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Abstract

We present a sieve for analyzing composite and the prime numbers using equivalence
classes based on the modulo 6 return value as applied to the natural numbers.
Five characteristics of this Hexile sieve are brushed up. The first aspect is that
it narrows the search for primes to one-third. The second feature is that we can
obtain from the equivalence class formulae, a property of its diophantine equations
to distinguish between primes and composites resulting from multiplication of these
primes. Thirdly, we ascribe a non-random occurrence to not only the composites in
the two equivalence classes but by default and as a consequence: non-randomness
of occurrence to the resident primes from these diophantine formulations. Fourthly,
we develop a theoretical basis for sieving primes. In the last, we discuss about the
diophantine equations that allow another route to a prime counting function.
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Chapter 1

Prime and Composite Numbers

1.1 Prime Numbers

A natural number (i.e. 1, 2, 3, 4, etc.) is called a prime number or simply prime if
it has just two positive divisors, 1 and the number itself [5].

2 is a prime because 2 has only positive divisors by 1 and 2. 3 is also prime:
the only natural numbers dividing 3 are 1 and 3. However, 4 is not a prime, since
2 is another number dividing 4 without remainder in addition to 1 and 4. Any
even number greater than 2 is not prime because by definition, any even number
n, greater than 2 has at least three distinct positive divisors, namely 1, 2, and n.
This implies that n is not prime. Consequently, the term odd prime is related to
any prime greater than 2. Similarly, all prime numbers greater than 5 when written
in the usual decimal system have the last digit 1, 3, 7, or 9, because all the even
numbers are divisible by 2 and numbers ending in 0 or 5 are divisible by 5.

If n is a prime, then n is only divided by 1 and n without remainder. Therefore,
we can also restate the condition of being a prime as: a number n greater than
1 is a prime number if it can not be divided by any of 2, 3, 4, ..., n − 1 without
remainder. However another way to state the same is: a number n greater than 1
is prime number if there do not exist any two greater than 1 integers a and b such
that n = a.b.

List of all less than 1000 primes is.
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2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379
383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541 547 557 563 569 571
577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761
769 773 787 797 809 811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997

We can divide roughly, the theory of primes into main four inquiries:
(i) How many prime numbers are there?
(ii) How one can recognize them?
(iii) How one can create them?
(iv) How are prime numbers distributed between the natural numbers?

Theorem 1.1.1. There are boundlessly many primes. It can also be stated as: the
prime numbers 2, 3, 5, 7, 11, ... never end.

Above theorem is cited to, in honor of the ancient Greek mathematician Euclid
as ”Euclid’s theorem”, since the first known proof for this theorem is assigned to
him. Many more proofs about infiniteness of primes are known, including an analyt-
ical proof by Euler, Goldbach’s proof based on Fermat numbers [16], using general
topology Furstenberg’s proof [1] and elegant proof of Kummer [13]. In mathemat-
ics, the Riemann hypothesis, suggested by Bernhard Riemann (1859), is a conjecture
that the real part of all the nontrivial zeros of the Riemann zeta function is 1/2. In
addition to the Riemann hypothesis, many more conjectures relating about prime
numbers have been posed. Often having an elementary formulation, many of these
conjectures have resisted a proof for decades: all four of problems of Landau from
1912 are even unsolved. One of them is conjecture of Goldbach, which asserts that
every greater than 2 even integer n can be represented as a sum of two prime num-
bers. As of February 2011, this conjecture has been proved for all numbers up to
n = 2× 1017 [15]. Weaker arguments than this have been proven, for example Vino-
gradov’s theorem states that ”every sufficiently large odd integer can be written as
a sum of three primes”. Chen’s theorem states that ”every sufficiently large even
number can be expressed as the sum of a prime and a semiprime, the product of
two primes”. Also, ”any even integer can be written as the sum of six primes [12]”.
The branch of number theory examining such questions is called additive number
theory.
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In number theory, the asymptotic distribution of the primes is given by the prime
number theorem (PNT). The prime number theorem (PNT) gives a general descrip-
tion of how the prime numbers are distributed between the natural numbers. It
formalizes the intuitive thought that prime numbers become less common as they
become bigger. In mathematics, the function which is used to count the number of
prime numbers less than or equal to some real number n is called prime-counting
function [3]. It is denoted by π(n) (this does not relate to the number π). Following
graph shows the values of π(n) for first 60 non-negative integers.

Figure 1.1: The Value of π(n) for First 60 Integers

The growth rate of prime-counting function is of great interest in number theory.
At the end of the 18th century, it was conjectured by Gauss and Legendre to be
approximately:

π(n) =
n

lnn
. (1.1)

In the sense that

lim
n→∞

π(n)

n/ lnn
= 1.

The above statement is called prime number theorem. Jacques Hadamard and
Charles de la Valle Poussin proved the prime number theorem in 1896 first time
independently, using properties of the Riemann zeta function given by Riemann in
1859.
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There are many interesting facts about prime numbers, some of them are: 1 is
not a prime because there must be exactly two divisors of a prime number, 1 and
number itself but 1 has only one divisor which is 1 itself. There is only one even
prime number “2”and it is the smallest prime number. The scientists have interest
in prime numbers, especially in larger ones. Larger prime numbers are used as keys
to send secret messages in codes. Such codes are difficult to break because they are
not easy to find. There is no formula to find the sequence of prime numbers. The
table below shows an indication of ”how many prime numbers are there” and their
% in all numbers.

Range from 0 to Number of primes % of primes
10 4 40%
100 25 25%
1000 168 16.8%
10000 1229 12.3%
100000 9592 9.6%
1000000 78498 7.8%
10000000 664579 6.6%
100000000 5761455 5.8%
1000000000 50847534 5.1%
10000000000 455052511 4.6%

Table 1.1: Number of primes from 0 to 10000000000 and their % among the numbers

The prime numbers constitute at the same time one of the most basic and one
of the most confusing concepts in the whole mathematics. They are, according
to the fundamental theorem of arithmetic, the “atoms”or “building blocks”of the
integers and have been studied ever since mankind started studying mathematics
itself. Indeed, even today, you would be hardly pressed to find an elementary number
theory book or course that does not mention them at the beginning; Euclid’s proof
about the infinity of primes is among the very first proofs, any young mathematician
encounters. At the same time, the primes are at the heart of many of modern
mathematics’ hardest and most puzzling problems, from the famous Goldbach and
Twin Prime conjectures to the Riemann Hypothesis, widely considered one of the
most important unsolved problems of the whole mathematics. Although they are
among the “purest”of mathematical objects, their theory has applications in areas of
cryptography and computer science. We think to know them well yet they constantly
surprise us with their properties and behavior. The whole theory of prime numbers
is filled with such conflicting truths and indeed our very attitudes towards them
have ranged from adoration (as was the case of the Pythagoreans) to confusion (as
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is echoed by Euler’s quote, even though few in the history of mathematics have been
as acquainted with them as he was).

1.1.1 Historical Background

The prime numbers have a deep history. The ancient Egyptians were known as
earliest civilization who know about prime numbers. There aren’t many strong evi-
dence that they absolutely knew about prime numbers, Only the surviving records
show that they had some knowledge. The earliest civilization that has a surviving
record of prime numbers come from the Greeks. Euclid’s Elements, a mathematical
writing that includes 13 books composed by Euclid in 300BC, included important
theorems about primes. Euclid was able to solve how to create a perfect number (a
positive integer which is equal to the sum of of its positive divisors), using Mersen
prime. After the Greeks, there is a huge gap in prime numbers until the 17th cen-
tury, because nothing really happened in the development of prime numbers.

In 1640, Pierre de Fermat conjectured that all the integers of the form 22n + 1
are prime, and he did not provide any proof. His theory was only true until n = 5
because 225 + 1 = 4294967297 is a composite number. In the 19th century, Gauss
and Legendre theorized that as n moves to infinity, the number of primes up to
n is approximately equal to n/lnn . In 1859, Riemann wrote a paper on the zeta
function, which eventually let to Hadamard proving the prime number theorem in
1896.

Until 1970, prime numbers are thought to be pretty useless in the real world,
and can only be used in theoretical mathematics. In 1970, the public-key cryptog-
raphy, a system requiring two separate keys to open, was invented. Prime numbers
were the basic building blocks for the public-key cryptography’s first algorithms.
Since 1951, the largest prime numbers were founded by the computers. However,
there are a lot of interests to find even greater prime numbers. The “Great Internet
Mersenne Prime Search”and other 3rd party organizations are trying to find bigger
prime numbers for the past 15 years. Interest in prime numbers is still high, and
they are yet to be fully understood by mathematicians today.

1.2 Composite Numbers

A natural number that can be divided by a natural number without leaving any
remainder other than 1 and itself is called a composite number. In other words any
positive integer greater than one is called a composite number if it is not a prime
number [11].
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For example, since 6 = 1× 6 = 2× 3.
It means 2 and 3 can divide 6, so 6 is composite.
Also 15 = 15× 1 = 5× 3.
Which shows that 3 and 5 are divisors of 15, so 15 is composite.
Let n > 0 be an integer, if there exist integers a greater than 1 and integer b less
than nsuch that n = ab, then n is a composite integer. For example, the integer 14
can be factored as 2 × 7, so 14 is a composite number. But, the integers 2 and 3
are not composite numbers because each of them can be divided only by 1 and the
number itself.
The integer 1 is a unit; it is neither composite nor prime [6]. All the even numbers
can be divided by 2 and so all greater than 2 even numbers are composite numbers.
All numbers that are divisible by 5 end in 5. Therefore all numbers which are greater
than 5 and end with 5 are composite numbers. The list of first 100 composite num-
bers is

4 6 8 9 10 12 14 15 16 18 20 21 22 24 25
26 27 28 30 32 33 34 35 36 38 39 40 42 44 45
46 48 49 50 51 52 54 55 56 57 58 60 62 63 64
65 66 68 69 70 72 74 75 76 77 78 80 81 82 84
85 86 87 88 90 91 92 93 94 95 96 98 99 100 102
104 105 106 108 110 111 112 114 115 116 117 118 119 120 121
122 123 124 125 126 128 129 130 132 133

Theorem 1.2.1 (Fundamental Theorem of Arithmetics). Every composite number
can be represented as the product of two or more primes (not need to be distinct);
moreover, this representation is unique up to the order of the components.

Proof.

Every greater than 1 positive integer n can be represented in just one way as a
product of prime powers:

n = pα1
1 · pα2

2 · pα3
3 · · · p

αk
k =

k∏
i=1

pαi
i ,

where p1 < p2 < ... < pk are prime numbers and the αi denote positive integers.
This representation is known as canonical representation of n.
For example 333 = 32 × 37, 2000 = 24 × 53, 715 = 5× 11× 13 etc. The table given
below prime factorization of first twenty composite numbers.
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Composite Number Prime Factorization Composite Number Prime Factorization
4 22 20 22 × 5
6 2× 3 21 3× 7
8 23 22 2× 11
9 32 24 23 × 3
10 2× 5 25 52

12 22 × 3 26 2× 13
14 2× 7 27 33

15 3× 5 28 22 × 7
16 24 30 2× 3× 5
18 2× 32 32 25

Table 1.2: Prime factorization of first twenty composite numbers

1.2.1 Types of Composite Numbers

By counting the number of prime factors, we can classify the composite numbers.
A composite number is called a semiprime or 2-almost prime if it has only two
prime factors, the factors need not to be distinct, so squares of primes are included.
A composite is called sphenic number if it has three distinct prime factors. It
is necessary to differentiate between composite numbers with an even number of
distinct prime factors and those with an odd number of distinct prime factors in
some applications.
A composite number is called a powerful number if all the prime factors of number
are repeated. If all the prime factors are non-repeated, then it is called squarefree
(1 and all prime numbers are squarefree). We can classify composite numbers by
counting the number of divisors also. There exist at least three divisors for any
composite number. If a number n has more divisors than any x less than n, then it
is called highly composite number. So the first two such numbers are 1 and 2.

1.3 Arithmetic Progression

If the common difference (an − an−1) between any two consecutive terms of a se-
quence of numbers is constant then it is called an arithmetic progression (A.P ) or
an arithmetic sequence .
For example 7, 15, 23, 31, 39, . . . is an arithmetic sequence with common difference
of 8.
If a1 is the initial term of an arithmetic progression and d is the common difference
between any two consecutive terms, then the nth term of arithmetic progression is
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denoted by an and is given by

an = a1 + (n− 1)d, (1.2)

and generally, we can write for m ≤ n

an = am + (n−m)d.

The behavior of an arithmetic progression depends upon the common difference d.
If the common difference d is:

• Greater than 0, the members (terms) will tend towards positive infinity.

• Less than 0, the members (terms) will tend towards negative infinity.

Finding the number of terms of an A.P less than or equal to any given
number

Let an A.P and a number be given. We have to find number of terms of A.P
less than or equal to that given number. Let C be a given number and suppose a1
is the first term of arithmetic progression and d is the common difference between
any two consecutive terms. Let number of term of an be n such that

an ≤ C.

Using equation (1.2), we can write

a1 + (n− 1)d ≤ C

n ≤ C − a1 + d

d
.

Let k be the number of term of ak such that ak is the largest term which is less than
C. Then we can write

k = Floor

[
C − a1 + d

d

]
.

Where “Floor[·]”denotes the floor function.
The above process can be explained by using following example.

Example 1.3.1. Let 2, 6, 10, 14, · · · be an arithmetic progression. Then

a1 = 2,

and
d = 4.
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Suppose we have to find the total number of terms of above arithmetic progression
less or equal to C = 155. Let n be the number of term of an such that

an ≤ 155.

Using equation (1.2), we can write

a1 + (n− 1)d ≤ C.

By putting values, we get

2 + (n− 1)4 ≤ 155

n ≤ 157

4
.

Let k be the number of term of ak such that ak is the largest term which is less than
C = 155. Then we can write

k = Floor

[
157

4

]
= 39.

Hence number of terms of A.P 2, 6, 10, 14, · · · which are less than or equal to 155
is 39.
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Chapter 2

Sieve Methods

Sieve method, or the method of sieves, can mean

1. in mathematics and computer science, a simple method for finding prime num-
bers e.g. the sieve of Eratosthenes;

• in number theory, any of a variety of methods studied in sieve theory.

• in combinatorics, the set of methods dealt with in sieve theory or more
specifically, the inclusion-exclusion principle.

2. in statistics, and particularly in econometrics, the use of sieve estimators.

The history of sieve methods is very long and productive. The sieve of Eratosthenes
(around 3rd century B.C.) was a tool to produce prime numbers. later on it is used by
Legendre in his study of the prime counting function π(x). After the initiating work
of Viggo Brun, sieve methods flourished and became a topic of intense investigation.
Using his formulation of the sieve Brun proved, that the sum∑

p, p+2 both prime

1

p

converges. This was the first result of its kind, relating the Twin-prime problem.
A slew of sieve methods were grew over the years. Upper bound sieve of Selberg,
Rosser’s sieve, the Asymptotic sieve, the Large sieve to name a few. Using these
sieves, many beautiful results have been proved. The Brun-Titchmarsh theorem and
the very powerful result of Bombieri are two important examples. Chen’s theorem
[4] that ”there are infinitely many primes p such that p+ 2 is a product of at most
two primes”, is another proof of the power of sieve methods. The Brun sieve, the
Selberg sieve and the large sieve are included in the modern sieves. One of the
basic aims of sieve theory was to attempt to prove conjectures in number theory
such as the Twin-Prime conjecture. As the basic broad purposes of sieve theory are
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still largely unachieved, there have been some partial achievements, particularly in
combination with other number theoretic tools.

The methods can be quite powerful of sieve theory, but they appear to be limited
by an obstacle known as the parity problem, which roughly talking asserts that sieve
theory methods have extreme difficulty in distinguishing between numbers with an
even number of prime factors and numbers with an odd number of prime factors.
This parity problem is not very well understood yet. Compared with other methods
in number theory, sieve theory is relatively elementary, in the sense that it does not
necessarily require advanced concepts from either analytic number theory or alge-
braic number theory. However, the more advanced sieves can get still very complex
and delicate (particularly when mixed with other mysterious techniques in number
theory). Entire textbooks have been devoted to this one subfield of number theory;
a classic example is (Halberstam & Richert 1974) [8] and a more advanced text is
(Iwaniec & Friedlander 2010) [10].

Sieve methods have important applications even in applied fields of number the-
ory such as Algorithmic Number Theory, and Cryptography. Many direct applica-
tions are there, for example finding all the prime numbers under a certain bound, or
producing numbers free of large prime factors. There are also indirect applications,
for example the running time of various factoring algorithms based directly on the
distribution of smooth numbers in short intervals. The so called undeniable signa-
ture schemes involve primes of the form 2p+ 1 such that p is also a prime number.
Sieve methods can give valuable hints about these distributions and hence allow us
to control the running times of such algorithms.

2.1 Sieve of Primes

In a 1975 lecture, D. Zagier commented [7]:

“There are two facts about the distribution of prime numbers of which I hope
to convince you so overwhelmingly that they will be permanently engraved in your
hearts. The first is that, despite their simple definition and role as the building
blocks of the natural numbers, the prime numbers grow like weeds among the nat-
ural numbers, seeming to obey no other law than that of chance, and nobody can
predict where the next one will come out. The second fact is even more astonishing,
for it states just the opposite: that the prime numbers exhibit stunning regularity,
that there are laws governing their behavior, and that they obey these laws with
almost military precision”.

11



A prime number sieve or sieve of prime is a quick type of algorithm for searching
primes. There are lots of prime sieves. The simple sieve of Eratosthenes, the quick
but more complicated Atkin sieve and the several wheel sieves are most common.
A prime sieve works by producing a list of all integers up to a wanted limit and
increasingly removing composite numbers (which it directly produce) until only
prime numbers are left. This is the most effective way to find a large range of
primes; however, to find individual prime numbers, more efficient is to apply direct
primality tests .

2.2 Sieve of Eratosthenes

Eratosthenes (276-194 B.C.) was the third librarian of the well known library in
Alexandria and an great scholar all around. He is known for his measurement of
the circumference of the Earth, estimates of the distances to the moon and the sun,
and, in mathematics, for giving of an algorithm for gathering prime numbers. The
algorithm is known as the Sieve of Eratosthenes.

To find all prime numbers below a given number N , write all integers from 1 to
N in order. 1 is not a prime number and is crossed out right away. The algorithm
proceed sequentially in steps. On every step, find the first number not yet crossed,
mark it as prime and cross out all of its remaining multiples. Repeat this step while
the least available number does not exceed the square root of N .

The above process to find all the prime numbers less than or equal to a given
integer N by using sieve of Eratosthenes can be explained by following steps:

1. Create a list of consecutive integers from 1 to N : (1, 2, 3, 4, ..., N).

2. Cross out 1 as it is not prime.

3. Initially, let p equal 2, the first prime number.

4. Starting from p, count up in increments of p and mark each of these numbers
greater than p itself in the list. These will be 2p, 3p, 4p, etc.; multiples of p:
note that some of them may have been marked already.

5. Find the first number greater than p in the list that is not marked. Stop, if
there was no such number. Otherwise, let p equal to this number (which is
the next prime) now, and repeat from step 3.

When the algorithm ends, all the numbers are prime in the list that are not marked.
The main thought here is that every value for p is prime, because we have marked
already all the multiples of the numbers less than p. As a refinement, it is enough
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to mark the numbers in step 3 starting from p2, as all the smaller multiples of p
will have already been marked at that point. This means that the algorithm is
allowed to terminate in step 4 when p2 is greater than N [9]. Another refinement
is to initially list odd numbers only, (3, 5, ..., N), and count up using an increment
of 2p in step 3, thus marking only odd multiples of p greater than p itself. This
actually appears in the original algorithm [9]. This can be generalized with wheel
factorization, forming the initial list only from numbers coprime with the first few
primes and not just from odds, i.e. numbers coprime with 2 [14].

For example, for first 50 natural numbers, we can find prime numbers using
Eratosthenes sieve as follows:

Example 2.2.1. Step-i cross out 1; it is not prime.

232221

201918171615

31

131211

1098765432

30292827262524

14

434241

403938373635343332

494847464544 50

1

Step-ii leaving 2, cross out multiples of 2.

232221

201918171615

31

131211

1098765432

30292827262524

14

434241

403938373635343332

494847464544 50

1

Step-iii leaving 3, cross out multiples of 3.
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232221

201918171615

31

131211

1098765432

30292827262524

14

434241

403938373635343332

494847464544 50

1

Step-iv leaving 5, cross out multiples of 5.

232221

201918171615

31

131211

1098765432

30292827262524

14

434241

403938373635343332

494847464544 50

1

Step-v leaving 7, cross out multiples of 7.

232221

201918171615

31

131211

1098765432

30292827262524

14

434241

403938373635343332

494847464544 50

1

The remaining uncrossed numbers {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

14



43, 47} are prime numbers less than 50.

Generally, the sieve of Eratosthenes is considered the easiest sieve to implement,
but it is not the fastest.

2.3 Sieve of Euler

Euler commented in [7] “Mathematicians have tried in vain to this day to discover
some order in the sequence of prime numbers, and we have reason to believe that it
is a mystery into which the mind will never penetrate”.

The ancient Sieve of Eratosthenes that creats the list of prime numbers is inef-
fective in the sense that some composite numbers are marked out more than one
time; for example, 21 is marked out by both 3 and 7. The outstanding Swiss math-
ematician Leonhard Euler formed a sieve that strikes out each composite number
exactly one time, at the cost of some additional paper work. The process of Euler
sieve can be explained by following steps:

1. Make a list of numbers from 2, as large as you wish; call the maximum number
n.

2. Extract the first number from the list, make a new list in which each element of
the original list, including the first, is multiplied by the extracted first number.

3. “Subtract”the new list from the original, keeping in an output list only those
numbers in the original list that do not appear in the new list.

4. Output the first number from the list, which is prime, and repeat the second,
third and fourth steps on the reduced list excluding its first element, continuing
until the input list is exhausted.

Example 2.3.1. Sieve of Euler for n = 30 can be explained as:

• Start with the list 2, 3, 4, 5, . . . , 30.

• Extract first number 2 from the list and make a new list 4, 6, 8, 10, . . . , 60.

• Subtracting the new list from the old gives the list 2, 3, 5, 7, 9, . . . , 29.

• Now 2 is prime and the process repeats on the list 3, 5, 7, 9, . . . , 29.

• At the next step extract 3 and make a new list 9, 15, 21, 27, . . . , 87, subtracting
gives the list 3, 5, 7, 11, 13, . . . , 29, now 2 and 3 are prime and the process
repeats on the list 5, 7, 11, 13, . . . , 29.
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• Likewise for the primes 5 and 7, and since 7 × 7 > 30, the process stops, with
the remaining list 11, 13, 17, 19, 23, 29.

• So the complete list of primes less than 30 is 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

We can increase the speed of the Sieve of Euler by taking only odd numbers, by
ending once the first item is greater than the square root of n in the list, and by
calculating the new list in the second step only as far as n.

2.4 Wheel Sieve

Wheel factorization is a graphical method for manually doing a preliminary to the
Sieve of Eratosthenes that separates primes from composite numbers. Write the nat-
ural numbers around circles initially. Prime numbers in the innermost circle have
their multiples in the other circles in similar positions as themselves, forming spokes
of primes and their multiples. Multiples of the prime numbers in the innermost
circle form spokes of composite numbers in the outer circles.

The algorithm to find out the primes using Wheel sieve method is as follows:

1. Find the first few prime numbers. They are known or can be found quickly
using Sieve of Eratosthenes.

2. Multiply the prime numbers together to give the result n.

3. Write 1 to n in a circle. This will be the inner-most circle.

4. Taking x to be the number of circles written so far, continue to write xn + 1
to xn + n in another circle around the inner-most circle, such that xn + 1 is
in the same position as (x− 1)n+ 1.

5. Repeat step 4 until the largest number to be tested for primality.

6. Strike off the number 1.

7. Strike off the spokes of prime numbers (found in step 1) with its multiples
without striking off the numbers in the inner-most circle.

8. Strike off the spokes of all multiples of prime numbers found in step 1.

9. The remaining numbers in the wheel contain mostly prime numbers. Use other
methods such as Sieve of Eratosthenes to remove the remaining non-primes.

Example 2.4.1. Wheel Factorization with n = 2× 3 = 6 can be explained as:
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Figure 2.1: Wheel factorization with n = 2× 3 = 6

• Start with prime numbers 2 and 3. Since 2× 3 = 6, so n = 6.

• Write 1 to n=6 in a circle. This will be the inner-most circle.

• For 1st circle around the inner most circle, taking x=1.

• Because xn + 1 = 1.6 + 1 = 7 and xn + n = 1.6 + 6 = 12. Therefore write 7
to 12 in the 2nd rim of wheel so that 7 is aligned with 1.

• Repeat this step for x=2, 3, 4, . . . and so on. We will have the circles around
the inner most circle as shown in the figure 2.1.

• Strike off 1.

• Strike off spokes {8, 14, 20, . . . } of prime number 2 and spokes {9, 15, 21,
. . . } of prime number 3 of first step without striking off the numbers 2 and 3.

• Strike off multiples {4, 6} of 2 and 3 in the inner-most circle.

• Strike off spokes of 4 and 6 in the outer circles.

• The remaining numbers in the wheel are mostly prime numbers. Other methods
such as Sieve of Eratosthenes can be used to remove the remaining non-primes.
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2.5 Sieve of Atkins

Arthur Oliver Lonsdale Atkin (1925 - 2008), was a British mathematician who pub-
lished under the name A. O. L. Atkin.

During World War II, as an undergraduate student, Atkin worked at Bletchley
Park cracking German codes. He obtained his Ph.D. in 1952 from the University
of Cambridge. Here he was one of John Littlewood’s research students. He worked
at the Atlas Computer Laboratory at Chilton during 1964-1970, computing mod-
ular functions. He was Professor of mathematics in the last days of his life at the
University of Illinois at Chicago.

Atkin, along with Noam Elkies, extended Schoof’s algorithm to produce the
Schoof-Elkies-Atkin algorithm. Together with Daniel J. Bernstein, he formulated
the sieve of Atkin.

In mathematics, the sieve of Atkin is a quick, modern algorithm for obtaining
all prime numbers up to an assigned integer. It is an optimized version of the great
sieve of Eratosthenes which does some initial work and then marks off multiples of
the square of each prime, instead of multiples of the prime itself. It was invented in
2004 by A. O. L. Atkin and Daniel J. Bernstein [2].

Algorithm

In the algorithm of Sieve of Atkin:

• All remainders are modulo-sixty remainders (divide the number by sixty and
return the remainder).

• All the number are positive including x and y.

• Flipping an entry in the sieve list means to change the marking (prime or
non-prime) to the opposite marking.

1. Create a results list, filled with 2, 3, and 5.

2. Create a sieve list with an entry for each positive integer; all entries of this list
should initially be marked non-prime (composite).

3. For each entry number n in the sieve list, with modulo-sixty remainder r :

• If r is 1, 13, 17, 29, 37, 41, 49, or 53, flip the entry for each possible
solution to 4x2 + y2 = n.

• If r is 7, 19, 31, or 43, flip the entry for each possible solution to 3x2+y2 =
n.
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• If r is 11, 23, 47, or 59, flip the entry for each possible solution to 3x2 −
y2 = n when x > y.

• If r is something else, ignore it completely.

4. Start with the lowest number in the sieve list.

5. Take the next number in the sieve list still marked prime.

6. Include the number in the results list.

7. Square the number and mark all multiples of that square as non-prime (com-
posite).

8. Repeat steps five through eight.

• This results in numbers with an odd number of solutions to the corresponding
equation being prime, and an even number being non-prime.

The algorithm completely ignores any numbers divisible by two, three, or five. All
numbers with an even modulo 60 remainder are divisible by two and not prime. All
numbers with modulo 60 remainder divisible by three are also divisible by three and
not prime. All numbers with modulo 60 remainder divisible by five are divisible by
five and not prime. All these remainders are ignored.
All numbers with modulo 60 remainder 1, 13, 17, 29, 37, 41, 49, or 53 have a modulo-
four remainder of 1. These numbers are prime if and only if the number of solutions
to 4x2 + y2 = n is odd and the number is square-free [2].
All numbers with modulo 60 remainder 7, 19, 31, or 43 have a modulo-six remainder
of 1. These numbers are prime if and only if the number of solutions to 3x2 +y2 = n
is odd and the number is square-free [2].
All numbers with modulo 60 remainder 11, 23, 47, or 59 have a modulo-twelve
remainder of 11. These numbers are prime if and only if the number of solutions to
3x2 − y2 = n is odd and the number is square-free [2].
None of the potential primes are divisible by 2, 3, or 5, so they can’t be divisible by
their squares. This is why square-free checks do not include 22, 32, and 52.
Once this preprocessing is complete, the actual sieving is performed by running
through the sieve starting at 7. For each true element of the array, mark all multiples
of the square of the element as false (regardless of their current setting). The
remaining true elements are prime.
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Chapter 3

Hexile Sieving of N ∪ {0} using
modulo 6

3.1 Introduction

We can arrange N ∪ {0} (set of natural numbers with zero) into six equivalence
classes on the basis of their modulo 6 return values as shown in the table 3.1.

Hexile Integer Level : n H0 H1 H2 H3 H4 H5

0 0 1 2 3 4 5
1 6 7 8 9 10 11
2 12 13 14 15 16 17
3 18 19 20 21 22 23
4 24 25 26 27 28 29
5 30 31 32 33 34 35
6 36 37 38 39 40 41
7 42 43 44 45 46 47
8 48 49 50 51 52 53
9 54 55 56 57 58 59
...

...
...

...
...

...
...

Table 3.1: Hexile equivalence class sieving of N ∪ {0}
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3.2 Analysis of Equivalence Classes

In the table 3.1 six equivalence classes are named as “Hexile Integer Classes”and
denoted as Hk={x|x = (6× n) + k}; k ∈ {0, 1, 2, 3, 4, 5}. So in set builder notation,
we can define six equivalence classes as

H0 = {0, 6, 12, 18, · · · } = {x|x = (6× n) + 0}, (3.1)

H1 = {1, 7, 13, 19, · · · } = {x|x = (6× n) + 1}, (3.2)

H2 = {2, 8, 14, 20, · · · } = {x|x = (6× n) + 2}, (3.3)

H3 = {3, 9, 15, 21, · · · } = {x|x = (6× n) + 3}, (3.4)

H4 = {4, 10, 16, 22, · · · } = {x|x = (6× n) + 4}, (3.5)

H5 = {5, 11, 17, 23, · · · } = {x|x = (6× n) + 5}. (3.6)

From the table 3.1, we can see that H0, H2, H4 contains all even numbers and except
2 in H2, they are all those composites which are multiples of 2. We can also see that
H3 contains only one prime element which is 3 and all the other elements are those
composites which are multiples of 3.

So we have only H1 and H5 as candidates for the domiciled sub-set partitioning
of primes in N ∪ {0}. In these two HICs (Hexile Integer Classes), we can find all
the prime numbers greater than 3, as well as the composites which are themselves
product of these primes.

Hence in either of H1 or H5, prime numbers greater than or equal to 5 can be
found.

3.3 Analysis of Composites of H1 and H5

In this section, we will discuss the nature of composites of H1 and H5.

3.3.1 Multiplication of Two Numbers from H1

Let p1 and q1 be two numbers in H1 with formulations

p1 = (6×m) + 1,

and
q1 = (6× n) + 1,

where m and n are Hexile Integer Level of p1 and q1 respectively. Let c11 be the
composite resulting from the multiplication of p1 and q1. Then

c11 = p1 × q1
c11 = [(6×m) + 1]× [(6× n) + 1]

c11 = (36×m× n) + (6×m) + (6× n) + 1. (3.7)
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If we apply modulo 6 to the result of equation (3.7), we have a remainder 1. It
implies that composite c11 is an element of H1.

3.3.2 Multiplication of Two Numbers from H5

Let p5 and q5 be two numbers in H5 with formulations

p5 = (6×m) + 5,

and
q5 = (6× n) + 5,

where m and n are Hexile Integer Level of p5 and q5 respectively. Let c55 be the
composite resulting from the multiplication of p5 and q5. Then

c55 = p5 × q5
c55 = [(6×m) + 5]× [(6× n) + 5]

c55 = (36×m× n) + (30×m) + (30× n) + 25. (3.8)

If we apply modulo 6 to the result of equation (3.8), we have a remainder 1. It
implies that composite c55 is an element of H1.

3.3.3 Multiplication of One Number from H1 and Other
from H5

Let p1 be a number in H1 with formulation

p1 = (6×m) + 1,

where m is Hexile Integer Level of p1.
let q5 be a number in H5 with formulation

q5 = (6× n) + 5,

where n is Hexile Integer Level of q5.
Let c15 be the composite resulting from the multiplication of p1 and q5. Then

c15 = p1 × q5
c15 = [(6×m) + 1]× [(6× n) + 5]

c15 = (36×m× n) + (30×m) + (6× n) + 5. (3.9)

If we apply modulo 6 to the result of equation (3.9), we have a remainder 5. It
implies that composite c15 is an element of H5.
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3.3.4 Possibility of H1 and H5 Composites Arising from Mul-
tiplication of Other HIC Elements

From the table 3.1, it is clear that all the elements of H0, H2 and H4 are even numbers
and all the elements of H1 and H5 are odd numbers. Since multiplication of an even
number with an odd or even number gives an even number, so multiplication of
elements of H0, H2 and H4 cannot possibly give rise to H1 and H5 composites.
Only a sole possibility of an element of H3 left whose multiplication can give rise to
a composite in H1 and H5. Let r3 be an element of H3 with formulation

r3 = (6× d) + 3,

where d is Hexile Integer Level of r3.
Now we need to examine the end result of multiplying r3 with an element of H1, H3

and H5.
Let p1 ∈ H1 and q5 ∈ H5 with formulations

p1 = (6×m) + 1,

q5 = (6× n) + 5,

where m and n are Hexile Integer Level of p1 and q5 respectively.
Table 3.2 given below, shows the results of the multiplications of an element r3 ∈
H3 with r3 ∈ H3, p1 ∈ H1 and p5 ∈ H5.

The results of table 3.2 show that an element of H3 will not result in a H1 or

r3=(6× d) + 3 modulo 6 results

r3 c33=(36× d2) + (36× d) + 9 3
p1 c13 = (36× d×m) + (18×m) + (6× d) + 3 3
q5 c53 = (36× d× n) + (30× d) + (18× n) + 15 3

Table 3.2: Multiplication results of an element of H3 with an element of H1, H3 and
H5

H5 composite through multiplication. So the composites in H1 and H5 are found
indigenous with primes from which they are the product through multiplication.

3.4 Formulation of Composites using Hexile Level

of their Component Primes

Our investigation will now take us to the inner place of the formulaic expression of
composites. For this purpose, we define a more liable term “Nucleus of a Natural
Number”.
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Definition 3.4.1. We define the nucleus value of a natural number, as the quotient
obtained when number is divided by 6.

It is clear from the definition of nucleus value that Hexile Level of a natural
number can also be referred as the nucleus value, which was initially referenced as
the row numbers in the Hexile Sieve table 3.1.
Applying the above definition 3.4.1 to the three formulations of composites of H1

and H5 given in the equations (3.7), (3.8) and (3.9), we obtain the following three
formulations for nuclei values as shown in table 3.3.

Composite Formulae Nucleus Formulae

c11 = (36×m× n) + (6×m) + (6× n) + 1 (6×m× n) +m+ n
c55 = (36×m× n) + (30×m) + (30× n) + 25 (6×m× n) + (5×m) + (5× n) + 4
c15 = (36×m× n) + (30×m) + (6× n) + 5 (6×m× n) + (5×m) + n

Table 3.3: Formulations of nucleus values of H1 and H5 composites

For any element of H1 and H5, the results of table 3.3 can be used as preliminary
investigative formulating-decomposition tool.
So if modulo 6 returned value is 1 for any given positive integer c and its nucleus
value is Q, then we can ascribe to it as a composite one of the following two formu-
lations of equations (3.10) and (3.11) given below.

Q = (6×m× n) +m+ n, (3.10)

or
Q = (6×m× n) + (5×m) + (5× n) + 4. (3.11)

Also if modulo 6 returned value is 5 for a given natural number c and its nucleus
value is Q, we can ascribe to it as a composite of the following formulation of
equation (3.12) given below:

Q = (6×m× n) + (5×m) + n, (3.12)

where m and n are Hexile levels of the two constituent integers presumed to be
primes in the composite element of H1 and H5 as symbolized by the variable c.

3.5 Composite Linear Diophantine Equations

We investigated in the previous section 3.4, three diophantine equations for the
composites in H1 and H5. For the ease of writing, we designate equations (3.10),
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(3.11) and (3.12) as Composite Linear Diophantine Equation(s) or colide(s) for
short.
Specifically we will reference a colide-11 to the equation (3.10) given below:

Q = (6×m× n) +m+ n.

Also a colide-55, we will reference to the equation (3.11) given below:

Q = (6×m× n) + (5×m) + (5× n) + 4,

where m and n are the HI-levels of the constituent primes/composites and Q being
computable nucleus value.
And a colide-15 we will refer to by equation (3.12) given below:

Q = (6×m× n) + (5×m) + n,

where m and n are the HI-levels of the constituent primes/composites and Q being
computable nucleus value.
The importance of these three colides is that they have no integer solutions for the
primes. Else if they possibly do, by contradiction they are composite as we can
derive back m and n which will be HI-levels of its two multiplicand integers.

3.6 Sequencing of Nuclei Values for H1 and H5

Composites

Using colide-11, colide-55 and colide-15, as defined in the pervious sections 3.5, we
will attempt to examine the sequence of nucleus values of composites in H1 and H5.

3.6.1 Sequencing of Nuclei Values for Colide-11 Composites

Recalling a colide-11, given by equation

Q = (6×m× n) +m+ n.

Where m and n are the HI-levels of the constituent primes/composites and Q being
computable nucleus value.

Definition 3.6.1. We can transmute colide-11 equation into the following function:

f11(m,n) = (6×m× n) +m+ n. (3.13)

This function is taken on ordered integer pair: (m,n) of HI-levels of two constituent
primes/composites where m, n ∈ Z+. This function is named as colide-11 state
function, abbreviated to CS-11 function.
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Table 3.4 shows the values obtained by applying first 10 positive integers to CS-
11 function (3.13).

LEVEL : (m) 1 2 3 4 5 6 7 8 9 10

LEVEL : (n)
1 8 15 22 29 36 43 50 57 64 71
2 15 28 41 54 67 80 93 106 119 132
3 22 41 60 79 98 117 136 155 174 193
4 29 54 79 104 129 154 179 204 229 254
5 36 67 98 129 160 191 222 253 284 315
6 43 80 117 154 191 288 265 302 339 376
7 50 93 136 179 222 265 308 351 394 437
8 57 106 155 204 253 302 351 400 449 498
9 64 119 174 229 284 339 394 449 504 559
10 71 132 193 254 315 376 437 498 559 620

Table 3.4: The resulting 10× 10 - symmetric matrix of colide-11 values obtained on
applying the CS-11 function to the various combination-pairs of the first 10 positive
integers excluding zero.

The resulting tabulation of values in the table (3.4) is a symmetric matrix, show-
ing the predictable sequencing of nucleus values of colide-11 composites. The reason
of symmetry is commutative mutual emplacement of m and n variables within the
CS-11 function. It is also clear from the table (3.4) that colide-11 HI-levels are
producing a sequence which is predictable and non-random in nature.

3.6.2 Sequencing of Nuclei Values for Colide-55 Composites

The equation for colide-55 is is given below:

Q = (6×m× n) + (5×m) + (5× n) + 4.

Where m and n are the HI-levels of the constituent primes/composites and Q being
computable nucleus value.

Definition 3.6.2. We can transmute colide-55 equation into the following function:

f55(m,n) = (6×m× n) + (5×m) + (5× n) + 4. (3.14)

This function is taken on ordered integer pair: (m,n) of HI-levels of two constituent
primes/composites where m ≥ 0 and n ≥ 0 are integers. This function is named as
colide-55 state function, abbreviated to CS-55 function.
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Table 3.5 shows the results obtained by applying first 10 values to variables m
and n of CS-55 function.

LEVEL : (m) 0 1 2 3 4 5 6 7 8 9

LEVEL : (n)
0 4 9 14 19 24 29 34 39 44 49
1 9 20 31 42 53 64 75 86 97 108
2 14 31 48 65 82 99 116 133 150 167
3 19 42 65 88 111 134 157 180 203 226
4 24 53 82 111 140 169 198 227 256 285
5 29 64 99 134 169 204 239 274 309 344
6 34 75 116 157 198 239 280 321 362 403
7 39 86 133 180 227 274 321 368 415 462
8 44 97 150 203 256 309 362 415 468 521
9 49 108 167 226 285 344 403 462 521 580

Table 3.5: Table showing the resulting 10× 10 symmetric matrix of colide-55 values
obtained on applying the CS-55 function to the various combination-pairs of the
first 10 positive integers including zero.

The resulting tabulation of values in table 3.5 is a symmetric matrix with its main
diagonal is highlighted bold. Values of table 3.5 shows non-random and predictable
sequences of nucleus values of colide-55 composites.

3.6.3 Sequencing of Nuclei Values for Colide-15 Composites

The equation for colide-15 is given below:

Q = (6×m× n) + (5×m) + n.

Where m and n are the HI-levels of the constituent primes/composites and Q being
computable nucleus value.

Definition 3.6.3. We can transmute colide-15 equation into the following function:

f15(m,n) = (6×m× n) + (5×m) + n. (3.15)

This function is taken on ordered integer pair: (m,n) of HI-levels of two constituent
primes/composites where m > 0 and n ≥ 0 are integers. This function is named as
colide-15 state function, abbreviated to CS-15 function.
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Table 3.6 shows the results obtained by applying first 10 values to variables m
and n of CS-15 function.

LEVEL : (m) 1 2 3 4 5 6 7 8 9 10

LEVEL : (n)
0 5 10 15 20 25 30 35 40 45 50
1 12 23 34 45 56 67 78 89 100 111
2 19 36 53 70 87 104 121 138 155 172
3 26 49 72 95 118 141 164 187 210 233
4 33 62 91 120 149 178 207 236 265 294
5 40 75 110 145 180 215 250 285 320 355
6 47 88 129 170 211 252 293 334 375 416
7 54 101 148 195 242 289 336 383 430 477
8 61 114 167 220 273 326 379 432 485 538
9 68 127 186 245 304 363 422 481 540 599

Table 3.6: The resultant 8× 8 - matrix table, showing the colide-15 values obtained
on applying the CS-15 function to various combination-pairs of the first 10 values
to variables m and n of CS-15 function

In the table 3.6, the resulting tabulation of values shows predictable arithmetic
sequences of nuclues values of colide-15 composites. Hence nucleus values of com-
posites of CS-15 function form sequences which are predictable and non-random in
nature.

3.6.4 Conclusion to Sequencing of Nuclei Values for H1 and
H5 Elements

From the Tables of values of CS-11 and CS-55 functions, we can see that colide-11
and colide-55 composites which populate H1 occur in a non-random sequence. This
shows that we can logically deduce: that the primes which are the only other ele-
ments of H1, occur in a non-random fashion in the vacant Hexile levels not occupied
by colide-11 and colide-55 composites.
Also from the table of values of CS-15 function, we can see that colide-15 composites,
which populate H5 composites occur in non-random sequence. Also from the results
of section 3.3.3, we proved that H5 consists of only colide-15 composites. This means
that we can logically deduce: that primes which are the only other elements found
in H5, also occur in a non-random fashion in the vacant Hexile levels not occupied
by the colide-15 composites.
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Finally, we can conclude that we have crudely established the rhythm and harmonics
in the symphony of prime and composite integers.
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Chapter 4

Counting of Primes

In this chapter, we will give some basic theorems for prime counting function. In
the first section, we will give the theorems to find number of terms of the tables of
values of CS-11 function, CS-55 function and CS-15 function. These theorems can
be useful in counting the number of composites in H1 and H5 less than any given
positive integer and in constructing prime counting function on the basis of Hexile
sieve analysis. In the second section, we will give working rules to find total number
of integers less than any given positive integer in the two classes H1 and H5. In the
final section, conclusions to above given theorems and some basic ideas about prime
counting function are discussed.

4.1 Theorems to Find Number of Composites in

H1 and H5

In the pervious chapter, we have shown that CS-11 function and CS-55 function
populate H1 composites and CS-15 function populate H5 composites. Now we will
give some theorems for counting the number of terms in the tables of values of CS-11
function, CS-55 function and CS-15 function.

4.1.1 Theorem to Find Number of Terms in the Table of
Values of CS-11 Function

Theorem 4.1.1. Let x be a given positive integer and Q be the nucleus value of
x. If the approximate number of non-repeated terms in the table of values of CS-11
function less than or equal to Q is denoted by K11

Q . Then

K11
Q =

∑
i

Floor

[
Q− i
6i+ 1

− (i− 1)

]
, (4.1)
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where i ≥ 1 can be found by

i = Floor

[
2 +

√
2(3Q+ 5)

6

]
,

and “Floor [·]”denotes the floor function.

Proof. From the equation (3.13), formula for CS-11 function is

f11(m,n) = (6×m× n) +m+ n,

where m and n are the Hexile levels of two constituent primes/composites in H1.
Table shows the results of CS-11 function for first 10 values of m and n.

LEVEL : (m) 1 2 3 4 5 6 7 8 9 10

LEVEL : (n)
1 8 15 22 29 36 43 50 57 64 71
2 15 28 41 54 67 80 93 106 119 132
3 22 41 60 79 98 117 136 155 174 193
4 29 54 79 104 129 154 179 204 229 254
5 36 67 98 129 160 191 222 253 284 315
6 43 80 117 154 191 288 265 302 339 376
7 50 93 136 179 222 265 308 351 394 437
8 57 106 155 204 253 302 351 400 449 498
9 64 119 174 229 284 339 394 449 504 559
10 71 132 193 254 315 376 437 498 559 620

From the above table, we can see that
(i) It is a symmetric matrix.
(ii) Each row/column forms an arithmetic progression.
Let x be a given positive integer and let Q be the nucleus value of x.
We have to find total number of terms of the table which are less than or equal to
Q.
Let j111 be the number of term of T 11

1 term in arithmetic progression of first row of
the table such that

T 11
1 ≤ Q,

=⇒ a1 + (j111 − 1)d ≤ Q,

31



by putting values from arithmetic progression of first row

8 + (j111 − 1)7 ≤ Q,

8 + 7j111 − 7 ≤ Q,

7j111 + 1 ≤ Q,

j111 ≤ Q− 1

7
.

Let k111 be the number of term of the greatest term in the arithmetic progression of
first row which is less than or equal to Q, then

k111 = Floor

[
Q− 1

7

]
. (4.2)

Let j112 be the number of term of T 11
2 term in arithmetic progression of second row

of the table such that

T 11
2 ≤ Q,

=⇒ a1 + (j112 − 1)d ≤ Q,

by putting values from arithmetic progression of second row, we have

15 + (j112 − 1)13 ≤ Q,

15 + 13j112 − 13 ≤ Q,

13j112 + 2 ≤ Q,

j112 ≤ Q− 2

13
.

Let k112 be the number of term of the greatest term in arithmetic progression (starts
after first repeated term) of second row which is less than or equal to Q, then

k112 = Floor

[
Q− 2

13
− 1

]
. (4.3)

Here 1 is subtracted because of symmetric property of table, second row contains 1
element of first row.
Let j113 be the number of term of T 11

3 term in arithmetic progression of third row of
the table such that

T 11
3 ≤ Q,

=⇒ a1 + (j113 − 1)d ≤ Q,
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by putting values from arithmetic progression of third row

22 + (j113 − 1)19 ≤ Q,

22 + 19j113 − 19 ≤ Q,

19j113 + 3 ≤ Q,

j113 ≤ Q− 3

19
.

Let k113 be the number of term of the greatest term in arithmetic progression (starts
after first 2 repeated terms) of third row which is less than or equal to Q, then

k113 = Floor

[
Q− 3

19
− 2

]
. (4.4)

Here 2 is subtracted because of symmetric property of table, third row contains two
elements of second row.
From equations (4.2), (4.3) and (4.4), we can write the values of k114 (number of term
of greatest term which is less than or equal to Q in the arithmetic progression of
forth row starts after first 3 repeated terms), k115 (number of term of greatest term
which is less than or equal to Q in the arithmetic progression of fifth row starts after
first 4 repeated terms) and so on as

k114 = Floor

[
Q− 4

25
− 3

]
, (4.5)

and

k115 = Floor

[
Q− 5

31
− 4

]
, (4.6)

and so on.
So the total approximate number of non-repeated terms in the table of CS-11 func-
tion less than or equal to Q is

K11
Q = k111 + k112 + k113 + k114 + . . .

= Floor

[
Q− 1

7

]
+ Floor

[
Q− 2

13
− 1

]
+ Floor

[
Q− 3

19
− 2

]
+ Floor

[
Q− 4

25
− 3

]
+ . . .

=
∑
i

Floor

[
Q− i
6i+ 1

− (i− 1)

]
.

Where value of i can be found such that

Q− i
6i+ 1

− (i− 1) = 0,

Q− i− 6i2 − i+ 6i+ 1 = 0,

6i2 − 4i− (Q+ 1) = 0,
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using quadratic formula

i =
2±

√
2(3Q+ 5)

6
.

Using mathematical induction, it can be easily proved that

2 <
√

2(3Q+ 5),

so

i =
2−

√
2(3Q+ 5)

6
,

can be neglected and because i is a term number so

i = Floor

[
2 +

√
2(3Q+ 5)

6

]
.

Hence the approximate number of non-repeated terms less than or equal to Q in the
table of CS-11 function is

K11
Q =

∑
i

Floor

[
Q− i
6i+ 1

− (i− 1)

]
,

where

i = Floor

[
2 +

√
2(3Q+ 5)

6

]
.

4.1.2 Theorem to Find Number of Terms in the Table of
Values of CS-55 Function

Theorem 4.1.2. Let x be a given positive integer and Q be the nucleus value of
x. If the approximate number of non-repeated terms in the table of values of CS-55
function less than or equal to Q is denoted by K55

Q . Then

K55
Q =

∑
i

Floor

[
Q+ i

6i− 1
− (i− 1)

]
, (4.7)

where i ≥ 1 can be found by

i = Floor

[
4 +

√
2(3Q+ 5)

6

]
,

and “Floor [·]”denotes the floor function.
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Proof. From the equation (3.14), formula for CS-55 function is

f55(m,n) = (6×m× n) + (5×m) + (5× n) + 4,

where m and n are the Hexile levels of two constituent primes/composites in H5.
Table shows the results of CS-55 function for first 10 values of m and n.

LEVEL : (m) 0 1 2 3 4 5 6 7 8 9

LEVEL : (n)
0 4 9 14 19 24 29 34 39 44 49
1 9 20 31 42 53 64 75 86 97 108
2 14 31 48 65 82 99 116 133 150 167
3 19 42 65 88 111 134 157 180 203 226
4 24 53 82 111 140 169 198 227 256 285
5 29 64 99 134 169 204 239 274 309 344
6 34 75 116 157 198 239 280 321 362 403
7 39 86 133 180 227 274 321 368 415 462
8 44 97 150 203 256 309 362 415 468 521
9 49 108 167 226 285 344 403 462 521 580

From the above table, we can see that
(i) It is a symmetric matrix.
(ii) Each row/column forms an arithmetic progression.
Let x be a given positive integer and let Q be the nucleus value of x.
First we will find total number of terms of the table which are less than or equal to
Q.
Let j551 be the number of term of T 55

1 term in arithmetic progression of first row of
the table such that

T 55
1 ≤ Q,

=⇒ a1 + (j551 − 1)d ≤ Q,

by putting values from arithmetic progression of first row

4 + (j551 − 1)5 ≤ Q,

4 + 5j551 − 5 ≤ Q,

5j551 − 1 ≤ Q,

j551 ≤ Q+ 1

5
.
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Let k551 be the number of term of the greatest term in the arithmetic progression of
first row which is less than or equal to Q, then

k551 = Floor

[
Q+ 1

5

]
. (4.8)

Let j552 be the number of term of T 55
2 term in arithmetic progression of second row

of the table such that

T 55
2 ≤ Q,

=⇒ a1 + (j552 − 1)d ≤ Q,

by putting values from arithmetic progression of second row, we get

9 + (j552 − 1)11 ≤ Q,

9 + 11j552 − 11 ≤ Q,

11j552 − 2 ≤ Q,

j552 ≤ Q+ 2

11
.

Let k552 be the number of term of the greatest term in arithmetic progression (starts
after first 1 repeated term) of second row which is less than or equal to Q, then

k552 = Floor

[
Q+ 2

11
− 1

]
. (4.9)

Here 1 is subtracted because of symmetric property of table, second row contains
one element of first row.
Let j553 be the number of term of T 55

3 term in arithmetic progression of third row of
the table such that

T 55
3 ≤ Q,

=⇒ a1 + (j553 − 1)d ≤ Q,

by putting values from arithmetic progression of third row, we get

14 + (j553 − 1)17 ≤ Q,

14 + 17j553 − 17 ≤ Q,

17j553 − 3 ≤ Q,

j553 ≤ Q+ 3

17
.
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Let k553 be the number of term of the greatest term in arithmetic progression (starts
after first 2 repeated terms) of third row which is less than or equal to Q, then

k553 = Floor

[
Q+ 3

17
− 2

]
. (4.10)

Here 2 is subtracted because of symmetric property of table, third row contains two
elements of second row.
From equations (4.8), (4.9) and (4.10), we can write the values of k554 (number of
term of greatest term which is less than or equal to Q in the arithmetic progression
of forth row starts after first 3 repeated terms), k555 (number of term of greatest term
which is less than or equal to Q in the arithmetic progression of fifth row starts after
first 4 repeated terms) and so on as

k554 = Floor

[
Q+ 4

23
− 3

]
, (4.11)

and

k555 = Floor

[
Q+ 5

29
− 4

]
, (4.12)

and so on.
So the approximate number of non-repeated terms of the table of CS-55 function
less than or equal to Q is

K55
Q = k551 + k552 + k553 + k554 + . . .

= Floor

[
Q+ 1

5

]
+ Floor

[
Q+ 2

11
− 1

]
+ Floor

[
Q+ 3

17
− 2

]
+ Floor

[
Q+ 4

23
− 3

]
+ . . .

=
∑
i

Floor

[
Q+ i

6i− 1
− (i− 1)

]
.

Where value of i can be found such that

Q+ i

6i− 1
− (i− 1) = 0,

Q+ i− 6i2 + i+ 6i− 1 = 0,

6i2 − 8i− (Q− 1) = 0.

Using quadratic formula

i =
4±

√
2(3Q+ 5)

6
.
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Using mathematical induction, it can be easily proved that

4 ≤
√

2(3Q+ 5),

so

i =
4−

√
2(3Q+ 5)

6
,

can be neglected and because i is a term number so

i = Floor

[
4 +

√
2(3Q+ 5)

6

]
.

Hence the approximate number of non-repeated terms less than or equal to Q in
table of CS-55 function is

K55
Q =

∑
i

Floor

[
Q+ i

6i− 1
− (i− 1)

]
,

where

i = Floor

[
4 +

√
2(3Q+ 5)

6

]
.

4.1.3 Theorem to Find Number of Terms in the Table of
Values of CS-15 Function

Theorem 4.1.3. Let x be a given positive integer and Q be the nucleus value of
x. If the approximate number of non-repeated terms in the table of values of CS-15
function less than or equal to Q is denoted by K15

Q . Then

K15
Q = Floor

[
Q

5

]
+
∑
i

Floor

[
Q− i
6i+ 5

]
, (4.13)

where “Floor [·]”denotes the floor function and i ≥ 1 can be found by using

i = Ceiling

[
Q− 5

7

]
,

where “Ceiling [·]”denotes the ceiling function.
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Proof. From the equation (3.15), formula for CS-15 function is

f15(m,n) = (6×m× n) + (5×m) + n,

where m and n are the Hexile levels of two constituent primes/composites in H1 and
H5 respectively.
Table shows the results of CS-15 function for first 10 values of m and n.

LEVEL : (m) 1 2 3 4 5 6 7 8 9 10

LEVEL : (n)
0 5 10 15 20 25 30 35 40 45 50
1 12 23 34 45 56 67 78 89 100 111
2 19 36 53 70 87 104 121 138 155 172
3 26 49 72 95 118 141 164 187 210 233
4 33 62 91 120 149 178 207 236 265 294
5 40 75 110 145 180 215 250 285 320 355
6 47 88 129 170 211 252 293 334 375 416
7 54 101 148 195 242 289 336 383 430 477
8 61 114 167 220 273 326 379 432 485 538
9 68 127 186 245 304 363 422 481 540 599

From the above table, we can see that
(i) It is a non-symmetric matrix.
(ii) Each row/column forms an arithmetic progression.
Let x be a given positive integer and let Q be the nucleus value of x.
First we will find total number of terms of the table which are less than or equal to
Q.
Let j151 be the number of term of T 15

1 term in arithmetic progression of first row of
the table such that

T 15
1 ≤ Q,

=⇒ a1 + (j151 − 1)d ≤ Q,

by putting values from arithmetic progression of first row

5 + (j151 − 1)5 ≤ Q,

5 + 5j151 − 5 ≤ Q,

5j151 ≤ Q,

j151 ≤ Q

5
.
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Let k151 be the number of term of the greatest term in the arithmetic progression of
first row which is less than or equal to Q, then

k151 = Floor

[
Q

5

]
. (4.14)

Let j152 be the number of term of T 15
2 term in arithmetic progression of second row

of the table such that

T 15
2 ≤ Q,

=⇒ a1 + (j152 − 1)d ≤ Q,

by putting values from arithmetic progression of second row

12 + (j152 − 1)11 ≤ Q,

12 + 11j152 − 11 ≤ Q,

11j152 + 1 ≤ Q,

j152 ≤ Q− 1

11
.

Let k152 be the number of term of the greatest term in arithmetic progression of
second row which is less than or equal to Q, then

k152 = Floor

[
Q− 1

11

]
. (4.15)

Let j153 be the number of term of T 15
3 term in arithmetic progression of third row of

the table such that

T 15
3 ≤ Q,

=⇒ a1 + (j153 − 1)d ≤ Q,

by putting values from arithmetic progression of third row

19 + (j153 − 1)17 ≤ Q,

19 + 17j153 − 17 ≤ Q,

17j153 + 2 ≤ Q,

j153 ≤ Q− 2

17
.
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Let k153 be the number of term of the greatest term in arithmetic progression of third
row which is less than or equal to Q, then

k153 = Floor

[
Q− 2

17

]
. (4.16)

From equations (4.15) and (4.16), we can write the values of k154 (number of term of
greatest term which is less than or equal to Q in the arithmetic progression of forth
row), k155 (number of term of greatest term which is less than or equal to Q in the
arithmetic progression of fifth row) and so on as

k154 = Floor

[
Q− 3

23

]
, (4.17)

and

k155 = Floor

[
Q− 4

29

]
, (4.18)

and so on.
So the approximate number of non-repeated terms of table of CS-15 function less
than or equal to Q is

K15
Q = k151 + k152 + k153 + k154 + · · ·

= Floor

[
Q

5

]
+ Floor

[
Q− 1

11

]
+ Floor

[
Q− 2

17

]
+ Floor

[
Q− 3

23

]
+ · · ·

= Floor

[
Q

5

]
+
∑
i

Floor

[
Q− i
6i+ 5

]
.

Where value of i can be found such that

0 ≤ Q− i ≤ 6i+ 5,

⇒ Q− i ≤ 6i+ 5,

⇒ i ≥ Q− 5

7
.

So the smallest value of i which is greater than above value is

i = Ceiling

[
Q− 5

7

]
.

Hence approximate number of non-repeated terms less than or equal to Q in table
of CS-15 function is

K15
Q = Floor

[
Q

5

]
+
∑
i

Floor

[
Q− i
6i+ 5

]
,
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where

i = Ceiling

[
Q− 5

7

]
.

4.2 Working Rules to Find Total Number of In-

tegers in H1 and H5

Now our final stage is to find total number of integers in H1 and H5 less than any
given integer in order to find number of primes less than that given integer. For
this, working rules are given below.
Let x be a given integer. We have to find total number of integers in H1 and H5

less than or equal to x. Let Q be the nucleus value of x and r be the modulo 6
remainder. Suppose total number of integer less than or equal to x in H1 and H5 is
denoted by η15(x), then by using table 3.1, we have following cases for the value of
η15(x).

Case 1:

If r = 0 i.e. r ∈ H0, then
η15(x) = 2Q. (4.19)

Case 2:

If r = {1, 2, 3, 4} i.e. r ∈ Hi, for some i ∈ {1, 2, 3, 4} then

η15(x) = 2Q+ 1. (4.20)

Case 3:

If r = 5 i.e. r ∈ H5, then
η15(x) = 2Q+ 2. (4.21)

4.3 Conclusions to Theorems and Prime Count-

ing Function

Since terms in the table of CS-11 function are the nucleus values of composites of
H1 populated by CS-11 function, therefore the theorem 4.1.1 of K11

Q can be used in
the formula to find total number of composites in H1 populated by CS-11 function.
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Also, since terms in the table of CS-55 function are the nucleus values of composites
of H1 populated by CS-55 function, therefore the theorem 4.1.2 of K55

Q can be used in
the formula to find total number of composites in H1 populated by CS-55 function.
Similarly terms in the table of CS-15 function are the nucleus values of composites
of H5 populated by CS-15 function, therefore the theorem 4.1.3 of mathbbK15

Q can
be used in the formula to find total number of composites in H5 populated by CS-15
function.
Now the value of π(x) (number of primes less than or equal to x) can be found after
subtraction of total number of composites less than or equal to x in H1 and H5 from
the value of η15(x) (total number of integers less than or equal to x in H1 and H5).
In the final answer 2 is added because only two primes 2 and 3 are not included in
H1 and H5 primes.

4.4 Conclusions and Future Work

The main objective of work was attempt to reduce the search of primes and to give
a basis to an algorithm for prime counting function. A simple explanation is given
for critical mysteries surrounding primes and composites. Hopefully this discussion
is a stimulus and starting point to solve other key areas of conjectures and interest
in Number Theory.

In this thesis we were just able to give some theorems regarding prime counting
function. We invite the readers to investigate the followings:

• to find mutual intersection of tables of values of CS-11 function, CS-55 function
and CS-15 function.

• to construct an algorithms for prime counting functions using ideas given in
this thesis and comparison with other existing algorithms.
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