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Abstract

Two geometrical objects are said to be equivalent, if they can be mapped to each other using a
diffeomorphism. Élie Cartan introduced the method of moving frames, which is a powerful tool
to verify the equivalence of two objects, leading to explicit necessary and sufficient conditions for
the equivalence of those objects. These conditions are found in the form of differential invariants
of the two objects under the class of diffeomorphisms, providing a key to the solution of many
equivalence problems. In this thesis the Cartan algorithm is applied to study the equivalence of
linear second order ordinary differential equations (ODEs), Lagrangian of second order ODEs,
a class of systems of linear constant coefficients ODEs (coupled and un-coupled) under fiber-
preserving diffeomorphism. The symmetry algebras are identified in each case using the rank of
the invariant coframes. This study contains two new results. First we identify a ten dimensional
Lie algebra of fiber-preserving transformations for an un-coupled system of ODEs. Secondly
the fiber-preserving algebra for a particular class of coupled system of ODEs is six dimensional.
Therefore the Cartan approach also confirms that there is more than one class of systems of
linear ODEs in contrast to scalar linear ODEs.
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Chapter 1

Introduction

An important problem in differential geometry is the equivalence problem, which is to determine
the necessary and sufficient conditions (algebraic or differential) under which two geometric ob-
jects can be regarded as equivalent. The two objects could be manifolds, differential equations,
Lagrangians, polynomials, differential operators etc. In order to investigate equivalence between
objects from a geometric point of view we require basic tools from differential geometry and Lie
groups [7, 11, 12]. The first chapter briefly explains the basic concepts of smooth manifolds,
tangent and cotangent spaces, differential forms, exterior derivatives, Lie groups [4, 11, 16, 24],
Lie algebras and Maurer-Cartan forms.

1.1 Differentiable manifold
A differentiable manifold is the generalization of a Euclidean space, roughly speaking, an m-
dimensional manifoldM is a space which locally looks like Rn. More specifically, a differentiable
manifold is defined as follows.

Definition 1.1.1. An m-dimensional differentiable manifold is a topological space M with a
family (Mi)i∈I of subsets, for which the following properties holds,

1. M = ⋃
i∈IMi;

2. For every i ∈ I there exists a one-to-one mapping, φi : Mi → Rn such that φi(Mi) is open
in Rn;

3. For Mi ∩Mj 6= ∅, φi(Mi ∩Mj) is open in Rn, and the composition map φj ◦φ−1
i : φi(Mi ∩

Mj)→ φj(Mi ∩Mj) is differentiable for arbitrarily i and j,

Mi Mj

M

Mi Mj∩

φ 
jφ 

i

φj◦φi
−1

Rn
Rn

Figure 1.1: Manifold
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where each φi is called a chart and (Mi, φi)i ∈ I, is called an atlas and the map

φj ◦ (φi)−1 : φi(Mi ∩Mj)→ φj(Mi ∩Mj), (1.1)

defined on the intersection of two charts is called the coordinate transformation or transition
function.

Example 1.1.2. A simple example of a manifold is Rn or any subset of Rn which is covered
by a single coordinate chart.

Example 1.1.3. An n-sphere, Sn is the locus of all points which are at some fixed distance
from the origin in Rn+1. It is an n-dimensional manifold. In particular, S1 represents a unit
circle and S2 corresponds to a sphere in a three dimensional space.

Example 1.1.4. The general linear group GL(n;R), consisting of all n × n real non-singular
matrices is a manifold of dimension n2.

1.1.1 Maps between manifolds
Definition 1.1.5. A diffeomorphism φ : M → N (where M and N are C∞ manifolds) is a
smooth map which also has a smooth inverse.

A function ‘f ’ is said to be smooth, or of class C∞, if its derivative exists to all orders. For
example, all polynomials and the exponential functions are C∞, because all of their derivatives
are continuous. Below we give a counter example of a function which belongs to the space C0

but fails to be in the space C1.

Example 1.1.6. The space C0 consists of all continuous functions, and the space C1 consist
of functions whose first order derivative exists and is of class C0. For example

f(x) = |x| =
{

x if x ≥ 0,
−x if x < 0, (1.2)

is continuous but not differentiable at x = 0, so f(x) is of class C0 but not C1.

We now consider an example of a diffeomorphism in R2.

Example 1.1.7. Let f : M(= R2)→ N(= R2) be a mapping between manifolds, given by

f(x, y) = (x− 2y, 2x+ 3y). (1.3)

We can verify that the above mapping is a diffeomorphism as the mapping has all continuous
derivatives. Furthermore the smoothness of the inverse map can be assured by the non-vanishing
Jacobian

Jf =
(

1 −2
2 3

)
(1.4)

which implies that

|Jf | = 7 6= 0. (1.5)
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TM|x

Figure 1.2: Tangent vector at x.

1.1.2 Tangent vector and vector field
A tangent vector at a point x ∈ M , is a vector which is tangent to a smooth curve passing
through that point. The collection of all such tangent vectors forms a tangent space TM |x to
M at x. The dimension of the tangent space TM |x is the same as the dimension of the manifold
M .

Example 1.1.8. The tangent space TM |x to S2 at x ∈ S2, consists of all those vectors which
are orthogonal to the radial line through x as shown in the Figure 1.3. The tangent space is a
2-dimensional space associated to S2 at x, and is equal to the dimension of the manifold S2.

Tangent space 

x

S

Figure 1.3: Tangent space TM |x to S2 at x ∈ S2

Since we can define a tangent space at each point on the manifold, therefore these tangent
spaces are sewn together to form a tangent bundle TM , TM = Ux∈MTM |x of the manifold,
which is a 2m-dimensional manifold.

Definition 1.1.9. A vector field ‘v’ on M is a map that assigns a tangent vector to each point
of the manifold,

v : M → TM, x→ vx ∈ TM |x. (1.6)

In local coordinates the vector field is given as

v =
m∑
i=1

ξi(x) ∂

∂xi
, (1.7)

where the coefficient ξi(x) are smooth functions, and ∂
∂xi are the tangent vectors to the coordi-

nates axes and form a basis for the tangent space TM |x.
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Definition 1.1.10. A parameterized curve φ : R→M is called an integral curve of the vector
field ‘v’ if its tangent vector coincides with the vector field ‘v’ at each point.

Thus if ‘v’ is a vector field on M then through each point of M , there is a curve, called an
integral curve of ‘v’, whose velocity vector field coincides with ‘v’. Then the collection of all
integral curves through the points of M may be thought as the motion on the manifold, called
a local flow of the vector field.
Example 1.1.11. Let us consider two vector fields on M = R, given by

v1 = ∂

∂x
, v2 = x2 ∂

∂x
. (1.8)

The vector field v1, generates a translational flow on the manifold. On the other hand the
vector field v2, corresponds to an inversional flow.
Example 1.1.12. On M = R2, the vector fields which generate translational flows in the x
and y directions are given by

v1 = ∂

∂x
, v2 = ∂

∂y
. (1.9)

Now in the 2-dimensional space R2, we have a freedom to generate a rotational flow in the
clockwise and anti-clockwise direction which are given by the vector fields

v3 = y
∂

∂x
− x ∂

∂y
, v4 = −y ∂

∂x
+ x

∂

∂y
, (1.10)

respectively.
Example 1.1.13. On M = R3, the vector fields

v1 = y
∂

∂z
− z ∂

∂y
, v2 = x

∂

∂z
− z ∂

∂x
, v3 = x

∂

∂y
− y ∂

∂x
, (1.11)

generates rotational flow around x, y and z-axes, respectively.
Definition 1.1.14. A Lie bracket is an operator which assigns to any two vector fields v1 and
v2 on a smooth manifold M , a third vector field denoted by [v1,v2], and is defined by

[v1,v2] = v1v2 − v2v1.

Example 1.1.15. Consider two vector fields in R3,

v1 = y
∂

∂z
− z ∂

∂y
, v2 = x

∂

∂z
− z ∂

∂x
, (1.12)

which are the rotations in yz and zx−planes (i.e., rotation around x and y axis respectively)
then their Lie-bracket is

[v1,v2] = v1v2 − v2v1,

= (y ∂
∂z
− z ∂

∂y
)(x ∂

∂z
− z ∂

∂x
)− (x ∂

∂z
− z ∂

∂x
)(y ∂

∂z
− z ∂

∂y
),

= −y ∂
∂x

+ x
∂

∂y
,

= x
∂

∂y
− y ∂

∂x
, (1.13)

which corresponds to rotational flow in xy−plane (i.e., rotation around z-axis).
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A Lie bracket satisfies the following properties, which help in simplifying several computa-
tional steps:

1. A Lie bracket is bilinear i.e.,

[av1 + bv2,v3] = a[v1,v3] + b[v2,v3]; (1.14)

2. The Lie bracket is anti-symmetric i.e.,

[v1,v2] = −[v2,v1]; (1.15)

3. The Lie bracket satisfies the Jacobi identity,

[v1, [v2,v3]] + [v2, [v3,v1]] + [v3, [v1,v2]] = 0, (1.16)

for any triple of vector fields v1,v2,v3.

1.1.3 Differential forms
Definition 1.1.16. Let x ∈M be a point on M , a differential 1-form is a linear functional on
the tangent space at x,

ω : TxM → R. (1.17)

Thus at each point x, ωx is the element of the dual space of TxM [3, 15, 22, 24, 28]. The space
of 1-forms is the dual vector space to the tangent space TM |x, and is called the cotangent space,
denoted by T ∗M |x. The cotangent spaces are sewn together to form the cotangent bundle,

T ∗M = Ux∈MT
∗M |x. (1.18)

The evaluation of ω on the tangent vector ‘v’ will be indicated by the bilinear pairing < ω; v >.
In local coordinates x = (x1, ..., xm), the differentials dxi of the coordinate functions provide
a basis for the cotangent space at each point of the coordinate chart, which forms the dual to
the coordinate basis ∂

∂xi of the tangent space. Thus

< dxi,
∂

∂xi
>= δij, (1.19)

where δij denotes the Kronecker delta, which is 1 if i = j and is zero otherwise. The differential
forms of higher degree are defined as alternating multi-linear maps on the tangent spaces. Thus
a differential k-form ∧kΩ at a point x ∈ M , is a k-linear map that takes k tangent vectors as
input and return a real number

∧kΩ : TM |x × ...× TM |x → R, (1.20)

which is anti-symmetric in its arguments, meaning that

< ∧kΩ : vπ1 , ...,vπk
>= (signπ) < ∧kΩ; v1, ...,vk >, (1.21)

for any permutation π of the indices {1, . . . , k}. The space of all k-forms at x is the k-fold
exterior power of the cotangent space at x, denoted by ∧kT ∗M |x and form a vector space of

dimension
(
m
k

)
.
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Definition 1.1.17. An exterior derivative is a map which maps k-form to (k + 1)-form, i.e.,

d : ∧kΩ→ ∧k+1Ω. (1.22)

For 0-forms, exterior differentiation is just the operation of taking differential

d : f → df, df :=
n∑
i=1

∂f

∂xi
dxi, (1.23)

where xi are local coordinates.

The exterior derivative ‘d’ satisfies the following properties:

1. d(Ω + φ) = dΩ + dφ;

2. d(Ω ∧ φ) = dΩ ∧ φ+ (−1)kΩ ∧ dφ, where Ω is k-form and φ are l-forms;

3. d(dΩ)=0.

Example 1.1.18. Consider a basic example (M = R3) and take the zero form (just a function
on R3 )

Ω = sin(x3 + y) + tan(2z), (1.24)

computing the exterior derivative, we get

dΩ = 3x2 cos(x3 + y)dx+ cos(x3 + y)dy + 2 sec2(2z)dz,

which is a 1-form. Note that if we take exterior derivative again

d(dΩ) = −3x2 sin(x3 + y)dy ∧ dx− 3x2 sin(x3 + y)dx ∧ dy + 0,
= 3x2 sin(x3 + y)dx ∧ dy − 3x2 sin(x3 + y)dx ∧ dy, (1.25)

we obtain d2Ω = 0, which is always true for the exterior derivative and is an important property.

Example 1.1.19. Let Ω be a 1-form

Ω = (x2 − y)dx+ (y + z)dy + (x2 + z)dz.

If we compute the exterior derivative we obtain a 2-form

dΩ = dx ∧ dy − dy ∧ dz + 2xdx ∧ dz. (1.26)

1.1.4 Geometrical interpretation of forms
In order to comprehend forms geometrically we consider a three-dimensional manifoldM = R3,
and the vectors a,b ∈ R3,

a =

 a1
a2
a3

 and b =

 b1
b2
b3

 . (1.27)
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Then a two form dx1 ∧ dx2, on vectors a and b is

dx1 ∧ dx2


 a1
a2
a3

 ,

 b1
b2
b3


 = det

(
a1 b1
a2 b2

)
= a1b2 − a2b1, (1.28)

which may be understood geometrically as the projection of a and b onto (x1, x2) plane. The
determinant above gives the signed area of the parallelogram spanned by a and b, thus (dx1 ∧
dx2) deserves to be called the (x1, x2) component of the signed area. The 3-form (dx1∧dx2∧dx3)
tell us that (x1, x2, x3) component of the signed volume of the parallelepiped spanned by the
three vectors (x1, x2, x3). In this example a 1-form is just a function on M = R3, and all the
k-forms for k > 3 are zero. We now introduce a basic operation on differential forms known as
pull-back.

Definition 1.1.20. Let F : M → N be a smooth map, then there is an induced map on
differential forms, called the pull-back of F denoted by F ∗, which maps the differential forms
on N back to the differential forms on M .

1.2 Lie groups
In this section we give a brief introduction of Lie groups. These are important as they carry
the structure of a differentiable manifold besides group properties. More precisely,

Definition 1.2.1. A Lie group G is a C∞ manifold endowed with a group structure in which
group multiplication and inversion are C∞ operations, i.e., (g, h)→ g ·h and g → g−1, g, h ∈ G,
define smooth maps.

Example 1.2.2. The simplest example of a Lie group is Rn, where the group operation is
given by vector addition. The identity element is the zero vector and the inverse of any vector
x is −x.

Example 1.2.3. GL(n,R) consisting of all invertible n× n real matrices from Rn → Rn. The
matrix multiplication defined the group operation. The manifoldGL(n,R) is an n2−dimensional
manifold.

Example 1.2.4. The special linear or unimodular group is

SL(n) = {A ∈ GL(n)| detA = 1}, (1.29)

consisting of all volume preserving transformations. SL(n) is a Lie-group of dimension (n2−1).

Example 1.2.5. The orthogonal group

O(n) = {A ∈ GL(n,R)| ATA = I}, (1.30)

is the group of norm preserving transformations of dimension 1
2n(n− 1), and consists of rotation

and reflection in Rn.

Example 1.2.6. The special orthogonal group consist of rotations

SO(n) = O(n) ∩ SL(n),
SO(n) = {A ∈ O(n,R); detA = 1}. (1.31)

The dimension of SO(n) is 1
2n(n− 1).
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In most cases, groups are not given to us in the abstract form, rather concretely as a family
of transformations acting on the manifold [1]. Below we use Lie groups as the transformation
groups and investigate their group actions.

Definition 1.2.7. A transformation group acting on a smooth manifold M is determined by
a Lie group G and smooth map,

Φ : G×M →M, (1.32)

given by

Φ(g, x) = g · x, (1.33)

which satisfies

e · x = x, g · (h · x) = (g · h) · x, (1.34)

where x ∈M , g ∈ G.

Example 1.2.8. An obvious example is provided by the usual linear action of general linear
group GL(n,R), acting by matrix multiplication on column vector x ∈ Rn. In particular
G = SO(2), the group of rotations in plane

G =
{ (

cos θ − sin θ
sin θ cos θ

)
; 0 ≤ θ < 2π

}
, (1.35)

where θ denotes the angle of rotation.

Example 1.2.9. The real affine group A(n) is define as the group of affine transformations
x→ Ax + b in Rn

A(n) =
{ (

A b
0 1

)
; A ∈ GL(n) and b ∈ Rn

}
. (1.36)

The affine group has dimension n(n+ 1). Its subgroups is special affine group

SA(n) =
{ (

A b
0 1

)
; A ∈ SL(n) and b ∈ Rn

}
. (1.37)

Example 1.2.10. Another important example is provided by the Euclidean group of transfor-
mation E(n) = O(n)× Rn

E(n) =
{ (

A b
0 1

)
; A ∈ O(n) and b ∈ Rn

}
, (1.38)

which is generated by the group of orthogonal transformations and translations. The group
operation of E(n) is as follow, if we represent a vector x ∈ Rn, by the (n + 1)-dimensional
vector (x, 1)T , the element of E(n) acts on x by the matrix multiplication(

A b
0 1

) (
x
1

)
=

(
Ax + b

1

)
. (1.39)
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1.2.1 Lie algebra
A Lie algebra is a tangent space associated to a Lie group, but before we give a formal definition
of Lie algebra we introduce some basic concepts related to a Lie algebra.

Definition 1.2.11. For a fixed element g ∈ G in a Lie group we can define a pair of smooth
maps, the left translation Lg : h→ g · h, and right translation Rg : h→ h · g.

Definition 1.2.12. A vector field ‘v’ on G is called left invariant if it is unaffected by the left
multiplication of any group element, i.e., dLg(v) = v and right invariant if dRg(v) = v, for all
g ∈ G.

Definition 1.2.13. The left (right) Lie algebra of Lie group is the space of all left (right)
invariant vector field on G. Thus associated to any Lie group there are two different Lie
algebras, gL and gR respectively.

Remark 1.2.14. Whenever we take a Lie algebra corresponding to any Lie group we mean
g = gR. Every right invariant vector field is uniquely determined by its value at the identity
e, because v|g = dRg(v|e). Thus we can identify the right Lie algebra with the tangent space
to G at the identity element gR ' TG|e, a finite dimensional vector space having the same
dimension as G.

Definition 1.2.15. A Lie algebra g is a vector space equipped with the bracket operation
[.,.]:g×g→ g which is bilinear, antisymmetric [v,w] = −[w,v] and satisfies the Jacobi identity,

[u, [v,w] + [v, [w,u] + [w, [u,v] = 0. (1.40)

Example 1.2.16. Consider the two parameters group A(1) of the affine transformation x →
ax+ b on the line x ∈ R, the group multiplication law is given by

(a, b) · (c, d) = (ac, ad+ b), (1.41)

and the identity element is e = (1, 0). The right translation is,

R(a,b)(c, d) = (c, d) · (a, b) = (ac, bc+ d). (1.42)

A basis for the right Lie algebra a(1)R corresponding to the coordinate basis ∂
∂a
|e, ∂∂b |e of TA(1)|e

is therefore,

v1 = dR(a,b)[
∂

∂a
|e] = a

∂

∂a
+ b

∂

∂b
, v2 = dR(a,b)[

∂

∂b
|e] = ∂

∂b
, (1.43)

and their commutation relation is [v1,v2] = −v2.

Definition 1.2.17. Let v1, ...,vr be a basis of Lie algebra g. We define the associated structure
constants Ck

ij by the bracket relations

[vi,vj] =
r∑

k=1
Ck
ijvk. (1.44)

By using anti-symmetric property and Jacobi identity the following relations can be obtained

Ck
ij = −Ck

ji,
r∑
l=1
{C l

ijC
m
lk + C l

kiC
m
lj + C l

jkC
m
li } = 0. (1.45)

9



1.2.2 Maurer-Cartan forms
In the theory of Lie groups the most important are the invariant differential forms associated
with the right (left) action of the Lie group on itself. They are also known as the Maurer-Cartan
forms [24]. Below we define it.

Definition 1.2.18. A differential form Ω on a Lie group G is right invariant if it is unaffected
by the right multiplication of the Lie group element i.e., dR∗gΩ = Ω for all g ∈ G. The right
invariant 1-form on G is known as (right invariant Maurer-Cartan forms).

The space of Maurer-Cartan forms is naturally dual to the Lie algebra of G and hence form
a vector space of the same dimension as the Lie group. If we choose a basis v1, ...,vr of the Lie
algebra g, then there is a dual basis (or co-frame) α1, ..., αr consisting of the Maurer-Cartan
forms satisfying < αi; vj >= δij and satisfy the fundamental structure equation

dαk = −1
2

r∑
i,j=1

Ck
ijα

i ∧ αj = −
r∑

i,j=1
Ck
ijα

i ∧ αj, i < j and k = 1, . . . , r. (1.46)

The coefficients Ck
ij are the same as the structure constants corresponding to our choices of

basis of the Lie algebra g. If the group G is given as parameterized matrix Lie group, then a
basis for the space of the Maurer-Cartan forms can be found among the entries of the matrix
of the 1-form

γ = dg · g−1, or γij =
r∑

k=1
dgik(g−1)kj , (1.47)

each entry γij is clearly right invariant 1-form because if h is any fixed group element then

(Rh)∗γ = d(g · h) · (g · h)−1 = dg · g−1 = γ. (1.48)

Example 1.2.19. Consider the special affine group of transformation SA(2) in two dimensions.
The matrix g has the form,

g =

 a1 a2 a3
a4 a5 a6
0 0 1

 , (1.49)

and

g−1 =

 a5 −a2 a2a6 − a5a3
−a4 a1 a4a3 − a1a6

0 0 1

 , (1.50)

with a1a5 − a2a4 = 1 and (a3, a6) = b ∈ R2, the exterior derivative matrix is,

dg =

 da1 da2 da3
da4 da5 da6
0 0 0

 . (1.51)

Thus

dg · g−1 =

 a5da1 − a4da2 a1da2 − a2da1 (a2a6 − a5a3)da1 + (a4a3 − a1a6)da2 + da3
a5da4 − a4da5 a1da5 − a2da4 (a2a6 − a5a3)da4 + (a4a3 − a1a6)da5 + da6

0 0 0

 .(1.52)
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Since

a5a1 − a4a2 = 1,
a1da5 + a5da1 − a2da4 − a4da2 = 0,

(1.53)

or

a5da1 − a4da2 = −(a1da5 − a2da4). (1.54)

Therefore the Maurer-Cartan forms are

α1 = a5da1 − a4da2,

α2 = a1da2 − a2da1,

α3 = (a2a6 − a5a3)da1 + (a4a3 − a1a6)da2 + da3,

α4 = a5da4 − a4da5,

α5 = (a2a6 − a5a3)da4 + (a4a3 − a1a6)da5 + da6, (1.55)

and for the special case when b = (a3, 0) ∈ R2, the Maurer-Cartan forms are found to be,

α1 = a5da1 − a4da2,

α2 = a1da2 − a2da1,

α3 = a3a4da2 − a3a5da1 + da3,

α4 = a5da4 − a4da5,

α5 = a3a4da5 − a3a5da4. (1.56)

11



Chapter 2

Cartan equivalence method

We now define frames and coframes on a manifold, equivalence criteria and structure equations
followed by key steps involved in Cartan algorithm which includes normalization, absorption
and prolongation. [24].

2.1 Frames and coframes
Let M be a smooth m-dimensional manifold. A frame on M is a set of vector fields v =
{v1,v2, ...,vm}, with the property that it forms a basis for the tangent space TM |x at each
point x ∈ M . Dually a coframe on M is a set of one-forms θ = {θ1, ..., θm}, which form the
basis for the cotangent space T ∗M |x, at each point x ∈M .

Remark 2.1.1. A frame and coframe are dual to each other if and only if they form dual bases
for the tangent and cotangent spaces to M at each point. Given a coframe {θ1, ..., θm} we shall
denote the dual frame vector fields by { ∂

∂θ1 , ...,
∂

∂θm} such that

〈θi, ∂

∂θj
〉 = δij, i, j = 1, . . . ,m. (2.1)

If we introduce local coordinates x = (x1, ..., xm) on M , then the coframe can be written in
term of coordinates coframe

θi =
∑
j

aij(x)dxj, (2.2)

where aij(x) is a non singular m×m matrix of functions and the dual frame is given by

∂

∂θj
=
∑
i

bij(x) ∂

∂xi
, where bij(x) = (aij(x))−1, (2.3)

i.e., bij(x) is the inverse of the matrix aij(x).

2.2 Equivalence of coframes
In this section we will find the necessary and sufficient conditions under which the two coframes
are equivalent. Suppose we have two manifolds M and M̄ of the same dimensions m, and let
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θ = {θ1, ..., θm} and θ̄ = {θ̄1, ..., θ̄m}, be the given coframes on M and M̄ , respectively. The
basic equivalence problem for the coframes is to determine whether the two coframes can be
mapped to each other by a diffeomorphism,

Φ : M → M̄, such that Φ∗θ̄i = θi, i = 1, . . . ,m, (2.4)

i.e., whether there exists a diffeomorphism which pull-back the coframe on M̄ to the coframe
on M . Cartan made the fundamental observation that the invariance of the exterior derivative
‘d ’ under smooth maps is the key to the solution of coframe equivalence problem. Thus if (2.4)
holds, we must have

Φ∗dθ̄i = dθi. (2.5)

Since θ is a 1-form, then its exterior derivative is a two-form and thus we can write dθi in terms
of wedge product of θ’s, which gives the fundamental structure equation

dθi =
m∑

j,k=1
T ijkθ

j ∧ θk, 1, . . . ,m, (2.6)

associated with the given coframe, where T ijk are the structure functions and are 1
2m

2(m−1) in
numbers. The structure functions may be constant or even zero. Now any equivalent coframe
θ̄ on M̄ will have analogue structure equations

dθ̄i =
m∑

j,k=1
T̄ ijkθ̄

j ∧ θ̄k, 1, . . . ,m. (2.7)

Substituting values from equations (2.6) and (2.7) in equation (2.5) and using the invariance
of coframe elements; equation (2.4) we get

m∑
j,k=1

T ijk(x)θj ∧ θk = dθi = Φ∗dθ̄i =
m∑

j,k=1
T̄ ijk(Φ(x))θj ∧ θk. (2.8)

Since θi are linearly independent one-forms thus the coefficient of each θj ∧ θk must agree. This
immediately implies the invariance of structure functions

T̄ ijk(x̄) = T ijk(x), when x̄ = Φ(x), i, j, k = 1, . . . ,m. (2.9)

The above invariance condition provide an important set of necessary condition for the two
coframes to be equivalent.

Remark 2.2.1. The structure functions measure the ‘degree of non-commutativity’ of the
corresponding coframes derivatives. Since we have the dual Lie bracket formulae

[ ∂
∂θj

,
∂

∂θk
] = −∑m

i=1 T
i
jk

∂
∂θi . (2.10)

Thus T ijk = −Ci
jk (the torsion coefficient in the structure equation are negative time the struc-

ture constants as in the case of Lie algebra g). We now consider a simple example and explain
the basic equivalence criteria.
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Example 2.2.2. Consider a nontrivial case M ⊂ R2, with a coframe on M

θ1 = xdx+ ydy, θ2 = ydx+ dy, (2.11)

we calculate the exterior derivative for structure equations

dθ1 = 0, dθ2 = (1) dy ∧ dx,
dθ1 = (0) θ1 ∧ θ2,

dθ2 = − 1
x− y2 θ

1 ∧ θ2.

Therefore, the structure functions are

J = 0, K = − 1
x− y2 . (2.12)

Since the structure functions remain invariant therefore we apply a change of variables in above
coframe and verify that in the new structure equations we obtain same invariants. Now consider
a transformation (diffeomorphism i.e., rotation in R2 with some fixed angle θ) and calculate
the structure functions in the new coordinates.(

x̄
ȳ

)
=

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
, (2.13)

writing x, y in terms of x̄ and ȳ, we obtain(
x
y

)
=

(
cos θ sin θ
− sin θ cos θ

) (
x̄
ȳ

)
, (2.14)

and their differential,

(
dx
dy

)
=

(
cos θ sin θ
− sin θ cos θ

) (
dx̄
dȳ

)
, (2.15)

thus we have,

dx = cos θdx̄+ sin θdȳ, (2.16)
dy = − sin θdx̄+ cos θdȳ. (2.17)

To find the structure equations we calculate the exterior derivative of θ̄1, therefore

θ̄1 = (cos θx̄+ sin θȳ)(cos θdx̄+ sin θdȳ) + (− sin θx̄+ cos θȳ)(− sin θdx̄+ cos θdȳ),
= cos2 θx̄dx̄+ sin2 θȳdȳ + cos2 θȳdȳ + sin2 θx̄dx̄,

θ̄1 = x̄dx̄+ ȳdȳ, (2.18)

implies that

dθ̄1 = 0, J̄ = 0. (2.19)
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Similarly, for θ̄2 we obtain

θ̄2 = ydx+ dy, (2.20)
= (− sin θx̄+ cos θȳ)(cos θdx̄+ sin θdȳ) + (− sin θdx̄+ cos θdȳ),

taking the exterior derivative, (in simplified form in the new coordinates as same we calculated
for θ̄1) we get

dθ̄2 = − sin2 θdx̄ ∧ dȳ + cos2 θdȳ ∧ dx̄,
dθ̄2 = −dx̄ ∧ dȳ,

= − 1
x− y2 θ̄

1 ∧ θ̄2,

implies that

K̄ = − 1
x− y2 . (2.21)

Therefore, we have verified that in the new structure equations the invariants are J and K, as
was expected from the Cartan equivalence criteria.

2.3 Formulation of the G-equivalence problem
Among other equivalence problems the most important one is the group-equivalence which we
study now. The purpose of G-equivalence between two manifolds is to study the invariance of
geometric objects under the Lie group of transformations. This is mainly done on the product
manifold G×M [24].

Definition 2.3.1. Let G ⊂ GL(m) be a Lie group (structure group), and let ω and ω̄ be
coframes defined respectively on m-dimensional manifoldM and M̄ . The G-valued equivalence
problem for the coframe is to determine whether there exists a diffeomorphism Φ : M → M̄
and a G-valued function g : M → G with the property

Φ∗ω̄ = g(x) · ω, (2.22)

or in full detail

Φ∗ω̄ =
m∑
j=1

gij(x) · ωj, i = 1, . . . ,m, (2.23)

where the function gij(x) are the entries of the matrix g(x), which is constrained to belong the
structure group G at each point x ∈M .

Remark 2.3.2. The simplest case when G = {e} is the trivial subgroup consisting of just the
identity matrix for which equation (2.23) becomes

Φ∗ω̄i = ωi, i = 1, . . . ,m. (2.24)

and so the {e}-valued equivalence problem is exactly the same as the equivalence problem for
coframes.
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The preliminary step in Cartan’s algorithm is to modify the basic equivalence condition
(2.23). In the group property of G, (2.23) will be satisfied if we find a pair of G-valued function
ḡ(x̄) and g(x) such that

ḡ(x̄) · ω̄ = g(x) · ω, (2.25)
(omitting the pull-back for simplicity), this new form of the G-equivalence problem places the
barred coordinates on the same footing as the original coordinates making equation (2.23) more
useful. In more appropriate notation equation (2.25) can be written

θ̄ = ḡ(x̄) · ω̄ & θ = g(x) · ω, (2.26)
where θ are the lifted coframe defined on M ×G. Thus equation (2.25) becomes

Φ∗θ̄ = θ, (2.27)
and thus the general equivalence problem has been successfully reduced to the equivalence of
coframes.

2.4 Cartan’s equivalence method
Once the equivalence problem is reformulated in terms of ω on an m-dimensional manifold
M along with the structure group G ⊂ GL(m) we are in a position to apply the Cartan
equivalence method [24]. The goal is to normalize the structure group coefficients in a suitably
invariant manner which results in a sufficient number of invariant combination. The Cartan
method provides an algorithmic approach for finding such invariant combinations. Each group-
dependent invariant combination allow us to normalize one group parameter. In favorable case,
all the group parameters are normalized and the structure group reduced to the trivial group
{e}. The problem is thus reduced for the equivalence of coframes, which we already know how
to deal.

2.5 The structure equations
Consider a coframe ω = (ω1, ..., ωm) on m-dimensional manifold M along with the structure
group G ⊂ GL(m). Then the lifted coframe discussed previously has the form

θ = g · ω,
(2.28)

or

θi =
m∑
j=1

gij · ωj. (2.29)

As in the case of the equivalence problem for the coframes the invariance of the exterior deriva-
tive is the key. Thus computing the differential of the lifted coframe elements (2.29),

dθi = d(
m∑
j=1

gij · ωj),

=
m∑
j=1
{dgij ∧ ωj + gijdω

j}. (2.30)
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Since ωi form a coframe on M , then the two form dωi can be written in terms of the sum of
wedge produce of ωi and using (2.29), the coframe elements ωi’s can be written in terms of the
wedge product of θk, so that

dθi =
m∑
j=1

γij ∧ θj +
m∑

j,k=1
T ijk(x, g)θj ∧ θk, i = 1, ...,m and j < k. (2.31)

The torsion coefficient T ijk are functions which may be constant or depend upon base variable
x or group parameter g. The γij in equation (2.31) are 1-forms

γij =
m∑
k=1

dgik(g−1)kj , (2.32)

or in matrix notation

γ = dg · g−1, (2.33)

and form the matrix of Maurer-Cartan forms on the structure group G. If (α1, ..., αr) are the
basis for the space of Maurer-Cartan forms corresponding to the local coordinate system of
a = (a1, ..., ar) in the neighbourhood of the identity of G, then each γij

γij =
r∑

k=1
Aijkα

k, i, j = 1, ...,m. (2.34)

Thus the final structure equation in terms of the Maurer-Cartan forms for our lifted coframe
have the general form

dθi =
r∑

k=1

m∑
j=1

Aijkα
k ∧ θj +

m∑
j,k=1

T ijk(x, g)θj ∧ θk, i = 1, ...,m, j < k. (2.35)

Similarly the structure equation for the barred coframe θ̄ = ḡ · ω̄ on M̄

dθ̄i =
r∑

k=1

m∑
j=1

Aijkᾱ
k ∧ θ̄j +

m∑
j,k=1

T̄ ijk(x̄, ḡ)θ̄j ∧ θ̄k, i = 1, ...,m, j < k. (2.36)

The Cartan algorithm for a G-valued equivalence problem consist of series of important steps.
The next step is absorption and prolongation.

2.6 Absorption and normalization
At this stage we replace each Maurer-Cartan form by

αk = πk +
p∑
i

T ijkθ
k, k = 1, ..., r (2.37)

in (2.35), and the maximum number of possible torsion coefficients are absorbed. This process
is called absorption. The remaining torsion coefficients are called essential torsion, which will
explicitly depends on the group parameters. They are normalized by setting them to a fixed
number (R), which can be chosen to have convenient values (0 or ±1) by solving for some
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group parameter. This completes one loop in the Cartan algorithm. Next we substitute these
parameter values back into the coframe and repeat the same process as above. This process
will continue until we are left with two possibilities. The most favorable case is when all
group parameters are normalized and the process ends with an explicit invariant coframe and
thus reducing the equivalence problem to the equivalence problem for coframes. The second
possibility is that we are left with one or more unspecified group parameters, but there is no
essential torsion coefficient that depends on the group parameters. In the second case we must
figure out whether the symmetry group of the equivalence problem is infinite dimensional (or
in involution) or finite dimensional. If the system (2.35) is not in involution then we must
prolong. We apply the Cartan test after calculating the degree of indeterminacy of the lifted
coframe and reduced Cartan characters associated with the structure equations (2.35).

The degree of indeterminacy r(1) of the lifted coframe is the numbers of free variable in
the solution to the associated linear absorption system and can be found by replacing each
Maurer-Cartan form πi by a linear combination

πi =
r∑
j=1

zijθ
j, (2.38)

we find that some zij will be specified, while some will left arbitrary, called free variables. Next
we introduce the reduced Cartan characters associated with the final structure equation (2.35),
for given vector v = (v1, ..., vm) ∈ Rm, define L[v] to be given be m× r matrix with entries

Lik[v] =
m∑
j=1

Aijkv
j, i = 1, ..,m, k = 1, ..., r. (2.39)

Thus L[v] , is just the coefficient matrix for the Maurer-Cartan form αk in the final structure
equation (2.35) upon replacing each coframe element θi by the corresponding entry vi of the
vector v. The maximal rank of the matrix L[v] over all possible vector v ∈ Rm, is called the
first reduced character for the coframe denoted by

s
′

1 = max{rank L[v], |v ∈ Rm}. (2.40)

The second reduced character s′
2 is obtained by computing the maximal rank of 2m× r matrix

which is obtained by stacking two copies of the pervious matrix corresponding to two different
vectors on top of each other

s
′

1 + s
′

2 = max
{
rank

(
L[v1]
L[v2]

)
| v1,v2 ∈ Rm

}
. (2.41)

Thus the (m− 1) reduced characters s′
1, ..., s

′
m−1 of the lifted coframe

s
′

1 + s
′

2 + ...+ s
′

k = max

rank

L[v1]
L[v2]
...

L[vk]

 | v1,v2, ...,vk ∈ Rm , k = 1, ...,m− 1.

 ,

where L[v] is m× r matrix in (2.39). The final reduced character is

s
′

1 + s
′

2 + ...+ s
′

k = r, each s
′

i ≥ 0. (2.42)
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Definition 2.6.1. Let θ be a lifted coframe with reduced characters s′
1, s

′
2, ..., s

′
k and the degree

of indeterminacy r(1), then θ is in involution iff it satisfy the Cartan test

s
′

1 + 2s′

2 + ...+ ks
′

k = r(1). (2.43)

Remark 2.6.2. In all cases L.H.S of equation.(2.43) provide an upper bound for the degree of
indeterminacy of the coframe, so r(1) ≤ s

′
1 + 2s′

2 + ... + ms
′
m, where the equality holds iff the

coframe in involutive.

2.7 Prolongation
Finally, we address the problem in which the Cartan equivalence procedure does not lead to a
complete reduction of the structure group and the structure equations are not involutive. In
the prolongation process every free parameter in the absorption equation (2.35) provides a new
group parameter which must eventually be normalized if we are to solve the prolonged problem.
The modified Maurer-Cartan forms are defined by

πk = αk −
m∑
j=1

zkj θ
j, k = 1, ..., r, (2.44)

where zkj define the general solution to the absorption equation (2.35) some of the zkj ’s (more
specifically r(1) of them) are free variables and can not be invariantly prescribed by the ab-
sorption equation alone. Let us denote the free variables by wν , ν = 1, .., r(1), so that the
general solution to the absorption equation (2.35) z = k[w] + S, where the linear maps K and
S in general depend on x and g. Thus the most general collection of one-forms which solve the
absorption equation is of the form

π = α− (K[w] + S)θ. (2.45)

Consequently our prolongation procedure leads us to introduce a lifted coframe on the prolonged
space M (1) = M × G. The base coframe on M (1) will contain first m 1-forms in the original
lifted coframe θ = g · w and second the r modified Maurer-Cartan forms

$ = α + Sθ, (2.46)

or explicitly

$i = αi +
m∑
j=1

Sijθ
j, (2.47)

which are obtained from the general solution equation (2.45) to the absorption equation by
setting all the free variables to zero, w = 0. Now θ and $ form a coframe on M (1). The free
variables w will parameterize a new structure group G(1) which is a subgroup of GL(m × r)
consisting of the blocks lower triangular matrices

G(1) =
{ (

I 0
K[w] I

)
| w ∈ Rr(1)

}
. (2.48)

19



The structure group G(1) for the prolonged problem has dimension r(1). The lifted coframe will
live on the prolonged space

M (1) ×G(1) = M ×G×G(1), (2.49)

and consist of the original lifted coframe θ along with the modified Maurer-Cartan forms π =
$ + k[w]θ. The goal now is to use absorption and normalization procedures to eliminate the
new group parameters w ∈ G(1).

Example 2.7.1. (Equivalence of surfaces) To explain basic steps of the Cartan algorithm,
consider the problem of classifying all (local) isometries of the Euclidean plane. These will be
(smooth) maps (x̄, ȳ) = Φ(x, y), that preserves the Euclidean metric [24],

Φ∗(dx̄2 + dȳ2) = dx2 + dy2. (2.50)

Introducing the base coframe ω1 = dx, ω2 = dy, then the condition equation (2.50) is the same
as the condition

Φ∗
(
ω̄1

ω̄2

)
=

(
cos t − sin t
sin t cos t

) (
ω1

ω2

)
. (2.51)

Thus the structure group is G = SO(2). The next step in the Cartan algorithm is to introduce
the lifted coframe, i.e., shifting the coframe to G×M , thus

θ1 = (cos t)ω1 − (sin t)ω2, θ2 = (sin t)ω1 + (cos t)ω2. (2.52)

Since

ω1 = dx, ω2 = dy,

therefore,

dω1 = 0, dω2 = 0. (2.53)

Calculating the exterior derivative of θ1 and θ2, we obtain

dθ1 = − sin tdt ∧ ω1 + cos tdω1 − cos tdt ∧ ω2 − sin tdω2,

= − sin tdt ∧ ω1 + cos tdω1 − cos tdt ∧ ω2 − sin tdω2,

= − sin tdt ∧ (cos tθ1 + sin tθ2)− cos tdt ∧ (− sin tθ1 + cos θ2),
= − sin t cos tdt ∧ θ1 − sin2 tdt ∧ θ2) + sin t cos tdt ∧ θ1 − cos2 tdt ∧ θ2),
= −(sin2 t+ cos2 t)dt ∧ θ2 = −dt ∧ θ2,

or

dθ1 = −α ∧ θ2. (2.54)

Here α is the Maurer-Cartan form defined by α = dt. Similarly

θ2 = (sin t)ω1 + (cos t)ω2,
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we have

dθ2 = α ∧ θ1. (2.55)

Thus the structure equations are

dθ1 = α ∧ θ2, dθ2 = α ∧ θ1. (2.56)

Since there is no torsion coefficient to normalize the structure group in this case consists of
just a single parameter ‘t’, which is not fully normalized. Next we have to figure out whether
the symmetry group of the equivalence problem is infinite dimensional which indicate that the
system (2.56) is in involution or finite dimensional. If the system (2.56) is not in involution,
we must prolong. This will be decided by the Cartan test. Before we apply the Cartan Test
we have to find the degree of indeterminacy and Cartan reduced characters.

For degree of indeterminacy replacing Maurer-Cartan form α = π by z1θ
1 + z2θ

2, in (2.56)
and equating coefficient of θj ∧ θk to zero. We get z1 = z2 = 0. Thus r(1) = 0. Next we find
Cartan characters for a given vector v = (v1, v2) ∈ R2, we define L[v] to be 2× 1 matrix

L[v] =
(
−v2

v1

)
. (2.57)

The row of L corresponds to the two structure equations and the columns corresponds to the
Maurer-Cartan forms π. The first reduce character s′

1 is the maximum rank of v ∈ R2, clearly
s

′
1 = 1, the second character is

s
′

1 + s
′

2 = max rank


−v2

v1

−v̂2

v̂1

 = 1, (2.58)

implies that s′
2 = 0. Applying the Cartan test

r(1) ≤ s
′
1 + 2s′

2 ⇒ 0 < 1(satisfied).

Thus we must prolong by adjoining one-form α to our original lifted coframe. Thus the pro-
longed structure equations have the form

dθ1 = −α ∧ θ2, dθ2 = α ∧ θ1, dα = 0. (2.59)

In more abstract form

dθ1 = θ2 ∧ θ3, dθ2 = −θ1 ∧ θ3, dθ3 = 0, (2.60)

with T 1
23 = 1, T 2

13 = −1. Thus the group associated with the equivalence problem has dimension
three, and the associated group algebra can be found below, since we know that

[ ∂
∂θj

,
∂

∂θk
] = −

3∑
i=1

T ijk
∂

∂θi
, i, j, k = 1, 2, 3, j < k. (2.61)

21



Therefore

[ ∂
∂θ1 ,

∂

∂θ2 ] = −T 1
12

∂

∂θ1 − T
2
12

∂

∂θ2 − T
3
12

∂

∂θ3 , (2.62)

= 0. (2.63)

This implies

[V1, V2] = 0.

Similarly

[V1, V3] = V2, [V2, V3] = −V1.

Therefore the symmetry group of the equivalence problem has dimension three, and the asso-
ciated group algebra in this case is

[V1, V2] = 0, [V1, V3] = V2, [V2, V3] = −V1. (2.64)
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Chapter 3

Equivalence of scalar Lagrangians

Consider a first order variational problem [20, 24]

L[u] =
∫
L(x, u, p)dx, x, u ∈ R, p = du

dx
, (3.1)

where the Lagrangian L(x, u, p) is analytic on a domain M ⊂ R3. Two Lagrangians L and L̄
are equivalent (under a fiber-preserving transformation) if and only if there exists a change of
variables x̄ = Φ(x), ū = ψ(x, u) mapping one to the other. We now want to obtain necessary
and sufficient conditions for the equivalence of two scalar Lagrangians using Cartan approach.
In order to do that we first transform our problem to the language of coframes on a cotangent
space.

3.1 Coframe
The preliminary step in the Cartan algorithm is that we shift our equivalence problem on man-
ifolds and associate differential one-forms to them. Introducing differential 1-forms (coframe)
corresponding to the two Lagrangians on M and M̄ ,

ω1 = du− pdx, ω2 = L(x, u, p)dx, ω3 = dp,

ω̄1 = dū− p̄dx̄, ω̄2 = L̄(x̄, ū, p̄)dx̄, ω̄3 = dp̄, (3.2)

which form the basis for the cotangent spaces T ∗M and T ∗M̄ respectively.

3.2 Equivalence conditions

Recalling the equivalence of coframes we see that the two Lagrangians L and L̄ are equivalent
iff there exist a diffeomorphism Φ : M → M̄ such that the pull back Φ∗ transforms the coframes
as (under fiber-preserving transformation)

Φ∗(ω̄1) = a1ω
1, Φ∗(ω̄2) = ω2, Φ∗(ω̄3) = a3ω

1 + a4ω
2 + a5ω

3, (3.3)

where a1, a3, a4, a5 are functions of x, u, p. Introducing the lifted coframe
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θ1 = a1ω
1,

θ2 = ω2,

θ3 = a3ω
1 + a4ω

2 + a5ω
3, (3.4)

with the structure group,

g =

 a1 0 0
0 1 0
a3 a4 a5

 . (3.5)

Therefore the basic equivalence conditions for the Lagrangian requires a structure group of
dimension four, where g ∈ GL(3,R). Calculating the Maurer-Cartan forms using the formula
Π = dg · g−1, we get

Π =

 α1 = da1
a1

0 0
0 0 0

α2 = da3
a1
− da5a3

a1a5
α3 = da4 − da5a4

a5
α4 = da5

a5

 , (3.6)

where α1, α2, α3, α4, are the Maurer-Cartan forms which are dual to the Lie algebra of the
structure group g. Now since

ω1 = du− pdx, (3.7)

calculating exterior derivatives of the base coframe elements

dω1 = −dp ∧ dx,

= −ω3 ∧ 1
L
ω2,

implies that

dω1 = − 1
L

(ω3 ∧ ω2). (3.8)

Similarly

dω2 = Lu
L

(ω1 ∧ ω2)− Lp
L

(ω2 ∧ ω3),

dω3 = 0. (3.9)

Now since

ω1 = θ1

a1
, ω2 = θ2, ω3 = − a3

a1a5
θ1 − a4

a5
θ2 + θ3

a5
, (3.10)

writing wedge product of base coframe elements ω′s interms of lifted coframe elements θ′s,

ω1 ∧ ω2 = 1
a1

(θ1 ∧ θ2),

ω2 ∧ ω3 = a3

a1a5
θ1 ∧ θ2 + 1

a5
θ2 ∧ θ3. (3.11)
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Thus

dω1 = 1
L

( a3

a1a5
θ1 ∧ θ2 + 1

a5
θ2 ∧ θ3), (3.12)

and

dω2 = ( Lu
a1L
− a3Lp
a1a5L

)θ1 ∧ θ2 − Lp
a5L

(θ2 ∧ θ3), (3.13)

dω3 = 0. (3.14)

3.3 Structure equations
To find the structure equations, we compute the exterior derivative of the lifted coframe,

θ1 = a1ω
1,

dθ1 = da1 ∧ ω1 + a1dω
1,

= da1 ∧
θ1

a1
+ a1

L
( a3

a1a5
θ1 ∧ θ2 + 1

a5
θ2 ∧ θ3), (3.15)

therefore,

dθ1 = da1

a1
∧ θ1 + a3

a5L
θ1 ∧ θ2 + a1

a5L
θ2 ∧ θ3, (3.16)

Similarly

dθ2 = ( Lu
a1L
− a3Lp
a1a5L

)θ1 ∧ θ2 + (− Lp
a5L

)θ2 ∧ θ3,

dθ3 = (da3

a1
− a3

a1a5
da5) ∧ θ1 + (da4 −

a4

a5
da5) ∧ θ2 + da5

a5
∧ θ3

+ ( a2
3

a1a5L
+ a4Lu

a1L
− a3a4Lp

a1a5L
)θ1 ∧ θ2 + ( a3

a5L
− a4Lp

a5L
)θ2 ∧ θ3. (3.17)

3.4 Absorption, normalization, invariant reduction
We are now in a position to implement the Cartan algorithm by applying successive loops as
discussed in section (2.6), until we obtain an invariant coframe. Since the structure equations
are

dθ1 = α1 ∧ θ1 + T 1
12θ

1 ∧ θ2 + T 1
23θ

2 ∧ θ3,

dθ2 = T 2
12θ

1 ∧ θ2 + T 2
23θ

2 ∧ θ3,

dθ3 = α3 ∧ θ1 + α4 ∧ θ2 + α5 ∧ θ3 + T 3
12θ

1 ∧ θ2 + T 3
23θ

2 ∧ θ3, (3.18)

therefore the first loop follows.

Loop 1: From the structure equations it is clear that we can determine easily the inessential
torsion coefficients, which can be absorbed by using the following freedom:
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a1) Absorption :

α1 = π1 + T 1
12θ

2,

α3 = π3 + T 1
12θ

3,

α4 = π4 + T 3
23θ

3. (3.19)

Thus the structure equations reduced to

dθ1 = π1 ∧ θ1 + T 1
23θ

2 ∧ θ3, (3.20)
dθ2 = T 2

12θ
1 ∧ θ2 + T 2

23θ
2 ∧ θ3, (3.21)

dθ3 = π3 ∧ θ1 + π4 ∧ θ2 + π5 ∧ θ3, (3.22)

with

T 1
23 = a1

a5L
, T 2

12 = a5Lu − a3Lp
a1a5L

, T 2
23 = − Lp

a1a5L
. (3.23)

As we have absorbed all the inessential torsion coefficients therefore we apply normalization.

b1) Normalization: The remaining torsion coefficients can not be absorbed and are known as
essential torsion coefficients. Using Cartan’s method we can normalize all such coefficients by
equating these to appropriate constant values keeping in view that the inverse structure group
exists. Therefore

T 1
12 = 1, T 2

12 = 0, T 2
23 = −1, (3.24)

thus equation (3.23) implies that

a1 = Lp, a3 = Lu
L
, a5 = Lp

L
. (3.25)

This complete one loop in the Cartan algorithm, thus g becomes

g =

 Lp 0 0
0 1 0
Lu

L
a4

Lp

L

 . (3.26)

Now we obtain the structure equations corresponding to the new structure group (3.26). Since

da1 = d(Lp)
= Lpxdx+ Lpudu+ Lppdp, (3.27)

where again by replacing each 1-form (dx, du, dp) defined in terms of the new coframe elements
(3.2) we obtain

da1

a1
= 1
Lp

[Lpx(
ω2

L
) + Lpu(ω2 + p(ω

2

L
)) + Lppω

3]. (3.28)
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We also have from (3.4)

ω1 = θ1

Lp
, ω2 = θ2,

ω3 = −Lu
L2
p

θ1 − a4L

Lp
θ2 + L

Lp
θ3. (3.29)

Thus we obtain from (3.28)

da1

a1
= (Lpu

L2
p

− LppLu
L3
p

)θ1 + ( Lpx
LLp

+ pLpu
LLp

− a4LLpp
L2
p

)θ2 + LLpp
L2
p

θ3, (3.30)

π1 ∧ θ1 = ( Lpx
LLp

+ pLpu
LLp

− a4LLpp
L2
p

)θ2 ∧ θ1 + LLpp
L2
p

θ3 ∧ θ1. (3.31)

thus

dθ1 = (a4LLpp
L2
p

− Lpx
LLp

− pLpu
LLp

)θ1 ∧ θ2 − LLpp
L2
p

θ1 ∧ θ3 +
Lu

L
Lp

L
.L
θ1 ∧ θ2 + Lp

Lp

L
.L
θ2 ∧ θ3

Therefore the structure equations become,

dθ1 = (Lp(Lu − Lxp − pLup) + a4L
2Lpp

LL2
p

)θ1 ∧ θ2 − LLpp
L2
p

θ1 ∧ θ3 + θ2 ∧ θ3.

dθ2 = −θ2 ∧ θ3,

dθ3 = π4 ∧ θ2 + T 3
12θ

1 ∧ θ2 + T 3
23θ

2 ∧ θ3. (3.32)

We now arrive at the second loop.

Loop 2: The structure equations are

dθ1 = T 1
12θ

1 ∧ θ2 + T 1
13θ

1 ∧ θ3 + θ2 ∧ θ3, (3.33)
dθ2 = −θ2 ∧ θ3, (3.34)
dθ3 = π4 ∧ θ2 + T 3

12θ
1 ∧ θ2 + T 3

23θ
2 ∧ θ3. (3.35)

There is no inessential torsion coefficient to absorb, thus we go on to normalization.

b2) Normalization: The only essential torsion coefficient to normalize is T 1
12, thus setting

T 1
12 = 0, implies that

Lp(Lu − Lxp − pLup) + a4L
2Lpp

LL2
p

= 0, (3.36)

which gives

Lp(Lu − Lxp − pLup) + a4L
2Lpp = 0, (3.37)

introducing a new variable

Q = Ẽ(L)
Lpp

, (3.38)
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where

Ẽ(L) = Lu − Lxp − pLup,

we obtain the explicit form of a4 from equation (3.37)

a4 = −LpQ
L2 . (3.39)

3.5 Invariant coframe
We have normalized all the group parameters. Inserting their values, we get an invariant
coframe for the standard, fiber-preserving Lagrangian equivalence problem,

θ1 = Lp(du− pdx), (3.40)
θ2 = Ldx, (3.41)

θ3 = Lu
L

(du− pdx) + Lp
L

(dp−Qdx),

= d(logL)− D̂x(logL)dx, (3.42)

where

D̂x := ∂

∂x
+ p

∂

∂u
+Q(x, u, p) ∂

∂p
. (3.43)

The structure equations for the invariant coframe are then found to be

dθ1 = −I1θ
1 ∧ θ3 + θ2 ∧ θ3,

dθ2 = −θ2 ∧ θ3,

dθ3 = I2θ
1 ∧ θ2 + I3θ

2 ∧ θ3, (3.44)

where

I1 = LLpp
L2
p

, (3.45)

I2 = 1
L2L2

p

(LuxLp − pLuu − L2
u − LuLx + LxLxp + pLxLux + Lu), (3.46)

I3 = Lp
L2Lpp

(Lu − Lxp − pLup)−
Lpp
Lp

. (3.47)

Equation (3.44) provides us the structure equations on an invariant coframe where the
invariants are determined explicitly with in terms of the Lagrangian and its derivatives. We
can obtain some more information from these invariants by writing these in terms of the coframe
derivatives. In order to do that we proceed as follows. First we have

θ1 = −pLpdx+ Lpdu+ 0dp,
θ2 = Ldx+ 0du+ 0dp,

θ3 = (−pLu
L
− Lp

L
Q)dx+ Lu

L
du+ Lp

L
dp. (3.48)
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The coframe elements in terms of coordinate coframe is given by,

θi =
∑
j

aijdx
j, (3.49)

or

θ1 = a1
1dx+ a1

2du+ a1
3dp, (3.50)

θ2 = a2
1dx+ a2

2du+ a2
3dp, (3.51)

θ3 = a3
1dx+ a3

2du+ a3
3dp, (3.52)

with the coefficients matrix

A =

 −pLp Lp 0
L 0 0

−pLu

L
− QLp

L
Lu

L
Lp

L

 , (3.53)

with

A−1 = B = bij(x)


0 1

L
0

1
Lp

p
L

0
−Lu

L2
p

QLp+pLu−pLu

LLp

L
Lp

 . (3.54)

We can write the coframe derivatives in terms of the basic coframe elements by simply applying
the chain rule.

∂F

∂θj
=
∑
i

bij
∂

∂xi
, (3.55)

∂F

∂θ1 = b1
1
∂F

∂x1 + b2
1
∂F

∂x2 + b3
1
∂F

∂x3 ,

= b1
1
∂F

∂x
+ b2

1
∂F

∂u
+ b3

1
∂F

∂p
,

= LpFu − LuFp
L2
p

. (3.56)

Similarly
∂F

∂θ2 = 1
L
D̃xF,

∂F

∂θ3 = L

Lp

∂F

∂p
, (3.57)

with

D̃x = ∂

∂x
+ p

∂

∂u
+Q

∂

∂p
. (3.58)

The fundamental invariants can then be written in simple explicit form,

I1 = LLpp
L2
p

= 1
Lp

∂Lp
∂θ3 , (3.59)

I2 = − 1
L

∂2L

∂θ1∂θ2 , (3.60)

I3 = − 1
L

∂2L

∂θ3∂θ2 , (3.61)

(3.62)
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These formulas can be derived directly from the structure equation (3.44) and the basic defini-
tion for the coframe derivative. Applying (3.56), (3.57) when F = L, we first note that

∂L

∂θ1 = 0, ∂L

∂θ3 = L. (3.63)

Therefore

dL = ∂L

∂θ1 θ
1 + ∂L

∂θ2 θ
2 + ∂L

∂θ3 θ
3,

dL = ( ∂L
∂θ2 )θ2 + Lθ3. (3.64)

Furthermore, using structure equation (3.44),

0 = d2L = d( ∂L
∂θ2 ) ∧ θ2 + dL ∧ θ3 + ( ∂L

∂θ2 )dθ2 + Ldθ3,

0 = ( ∂2L

∂θ1∂θ2 + LI2)θ1 ∧ θ2 + (− ∂2L

∂θ3∂θ2 + LI3)θ2 ∧ θ3. (3.65)

Therefore
∂2L

∂θ1∂θ2 + LI2 = 0, (3.66)

and

− ∂2L

∂θ3∂θ2 + LI3 = 0. (3.67)

Thus

I2 = − 1
L

∂2L

∂θ1∂θ2 , (3.68)

I3 = 1
L

∂2L

∂θ3∂θ2 . (3.69)

Now if these invariants are constants then the symmetry group has dimension three, and the
group algebra can be found by

[ ∂
∂θj

,
∂

∂θk
] = −

3∑
i=1

T ijk
∂

∂θi
, (3.70)

i, j, k = 1,2,3, j < k.

[ ∂
∂θ1 ,

∂

∂θ2 ] = −T 1
12

∂

∂θ1 − T
2
12

∂

∂θ2 − T
3
12

∂

∂θ3 , (3.71)

thus
[V1, V2] = −I2V3,

[V1, V2] = −c2V3, (3.72)
where c2 = I2. Similarly

[V1, V3] = −c1V1, (3.73)
where c1 = I1, and

[V2, V3] = V1 − V2. (3.74)
Thus we have the following group algebra

[V1, V2] = −c2V3, [V1, V3] = −c1V1, [V2, V3] = V1 − V2. (3.75)
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Chapter 4

Equivalence of scalar second order ODEs

In this chapter we present the equivalence problem for a second order linear ODE [18] with
constant coefficients under fiber-preserving transformation using Cartan method of equivalence.
We will also find the symmetry group and the group algebra associated to our equivalence
problem. A linear second order ODE with constant coefficients is given by

u′′ = au′ + bu+ c = Q(x, u, u′). (4.1)

As before, we translate our problem in to geometrical terms.

4.1 Coframe
In this section we explain how to construct a runway for the Cartan algorithm, the first step
is to shift the equivalence problem over a manifold (M = J(x, u, p)) and associate differential
1-forms (coframe) with it. Thus the associated 1-forms are

ω1 = du− u′dx, ω2 = du−Q(x, u, u′)dx, ω3 = dx. (4.2)

It is easy to see that the above 1-forms constitute the basis for cotangent space.

4.2 Equivalence conditions
Since our equivalence problem is shifted to a manifold and we have associated a coframe with
it on M , now the coframe on M̄ will come from the equivalence condition. Since under fiber-
preserving transformations

du− pdx = λ(du− pdx),
dp− qdx = µ(du− pdx) + ν(dp− qdx),

dx = αdx. (4.3)

Therefore  ω̄1

ω̄2

ω̄3

 =

 a1 0 0
a2 a3 0
0 0 a4


 ω1

ω2

ω3

 , (4.4)
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(omitting the pull-back ) so that the lifted coframe is

θ1 = a1ω
1,

θ2 = a2ω
1 + a3ω

2,

θ3 = a4ω
3, (4.5)

with the structure group

g =


 a1 0 0
a2 a3 0
0 0 a4

 , such that a1a3a4 6= 0

 . (4.6)

Thus the structure group has dimension four, where g ∈ GL(3,R).

θ = g · ω

=

 a1 0 0
a2 a3 0
0 0 a4


 ω1

ω2

ω3

 .

4.3 Structure equations
To find the structure equations we first calculate the Maurer-Cartan forms using the formula
Π = dg · g−1, since

g =

 a1 0 0
a2 a3 0
0 0 a4

 , (4.7)

and

g−1 =


1
a1

0 0
− a2
a1a3

1
a3

0
0 0 1

a4

 , (4.8)

also

dg =

 da1 0 0
da2 da3 0
0 0 da4

 . (4.9)

Therefore

Π =

 α1 = da1
a1

0 0
α2 = da2

a1
− a2

a1a3
da3 α3 = da3

a3
0

0 0 α4 = da4
a4

 . (4.10)

Now since

ω1 = du− pdx, ω2 = dp− qdx, ω3 = dx. (4.11)
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Calculating exterior derivative of ω′s

dω1 = d(du)− dp ∧ dx,
dω1 = −ω2 ∧ ω3. (4.12)

Similarly

dω2 = −a(ω2 ∧ ω3)− b(ω1 ∧ ω3),
dω3 = 0. (4.13)

Writing dω′s in term of the wedge product of θ′s, since

ω1 = θ1

a1
,

ω2 = − a2

a1a3
θ1 + θ2

a3
,

ω3 = θ3

a4
, (4.14)

therefore

ω1 ∧ ω3 = 1
a1a4

θ1 ∧ θ3,

ω2 ∧ ω3 = − a2

a1a3a4
θ1 ∧ θ3 + 1

a3a4
θ2 ∧ θ3. (4.15)

Thus we have

dω1 = −ω2 ∧ ω3,

= −(− a2

a1a3a4
θ1 ∧ θ3 + 1

a3a4
θ2 ∧ θ3), (4.16)

or

dω1 = a2

a1a3a4
θ1 ∧ θ3 − 1

a3a4
θ2 ∧ θ3. (4.17)

Similarly

dω2 = [ a.a2

a1a3a4
− b

a1a4
]θ1 ∧ θ3 − a

a3a4
θ2 ∧ θ3,

dω3 = 0. (4.18)

Now since

θ1 = a1ω
1,

dθ1 = da1 ∧ ω1 + a1dω
1,

= da1 ∧ (θ
1

a1
) + a1( a2

a1a3a4
θ1 ∧ θ3 − 1

a3a4
θ2 ∧ θ3), (4.19)
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or

dθ1 = da1

a1
∧ θ1 + a2

a3a4
θ1 ∧ θ3 − a1

a3a4
θ2 ∧ θ3. (4.20)

Similarly

dθ2 = [da2

a1
− a2

a1a3
da3] ∧ θ1 + da3

a3
θ2 + [ a2

2
a1a3a4

+ a.a2

a1a4
− ba3

a1a4
]θ1 ∧ θ3 + [− a2

a3a4
− a

a4
]θ2 ∧ θ3,

dθ3 = da4

a4
∧ θ3. (4.21)

4.4 Absorption, normalization, invariant reduction
Now we are ready to go for the important steps in the Cartan algorithm, the goal is to absorb
as many torsion coefficients as we can and normalize the remaining torsion coefficients.

Loop 1: The structure equations are

dθ1 = α1 ∧ θ1 + T 1
13θ

1 ∧ θ3 + T 1
23θ

2 ∧ θ3,

dθ2 = α2 ∧ θ1 + α3 ∧ θ2 + T 2
13θ

1 ∧ θ3 + T 2
23θ

2 ∧ θ3,

dθ3 = α4 ∧ θ3. (4.22)

Subsequently we absorb all the inessential torsion coefficients.

a1) Absorption : From the above equation, the inessional torsion coefficients can clearly be
seen, they can easily be absorbed by using following freedom

α1 = π1 + T 1
13θ

3,

α2 = π2 + T 2
13θ

3,

α3 = π3 + T 2
23θ

3. (4.23)

The structure equations are reduced to,

dθ1 = π1 ∧ θ1 + T 1
23θ

2 ∧ θ3,

dθ2 = π2 ∧ θ1 + π3 ∧ θ2,

dθ3 = π4 ∧ θ3, (4.24)

with

T 1
23 = − a1

a3a4
.

Since there are no more torsion coefficients to absorb therefore we apply normalization.

b1) Normalization: The remaing essentional torsion coefficients are then normalized by as-
signing to the an appropriate value. Thus normalizing T 1

23 = −1, we determine

a3 = a1

a4
. (4.25)
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We now arrive at the second loop.

Loop 2

dθ1 = π1 ∧ θ1 − θ2 ∧ θ3,

dθ2 = π2 ∧ θ1 + (π1 − π4) ∧ θ2,

dθ3 = π4 ∧ θ3. (4.26)

In above system we have no essentional torsion to normalize, and thus the structure group is
not fully reduced. Now we must figure out whether the symmetry group of the equivalence
problem is infinite dimensional, which indicates that the system (4.26) is being in involution,
or finite dimensional so that the system (4.26) is not in involution, If not we must prolong. To
check the above cases we must apply the Cartan test.

4.5 Cartan test

First we will find the degree of indeterminacy, by replacing each Maurer’s Cartan for πi by a
linear combination zi1θ1 +zi2θ

2 +zi3θ
3 of the lifted coframe element (4.26), equating the resulting

coefficients of the basis of two form θj ∧ θk to zero. Since

dθ1 = π1 ∧ θ1 − θ2 ∧ θ3, (4.27)

therefore

dθ1 = (z1
1θ

1 + z1
2θ

2 + z1
3θ

3) ∧ θ1 − θ2 ∧ θ3,

= z1
2θ

2 ∧ θ1 + z1
3θ

3 ∧ θ1 − θ2 ∧ θ3, (4.28)

which implies that

z1
2 = z1

3 = 0. (4.29)

Similarly, from the other two equations we get

z2
3 = 0, z4

3 = 0, z1
1 = z4

1 + z2
2 ,

z4
1 = z4

2 = 0. (4.30)

Thus we have

z1
1 = z2

2 , z2
1 , z1

2 = z1
3 = z2

3 = z4
1 = z4

2 = z4
3 = 0. (4.31)

The two parameters z1
1 , z2

1 , can be chosen arbitrarily, they are the free variables for the absorp-
tion equation. Thus

r(1) = 2. (4.32)

To continue to apply the Cartan test for involution, we next introduce Cartan character asso-
ciated with the structure equation. For a given vector v = (v1, v2, v3) ∈ R3 define L[v] to be
3× 3, matrix

L[v] =

 v1 0 0
v2 v1 −v2

0 0 v3

 . (4.33)
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The row of L corresponds to the three structure equation and columns corresponds to the
Maurer’s Cartan form π1, π2, π4. The first reduce character s′

1 is the maximal rank of L[v] for
all possible vector v ∈ R3. Clearly s′

1 = 3, the second Cartan character is defined as

s
′

1 + s
′

2 = max rank



v1 0 0
v2 v1 −v2

0 0 v3

v̂
′ 0 0
v̂2 v̂

′ −v̂2

0 0 v̂3


= 3. (4.34)

Thus

s
′

1 + s
′

2 = 3,
s

′

2 = 3− 3 = 0,
s

′

2 = 0, s
′

3 = 0. (4.35)

Now applying the Cartan test to check whether the coframe is involutive or not

r(1) ≤ s
′

1 + 2s′

2 + 3s′

3, (4.36)
2 < 3, (satisfied). (4.37)

Thus the system (4.26), is not in involution, we must prolong.

4.6 Prolongation
Since the associated symmetry group to our equivalence problem is not infinite dimensional, and
the structure group is not fully reduced, which happen because the dimension of the associated
symmetry group of the equivalence problem is greater than the dimension of the underlying
manifold upon which the equivalence problem was defined. Therefore we must prolong the
dimension of our manifold by adding additional 1-forms. Now since

L[v] = Aijkv
j =

 z1
1 0 0
z2

1 z2
2 0

0 0 0

 =

 r 0 0
s r 0
0 0 0

 , (4.38)

with z1
1 = z2

2 = r and z2
1 = s. Here

π1 = $1 + rθ1,

π2 = $2 + sθ1 + rθ2,

π3 = $4, (4.39)

are the modified Maurer-Cartan forms, and the additional 1-forms

$1 = α1 − T 1
13θ

3,

$1 = α1 − a2

a1
θ3,

$2 = α2 + (ba
2
1 − a.a1a2a4 − a2

2a
2
4

a2
1a

2
4

)θ3,

$4 = α4 − (a.a1 + 2a2a4

a1a4
)θ3. (4.40)
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Now

$1 = α1 − a2

a1
θ3,

d$1 = d(α1)− d(a2

a1
) ∧ θ3 − a2

a1
dθ3,

d$1 = −(da2

a1
− a2

a2
1
da1) ∧ θ3 − a2

a1
(π4 ∧ θ3),

= a2

a1
(da1

a1
) ∧ θ3 − da2

a1
∧ θ3 − a2

a1
(π4 ∧ θ3),

= a2

a1
α1 ∧ θ3 − {α2 + a2

a1
(α1 − α4)} ∧ θ3 − a2

a1
(π4 ∧ θ3),

= a2

a1
α1 ∧ θ3 − α2 ∧ θ3 + a2

a1
α1 ∧ θ3 − a2

a1
α4 ∧ θ3 − a2

a1
(π4 ∧ θ3),

= $2 ∧ θ3 + a2

a1
$4 ∧ θ3 − a2

a1
(π4 ∧ θ3),

= −(π2 − sθ1 − rθ2) ∧ θ3 + a2

a1
(π4 ∧ θ3)− a2

a1
(π4 ∧ θ3),

or

d$1 = −π2 ∧ θ3 + sθ1 ∧ θ3 + rθ2 ∧ θ3. (4.41)

Similarly

d$2 = −sθ1 ∧ π4 − rθ2 ∧ π4 + π2 ∧ π4,

d$4 = −2π2 ∧ θ3 + 2sθ1 ∧ θ3 + 2rθ2 ∧ θ3. (4.42)

Now

π1 = $1 + rθ1,

dπ1 = d$1 + dr ∧ θ1 + rdθ1,

= (−π2 ∧ θ3 + sθ1 ∧ θ3 + rθ2 ∧ θ3) + dr ∧ θ1 + r(π1 ∧ θ1 − θ2 ∧ θ3),
= dr ∧ θ1 + sθ1 ∧ θ3 + rπ1 ∧ θ1 − π2 ∧ θ3,

which implies that

dπ1 = dr ∧ θ1 + sθ1 ∧ θ3 + rπ1 ∧ θ1 − π2 ∧ θ3,

dπ1 = ρ̃ ∧ θ1 + sθ1 ∧ θ3 + rπ1 ∧ θ1 − π2 ∧ θ3. (4.43)

a2) Absorption : The inessional torsion coefficients can clearly be absorved, they can be
absorbed by using following freedom

ρ̃ = ρ+ sθ3 − rπ1, (4.44)

and thus the structure equation dπ1 become

dπ1 = ρ ∧ θ1 − π2 ∧ θ3. (4.45)

Similarly

dπ2 = δ ∧ θ1 + ρ ∧ θ2 − 2sθ2 ∧ θ3 + π2 ∧ π4,

dπ4 = 2sθ1 ∧ θ3 + 2rθ2 ∧ θ3 − 2π2 ∧ θ3. (4.46)
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Thus the structure equations are

dθ1 = π1 ∧ θ1 − θ2 ∧ θ3,

dθ2 = π2 ∧ θ1 + (π1 − π4) ∧ θ2,

dθ3 = π4 ∧ θ3,

dπ1 = ρ ∧ θ1 − π2 ∧ θ3,

dπ2 = δ ∧ θ1 + ρ ∧ θ2 − Aθ2 ∧ θ3 + π2 ∧ π4,

dπ4 = Aθ1 ∧ θ3 +Bθ2 ∧ θ3 − 2π2 ∧ θ3, (4.47)

where

A = 2s, B = 2r. (4.48)

b2) Normalization: The only essentional torsion coefficients are A and B, which can be
normalized by assigning to them some appropriate value, thus normalizing A = B = 1 implies
that s = 1

2 and r = 1
2 . Therefore we immediately reduce the prolonged equivalence problem to

an equivalence problem for the coframe.

dθ1 = π1 ∧ θ1 − θ2 ∧ θ3,

dθ2 = π2 ∧ θ1 + (π1 − π4) ∧ θ2,

dθ3 = π4 ∧ θ3,

dπ1 = −π2 ∧ θ3,

dπ2 = −θ2 ∧ θ3 + π2 ∧ π4,

dπ4 = θ1 ∧ θ3 + θ2 ∧ θ3 − 2π2 ∧ θ3. (4.49)

The zeroth order classifying manifold is a single point defined by T ijk = −Ci
jk. All derived

invariants are automatically zero and hence every classifying manifold C(s) is a single point.
Therefore ρ(s) = 0, s ≥ 0, therefore the coframe has rank zero. Now

dθ1 = −θ1 ∧ θ4 − θ2 ∧ θ3,

dθ2 = −θ1 ∧ θ5 − θ2 ∧ θ4 + θ2 ∧ θ6,

dθ3 = −θ3 ∧ θ6,

dθ4 = θ3 ∧ θ5,

dθ5 = −θ2 ∧ θ3 − θ5 ∧ θ6,

dθ6 = θ1 ∧ θ3 + θ2 ∧ θ3 + 2θ3 ∧ θ5, (4.50)

with the torsion coefficients

T 1
14 = −1, T 1

23 = −1, T 2
15 = −1, T 2

24 = −1, T 2
26 = 1, T 3

36 = −1,
T 4

35 = 1, T 5
23 = −1, T 5

56 = 1, T 6
13 = 1, T 6

23 = 1, T 6
35 = 2. (4.51)

Now since

[ ∂
∂θj

,
∂

∂θk
] = −

6∑
i=1

T ijk
∂

∂θi
, (4.52)
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where i, j, k = 1...6; j < k

[ ∂
∂θ1 ,

∂

∂θ2 ] = −T 1
12

∂

∂θ1 − T
2
12

∂

∂θ2 − T
3
12

∂

∂θ3 − T
4
12

∂

∂θ4 − T
5
12

∂

∂θ5 − T
6
12

∂

∂θ6 , (4.53)

thus

[V1, V2] = 0. (4.54)

Similarly all others are zero, and the only non-zero commutators are,

[V1, V5] = [V2, V4] = −[V2, V6] = V2, [V2, V3] = V1 + V5 − V6, [V3, V5] = −V4 − 2V6,

[V1, V3] = −V6, [V1, V4] = V1, [V3, V6] = V3, [V5, V6] = −V5.
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Chapter 5

Equivalence of the system of second order linear ODEs

In the previous chapter we verified that for a scalar linear ODE with constant coefficients the
algebra of fiber-preserving transformations is six dimensional. It is well known that there is
more than one class of system of linear ODEs [30]. In this chapter our aim is to investigate the
equivalence of systems of second order linear ODEs. The aim is to generalize the equivalence
problem for a scalar linear ODE to a system of linear ODEs. For that purpose we consider a
system of un-coupled linear ODEs with constant coefficients and prove that the algebra of fiber-
preserving transformations is ten dimensional. In the last section we investigate a particular
class of system of coupled ODEs with constant coefficients and establish that the dimension of
algebra is six dimensional in this case. Therefore we have reconfirmed that there is more than
one class of system of linear ODEs using Cartan approach.

5.1 Equivalence of uncoupled system of second order lin-
ear ODEs

Consider a system of second order linear ODE with constant coefficients a, b, c and d

y′′ = ay′ + by,

z′′ = cz′ + dz. (5.1)

Thus the Cartan algorithm can be applied by introducing the corresponding coframe on the
cotangent space.

5.1.1 Coframe
In this section we explain how to construct a coframe for the Cartan algorithm to which the
equivalence approach developed in the second chapter can be applied. The preliminary step is
to shift the equivalence problem over a manifold (M = J2(x, y, z, y′ = p1, z

′ = q1)) and associate
differential 1-forms (coframe) with it. Thus the associated 1-forms are

ω1 = dy − y′dx, ω2 = dy′ − (ay′ + by)dx,
ω1 = dz − z′dx, ω4 = dz′ − (cz′ + dz)dx,
ω5 = dx. (5.2)

It is easy to see that the above 1-forms constitute the basis for cotangent space.
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5.1.2 Equivalence conditions
Since under fiber-preserving transformation

du− pdx = λ(du− pdx),
dp− qdx = µ(du− pdx) + ν(dp− qdx),

dx = αdx. (5.3)

Applying above transformation we get

ω1 = a1ω
1, ω2 = a2ω

1 + a3ω
2, ω3 = a4ω

3,

ω4 = a5ω
3 + a6ω

4, ω5 = a7ω
5, (5.4)


ω1

ω2

ω3

ω4

ω5

 =


a1 0 0 0 0
a2 a3 0 0 0
0 0 a4 0 0
0 0 a5 a6 0
0 0 0 0 a7




ω1

ω2

ω3

ω4

ω5

 , (5.5)

with the structure group

g = GF =


a1 0 0 0 0
a2 a3 0 0 0
0 0 a4 0 0
0 0 a5 a6 0
0 0 0 0 a7

 ; a1a3a4a6a7 6= 0, (5.6)

thus structure group has dimension seven, where g ∈ GL(5,R). Introducing the lifted coframe

θ = gω =


a1 0 0 0 0
a2 a3 0 0 0
0 0 a4 0 0
0 0 a5 a6 0
0 0 0 0 a7




ω1

ω2

ω3

ω4

ω5

 . (5.7)

5.1.3 Structure equations
For the structure equations let us compute dθ

dθ = dg ∧ ω + gdω,

= dgg−1 ∧ gω + gdω,

= Π ∧ θ + Tijθ
i ∧ θj. (5.8)

Where Π are the Maurer’s Cartan forms given by

Π = dg · g−1 =



da1
a1

0 0 0 0
da2
a1
− a2

a1a3
da3

da3
a3

0 0 0
0 0 da4

a4
0 0

0 0 da5
a4
− a5

a4a6
da6

da6
a6

0
0 0 0 0 da7

a7

 . (5.9)
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Now since
ω1 = dy − p1dx,

dω1 = d(dy)− dp1 ∧ dx− 0,
dω1 = −dp1 ∧ dx = −ω2 ∧ ω5,

dω1 = −ω2 ∧ ω5. (5.10)
Similarly

dω2 = −a(ω2 ∧ ω5)− b(ω1 ∧ ω5),
dω3 = −ω4 ∧ ω5,

dω4 = −c(ω4 ∧ ω5)− d(ω3 ∧ ω5),
dω5 = 0. (5.11)

Writing wedge product of ω′s in terms of wedge product of θ′s

ω2 ∧ ω5 = ( 1
a3
θ2 − a2

a1a3
θ1) ∧ (θ

5

a7
),

or

ω2 ∧ ω5 = 1
a3a7

θ2 ∧ θ5 − a2

a1a3a7
θ1 ∧ θ5. (5.12)

Similarly

ω1 ∧ ω5 = 1
a1a7

θ1 ∧ θ5,

ω3 ∧ ω5 = 1
a4a7

θ3 ∧ θ5,

ω4 ∧ ω5 = 1
a6a7

θ4 ∧ θ5 − a5

a4a6a7
θ3 ∧ θ5. (5.13)

In order to get the structure equations we calculate the differential of the lifted coframe, since
θ1 = a1ω

1,

dθ1 = d(a1ω
1) = da1 ∧ ω1 + a1dω

1,

= da1 ∧ (θ
1

a1 ) + a1(−ω2 ∧ ω5),

= da1

a1
∧ θ1 + a1( 1

a3a7
θ2 ∧ θ5 − a2

a1a3a7
θ1 ∧ θ5),

dθ1 = da1

a1
∧ θ1 − a1

a3a7
θ2 ∧ θ5 + a2

a3a7
θ1 ∧ θ5. (5.14)

Similarly

dθ2 = (da2

a1
− a2

a1a3
da3) ∧ θ1 + da3

a3
∧ θ2 + ( a.a2

a1a7
+ a2

2
a1a3a7

− b.a3

a1a7
)θ1 ∧ θ5 − ( a2

a3a7
+ a

a7
)θ2 ∧ θ5,

dθ3 = da4

a4
∧ θ3 − a4

a6a7
θ4 ∧ θ5 + a5

a6a7
θ3 ∧ θ5,

dθ4 = (da5

a4
− a5

a4a6
da6) ∧ θ3 + da6

a6
∧ θ4 + ( c.a5

a4a7
+ a2

5
a4a6a7

− d.a6

a4a7
)θ3 ∧ θ5 − ( a5

a6a7
+ c

a7
)θ4 ∧ θ5,

dθ5 = da7

a7
∧ θ5. (5.15)
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5.1.4 Absorption, normalization, invariant reduction
Now we are ready to go for the first loop of the Cartan algorithm, the goal is to absorb as
many torsion coefficients as we can, and normalize the remaining torsion coefficients called the
essential torsion.

Loop 1: The structure equations are

dθ1 = π1 ∧ θ1 + T 1
25θ

2 ∧ θ5 + T 1
15θ

1 ∧ θ5,

dθ2 = π2 ∧ θ1 + π3 ∧ θ2 + T 2
15θ

1 ∧ θ5 + T 2
25θ

2 ∧ θ5,

dθ3 = π4 ∧ θ3 + T 3
35θ

3 ∧ θ5 + T 3
45θ

4 ∧ θ5,

dθ4 = π5 ∧ θ3 + π6 ∧ θ4 + T 4
35θ

3 ∧ θ5 + T 4
45θ

4 ∧ θ5,

dθ5 = π7 ∧ θ5. (5.16)

We now absorb as many torsion coefficients as possible in the following step.

a1) Absorption : From the structure equations we can easily determine the inessential tor-
sion coefficients, they can be absorbed by using the freedom πi → πi + λijθ

j. Many torsion
coefficients can be absorbed obtaining

dθ1 = π1 ∧ θ1 + T 1
25θ

2 ∧ θ5,

dθ2 = π2 ∧ θ1 + π3 ∧ θ2,

dθ3 = π4 ∧ θ3 + T 3
45θ

4 ∧ θ5,

dθ4 = π5 ∧ θ3 + π6 ∧ θ4,

dθ5 = π7 ∧ θ5, (5.17)

with

T 1
25 = − a1

a3a7
, T 3

45 = − a4

a6a7
. (5.18)

b1) Normalization: The essential torsion coefficients that we are left with, are then normal-
ized by assigning to them an appropriate value, thus normalizing them to,

T 1
25 = −1 = T 3

45,
a1

a3a7
= 1, a4

a6a7
= 1.

a3 = a1

a7
, a6 = a4

a7
. (5.19)

The structure group g becomes

g =


a1 0 0 0 0
a2

a1
a7

0 0 0
0 0 a4 0 0
0 0 a5

a4
a7

0
0 0 0 0 a7

 , (5.20)
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and the Maurer-Cartan forms become

Π =



π1 = da1
a1

0 0 0 0
π2 = (da2

a1
−

d( a1
a7

).a2a7

a2
1

) π3 =
d( a1

a7
).a7

a1
0 0

0 0 π4 = da4
a4

0 0
0 0 π5 = (da5

a4
−

d( a4
a7

).a5a7

a2
4

) π6 =
d( a4

a7
).a7

a4
0

0 0 0 0 π7 = da7
a7


.

(5.21)

We now arrive at the second loop.

Loop 2: Applying the same procedure we arrive at the following structure equations

dθ1 = π1 ∧ θ1 − θ2 ∧ θ5,

dθ2 = π2 ∧ θ1 + (π1 − π7) ∧ θ2,

dθ3 = π4 ∧ θ3 − θ4 ∧ θ5,

dθ4 = π5 ∧ θ3 + (π4 − π7) ∧ θ4,

dθ5 = π7 ∧ θ5. (5.22)

In the above system we have no torsion to absorb/normalize. Thus we apply the Cartan
test which will indicate whether the symmetry group associated to our equivalence problem is
infinite dimensional or finite. If it is finite we prolong the dimension of underlying manifold.

5.1.5 Cartan test
Now we must figure out whether the symmetry group of the equivalence problem is infinite
dimensional which is indicated by the system (5.22) being in involution, or finite dimensional,
so that the system (5.22) is not in involution, we must prolong. Now to discuss above cases and
proceed the problem we apply Cartan’s test. For Cartan test first we will find the degree of
indeterminacy by replacing each Maurer’s Cartan form πi by linear combination zi1θ1 + zi2θ

3 +
zi3θ

3 + zi4θ
4 + zi5θ

5 of the lifted coframe elements (5.22). Equating the resulting coefficients of
the basis of two forms θj ∧ θk to zero.

dθ1 = π1 ∧ θ1 − θ2 ∧ θ5,

= (z1
1θ

1 + z1
2θ

3 + z1
3θ

3 + z1
4θ

4 + z1
5θ

5) ∧ θ1 − θ2 ∧ θ5,

= z1
2θ

3 ∧ θ1 + z1
3θ

3 ∧ θ1 + z1
4θ

4 ∧ θ1 + z1
5θ

5 ∧ θ1,

(5.23)

which implies that

z1
2 = z1

3 = z1
4 = z1

5 = 0. (5.24)

Similarly from

dθ2 = π2 ∧ θ1 + (π1 − π7) ∧ θ2,
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we get

z1
1 = z2

2 , z2
3 = z2

4 = z2
5 = z7

3 = z7
4 = z7

5 = 0,

and from

dθ3 = π4 ∧ θ3 − θ4 ∧ θ5, (5.25)

we get

z4
1 = z4

2 = z4
4 = z4

5 = 0. (5.26)

Similarly from

dθ4 = π5 ∧ θ3 + (π4 − π7) ∧ θ4, (5.27)

we get

z5
1 = z5

2 = z5
5 = z7

1 = z7
2 = 0, z4

3 = z5
4 , (5.28)

and from

dθ5 = π7 ∧ θ5, (5.29)

we get

z7
1 = z7

2 = z7
3 = z7

4 = 0. (5.30)

Thus

z1
1 = z2

2 , z4
3 = z5

4 , z1
2 = z1

3 = z1
4 = z1

5 = z2
3 = z2

4 = z2
5 = z4

1 = z4
2

= z4
4 = z4

5 = z5
1 = z5

2 = z5
5 = z7

1 = z7
2 = z7

3 = z7
4 = z7

5 = 0. (5.31)

The four parameters z2
1 , z

2
2 , z

5
3 , z

5
4 can be chosen arbitrarily. These are the free variables for the

absorption equations. Thus

r(1) = 4. (5.32)

To continue to describe Cartan’s test for involutivity, we next introduce Cartan characters
associated with the structure equations. For a given vector v = (v1, v2, v3, v4, v5) ∈ R5 define
L[v] to be the 5× 5 matrix

L[v] =


v1 0 0 0 0
v2 v1 0 0 −v2

0 0 v3 0 0
0 0 v4 v3 −v4

0 0 0 0 v5

 . (5.33)

The rows of L corresponds to the five structure equation and columns corresponds to the
Maurer-Cartan forms π1, π2, π4, π5, π7. The first reduced character is just the maximal rank of
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L[v] for all possible vectors v ∈ R5. Clearly s′
1 = 5 and the second Cartan reduced character is

defined by

s
′

1 + s
′

2 = max rank



v1 0 0 0 0
v2 v1 0 0 −v2

0 0 v3 0 0
0 0 v4 v3 −v4

0 0 0 0 v5

v̂1 0 0 0 0
v̂2 v̂1 0 0 −v̂2

0 0 v̂3 0 0
0 0 v̂4 v̂3 −v̂4

0 0 0 0 v̂5



. (5.34)

The maximum rank of this matrix is 5. Thus

s
′

2 = 5− s′

1 = 5− 5 = 0 (5.35)

which implies that

s
′

2 = 0. (5.36)

Similarly

s
′

3 = 0 = s
′

4 = s
′

5. (5.37)

Now we apply Cartan test to check whether the coframe is involutive or not

r(1) ≤ s
′

1 + 2s′

2 + 3s′

3 + 4s′

4 + 5s′

5,

4 < 5. (5.38)

Thus the system is not in involution, we must prolong the dimension of underlying manifold .

5.1.6 Prolongation
As we have seen that the associated symmetry group to our equivalence problem is not infinite
dimensional and the structure group is not fully reduced. It happened because the dimension of
the associated symmetry group was greater than the dimension of the underlying manifold upon
which the equivalence problem was constructed. Therefore we must prolong the dimension of
our manifold by adjoining additional 1-forms. Now since

L[v] = Aijkv
j =


z1

1 0 0 0 0
z2

1 z2
2 0 0 0

0 0 z4
3 0 0

0 0 z5
3 z5

4 0
0 0 0 0 0

 , (5.39)

with

z1
1 = z2

2 = r, z4
3 = z5

4 = u, z2
1 = s, z5

3 = t. (5.40)
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Thus

L[v] =


r 0 0 0 0
s r 0 0 0
0 0 u 0 0
0 0 t u 0
0 0 0 0 0

 . (5.41)

Here

π1 = $1 + rθ1, π2 = $2 + sθ1 + rθ2, π4 = $4 + uθ3,

π5 = $5 + tθ3 + uθ4, π7 = $7, (5.42)

are the Modified Maurer-Cartan forms and where

$1 = α1 − a2

a1
θ5,

$2 = α2 + ( b
a2

7
− aa2

a1a7
− a2

2
a2

1
)θ5,

$4 = α4 − a5

a4
θ5,

$5 = α5 + ( d
a2

7
− ca5

a4a7
− a2

5
a2

4
)θ5,

$7 = α4 − [2a2a7 + a.a1

a1a7
]θ5, (5.43)

are the additional 1-forms. Now calculating the exterior derivative of $′s, since

$1 = α1 − a2

a1
θ5, (5.44)

thus

d$1 = d(α1)− d(a2

a1
) ∧ θ5 − a2

a1
dθ5 − {da2

a1
− a2

a2
1
da1} ∧ θ5 − a2

a1
(π7 ∧ θ5),

= (a2

a1

da1

a1
) ∧ θ5 − da2

a1
∧ θ5 − a2

a1
(π7 ∧ θ5),

= a2

a1
α1 ∧ θ5 − {α2 + a2

a1
(α1 − α7)} ∧ θ5 − a2

a1
(π7 ∧ θ5),

= a2

a1
α1 ∧ θ5 − α2 ∧ θ5 − a2

a1
α1 ∧ θ5 + a2

a1
α7 ∧ θ5 − a2

a1
(π7 ∧ θ5),

= −$2 ∧ θ5 = −(π2 − sθ1 − rθ2) ∧ θ5,

(5.45)

or

d$1 = −π2 ∧ θ5 + sθ1 ∧ θ5 + rθ2 ∧ θ5. (5.46)

Similarly we obtain

d$2 = π2 ∧ θ7 − sθ1 ∧ π7 − rθ2 ∧ π7,

d$4 = tθ3 ∧ θ5 − π5 ∧ θ5,

d$5 = π5 ∧ π7 + tπ7 ∧ θ3 + Cπ5 ∧ θ5 − Ctθ3 ∧ θ5 − Fπ5 ∧ θ5 + Ftθ3 ∧ θ5,

d$7 = −2α2 ∧ θ5. (5.47)
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Now to find the structure equations we take exterior derivative of π′s, now since

π1 = $1 + rθ1, (5.48)

therefore

dπ1 = d$1 + dr ∧ θ1 + rdθ1,

= −π2θ5 + sθ1 ∧ θ5 + rθ2 ∧ θ5 + dr ∧ θ1 + r(π1 ∧ θ1 − θ2 ∧ θ5),
= dr ∧ θ1 + sθ1 ∧ θ5 + rπ1 ∧ θ1 − π2 ∧ θ5. (5.49)

We now absorb all the inessential torsion coefficients in the above structure equation.

a2) Absorption : The inessential torsion coefficients can be seen, they can easily be absorbed
by using following freedom of ρ̃

ρ̃ = ρ+ sθ5 − rπ1,

implies that

dπ1 = ρ ∧ θ1 − π2 ∧ θ5. (5.50)

Similarly

dπ2 = δ ∧ θ1 + ρ ∧ θ2 − 2sθ2 ∧ θ5 + π2 ∧ π7,

dπ4 = σ ∧ θ3 − uθ4 ∧ θ5 − π5 ∧ θ5,

dπ5 = Ω ∧ θ3 + σ ∧ θ4 + π5 ∧ π7 + Cπ5 ∧ θ5 − Fπ5 ∧ θ5 − 2tθ4 ∧ θ5 − uπ7 ∧ θ4,

dπ7 = 2sθ1 ∧ θ5 + 2rθ2 ∧ θ5 − 2π2 ∧ θ5,

(5.51)

Thus the structure equations (after absorption) becomes

dπ1 = ρ ∧ θ1 − π2 ∧ θ5,

dπ2 = δ ∧ θ1 + ρ ∧ θ2 − 2sθ2 ∧ θ5 + π2 ∧ π7,

dπ4 = σ ∧ θ3 − uθ4 ∧ θ5 − π5 ∧ θ5,

dπ5 = Ω ∧ θ3 + σ ∧ θ4 + π5 ∧ π7 + Cπ5 ∧ θ5 − Fπ5 ∧ θ5 − 2tθ4 ∧ θ5 − uπ7 ∧ θ4,

dπ7 = 2sθ1 ∧ θ5 + 2rθ2 ∧ θ5 − 2π2 ∧ θ5, (5.52)

or

dπ1 = ρ ∧ θ1 − π2 ∧ θ5,

dπ2 = δ ∧ θ1 + ρ ∧ θ2 − Aθ2 ∧ θ5 + π2 ∧ π7,

dπ4 = σ ∧ θ3 −Kθ4 ∧ θ5 − π5 ∧ θ5,

dπ5 = Ω ∧ θ3 + σ ∧ θ4 + π5 ∧ π7 + Cπ5 ∧ θ5 − Fπ5 ∧ θ5 − Lθ4 ∧ θ5 −Kπ7 ∧ θ4,

dπ7 = Aθ1 ∧ θ5 +Bθ2 ∧ θ5 − 2π2 ∧ θ5, (5.53)

where A = 2s, B = 2r, K = u, L = 2t, C = 2a5a7+a.a1
a1a7

, F = 2a5a7+c.a4
a4a7

.
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Subsequently the essential torsion coefficients can be normalized in the next step.

b2) Normalization: The remaining torsion coefficients are to be normalized by assigning
them some appropriate value, thus normalizing them to A = B = K = L = 1 implies that
s = 1

2 , r = 1
2 , u = 1, t = 1

2 and ds = dr = du = dt = 0 so that σ = ρ = δ = Ω = 0.
Therefore we immediately reduce the prolonged equivalence problem to an equivalence problem
for the coframe. Thus the final structure equations are

dθ1 = π1 ∧ θ1 − θ2 ∧ θ5,

dθ2 = π1 ∧ θ2 − π7 ∧ θ2,

dθ3 = π4 ∧ θ3 − θ4 ∧ θ5,

dθ4 = π4 ∧ θ4 − π7 ∧ θ4,

dθ5 = π7 ∧ θ5,

dπ1 = −π2 ∧ θ5,

dπ2 = −θ2 ∧ θ5 + π2 ∧ π7,

dπ4 = −θ4 ∧ θ5 − π5 ∧ θ5,

dπ5 = π5 ∧ π7 − θ4 ∧ θ5 − π7 ∧ θ4,

dπ7 = θ1 ∧ θ5 + θ2 ∧ θ5 − 2π2 ∧ θ5. (5.54)

The zeroth order classifying manifold is a single point defined by T ijk = −Ci
jk. All derived

invariants are automatically zero and hence every classifying manifold C(s) is a single point.
Therefore ρ(s) = 0, s ≥ 0, therefore the coframe has rank zero. In more abstract notation

dθ1 = −θ1 ∧ θ6 − θ2 ∧ θ5,

dθ2 = −θ2 ∧ θ6 + θ2 ∧ θ10,

dθ3 = −θ3 ∧ θ8 − θ4 ∧ θ5,

dθ4 = −θ4 ∧ θ8 + θ4 ∧ θ10,

dθ5 = −θ5 ∧ θ10,

dθ6 = θ5 ∧ θ7,

dθ7 = −θ2 ∧ θ5 + θ7 ∧ θ10,

dθ8 = −θ4 ∧ θ5 + θ5 ∧ θ9,

dθ9 = −θ4 ∧ θ5 + θ4 ∧ θ10 + θ9 ∧ θ10,

dθ10 = θ1 ∧ θ5 − θ2 ∧ θ5 + 2θ5 ∧ θ7, (5.55)

where (π1 = θ6, π2 = θ7, π4 = θ8, π5 = θ9, π7 = θ10)

T 1
16 = −1, T 1

25 = −1, T 2
26 = −1, T 2

210 = 1, T 3
38 = −1, T 3

45 = −1,
T 4

48 = −1, T 4
410 = 1, T 5

510 = −1, T 6
57 = 1, T 7

25 = −1, T 7
710 = 1

T 8
45 = −1, T 8

59 = 1, T 9
45 = −1, T 9

410 = 1, T 9
410 = 1, T 9

910 = 1,
T 10

15 = 1, T 10
25 = −1, T 10

57 = −2, (5.56)

Now since

[ ∂
∂θj

,
∂

∂θk
] = −

10∑
i=1

T ijk
∂

∂θi
, (5.57)
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for i = 1, j = 2, we get

[ ∂
∂θ1 ,

∂

∂θ2 ] = −T 1
12

∂

∂θ1 − T
2
12

∂

∂θ2 − T
3
12

∂

∂θ3 − T
4
12

∂

∂θ4 − T
5
12

∂

∂θ5 − T
6
12

∂

∂θ6 ,−T
7
12

∂

∂θ7 ,−T
8
12

∂

∂θ8 ,

−T 9
12

∂

∂θ9 ,−T
10
12

∂

∂θ10 ,

(5.58)

which implies that

[V1, V2] = 0. (5.59)

Similarly all other commutators relations are zero, and the only non-zero commutators relations
are,

[V1, V5] = −V10, [V1, V6] = V1, [V2, V5] = V1 + V7 + V10, [V2, V6] = V2,

[V2, V10] = −V2, [V3, V8] = −V3, [V4, V5] = V3 + V8 + V9, [V4, V8] = V4,

[V4, V10] = −V4 − V9, [V5, V7] = −V6 − 2V10, [V5, V9] = −V8, [V5, V10] = V5,

[V7, V10] = −V7, [V9, V10] = −V9. (5.60)

5.2 Equivalence of coupled systems of second order lin-
ear ODEs

Consider a coupled system of second order linear ODE,

y′′ = az′ + bz,

z′′ = cy′ + dy, (5.61)

where a, b, c and d are arbitrary constants. The above system is a special case of a coupled
linear system. Both equations in the above system contains velocity and displacement terms.

5.2.1 Coframe
In this section we explain how to construct a coframe for the Cartan algorithm to which the
equivalence approach developed in the second chapter can be applied. The preliminary step is to
shift the equivalence problem over a manifold (M = J2(x, y, z, p1, q1)) and associate differential
1-forms (coframe) with it. Thus the associated 1-forms are

ω1 = dy − p1dx, ω2 = dp1 − q1dx,

ω3 = dz − p2dx, ω4 = dp2 − q2dx,

ω5 = dx. (5.62)

such that their wedge products do not vanish.
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5.2.2 Equivalence conditions
Under a (subcase) of fiber-preserving transformation in which

(x, y, z) = (x̄→ (Φ(x), ȳ = Ψ(x, z), z̄ = η(x, y)). (5.63)

Thus the coframe on M̄ , using above transformation

ω1 = a1ω
3, ω2 = a2ω

3 + a3ω
4, ω3 = a4ω

1,

ω4 = a5ω
1 + a6ω

2, ω5 = a7ω
5, (5.64)

or 
ω1

ω2

ω3

ω4

ω5

 =


0 0 a1 0 0
0 0 a2 a3 0
a4 0 0 0 0
a5 a6 0 0 0
0 0 0 0 a7




ω1

ω2

ω3

ω4

ω5

 , (5.65)

with the structure group

g = GF =


0 0 a1 0 0
0 0 a2 a3 0
a4 0 0 0 0
a5 a6 0 0 0
0 0 0 0 a7

 ; a1a3a4a6a7 6= 0, (5.66)

the structure group in this case has dimension seven, where g ∈ GL(5,R). The lifted coframe
are given by

θ = g · ω =


0 0 a1 0 0
0 0 a2 a3 0
a4 0 0 0 0
a5 a6 0 0 0
0 0 0 0 a7




ω1

ω2

ω3

ω4

ω5

 . (5.67)

5.2.3 Structure equations
To find the structure equation we take exterior derivative of θ, therefore

dθ = dg ∧ ω + gdω = dgg−1 ∧ gω + gdω,

= Π ∧ θ + T ijkθ
j ∧ θk. (5.68)

Where Π are the Maurer’s Cartan forms, and is given by

Π = dg · g−1 =



da1
a1

0 0 0 0
da2
a1
− a2

a1a3
da3

da3
a3

0 0 0
0 0 da4

a4
0 0

0 0 da5
a4
− a5

a4a6
da6

da6
a6

0
0 0 0 0 da7

a7

 . (5.69)
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Now let us calculate dω’s

ω1 = dy1 − p1dx,

dω1 = d(dy1)− dp1 ∧ dx− 0,
dω1 = −dp1 ∧ dx = −ω2 ∧ ω5,

dω1 = −ω2 ∧ ω5. (5.70)

Since

ω2 ∧ ω5 = − a5

a4a6
θ3 ∧ θ5 + 1

a6a7
θ4 ∧ θ5. (5.71)

Therefore

dω1 = a5

a4a6
θ3 ∧ θ5 − 1

a6a7
θ4 ∧ θ5. (5.72)

Similarly

dω2 = [ a.a2

a1a3a7
− b

a1a7
]θ1 ∧ θ5 − a

a3a7
θ2 ∧ θ5,

dω3 = a2

a1a3a7
θ1 ∧ θ5 − 1

a3a7
θ2 ∧ θ5,

dω4 = [ c.a5

a4a6
− d

a4a7
]θ3 ∧ θ5 − c

a6a7
θ4 ∧ θ5,

dω5 = 0. (5.73)

Now since

θ1 = a1ω
3.

Calculating the exterior derivative of θ1, we get

dθ1 = d(a1ω
3) = da1 ∧ ω3 + a1dω

3,

= da1

a1
∧ θ1 + a1( a2

a1a3a7
θ1 ∧ θ5 − 1

a3a7
θ2 ∧ θ5),

dθ1 = da1

a1
∧ θ1 + a2

a3a7
θ1 ∧ θ5 − a1

a3a7
θ2 ∧ θ5. (5.74)

Similarly

dθ2 = (da2

a1
− a2

a1a3
da3) ∧ θ1 + da3

a3
∧ θ2 + a2

2
a1a3a7

θ1 ∧ θ5

− a2

a3a7
θ2 ∧ θ5 − (c.a3a5

a4a6
− a3.d

a4a7
)θ3 ∧ θ5 − c.a3

a6a7
)θ4 ∧ θ5,

dθ3 = da4

a4
∧ θ3 + a5

a6
θ3 ∧ θ5 − a4

a6a7
θ4 ∧ θ5,

dθ4 = (da5

a4
− a5

a4a6
da6) ∧ θ3 + da6

a6
∧ θ4 + ( a.a2a6

a1a3a7
− b.a6

a1a7
)θ1 ∧ θ5

− a.a6

a3a7
θ2 ∧ θ5 + a2

5
a4a6

θ3 ∧ θ5 − a5

a6a7
θ4 ∧ θ5,

dθ5 = da7

a7
∧ θ5. (5.75)
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5.2.4 Absorption, normalization, invariant reduction
Now we are ready to go for the first loop of the Cartan algorithm, the goal is to absorb as many
torsion coefficients as we can, and normalize the remaining essential torsion.

Loop 1: Since the structure equations are

dθ1 = α1 ∧ θ1 + T 1
15θ

1 ∧ θ5 + T 1
25θ

2 ∧ θ5,

dθ2 = α2 ∧ θ1 + α3 ∧ θ2 + T 2
15θ

1 ∧ θ5 + T 2
25θ

2 ∧ θ5 + T 2
35θ

3 ∧ θ5 + T 2
45θ

4 ∧ θ5,

dθ3 = α4 ∧ θ3 + T 3
35θ

3 ∧ θ5 + T 3
45θ

4 ∧ θ5,

dθ4 = α5 ∧ θ3 + α6 ∧ θ4 + T 4
15θ

1 ∧ θ5 + T 4
25θ

2 ∧ θ5 + T 4
35θ

3 ∧ θ5 + T 4
45θ

4 ∧ θ5,

dθ5 = α7 ∧ θ5. (5.76)

a1) Absorption : We will absorb as many inessional torsion coefficients as we can, by using
the following freedom

α1 = π1 + T 1
15θ

5,

α2 = π2 + T 2
15θ

5,

α3 = π3 + T 2
25θ

5,

α4 = π4 + T 3
35θ

5,

α5 = π5 + T 4
35θ

5,

α6 = π6 + T 4
45θ

5.

(5.77)

These torsion coefficients can be absorbed and thus the structure equations reduced to

dθ1 = π1 ∧ θ1 + T 1
25θ

2 ∧ θ5,

dθ2 = π2 ∧ θ1 + π3 ∧ θ2 + T 2
35θ

3 ∧ θ5 + +T 2
45θ

4 ∧ θ5,

dθ3 = π4 ∧ θ3 + T 3
45θ

4 ∧ θ5,

dθ4 = π5 ∧ θ3 + π6 ∧ θ4 + T 4
15θ

1 ∧ θ5 + T 4
25θ

2 ∧ θ5,

dθ5 = π7 ∧ θ5, (5.78)

with

T 1
25 = − a1

a3a7
, T 2

35 = c.a3a5

a4a6
− d.a3

a4a7
, T 2

45 = − c.a3

a6a7
, T 3

45 = − a4

a6a7
,

T 4
15 = a.a2a6

a1a3a7
− ba6

a1a7
, T 4

25 = − a.a6

a3a7
. (5.79)

b1) Normalization: The unabsorbed torsion coefficients called the essential torsion coeffi-
cients are get to normalize, thus assigning them to

T 1
25 = −1⇒ a1

a7
= a3, T

2
45 = −1⇒ c.a1

a2
7

= a6,

T 3
45 = −1⇒ c.a1

a7
= a4, T

2
35 = 0⇒ d.a1

a3
7

= a5,

T 4
15 = 0⇒ b.a1

aa7
= a2, T 4

25 = −1⇒ a7 = ±
√
ac.
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Therefore

a2 = b

a
√
ac

(a1), a3 = 1√
ac

(a1), a4 = c

a
√
ac

(a1),

a5 = d

ac
√
ac

(a1), a6 = 1
a

(a1), a7 =
√
ac. (5.80)

Thus g becomes

g =



0 0 a1 0 0
0 0 ba1

a
√
ac

a1√
ac

0
c.a1√
ac

0 0 0 0
d.a1
ac
√
ac

a1
a

0 0 0
0 0 0 0

√
ac

 , (5.81)

and the Maurer-Cartan forms become

Π =


π1 = da1

a1
0 0 0 0

0 π1 0 0
0 0 π1 0 0
0 0 0 π1 0
0 0 0 0 0

 .

(5.82)

Loop 2: Now we are in a position to apply the second loop, therefore

dθ1 = π1 ∧ θ1 − θ2 ∧ θ5,

dθ2 = π1 ∧ θ2 − θ4 ∧ θ5,

dθ3 = π1 ∧ θ3 − θ4 ∧ θ5, (5.83)
dθ4 = π1 ∧ θ4 − θ2 ∧ θ4,

dθ5 = 0.

Since there are no essential torsion coefficients to normalize and thus the structure group is
left with a single parameter. Now we must figure out whether the symmetry group of the
equivalence problem is infinite dimensional or finite dimensional, which will be decided by
following Cartan test.

5.2.5 Cartan test
In order to apply the Cartan test we find the degree of indeterminacy by replacing each Maurer’s
Cartan form πi by linear combination zi1θ

1 + zi2θ
2 + zi3θ

3 + zi4θ
4 + zi5θ

5 of the lifted co-frame
elements (5.83). Equating the resulting coefficients of the basis of two forms θj ∧ θk to zero.
Now since

dθ1 = π1 ∧ θ1 − θ2 ∧ θ5,

= (z1
1θ

1 + z1
2θ

2 + z1
3θ

3 + z1
4θ

4 + z1
5θ

5) ∧ θ1 − θ2 ∧ θ5,

= z1
2θ

3 ∧ θ1 + z1
3θ

3 ∧ θ1 + z1
4θ

4 ∧ θ1 + z1
5θ

5 ∧ θ1,

(5.84)
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which implies that

z1
2 = z1

3 = z1
4 = z1

5 = 0. (5.85)

Similarly

z1
1 = z1

3 = z1
4 = z1

5 = 0. (5.86)

Since there is no free parameter in the absorption equation, thus

r(1) = 0. (5.87)

To apply Cartan’s test of involutivity, we next introduce the Cartan characters associated with
the structure equations. For a given vector v = (v1, v2, v3, v4, v5) ∈ R5 define L[v] to be 5× 1
matrix

L[v] =
[
v1 v2 v3 v4 0

]T
. (5.88)

The row of L corresponds to the five structure equation and column corresponds to the Maurer’s
Cartan form π1. The first reduced character is just the maximal rank of L[v] for all possible
vectors v ∈ R5. Clearly s′

1 = 1, the 2nd Cartan reduced character is defined by

s
′

1 + s
′

2 = max rank
[
v1 v2 v3 v4 0 v̂1 v̂2 v̂3 v̂4 0

]T
, (5.89)

thus

s
′

1 + s
′

2 = 1, s
′

2 = 0, (5.90)

Similarly

s
′

3 = s
′

4 = s
′

5 = 0. (5.91)

Now we apply the Cartan test to check whether the coframe is involutive or not

r(1) ≤ s
′

1 + 2s′

2 + 3s′

3 + 4s′

4 + 5s′

5,

0 < 1 + 0 + 0 + 0 + 0,
0 < 1. (5.92)

Thus the system is not in involution, we must prolong.

5.2.6 Prolongation
Now proceeding to the next step by adding additional one-forms, since

L[v] = Aijkv
j =

[
0 0 0 0 0

]T
. (5.93)

Now

π1 = $1, (5.94)
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and

$1 = α1 − b

a
√
ac
θ5,

d$1 = dα1 − d( b

a
√
ac

) ∧ θ5 − b

a
√
ac
dθ5,

d$1 = 0 + 0− b

a
√
ac

(0),

d$1 = 0. (5.95)

Thus the final structure equations become

dθ1 = π1 ∧ θ1 − θ2 ∧ θ5,

dθ2 = π1 ∧ θ2 − θ4 ∧ θ5,

dθ3 = π1 ∧ θ3 − θ4 ∧ θ5,

dθ4 = π1 ∧ θ4 − θ2 ∧ θ5,

dθ5 = 0,
dπ1 = 0. (5.96)

Consider θ6 = π1, therefore the invariant coframe is obtained and the structure equations
become

dθ1 = −θ1 ∧ θ6 − θ2 ∧ θ5,

dθ2 = −θ2 ∧ θ6 − θ4 ∧ θ5,

dθ3 = −θ3 ∧ θ6 − θ4 ∧ θ5,

dθ4 = −θ4 ∧ θ6 − θ2 ∧ θ5,

dθ5 = 0,
dθ6 = 0, (5.97)

where

T 1
16 = −1, T 1

25 = −1, T 2
26 = −1, T 2

45 = −1,
T 3

36 = −1, T 3
45 = −1, T 4

46 = −1, T 4
25 = −1. (5.98)

Now since we know that

[ ∂
∂θj

,
∂

∂θk
] = −

6∑
i=1

T ijk
∂

∂θi
, (5.99)

thus we have

[ ∂
∂θ1 ,

∂

∂θ2 ] = −T 1
12

∂

∂θ1 − T
2
12

∂

∂θ2 − T
3
12

∂

∂θ3 − T
4
12

∂

∂θ4 − T
5
12

∂

∂θ5 − T
6
12

∂

∂θ6 ,

which implies that

[ ∂
∂θ1 ,

∂

∂θ2 ] = 0.
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Therefore

[V1, V2] = 0, (5.100)

where all the other commutators are zero except

[V1, V6] = V1, [V2, V5] = V1 + V4, [V2, V6] = V2,

[V3, V6] = V3, [V4, V5] = V2 + V3, [V4, V6] = V4. (5.101)

Note that the symmetry algebra of fiber-preserving transformation is six dimensional for a
coupled system of ODEs (5.61). However the algebra in the case of an un-coupled system
of ODEs (5.1) was ten dimensional. Since both systems (5.1) and (5.61) are linear therefore
Cartan approach successfully confirms that there is more than one class of system of linear
ODEs.
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Chapter 6

Conclusion

Cartan’s method of equivalence is a powerful technique to unveil hidden invariant properties of
two geometric objects. It involves algorithmic steps of absorption, normalization and prolon-
gation. The main aim of the thesis was to study the equivalence of scalar Lagrangians, scalar
linear ODEs and their systems. The equivalence problem for the two scalar Lagrangians was
investigated and it was verified that the maximum dimensions of the symmetry group associ-
ated to the equivalence problem is three. Besides, it was shown that a scalar second order linear
ODE with constant coefficients is equivalent to a free particle equation because the dimension
of symmetry algebra of fibre-preserving transformations for the former is six, i.e., equivalent to
the dimension of the symmetry algebra for free particle equation. These results were already
known in the literature which we extended to systems of two linear ODEs. In particular it
was shown that the equivalence of systems of two linear ODEs give us the identification of two
different symmetry algebras of fibre-preserving transformations. It turns out that we obtain
a six-dimensional algebra if the system is coupled and ten-dimensional algebra if the system
is uncoupled. Interestingly the coupling between the two ODEs in the system involves both
velocity as well as displacement terms. Therefore, we have reconfirmed the claim that there is
more than one class of systems of linear ODEs using Cartan approach which was known from
another approach. The Cartan approach can be extended to identify all classes of systems of
linear ODEs under point transformations which is the main subject of study in a forthcoming
paper [31].
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