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Abstract

This thesis comprises the discussion on generalized separation of variables method. Some exact solutions

have been obtained by applying generalized separation of variables method. In this context, we suggest

a method to construct the exact solutions of nonlinear partial differential equations(PDEs). The method

involves searching for transformations that reduce the dimensionality of the equation. New families of

exact solutions of nonlinear second-order partial differential equations that govern processes of heat and

mass transfer are illustrated.

Exact solutions of hyperbolic-type equation, Korteweg-De-Vries type, and nonlinear wave equation are

constructed by applying this method. Obviously, the generalized separation of variables method can also

be effective for constructing exact solutions of many other nonlinear PDEs, as well.

The thesis also discusses about the construction of the exact solutions of nonlinear PDEs, by applying

an efficient method, commonly known as G′

G expansion method. This method appears to be effective in

seeking exact solutions of nonlinear equations.
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Chapter 1

Introduction

In scientific research, seeking the exact solution of nonlinear equations is a hot topic. We outline generalized

separation of variables which is applied to second order partial differential equations(PDEs). To solve linear

heat -and mass transfer equations and other linear equations of mathematics, the method of separation of

variables is the most widely used. Moreover the method make it possible to construct exact solutions of

nonlinear wave equations [7].

Exact solutions of heat and mass transfer equations play a vital role in forming a proper understanding of

qualitative features of various thermal and diffusion processes. Four basic approaches are most frequently

encountered for searching the exact solution of nonlinear differential equations:

(1) searching the travelling wave solution, (2) searching the self similar solutions, and (3) solution in the

form of the sum or product of two functions of different arguments, (4) application of groups to search for

symmetries of the equation.

The method of separation of variables that is outlined below includes the first two approaches as its special

cases and quite often allows finding exact solutions that cannot be obtained by application of groups.

1.1 Structure of exact solutions for heat and mass transfer equations

1.1.1 Self similar solution

There are various techniques to reduce the PDE into an ODE (or at least a PDE in a smaller number

of independent variables), which includes various integral transforms, when we are dealing with linear

PDEs. Such techniques are much less prevalent when we deal with nonlinear PDEs. However, there is an

approach that identifies equations for which the solution depends on certain groupings of the independent

variables rather than depending on each of the independent variables separately. Firstly, we will describe

this technique for a linear PDE. For our convenience we consider the one dimensional case. Self similar

solutions of one dimensional heat equation are solution of the form

U(x, t) = tαg
( x
tλ

)
, (1.1.1)

where α and λ are arbitrary constants. The unknown function g( x
tλ

) is identified by an ODE, which is

obtained by substituting the solution of equation (1.1.1) into the original PDE. Generally, self similar
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solution are said to be the solution of the form [8].

U(x, t) = χ(t)g
( x

φ(t)

)
, (1.1.2)

where χ(t) and φ(t) are selected for the reason of simplicity in some particular problem.

1.1.2 Separation of variables for linear equations

Most of the linear PDEs can be solved by the separation of variables. We consider the linear second order

PDE of the form

G
(
x, t, U,

∂U

∂x
,
∂U

∂t
,
∂2U

∂x2
,
∂2U

∂t2
,
∂2U

∂x∂t

)
= 0, (1.1.3)

with two independent variables x and t and an unknown function U = U(x, t), that is to be determined.

Procedure for solving equation of the type Eq. (1.1.3) involves some stages.

Let us consider the examples of particular solution by using the method described for constructing exact

solutions of linear equations .

(1). Firstly, we search for the particular solution of the form

U(x, t) = χ(x)λ(t). (1.1.4)

Now substituting expression (1.1.4) into Eq. (1.1.3) for the function χ(x) and λ(t), rewriting the equation,

if possible, such that the left hand side of the resulting equation depends only on x, χ, χ′x, χ′′xx and its right

hand side depends only on t, λ, λ′t, λ′′tt. Thus in non degenerate case, both sides are equal to some constant

C, which is called as the separation constant. Thus the solution of Eq. (1.1.4) can be determined by ODE

obtained for χ(x) and λ(t). This method is called as the separation of variables in linear equations.

(2). Since a linear combination of exact solutions of a linear equation is also an exact solution of this

equation, which is called as the principle of linear superposition. Here we restrict our consideration to the

equation in two independent variables x and t, and one dependent variable U .

Thus, the separable linear equations have exact solution in the the form of the sum

U(x, t) = ψ1(x)χ1(t) + ψ2(x)χ2(t) + ...+ ψm(x)χm(t). (1.1.5)

Some of the linear equation admit the exact solutions of the form [9]

U(x, t) = ψ(x) + χ(t), (1.1.6)

where ψ(x) and χ(t) can be determined by the corresponding ODE obtained by substituting Eq. (1.1.6)

into linear equation.

Example. Let us consider a linear equation
∂U

∂t
=

∂

∂x

[
a(x)

∂U

∂x

]
+ b(x)

∂U

∂x
+ χ(t). (1.1.7)

Eq. (1.1.7) admits more complicated solution of the form

U(x, t) = ψ(x)φ1(t) + φ2(t), (1.1.8)

where φ1(t) = ebt and φ2(t) can be identified by solving the first order ODE

φ′2(t) = bφ2(t) + χ(t).
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1.1.3 Separation of variables for nonlinear equations

Exact Solution of a PDE is a solution, which is defined in the whole domain where a PDE is defined,

which can be represented as a finite expression. The exact solution of a nonlinear PDE is redundant, if

there exist more general solution then such redundant solution can be considered as a particular case of

general solutions of nonlinear PDEs [10].

Much effort has been spent to construct the exact solutions of nonlinear PDEs, because of their vital

role in understanding the nonlinear problems. Since some of the nonlinear PDEs admit exact solution of

the type given in Eq. (1.1.4). In this case unknown function χ(x) and λ(t) can be identified by using

ODEs, those are obtained by substituting Eq. (1.1.4) into the original equation and followed by nonlinear

separation of variables.

Let us consider particular examples related to the method described for constructing exact solutions of

nonlinear equations by separation of variables.

Example 1. The nonlinear heat equation

∂U

∂t
=

∂

∂x

(
βUk

∂U

∂x

)
, (1.1.9)

admits the exact solutions of the form (1.1.4). Here the term βUk is defined as the thermal diffusivity,

where β and k are constants.

Example 2. The nonlinear heat equation

∂U

∂t
=

∂

∂x

(
βeγU

∂U

∂x

)
, (1.1.10)

admits the ansatz of the form (1.1.6). Here the term βeγU is defined as the thermal diffusivity, where β

and γ are constants.

Let us consider some examples for constructing exact solutions of nonlinear PDEs by generalized separation

of variables.

1.1.4 Generalized separation of variables

We restrict our consideration to the nonlinear PDEs involving two independent variables x and t and one

dependent variable u [9]. Most of the nonlinear PDEs involving quadratic and higher order derivatives of

the form

a1(x)b1(t)Π1(u) + a2(x)b2(t)Π2(u) + ...+ am(x)bm(t)Πm(u) = 0, (1.1.11)

(where Πi(u) are the products of powers of functions u and their partial derivatives) have the exact solution

of the form

u(x, t) = φ1(x)ψ1(t) + φ2(x)ψ2(t) + ...+ φm(x)ψm(t). (1.1.12)

Such solutions are called as generalized separable solution.

General form of functional differential equation

Substituting Eq. (1.1.11) into Eq. (1.1.12), we obtain the differential equation of the form

Φ1(X)Ψ1(T ) + Φ2(X)Ψ2(T ) + ...+ Φm(X)Ψm(T ) = 0, (1.1.13)
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for ψi(t) and φi(x), where the functionals Φi(X) and Ψj(T ) depend on variables x and t respectively such

that

Φi(X) = Φi(x, φ, φ
′
1, φ
′′
1, ..., φ

′
m, φ

′′
m),

Ψj(T ) = Ψj(t, ψ, ψ
′
1, ψ

′′
1 , ..., ψ

′
m, ψ

′′
m).

(1.1.14)

Now we describe two different methods for solving functional differential equations [7].

Generalized separation of variables: Differentiation method

The procedure for solving functional differential equation involves three steps:

(1). We can assume that Φm(X) 6= 0. Dividing (1.1.14) by Φm(X) and differentiating the result with

respect to x yields an equation which is of the same form as Eq. (1.1.14) but consisting of less number of

terms. Thus

Φ̃1(X)Ψ̃1(T ) + Φ̃2(X)Ψ̃2(T ) + ...+ Φ̃m−1(X)Ψ̃m−1(T ) = 0, (1.1.15)

where

Φ̃i(X) = [Φi(X)/Φj(X)]′x,

Ψ̃i(T ) = Ψi(T ),

continuing the similar procedure, finally we are left with the separable equation in two-terms only, as given

below

Φ̂1(X)Ψ̂1(T ) + Φ̂2(X)Ψ̂2(T ) = 0. (1.1.16)

Now we consider two situations:

Non degenerate case : Ψ̂1(T ) + Ψ̂2(T ) 6= 0 and Φ̂1(X) + Φ̂2(X) 6= 0.

The solution of Eq. (1.1.16) can be identified by the resulting ODEs as given below

Ψ̂1(T ) + CΨ̂2(T ) = 0, Φ̂1(X)− CΦ̂2(X) = 0, (1.1.17)

where C is an arbitrary constant.

Degenerate case:

If Ψ1(T ) = 0,Ψ2(T ) = 0, when Φ1(X),Φ2(X) are arbitrary.

If Φ1(X) = 0,Φ2(X) = 0, when Ψ1(T ),Ψ2(T ) are arbitrary.

(2). Thus the solutions of the two term Eq. (1.1.16) should be substituted into the original functional

differential Eq. (1.1.13), to eliminate the unwanted integration constants.

(3). The case for Φm(X) = 0 must be considered separately.

Generalized separation of variables: Splitting method

To avoid the difficulties while applying the differentiating method, it is convenient to split the initial

problem into two simpler subproblems. Below we briefly describe the major steps of splitting method.

Case 1: Functional differential equation consisting of an even number of terms: m=2k
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(1). In the first step, one can show by differentiation and induction, that the functional Eq. (1.1.13) has

the following solution [9].

Φi(X) = Ai1Φk+1(X) +Ai2Φk+2(X) + ...+AikΦ2k(X), (i = 1, 2, 3.....k),

Ψk+i(T ) = −A1iΨ1(T )−A2iΨ2(T )− ...−AkiΨk(T ), (i = 1, 2, 3.....k), (1.1.18)

where Φ1(X), ...,Φk(X),Ψk+1(T ), ...,Ψ2k(T ) are unknown functions, whereas Φk+1(X), ...,Φ2k(X),

Ψ1(T ), ...,Ψk(T ) are known quantities. Expression (1.1.18) is consisting of k2 arbitrary constants Aij .

Example: Consider the functional equation consisting of an even number of terms of the form

Φ1(X)Ψ1(T ) + Φ2(X)Ψ2(T ) + Φ3(X)Ψ3(T ) + Φ4(X)Ψ4(T ) = 0. (1.1.19)

Thus Eq. (1.1.19) has the solution

Φ1 = B1Φ3 +B2Φ4, Φ2 = B3Φ3 +B4Φ4,

Ψ3 = −B1Ψ1 −B3Ψ2, Ψ4 = −B2Ψ1 −B4Ψ2. (1.1.20)

Comparing Eqs. (1.1.18) and (1.1.20) for k = 2, we get A11 = B1, A12 = B2, A21 = B3 and A22 = B4

as arbitrary constants, whereas Φi(X) are functions of one arguments and Ψi(T ) are functions of another

argument.

Case 2. Functional differential equation consisting of an odd number of terms: m = 2k − 1

Two different solutions exist for Eq. (1.1.13), if it is consisting of odd number of terms which includes

k(k − 1) arbitrary constants.

Example: Let us consider the functional equation consisting of an odd number of terms of the form

Φ1(X)Ψ1(T ) + Φ2(X)Ψ2(T ) + Φ3(X)Ψ3(T ) = 0. (1.1.21)

Eq. (1.1.21) has the solution

Φ1 = B1Φ3, Φ2 = B2Φ3, Ψ3 = −B1Ψ1 −B2Ψ2,

Ψ1 = B1Ψ3, Ψ2 = B2Ψ3, Φ3 = −B1Φ1 −B2Φ2.
(1.1.22)

Thus, in the first solution, the arbitrary constants are given the names as follows: B1 = A11, and B2 = A21

for k = 2, whereas, for finding the second solution, one can use a simple technique, since B1 = −1/A12

and B2 = A11/A12, we obtain

Φ3 = −B1Φ1 −B2Φ2,

substituting above equation in (1.1.21), we have

Φ1(X)Ψ1(T ) + Φ2(X)Ψ2(T ) + (−B1Φ1 −B2Φ2)Ψ3(T ) = 0,

or

Φ1(X)[Ψ1(T )−B1Ψ3(T )] + Φ2(X)[Ψ2(T )−B2Ψ3(T )] = 0.
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Equating the expressions in parentheses with zero, we obtain the following

Ψ1(T ) = B1Ψ3(T ) and Ψ2(T ) = B2Ψ3(T ),

where B1 and B2 are arbitrary constants [9].

1.1.5 Functional separation of variables

Structure of solutions:

It is important to note that, most of the nonlinear PDEs have the exact solution of the form

u(x, t) = F (z), z =
n∑

m=1

φm(x)ψm(t). (1.1.23)

Such solution are called as functionally separable solutions, where the functions φm(x), ψm(t) and F (z)

are unknown in advance, and must be determined to find the solution.

We consider two simplest functional separable solutions

U = G(z), z = ψ(x)χ(t), (1.1.24)

or

U = G(z), z = ψ(x) + χ(t), (1.1.25)

where G(z) is some function.

Functional separation of variables of a special form

For easiness, one can specify some functions in solution (1.1.23) in advance and other unknown functions

can be identified. Such solutions are called as functionally separable solutions of a special form.

A generalized separable solution is a functional separable solution of a special form corresponding to

F (z) = z. Now we consider functionally separable solutions of Eq. (1.1.23) of special form [10]

w = G(z), z = φ(t) + xφ(t), (1.1.26)

w = G(z), z = tψ1(x) + ψ2(x). (1.1.27)

The arguments x and t in solution (1.1.27) can be eliminated, such solution will be called as generalized

travelling wave solution of the original equation. Substituting expression (1.1.23) into the original equation

and then eliminating t by using the expression for z, thus a functional differential equation will be formed

in two variables x and z.

Remark: Functional separation of variables of a special form are given below

w = G(z) z = t2ψ1(x) + ψ2(x), (z is quadratic in t),

w = G(z) z = ψ1(x)eλt + ψ2(x), (z contains an exponential of t).
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Functional separation of variables: Differentiation method

In general, substituting solution (1.1.23) into the PDE which is under consideration, yields a functional

differential equation with three arguments, two simple variables x and t and one composite argument

z. In some cases, the resulting equation can be reduced by using differentiation method to a functional

differentiation equation containing two variables (either variable x or t is eliminated).

Functional separation of variables: Splitting method

The procedure for constructing exact solutions of functional differential equations consists of some steps,

which are outlined below.

Step 1: Substitute solution (1.1.23) into the nonlinear PDE to produce a functional differential equation

in three arguments (where the two arguments x and t are simple, whereas the third variable z is

composite.

Step 2: With the help of elementary differential substitution (by selecting and renaming terms with deriva-

tives), transforming the functional differential equation into pure functional equation in three argu-

ments x, t and z.

Step 3: Reducing the functional equation containing three arguments into a functional equation in two

arguments (the variables x or t is swapped) by the differentiation method.

Step 4: Constructing a solution for the two argument functional differential equation, obtained in step (3)

(by using the formula discussed in section (1.1.4)).

Step 5: Constructing a solution by solving the set of ODEs, obtained by the step 4 solutions, and differential

substitution made in step 2.

Step 6: Substituting the solution set obtained in step 5 into the original functional differential equation of

step 1, to determine the unknown quantities.

Step 7: Analyze separately the degenerate cases (which arise due to violation of assumption made in the

solution procedure), which are possible.

Example: Let us consider the unsteady-state heat equation with a nonlinear source term [9]

ut = uxx + f(u). (1.1.28)

To find the exact solution of Eq. (1.1.28) by functional separation of variable method, considering the

ansatz of the form

u = u(ζ), ζ = φ(t)x+ χ(t), (1.1.29)
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which is consisting of three variables x, t and ζ. Now to determine the unknown functions u(ζ), φ(t) and

χ(t), differentiating the Eq. (1.1.29) with respect to x and t

∂u

∂t
= u′(ζ)[φ′(t)x+ χ′(t)],

∂u

∂x
= u′(ζ)φ(t),

∂2u

∂x2
= u′′(ζ)φ2(t).

(1.1.30)

Substituting Eq. (1.1.30) into the Eq. (1.1.28), we obtain

u′(ζ)[φ′(t)x+ χ′(t)] = u′′(ζ)φ2(t) + f(u). (1.1.31)

Dividing the Eq. (1.1.31) by u′(ζ) 6= 0, thus we have

φ′(t)x+ χ′ =
u′′(ζ)

u′(ζ)
φ2 +

f(u)

u′(ζ)
. (1.1.32)

Now substituting the value of x from Eq. (1.1.29) in Eq. (1.1.32), we get the functional differential

equation in two variables t and ζ

φ′(t)χ

φ(t)
− χ′ − φ′(t)ζ

φ(t)
+
u′′(ζ)

u′(ζ)
φ2(t) +

f(u)

u′(ζ)
= 0, (1.1.33)

comparing the functional differential Eq. (1.1.33) with Eq. (1.1.19), we obtain

Φ1 =
φ′(t)χ

φ(t)
− χ′, Φ2 = −φ

′(t)

φ(t)
, Φ3 = φ2, Φ4 = 1,

Ψ1 = 1, Ψ2 = ζ, Ψ3 =
u′′(ζ)

u′(ζ)
, Ψ4 =

f(u)

u′(ζ)
.

Substituting the above expressions into the Eq. (1.1.19), we get

φ′(t)χ

φ
− χ′(t) = B1Φ3 +B2Φ4 = B1φ

2 +B2. (1.1.34)

Dividing the Eq. (1.1.34) by φ, thus we have

φ′(t)χ

φ2
− χ′(t)

φ
= B1φ(t) +

B2

φ(t)
,

or

− d

dt

(χ
φ

)
= B1φ(t) +

B2

φ(t)
.

Integrating the above equation with respect to t, we get

χ(t) = −φ(t)
[
B1

∫
φ(t)dt+B2

∫
dt

φ(t)
+ c2

]
. (1.1.35)

Substituting Eq. (1.1.33) into the Eq. (1.1.19) produces

−φ−3φ′(t)−B4φ
−2 = B3. (1.1.36)
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Taking w = φ−2(t), and dw
dt = −2φ−3φ′(t) in Eq. (1.1.36), we obtain

d

dt
(we−2B4t) = 2e−2B4tB3.

Integrating the above equation with respect to t produces w(t) = c1e
2B4t − B3

B4
.

Substituting w(t) = φ−2(t) in Eq. (1.1.35), we get

φ(t) = ±
(
c1e

2B4t − B3

B4

)−1/2
. (1.1.37)

Now to solve u(ζ), we have the following equation

u′′(ζ)

u′(ζ)
= −B1 −B3ζ. (1.1.38)

The solution of Eq. (1.1.38) can be identified by integrating with respect to ζ, thus we have

u(ζ) = c4

∫
e

[
−B1ζ− 1

2
B3ζ2

]
dζ + c5. (1.1.39)

and
f(u)

u′(ζ)
= −B2 −B4ζ,

or

f(u) = −c3(B2 +B4ζ)e

(
−B1ζ− 1

2
B3ζ2

)
,

where c1, c2, c3, c4 are arbitrary constants. Now substituting Eqs. (1.1.35), (1.1.37) and (1.1.39) in Eq.

(1.1.29), ζ in Eq. (1.1.29) takes the form

ζ = ±
(
c1e

2B4t − B3

B4

)−1/2
x− φ(t)

[
B1

∫
φ(t)dt+B2

∫
dt

φ(t)
+ c2

]
. (1.1.40)

Thus from the above example, it is to be noted that

(i) The splitting method reduces the three argument functional differential equation solution into the

pure functional equation solution (by reducing it into a functional equation in two arguments).

(ii) Solving the system of ODEs by splitting the original problem into several subproblems.

1.1.6 Exact travelling wave solutions of nonlinear equations

A travelling wave is a wave of permanent form in which the medium is travelling in the direction of

propagation of wave. Commonly, solution of nonlinear equation are determined in terms of travelling

wave solution, where waves are represented by the form [15]

U(x, t) = U(ξ), ξ = x+ λt, (1.1.41)

where λ is speed of the wave. Since it is possible to reduce the PDE (in x,t) into an ODE (in ξ), which

can be solved by particular methods. A travelling wave solution occurs in different kinds of mathematical

problems.
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The travelling wave solution of a linear wave equation was first obtained by d’Alembert in 1747.

Methodology: Suppose that a nonlinear equation in two variables x and t is given by

F (u, ux, ut, uxx, uxt, utt, uxxx, uttt, ...) = 0, (1.1.42)

where u(x, t) is an unknown function, F is a polynomial in u and its partial derivatives involving the

highest order derivatives and other nonlinear terms. Major steps of this method are given below [16].

Step 1: We use generalized wave transformation of the form

u(x, t) = u(ξ), ξ = x− vt. (1.1.43)

Eq. (1.1.43) permits us to reduce Eq. (1.1.42) to an ODE

F [u,−vu′, u′, v2u′′,−vu′′, u′′...] = 0. (1.1.44)

Step 2: Suppose that the ODE (1.1.44) has the formal solution [4].

u(ξ) =
k∑
i=0

Bi(x)
(F ′
F

)i
, (1.1.45)

where Bi(x) are functions of x, the functions F (ξ) and Bi(x) are unknown, and are to be identified later,

and Bk(x) 6= 0.

Step 3: The positive integer k can be identified by considering the homogenous balance between the

highest degree derivative and nonlinear terms in Eq. (1.1.44).

Step 4: Substitute Eq. (1.1.45) into the Eq. (1.1.44), obtain the function F ′(ξ), calculate all the necessary

derivatives u′(ξ), u′′(ξ),... of the unknown function u(ξ).

As a result, we obtain a polynomial of F
′

F and its derivatives, gathering all the terms of same powers of F
′

F

and its derivatives, and equating with zero all the coefficients of this polynomial, which produces a system

of equations, which on solving yields the values of Bi(x) and F (ξ), using the values in Eq. (1.1.45), we

can obtain the exact solution of Eq. (1.1.42).

The outline of the thesis is as follows.

Chapter 2 discusses about how we can use generalized separation of variables and structures of ansatzes

which are admitted by the nonlinear hyperbolic type equation to determine the exact solutions.

Chapter 3 of this thesis illustrates the approaches to find the exact solution of nonlinear equations namely

Korteweg-De-Vries equation and nonlinear wave equation.

Chapter 4 comprises discussion on the exact travelling wave solution method to determine the exact

solution of PDEs, particularly Benjamen Bona Mohany equation by applying G′

G -expansion approach [15].

A conclusion chapter highlighting the contributions made in this thesis are given at the end.
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Chapter 2

Generalized separation of variables for

nonlinear partial differential equations

A method of separation of variables is one of the important methods that is widely used in mathematics

to seek the exact solutions of linear equations. This method is used to find exact solutions of equations

with two independent variables x and t and an unknown function w in the form of product of functions

of different variables.

w = δ(x)β(t). (2.0.1)

Solution structure (2.0.1) can be regarded as an ansatz that transforms the equation under study to an

ODE with an unknown function δ(x) or an unknown function β(t). Exact solutions of nonlinear PDEs

can be constructed by arranging the k terms in the form of a finite sum

w(x, t) =

k∑
i=1

gi(x)ai(t), (2.0.2)

to determine the unknown functions gi(x) and ai(t) . To construct the exact solution of nonlinear PDE,

the following generalization of ansatz (2.0.1) is

u =

m∑
i=1

wi(t)di(x) + g(x, t), m ≥ 1. (2.0.3)

used. Ansatz (2.0.3) contains an unknown function g(x, t), m unknown function di(x) and m unknown

functions wi(t), which are to be determined with the condition that anastz (2.0.3) reduces the given

equation to a system of m ODEs with unknown functions ai(t).

If we consider m = 1 in Eq. (2.0.3), this system becomes an ODE with an unknown function w1(t). We

consider an ansatz which is similar to Eq. (2.0.3) and obtained by replacing u by x, x by u, whereas t will

remain same in Eq. (2.0.3)

x =

m∑
i=1

wi(t)di(u) + g(u, t). (2.0.4)

Solution structure Eq. (2.0.3) or (2.0.4) are called solution with separated variables, and the method used

for their construction is called the generalized procedure of separation of variables [2]. We use the ansatzes
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of the type Eq. (2.0.3) and Eq. (2.0.4) to construct the exact solution of the nonlinear hyperbolic-type

equation.

2.1 Exact solutions of the nonlinear hyperbolic-type equation

Consider the general form of second order linear partial differential equation in two variables with constant

coefficients:

Auxx + 2Buxy + Cuyy +Dux + Euy + F = 0,

which satisfies the condition

B2 −AC > 0 is known as hyperbolic equation.

Let us consider hyperbolic equation of the form [2]

∂2w

∂t2
= aw

∂2w

∂x2
+ b
(∂w
∂x

)2
+ c. (2.1.1)

We will also consider the following generalizations of equation (2.1.1), when c = 0, and c = φ(t), i.e

∂2w

∂t2
= aw

∂2w

∂x2
+ b
(∂w
∂x

)2
+ φ(t)w. (2.1.2)

2.1.1 Exact solutions by separation of variables of nonlinear hyperbolic-type equation
when (c = 0)

Consider the special case of Eq. (2.1.1), when c = 0, i.e

∂2w

∂t2
= aw

∂2w

∂x2
+ b
(∂w
∂x

)2
. (2.1.3)

Now to construct the exact solution of Eq. (2.1.3), we use the ansatz

w = u(t)d(x) + g(x, t), u(t) 6= 0. (2.1.4)

Above solution structure is some times used to construct the exact solution of nonlinear equations.

Now by differentiating Eq. (2.1.4) with respect to t and x

∂2w

∂t2
= u′′d+ gtt, (2.1.5)

∂w

∂x
= ud′ + gx, (2.1.6)

∂2w

∂x2
= ud′′ + gxx. (2.1.7)

Substituting Eq. (2.1.5)-(2.1.7) into Eq. (2.1.1), we obtain the equation

u′′d+ gtt = a(ud+ g)(ud′′ + gxx) + b(ud′ + gx)2, (2.1.8)

or

u′′d+ gtt = a(u2dd′′) + augd′′ + audgxx + aggxx + bu2(d′)2 + b(gx)2 + 2bugx(d)′,
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or

u′′d+ gtt − u(agxxd+ 2bgxd
′ + agd′′)− u2[add′′ + b(d′)2]− aggxx − b(gx)2 = 0.

Above equation must be an ODE with u = u(t) as an unknown function. Thus

add′′ + b(d′)2 = αd, α ∈ <, (2.1.9)

and

adgxx + 2bd′gx + ad′′g = γ̃(t)d. (2.1.10)

For α = 0, Eq. (2.1.9) becomes

ad(d)′′ + b(d′)2 = 0,

which has a particular solution d = xµ, when a = µb
1−µ , α = 0 and µ 6= 1.

Now substituting d = xµ and b = a1−µ
µ into Eq. (2.1.10), we obtain

axµgxx + 2aµ
1− µ
µ

xµ−1gx + aµ(µ− 1)xµ−2g = γ̃(t)xµ,

gxx + 2(1− µ)
gx
x

+ µ(µ− 1)
g

x2
=
γ̃(t)

a
,

x2gxx + 2(1− µ)xgx + µ(µ− 1)g = γ(t)x2, where
γ̃(t)

a
= γ(t). (2.1.11)

Let us consider following three cases:

Case 1: For µ = 2, substituting d = x2 and a = −2b in Eq. (2.1.11), it reduces to the following form

x2gxx − 2xgx + 2g = γ(t)x2. (2.1.12)

Since Eq. (2.1.12) is Cauchy Euler equation, let x = eξ, then Eq. (2.1.12) becomes

(∆2 − 3∆ + 2)g = γ(t)e2ξ,

where xD = ∆, and x2D2 = ∆(∆− 1).

The solution for homogenous equation: (∆2 − 3∆ + 2) = 0, is

gc = β̃(t)x2 + η(t)x.

The particular solution of Eq. (2.1.12): (∆2 − 3∆ + 2)gp = γ(t)e2ξ, is given by

(∆− 2)gp = γ(t)e2ξ,

or ∫
d

dξ
(e−2ξgp) = γ(t)ξ,

or

gp = γ(t)ξe2ξ = γ(t) ln(x)x2.

Thus the general solution of Eq. (2.1.12) is

g(x, t) = γ(t)x2 ln | x | +β̃(t)x2 + η(t)x. (2.1.13)
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Substituting Eq. (2.1.13) in Eq. (2.1.4) by using d(x) = x2, we obtain

w(x, t) = γ(t)x2 ln | x | +β(t)x2 + η(t)x, where β(t) = β̃(t) + u(t). (2.1.14)

Establishing η(t) = 0 in Eq. (2.1.14), we obtain

w = γ(t)x2 ln | x | +β(t)x2. (2.1.15)

Now differentiating Eq. (2.1.15) with respect to t and x

∂2w

∂t2
= β′′(t)x2 + γ′′(t)x2 ln | x |,

∂w

∂x
= γ(t)(x+ 2x ln | x |) + β(t)2x,

∂2w

∂x2
= γ(t)(3 + 2 ln | x |) + 2β.

Substituting above equations in Eq. (2.1.3) produces

γ′′(t)x2 ln | x | +β′′(t)x2 = −2b(γx2ln | x | +β(t)x2)(3γ + 2γln | x | +2β)

+b(γ(t)x+ 2xγln | x | +2βx)2). (2.1.16)

Using Eq. (2.1.16), we obtain the following system of equations for γ(t) and β(t)

γ′′(t) = −2bγ2(t), β′′(t) = −2bβγ + bγ2(t). (2.1.17)

In order to get a particular solution of γ′′(t) = −2bγ2(t), let us consider γ(t) = Atn and γ′′(t) = An(n−
1)tn−2. Now substituting these values in Eq. (2.1.17), we obtain

n(n− 1)tn−2 = −2bAt2n, which is satisfied by n = 3.

Thus using A = −3
bt5
, γ(t) is given by

γ(t) =
−3t−2

b
. (2.1.18)

Substituting Eq. (2.1.18) in β′′(t) = −2bβγ + bγ2(t), we obtain

β′′(t) = 6βt−2 + 9
t−4

b
, (2.1.19)

or

t2β′′(t)− 6β = 9
t−2

b
,

which is a nonhomogenous Cauchy Euler equation. Thus the solution of corresponding homogenous

equation is:

yc = c1t
−2 + c2t

3,

and particular solution of Eq. (2.1.19) can be obtained by letting y1 = t−2, and y2 = t3 in above equation,

and taking their Wronskian, since W [y1, y2] = y1y
′
2 − y2y

′
1 = 5, thus we have

yp = y1(t)

∫
y2(t)g(t)dt

w(y1, y2)
+ y2

∫
y1(t)g(t)dt

w(y1, y2)
= t−2

∫
t3(9t−4)dt

5b
+ t3

∫
t−2(9t−4)dt

5b
,
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yp =
−9t−2 ln t

5b
+

9t−2

25b
.

General solution of Eq. (2.1.17) is

β(t) = c1t
3 + c2t

−2 +
9t−2

25b
− 9t−2 ln t

5b
= c1t

3 +
(
c2 +

9

25b

)
t−2 − 9t−2 ln t

5b

= c1t
3 + c3t

−2 − 9 ln tt−2

5b
where c3 =

(
c2 +

9

25b

)
. (2.1.20)

Now using Eqs. (2.1.20) and (2.1.18), exact solution of Eq. (2.1.15) is given by

w(x, t) =
−3t−2x2 ln | x |

b
+
(
c1t

3 + c3t
−2 − 9t−2 ln | t |

5b

)
x2, (2.1.21)

where c1 and c3 are arbitrary constants.

Case 2: For µ = 3, Eq. (2.1.11) reduces to a following form by using d = x3

x2gxx − 4xgx + 6g = γ(t)x2, (2.1.22)

which is Cauchy Euler equation, which reduces to the form

(∆2 − 5∆ + 6)g = γ(t)e2ξ.

The solution of homogenous equation: (∆2 − 5∆ + 6) = 0, is given by

gc = β(t)x2 + η̃(t)x3.

For particular solution of Eq. (2.1.22), we proceed as follows

(∆− 2)gp =
γ(t)e2ξ

(∆− 3)
= −γ(t)e2ξ,

thus from above equation, we obtain ∫
d

dξ
(e−2ξgp) = −

∫
γ(t)dξ,

or

gp = −γ(t)ξe2ξ = −γ(t)x2 lnx.

Finally general solution of Eq. (2.1.22) is given by

g(x, t) = −γ(t)x2 lnx+ β(t)x2 + η̃(t)x3. (2.1.23)

Now substituting Eq. (2.1.23) in Eq. (2.1.4), we have

w(x, t) = β(t)x2 + η(t)x3 − γ(t) lnx x2, where η(t) = u(t) + η̃(t). (2.1.24)

Substituting Eq. (2.1.24) into Eq. (2.1.3), and establishing γ(t) = 0, we get

w(x, t) = β(t)x2 + η(t)x3. (2.1.25)
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Differentiating the Eq. (2.1.25) with respect to t and x

∂2w

∂t2
= β′′(t)x2 + η′′(t)x3,

∂w

∂x
= 2xβ(t) + 3x2η(t),

∂2w

∂x2
= 2β(t) + 6xη(t).

Now substituting the above equations in Eq. (2.1.3), we obtain

β′′(t)x2 + η′′(t)x3 = a
(

2β2x2 + 8βηx3 + 6η2x4
)

+ b
(

4β2x2 + 9η2x4 + 12βηx3
)
.

Thus from above equation, we have following system of equations for β(t) and η(t), by taking, a = −3b
2

β′′ = bβ2, η′′ = 0. (2.1.26)

The equation η′′ = 0, has the solution: η(t) = c1t+ c2.

Now we search for the particular solution of β′′ = bβ2, by substituting β = Atn+2 and β′′ = A(n+2)(n+1)tn

in β′′ = bβ2, of Eq. (2.1.26), it reduces to

A(n+ 2)(n+ 1)tn = bA2t2n+4, for n = 1,

thus for A = 6
bt5
, Eq. (2.1.26) becomes

β(t) =
6

b
t−2.

Substituting β(t) and η(t) in Eq. (2.1.25), thus we have

w(x, t) =
6t−2

b
x2 + [c1t+ c2]x3, (2.1.27)

where c1 and c2 are arbitrary constants. The ansatz w = β(t)x2 + η(t)x3 is a special case of more general

ansatz [14]

w(x, t) = δ3(t)x3 + δ2(t)x2 + δ1(t)x+ δ0(t),

where δ1(t) = 0 and δ0(t) = 0.

Case 3: Now consider µ 6= 1, 2, 3 in Eq. (2.1.11), thus we have

x2gxx + 2(1− µ)xgx + µ(µ− 1)g = γ(t)x2.

To find the general solution of Eq. (2.1.11), since the homogenous part of the above equation is Cauchy

Euler equation:

x2gxx + 2(1− µ)xgx + µ(µ− 1)g = 0,

or

[∆(∆− 1) + 2(1− µ)∆ + µ(µ− 1))]g = 0,

or

∆ =
−(1− 2µ)±

√
(1− 2µ)2 − 4(µ2 − µ)

2
,
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gc = δ̃2(t) xµ + δ0(t)xµ−1.

Now particular solution of Eq. (2.1.11) is given by: gp = γ(t)e2ξ

[∆2+∆(1−2µ)+µ2−µ]
, or

gp =
γ(t)x2

(µ− 3)(µ− 2)
. (2.1.28)

Consequently the general solution of Eq. (2.1.11) is

g(x, t) =
γ(t)x2

(µ− 3)(µ− 2)
+ δ̃2(t) xµ + δ0(t)xµ−1. (2.1.29)

Now substituting (2.1.29) in Eq. (2.1.4), we obtain

w = δ2(t)xµ +
γ(t)x2

(µ− 3)(µ− 2)
+ δ0(t)xµ−1, where u(t) + δ̃2(t) = δ2(t).

Using the Eq. (2.1.4), we get

w = δ2(t)xµ + δ1(t)x2 + δ0(t)xµ−1, δ1(t) =
γ(t)

(µ− 3)(µ− 2)
. (2.1.30)

Now to find the exact solution of Eq. (2.1.30), differentiating the Eq. (2.1.30) with respect to x and t,

thus we have the following equations

∂2w

∂t2
= δ′′1(t)x2 + δ′′2(t)xµ + δ′′0(t)xµ−1,

∂w

∂x
= δ1(t)2x+ δ2(t)µxµ−1 + δ0(t)(µ− 1)xµ−2,

∂2w

∂x2
= 2δ1(t) + δ2(t)µ(µ− 1)xµ−2 + δ0(t)(µ− 1)(µ− 2)xµ−3.

(2.1.31)

Substituting Eq. (2.1.31) in Eq. (2.1.3)

δ′′1(t)x2 + δ′′2(t)xµ + δ′′0(t)xµ−1 = a
[
δ2(t)xµ + δ1(t)x2 + δ0(t)xµ−1

][
2δ1(t) + δ2(t)µ(µ− 1)xµ−2+

δ0(t)(µ− 1)(µ− 2)xµ−3
]

+ b
[
δ1(t)2x+ δ2(t)µxµ−1 + δ0(t)(µ− 1)xµ−2

]2
. (2.1.32)

Using Eq. (2.1.32), we obtain the following system of equation for δ1(t) and δ2(t)

δ′′1(t) = (2a+ 4b)δ2
1 . (2.1.33)

.

δ′′2(t) = (2a+ aµ(µ− 1) + 4bµ)δ1δ2, where a =
µb

1− µ
, µ =

a

a+ b
.

Substituting µ = a
a+b in above equation, we get

δ′′2(t) =
( −a2b

(a+ b)2
+

2a2 + 6ab

a+ b

)
δ1δ2. (2.1.34)

Now to find the particular solution of Eq. (2.1.33) by considering δ1 = Atn+3 and

δ′′1(t) = A(n+ 3)(n+ 2)tn+1, thus we have

(n+ 3)(n+ 2)Atn+1 = (2a+ 4b)A2t2n+6, satisfied by n = 0.

18



Thus by using A = 3
(a+2b)t5

, solution of Eq. (2.1.33) is

δ1 =
3

a+ 2b
t−2. (2.1.35)

Using Eq. (2.1.35), Eq. (2.1.34) reduces to the following form

δ′′2(t) = (6− 5µ+ µ2)aδ1δ2.

Thus we have

δ′′2(t) = (6− 5µ+ µ2)
3at−2

a+ 2b
δ2, b =

a(1− µ)

µ
,

or

t2δ′′2(t) = (9µ− 3µ2)δ2. (2.1.36)

For the solution of Eq. (2.1.36), let ex = ξ, x = ln ξ and ξ2δ′′2(t) = (∆2 −∆)δ2 and substituting these

values in Eq. (2.1.36), thus we have

(∆2 −∆− 9µ+ 3µ2)δ2 = 0. (2.1.37)

Solving Eq. (2.1.37), we consider following two cases;

Case 3a: When 3µ2 − 9µ ≥ 1
4 ;

(∆− 1

2
)2 + 3µ2 − 9µ− 1

4
= 0 implies ∆ =

1

2
+ ισ,

where σ =
√

3µ2 − 9µ− 1
4 .

Thus in this case, Eq. (2.1.37) has the following solution

δ2 = e
x
2 (c1 cosσx+ c2 sinσx).

or

δ2 = ξ
1
2 [c1 cos(σ ln ξ) + c2 sin(σ ln ξ)], (2.1.38)

where σ2 = (3µ2 − 9µ− 1
4) > 0.

Case 3b: When 3µ2 − 9µ ≤ 1
4 ;

(∆− 1
2)2 − (9µ+ 1

4 − 3µ2) = 0 implies ∆ = 1
2 ± σ, σ =

√
9µ− 3µ2 + 1

4 > 0,

δ2 = ξ
1
2 (c1ξ

σ + c2ξ
−σ), (2.1.39)

where σ2 = 9µ− 3µ2 + 1
4 > 0. Substituting µ = 9±2

√
21

6 in Eq. (2.1.36) produces

t2
∂2δ2

∂t2
=
[
9
(9± 2

√
21

6

)
− 3
(9± 2

√
21

6

)2
δ2

]
.

Substituting t2δ′′2(t) = (∆2 −∆) in above equation, we have (4∆2 − 4∆ + 1)δ2 = 0, or ∆ = 1
2 ,

1
2 , thus we

obtain

δ2(t) = e
x
2 (c1 + c2x),

or

δ2(t) = ξ
1
2 (c1 + c2 ln ξ), (2.1.40)
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where c1 and c2 are arbitrary constants.

Now substituting δ1(t) and δ2(t) in Eq. (2.1.11), we obtain the following exact solutions:

(a). Since

w = δ1x
2 + δ2x

µ.

Therefore exact soluton of Eq. (2.1.11) using Eq. (2.1.35) and Eq. (2.1.38) is given by

w(x, t) =
( 3

a+ 2b
t−2
)
x2 + xµ

[
ξ

1
2 (c1 cos(σ ln ξ) + c2(sinσ ln ξ)

]
. (2.1.41)

(b). The exact solution of Eq. (2.1.11) by substituting Eqs. (2.1.35) and (2.1.39) is given by

w =
( 3

a+ 2b
t−2
)
x2 + ξ

1
2 (c1ξ

σ + c2ξ
−σ)xµ, where µ =

9± 2
√

21

6
> 0, (2.1.42)

and σ2 = 9µ− 3µ2 + 1
4 > 0.

(c). The exact solution of Eq. (2.1.11) by using Eqs. (2.1.35) and (2.1.40) is given by

w =
( 3t−2

a+ 2b

)
x2 + xµξ

1
2 (c1 + c2 ln ξ), where σ2 =

(
3µ2 − 9µ− 1

4

)
, (2.1.43)

where c1 and c2 are arbitrary constants.

2.1.2 Exact solution by separation of variables of nonlinear hyperbolic-type equation
(c 6= 0)

Consider the hyperbolic equation for c 6= 0

∂2w

∂t2
= aw

∂2w

∂x2
+ b
(∂w
∂x

)2
+ c. (2.1.44)

Exact solution of Eq. (2.1.44) can be constructed by using the ansatz of the form

w = u(t) + g(x, t). (2.1.45)

The above ansatz is obtained by taking a special case i = 1 in general ansatz (2.0.3), where g(x, t) is

generalization of φ(x) in ansatz of the form

w(x, t) = φ(x) + χ(t),

differentiating Eq. (2.1.45) with respect to x and t, we have

∂w

∂x
= gx,

∂2w

∂x2
= gxx,

∂2w

∂t2
= u′′(t) + gtt.

(2.1.46)

Now substituting Eq. (2.1.46) into the Eq. (2.1.44), we have

u′′(t) + gtt = a(u+ g)gxx + b(gx)2 + c, (2.1.47)
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which must be an ODE with u = u(t) as an unknown function, that is to be determined.

Let us consider the function g(x, t) is of the form

g(x, t) = δ2(t)x2 + δ1(t)x+ δ̃0(t). (2.1.48)

Substituting Eq. (2.1.48) in Eq. (2.1.46), we have

w(x, t) = u(t) + δ2(t)x2 + δ1(t)x+ δ̃0(t).

Thus we obtain the following ansatz

w(x, t) = δ2(t)x2 + δ1(t)x+ δ0(t), where δ0 = u(t) + δ̃0(t). (2.1.49)

Differentiating Eq. (2.1.49) with respect to t and x, we have

∂w

∂x
= 2δ2(t)x+ δ1(t),

∂2w

∂x2
= 2δ2(t),

∂2w

∂t2
= δ′′2(t)x2 + δ′′1(t)x+ δ′′0(t).

(2.1.50)

Now substituting Eq. (2.1.50) in Eq. (2.1.44), it reduces to the following form thus we have

δ′′2x
2 + δ′′1x+ δ′′0 = 2a(δ2

2x
2 + δ1δ2x+ δ0δ2) + 4bδ2

2x
2 + 4bδ2

1 + 4bδ1δ2x+ c.

Thus from above equation, we have the following system of equation for the functions δi(t)

δ′′2 = (2a+ 4b)δ2
2 , (2.1.51)

δ′′1 = (2a+ 4b)δ1δ2, (2.1.52)

δ′′0 = 2aδ0δ2 + 4bδ2
1 + c. (2.1.53)

Now solving Eq. (2.1.51) by substituting δ2 = Atn+3 and δ′′2(t) = A(n+ 3)(n+ 2)tn+1. Using A = 3
(a+2b)t5

,

Eq. (2.1.51) has the following solution

δ2(t) =
3

a+ 2b
t−2. (2.1.54)

Now substituting Eq. (2.1.54) in Eq. (2.1.52), we obtain Cauchy Euler equation in the form as given

below

t2δ′′1 − 6δ1 = 0.

Thus we have the following solution

δ1(t) = c1e
3t + c2e

−2t. (2.1.55)

Now solving Eq. (2.1.53) by substituting Eq. (2.1.54) and Eq. (2.1.55), we obtain

t2δ′′0 −
6a

a+ 2b
δ0 = 4bt2(c1e

3t + c2e
−2t)2 + t2c,

which is nonhomogenous Cauchy Euler equation, thus we have(
∆2 −∆− 6a

a+ 2b

)
δ0 = bt2(c1e

3t + c2e
−2t)2 + t2c,
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The solution of homogenous equation: (∆2 −∆− 6a
a+2b) = 0 is

gc =
k1

2
e
t

[
1+

√
( 25a+2b
a+2b

)

]
+
k2

2
e
t

[
1−

√
( 25a+2b
a+2b

)

]
,

where a and b are constants. Now let us consider a special case for a = b = 1 in above equation, which

gives ∆ = 2,−1. Thus

gc = k1e
2t + k2e

−t.

(∆2 −∆− 6a
a+2b)gp = bt2(c1e

3t + c2e
−2t)2 + t2c, where a = b = 1

(∆− 2)(∆ + 1)fp = t2c2
1e

6t + t2c2
2e
−4t + 2t2c3e

t + t2c

gp =
t2c21e

6t

(∆−2)(∆+1) +
t2c22e

−4t

(∆−2)(∆+1) + 2t2c3et

(∆−2)(∆+1) + t2c
(∆−2)(∆+1) ,

gp =
t2c21e

6t

28 +
t2c22e

−4t

18 − t2c3e
t − t2c

2 .

Thus the general solution of Eq. (2.1.53) is given by

δ0(t) = k1e
2t + k2e

−t +
t2c2

1e
6t

28
+
t2c2

2e
−4t

18
− t2c3e

t − t2c

2
. (2.1.56)

Using Eqs. (2.1.54)-(2.1.56) in Eq. (2.1.49), we have exact solution of the form

w(x, t) =
( 3

a+ 2b
t−2
)
x2 + (c1e

3t + c2e
−2t)x+ k1e

2t + k2e
−t +

t2c2
1e

6t

28
+
t2c2

2e
−4t

18
− t2c3e

t− c4t
2. (2.1.57)

2.1.3 Exact solution by separation of variables of nonlinear hyperbolic-type equation
[c = φ(t)]

Now considering a special case for [2]

∂2w

∂t2
= aw

∂2w

∂x2
+ b
(∂w
∂x

)2
+ φ(t)w. (2.1.58)

We consider following cases,

Case 1: For µ = 2 and a = −2b, the ansatz Eq. (2.1.14) for η(t) = 0 takes the form

w = γ(t)x2 ln | x | +β(t)x2, (2.1.59)

∂2w

∂t2
= β′′(t)x2 + γ′′(t)x2 ln | x |,

∂w

∂x
= γ(t)(x+ 2x ln | x |) + β(t)2x,

∂2w

∂x2
= γ(t)(3 + 2 ln | x |) + 2β.

(2.1.60)

Using Eq. (2.1.60) in Eq. (2.1.58), we get

γ′′(t)x2 ln | x | +β′′x2 = −2b[γx2ln | x | +βx2][3γ + 2γln | x | +2β]+

b[γx+ 2xγln | x | +2βx]2 + φ[γx2 ln | x | +βx2], (2.1.61)

comparing the coefficients in Eq. (2.1.61), we obtain

γ′′(t) = −2bγ2(t) + φγ.

β′′(t) = −2bβγ + bγ2(t) + φβ.
(2.1.62)
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Case 2: For µ = 3 and a = −3b
2 , considering a special case of Eq. (2.1.24) when γ(t) = 0.

w = β(t)x2 + η(t)x3. (2.1.63)

Differentiating the Eq. (2.1.63) with respect to t and x, thus we have

∂2w

∂t2
= β′′(t)x2 + η′′(t)x3,

∂w

∂x
= 2xβ(t) + 3x2η(t),

∂2w

∂x2
= 2β(t) + 6xη(t).

(2.1.64)

Substituting Eq. (2.1.64) in Eq. (2.1.58), we obtain

β′′(t)x2 + η′′(t)x3 = a
[
β(t)x2 + η(t)x3

][
2β + 6xη

]
+ b
[
2xβ + 3ηx2

]2
+ φ(t)

[
βx2 + ηx3

]
. (2.1.65)

Comparing coefficients of x2 and x3 in Eq. (2.1.65), thus we have

β′′ = bβ2 + φβ,

η′′ = φη.
(2.1.66)

Case 3: Establishing δ0(t) = 0, thus Eq. (2.1.28) reduces to the following form

w = δ2(t)xµ + δ1(t)x2. (2.1.67)

Now differentiating Eq. (2.1.67) with respect to t and x , we have

∂2w

∂t2
= δ′′1(t)x2 + δ′′2(t)xµ,

∂w

∂x
= δ1(t)2x+ δ2(t)µxµ−1,

∂2w

∂x2
= 2δ1(t) + δ2(t)µ(µ− 1)xµ−2.

(2.1.68)

Substituting Eq. (2.1.68) in Eq. (2.1.58) produces

δ′′1(t)x2 + δ′′2(t)xµ = a[δ2(t)xµ + δ1(t)x2][2δ1(t) + δ2(t)µ(µ− 1)xµ−2]+

b[δ1(t)2x+ δ2(t)µxµ−1]2 + φ(t)[δ2x
µ + δ1x

2]. (2.1.69)

Comparing coefficients of x2 and xµ in Eq. (2.1.69), we obtain the following equations

δ′′1 = (2a+ 4b)δ2
1 + φδ1. (2.1.70)

.

δ′′2 = (2a+ aµ(µ− 1) + 4µb)δ1δ2 + φδ2,

where a = bµ
1−µ . Now substituting the value of µ = a

a+b in above equation, we get

δ′′2(t) =
( −a2b

(a+ b)2
+

2a2 + 6ab

a+ b

)
δ1δ2 + φδ2. (2.1.71)

Since φ(t) is some general function. By knowing φ(t) and by solving Eqs. (2.1.70) and (2.1.71) and

substituting the result in Eq. (2.1.58) we can obtain the exact solution of Eq. (2.1.58).
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Chapter 3

Exact solutions of nonlinear partial

differential equations

In this chapter, we continue the investigation that was started in previous chapter to construct the exact

solution of nonlinear equation. By replacing w 7−→ x, x 7−→ w, t 7−→ t in Eq. (2.0.3), we obtain an

ansatz which is similar to Eq. (2.0.3) and is of the form

x =
m∑
i=1

ui(t)di(w) + g(w, t).

We use the above ansatz to construct the exact solution of the nonlinear Korteweg-De-Vries equation and

nonlinear wave equation.

3.1 Generalized separation of variables for Korteweg-De-Vries equation

Korteweg-De-Vries equation was first introduced by Boussinesq (1877), and rediscovered by Diederik Ko-

rteweg and Gustav de Vries (1895) for a mathematical explanation of the solitary wave phenomenon

discovered by S. Russell in 1844. They take the general form [12]

∂tw + ∂3
xw + ∂xG(w) = 0,

where w(x, t) is a function of one space and one time variable, and G(w) is some polynomial of w.

Korteweg -De-Vries equation is [2]

∂w

∂t
+G(w)

(∂w
∂x

)k
+
∂3w

∂x3
= 0, (3.1.1)

where k is a real parameter. In Eq. (3.1.1), G(w) is an unknown function that is to be determined. To

determine G(w), we use ansatz of the form

x = u1(t)d(w) + u2(t). (3.1.2)

In above ansatz the unknown terms are u1(t), u2(t) and d(w). Differentiating the Eq. (3.1.2) with respect

to x, we have
∂w

∂x
=

1

u1(t)d′
. (3.1.3)

24



Differentiatin the Eq. (3.1.2) with respect to x

u1(t)d′′(wx)2 + u1(t)d′wxx = 0,

or

wxx = − d′′

u2
1(t)(d′)3

.

Now differentiating the above equation with respect to x

u1(t)d′′′(wx)3 + 3u1(t)d′′wxwxx + u1(t)d′wxxx = 0,

or
∂3w

∂x3
= − d′′′

u3
1(t)(d′)4

+ 3
(d′′)2

u3
1(t)(d′)5

. (3.1.4)

Differentiating the Eq. (3.1.2) with respect to t

−u1(t)d′wt = u′1(t)d(w) + u′2(t),

or
∂w

∂t
= −u

′
1(t)d(w) + u′2(t)

u1(t)d′
. (3.1.5)

Now substituting Eqs. (3.1.3)-(3.1.5) in Eq. (3.1.1), we have

− u
′
1d

u1d′
− u′2
u1d′

+G(w)
1

uk1(d′)k
− d′′′

u3
1(t)(d′)4

+ 3
(d′′)2

u3
1(d′)5

= 0. (3.1.6)

To check the linear independence of functions y1 = d
d′ , and y2 = 1

d′ , which are coefficients of −u
′
1

u1
and −u

′
2

u1
.

We observe that Wronskian = W [y1, y2] 6= 0, so y1, y2 are linearly independent.

Assume that k 6= 3, we require that the coefficients of the functions 1
u31

can be represented as a linear

combination, over the field of the real numbers of the functions d
d′ and

1
d′ . Thus we have

− d′′′

(d′)4
+ 3

(d′′)2

(d′)5
= λ

d

d′
+ µ

1

d′
, (3.1.7)

or

−d′′′d′ + 3(d′′)2 = λd(d′)4 + µ(d′)4. (3.1.8)

Now inserting Eq. (3.1.7) in Eq. (3.1.6), we obtain

− u
′
1d

u1d′
− u′2
u1d′

+
G(w)

uk1(d′)k
+

λ

u3
1

d

d′
+

µ

u3
1

1

d′
= 0. (3.1.9)

In viewing the Eq. (3.1.9), G(w) is

G(w) = [u′1u
k−1
1 − λuk−3

1 ]d(d′)k−1 + [u′2u
k−1
1 − µuk−3

1 ](d′)k−1. (3.1.10)

Therefore

u′1u
k−1
1 − λuk−3

1 = δ1, (3.1.11)

u′2u
k−1
1 − µuk−3

1 = δ2, (3.1.12)
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where δ1 and δ2 are constants.

For k 6= 3, Korteweg-de-vries equation admits ansatz (3.1.2) for G(w) of the form

G(w) = δ1d(d′)k−1 + δ2(d′)k−1, (3.1.13)

where d = d(w) is an arbitrary solution of the Eq. (3.1.8).

Considering some special cases for d = d(w), λ and µ in Eq. (3.1.8):

Case a: For d = lnw if λ = 0 and µ = 1;

Case 1a: When k 6= 2. Taking d = lnw in Eq. (3.1.13), G(w) takes the form

G(w) = (δ1 lnw + δ2)w1−k. (3.1.14)

Now d(w) can be determined by using Eq. (3.1.2) as given below

d(w) =
x

u1(t)
− u2(t)

u1(t)
, (3.1.15)

where u1(t) and u2(t) are unknowns, and can be determined by using Eq. (3.1.11), thus by substituting

λ = 0 in Eq. (3.1.11), we obtain

u′1u
k−1
1 = δ1,

or

u1(t) = k(kδ1t+ c1)
1
k . (3.1.16)

Now we find u2(t) by substituting µ = 1 in Eq. (3.1.12)

u′2u
k−1
1 − uk−3

1 = δ2.

Dividing above equation by Eq. (3.1.11)

u′2u
k−1
1 − uk−3

1

u′1u
k−1
1

=
δ2

δ1
,

or

u′2(t)− δ2

δ1
u′1(t) = u−2

1 (t). (3.1.17)

Using a special case c1 = 0, Eq. (3.1.16) reduces to the following form

u1(t) = k(kδ1t)
1
k . (3.1.18)

Substituting u1(t) = k(kδ1t)
1
k in Eq. (3.1.17) and integrating the Eq. (3.1.17) with respect to t

u2(t)− δ2

δ1
u1(t) =

∫
k(kδ1t)

−2
k dt, (3.1.19)

u2(t)− δ2

δ1
u1(t) =

k(kδ1)
−2
k

k − 2
t
k−2
k + c2. (3.1.20)

Dividing Eq. (3.1.20) by u1(t)

u2(t)

u1(t)
=
δ2

δ1
+
k(kδ1)

−2
k

k − 2

t
k−2
k

u1(t)
+

c2

u1(t)
. (3.1.21)
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Thus by rearranging, Eq. (3.1.21) takes the form

u2(t)

u1(t)
=
δ2

δ1
+
k(kδ1)

−3
k

k − 2
t
k−3
k + c(t)

−1
k , c = c2k(kδ1)

−1
k . (3.1.22)

Substituting Eq. (3.1.22) in Eq. (3.1.15), we obtain

d(w) = xk(kδ1t)
−1
k − k(kδ1)

−3
k

k − 2
t
k−3
k + c(t)

−1
k − δ2

δ1
. (3.1.23)

As we know that in this case

d(w) = lnw, implies w = e[d(w)],

thus after substituting Eq. (3.1.23) in above equation, w(x, t) takes the form

w(x, t) = e

[
xk(kδ1t)

−1
k − k(kδ1)

−3
k

k−2
t
k−3
k +c(t)

−1
k − δ2

δ1

]
, k 6= 2. (3.1.24)

Thus (3.1.24) is the exact solution of Eq. (3.1.1), where c is an arbitrary constant.

Case 2a: When k = 2. Taking λ = 0 in Eq. (3.1.11), it reduces to the following form

u′1u
k−1
1 = δ1. (3.1.25)

Integrating with respet to t, Eq. (3.1.25) reduces to the following form

u1(t) = (2δ1t+ c3)
1
2 .

Taking c3 = 0, in above equation, we have

u1(t) = (2δ1t)
1
2 . (3.1.26)

Now substituting Eq. (3.1.26) in Eq. (3.1.17), we get

u′2(t)− δ2

δ1
u′1(t) = (2δ1t)

−1. (3.1.27)

Integrating Eq. (3.1.27) with respect to t

u2(t)− δ2

δ1
u1(t) = (2δ1)−1 ln t+ c4. (3.1.28)

u2(t)

u1(t)
=
δ2

δ1
+ (2δ1)

−3
2 t
−1
2 ln t+ ct

−1
2 , c = c4(2δ1)

−1
2 . (3.1.29)

Substituting Eq. (3.1.29) in Eq. (3.1.15) , we have

d(w) = x(2δ1t)
−1
2 − (2δ1)

−3
2 t
−1
2 ln t+ ct

−1
2 − δ2

δ1
. (3.1.30)

As a result, we obtain the following exact solution of Eq. (3.1.1).

w(x, t) = e

[
x(2δ1t)

−1
2 −(2δ1)

−3
2 t
−1
2 ln t+ct

−1
2 − δ2

δ1

]
, k = 2. (3.1.31)
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Case b: For d = wα if λ = 0 and µ = −1, Eq. (3.1.13) implies

G(w) = δ1w
α(αwα−1)k−1 + δ2(αwα−1)k−1,

or

G(w) = [δ′1w
α + δ′2]w(α−1)(k−1), (3.1.32)

where δ′1 = αk−1δ1 and δ′2 = αk−1δ2. Using µ = −1 in Eq. (3.1.12), we have

u′2u
k−1
1 + uk−3

1 = δ2.

Dividing above equation by Eq. (3.1.25), we get

u′2(t)− δ2

δ1
u′1(t) = −u−2

1 (t). (3.1.33)

Integrating the Eq. (3.1.33) with respect to t, we obtain

u2(t)− δ2

δ1
u1(t) = −

∫
k(kδ1t)

−2
k dt, (3.1.34)

or

u2(t) =
δ2

δ1
u1(t) +

k(kδ1)
−2
k

2− k
t
k−2
k + c2. (3.1.35)

Dividing Eq. (3.1.35) by u1(t), produces

u2(t)

u1(t)
=
δ2

δ1
+
k(kδ1)

−2
k

2− k
t
k−2
k

u1(t)
+

c2

u1(t)
. (3.1.36)

Using Eq. (3.1.36) in Eq. (3.1.15), d(w) takes the form

d(w) = xk(kδ1t)
−1
k − k(kδ1)

−3
k

2− k
t
k−3
k + c(t)

−1
k − δ2

δ1
. (3.1.37)

As we know that in this case

d = wα, and w(x, t) = [d(w)]
1
α .

Thus substituting Eq. (3.1.37) in above equation, Eq. (3.1.1) has following exact solution

w(x, t) =
[
xk(kδ1t)

−1
k − k(kδ1)

−3
k

2− k
t
k−3
k + c(t)

−1
k − δ2

δ1

] 1
α
, (3.1.38)

where α is some integer.

Case c: For α = 1
2 in d = wα if λ = µ = 0. Using d = w

1
2 in Eq. (3.1.13), G(w) takes the following form

G(w) = δ1w
1
2 (

1

2
w
−1
2 )k−1 + δ2(

1

2
w
−1
2 )k−1,

or

G(w) = δ′1w
2−k
2 + δ′2w

1−k
2 , (3.1.39)

where δ′1 = 21−kδ1 and δ′2 = 21−kδ2. For µ = 0, Eq. (3.1.12) has the following form

u′2u
k−1
1 = δ2. (3.1.40)
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Dividing Eq. (3.1.40) by Eq. (3.1.25), we obtain

u′2u
k−1
1

u′1u
k−1
1

=
δ2

δ1
. (3.1.41)

Integrating the Eq. (3.1.41) with respect to t, we get

u2(t) =
δ2

δ1
u1(t) + c2. (3.1.42)

Dividing Eq. (3.1.42) by u1(t), we have

u2(t)

u1(t)
=
δ2

δ1
+ c2k(kδ1t)

−1
k . (3.1.43)

Using Eq. (3.1.43) in Eq. (3.1.15), d(w) takes the following form

d(w) = xk(kδ1t)
−1
k − δ2

δ1
− ct

−1
k c = c2k(kδ1)

−1
k . (3.1.44)

Since, in this case

d = w
1
2 and w(x, t) = [d(w)]2,

Using above equation, Eq. (3.1.1) has the following exact solution

w(x, t) =
[
xk(kδ1t)

−1
k − ct

−1
k − δ2

δ1

]2
, k 6= 2,

=
[
x(2δ1t)

−1
2 − ct

−1
2 − δ2

δ1

]2
, k = 2, (3.1.45)

where c is an arbitrary constant.

Case d: For d = sin−1w and d′ = 1√
1−w2

if λ = 0 and µ = −1, Eq. (3.1.13) reduces to the following

form

G(w) = δ1 sin−1w
( 1

1− w2

) k−1
2

+ δ2

( 1

1− w2

) k−1
2

= [δ1 sin−1w + δ2](1− w2)
1−k
2 . (3.1.46)

Using µ = −1, Eq. (3.1.12) takes the form

u′2u
k−1
1 + uk−3

1 = δ2. (3.1.47)

Dividing the Eq. (3.1.47) by Eq. (3.1.25), we obtain

u′2u
k−1
1 + uk−3

1

u′1u
k−1
1

=
δ2

δ1
. (3.1.48)

u′2(t)− δ2

δ1
u′1(t) = −u−2

1 (t). (3.1.49)

By using Eq. (3.1.18), integrating the Eq. (3.1.49) with respect to t

u2(t)− δ2

δ1
u1(t) = −

∫
k(kδ1t)

−2
k dt, (3.1.50)

Rearranging Eq. (3.1.50), it takes the following form

u2(t) =
δ2

δ1
u1(t) +

k(kδ1)
−2
k

2− k
t
k−2
k + c2. (3.1.51)
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Now dividing Eq. (3.1.51) by u1(t), we obtain

u2(t)

u1(t)
=
δ2

δ1
+
k(kδ1)

−2
k

2− k
t
k−2
k

u1(t)
+

c2

u1(t)
, (3.1.52)

or
u2(t)

u1(t)
=
δ2

δ1
+
k(kδ1)

−3
k

2− k
t
k−3
k + c(t)

−1
k , c = c2k(kδ1)

−1
k . (3.1.53)

Substituting Eq. (3.1.53) into Eq. (3.1.15), d(w) has the following form

d(w) = xk(kδ1)
−1
k − k(kδ1)

−3
k

2− k
t
k−3
k + c(t)

−1
k − δ2

δ1
. (3.1.54)

Since in this case

d = sin−1w, implies w(x, t) = sin d(w).

Thus using above equation, Eq. (3.1.1) has the following exact solution

w(x, t) = sin
[
xk(kδ1)

−1
k − k(kδ1)

−3
k

2− k
t
k−3
k + c(t)

−1
k − δ2

δ1

]
. (3.1.55)

Case e: For d = arccoshw/2 and d′ = 1

2
√

(w/2)2−1
if λ = 0 and µ = 0, Eq. (3.1.13) takes the form

G(w) = [δ1 arccoshw/2 + δ2](w2 − 4)
1−k
2 . (3.1.56)

Case f : For d = ew

ew−1 and d′ = −ew
(ew−1)2

, if λ = 0 and µ = 0, Eq. (3.1.13) takes the following form

G(w) =
[
δ1

ew

ew − 1
+ δ2

]( −ew

(ew − 1)2

) 1−k
2
. (3.1.57)

For µ = 0, Eq. (3.1.12) reduces to the form as given below

u′2u
k−1
1 = δ2. (3.1.58)

Dividing Eq. (3.1.58) by Eq. (3.1.25), we get

u′2u
k−1
1

u′1u
k−1
1

=
δ2

δ1
. (3.1.59)

u′2 =
δ2

δ1
u′1. (3.1.60)

Integrating the Eq. (3.1.60) with respect to t, we obtain

u2(t) =
δ2

δ1
u1(t) + c2. (3.1.61)

Dividing Eq. (3.1.61) by u1(t), we have

u2(t)

u1(t)
=
δ2

δ1
+ c2k(kδ1t)

−1
k . (3.1.62)

Substituting Eq. (3.1.62) in Eq. (3.1.15), d(w) has the following form

d(w) = xk(kδ1t)
−1
k − δ2

δ1
− ct

−1
k c = c2k(kδ1)

−1
k . (3.1.63)
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Since in this case

d =
ew

ew − 1
, and w(x, t) = ln

[ d(w)

d(w)− 1

]
.

Thus using above equation, Eq. (3.1.1) has following solution

w(x, t) = ln
[ xk(kδ1t)

−1
k − ct

−1
k − δ2

δ1

xk(kδ1t)
−1
k − δ2

δ1
− ct

−1
k − 1

]
, k 6= 2. (3.1.64)

w(x, t) = ln
[ x(2δ1t)

−1
2 − ct

−1
2 − δ2

δ1

x(2δ1t)
−1
2 − ct

−1
2 − δ2

δ1
− 1

]
, k = 2, (3.1.65)

where c is an arbitrary constant.

Special Case:

For k = 3, Eq. (3.1.1) takes the following form

∂w

∂t
+G(w)

(∂w
∂x

)3
+
∂3w

∂x3
= 0. (3.1.66)

Substituting Eqs. (3.1.3)-(3.1.5) in Eq. (3.1.66), we get

− u
′
1d

u1d′
− u′2
u1d′

+
G(w)

u3
1(d′)3

− d′′′

u3
1(t)(d′)4

+ 3
(d′′)2

u3
1(t)(d′)5

= 0. (3.1.67)

Using Eq. (3.1.67), G(w) has the following form

G(w) = u′1u
2
1d(d′)2 + u′2u

2
1(d′)2 +

d′′′

d′
− 3

(d′′)2

(d′)2
. (3.1.68)

Considering y1 = d(d′)2 and y2 = (d′)2 in Eq. (3.1.68), we observe that Wronskian W (y1, y2) 6= 0, so

using the linear independence of the functions d(d′)2 and (d′)2, we obtain

u′1u
2
1 = δ1, u′2u

2
1 = δ2, (3.1.69)

where δ1 and δ2 are arbitrary constants. Using Eq. (3.1.69), Eq. (3.1.68) takes the form

G(w) = δ1d(d′)2 + δ2(d′)2 +
d′′′

d′
− 3

(d′′)2

(d′)2
, (3.1.70)

where d(w) is an arbitrary smooth function. Considering the following special cases for Eq. (3.1.70):

Case 1: For d = ew, d′ = ew, d′′ = ew, d′′′ = ew in Eq. (3.1.70), we obtain

G(w) = δ1e
3w + δ2e

2w − 2. (3.1.71)

Using Eq. (3.1.71) in Eq. (3.1.66), we get

∂w

∂t
+ (δ1e

3w + δ2e
2w − 2)

(∂w
∂x

)3
+
∂3w

∂x3
= 0. (3.1.72)

Now to find d(w), we use the ansatz (3.1.2). Integrating the Eq. (3.1.69) with respect to t, we get

u1(t) = (3δ1t+ c2)
1
3 . (3.1.73)
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u2(t) =
δ2

δ1
u1(t) + c1. (3.1.74)

Using (3.1.73) and (3.1.74) in Eq. (3.1.15), d(w) takes the following form

d(w) =
x+ c1

(3δ1t+ c2)
1
3

− δ2

δ1
. (3.1.75)

Since, in this case

d = ew, implies w = ln d(w).

Thus using above equation, exact solution of Eq. (3.1.66) is given by

w(x, t) = ln
[ x+ c1

(3δ1t+ c2)
1
3

− δ2

δ1

]
, (3.1.76)

where c1 and c2 are arbitrary constants.

Case 2: For d = w−1, d′ = −w−2, d′′ = 2w−3, and d′′′ = −6w−4, Eq. (3.1.70) takes the form

G(w) = δ1w
−5 + δ2w

−4 + 6w−1 − 12w−2. (3.1.77)

inserting Eq. (3.1.77) into Eq. (3.1.66), we have [2]

∂w

∂t
+ (δ1w

−5 + δ2w
−4 + 6w−1 − 12w−2)

(∂w
∂x

)3
+
∂3w

∂x3
= 0. (3.1.78)

Exact solution of Eq. (3.1.78) is given by using w = 1
d(w) , i.e

w(x, t) =
δ1

δ1(x+ c1)(3δ1t+ c2)
−1
3 − δ2

. (3.1.79)

Theorem 1 [13].
∂w

∂t
+G(w, t)

(∂w
∂x

)k
+
∂3w

∂x3
= 0. (3.1.80)

The solution of Eq. (3.1.80) can be found by using the ansatz (3.1.1), if the following conditions are

satisfied:

(1). In viewing the Eq. (3.1.80), the function G(w, t) has the form

G(w, t) = [u′1u
k−1
1 − λuk−3

1 ]d(d′)k−1 + [u′2u
k−1
1 − µuk−3

1 ](d′)k−1 = a(t)d(d′)k−1 + b(t)(d′)k−1, (3.1.81)

where d = d(w) is an arbitrary solution of Eq. (3.1.8), a(t) and b(t) are functions of t, whereas u1 = u1(t)

and u2 = u2(t) satisfy the system of equations

u′1u
k−1
1 − λuk−3

1 = a(t), (3.1.82)

u′2u
k−1
1 − µuk−3

1 = b(t). (3.1.83)

(2). For k = 3 , function G(w, t) has the following form

G(w, t) = u′1u
2
1d(d′)2 + u′2u

2
1(d′)2 +

d′′′

d′
− 3

(d′′)2

(d′)2
= a(t)d(d′)2 + b(t)(d′)2 +

d′′′

d′
− 3

(d′′)2

(d′)2
, (3.1.84)
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where d = d(w) is an arbitrary smooth function, a(t) and b(t) are functions of t, with u1(t) and u2(t)

satisfy the system of equations

u′1u
2
1 = a(t), u′2u

2
1 = b(t). (3.1.85)

Consider the following special cases of Eq. (3.1.8):

Case 1a: For d = ew if λ = 0 and µ = 1, Eq. (3.1.84) has the following form

G(w, t) = [a(t)ew + b(t)](ew)k−1.

Using above equation, Eq. (3.1.80) takes the form [2]

∂w

∂t
+ [a(t)ew + b(t)](ew)k−1

(∂w
∂x

)k
+
∂3w

∂x3
= 0. (3.1.86)

For λ = 0, Eq. (3.1.82) takes the form

u′1u
k−1
1 = a(t). (3.1.87)

Integrating the Eq. (3.1.87) with respect to t, we get

u1(t) =
[
k

∫
a(t)dt+ c1

] 1
k
. (3.1.88)

For µ = 1, Eq. (3.1.83) reduces to the form

u′2u
k−1
1 − uk−3

1 = b(t), (3.1.89)

or

u′2 = b(t)u1−k
1 + u−2

1 .

Integrating the above equation with respect to t produces

u2(t) =

∫
b(t)u1−k

1 dt+

∫
u−2

1 (t)dt+ c2.

Substituting Eq. (3.1.88) in above equation, we obtain

u2(t) =

∫
b(t)
[
k

∫
a(t)dt+ c1

] 1−k
k
dt+

∫ [
k

∫
a(t)dt+ c1

]−2
k
dt+ c2, (3.1.90)

where c1 and c2 are arbitrary constants. Since d(w) = ew, thus Eq. (3.1.80) has the following exact

solution

w(x, t) = ln
[ x

u1(t)
− u1(t)

u2(t)

]
,

where u1(t) and u2(t) can be substituted by using Eqs. (3.1.87) and (3.1.89).

Case 1b: For d(w) = w
1
α if λ = µ = 0, Eq. (3.1.82) has the following form

G(w, t) = [a1(t)w
1
α + b1(t)](w

1−α
α )k−1, (3.1.91)

where a1(t) = α1−ka(t) and b1(t) = α1−kb(t). Using Eq. (3.1.91), Eq. (3.1.80) take the form

∂w

∂t
+ [a1(t)w

1
α + b1(t)](w

1−α
α )k−1

(∂w
∂x

)k
+
∂3w

∂x3
= 0. (3.1.92)
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Thus the exact solution of Eq. (3.1.80) is given by

w(x, t) =
[ x

u1(t)
− u1(t)

u2(t)

]α
, (3.1.93)

where u2(t) is an unknown function. Now to determine u2(t) by considering µ = −1 in Eq. (3.1.83), we

have

u′2u
k−1
1 + uk−3

1 = b(t). (3.1.94)

Integrating the Eq. (3.1.94) with respect to t, we get

u2(t) =

∫
b(t)u1−k

1 dt−
∫
u−2

1 (t)dt+ c2.

Substituting Eq. (3.1.88) in above equation, we obtain

u2(t) =

∫
b(t)
[
k

∫
a(t)dt+ c1

] 1−k
k
dt−

∫ [
k

∫
a(t)dt+ c1

]−2
k
dt+ c2, (3.1.95)

where c1 and c2 are arbitrary constant. Thus by substituting Eqs. (3.1.88) and (3.1.95) into Eq. (3.1.93),

we can find the exact solution of Eq. (3.1.80).

Case 1c: For d(w) = arctan 2w and d′ = 2
1+4w2 if λ = 0 and µ = 0, Eq. (3.1.82) takes the form

G(w, t) = [a1(t) arctan 2w + b1(t)]
( 1

1 + 4w2

)k−1
, (3.1.96)

where a1(t) = 2a(t) and b1(t) = 2b(t). Using Eq. (3.1.96), Eq. (3.1.80) takes the form

∂w

∂t
+ [a1(t) arctan 2w + b1(t)]

( 1

1 + 4w2

)k−1(∂w
∂x

)k
+
∂3w

∂x3
= 0. (3.1.97)

Solution of Eq. (3.1.80) is obtained by using the function w(x, t) = 1
2 [tan d(w)], where d(w) is given by

Eq. (3.1.15)

w(x, t) =
1

2
tan

[ x

u1(t)
− u1(t)

u2(t)

]
, (3.1.98)

where u1(t) can be substituted by using Eq. (3.1.87), and u2(t) is given by

u′2u
k−1
1 = b(t), µ = 0. (3.1.99)

Integrating Eq. (3.1.99) with respect to t

u2(t) =

∫
b(t)u1−k

1 dt+ c2.

Substituting Eq. (3.1.88) in above equation, we have the following result

u2(t) =

∫
b(t)
[
k

∫
a(t)dt+ c1

] 1−k
k
dt+ c2, (3.1.100)

where c1 and c2 are arbitrary constants.

Case 1d: For d(w) = arcsinhw and d′(w) = 1√
1+w2

if λ = 0 and µ = 1, Eq. (3.1.82) takes the form

G(w, t) = a(t) arcsinhw
( 1√

1 + w2

)k−1
+ b(t)

( 1√
1 + w2

)k−1
=
[
a(t) arcsinhw + b(t)

]
(1 + w2)

1−k
2 .

(3.1.101)
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Using Eq. (3.1.101), Eq. (3.1.80) takes the form

∂w

∂t
+
[
a(t) arcsinhw + b(t)

]
(1 + w2)

1−k
2

(∂w
∂x

)k
+
∂3w

∂x3
= 0.

Thus the solution of Eq. (3.1.80) is obtained by using d(w) = arcsinhw, where d(w) is obtained by using

Eq. (3.1.15)

w(x, t) = sinh
[ x

u1(t)
− u2(t)

u1(t)

]
, (3.1.102)

where u1(t) and u2(t) are obtained by using Eqs. (3.1.88) and (3.1.90).

3.2 Generalized separation of variables for nonlinear wave equation

In this section, we want to construct the exact solution of nonlinear equation with the generalized sepa-

ration of variables [2]. By replacing w 7−→ t, x 7−→ w, t 7−→ x in Eq. (2.0.3), we obtain an ansatz which

is similar to Eq. (2.0.3), and is of the form

t =

m∑
i=1

ui(x)di(w) + f(w, x).

We use the above ansatz to construct the exact solutions of the nonlinear equations.

Consider the nonlinear equation [3]

∂2w

∂t2
= bG′(w)

(∂w
∂x

)2
+G(w)

∂2w

∂x2
, (3.2.1)

which has many applications especially in the field of liquid crystal theory, wave and gas dynamics.

The purpose of this section is to searching for the set of functions G(w), for which Eq. (3.2.1) admits the

following ansatz.

1. Exact solution of the form t = u1(x)d(w) + u2(x)

Let us consider an ansatz for Eq. (3.2.1)

t = u1(x)d(w) + u2(x). (3.2.2)

Differentiating the Eq. (3.2.2) with respect to t, we obtain

∂w

∂t
=

1

u1(x)d′(w)
. (3.2.3)

Again differentiating Eq. (3.2.2) with respect to t, thus we have

∂2w

∂t2
= − d′′

u2
1(d′)3

. (3.2.4)

Now differentiating the Eq. (3.2.1) with respect to x produces

u′1(x)d(w) + u1(x)d′(w)
∂w

∂x
+ u′2(x) = 0.

∂w

∂x
= −u

′
1(x)d(w) + u′2(x)

u1(x)d′(w)
. (3.2.5)
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Again differentiating the Eq. (3.2.5) with respect to x, we obtain

u′′1(x)d(w) + 2u′1(x)d′(w)
∂w

∂x
+ u1(x)d′′(w)

(∂w
∂x

)2
+ u1(x)d′(w)

∂2w

∂x2
+ u′′2(x) = 0,

or

∂2w

∂x2
= − u′′2

u1d′
− u′′1d

u1d′
+

2d(u′1)2

d′(u1)2
+

2u′2u
′
1

(u1)2d′
− (u′1)2d2d′′

(u1)2(d′)3
−

(u′2)2d′′

(u1)2(d′)3
− 2u′2u

′
1dd
′′

(u1)2(d′)3
. (3.2.6)

Inserting (3.2.3), (3.2.5) in Eq. (3.2.1)

− d′′

u2
1(d′)3

= aG′
[u′1d+ u′2

u1d′

]2
+G

[
− u′′2
u1d′

− u′′1d

u1d′
+

2d(u′1)2

d′(u1)2
+

2u′2u
′
1

(u1)2d′
−

(u′1)2d2d′′

(u1)2(d′)3
− (u′2)2d′′

(u1)2(d′)3
− 2u′2u

′
1dd
′′

(u1)2(d′)3

]
, (3.2.7)

or

Gu1u
′′
2(d′)2 +Gu1u

′′
1d(d′)2 − [2Gd(d′)2 + bG′d2d′ −Gd2d′′](u′1)2−

[2G(d′)2 + 2bdd′G′ − 2Gdd′′]u′1u
′
2 − [−Gd′′ + bG′d′](u′2)2 − d′′ = 0. (3.2.8)

The coefficient functions Gd(d′)2 and G(d′)2, which multiply u1u
′
1 and u′2u1 are linearly independent over

<. To check their linear independence, let Y1 = Gd(d′)2 and Y2 = G(d′)2.

We observe that W [Y1, Y2] 6= 0, which implies, Y1 = Gd(d′)2 and Y2 = G(d′)2 are linearly independent.

We restrict the coefficients of (u′1)2, u′1u
′
2, (u

′
2)2 and function d′′, that they can be represented as a linear

combination of functions Gd(d′)2 and G(d′)2 over <, then we get the following form

bG′d2d′ −Gd2d′′ = α1Gd(d′)2 + λ1G(d′)2

bG′dd′ −Gdd′′ = α2Gd(d′)2 + λ2G(d′)2,

bG′d′ −Gd′′ = α3Gd(d′)2 + λ3G(d′)2,

d′′ = αGd(d′)2 + λG(d′)2, (3.2.9)

where α, αi, λ, λi ∈ <, i = 1, 2, 3. Now using system of equations of Eq. (3.2.9), we obtain

(α3d− α2)Gd(d′)2 + (λ3d− λ2)G(d′)2 = 0,

(α2d− α1)Gd(d′)2 + (λ2d− λ1)G(d′)2 = 0,

(d2α3 − α1)Gd(d′)2 + (d2λ3 − λ1)G(d′)2 = 0.

As we know from above system of equations that, Gd(d′)2 and G(d′)2 are linearly independent, thus we

have the following system of six equations

α3d− α2 = 0, and λ3d− λ2 = 0, (3.2.10)
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α2d− α1 = 0, and λ2d− λ1 = 0, (3.2.11)

d2α3 − α1 = 0, and d2λ3 − λ1 = 0. (3.2.12)

Since determinant of the coefficient matrix of system of Eqs. (3.2.10)-(3.2.12) is non zero, it follows that,

αi, λi = 0 for i = 1, 2, 3.

Solving first three equations of Eq. (3.2.9), we obtain

bG′d′ −Gd′′ = 0. (3.2.13)

Integrating Eq. (3.2.13) with respect to w, we have

G(w) = β(d′)
1
b , (3.2.14)

where β 6= 0, is a constant.

If (3.2.1) admits the ansatz (3.2.2), then the function G(w) can be obtained by using (3.2.12). Now

inserting Eq. (3.2.14) in

d′′ = αGd(d′)2 + λG(d′)2,

thus we obtain

d′′ = β(αd+ λ)(d′)
1+2b
b , (3.2.15)

where d(w) is an arbitrary solution of ODE (3.2.15). d(w) can be determined by integrating the Eq.

(3.2.13) with respect to w. Let us consider the case for α = 0.

Case 1: If b 6= −1, let us consider a transformation in Eq. (3.2.15)

βλ = ε
b

b+ 1
, ε = ±1.

Thus Eq. (3.2.15) reduces to the form

d′′ = ε
b

b+ 1
(d′)(1+2b)/b, b 6= −1, (3.2.16)

or

(d′)−(1+2b)/bd′′ = ε
b

b+ 1
.

Now integrating the Eq. (3.2.16) with respect to w, we obtain

d′ = (−εw + a)−b/(1+b). (3.2.17)

Integrating the Eq. (3.2.17) with respect to w, we have

d(w) = −ε(1 + b)(−εw + a)1/(1+b) + c, (3.2.18)

where a and c are arbitrary constants. Substituting (3.2.17) in Eq. (3.2.14), we have

G(w) = β(−εw + a)−1/(1+b), b 6= −1.

Now substituting −εw + a = W in above equation, we get

G = βW−1/(1+b), b 6= −1. (3.2.19)
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Eq. (3.2.1) after transforming from the function w 7−→W = W (x, t) takes the form

∂2W

∂t2
= βW−1/(1+b)∂

2W

∂x2
− βb

1 + b
W−(2+b)/(1+b)

(∂W
∂x

)2
. (3.2.20)

Since from Eq. (3.2.17), d′ = (W )−b/(1+b), which gives on substituting in Eq. (3.2.16)

d′′ = εb/(b+ 1)W−1/(1+b)(d′)2.

Now to find the u1(x) and u2(x), inserting above equation and Eq. (3.2.12) into the (3.2.8), thus we have

the following form

βW−1/(1+b)u1u
′′
2(d′)2 + βW−1/(1+b)u1u

′′
1d(d′)2−[

2βW−1/(1+b)d(d′)2 − b/(b+ 1)W−(2+b)/(1+b)d2d′ − βW−1/(1+b)d2d′′
]
(u′1)2−[

2βW−1/(1+b)(d′)2 − 2dd′b/(b+ 1)W−(2+b)/(1+b) − 2βW−1/(1+b)dd′′
]
u′1u

′
2−[

− βW−1/(1+b)d′′ − b/(b+ 1)W−(2+b)/(1+b)d′
]
(u′2)2 − εb/(b+ 1)W−1/(1+b)(d′)2 = 0. (3.2.21)

From Eq. (3.2.21), we obtain the equation for the functions u1 and u2

d(d′)2
[
u1u

′′
1 − 2(u′1)2

]
+ (d′)2

[
u1u

′′
2 − 2u′1u

′
2 −

εb

β(b+ 1)

]
= 0.

Since d(d′)2 and (d′)2 are linearly independent.

u1u
′′
1 − 2(u′1)2 = 0, u1u

′′
2 − 2u′1u

′
2 −

εb

β(b+ 1)
= 0. (3.2.22)

The solution of u1u
′′
1 = 2(u′1)2 is given by

u1 =
c1

x+ c2
, and u′1 =

−c1

(x+ c2)2
.

Now we will find the solution of

u′′2 − 2
u′1
u1
u′2 −

εb

u1β(b+ 1)
= 0,

or

u′′2 +
2

(x+ c2)
u′2 =

εb(x+ c2)

c1β(b+ 1)
.

Multiplying the above equation with I.F = e
∫

2
(x+c2)

dx
= (x+ c2)2, we obtain

(x+ c2)2u′′2 + 2(x+ c2)u′2 =
εb(x+ c2)3

c1β(b+ 1)
.

Thus we have

u2(x) =
εb(x+ c2)3

12c1β(b+ 1)
+ c3.

Now dividing above equation by u1(x), we obtain

u2(x)

u1(x)
=

εb(x+ c2)4

12c2
1β(b+ 1)

+
c3(x+ c2)

c1
.
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And d(w) can be determined by using Eq. (3.2.2)

d(w) =
t

u1
− u2(x)

u1(x)
,

or by using above results, d(w) takes the following form

d(w) =
(x+ c2)

c1
t− εb(x+ c2)4

c3β(b+ 1)
− c3(x+ c2)

c1
.

Using Eq. (3.2.18), we have W = −1
ε(1+b) [d(w)]1+b. Thus the exact solution of Eq. (3.2.20) is given by

W =
−1

ε(1 + b)

[(x+ c2)

c1
t− εb(x+ c2)4

c3β(b+ 1)
− c3(x+ c2)

c1

]1+b
, (3.2.23)

where c1, c2, c3, c4 are arbitrary constants.

Now taking a transformation x −→ η, t −→ ν, and W = U1+b in Eq. (3.2.20). DifferentiatingW = U1+b

with respect to t and x, thus we have

∂W

∂x
= (1 + b)U b

(∂U
∂η

)
,

∂2W

∂x2
= b(1 + b)U b−1

(∂U
∂η

)2
+ (1 + b)U b

(∂2U

∂η2

)
,

∂2W

∂t2
= b(1 + b)U b−1

(∂U
∂ν

)2
+ (1 + b)U b

(∂2U

∂ν2

)
.

After substituting the above equations, Eq. (3.2.20) takes the form

∂2U

∂η2
=

1

β
U
∂2U

∂ν2
+
b

β

(∂U
∂ν

)2
. (3.2.24)

The Eq. (3.2.24) is a hyperbolic-type equation [2].

2. Exact solution of the form U = w(η)d(ν) + g(η, ν)

To find the exact solution of Eq. (3.2.24), we use ansatz of the form

U = w(η)d(ν) + g(η, ν). (3.2.25)

Now by differentiating Eq. (3.2.25) with respect to η and ν, we have

βw′′d− w(gννd+ 2bgνd
′ + gd′′)− w2(dd′′ + b(d′)2) + βgηη − aggνν − b(gν)2 = 0. (3.2.26)

Eq. (3.2.26) must be an ODE with unknown function w(η), thus we have

dd′′ + b(d′)2 = δd, δ ∈ <. (3.2.27)

and

(gννd+ 2bgνd
′ + gd′′) = α(η)d. (3.2.28)

Eq. (3.2.27) has the following particular solution:

d = νλ, b =
1− λ
λ

, δ = 0, λ 6= 1.
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Substituting d = νλ and b = 1−λ
λ into Eq. (3.2.28), we get

ν2gνν + 2(1− λ)νgν + λ(λ− 1)g = α(η)ν2. (3.2.29)

Let us consider following three cases:

Case a: For λ = 4 , d = ν4 and b = −3
4 , Eq. (3.2.28) takes the form

ν2gνν − 6νgν + 12g = α(η)ν2, (3.2.30)

Thus the general solution of Eq. (3.2.30) is given by

g(η, ν) =
α(η)

2
+ γ(η)ν3 + φ̃(η)ν4. (3.2.31)

Substituting Eq. (3.2.31) in Eq. (3.2.25), we have

U =
α(η)

2
ν2 + γ(η)ν3 + φ(η)ν4, φ(η) = w(η) + φ̃(η). (3.2.32)

We consider that φ(η) = 0 in Eq. (3.2.32), we obtain

U =
α(η)

2
ν2 + γ(η)ν3,

substituting the above equation into Eq. (3.2.24), we get

β
α′′

2
ν2 + βγ′′ν3 =

[α2

2
ν2 + 4αγν3 + 6γ2ν4

]
− 3

4

[
α2ν2 + 6αγν3 + 9γ2ν4

]
.

Thus we obtain the following system of equations for the functions α(η) and γ(η)

α′′ =
−α2

2β
, βγ′′ =

−1

2
αγ.

let α(η) = Aηn, solutions of above equations are given by

α(η) =
−4β

η2
, and γ(η) = c1η

2 + c2η
−1.

Thus the exact solution of Eq. (3.2.24) is given by

U = −2βη−2ν2 + [c1η
2 + c2η

−1]ν3, (3.2.33)

where c1 and c2 are arbitrary constants.

Case b: For λ = 3, d = ν3 and b = −2
3 , Eq. (3.2.28) has the following form

ν2gνν − 4νgν + 6g = α(η)ν2. (3.2.34)

Thus the general solution of Eq. (3.2.34) is

g(η, ν) = −α(η)ν2 ln ν + γ̃(η)ν3 + φ(η)ν2.
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Now using above equation in Eq. (3.2.25), it takes the form

U(ν, η) = γ(η)ν3 + φ(η)ν2 − α(η)ν2 ln ν, γ(η) = w(η) + ˜γ(η). (3.2.35)

Establishing α(η) = 0, in Eq. (3.2.35), we get

U(ν, η) = γ(η)ν3 + φ(η)ν2.

Substituting above equation in Eq. (3.2.24), we obtain the following system of equations for γ(η) and φ(η)

φ′′(η) =
−2

3β
φ2, γ′′(η) = 0.

The above equations have the following particular solutions

γ(η) = c1η + c2, φ(η) = −3β

η2
.

Thus the exact solution of the Eq. (3.2.24) has the following form

U(ν, η) = [c1η + c2]ν3 − 3βη−2ν2, (3.2.36)

where c1 and c2 are arbitrary constants.

Case c: For λ = 2, d = ν2 and b = −1
2 , Eq. (3.2.28) has the form

ν2gνν − 2νgν + 2g = α(η)ν2, (3.2.37)

which has the general solution of the form

g(ν, η) = α(η)ν2 ln | ν | +φ(η)ν + γ̃(η)ν2. (3.2.38)

By inserting Eq. (3.2.38), Eq. (3.2.25) takes the form

U = γ(η)ν2 + φ(η)ν + α(η)ν2 ln | ν |, γ(η) = w(η) + γ̃(η). (3.2.39)

Establishing φ(η) = 0 in Eq. (3.2.39), we obtain the following system of equations for α(η) and γ(η)

βα′′ = α2, βγ′′ = αγ − 1

2
α2.

The above equation have the following particular solutions

α(η) =
6β

η2
, γ(η) = c1η

3 + c3η
−2 +

18β

5
η−2 ln η.

Now the exact solution of Eq. (3.2.24) is given by

U =
[
c1η

3 + c3η
−2 +

18β

5
η−2 ln | η |

]
ν2 +

6β

η2
ν2ln | ν | . (3.2.40)

Case d: Now considering λ 6= 1, 2, 3 in Eq. (3.2.25), thus we have

ν2gνν + 2(1− λ)νgν + λ(λ− 1)g = α(η)ν2,
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which has the following general solution

g(η, ν) =
α(η)ν2

(λ− 3)(λ− 2)
+ δ̃2(η)νλ + δ0(η)νλ−1. (3.2.41)

Now inserting (3.2.41) into Eq. (3.2.25), it takes the form

U(η, ν) =
α(η)

(λ− 3)(λ− 2)
ν2 + δ2(η)νλ + δ0(η)νλ−1, w(η) + δ̃2(η) = δ2(η),

or

U = δ1(η)ν2 + δ2(η)νλ + δ0(η)νλ−1, where δ1(η) =
α(η)

(λ− 3)(λ− 2)
. (3.2.42)

Establishing δ0(η) = 0, Eq. (3.2.42) takes the form

U = δ1(η)ν2 + δ2(η)νλ.

Substituting above equation in Eq. (3.2.24), we have following system of equations for δ1(η) and δ2(η)

δ′′1(η) =
(2 + 4b)

β
δ2

1 , λ =
1

1 + b
. (3.2.43)

δ′′2 = [6− 5λ+ λ2]δ1δ2. (3.2.44)

Now the particular solution of Eq. (3.2.43) is

δ1(η) =
3β

(1 + 2b)
η−2. (3.2.45)

And the particular solution of Eq. (3.2.44) is obtained by considering two cases:

Case 1d: When ξ2 = 3λ2 − 9λ > 1
4 ;

δ2(η) = η
1
2 [c1 cos ξ ln η + c2 sin ξ ln η]. (3.2.46)

Thus in this case, the exact solution of Eq. (3.2.24) is given by

U(η, ν) =
3β

(1 + 2b)
η−2ν2 + η

1
2 [c1 cos ξ ln η + c2 sin ξ ln η]νλ. (3.2.47)

Case 2d: When ξ2 = 3λ2 − 9λ < 1
4 ;

δ2(η) = η
1
2 (c1η

ξ + c2η
−ξ), where λ =

9± 2
√

21

6
. (3.2.48)

Thus in this case, the exact solution of Eq. (3.2.24) is given by

U(η, ν) =
3β

(1 + 2b)
η−2ν2 + η

1
2 (c1η

ξ + c2η
−ξ)νλ. (3.2.49)

Now substituting λ = 9±2
√

21
6 in the Eq. (3.2.44), we obtain

δ2(η) = η
1
2 (c1 + c2 ln η). (3.2.50)

Thus in this case, we obtain the following exact solutions

U(η, ν) =
3β

1 + 2b
η−2ν2 + νλη

1
2 (c1 + c2 ln η),
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where c1 and c2 are arbitrary constants.

Now returning to the variables from U −→ W, ν −→ x and η −→ t, Eq. (3.2.22) has the following exact

solution

W 1/1+b =
3β

(1 + 2b)
x−2t2 + x

1
2 [c1 cos(ξ lnx) + c2 sin(ξ lnx)]tλ.

Case 2: For b = −1, and α = 0, Eq. (3.2.15) reduces to the form

d′′ = kd′, k = βλ. (3.2.51)

The solution of Eq. (3.2.51) is the function

d =
1

k
ekw + b, (3.2.52)

where b is a constant. Taking b = 0 in Eq. (3.2.52) and for d′ = ekw, Eq. (3.2.14) takes the form

G(w) = βe−kw. (3.2.53)

Inserting (3.2.53) into Eq. (3.2.1), we have

∂2w

∂t2
= βe−kw

∂2w

∂x2
− bkβe−ku

(∂w
∂x

)2
. (3.2.54)

Substistuting G(w) = βe−kw, G′(w) = −βke−kw and d′′ = ke−kw(d′)2 in Eq. (3.2.8), we obtain

βu1u
′′
2(d′)2 + βu1u

′′
1d(d′)2 − [2βd(d′)2 − bβkd2d′ − βd2d′′](u′1)2−

[2β(d′)2 − 2bdd′βk − 2βdd′′]u′1u
′
2 − [−βd′′ − bβkd′](u′2)2 − k(d′)2 = 0. (3.2.55)

Thus we have

d(d′)2[u1u
′′
1 − 2(u′1)2] + (d′)2

[
u1u

′′
2 − 2u′1u

′
2 −

k

β

]
= 0.

Since d(d′)2 and (d′)2 are linearly independent, so their cofficient are

u1u
′′
1 − 2(u′1)2 = 0, u1u

′′
2 − 2u′1u

′
2 −

k

β
= 0.

Integrating the above system of equation with respect to x, we have

u1 =
c1

x+ c2
and u′1 =

−c1

(x+ c2)2
. (3.2.56)

Now we will find the solution of

u′′2 − 2
u′1
u1
u′2 =

k

βu1
,

or

u′′2 +
2

(x+ c2)
u′2 =

kc1(x+ c2)

β
.

Multiplying the above equation with I.F = e
∫

2
(x+c2)

dx
= (x+ c2)2, we obtain

(x+ c2)2u′′2 + 2(x+ c2)u′2 =
k(x+ c2)3

β
,
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and
∫

[ ddx(x+ c2)2u′2]dx =
∫ k(x+c2)3

β dx, or u′2 = k(x+c2)2

4β , thus we have

u2 =
k(x+ c2)3

12β
+ c3. (3.2.57)

Now dividing Eq. (3.2.57) by Eq. (3.2.56) produces

u2

u1
=
kc2

1(x+ c2)4

12β
+ c3(x+ c2). (3.2.58)

Since for b = 0, Eq. (3.2.52) has the form

d =
1

k
ekw, and w(x, t) =

1

k
ln[kd(w)]. (3.2.59)

Now substituting Eqs. (3.2.56) and (3.2.58) in Eq. (3.2.2), d(w) takes the following form

d(w) = kc1(x+ c2)t−
[k2c2

1(x+ c2)4

12β
+ c3(x+ c2) + c4

]
. (3.2.60)

Inserting Eq. (3.2.60) into (3.2.59), the exact solution of (3.2.54) has the following form

w(x, t) =
1

k
ln
[
kc1(x+ c2)t− k2c2

1(x+ c2)4

12β
+ c3(x+ c2) + c4

]
, (3.2.61)

where c1, c2, c3, c4 are arbitrary constants.

Case 3: For α 6= 0, λ = 0 and b = −1, Eq. (3.2.15) reduces to the integration of an ODE

d′′ = βαdd′.

Assuming βα = 2, the above equation has the following particular solution:

d(w) = a tan(aw + δ0), or d(w) = −a tanh(aw + δ0).

Now consider that function d = d(w) in above equation is defined to a transformation d −→ µ1d + µ2,

such that µ1 = a−1 and µ2 = 0

d(w) = a−1 tan(aw + δ0), or d(w) = −a−1 tanh(aw + δ0).

Thus differentiating the above equation with respect to w, we have

d′(w) = sec2(aw + δ0), or d′(w) = − sec2 h(aw + δ0). (3.2.62)

Substituting Eq. (3.2.62) in (3.2.14), G(w) takes the form

G(w) = β cos2(aw + δ0), or G(w) = −β cosh2(aw + δ0). (3.2.63)

Replacing the variable aw + δ0 = W in Eq. (3.2.63)

G = β cos2W, or G = −β cosh2(W ).

Now differentiating the above equations, thus we have

G′ = β cos2W tanW, or G′ = β cosh2W tanhW.
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After transformation from the function w to W = W (x, t), (3.2.1) takes the form

∂2W

∂t2
= β cos2W

∂2W

∂x2
+ 2β cos2W tanW

(∂W
∂x

)2
. (3.2.64)

∂2W

∂t2
= −β cosh2W

∂2W

∂x2
+ 2β cosh2W tanhW

(∂W
∂x

)2
. (3.2.65)

Since d′′ = 2 1
d′d(d′)2, now substituting d′′ = 2b2 cos2(W )d(d′)2 and (3.2.63) in Eq. (3.2.8), thus we have

u1u
′′
2(d′)2 + u1u

′′
1d(d′)2 − [d(d′)2 + 2b tanWd2d′ − d2d′′](u′1)2−

[2(d′)2 + 4bdd′ tanW − 2dd′′]u′1u
′
2 + [d′′ − 2b tanWd′](u′2)2 − 2b2

β
d(d′)2 = 0. (3.2.66)

Substituting d′′ = −2b2 cosh2(W )d(d′)2 and Eq. (3.2.63) in Eq. (3.2.8), thus we have

u1u
′′
2(d′)2 + u1u

′′
1d(d′)2 + [−d(d′)2 + 2b tanhWd2d′ + d2d′′](u′1)2+

[−2(d′)2 + 4bdd′ tanhW + 2dd′′]u′1u
′
2 + [d′′ + 2b tanhWd′](u′2)2 − 2b2

β
d(d′)2 = 0. (3.2.67)

So we obtain the the equation for the functions u1 and u2

d(d′)2
[
u1u

′′
1 − 2(u′1)2 − 2b2

β

]
+ (d′)2[u1u

′′
2 − 2u′1u

′
2] = 0.

Since d(d′)2 and (d′)2 are linearly independent, so their coefficient are

u1u
′′
1 − 2(u′1)2 − 2b2

β
= 0, u1u

′′
2 − 2u′1u

′
2 = 0. (3.2.68)

Now solving first equation of Eq. (3.2.68), we have

u1 =
β[cx+ c2]2 + 128b2

16βc1
. (3.2.69)

Therefore, solution of the second equation of Eq. (3.2.68) can be identified by using the solution of the

first equation

u2 =
cu3

1

3
+ c4,

or

u2 =
c

3

[β[cx+ c2]2 + 128b2

16βc1

]3
+ c4. (3.2.70)

u2

u1
=
c(β[cx+ c2]2 + 128b2)2

768β2c2
1

+
c416βc1

β[cx+ c2]2 + 128b2
. (3.2.71)

Since

d(w) = a tan(W ), implies W = arctan[d(w)/a].

d(w) can be determined by using ansatz (3.2.2)

d(w) = −c(β[cx+ c2]2 + 128b2)2

768β2c2
1

+
(t− c4)16βc1

β[cx+ c2]2 + 128b2
. (3.2.72)
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Now using Eq. (3.2.72), exact solution of Eq. (3.2.64) has the following form

W = arctan
[
− c(β[cx+ c2]2 + 128b2)2

768aβ2c2
1

+
(t− c4)16βc1

aβ[cx+ c2]2 + 128b2

]
. (3.2.73)

As we know that

d(w) = −a tanhW, or W = arctanh[−d(w)/a].

Thus the exact solution of Eq. (3.2.65) using above equation has the form

W = arctanh
[c(β[cx+ c2]2 + 128b2)2

768aβ2c2
1

− (t− c4)16βc1

aβ[cx+ c2]2 + 128b2

]
, (3.2.74)

where c1, c2, c4, c are arbitrary constants.

Case 4: For α 6= 0 and b 6= −1
2 in Eq. (3.2.15), assuming that

βα =
2b

ε
, ε = ±1,

considering λ = 0, Eq. (3.2.15) takes the form

d′′ =
2b

ε
d(d′)1+2b/b. (3.2.75)

Integrating Eq. (3.2.75) with respect to w, we obtain (d′)−1/b = 1
εd

2, integrating again the above equation

with respect to w, we get

d = ε(1 + 2b)(εw + b)1/1+2b. (3.2.76)

Differentiating Eq. (3.2.76) with respect to w, we obtain d′ = (εw+b)
−2b
1+2b , substituting this in Eq. (3.2.14)

produces

G(w) = β(εw + b)−2/1+2b, G′(w) =
−2β

1 + 2b
(εw + b)−(3+2b)/1+2b. (3.2.77)

Now by taking a transformation εw + b = W , Eq. (3.2.21) takes the form [3]

∂2W

∂t2
= β(W )−2/1+2b∂

2W

∂x2
− 2bβ

1 + 2b
(W )−(3+2b)/1+2b

(∂W
∂x

)2
. (3.2.78)

Thus the problem is now reduced to integrate Eq. (3.2.78). Now substituting Eq. (3.2.77) and

d′′ = −2a
β d(d′)2G(w) in Eq. (3.2.8)

β(W )−2/1+2bu1u
′′
2(d′)2 + β(W )−2/1+2bu1u

′′
1d(d′)2−[

2β(W )−2/1+2bd(d′)2 + b
−2β

1 + 2b
(W )−3−2b/1+2bd2d′ − β(W )−2/1+2bd′′

]
(u′1)2−[

2β(W )−2/1+2b(d′)2 + 2bdd′
−2β

1 + 2b
(W )

−3−2b
1+2b − 2β(W )−2/1+2bdd′′

]
u′1u

′
2−[

− β(W )−2/1+2bd′′ + b
−2β

1 + 2b
(W )

−3−2b
1+2b d′

]
(u′2)2 + 2bd(d′)2(W )−2/1+2b = 0. (3.2.79)

Therefore, we obtain the following equations for u1(x) and u2(x)

d(d′)2
[
u1u

′′
1 − 2(u′1)2 +

2b

β

]
+ (d′)2

[
u1u

′′
2 − 2u′1u

′
2

]
= 0. (3.2.80)
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Since d(d′)2 and (d′)2 are linearly independent, so we have

u1u
′′
1 − 2(u′1)2 +

2b

β
= 0, and u1u

′′
2 − 2u′1u

′
2 = 0. (3.2.81)

Now solving first equation of Eq. (3.2.81), let us consider p = du1
dx and d2u1

dx2
= p dp

du1

u1p
dp

du1
− 2(p)2 +

2b

β
= 0.

Since I.F = 1
u14

, so
d

du1

( z
u4

1

)
= − 4b

u5
1β
.

Integrating with respect to u1 produces

u1 =

√
bx√
β

+ c1 where c1 = 0. (3.2.82)

Now solving second equation of Eq. (3.2.81), u2(x) has the following form

u2 = c3

(√bx√
β

)3
+ c4. (3.2.83)

u2

u1
=
c3b

β
x2 +

c4
√
β√
bx

. (3.2.84)

Inserting Eqs. (3.2.82) and (3.2.83) into Eq. (3.2.2), d(w) has the form

d(w) =
[ t√β√

bx
− c3b

β
x2 − c4

√
β√
bx

]
. (3.2.85)

Substituting (3.2.85) in Eq. (3.2.76), we have

W =
( 1

2ε(1 + 2b)

[ t√β√
bx
− c3b

β
x2 − c4

√
β√
bx

])1+2b
. (3.2.86)

which is the exact solution of Eq. (3.2.78), where c3 and c4 are arbitrary constants.

Now considering a transformation by changing the variable W = U1+2b in Eq. (3.2.78)

∂W

∂x
= (1 + 2b)U2b∂U

∂x
,

∂2W

∂x2
= 2b(1 + 2b)U2b−1

(∂U
∂x

)2
+ (1 + 2b)U2b∂

2U

∂x2
,

∂W

∂t
= (1 + 2b)U2b∂U

∂t
,

∂2W

∂t2
= 2b(1 + 2b)U2b−1

(∂U
∂t

)2
+ (1 + 2b)U2b∂

2U

∂t2
.

(3.2.87)

Now substituting (3.2.87) in Eq. (3.2.78), we obtain following equation [3]

∂2U

∂x2
=

2b

β
U
(∂U
∂t

)2
+

1

β
U2∂

2U

∂t2
. (3.2.88)

Now to construct the exact solution of Eq. (3.2.88), we use ansatz of the form

U = u(x)d(t) + g(x, t), u(x) 6= 0. (3.2.89)
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Now by differentiating Eq. (3.2.89) with respect to t and x

∂2U

∂x2
= u′′d+ gxx,

∂U

∂t
= ud′ + gt,

∂2U

∂t2
= ud′′ + gtt.

(3.2.90)

Substituting Eq. (3.2.90) into Eq. (3.2.88), we obtain the equation

u′′d+ gxx =
1

β
(ud+ g)2(ud′′ + gtt) +

2b

β
(ud+ g)(ud′ + gt)

2,

or

(u′′d+ gxx)β = (u2d2 + g2 + 2udg)(ud′′ + gtt) + 2b(ud+ g)(u2(d′)2 + g2
t + 2ud′gt),

or

(u′′d+ gxx)β = u3d2d′′ + g2ud′′ + 2u2dgd′′ + u2d2gtt + g2gtt + 2udggtt+

2b[(u3d(d′)2 + udg2
t + 2u2dd′gt + u2g(d′)2 + gg2

t + 2ud′ggt)], (3.2.91)

or

(u′′d)β − u3[d2d′′ + 2bd(d′)2]− u2[2dgd′′ + d2gtt + 4bdd′gt + 2bg(d′)2]−

u[g2d′′ + 2dggtt + 2bdg2
t + 4bd′ggt]− g2gtt − 2bgg2

t + gxxβ = 0. (3.2.92)

The above equation must be an ODE with u = u(x) as an unknown function. Hence

d2d′′ + 2bd(d′)2 = γd, γ ∈ <, (3.2.93)

2dgd′′ + d2gtt + 4bdd′gt + 2bg(d′)2 = α(x)d. (3.2.94)

For γ = 0, Eq. (3.2.93) becomes

dd′′ + 2b(d′)2 = 0,

which has a particular solution: d = tµ, b = 1−µ
2µ , γ = 0, µ 6= 0, 1.

Now substituting d = tµ, and b = 1−µ
2µ into Eq. (3.2.94), we obtain

t2gtt + 2(1− µ)tgt + µ(µ− 1)g = α(x)t2−µ. (3.2.95)

To find general solution of Eq. (3.2.95), let us consider three cases for d = tµ:

Case 1: For µ = 2, we get

t2gtt − 2tgt + 2g = α(x). (3.2.96)

The solution for homogenous equation:

gc = λ̃(x)t2 + η(x)t.
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Thus the general solution of Eq. (3.2.95) is

g(x, t) = λ̃(x)t2 + η(x)t+ α(x). (3.2.97)

By substituting Eq. (3.2.97) in Eq. (3.2.89), we obtain

U = λ(x)t2 + η(x)t+ α(x), λ(x) = λ̃(x) + u(x). (3.2.98)

Taking α(x) = 0 in Eq. (3.2.98) and differentiating with respect to t and x, we have

λ′′(x)t2 + η′′(x)t =
−1

2β
[4λ3(x)t4 + 4λ2η(x)t3 + 5λη2t2 + η3t+ 4t3λ2η] +

2

β
[λ3(x)t4 + λη2(x)t2 + 2λ2ηt3].

(3.2.99)

As a result, we obtain the following system of equations for λ(x) and η(x)

λ′′(x) =
−1

2β
λη2(x), η′′(x) =

−1

2β
η3(x). (3.2.100)

System (3.2.100) can be solved completely in the implicit form. The second equation of Eq. (3.2.100) can

be determined by applying Jacobi elliptic function method [6], and using the solution of first equation, we

can obtain the solution of first equation in system (3.2.100).

Case 2: Now consider µ 6= 1, 2, 3 in Eq. (3.2.95)

t2gtt + 2(1− µ)tgt + µ(µ− 1)g = α(x)t2−µ.

Homogenous part of the above equation has the solution:

gc = δ̃2(x)tµ + δ0(x)tµ−1.

Now particular solution of Eq. (3.2.95) is given by

gp =
α(x)e(2−µ)ξ

2(2µ− 3)(µ− 1)
.

Consequently the general solution of Eq. (3.2.95) has the following form

g(x, t) =
α(x)t2−µ

2(2µ− 3)(µ− 1)
+ δ̃2(x)tµ + δ0(x)tµ−1. (3.2.101)

Using Eq. (3.2.101), Eq. (3.2.89) reduces to the following form

U = δ2(x)tµ +
α(x)t2−µ

2(2µ− 3)(µ− 1)
+ δ0(x)tµ−1, where u(x) + δ̃2(x) = δ2(x),

or

U(x, t) = δ2(x)tµ + δ1(x)t2−µ + δ0(x)tµ−1, δ1(x) =
α(x)

2(2µ− 3)(µ− 1)
. (3.2.102)

Establishing δ0(x) = 0, in Eq. (3.2.102) and differentiating the Eq. (3.2.102) with respect to x and t, thus

we have the following equations

∂2U

∂x2
= δ′′1(x)t2−µ + δ′′2(x)tµ,

∂U

∂t
= (2− µ)δ1(x)t1−µ + δ2(x)µtµ−1,

∂2U

∂t2
= (2− µ)(1− µ)δ1(x)t−µ + δ2(x)µ(µ− 1)tµ−2.

(3.2.103)

49



Substituting (3.2.103) in Eq. (3.2.88), we obtain the following system of equations for δ1(x) and δ2(x)

δ′′2(x) =
2

β

(
(2µ2 − 5µ+ 3

)
δ1δ

2
2 ,

δ′′1(x) =
4

βµ

(
µ3 − 2µ2 + 1

)
δ2

1δ2.

Inserting µ = 1
2b+1 into above equations, we have

δ′′2(x) =
4b(6b+ 1)

β(2b+ 1)2
δ1δ

2
2 ,

δ′′1(x) =
4

β

((2b+ 1)3 − 4b− 1

(2b+ 1)2

)
δ2

1δ2.

(3.2.104)

Using b = −1
4 , in above equation, Eq. (3.2.104) reduces to the form

δ1(x) =
α(x)

2
, δ′′2(x) =

α(x)

β
δ2

2 .

System (3.2.104) has the particular solution

δ1(x) = c1x
−1 + c2x

2, and δ2(x) =
β

c1x+ c2x4
.

Thus, Eq. (3.2.102) takes the form

U(x, t) =
( β

c1x+ c2x4

)
tµ +

(
c1x
−1 + c2x

2
)
t2−µ,

which is the exact solution of Eq. (3.2.88).

Now returning to the variables from U −→W, Eq. (3.2.78) has the following exact solution

W 1/1+2b =
( β

c1x+ c2x4

)
tµ +

(
c1x
−1 + c2x

2
)
t2−µ.

For b = −1
4 , the exact solution of Eq. (3.2.78) takes the form

W (x, t) =
[( β

c1x+ c2x4

)
tµ + (c1x

−1 + c2x
2)t2−µ

]2
.

3. Exact solution of the form:

U(x, t) = u(x) + g(x, t). (3.2.105)

The above ansatz is obtained by taking a special case of solution structure (2.0.3). Let us consider the

function g(x, t) is of the form

g(x, t) = φ2(x)t2 + φ1(x)t+ φ̃0(x). (3.2.106)

Substituting (3.2.106) in (3.2.105), we obtain the following ansatz

U(x, t) = φ2(x)t2 + φ1(x)t+ φ0(x), φ0(x) = u(x) + φ̃0(x). (3.2.107)

Establishing φ0(x) = 0, and differentiating the resulting form of Eq. (3.2.107) with respect to t and x,

thus we have

φ′′2(x)t2 + φ′′1(x)t =
2b

β

(
4φ3

2t
4 + 4φ2

1φ2t
2 + 8φ1φ

2
2t

3 + φ3
1t
)

+
1

β

(
2φ3

2t
4 + 2φ2φ

2
1t

2 + 4t3φ1φ
2
2

)
.
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From above equation, we obtain the following system of equations for φ1(x) and φ2(x)

φ′′2 =
2 + 8b

β
φ2φ

2
1, φ′′1 =

2b

β
φ3

1. (3.2.108)

For b = −1
4 , the first equation of Eq. (3.2.108) has the solution

φ2(x) = c1x+ c2.

Now to find the solution of second equation of Eq. (3.2.108), we apply Jacobi elliptic function method

[11], homogeneous balance between the highest order derivative and the nonlinear terms in (3.2.108) is

m+ 2 = 3m, which gives m = 1. Then the elliptic function sn (x) is given by sn (x) = sinx,

and cn (x) is given by cn (x) = cosx,

and dn (x) =
√

1− k2sn2 (x).
d

dx
cn (x) = −sn (x) dn (x),

d

dx
dn (x) = −k2sn (x) cn (x).

Now using φ1(x) =
∑m

i=0 aicni (x), thus φ1(x) takes the form [6]

φ1(x) = a0 + a1cn (x). (3.2.109)

dφ1

dx
= −a1sn (x) dn (x).

d2φ1

dx2
= a1

[
(2k2 − 1)cn (x)− 2k2cn3 (x)

]
. (3.2.110)

Substituting Eqs. (3.2.109) and (3.2.110), second equation of system (3.2.108) reduces to the following

form

a1[(2k2 − 1)cn (x)− 2k2cn3 (x)] =
−1

2β
[a0 + a1cn (x)]3. (3.2.111)

2a1β(2k2 − 1)cn (x)− 4βa1k
2cn3 (x) + a3

0 + 3a2
0a1cn (x) + 3a2

1a0cn2 (x) + a3
1cn3 (x) = 0,

or

[2a1(2k2 − 1)β + 3a2
0a1]cn (x) + a3

0 + 3a2
1a0cn2 (x) + (a3

1 − 4βa1k
2)cn3 (x) = 0.

Equating the coefficients with zero in above equation, we get a0 = 0 and a1 = 2k
√
β. Thus, using a0 and

a1, Eq. (3.2.109) takes the form

φ1(x) = 2k
√
βcn (x).

Thus using φ1(x) and φ2(x), Eq. (3.2.88) has the exact solution of the form

U = (c1x+ c2)t2 + (2k
√
β cosx)t.

Thus for b = −1
4 , Eq. (3.2.78) has the solution of the form

W = U1/2 = [φ2(x)t2 + φ1(x)t+ φ0(x)]1/2. (3.2.112)

Generalizing the Eq. (3.2.78) by changing the variable [3], we get

∂2W

∂t2
= β(W )−k/1+kb∂

2W

∂x2
− kbβ

1 + kb
(W )−(3+kb)/1+kb

(∂W
∂x

)2
. (3.2.113)

51



By using W = U1+kb, Eq. (3.2.78) reduces to the form

∂2U

∂x2
=

2b

β
Uk−1

(∂U
∂t

)2
+

1

β
Uk

∂2U

∂t2
. (3.2.114)

W = U1/k = [φ2(x)t2 + φ1(x)t+ φ0(x)]1/k, (3.2.115)

which is the exact solution obtained by generalizing the Eq. (3.2.78). Thus ansatz (2.0.4) is very important

in constructing the exact solutions of nonlinear PDEs.
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Chapter 4

Exact travelling wave solutions of nonlinear

partial differential equations

Suppose that a nonlinear equation in two variables x and t is given by

F (u, ux, ut, uxx, utt, uxt, uxxx, uttt, ...) = 0, (4.0.1)

where u(x, t) is an unknown function, F is a polynomial in u and its partial derivatives involving the

highest order derivatives and other nonlinear terms.

Main steps of this method are given below:

Step 1: We use generalized wave transformation of the form

u(x, t) = u(z), z = φ(x)t+ ψ(x), (4.0.2)

where φ(x) and ψ(x) are differentiable function of x. By using the Eq. (4.0.2), Eq. (4.0.1) has the

form [4,15,16]

F [u, (φ′(x)t+ ψ′(x)u′(z), ...] = 0. (4.0.3)

Step 2: Suppose that the ODE (4.0.3) has the formal solution

u(z) =
k∑
i=0

Bi(x)
(F ′
F

)i
, (4.0.4)

where Bi(x) are function of x, the functions F (z) and Bi(x) are unknown, and are to be determined later

and Bk(x) 6= 0.

Step 3: The positive integer k can be determined by considering the homogenous balance between the

highest degree derivative and nonlinear terms in Eq. (4.0.3).

Step 4: Substitute Eq. (4.0.4) into Eq. (4.0.3), and obtain the function F ′(z), and calculate all the

necessary derivatives u′(z) , u′′(z),... of the unknown function u(z). As a result, we obtain a polynomial of
F ′

F and its derivatives, gathering all the terms of same powers of F
′

F and its derivatives, and equating with

zero all the coefficients of this polynomial, which yields a system of equations, which on solving gives the

values of Bi(x) and F (z), using these values in Eq. (4.0.4), we can get the exact solution of Eq. (4.0.1).
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4.1 Exact travelling wave solutions of Benjamen Bona Mohany equation

T. B. Benjamen, J. L. Bona,and J. J. Mohany introduced Benjamen-Bona-Mohany equation(BBM) in

1972 for studying the propagation of long waves. BBM equation is applicable for studying shallow water

waves, long wavelength surface waves in liquids [12].

We will consider the BBM equation of the form [15]

ut + aux + buux − cuxxt = 0, (4.1.1)

where a, b and c are arbitrary constants.

Using the generalized wave transformation of the form

u(x, t) = u(z), z = φ(x)t+ ψ(x),

where φ(x) and ψ(x) are differentiable function of x.

Differentiating Eq. (4.0.2) with respect to t and x, we get

∂u

∂t
= u′(z)φ(x),

∂u

∂x
= u′(z)[φ′(x)t+ ψ′(x)],

∂2u

∂x2
= u′′(z)[φ′(x)t+ ψ′(x)]2 + u′(z)[ψ′′(x) + tφ′′(x)],

∂

∂t

(∂2u

∂x2

)
= u′′′(z)φ[φ′(x)t+ ψ′(x)]2 + u′′(z)[2(φ′(x))2t+ 2ψ′(x)φ′(x) + tφ′′(x)φ+ φψ′′(x)] + u′(z)φ′′(x).

(4.1.2)

Now substituting the Eq. (4.1.2) in Eq. (4.1.1), we obtain

u′(z)φ(x) + au′(z)[φ′(x)t+ ψ′(x)] + buu′(z)[φ′(x)t+ ψ′(x)]− cu′′′(z)φ[φ′(x)t+ ψ′(x)]2

−cu′′(z)[2(φ′(x))2t+ 2ψ′(x)φ′(x) + tφ′′(x)φ+ φψ′′(x)]− cu′(z)φ′′(x) = 0, (4.1.3)

or

u′(z)[φ+ aφ′(x)t+ aψ′(x)− cφ′′(x)] + buu′(z)[φ′(x)t+ ψ′(x)]− cu′′′(z)φ[φ′(x)t+ ψ′(x)]2

−cu′′(z)[2(φ′(x))2t+ 2ψ′(x)φ′(x) + tφ′′(x)φ+ φψ′′(x)] = 0. (4.1.4)

Integration the Eq. (4.1.4) with respect to z, thus we obtain the following ODE

2u(z)[φ+ aφ′(x)t+ aψ′(x)− cφ′′(x)] + bu2(z)[φ′(x)t+ ψ′(x)]− 2u′′(z)[φ(φ′(x)t+

ψ′(x))2]− 2cu′(z)[2(φ′(x))2t+ 2ψ′(x)φ′(x) + tφ′′(x)φ+ φψ′′(x)] = 0. (4.1.5)

Balancing the order of highest degree terms of Eq. (4.1.5) , where order of u′′(z) is m + 2 and u2 is 2m,

thus on balancing we have 2m = m + 2, which implies m = 2. Thus Eq. (4.0.4) reduces to the following

form [1]

u(z) = B0 +B1(x)
(F ′
F

)
+B2(x)

(F ′
F

)2
. (4.1.6)
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Squaring both sides of the Eq. (4.1.6), we obtain

u2(z) = B2
2

(F ′
F

)4
+ 2B1B2

(F ′
F

)3
+ (B2

1 + 2B0B2)
(F ′
F

)2
+ 2B0B1

(F ′
F

)
+B2

0 . (4.1.7)

Differentiating Eq. (4.1.6) with respect to z, we have

u′(z) = B1(x)
(F ′′
F
− (F ′)2

F 2

)
+ 2B2(x)

(F ′
F

)(F ′′
F
− (F ′)2

F 2

)
,

or

u′(z) =
(
B1 + 2

F ′

F
B2

)(F ′′
F
− (F ′)2

F 2

)
, (4.1.8)

u′′(z) = 2B2

(F ′′
F
− (F ′)2

F 2

)2
+
(
B1 + 2

F ′

F
B2

)(F ′′′
F

+ 2
(F ′)3

F 3
− 3

F ′′F ′

F 2

)
. (4.1.9)

Substituting Eq. (4.1.6)-(4.1.9) in Eq. (4.1.5), thus we obtain

2
[
B0 +B1

F ′

F
+B2(

F ′

F
)2
](
φ+ aφ′(x)t+ aψ′(x)− cφ′′(x)

)
+

b
[
B2

2

(F ′
F

)4
+ 2B1B2

(F ′
F

)3
+ (B2

1 + 2B0B2)
(F ′
F

)2
+ 2B0B1

(F ′
F

)
+B2

0

](
φ′(x)t+ ψ′(x)

)
−

2cφ
[
2B2

(F ′′
F
− (F ′)2

F 2

)2
+
(
B1 + 2

F ′

F
B2

)(F ′′′
F

+ 2
(F ′)3

F 3
− 3

F ′′F ′

F 2

)]
(

(φ′(x))2t2 + (ψ′(x))2 + 2tφ′(x)ψ′(x)
)
−[(

2cB1 + 4c
F ′

F
B2

)(F ′′
F
− (F ′)2

F 2

)](
2(φ′(x))2t+ 2ψ′(x)φ′(x) + tφ′′(x)φ+ φψ′′(x)

)
= 0. (4.1.10)
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Thus we have

2φB0 + 2φB1F
′F−1 + 2φB2(F ′)2F−2 + 2aB0φ

′(x)t+ 2aφ′(x)B1F
′(tF−1)+

2B2aφ
′(x)(F ′)2(tF−2) + 2B0aψ

′(x) + 2aψ′(x)B1F
′F−1+

2aB2(F ′)2F−2ψ′(x)− cφ′′(x)2B0 − 2cφ′′(x)B1F
′F−1−

2cφ′′(x)B2(x)(F ′)2F−2 +B2
2bφ
′(x)(F ′)4(tF−4) + 2bB1B2φ

′(x)(F ′)3(tF−3)+

bB2
1φ
′(x)(F ′)2(tF−2) + 2bB0B2φ

′(x)(F ′)2(tF−2) + 2bB0B1φ
′(x)(F ′)(tF−1)+

B2
0bφ
′(x)t+ ψ′(x)B2

2(F ′)4F−4 + 2bB1B2ψ
′(x)(F ′)3F−3 + bB2

1ψ
′(x)(F ′)2F−2+

2bB0B2ψ
′(x)(F ′)2F−2 + 2bB0B1ψ

′(x)(F ′)F−1 +B2
0bψ

′(x)− 4cB1(φ′(x))2F ′′(tF−1)−

8c(φ′(x))2F ′F ′′(tF−2)B2 + 4cB1(φ′(x))2(F ′)2(tF−2) + 8c(φ′(x))2(F ′)3(tF−3)B2−

4cB1F
′′ψ′(x)φ′(x)(F−1)− 8cψ′(x)φ′(x)F ′F ′′(F−2)B2 + 4cB1ψ

′(x)φ′(x)(F ′)2(F−2)+

8cψ′(x)φ′(x)(F ′)3(F−3)B2 − 2cB1φ
′′(x)φF ′′(tF−1)− 4cφ′′(x)φF ′F ′′(tF−2)B2+

2cB1φ
′′(x)φ(F ′)2(tF−2 + 4cφ′′(x)φ(F ′)3(tF−3)B2 − 2cB1φψ

′′(x)F ′′(tF−1)−

4cφψ′′(x)F ′F ′′(tF−2)B2 + 2cB1φψ
′′(x)(F ′)2(tF−2) + 4cφψ′′(x)(F ′)3(tF−3)B2−

2(φ′)2t2cφB1F
′′′F−1 − 2cφB1F

′′′F−1(ψ′(x))2 − 4cφB1F
′′′F−1ψ′(x)tφ′(x)−

4cφB2F
′′′F−2(φ′(x))2F ′t2 − 4cB2F

′′′F−2φF ′(ψ′(x))2 − 8tcB2F
′′′F−2φF ′ψ′(x)φ′(x)−

4cφB1(F ′)3F−3(φ′(x))2t2 − 4cφB1(F ′)3F−3(ψ′(x))2 − 8ctφB1(F ′)3F−3ψ′(x)φ′(x)−

8cφB2(F ′)4F−4(φ′(x))2t2 − 16cφB2(F ′)4F−4φ′(x)ψ′(x)t−

8(F ′)4F−4(ψ′(x))2cφB2 + 6cφB1F
′′F−2(φ′(x))2F ′t2 + 6cφB1F

′′F−2(ψ′(x))2F ′+

12cφB1F
′′F−2φ′(x)ψ′(x)F ′t+ 12F ′′F−3(φ′(x))2(F ′)2t2cφB2 + 12F ′′F−3(ψ′(x))2(F ′)2cφB2+

24tF ′′F−3ψ′(x)(F ′)2cφB2φ
′(x)− 4cφB2(F ′′)2F−2(φ′(x))2t2−

4cφB2(F ′′)2F−2(ψ′(x))2 − 8tcφB2(F ′′)2F−2ψ′(x)φ′(x)− 8tcφB2(F ′)4F−4ψ′(x)φ′(x)−

4cφB2(F ′)4F−4(φ′(x))2t2 − 4cφB2(F ′)4F−4(ψ′(x))2 + 16tcφB2F
′′(F ′)2F−3ψ′(x)φ′(x)+

8cφB2F
′′(F ′)2F−3(φ′(x))2t2 + 8cφB2F

′′(F ′)2F−3(ψ′(x))2 = 0, (4.1.11)

equating all the coefficients of F 0, tF 0, t2F 0, F−1, tF−1, t2F−1, F−2, tF−2, t2F−2, F−3, tF−3, t2F−3,

F−4, tF−4, t2F−4 with zero in Eq. (4.1.11), we obtain the following equations respectively [4]

2aB0(x)φ′(x) + bB2
0(x)φ′(x) = 0. (4.1.12)

Using Eq. (4.1.12), we obtain φ′(x) = 0 or φ(x) = k, and B0(x) = 0 or B0(x) = −2a
b

2φB0 + 2B0aψ
′(x)− cφ′′(x)2B0 + 2B0bψ

′(x) = 0. (4.1.13)

Now solving Eq. (4.1.13) by substituting φ(x) = k where k is some constant, we obtain

ψ′(x) =
−k
a+ b

,

which gives on integrating with respect to x

ψ(x) =
−k
a+ b

x+A0(x).
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Equating the coefficients of “F−1” with zero in Eq. (4.1.11), we have

2φB1F
′ + 2aψ′(x)B1F

′ − 2cφ′′(x)B1F
′ + 2bψ′(x)B0B1F

′ − 4cψ′(x)φ′(x)B1F
′′ − 2c(ψ′(x))2φB1F

′′′ = 0.

(4.1.14)

Now solving the Eq. (4.1.14) for ψ′(x) = −k
a+b φ(x) = k and φ′(x) = 0 :

Case 1: Using B0 = −2a
b in Eq. (4.1.14), we have

(2a+ b)(a+ b)

ck2
=
F ′′′(z)

F ′(z)
. (4.1.15)

Case 2: Using B0 = 0 in Eq. (4.1.14), we obtain

b(a+ b)

ck2
=
F ′′′(z)

F ′(z)
. (4.1.16)

Now equating the coefficients of “tF−1” with zero in Eq. (4.1.11), we have

2aφ′(x)B1F
′+2bφ′(x)B0B1F

′−4c(φ′(x))2B1F
′′−2cφ′′(x)B1F

′′φ−2cψ′′(x)B1F
′′φ−4cφφ′(x)ψ′(x)B1F

′′′ = 0.

(4.1.17)

Equating the coefficients of “t2F−1” with zero in Eq. (4.1.11), we obtain [16]

2cφ(φ′(x))2B1F
′′′(z) = 0. (4.1.18)

Now equating the coefficients of “F−2” with zero in Eq. (4.1.11)

2φB2(F ′)2 + 2aψ′(x)B2(F ′)2 + 2cφ′′(x)B2(F ′)2 + bψ′(x)B2
1(F ′)2 + 2bψ′(x)B0B2(F ′)2 − 8cψ′(x)B2F

′φ′(x)F ′′−

4cψ′(x)φ′(x)B1(F ′)2 − 4c(ψ′(x))2B2F
′φF ′′′ + 6cφF ′′F ′(ψ′(x))2B1 − 4c(ψ′(x))2B2φ(F ′′)2 = 0.

(4.1.19)

Equating the coefficients of “tF−2” with zero in Eq. (4.1.11), we have

2B2aφ
′(x)(F ′)2 + b(B1)2φ′(x)(F ′)2 + 2bB0B2φ

′(x)(F ′)2 − 8cB2(φ′(x))2F ′F ′′+

4cB1(φ′(x))2(F ′)2 − 4cB2φ
′′(x)F ′F ′′φ+ (F ′)22cB1φ

′′(x)φ− 4cB2ψ
′′(x)φF ′F ′′+

2cB1(F ′)2ψ′′(x)φ− 8cφ(F ′′)2B2φ
′(x)ψ′(x) + 12cψ′(x)φφ′(x)F ′F ′′B1 − 8c(F ′′)2cψ′(x)φφ′(x)B2 = 0.

(4.1.20)

Now equating the coefficients of “F−3” with zero in Eq. (4.1.11), we obtain

2bB1B2ψ
′(x)(F ′)3 + 8cψ′(x)(F ′)3φ′(x)B2 + 4cφ(F ′)3B1(ψ′(x))2+

12cφB2(F ′)2(ψ′(x))2F ′′ + 8cφB2(F ′)2(ψ′(x))2F ′′ = 0. (4.1.21)

Equating the coefficients of “tF−3” with zero in Eq. (4.1.11)

2bB1B2(F ′)3φ′(x) + 8cB2(F ′)3(φ′(x))2 + 4cφB2(F ′)3φ′′(x) + 4cφB2(F ′)3ψ′′(x)−

8cφB1(F ′)3φ′(x)ψ′(x) + 24cφB2(F ′)2φ′(x)ψ′(x)F ′′ + 16cφB2(F ′)2φ′(x)ψ′(x)F ′′ = 0. (4.1.22)

Now equating the coefficients of “t2F−3” with zero in Eq. (4.1.11), we obtain

8cφB2(F ′)2F ′′(φ′(x))2 + 12cφB2(φ′(x))2(F ′)2F ′′ − 4cφB1(F ′)3(φ′(x))2 = 0. (4.1.23)
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Equating the coefficients of “F−4” with zero in Eq. (4.1.11), we have

4cφB2(F ′)4(ψ′(x))2 + 8cφB2(F ′)4(ψ′(x))2 −B2
2(F ′)4ψ′(x) = 0, (4.1.24)

or

B2
2(F ′)4ψ′(x)− 12cφB2(F ′)4(ψ′(x))2 = 0,

or

B2(x) = 12cφψ′(x). (4.1.25)

Solving Eq. (4.1.25) by substituting ψ′(x) = −k
a+b and φ(x) = k, we get

B2(x) = −12ck2

a+ b
. (4.1.26)

Equating the coefficients of “tF−4” with zero in Eq. (4.1.11), we obtain

8cφB2(F ′)4ψ′(x)φ′(x) + 16cφB2(F ′)4ψ′(x)φ′(x)− b(B2)2(F ′)4φ′(x) = 0. (4.1.27)

Solving Eq. (4.1.27) by substituting ψ′(x) = −k
a+b and φ(x) = k,

B2(x) = − 24ck2

b(a+ b)
. (4.1.28)

Now equating the coefficients of “t2F−4” with zero in Eq. (4.1.11)

8cφB2(F ′)4(φ′(x))2 − 4cφB2(F ′)4(φ′(x))2 = 0. (4.1.29)

Equating the coefficients of “t2F−2” with zero in Eq. (4.1.11), we have

4cφ(φ′(x))2F ′F ′′′B2 − 6cφ(φ′(x))2F ′F ′′B1 + 4cφ(φ′(x))2(F ′′)2B2 = 0, (4.1.30)

or

4F ′F ′′′B2 = 6F ′F ′′B1 + 4(F ′′)2B2. (4.1.31)

Dividing the Eq. (4.1.31) by (F ′)2, we obtain

2
F ′′′

F ′
B2 = 3B1

F ′′

F ′
+ 2
(F ′′
F ′

)2
B2. (4.1.32)

Substituting φ′(x) = 0 in Eq. (4.1.13) , thus we have

10cφB2ψ
′(x)F ′′ + bB1B2F

′ + 2cφF ′B1ψ
′(x) = 0. (4.1.33)

Now substituting φ = k, ψ′(x) = −k
a+b and B2(x) = −12ck2

a+b in Eq. (4.1.33), we obtain

B1F
′[bB2 + 2ckψ′(x)] = −10cφB2ψ

′(x)F ′′,

or

B1F
′
(
b
12ck2

a+ b
+

2ck2

a+ b

)
=

120c2k4

(a+ b)2
F ′′,
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or

B1 =
60ck2

(6b+ 1)(a+ b)

F ′′

F ′
,

F ′′

F ′
= B1

(6b+ 1)(a+ b)

60ck2
. (4.1.34)

By substituting Eq. (4.1.34) and (4.1.16) in Eq. (4.1.32), we have

8b = −B2
1

(6b+ 1)(a+ b)

60ck2
+

8ck2

a+ b
B2

1

((6b+ 1)(a+ b)

60ck2

)2
,

or

8b = B2
1

(6b+ 1)(a+ b)

60ck2

(12b− 13

15

)
.

Thus we obtain

B1(x) =

√
7200bck2

(12b− 13)(6b+ 1)(a+ b)
. (4.1.35)

Substituting Eq. (4.1.35) in Eq. (4.1.34), we get

F ′′

F ′
=

√
7200bck2

(12b− 13)(6b+ 1)(a+ b)

(6b+ 1)(a+ b)

60ck2
,

or
F ′′(z)

F ′(z)
=

√
2b(6b+ 1)(a+ b)

ck2(12b− 13)
. (4.1.36)

Integrating Eq. (4.1.36) with respect to z, we obtain

lnF ′(z) = G1(x)z +G2(x),

or

F ′(z) = H1(x)[ezG1(x)], (4.1.37)

where G1(x) =
√

2b(6b+1)(a+b)
ck2(12b−13)

and G2(x) are constants of integration. Integrating again the Eq. (4.1.37)

with respect to z, we have

F (z) =
H1(x)

G1(x)
eG1(x)z +G3(x). (4.1.38)

Using φ(x) = k and ψ(x) = −k
a+bx+A0(x) in z = φ(x)t+ ψ(x),

z = kt− kx

a+ b
+A0(x). (4.1.39)

Thus by using Eq. (4.1.39), Eq. (4.1.38) has the form

F (z) = G3(x) +
H1(x)

G1(x)
e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]
. (4.1.40)

And substituting Eq. (4.1.39) in Eq. (4.1.37), we obtain

F ′(z) = H1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]
. (4.1.41)
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Now substituting Eq. (4.1.26), (4.1.35), (4.1.40), (4.1.41) and B0(x) = 0, in Eq. (4.1.6), we can obtain

the travelling wave solution for the BBM equation, thus Eq. (4.1.6) take the form

u1(x, t) =

√
7200bck2

(12b− 13)(6b+ 1)(a+ b)

[
H1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]
G3(x) + H1(x)

G1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]]−
12ck2

a+ b

[
H1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]
G3(x) + H1(x)

G1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]]2

. (4.1.42)

For B0(x) = −2a
b , Eq. (4.1.6) take the form

u2(x, t) =
−2a

b
+

√
7200bck2

(12b− 13)(6b+ 1)(a+ b)

[
H1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]
G3(x) + H1(x)

G1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]]

−12ck2

a+ b

[
H1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]
G3(x) + H1(x)

G1(x)e

[
G1(x)

(
kt− kx

a+b
+A0(x)

)]]2

. (4.1.43)

Thus Eqs. (4.1.42) and (4.1.43) are exact travelling wave solutions of BBM equation by using ansatz of

the the form (4.0.2), when B0(x) = 0 or −2a
b respectively.
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Chapter 5

Conclusion

In this thesis, we investigated that the generalized separation of variables can be used to determine the

exact solutions of a wide variety of nonlinear PDEs, by using different ansatzes, which when substituted

into PDEs can transform them into ODEs. Particularly, the ansatz (2.0.4) has its significance over other

ansatzes, because by replacement of variables u, x and t, we can construct an ansatz of a new form, to

determine an exact solution of the given PDE.

In this thesis while applying the generalized separation of variables on PDEs, we also used ansatz (2.0.3)

which can be applied, as a rule, to the equations with polynomial nonlinearity. Sometimes it may happen,

that the construction of solution by applying ansatz (2.0.3) is impossible, then firstly we seek a transfor-

mation, which can reduce the given equation to a new equation with polynomial nonlinearity, and then

we can construct its solution by applying the ansatz (2.0.3).

The exact travelling wave solution is another efficient method applied to find the exact solution of nonlin-

ear PDEs, by applying the method, commonly known as G′

G expansion method.

The main idea of this method is that the travelling wave solutions of nonlinear equations can be expressed

by a polynomial in G′

G , where G = G(ξ) satisfies the second order linear ODE G′′ + G′ + G = 0, where

ξ = x− vt and then integration can be expressed by an m-th degree polynomial in G′

G , where G = G(ξ) is

the general solutions of a second order LODE.

The positive integer m is determined by the homogeneous balance between the highest order derivatives

and nonlinear terms appearing in the reduced ODE, and the coefficients of the polynomial can be deter-

mined by solving a set of simultaneous algebraic equations obtained by the process of using the method.

Furthermore we can use this method to many other nonlinear equations.
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