, and differentiating the resulting form of Eq. (3.2.107) with respect to t and =z,

thus we have
i 2 Ui _ 27b 4 3.4 4 2 2 2,3 3 l 2 3.4 2 2,2 4 3 2
2(1‘)1‘; + (z)l (m)t = B ¢2t + ¢1¢2t + 8¢1¢2t + (blt + IB ¢2t + ¢2¢1t + 4t ¢1(b2 .
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From above equation, we obtain the following system of equations for ¢, (z) and ¢o(z)

L, 2+8b
¢2 /8

For b = _Tl , the first equation of Eq. (3.2.108) has the solution

b
G207, ¢ = 25¢§’- (3.2.108)

¢2(x) = 12 + ca.

Now to find the solution of second equation of Eq. (3.2.108), we apply Jacobi elliptic function method
[11], homogeneous balance between the highest order derivative and the nonlinear terms in (3.2.108) is
m + 2 = 3m, which gives m = 1. Then the elliptic function sn (z) is given by sn(z) = sinz,
and cn () is given by cn (z) = cosz,
and dn (z) = /1 — k2sn? (z).

—cn(z) = —sn (z)dn (z),

d

o dn (z) = —k%sn (z) en ().

Now using ¢1(z) = Y1 a;en’ (x), thus ¢1(z) takes the form [6]

é1(z) = ap + arcn (z). (3.2.109)
% = —asn (x)dn (x).
Cgf; = a [(%2 — 1)en (z) — 2k%en® (). (3.2.110)

Substituting Eqgs. (3.2.109) and (3.2.110), second equation of system (3.2.108) reduces to the following

form

a1[(2k? — 1)en (z) — 2k%en® (z)] = ;?[ao + ajen (2)]°. (3.2.111)
2a18(2k* — 1)en (z) — 4Bark*cn® (v) + af + 3alaien (2) + 3a?apen? (z) + aden® (x) = 0,

or

[2a1(2k* — 1)B + 3a2ay]en (z) + ad + 3alapen® (z) + (a3 — 4Ba1k?)en® (z) = 0.

Equating the coefficients with zero in above equation, we get ag = 0 and a; = 2k+/B3. Thus, using ay and
ar, Eq. (3.2.109) takes the form

¢1(x) = 2k+/Ben ().
Thus using ¢1(x) and ¢2(z), Eq. (3.2.88) has the exact solution of the form

U = (c17 + c)t? + (2k+/B cos z)t.
Thus for b= =%, Eq. (3.2.78) has the solution of the form
W = UY2 = [¢g()t? + ¢ (x)t + ¢o ()] (3.2.112)

Generalizing the Eq. (3.2.78) by changing the variable [3], we get

82W — 5(W)7k/1+kb62w . kb/ﬁ (W)*(3+kb)/1+kb(aw)2' (32113)

ot2 dx2 1+ kb O
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By using W = Ukt Eq. (3.2.78) reduces to the form

U 2b ., ,0UN2 1 09U
5z =50 (5) U (3.2.114)
W = UY* = [go(2)t? + ¢ ()t + ¢o(x)] Y/, (3.2.115)

which is the exact solution obtained by generalizing the Eq. (3.2.78). Thus ansatz (2.0.4) is very important

in constructing the exact solutions of nonlinear PDEs.

52



Chapter 4

Exact travelling wave solutions of nonlinear

partial differential equations

Suppose that a nonlinear equation in two variables x and t is given by
F(u7 Ugy Uty Uz, Utty Ugt, Uzza, Uttt, ) = 07 (401)

where u(xz,t) is an unknown function, F' is a polynomial in u and its partial derivatives involving the
highest order derivatives and other nonlinear terms.
Main steps of this method are given below:

Step 1: We use generalized wave transformation of the form

u(z,t) =u(z), z=¢(x)t+ (), (4.0.2)

where ¢(x) and v (x) are differentiable function of x. By using the Eq. (4.0.2), Eq. (4.0.1) has the
form [4,15,16]
Flu, (¢ (x)t + ' (2)u/ (2),..] = 0. (4.0.3)

Step 2: Suppose that the ODE (4.0.3) has the formal solution

k [
u(z) = ZBi(x)<F) , (4.0.4)

i—=
where B;(z) are function of z, the functions F(z) and B;(x) are unknown, and are to be determined later
and By(z) # 0.

Step 3: The positive integer k can be determined by considering the homogenous balance between the
highest degree derivative and nonlinear terms in Eq. (4.0.3).

Step 4: Substitute Eq. (4.0.4) into Eq. (4.0.3), and obtain the function F’(z), and calculate all the
necessary derivatives u/(z) , u”(2),... of the unknown function u(z). As a result, we obtain a polynomial of
%/ and its derivatives, gathering all the terms of same powers of %’ and its derivatives, and equating with

zero all the coefficients of this polynomial, which yields a system of equations, which on solving gives the

values of B;(x) and F(z), using these values in Eq. (4.0.4), we can get the exact solution of Eq. (4.0.1).
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4.1 Exact travelling wave solutions of Benjamen Bona Mohany equation

T. B. Benjamen, J. L. Bona,and J. J. Mohany introduced Benjamen-Bona-Mohany equation(BBM) in
1972 for studying the propagation of long waves. BBM equation is applicable for studying shallow water
waves, long wavelength surface waves in liquids [12].

We will consider the BBM equation of the form [15]
U + aug + buuy, — Clugyr = 0, (4.1.1)

where a,b and c are arbitrary constants.

Using the generalized wave transformation of the form

u(@,t) = u(2), z= o)t +y(x),

where ¢(x) and 9 (z) are differentiable function of x.

Differentiating Eq. (4.0.2) with respect to t and x, we get

ou ,
S =W (2)0(),
O (N @)+ 0 (@),
2u
% = u"(2)[¢' ()t + ¢/ ()] + ' (2)[¢" (2) + 6" ()],
2u
2(Z8) = " ()oldf @)t + 0/ (@) + ()20 @)t 4+ 20 (0) () + 16 ()6 + 00 (@)] + ()0 ().
(4.1.2)
Now substituting the Eq. (4.1.2) in Eq. (4.1.1), we obtain
U (2)(x) + au'(2)[¢ (2)t + 4 (2)] + bud (2)[¢ (x)t + ' (2)] — cu” (2)$[ ()t + ' (2))?
—cu"(2)[2(¢' ()%t + 20 ()¢ () + 10" () + ¢ ()] — eu (2)¢" (ar) = 0, (4.1.3)
U (2)[6 + ad/ (@)t + ay! (z) — ¢ ()] + burd (2)[¢ (2)t + V' (2)] — cu (2)[¢ (2)t + ¢ (2)]?
—cu"(2)[2(¢/ ()%t + 29/ (2)¢ (2) + 16" () + ¢¥" ()] = 0. (4.1.4)
Integration the Eq. (4.1.4) with respect to z, thus we obtain the following ODE
2u(2)[¢ + a¢' (x)t + at/ () — cg” (2)] + bu®(2)[¢ (x)t + ' (2)] — 2u” (2)[6(¢' ()t+
' (2))?] = 2eu' (2)[2(¢' ()t + 20/ (2) ¢ (2) + 6" () + 0" ()] = 0. (4.1.5)

Balancing the order of highest degree terms of Eq. (4.1.5) , where order of u”(z) is m + 2 and u? is 2m,
thus on balancing we have 2m = m + 2, which implies m = 2. Thus Eq. (4.0.4) reduces to the following
form [1]

() = By + Bi(x) (l;) + B(a) (?)2 (4.1.6)
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Squaring both sides of the Eq. (4.1.6), we obtain

/ I\ 3 / /

F'\4 F F'\? F
uz(z):Bg(f) A +(B%+2BOBQ)(f) +2B0By () + B

F F

Differentiating Eq. (4.1.6) with respect to z, we have

wa:&@K?‘fy)“Bmwgﬂil&?ﬁ’

or

v = (Bu+2im) (2 L))

F F F2 )
FI/ (FI)2 2 F/ F/// (F/)3 F/IF/
"(2) = 2B (—— ) (B 2—B>(— 2 - )
u”’(2) 2\ 7 2 + (B + A + 7 3 7

Substituting Eq. (4.1.6)-(4.1.9) in Eq. (4.1.5), thus we obtain

2 [Bo + 311; + Bz(f;ﬂ (¢ +ag/(2)t + ay(z) - C¢,/(x)>+

/ I\ 3 / /

(4.1.7)

(4.1.8)

(4.1.9)

b[Bg (%)4 + 2B, B, (5) + (B2 + 2By By) (%)2 +2ByB; (5) + Bg} (¢’(g;)t n w’(a:)) _

F F

F// (F/)2 2 F/ F/// (F/)3 F//F/

20[28:(T = ) + (Bt 2B (F + 25 —3 )]
c¢|2Bs Ja 2 + | b1+ 7 22) 7 + 73 3 2

((¢/@)%? + (' (@))% + 216/ (2} (2)) -

F/ FI/ (FI)2
2B 4—B>(——
K e ey A
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Thus we have

20 By + 2B F'F~1 + 2¢Bo(F')>F~2 4+ 2aBy¢' (2)t + 2a¢' (z) B1 F'(tF 1)+
2Bsad () (F')2(tF~%) + 2Boav () 4 2a4)’ (x) By F'F ™1+
2aBy(F'?F~%)/(x) — ¢¢"(x)2By — 2¢¢" (x) By F'F~1—
2c¢" () Bo () (F')?F~2 + B3bg' () (F') (tF ") + 20B1 Bad () (F')°
bBi¢ (x)(F")2(tF %) 4 2B Bad () (F')*(tF~2) + 20Bo B1¢/ () (F') (¢~ )
Bibg' ()t + ' () B (F') ' F~* + 2bB1 Boy/ () (F')*F > + bBYY/ () (F')*F
2bBoBot)! () (F')2F~2 + 2By By () (F)F~' + B2by/' (z) — 4¢B1 (¢ () F”(tF -
8¢(¢/(x))*F'F"(tF %) By + 4cBy (¢ (2))2(F')2((F %) 4 8¢(¢/ (2))*(F')*(tF ) By—
4cBIF"Y (2) ¢ (2)(F~1) — 8¢y (2)¢' () F'F" (F~2) By + 4¢B14 (2) ¢ () (F')*(F %)+
8cy! (x)¢' () (F')* (F %) By — 2¢B1¢" (2)pF" (tF 1) — de” (x)pF' F" (tF ) Ba+
2¢B1¢" (2)$(F')*(LF 2 + deg’" (x)p(F')* (tF %) By — 2¢B1g)” () F" (tF 1)~
degn)” (2) F'F" (tF~2) By 4 2¢B1 o) (2) (F')2 (tF~2) 4 degn)” (x) (F')3 (tF~3) By—
2(¢")t2cpBLF" F~ — 2c¢ B F" F~1 (¢! (2))? — 4cp BLF" F~ 1) ()t (x)—
4c¢BoF" F72(¢/ ()2 F't? — 4cBo F" F2¢F' (¢ (2))? — 8teBoF" F2¢F'y (2)¢/ (x)—
4cpBi(F' )’ F73(¢' (2))*t* — 4ed By (F' )P F (4 (2))? — 8etg By (F')’ F 3/ (2)¢ ()
8coBa(F')' F~(¢/ ()% — 16¢o Bo(F')'F ¢/ (2)y ()t -
S(EYAF~4(y/ (x)) 2By + 6cdB1F"F~2(¢ ()2 F't? + 6coBLF"F~2(! ()2 F'+

(tF %)+
)

126 B1 F"F2¢ (x) () F't + 12F"F 73 (¢ (2))2(F')*t*c By + 12F"F 3 (¢ (2))*(F')*cpBa+

24tF”F*31//(x)(F') C¢Bg¢ (m) N 4C¢BQ(F”)2F 2(¢/(x))2t2—
AcBo(F")?F 2/ (2))? — 8teg Bo(F" )’ F 2y (2)¢f (x) — 8t Bo(F') F~ 4/ (2)¢/ () —

AcpBo(F') F~4(¢/ (2))*t* — dehpBa(F) F~ (¢! (2))? + 16tcg B "' (F' )2 F 3/ ()¢ (z) +

86¢BQF”(F’)2F_3(¢,($))2t2 + 80¢BQF/,(F,)2F_3(¢/($))2 — 0’

(4.1.11)

equating all the coefficients of FO,tFO ?FO =1 tF~1 2F~1 P2 tF=2 2F =2 F=3 tF3 12F 3,

F=4 tF~* +2F~* with zero in Eq. (4.1.11), we obtain the following equations respectively [4]
2aBy(x)¢' (z) + bBE ()¢ (x) = 0.
Using Eq. (4.1.12), we obtain ¢/(z) = 0 or ¢(z) = k, and By(z) = 0 or By(z) = =22
20 By + 2Boa)’ (z) — c¢” (2)2Bg + 2Boby)’ (z) = 0.

Now solving Eq. (4.1.13) by substituting ¢(x) = k where k is some constant, we obtain

—k
1) —
¢ (:1:) - a+ b’
which gives on integrating with respect to x
—k
= A
U(e) = =S+ Aola)

(4.1.12)

(4.1.13)



Equating the coefficients of “F~1'” with zero in Eq. (4.1.11), we have

20B1 F' + 2a1)/ (2) B1F' — 2¢¢” (2) B1F' + 200/ () BoB1 F' — 4c (2)¢/ () B F" — 2¢(3)/ (x))2¢B1 F" = 0.

(4.1.14)
Now solving the Eq. (4.1.14) for ¢'(x) = a_—fb ¢(x) =k and ¢'(z) =0:
Case 1: Using By = 7% in Eq. (4.1.14), we have
(2a+0b)(a+b) F"(z)
= . 4.1.15
ck? F'(2) ( )
Case 2: Using By =0 in Eq. (4.1.14), we obtain
"
bla+b) F"(z) (4.1.16)

ck2  F'(2)°

Now equating the coefficients of “¢F~!” with zero in Eq. (4.1.11), we have

2a¢ (2) B1F'+2b¢ () ByB1F' —4c(¢' (2))> B F" —2¢¢" (2) B1 F" ¢p—2c)" (2) B1 F" p—4cpd! ()¢ (x) By " = 0.
(4.1.17)
Equating the coefficients of “t?F~!” with zero in Eq. (4.1.11), we obtain [16]

2c¢(¢/ (x))*B1F" (2) = 0. (4.1.18)
Now equating the coefficients of “F~2” with zero in Eq. (4.1.11)
20 Ba(F')? + 2a1) (2) Bo(F')? 4 2¢¢” () Bo(F')? + b/ () BE(F')? + 200/ () By Bo(F')? — 8¢t (x) BoF' ¢/ () F"' —

Ay ()¢ (2) B1(F')? — de(y/ (2))? BoF'¢F" + 6co F"F' (¢ ())* By — 4e(¢ (x))? Bop(F")? = 0.
(4.1.19)

Equating the coefficients of “tF'~2” with zero in Eq. (4.1.11), we have
2Bsad (x)(F')? + b(B1)*¢' (z)(F')? + 2bByBa¢' (x)(F')* — 8¢Ba (¢ (2))*F'F"+
4eBy (¢ (2))(F')? — 4By (2) F'F" ¢ + (F')*2cB1¢" (2)¢ — 4cBoy” (w)pF' F/'+
2By (F)20 (2)6 — Seo(F")2Ba! (2 () + 1260 ()6 () F'F' By — 8e(F" et () () By = 0.

(4.1.20)
Now equating the coefficients of “F~3” with zero in Eq. (4.1.11), we obtain
2081 Byy' () (F')* + 8ey! () (F')* ¢/ () By + deg(F')* B1 (¢ (2)) *+
12¢¢Bo(F))? (¢ (2))2F" + 8cpBo(F')2 (¢ (x))*F" = 0. (4.1.21)

Equating the coefficients of “tF~3” with zero in Eq. (4.1.11)

2081 Bo(F')3¢' () + 8cBa(F')3 (¢ (2))? + 4cpBo(F')3¢" () + 4cpBo(F')34" () —
8By (F')°¢' ()0 (x) + 24cBo(F')*¢' () (x) F” + 16c¢Ba(F')*¢/ (x)y)' (x) F" = 0. (4.1.22)

Now equating the coefficients of “t2?F~3” with zero in Eq. (4.1.11), we obtain
8coBa(F')2F" (¢ (2))? + 12c4Ba(¢/ (x))* (F')*F" — 4ep By (F')* (¢ ())* = 0. (4.1.23)
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Equating the coefficients of “F with zero in Eq. (4.1.11), we have

4cgBa(F') (¢ (x))? + 8eop B (F') ! (¢ () — B3 (F')¢'(x) = 0,
or
B3 (F')*/(x) — 124 Ba(F')* (¢ (2))* = 0,
or
Bo(z) = 12¢4¢ (2).
Solving Eq. (4.1.25) by substituting ¢'(z) = =& and ¢(z) = k, we get

12¢k?

By() = a+b’

Equating the coefficients of “tF'~4” with zero in Eq. (4.1.11), we obtain

8cgBa(F') ' ()¢ () + 16¢¢ Bo(F') 4 ()¢ () — b(Ba)?(F')*¢/ (x) = 0.

Solving Eq. (4.1.27) by substituting ¢'(z) = a_—fb and ¢(z) = k,

24ck?
bla+b)

Bsy(x) = —
Now equating the coefficients of “t2F~*” with zero in Eq. (4.1.11)
8cpBa(F') (¢ ())* — 4cgBa(F') (¢ (x))* = 0.
Equating the coefficients of “t?F~2” with zero in Eq. (4.1.11), we have
4eg(¢' () F'F" By — 6cd (¢ (2))*F'F" By + ded (¢ (2))*(F")* Bz = 0,

or

AF'F" By = 6F'F" By + 4(F")*Bs.

Dividing the Eq. (4.1.31) by (F')?, we obtain

F/I/ F/I F/l 2
(F’) B

Substituting ¢'(z) = 0 in Eq. (4.1.13) , thus we have
10c¢Bot)' (x)F” + bByBoF' + 2cF' By (x) = 0.

Now substituting ¢ = k,'(z) = 75 and Ba(z) = — lfi’f in Eq. (4.1.33), we obtain

BiF'[bBy + 2cki)/ (z)] = —10c¢Bo) () F",

or

12ck? 20k2> 1207k,

atb avd) " (a+0)2" "’

o8

(4.1.24)

(4.1.25)

(4.1.26)

(4.1.27)

(4.1.28)

(4.1.29)

(4.1.30)

(4.1.31)

(4.1.32)

(4.1.33)



or

60ck®>  F"
(6b+1)(a+0b) F’

F" o (6b+1)(a+b)

By =

— = 4.1.34
Fr 7 60ck? (4.1.34)
By substituting Eq. (4.1.34) and (4.1.16) in Eq. (4.1.32), we have
6b+1)(a+b)  8ck? (6b+ 1)(a + b)\2
8b— B2t B}
' 60ck? a+b 1( 60ck? ) ’
N (6b+1)(a +b)
6b+1)(a+0b) /120 —13
= B} :
3= B a2 ( 15 )
Thus we obtain
7200bck?
Bi(z) = . 4.1.35
1(2) \/(12b— 13)(6b + 1)(a + b) (4.1.35)
Substituting Eq. (4.1.35) in Eq. (4.1.34), we get
" 7200bck? (6b+1)(a+0b)
Fr\[ (126 —13)(6b + 1)(a + b) 60ck? ’
or
F"(2) 2b(6b+1)(a+b)
= . 4.1.
F'(z) \/ ck?(12b — 13) (4.1.36)
Integrating Eq. (4.1.36) with respect to z, we obtain
In F'(z) = G1(2)z + Ga(x),
or
F'(z) = Hy(x)[e*%@)], (4.1.37)

where Gi(x) = ,/% and Ga(x) are constants of integration. Integrating again the Eq. (4.1.37)

with respect to z, we have

. H1($)
- Gy(2)

Using ¢(x) = k and ¢(z) = a‘—ﬁ:c + Ap(z) in z = ¢(x)t + P(x),

F(z) 1@z 1 Gy(x). (4.1.38)

kx
a+b

2=kt — + Ag(a). (4.1.39)
Thus by using Eq. (4.1.39), Eq. (4.1.38) has the form

Hy(z) [Gl(x)(kt—ak—ﬁ+Ao(m))]

F(z) = 4.1.4
(2) = Gala) + g ge (4.1.40)
And substituting Eq. (4.1.39) in Eq. (4.1.37), we obtain
Gi(z) | kt—2Z 4 Ag(x
Fi(2) :Hl(az)e{ o) (ot | (4.1.41)
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Now substituting Eq. (4.1.26), (4.1.35), (4.1.40), (4.1.41) and Bp(z) = 0, in Eq. (4.1.6), we can obtain
the travelling wave solution for the BBM equation, thus Eq. (4.1.6) take the form

7200bck? Hy(x)e [Gl(’c) <’“’a%+A°(m)>}
ui(x,t) = \/(12b —13)(6b+ 1)(a + b) [

Gs(z) + Hi(@) [Gl(gﬁ) (kt_ak*&JrAO(z))] ] -

Gi(x)
12ck? [ Hy(x)e [Gl(x) <kt_‘%’+A0(m))} 2

4.1.42
a+b Cale) + Zﬁge |:G1(SU) (kt—a%Jer(x))] ( )
For By(z) = =22, Eq. (4.1.6) take the form
- e mndol )]
o) + 1[0 ()
~ 12¢k2 [ H(2)e |:G1(€E) (ktfak—&Jer(x))} ]2 e
e Gs(x) + gig;e[Gl(x) (kt_ak*ﬁﬁ%o(w))} . -

Thus Eqgs. (4.1.42) and (4.1.43) are exact travelling wave solutions of BBM equation by using ansatz of

the the form (4.0.2), when By(z) = 0 or =% respectively.
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Chapter 5

Conclusion

In this thesis, we investigated that the generalized separation of variables can be used to determine the
exact solutions of a wide variety of nonlinear PDEs, by using different ansatzes, which when substituted
into PDEs can transform them into ODEs. Particularly, the ansatz (2.0.4) has its significance over other
ansatzes, because by replacement of variables u, x and ¢, we can construct an ansatz of a new form, to
determine an exact solution of the given PDE.

In this thesis while applying the generalized separation of variables on PDEs, we also used ansatz (2.0.3)
which can be applied, as a rule, to the equations with polynomial nonlinearity. Sometimes it may happen,
that the construction of solution by applying ansatz (2.0.3) is impossible, then firstly we seek a transfor-
mation, which can reduce the given equation to a new equation with polynomial nonlinearity, and then
we can construct its solution by applying the ansatz (2.0.3).

The exact travelling wave solution is another efficient method applied to find the exact solution of nonlin-
ear PDEs, by applying the method, commonly known as % expansion method.

The main idea of this method is that the travelling wave solutions of nonlinear equations can be expressed
by a polynomial in %, where G = G(§) satisfies the second order linear ODE G” + G’ + G = 0, where
¢ = r — vt and then integration can be expressed by an m-th degree polynomial in %, where G = G(§) is
the general solutions of a second order LODE.

The positive integer m is determined by the homogeneous balance between the highest order derivatives
and nonlinear terms appearing in the reduced ODE, and the coefficients of the polynomial can be deter-
mined by solving a set of simultaneous algebraic equations obtained by the process of using the method.

Furthermore we can use this method to many other nonlinear equations.
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