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Abstract

In this thesis, a review is presented on the formula for Rayleigh wave speed for

compressible isotropic linear elastic solids by Vinh and Ogden [6]. The thesis is

primarily based on the discussion carried out in the above cited paper. Vinh and

Ogden [6] utilized the theory of cubic equations and Cardan’s formulas to present

an explicit formula for the speed of Rayleigh waves. A comparison of this formula

is also presented with the one given by Malischewsky [5] for the same material. The

two formulas are equivalent, however, the one presented by Vinh and Ogden [6] is

better explained and elaborated. The two formulas are shown to be equivalent by

graphing the results using MATHEMATICA.
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Chapter 1

Introduction

Waves are disturbance in a medium which carry information from one place to the

other. Being carriers of information, waves find primary importance in our daily life.

Sound, heat and light are all types of waves and no one can deny how significant

these waves are for all of us. All the wireless communication uses electromagnetic

waves for transmitting and receiving information. Electromagnetic waves are not

only fastest but also reliable source of carrying information. Heat comes from the

sun to earth in the form of electromagnetic radiations, thus enabling life to sustain

on earth. Radars and ultrasonics use sound waves for communication. Even we

can listen to a person when the sound waves from his/her mouth reaches our ears.

Waves are indeed very important for nature to sustain its periodicity.

For compressible isotropic elastic solids, Rayleigh waves were first discovered by

Lord Rayleigh [1]. These waves have been widely studied and find their applications

in a vast range of fields such as seismology, material science, nondestructive testing,

geophysics and so on [2]. Rayleigh waves are very important to be studied from

seismological point of view because the most devastation in earthquakes is carried

out due to Rayleigh waves [3]. The propagation of Rayleigh waves is specified by

secular equation in an elastic half space. The roots of this secular equation gives

the Rayleigh wave speed. Being of vital importance, Rayleigh waves have motivated

many researchers to find the formulae for Rayleigh wave speed.

Rahman and Barber [4] made use of the theory of cubic equation to propose a
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solution for the secular equation of Rayleigh waves for compressible isotropic elastic

solid. However, the expressions proposed by them were limited to specific ranges of

poisson ratio.

Nkemzi [3] formulated an alternative solution for the Rayleigh wave equation

which satisfied for whole range of material parameter in linearly elastic isotropic

solid. Later, Malischewsky [5] pointed out that the formula presented by Nkemzi

[3] was incorrect. He also pointed out that it was unnecessary to impose such

complexities to find the formula for Rayleigh wave speed. Malischewsky [5] used

the Cardan’s formula along with the use of trigonometric formulas to provide a

correct formula for Rayleigh wave speed which satisfied for all ranges of material

parameter, and it also contained a signum function. Malischewsky believed that for

compressible isotropic medium, his formula is the simplest expression available for

the wave speed of Rayleigh waves. However, Malichewsky did not show in detail, the

procedure through which Cardan’s formula is used alongside trigonometric formulas

and with the help of MATHEMATICA to give the solution of the Rayleigh wave

equation.

Vinh and Ogden [6] provided a detailed explanation of Malischewsky’s formula.

They also made use of the Cardan’s formula to give an alternative expression for

the Rayleigh wave speed in compressible isotropic elastic solid without the inclusion

of signum function. Furthermore, Vinh and Ogden showed that their formula is

equivalent to Malischewsky’s formula for the given range of material parameter.

Basing on the theory of cubic equations, Ogden and Vinh [7] also provided

a formula for incompressible orthotropic material. For compressible orthotropic

elastic materials, Vinh and Ogden [8] and Vinh and Ogden [9] provided a solution

for Rayleigh wave speed also based on cubic equations theory.

The formula for Rayleigh wave speed in an isotropic half-space as well as in an

incompressible orthotropic half-space was provided by Rahman and Michelitsch [10].

Nkemzi [11] gave a simple formula for Rayleigh wave speed in an isotropic linearly

elastic solid. However, this formula contained irrational denominator.

Liu and Fan [12] derived a new formula for Rayleigh wave speed in isotropic

3



elastic half-space, using a form of Cardano’s formula.

Recently, Sudheer et al. [13] used numerical and approximate techniques to give

a formula for wave speed of Rayleigh waves in isotropic and anisotropic media.

In this thesis, Rayleigh wave speed formulas given by Malischewsky [5], Vinh

and Ogden [6] are reviewed and discussed.

Chapter 2 is composed of some basic concepts, such as complex numbers, formula

for finding their roots, their principal values. The concepts of stress in an isotropic

material are briefly given here. Secular equation for Rayleigh waves in compress-

ible isotropic elastic solids to determine the Rayleigh wave speed is also reviewed.

Furthermore, Cardan’s fomulas to find the roots of cubic equation are derived in

detail.

Chapter 3 is devoted to discuss the formula obtained by Malischewsky [5] for

the speed of Rayleigh waves in compressible isotropic elastic solids. It is based on

the theory of cubic equations and Cardan’s formula. Formula for complex roots of

Rayleigh wave equation given by Malischewsky [5] is also reviewed in this chapter.

In chapter 4, Rayleigh wave speed formula given by Vinh and Ogden [6] using the

theory of cubic equations and Cardan’s formula is discussed in detail. An equivalent

form of secular equation for Rayleigh waves and its conversion into cubic equation

along with the uniqueness of its solution related to Rayleigh wave speed is given here.

The solutions of this cubic equation in different cases of discriminant are studied in

detail. This study is used to analyze the formula obtained by Malischewsky [5], and

its connection with the formula given by Vinh and Ogden [6] is explained.

Chapter 5 consists of conclusions after reviewing papers of Malischewsky [5] and

Vinh and Ogden [6].
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Chapter 2

Preliminaries

In this chapter, some basic concepts required in the subsequent chapters are given.

2.1 Complex numbers

In this section, complex numbers, their roots and principal values are explained as

mentioned by Zill and Shanahan [14].

2.1.1 Notation and modulus of complex number

If a number is written in the form w = p+ ι̇q then w is called complex number where

p and q are real numbers and ι̇ is an imaginary number with value
√
−1. Modulus

|w|, of this complex number is defined as

|w| = r =
√
p2 + q2, (2.1.1)

which is a positive real number.

2.1.2 Polar form of a complex number

The complex number w = p+ ι̇q in its polar form is given by

w = r(cos θ + ι̇ sin θ), (2.1.2)
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where the value of r is given by Eq. (2.1.1), and θ is the argument of w or phase

angle of w. The values of p and q in polar form are given by

p = r cos θ, q = r sin θ. (2.1.3)

The phase angle or argument of complex number w is represented by θ = arg(w) =

tan−1(q/p). Since 2π is the period of cos θ and sin θ, therefore, the phase angle or

argument of complex number w is not unique. If argument of w is denoted by θ1,

then θ1±2πh where h = ±1,±2,±3, ...., must be the arguments of w. The argument

θ1 of w is called principal argument or principal value of arg(w), denoted as

Arg(w), is distinctive and given by −π <Arg(w)≤ π.

2.1.3 Roots of complex numbers

The formula for finding the nth roots of complex number w = p+ ι̇q is given by

w
1/n
h = n

√
r[cos(

θ + 2hπ

n
) + ι̇ sin(

θ + 2hπ

n
)], (2.1.4)

or

w
1/n
h = |w|1/neι̇(

θ+2hπ
n

), (2.1.5)

where h = 0, 1, 2, ....., n− 1 and n is the number of roots.

Example 1: Find the three cube roots of w = ι̇.

Solution: Since r = 1, θ = Arg(ι̇) = π/2, hence from Eq. (2.1.4), we have

w∗h = w
1/3
h =

3
√

1[cos(
π/2 + 2hπ

3
) + sin(

π/2 + 2hπ

3
)], (2.1.6)

where h = 0, 1, 2. Therefore the three cube roots of ι̇ are

w∗0 =

√
3

2
+

1

2
ι̇, w∗1 = −

√
3

2
+

1

2
ι̇, w∗2 = −ι̇. (2.1.7)
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2.1.4 Principal nth root

The distinctive root of a complex number w (acquired by using Arg(w) with h = 0) is

called principal nth root. In Example 1, the principal cube root of ι̇ is w∗0 =
√

3
2

+ 1
2
ι̇,

where Arg(ι̇) = π/2 and h = 0. The use of Arg(w) with h = 0 gives us the assurance

that if the complex number w is a positive real number r, then the principal nth root

is n
√
r, i.e. if w = 2 + 0ι̇ then |w| = 2 and Arg(w) = 0, hence by using Eq. (2.1.5),

the three cube roots of w are given by w∗0 = 3
√

2, w∗1 = 3
√

2eι̇(
2π
3

) and w∗2 = 3
√

2eι̇(
4π
3

),

where w∗0 = 3
√

2 is principal cube root of complex number w = 2 + 0ι̇.

2.2 Unique root of a function in an interval

In this section, the unique root of a function in an interval is explained as mentioned

by Thomas and Finney [15]. To find the unique root in a given interval, first

derivative test for increasing and decreasing of a function helps in this regard. For

this purpose, suppose f(ψ) be a function, then if f is continuous on the interval

[p1, q1], where p1 and q1 are real numbers, and f ′ exists in the interval (p1, q1), and

f(p1)f(q1) < 0, and either f ′ > 0 or f ′ < 0 on the interval (p1, q1), then the root

of the equation f(ψ) = 0, is unique in the interval (p1, q1). Since f(p1)f(q1) < 0,

so there exists at least one real root in the interval (p1, q1), and function is either

increasing or decreasing in the interval (p1, q1), which ensures that there is no turning

point in the interval (p1, q1), so root will be unique in this interval.

2.3 Stress, Strain and their relationship

Stress and strain have important role in the theory of elasticity. In this section,

stress, strain and their relation is explained according to the study provided by

Royer and Dieulesaint [16].
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2.3.1 Strain:

If a force is applied to a material, it deforms in shape, size or volume. The amount

of this deformation is called strain and this quantity is free of dimensions. Assum-

ing d(z, t) be the displacement vector, then strain tensor of rank two Sij in linear

approximation is defined by

Sij =
1

2
(
∂di
∂zj

+
∂dj
∂zi

), i, j = 1, 2, 3. (2.3.1)

From Eq. (2.3.1), it is obvious that strain tensor Sij of rank two is symmetric, i.e.

Sij = Sji.

2.3.2 Stress:

Stress is a force acting per unit area of the body. If an orthonormal frame of reference

is considered, then stress tensor is defined by

Tik = lim∆sk→0(
∆Fi
∆sk

), (2.3.2)

where ∆Fi is the i− th component of force ∆F applied on the surface element ∆sk,

where ∆sk is orthogonal to k−axis, through the medium in the positive direction. It

is observed that stress tensor of rank two is symmetric under equilibrium conditions,

i.e. Tik = Tki.

2.3.3 Stress and strain relation:

If a medium regains its original form after the removal of external forces, then it is

elastic. The elasticity of this medium is because of internal stress. If stress is applied

then it causes strain. It is observed by experiments that, most of the materials show

elastic behavior for small deformations. The relation of stress and strain in linear

theory of elasticity, can be explained by considering stress as a function of strain

8



and by expanding Taylor series about origin as follows

Tij(Skl) = Tij(0) + (
∂Tij
∂Skl

)Skl=0Skl + ...., (2.3.3)

where in Eq. (2.3.3), Tij(0) = 0, because if there is no strain then no stress and

vice versa. Since strain is sufficiently small in linear theory of elasticity, so ignoring

second and higher order terms, then Eq. (2.3.3) results in

Tij(Skl) = cijklSkl, (2.3.4)

where cijkl = (
∂Tij
∂Skl

)Skl=0, are the components of elastic stiffness tensor of rank four.

For isotropic material (the material whose physical properties are same in every

direction), the elasticity tensor cijkl is given by [17]

cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.3.5)

where δij, δkl, δik, δjl, δil and δjk are rank 2 symmetric isotropic tensors (the compo-

nents of which remain unchanged with the change of basis). Here λ, µ are Lamé

parameters. So for isotropic material, the stress-strain relation defined in Eq. (2.3.4)

can be expressed as

Tij = λδijSkk + 2µSij, (2.3.6)

where Skk = S11 + S22 + S33 and Sij is defined by Eq. (2.3.1). Equation (2.3.6)

represents stress in terms of strain. Similarly one can express strain in terms of

stress.

2.4 Waves and their types

A wave is a disturbance that travels through space and matter, accompanied by

transfer of energy. If this disturbance is in elastic medium then these waves are

called elastic waves. Elastic waves that propagate in solids can be of many types.

Some of them are discussed here.
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2.4.1 Longitudinal waves

The waves in which particle displacement is parallel to the direction of motion of

the waves are called longitudinal waves.

2.4.2 Transverse waves

The waves in which particle displacement is perpendicular to the direction of motion

of the waves are called transverse waves.

2.4.3 Surface waves

These waves travel through the surface of the solid material. These waves are called

surface waves because the displacement decay exponentially as distance from the

surface increases. Rayleigh waves are type of surface waves, and a brief discussion

about these waves in linear elastic isotropic solid is given in the following section.

2.4.4 Secular equation for Rayleigh waves in compressible

isotropic elastic solids

In this section, secular equation of Rayleigh waves is derived according to study pro-

vided in [17]. Rayleigh waves are considered to be traveling beside the surface of an

elastic half space in z1 direction, while the propagation of these waves is occurring

only in z1z2−plane, and z2 is positive in the downward direction as shown in Fig 2.1.

Figure 2.1: Isotropic elastic half space
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Displacement equation for waves in an isotropic material is

µ∇2d + (λ+ µ)∇(∇.d) = ρ
∂2d

∂t2
, (2.4.1)

where d is displacement vector and ρ denotes mass density of the material and

∇2 = ( ∂2

∂z21
+ ∂2

∂z22
) is the Laplace operator. Since Rayleigh wave is a surface wave so

components of displacement vector d in z1z2−plane are

d1(z1, z2, t) = Ae−akz2 exp[ι̇k(z1 − ct)], (2.4.2a)

d2(z1, z2, t) = Be−akz2 exp[ι̇k(z1 − ct)], (2.4.2b)

d3(z1, z2, t) ≡ 0, (2.4.2c)

where A, B are wave amplitudes, a has positive real part, c represents Rayleigh

wave speed and k is the wave number (the distance between two peaks of a wave

correspond to wave length and reciprocal of this wave length is called wave number).

The components d1 and d2 satisfy Eq. (2.4.1) as

µ(
∂2

∂z2
1

+
∂2

∂z2
2

)d1 + (λ+ µ)
∂

∂z1

(
∂d1

∂z1

+
∂d2

∂z2

) = ρ
∂2d1

∂t2
, (2.4.3a)

µ(
∂2

∂z2
1

+
∂2

∂z2
2

)d2 + (λ+ µ)
∂

∂z2

(
∂d1

∂z1

+
∂d2

∂z2

) = ρ
∂2d2

∂t2
. (2.4.3b)

After substituting the values of components d1 and d2 from Eqs. (2.4.2a) and (2.4.2b)

in Eqs. (2.4.3a) and (2.4.3b), we have

(c2
1a

2 − c2
2 + c2)A− (c2

2 − c2
1)ι̇aB = 0, (2.4.4a)

(c2
2a

2 − c2
1 + c2)B − (c2

2 − c2
1)ι̇aA = 0, (2.4.4b)

where

c2
1 =

µ

ρ
, c2

2 =
λ+ 2µ

ρ
, (2.4.5)

where c1 and c2 represents transverse wave speed and longitudinal wave speed in

isotropic material, respectively. Equations (2.4.4a) and (2.4.4b) represents a system
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of homogeneous equations in A and B. For nontrivial solution of this system∣∣∣∣∣∣(c
2
1a

2 − c2
2 + c2) −(c2

2 − c2
1)ι̇a

−(c2
2 − c2

1)ι̇a (c2
2a

2 − c2
1 + c2)

∣∣∣∣∣∣ = 0. (2.4.6)

After simplification, Eq. (2.4.6) yields

c2
2c

2
1a

4 − [c2
1(c2

2 − c2) + c2
2(c2

1 − c2)]a2 + [(c2
2 − c2)(c2

1 − c2)] = 0, (2.4.7)

which may be written as

(a2 − (1− c2

c2
1

))(a2 − (1− c2

c2
2

)) = 0. (2.4.8)

The roots of Eq. (2.4.8) are given by

a1 =

√
1− c2

c2
2

, a2 =

√
1− c2

c2
1

. (2.4.9)

Since from Eq. (2.4.5), c1 < c2, it is observed that if c < c1 < c2 and positive value

of square roots are used, then a1 and a2 are positive and real. Using Eq. (2.4.9) and

Eqs. (2.4.2a) and (2.4.2b), we have

d1(z1, z2, t) = [A1e
−a1kz2 + A2e

−a2kz2 ] exp[ι̇k(z1 − ct)], (2.4.10a)

d2(z1, z2, t) = [B1e
−a1kz2 +B2e

−a2kz2 ] exp[ι̇k(z1 − ct)]. (2.4.10b)

Since there are two expressions with four unknowns, we reduce Eqs. (2.4.10a) and

(2.4.10b) with two unknowns. For this purpose, replace A by A2, B by B2 and a by

a2 in Eq. (2.4.4a), and by using Eq. (2.4.9)2, we get

B2 = ι̇
A2

a2

. (2.4.11)

Similarly, by replacing A by A1, B by B1 and a by a1 in Eq. (2.4.4b), and by using

12



Eq. (2.4.9)1, we have

B1 = ι̇a1A1. (2.4.12)

At free surface z2 = 0, the stress components T21 = 0, T22 = 0, T23 ≡ 0, for all z1,

t > 0. Since T21 = 0, by Eq. (2.3.6), we have

T21 = µ(
∂d2

∂z1

+
∂d1

∂z2

) = 0. (2.4.13)

By using Eqs. (2.4.9)− (2.4.12) and simplifying, Eq. (2.4.13) yields

2

√
1− c2

c2
1

√
1− c2

c2
2

A1 + (2− c2

c2
1

)A2 = 0. (2.4.14)

Since T22 = 0, by using Eq. (2.3.6), we have

T22 = λ(
∂d1

∂z1

+
∂d2

∂z2

) + 2µ
∂d2

∂z2

= 0. (2.4.15)

Again by using Eqs. (2.4.9) – (2.4.12) and simplifying, Eq. (2.4.15) becomes

(2− c2

c2
1

)A1 + 2A2 = 0. (2.4.16)

Equations (2.4.14) and (2.4.16) shows system of homogeneous equations in A1, A2.

For nontrivial solution ∣∣∣∣∣∣2
√

1− c2

c21

√
1− c2

c22
(2− c2

c21
)

(2− c2

c21
) 2

∣∣∣∣∣∣ = 0. (2.4.17)

Simplification yields

(2− c2

c2
1

)2 = 4

√
1− c2

c2
2

√
1− c2

c2
1

. (2.4.18)

Since Eq. (2.4.18) is independent of wave number, therefore Rayleigh waves are

dispersion-less in an isotropic elastic half-space and hence, Eq. (2.4.18) is called

secular equation for Rayleigh wave in compressible isotropic elastic solids.

To find the interval in which Rayleigh wave is lying, one can take square on both
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sides of Eq. (2.4.18)

(2− c2

c2
1

)4 = 16(1− c2

c2
2

)(1− c2

c2
1

). (2.4.19)

By simplification, Eq. (2.4.19) becomes

c8

c8
1

− 8
c6

c6
1

+ 24
c4

c4
1

− 16
c2

c2
1

= 16
c4

c2
1c

2
2

− 16
c2

c2
2

. (2.4.20)

Multiplying Eq. (2.4.20) by a factor
c21
c2

, it becomes

f(c) = (
c

c1

)6 − 8(
c

c1

)4 + (24− 16
c2

1

c2
2

)
c2

c2
1

− 16(1− c2
1

c2
2

) = 0, (2.4.21)

where

f(c) = (
c

c1

)6 − 8(
c

c1

)4 + (24− 16
c2

1

c2
2

)
c2

c2
1

− 16(1− c2
1

c2
2

). (2.4.22)

Since from Eq. (2.4.9), c < c1. On substituting c = 0 and c = c1 in Eq. (2.4.22), we

have

f(0) = −16(1− c2
1

c2
2

) < 0, (∵ c1 < c2)

f(c1) = 1 > 0.

(2.4.23)

Thus there is at least one real root of Eq. (2.4.18) in the interval 0 < c < c1. To

see, if there is a unique real root in the interval 0 < c < c1, a discussion is presented

later in this section.

Rayleigh wave speed is the root of Eq. (2.4.18). To convert Eq. (2.4.18) into

dimensionless form is an appropriate way to find the root of Rayleigh wave equation

[3]. For this purpose, introducing a dimensionless variable

y =
c2

c2
1

. (2.4.24)

So Eq. (2.4.18) becomes

(2− y)2 = 4
√

1− Γy
√

1− y, (2.4.25)
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where

0 < y < 1, 0 < Γ =
c2

1

c2
2

=
µ

λ+ 2µ
<

3

4
, (2.4.26)

where Γ is dimensionless parameter. Since 0 < c < c1, dividing the interval by a

factor c1 results in 0 < c
c1
< 1, and hence Eq. (2.4.24) implies, 0 < y < 1.

Poisson’s ratio: The ratio of transverse contraction strain to longitudinal ex-

tension strain in the direction of applied force is called poisson ratio. It is given

by ν = −Strans/Slongitudinal, where strain in longitudinal direction is taken positive

while the strain in transverse direction is taken negative. Most of the materials

have positive poisson ratio i.e. they contract in transverse direction if stretched in

longitudinal direction, e.g. rubber has poisson ratio ν = 1
2
, while some materials

show negative poisson ratio because when they stretched in longitudinal direction,

they expand in transverse direction like re-entrant honey comb which has poisson

ratio ν ≈ −1 [18]. For stable, isotropic, linear elastic solid, the range of poissons’s

ratio is −1 < ν < 1/2 [19]. For this range of poisson’s ratio, it can be shown that

it is sufficient to consider the parameter Γ for the range 0 < Γ < 3/4. To show this

considering the relation of ν with Lamé parameters, we have

ν =
λ

2(λ+ µ)
=

λ+ 2µ− 2µ

2(λ+ 2µ− µ)
. (2.4.27)

Multiplying and dividing Eq. (2.4.27) by 1
ρ

and using Eq. (2.4.5), we have

ν =
(λ+ 2µ)/ρ− 2µ/ρ

2((λ+ 2µ)/ρ− µ/ρ)
=

c2
2 − 2c2

1

2(c2
2 − c2

1)
. (2.4.28)

Using Eq. (2.4.26)2, Eq. (2.4.28) becomes

ν =
1− 2Γ

2(1− Γ)
. (2.4.29)

Rearranging Eq. (2.4.29) to get the relation of Γ in terms of ν, we have

Γ =
1− 2ν

2− 2ν
. (2.4.30)
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By substituting ν = −1 and ν = 1/2 in Eq. (2.4.30) results in Γ = 3/4 and Γ = 0

respectively. Thus for −1 < ν < 1/2, the range of parameter Γ is 0 < Γ < 3/4.

2.5 Cardan’s formulas for finding the roots of cu-

bic equation

In 1545, Gerolamo Cardano published the solution to cubic equations [20]. Cardano,

however, was not the pioneer in this field. Niccolo Tartaglia had also provided a

hint for the solution of cubic equations. It is thought that Tartaglia himself had got

the idea for the solution from Scipione del Ferro, who did not publish his solution

but disclosed it to his students.

Cardan’s formulas are of great importance in order to find the roots of cubic

equation. To derive these formulas, consider the cubic equation in general form as

g(z) = z3 +m2z
2 +m1z +m0 = 0. (2.5.1)

To simplify Eq. (2.5.1), presenting a new unknown χ, hence, resulting in the absence

of the square of unknown in the equation, where the unknown χ is defined by the

relation

z = χ+ h1, (2.5.2)

where h1 is chosen randomly. By applying Taylor’s series on the right side of Eq.

(2.5.2), we have

g(χ+ h1) = g(h1) + g′(h1)χ+
g′′(h1)

2
χ2 +

g′′′(h1)

6
χ3, (2.5.3)

where

g(h1) = h3
1 +m2h

2
1 +m1h1 +m0, g′(h1) = 3h2

1 + 2m2h1 +m1,

1

2
g′′(h1) = 3h1 +m2,

1

6
g′′′(h1) = 1.

(2.5.4)

By setting 3h1 + m2 = 0, the resulting equation in χ will be free of χ2 term, and

16



hence

h1 = −m2

3
. (2.5.5)

After substituting the value of h1 in Eq. (2.5.4), we get

g(−m2

3
) =

2m3
2

27
− m1m2

3
+m0, g′(−m2

3
) = −m

2
2

3
+m1. (2.5.6)

Using Eq. (2.5.5) in Eq. (2.5.2), we have

z = χ− m2

3
. (2.5.7)

So by using Eq. (2.5.7), Eq. (2.5.1) is converted into

g(χ) = χ3 + r1χ+ r0 = 0, (2.5.8)

where

r1 = −m
2
2

3
+m1, r0 =

2m3
2

27
− m1m2

3
+m0. (2.5.9)

In order to solve Eq. (2.5.8), the unknowns α and γ are introduced through

χ = α + γ . (2.5.10)

Substitution of Eq. (2.5.10) in Eq. (2.5.8) results in

α3 + γ3 + (3αγ + r1)(α + γ) + r0 = 0. (2.5.11)

Defining another relation between α and γ to solve Eq. (2.5.11), for this purpose

taking

3αγ + r1 = 0, (2.5.12)

or αγ = −r1

3
. (2.5.13)
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Using Eq. (2.5.13) in Eq. (2.5.11), we have

α3 + γ3 + r0 = 0. (2.5.14)

By substituting the value of γ from Eq. (2.5.13), Eq. (2.5.14) will be converted into

quadratic equation in α3

α6 + r0α
3 − r3

1

27
= 0. (2.5.15)

Roots of Eq. (2.5.15) are given by quadratic formula as

α3 = −r0

2
±
√
r2

0

4
+
r3

1

27
. (2.5.16)

By using Eq. (2.5.13), with out loss of generality we have

α3 = −r0

2
+

√
r2

0

4
+
r3

1

27
, γ3 = −r0

2
−
√
r2

0

4
+
r3

1

27
. (2.5.17)

Let

M =
3

√
−r0

2
+

√
r2

0

4
+
r3

1

27
, N =

3

√
−r0

2
−
√
r2

0

4
+
r3

1

27
. (2.5.18)

So α and γ have three possible values. The values of α are calculated by using Eq.

(2.5.17)1 and Eq. (2.5.18)1 as

α3 − [(−r0

2
+

√
r2

0

4
+
r3

1

27
)
1
3 ]3 = 0,

=⇒ α3 −M3 = 0,

=⇒ (α−M)(α2 + αM +M2) = 0. (2.5.19)

Hence from Eq. (2.5.19), the three possible values of α are given by

α1 = M, α2 = ωM, α3 = ω2M, (2.5.20)

where

ω = eι̇
2π
3 =

−1 + ι̇
√

3

2
, ω2 = e−ι̇

2π
3 =

−1− ι̇
√

3

2
. (2.5.21)
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Similarly by adopting the same procedure, the three possible values of γ by using

Eqs. (2.5.17)2 and (2.5.18)2 are given by

γ1 = N, γ2 = ωN, γ3 = ω2N. (2.5.22)

Because of the restriction, given by Eq. (2.5.13), there are only three possible

combinations of α and γ from Eqs. (2.5.20) and (2.5.22), that are satisfying the

relation (2.5.10), which is shown as follows

χ1 = α1γ1 = MN =
3

√
−r0

2
+

√
r2

0

4
+
r3

1

27
×

3

√
−r0

2
−
√
r2

0

4
+
r3

1

27
,

= 3

√
− r1

27
= −r1

3
. (2.5.23)

χ2 = α2γ3 = ωM × ω2N = ω
3

√
−r0

2
+

√
r2

0

4
+
r3

1

27
× ω2 3

√
−r0

2
−
√
r2

0

4
+
r3

1

27
,

= [(−1

2
)2 − (ι̇

√
3

2
)2] 3

√
− r1

27
= −r1

3
. (2.5.24)

Similarly

χ3 = α3γ2 = ω2M × ωN = ω2 3

√
−r0

2
+

√
r2

0

4
+
r3

1

27
× ω

3

√
−r0

2
−
√
r2

0

4
+
r3

1

27
,

= −r1

3
. (2.5.25)

Hence, these three possible combinations are given by

χ1 = M +N, (2.5.26)

χ2 = ωM + ω2N, (2.5.27)

χ3 = ω2M + ωN, (2.5.28)

where χ1, χ2 and χ3 are the roots of Eq. (2.5.8), and the values of M and N are

given by Eq. (2.5.18). The formulas given by Eqs. (2.5.26) – (2.5.28), are called

Cardan’s formulas. The roots of Eq. (2.5.1) are thus found through Eq. (2.5.2) and

the values of χ1, χ2, and χ3.
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Chapter 3

Malischewsky’s Formula for the

Rayleigh Wave Speed

In this chapter, a review of the paper [5] is presented. In the first section, Malis-

chewsky’s formula for the real root of secular equation of Rayleigh waves is explained.

In the next section, Malischewsky’s formula for the complex roots of secular equation

of Rayleigh waves is discussed.

3.1 Malischewsky’s formula for real root of Rayleigh

wave equation for compressible isotropic elas-

tic solids

Malischewsky [5] used renowned form of Rayleigh wave equation for compressible

isotropic elastic solids [1] to find Rayleigh wave speed, which is obtained by taking

square of Eq. (2.4.25) and some reshuffling gives

f(y) = y3 + b2y
2 + b1y + b0 = 0, (3.1.1)
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where

b2 = −8, b1 = 8(3−2Γ), b0 = −16(1−Γ), 0 < y =
c2

c2
1

< 1, 0 < Γ =
c2

1

c2
2

< 3/4 ,

(3.1.2)

where Γ is defined by Eq. (2.4.30). Malischewsky derived the formula for Rayleigh

wave speed by using Cardan’s formulas and trigonometric formulas along with

MATHEMATICA, but it was not explained in his paper [5] as to how he did it.

Malischewsky’s formula for real root of Eq. (3.1.1) to determine Rayleigh wave

speed c is

y =
2

3

[
4− 3

√
s3(Γ) + sgn[s4(Γ)] 3

√
sgn[s4(Γ)]s2(Γ)

]
, (3.1.3)

where the functions si(Γ),i = 1, 2, 3, 4 are given as

s1(Γ) = 3
√

3
√

11− 62Γ + 107Γ2 − 64Γ3, s2(Γ) = 45Γ− 17 + s1(Γ),

s3(Γ) = 17− 45Γ + s1(Γ), s4(Γ) = −Γ +
1

6
.

(3.1.4)

Malischewsky [5] used signum function (where signum function is defined as sgn(ψ) =

−1 if ψ < 0, sgn(ψ) = 0 if ψ = 0, and sgn(ψ) = 1 if ψ > 0) in his formula (3.1.3) to

avoid zero-crossing of function s2(Γ), which is shown by following graphs

0.1 0.2 0.3 0.4
G

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

s2HGL

Figure 3.1: Graph of s2(Γ)

0.1 0.2 0.3 0.4
G

0.1

0.2

0.3

0.4

0.5

Sgn@s4HGLDs2HGL

Figure 3.2: Graph of sgn[s4(Γ)]s2(Γ)

21



3.1.1 Discussion about principal values of cube roots in Malis-

chewsky’s formula

Malischewsky [5] chose that one value of cube roots in Eq. (3.1.3) which is located

in first and fourth quadrant, depicts that Malischewsky took the principal values of

complex cube roots in (3.1.3). To show it, we take different ranges of the parameter

Γ ∈ (0, 3/4 = 0.75).

For 0 < Γ ≤ 0.32, s3(Γ) and sgn[s4(Γ)]s2(Γ) are positive and real numbers,

therefore, according to section 2.1.4, the principal cube root of s3(Γ) is 3
√
s3(Γ) and

the principal cube root of sgn[s4(Γ)]s2(Γ) is 3
√

sgn[s4(Γ)]s2(Γ).

For 0.32 < Γ ≤ 0.37, the value of the expression (11 − 62Γ + 107Γ2 − 64Γ3) is

negative and hence by Eq. (3.1.4)1, s1(Γ) = ι̇3
√

3
√
−(11− 62Γ + 107Γ2 − 64Γ3).

Also for this range, the value of the expression (17− 45Γ) is positive while the value

of the expression (45Γ− 17) is negative and the value of signum function sgn[s4(Γ)]

is equal to −1. Therefore, the complex cube roots in Eq.(3.1.3) for this range of Γ

are represented as, say X and Y ,

X = 3
√
s3(Γ) =

3

√
(17− 45Γ) + ι̇3

√
3
√
−(11− 62Γ + 107Γ2 − 64Γ3),

Y = 3
√

sgn[s4(Γ)]s2(Γ) =
3

√
−(45Γ− 17)− ι̇3

√
3
√
−(11− 62Γ + 107Γ2 − 64Γ3),

(3.1.5)

respectively. The radicand (s3(Γ)) of the cube root in Eq. (3.1.5)1 lies in the first

quadrant with the phase angle contained in (0, π/2). If θ is the phase angle of X,

then by using Eq. (2.1.5), the three values of X are given by

X1 = |s3(Γ)|
1
3 eι̇θ, X2 = |s3(Γ)|

1
3 eι̇(θ+2π/3), X3 = |s3(Γ)|

1
3 eι̇(θ+4π/3), θ ∈ (0, π/6).

(3.1.6)

According to section 2.1.4, X1 is the principal value in Eq. (3.1.6) and is lying in

the first quadrant. Since the radicand of cube root in Eq. (3.1.5)2 is the complex

conjugate of first one, so by using Eq. (2.1.5), the three possible values of Y are
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given by

Y1 = |sgn[s4(Γ)]s2(Γ)|
1
3 e−ι̇θ, Y2 = |sign[s4(Γ)]s2(Γ)|

1
3 eι̇(−θ+2π/3),

Y3 = |sgn[s4(Γ)]s2(Γ)|
1
3 eι̇(−θ+4π/3), θ ∈ (0, π/6).

(3.1.7)

Through section 2.1.4, Y1 is the principal value in Eq. (3.1.7) and is lying in the

fourth quadrant.

For 0.37 < Γ < 0.75, the value of the expression (11 − 62Γ + 107Γ2 − 64Γ3) is

negative and hence by Eq. (3.1.4)1, s1(Γ) = ι̇3
√

3
√
−(11− 62Γ + 107Γ2 − 64Γ3).

For this range, the value of the expression (17 − 45Γ) is negative while the value

of the expression (45Γ − 17) is positive and the value of signum function is equal

to −1. Therefore, the representation of complex cube roots in Eq. (3.1.3) for this

case will be same as given in Eq. (3.1.5). In this case the radicand of the cube root

in Eq. (3.1.5)1 lies in second quadrant with the phase angle contained in (π/2, π).

The three possible values of complex cube root X in this case will be given by Eq.

(3.1.6) where θ ∈ (π/6, π/3) and hence, the principal value of X in this case will be

X1 and lies in the first quadrant. Since the radicand of cube root in Eq. (3.1.5)2

is complex conjugate of first one, so the three possible values of complex cube root

Y are given by Eq. (3.1.7) where θ ∈ (π/6, π/3) and hence, the principal value of

Y in this case will be Y1 and lies in the fourth quadrant. Hence it is proved that

Malischewsky [5] took the principal values of complex cube roots in his formula for

Rayleigh wave speed.

It is observed that for Γ = 1/6, Eq. (3.1.4)4 implies sgn[s4(Γ)] = 0, and hence

from Eq. (3.1.3)

y(1/6) =
2

3
[4− 3

√
19], (3.1.8)

which depicts that the third term on the right hand side of Eq. (3.1.3) disappears

for Γ = 1/6. Also, for cubic function in Eq. (3.1.1), the point of inflection y = 8/3

is called horizontal point of inflection for Γ = 1/6, i.e. f ′(8/3) = 0 and f ′′(8/3) = 0.
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3.2 Malischewsky’s formula for complex roots of

Rayleigh wave equation for compressible isotropic

elastic solids

Malischewsky [5] derived the formula for complex roots of cubic equation (3.1.1),

that are usually taken as irrelevant. The formula is given by

yc =
1

3
[8 + (1± ι̇

√
3) 3
√
s3(Γ) + (−1± ι̇

√
3)sgn[s4(Γ)] 3

√
sgn[s4(Γ)]s2(Γ)]. (3.2.1)

For Γ = 1/6, Eq. (3.1.4)4 implies sign[s4(Γ)] = 0, consequently, the third term of

Eq. (3.2.1) disappears

yc(1/6) =
1

3
[8 + (1± ι̇

√
3)

3
√

19]. (3.2.2)

Malischewsky [5] considered his formula (3.1.3) as simplest one to find Rayleigh

wave speed and it is for any range of Γ as well as for ν, and unlike to Rahman

and Barber [4] formulae that are not applicable for whole range of ν. Opposing

to Nkemzi [3], Malischewsky [5] considered his formula (3.1.3) as correct form of

formula for Rayleigh wave speed.
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Chapter 4

Vinh and Ogden’s Formula for the

Rayleigh Wave Speed

In this chapter a detailed review of the paper [6] is presented. In the first section,

Rayleigh wave speed equation for compressible isotropic elastic solids is discussed.

In the next section, formula for Rayleigh wave speed given by Vinh and Ogden [6]

is explained and analyzed in detail. In the last section, connection of Vinh and

Ogden’s formula with Malischewsky’s formula is shown.

4.1 Analysis of the Rayleigh wave equation for

compressible isotropic elastic solids

Vinh and Ogden [6] used the form of secular equation of Rayleigh waves for compress-

ible isotropic elastic solids which is given by Eq. (2.4.25), and found its equivalent

form for the related real root of Rayleigh wave equation.
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4.1.1 An equivalent form of the secular equation for Rayleigh

wave

An equivalent form of Eq. (2.4.25) is derived in [6], given by Eq. (4.1.1)

(1− y)[4(1− Γ)− y]− y
√

1− y
√

1− Γy = 0, (4.1.1)

where 0 < y = c2

c21
< 1 and 0 < Γ =

c21
c22
< 3/4. To derive Eq. (4.1.1), rewriting Eq.

(2.4.25) as

4
√

1− Γy
√

1− y − 4(1− y)− y2 = 0. (4.1.2)

Multiplying Eq. (4.1.2) by
√

1− Γy
√

1− y, we get

(1− y)[4(1− Γy)− 4
√

1− Γy
√

1− y]− y2
√

1− Γy
√

1− y = 0. (4.1.3)

Using Eq. (2.4.25) in Eq. (4.1.3), we have

(1− y)[4(1− Γy)− (2− y)2]− y2
√

1− Γy
√

1− y = 0,

=⇒ (1− y)[4− 4 + 4y − 4Γy − y2]− y2
√

1− Γy
√

1− y = 0,

=⇒ (1− y)[4y − 4Γy − y2]− y2
√

1− Γy
√

1− y = 0. (4.1.4)

Dividing Eq. (4.1.4) by a factor y results in Eq. (4.1.1).

Equation (4.1.1) can also be derived by the generalized equation

(β11 − ρc2)[(σ1 − ρc2)σ2 − (σ2 − τ)2] + (σ2/β22)1/2(β11 − ρc2)1/2(σ1 − ρc2)1/2

×[β22(β11 − ρc2)− β2
12] = 0, (4.1.5)

where β11, β22, β12, σ1, σ2 are the components of fourth-order elastic modulus tensor

in the non linear theory, ρ denotes the mass density of material, c denotes the

Rayleigh wave speed, τ is the pre-stress. Equation (4.1.5) is known as secular

equation for Rayleigh waves in pre-stressed compressible elastic materials. This

equation was obtained by Dowaikh and Ogden [21] using the non linear theory of
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elasticity. Since for the derivation of Eq. (4.1.1), we are taking the case of no

pre-stress, so by putting τ = 0 in Eq. (4.1.5), we have

(β11 − ρc2)[(σ1 − ρc2)σ2 − (σ2)2] + (σ2/β22)1/2(β11 − ρc2)1/2(σ1 − ρc2)1/2

× [σ22(β11 − ρc2)− σ2
12] = 0.

(4.1.6)

In the absence of the pre-stress, the material is assumed to be a linear isotropic

material and the values of components of fourth-order elastic modulus tensor used

in Eq. (4.1.5), are given by Eq. (4.8) in [21] as

β11 = β22 = λ+ 2µ, β12 = λ, σ1 = σ2 = µ. (4.1.7)

By substituting various elastic constants from Eq. (4.1.7) in Eq. (4.1.6) results in

((λ+ 2µ)− ρc2)[(µ− ρc2)µ− µ2] + (µ/(λ+ 2µ))1/2((λ+ 2µ)− ρc2)1/2(µ− ρc2)1/2

×[(λ+ 2µ)((λ+ 2µ)− ρc2)− λ2] = 0, (4.1.8)

which can be written in the form of Γ as

((λ+ 2µ)− ρc2)[(µ− ρc2)µ− µ2] + (Γ)1/2((λ+ 2µ)− ρc2)1/2(µ− ρc2)1/2

× [(λ+ 2µ)((λ+ 2µ)− ρc2)− λ2] = 0.
(4.1.9)

where Γ is given by Eq. (2.4.26). After simplifications, Eq. (4.1.9) yields

((λ+ 2µ)− ρc2)[(µ− ρc2)µ− µ2] + (Γ)1/2((λ+ 2µ)− ρc2)1/2(µ− ρc2)1/2

× [4µ(µ+ λ)− ρc2(λ+ 2µ)] = 0.
(4.1.10)

Dividing Eq. (4.1.10) through by µ2 and also by using Eqs. (2.4.24) and (2.4.26),we

get

((λ+2µ)−ρc2)[(1−y)−1]+(Γ)1/2((λ+2µ)−ρc2)1/2(µ−ρc2)1/2[4
(µ+ λ)

µ
− y

Γ
] = 0.

(4.1.11)
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Taking ((λ+ 2µ)− ρc2)1/2 common, Eq. (4.1.11) becomes

((λ+ 2µ)− ρc2)1/2[−y] + (Γ)1/2(µ− ρc2)1/2[4
(µ+ λ)

µ
− y

Γ
] = 0. (4.1.12)

Dividing Eq. (4.1.12) by (µ)1/2, and using Eqs. (2.4.24) and (2.4.26), Eq. (4.1.12)

takes the form

(
1

Γ
− y)1/2(−y) + (Γ)1/2(1− y)1/2[4

(µ+ λ)

µ
− y

Γ
] = 0. (4.1.13)

Multiplying through by (Γ)1/2, we have from Eq. (4.1.13)

(1− Γy)1/2(−y) + (Γ)(1− y)1/2[4
(µ+ λ)

µ
− y

Γ
] = 0. (4.1.14)

Multiplying Eq. (4.1.14) through with (1− y)1/2, we get

− y(1− y)1/2(1− Γy)1/2 + (1− y)[4Γ
(λ+ 2µ− µ)

µ
− y] = 0,

=⇒ − y(1− y)1/2(1− Γy)1/2 + (1− y)[4Γ(
1

Γ
− 1)− y] = 0,

=⇒ − y(1− y)1/2(1− Γy)1/2 + (1− y)[4− 4Γ− y] = 0,

=⇒ (1− y)[4(1− Γ)− y]− y(1− y)1/2(1− Γy)1/2 = 0,

or

(1− y)[4(1− Γ)− y]− y
√

1− y
√

1− Γy = 0,

which is the same equation as Eq. (4.1.1), derived through Eq. (4.1.5) by taking

τ = 0.

4.2 A cubic equation for Rayleigh wave speed

To convert Eq. (4.1.1) to a cubic equation, Vinh and Ogden [6] introduced the

notation

ξ =

√
1− Γy

1− y
, (4.2.1)
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where y in terms of variable ξ is given by

y =
1− ξ2

Γ− ξ2
. (4.2.2)

Equation (4.1.1) after division through with (1− y) gives

[4(1− Γ)− y]− y

√
1− Γy

1− y
= 0. (4.2.3)

Using Eqs. (4.2.1) and (4.2.2), Eq. (4.2.3) becomes

4− 4Γ− 1− ξ2

Γ− ξ2
− (

1− ξ2

Γ− ξ2
)ξ = 0, (4.2.4)

or

4(Γ− ξ2)− 4Γ(Γ− ξ2)− (1− ξ2)− (1− ξ2)ξ = 0. (4.2.5)

Equation (4.2.5) can now be rewritten as

g(ξ) = ξ3 + b2ξ
2 − ξ + b0 = 0, (4.2.6)

where

b2 = 4Γ− 3, b0 = −(1− 2Γ)2, and 1 < ξ <∞. (4.2.7)

From Eq. (4.1.1), y ∈ (0, 1), and hence from Eq. (4.2.1), ξ ∈ (1,∞). It is important

to note that, the coefficients b0 and b2 are different in values from the coefficients

defined in Eq. (3.1.2).

4.2.1 Uniqueness of solution of the cubic equation (4.2.6) in

the interval (1,∞)

Since from Eq. (4.2.6), g(1) = −4(1 − Γ)2 < 0, and g(ξ) −→ ∞ as ξ −→ ∞, there

must be at least one real root of Eq. (4.2.6) that lies in the interval (1,∞), also

from Eq. (4.2.6), g(0) < 0.

Through Descarte’s rule of signs [22], maximum number of possible positive and
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negative real roots of Eq. (4.2.6) can be determined. Let m be the total number of

sign changes that occur in Eq. (4.2.6). Since from Eq. (4.2.7), b2 < 0 and b0 < 0

for Γ ∈ (0, 3/4) and hence from Eq. (4.2.6), m = 1. So the maximum number of

possible positive real roots of Eq. (4.2.6) is one. To find negative real roots replacing

ξ by −ξ in Eq. (4.2.6), we have

g(−ξ) = −ξ3 + b2ξ
2 + ξ + b0 = 0. (4.2.8)

Hence from Eq. (4.2.8), m = 2. So the maximum number of possible negative real

roots of Eq. (4.2.6) are two.

Through second derivative test and product of roots of g′(ξ), one can find the unique-

ness of the solution of Eq. (4.2.6) in the interval (1,∞). For this purpose taking

the first derivative of g(ξ) and putting it equal to zero, we have

g′(ξ) = 3ξ2 + 2b2ξ − 1 = 0. (4.2.9)

The equation g′(ξ) = 0 has discriminant equal to 4(b2
2 +3) > 0, which is representing

that there are two distinct real roots of Eq. (4.2.9) and are given by the quadratic

formula as

ξ =
−(2b2)±

√
(2b2)2 − 4(3)(−1)

2(3)
,

ξ1 =
−b2 +

√
b2

2 + 3

3
, ξ2 =

−b2 −
√
b2

2 + 3

3
. (4.2.10)

By taking the second derivative of g(ξ), we have

g′′(ξ) = 6ξ + 2b2. (4.2.11)

By substituting ξ1 in Eq. (4.2.11), we get

g′′(ξ) = 6(
−b2+
√
b22+3

3
) + 2b2,

g′′(ξ) =
√
b2

2 + 3 > 0. (4.2.12)
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Therefore, by second derivative test ξ1 = ξmin, which is denoting the point of mini-

mum value of the function g(ξ). After substituting ξ2 in Eq. (4.2.11), we have

g′′(ξ) = 6(
−b2−
√
b22+3

3
) + 2b2,

g′′(ξ) = −
√
b2

2 + 3 < 0. (4.2.13)

Therefore, through second derivative test ξ2 = ξmax, which is denoting the point of

maximum value of the function g(ξ).

In order to analyze the nature of the roots of Eq. (4.2.6), one can take the

product of two roots of Eq. (4.2.9) as

ξminξmax = (
−b2 +

√
b2

2 + 3

3
)(
−b2 −

√
b2

2 + 3

3
) =
−1

3
< 0. (4.2.14)

Equation (4.2.14) shows that at least one of the turning points (ξmin and ξmax) is

negative. Since from Eq. (4.2.7), b2 < 0 and hence from Eq. (4.2.10), ξmin > ξmax,

therefore, ξmax < 0 < ξmin. Hence the real root of Eq. (4.2.6) is unique in the

interval (1,∞).

It is observed that the unique real root that lies in interval (1,∞) is the largest

one, therefore, the largest real root will relate to Rayleigh wave speed in the case of

two or three distinct real roots of Eq. (4.2.6).

4.3 Rayleigh wave speed formula for compressible

isotropic elastic solids by Vinh and Ogden

It is stated in the last section that the largest (real) root of cubic Eq. (4.2.6) will

relate to Rayleigh wave speed. So for finding the largest real root of Eq. (4.2.6),

it is convenient to simplify this equation by presenting a new unknown x, hence,

resulting in the absence of square of unknown in the equation, where

x = ξ +
1

3
b2. (4.3.1)
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Substitution of the value of ξ from Eq. (4.3.1) in the Eq. (4.2.6) results in

(x− 1

3
b2)3 + b2(x− 1

3
b2)2 − (x− 1

3
b2) + b0 = 0, (4.3.2)

which after simplification becomes

x3 + x(−b
2
2

3
− 1) +

1

27
(2b3

2 + 9b2 + 27b0) = 0. (4.3.3)

Equation (4.3.3) can written in the form

x3 − 3[
1

9
(b2

2 + 3)]x+
1

27
(2b3

2 + 9b2 + 27b0) = 0. (4.3.4)

Hence Eq. (4.2.6) is converted into depressed cubic equation as

x3 − 3u2x+ v = 0, (4.3.5)

where the coefficients u and v are defined by

u =
1

3

√
b2

2 + 3 , v =
1

27
(2b3

2 + 9b2 + 27b0). (4.3.6)

The coefficient u can also be written as

u =
1

2
(ξmin − ξmax), (4.3.7)

where ξmin and ξmax are given by Eq. (4.2.10). Equation (4.3.5) can also be written

in the form

x3 + 3Ux− 2V = 0, (4.3.8)

where

U = −u2, V = −1

2
v . (4.3.9)
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In order to solve the Eq. (4.3.8), the unknowns η and ζ are introduced using the

relation

x = η + ζ. (4.3.10)

So Eq. (4.3.8) becomes

(η + ζ)3 + 3U(η + ζ)− 2V = 0. (4.3.11)

After simplification, we get

η3 + ζ3 + 3(ηζ + U)(η + ζ)− 2V = 0. (4.3.12)

Defining another relation between η and ζ to solve the Eq. (4.3.12), for this purpose

taking

3(ηζ + U) = 0. (4.3.13)

Since 3 6= 0, so ηζ + U = 0, (4.3.14)

ηζ = −U. (4.3.15)

Equation (4.3.12) becomes

η3 + ζ3 − 2V = 0, (4.3.16)

which after using Eq. (4.3.15) becomes

η6 − 2V η3 − U3 = 0. (4.3.17)

Equation (4.3.17) is quadratic equation in η3 and its roots are given by quadratic

formula as

η3 =
−(−2V )±

√
(−2V )2 − 4(1)(−U3)

2(1)
,

=⇒ η3 = V ±
√
V 2 + U3. (4.3.18)
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If η3 = V +
√
V 2 + U3, then from Eq. (4.3.15)2, we have

ζ3 = − U3

V +
√
V 2 + U3

,

= − U3

V +
√
V 2 + U3

× V −
√
V 2 + U3

V −
√
V 2 + U3

,

= −U
3(V −

√
V 2 + U3)

V 2 − (V 2 + U3)
,

ζ3 = V −
√
V 2 + U3. (4.3.19)

If η3 = V −
√
V 2 + U3, then by following the same steps we get ζ3 = V +

√
V 2 + U3.

Without loss of generality we assume

η3 = V +
√
V 2 + U3, ζ3 = V −

√
V 2 + U3. (4.3.20)

Let

P =
3

√
V +
√
V 2 + U3, Q =

3

√
V −

√
V 2 + U3. (4.3.21)

Then η and ζ each has three possible values. The values of η from Eq. (4.3.20)1 are

calculated by

η3 − (V +
√
V 2 + U3) = 0,

=⇒ η3 − [(V +
√
V 2 + U3)

1
3 ]3 = 0,

=⇒ η3 − (P )3 = 0,

=⇒ (η − P )(η2 + ηP + P 2) = 0,

where (η − P ) = 0 =⇒ η = P,

and (η2 + ηP + P 2) = 0 =⇒ η =
−P ±

√
P 2 − 4P 2

2

= P (
−1± ι̇

√
3

2
).

So the three possible values of η are given by

η1 = P, η2 = (
−1

2
+ ι̇

√
3

2
)P, η3 = (

−1

2
− ι̇
√

3

2
)P. (4.3.22)
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By adopting the same procedure, the three possible values of ζ from Eq. (4.3.20)2

are given by

ζ1 = Q, ζ2 = (
−1

2
+ ι̇

√
3

2
)Q, ζ3 = (

−1

2
− ι̇
√

3

2
)Q . (4.3.23)

The restriction ηζ = −U allows only three possible combinations of η and ζ to

satisfy the relation (4.3.10).

Consider the first combination as η1 + ζ1 = x1 and it is satisfying the condition

η1ζ1 = −U which is shown as

η1ζ1 =
3
√
V +
√
V 2 + U3 × 3

√
V −

√
V 2 + U3,

= 3
√
V 2 − (V 2 + U3),

= −U. (4.3.24)

The second combination of η2 + ζ3 =x2 is also satisfying the condition η2ζ3 = −U

which is shown as

η2ζ3 = (−1
2

+ ι̇
√

3
2

)P × (−1
2
− ι̇

√
3

2
)Q,

= (−1
2
)2 − ι̇2(

√
3

2
)2PQ,

= PQ = −U. (4.3.25)

Similarly, the third possible combination is given by η3 + ζ2 = x3. So the three

possible roots of Eq. (4.3.5) and are given by

x1 = P +Q, x2 = −1

2
(P +Q) + ι̇

√
3

2
(P −Q), x3 = −1

2
(P +Q)− ι̇

√
3

2
(P −Q),

(4.3.26)

where

P =
3

√
V +
√
D, Q =

3

√
V −

√
D, D = V 2 + U3, (4.3.27)

where D is the discriminant of Eq. (4.3.5), and V and U are given by Eq. (4.3.9).
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4.3.1 Discussion about cases of discriminant of cubic equa-

tion (4.3.5)

In this section, the nature of the solutions (4.3.26) of Eq. (4.3.5) is determined

according to the sign of its discriminant D. While discussing these cases, u and v

are considered as real numbers in the solutions (4.3.26). Vinh and Ogden [6] showed

that in case of (D > 0, D = 0, D < 0) the largest real root of Eq. (4.3.5) is

represented by

x0 =
3

√
V +
√
D +

3

√
V −

√
D, (4.3.28)

where roots are generally assumed as complex roots taking their principal values.

Case 1: D > 0

When D > 0, there are one real and two complex conjugates roots of Eq. (4.3.5),

given by Eq. (4.3.26). Denoting this real root by x0, given by x1 in Eq. (4.3.26)1,

where the cube roots are real. In the case of D > 0,
√
D is taken real and positive.

Using Eqs. (4.2.7), (4.3.6)2 and (4.3.9)2, we find that V > 0. Also, from Eqs.

(4.3.9)1 and (4.3.27)3, we have U < 0, and hence V >
√
D. Therefore,

V +
√
D > 0, V −

√
D > 0. (4.3.29)

Equation (4.3.29) shows that V +
√
D and V −

√
D are real and positive numbers,

so according to the section 2.1.4, their principal cube roots are
3
√
V +
√
D and

3
√
V −

√
D respectively. Hence Eq. (4.3.28) is valid in this case.

Case 2: D = 0

When D = 0, then all the three roots of Eq. (4.3.5) are real and at least two of

them are equal. As V > 0, and also from Eqs. (4.3.6)1 and (4.3.7), u > 0, therefore,

Eqs. (4.3.9) and (4.3.27)3 implies v = −2u3 . Equation (4.3.5) then becomes

x3 − 3u2x− 2u3 = 0. (4.3.30)

As x = 2u is satisfying the Eq. (4.3.30), therefore, (x− 2u) is the first factor, while

the other two factors are given by synthetic division
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2u 1 0 −3u2 −2u3

2u 4u2 2u3

1 2u u2 0

Here, quotient = x2 + 2ux+ u2 and remainder= 0. Hence, the other two factors are

given by (x+ u)2. Therefore, the three real roots of Eq. (4.3.30) are

x1 = 2u, x2 = −u, x3 = −u, (4.3.31)

where x2 and x3 are equal. Since u > 0, therefore, x1 = 2u is the largest real root.

Lets denote this largest real root by x0. Equation (4.3.9)2 implies V = −1
2
(−2u3) =

u3 and consequently Eq. (4.3.28) gives

x0 =
3
√
u3 +

3
√
u3 = 2u. (4.3.32)

Hence Eq. (4.3.28) is valid.

Case 3: D < 0

When D < 0, then all the three roots of Eq. (4.3.5) are real and distinct. In the

case of D < 0, we can take
√
D = ι̇

√
−D and hence Eq. (4.3.27) implies that

P =
3

√
V + ι̇

√
−D,

Q =
3

√
V − ι̇

√
−D,

(4.3.33)

where P and Q have three possible values. To find these values, |P | is calculated as

|V + ι̇
√
−D| =

√
−U3 = u3, (∵ U = −u2). (4.3.34)

Hence

|P | = |V + ι̇
√
−D|

1
3 = (u3)

1
3 = u. (4.3.35)
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Similarly by following the same procedure the value of |Q| is

|Q| = |V − ι̇
√
−D|

1
3 = (u3)

1
3 = u. (4.3.36)

Since V > 0, thus the phase angle of V + ι̇
√
−D belongs to (0, π/2). Assuming θ as

the phase angle of complex cube root P which belongs to (0, π/6). From Equation

(4.3.33)2, as Q is complex conjugate of P , so the phase angle of complex cube root

Q is equal to −θ. By using equation (2.1.5) and Eq. (4.3.35), the three possible

values of complex cube root P are given by

P1 = ueι̇θ, P2 = ueι̇(θ+
2π
3

), P3 = ueι̇(θ+
4π
3

), θ ∈ (0, π/6). (4.3.37)

According to section 2.1.4, P1 is the principal value of the complex cube root P . The

three possible values of complex cube root Q by using Eq. (2.1.5) and Eq. (4.3.36)

are given by

Q1 = ue−ι̇θ, Q2 = ueι̇(−θ+
2π
3

), Q3 = ueι̇(−θ+
4π
3

), θ ∈ (0, π/6). (4.3.38)

Similarly through section 2.1.4, Q1 is the principal value of the complex cube root

Q.

From the possible values of complex cube roots P and Q, Vinh and Ogden [6]

only take their principal values in this case. On substituting these principal values

from Eq. (4.3.37)1 and Eq. (4.3.38)1 of complex cube roots P and Q, respectively,

in Eq. (4.3.26), we have

x1 = u(eι̇θ + e−ι̇θ) = 2u cos θ, (4.3.39)

x2 = u(eι̇(θ+
2π
3

) + e−ι̇(θ+
2π
3

)) = 2u cos(θ +
2π

3
), (4.3.40)

x3 = u(eι̇(θ−
2π
3

) + e−ι̇(θ−
2π
3

)) = 2u cos(θ − 2π

3
) = 2u cos(θ +

4π

3
), (4.3.41)

where Eqs. (4.3.39), (4.3.40) and (4.3.41) represents the three distinct real roots of

Eq. (4.3.5). By plotting the graphs of these roots in MATHEMATICA it is observed
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that for θ ∈ (0, π/6), x1 > x3 > x2, shows that x1 = x0 is the largest real root of

Eq. (4.3.5) in this case. Hence Eq. (4.3.28) is valid.

The value of V can be expressed as a function of parameter Γ with the help of

Eqs. (4.2.7), (4.3.6)2 and (4.3.9)2 as

V = −1
2
v = −1

2
[ 1
27

(2b3
2 + 9b2 + 27b0)],

= −1
2
[ 1
27

(2(4Γ− 3)3 + 9(4Γ− 3) + 27(−(1− 2Γ)2))]. (4.3.42)

After simplification, we have

V =
2

27
(27− 90Γ + 99Γ2 − 32Γ3) . (4.3.43)

Similarly the value of D can also be expressed as a function of parameter Γ with

the help of Eqs. (4.2.7), (4.3.6), (4.3.9) and (4.3.27)3 as

D = [−1
2
[ 1
27

(2b3
2 + 9b2 + 27b0)]]2 + [−(1

9
(b2

2 + 3))]3,

= [1
4
( 1

729
(4b6

2 + 36b4
2 + 81b2

2 + 108b3
2b0 + 486b2b0 + 729b2

0))]

−[ 1
729

(b6
2 + 27 + 9b4

2 + 27b2
2)]. (4.3.44)

After simplification, Eq. (4.3.44) yields

D =
4

27
(−64Γ5 + 235Γ4 − 340Γ3 + 242Γ2 − 84Γ + 11). (4.3.45)

By synthetic division, we have

D =
4

27
(1− Γ)2(11− 62Γ + 107Γ2 − 64Γ3) . (4.3.46)

The Rayleigh wave speed formula for compressible isotropic elastic solids by using
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Eqs. (2.4.24), (4.1.1), (4.2.1), (4.3.1) and (4.3.28) is derived by the following steps

4(1− Γ)− y − yξ = 0,

4(1− Γ)− ρc2

µ
(1 + ξ) = 0,

ρc2

µ
= 4(1− Γ)(1 + ξ)−1,

= 4(1− Γ)(1 + x− 1

3
b2)−1,

= 4(1− Γ)(1 + x− 1

3
(4Γ− 3))−1,

ρc2

µ
= 4(1− Γ)

(
2− 4

3
Γ +

3

√
V +
√
D +

3

√
V −

√
D
)−1

, (4.3.47)

where the roots in Eq. (4.3.47) are complex cube roots taking their principal values,

and V and D are specified by Eq. (4.3.43) and Eq. (4.3.46), respectively.

4.4 Connection with Malischewsky’s formula

In this section, Rayleigh wave speed formula given by Malischewsky [5] for real root

of Rayleigh wave equation (3.1.1), represented by Eq. (3.1.3), is connected with

Vinh and Ogden [6] formula. Before explaining the formula (3.1.3), its uniqueness

in the interval (0, 1) is determined.

4.4.1 Uniqueness of solution of the cubic equation (3.1.1) in

the interval (0, 1)

From Eq. (3.1.1), f(0) < 0 and f(1) > 0, therefore, there must be at least one

real root of Eq. (3.1.1) that lies in the interval (0, 1). Through Descartes’ rule of

signs, the maximum number of positive and negative real roots of cubic equation

(3.1.1) can be determined. Let m be the total number of sign change that occur in

Eq. (3.1.1). Since from Eq. (3.1.2), b2 < 0, b0 < 0 and b1 > 0 for Γ ∈ (0, 3/4).

Therefore, from Eq. (3.1.1), m = 3. Hence, maximum number of possible positive

real roots of Eq. (3.1.1) are three. Replacing y by −y for finding the maximum
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number of negative real roots

f(−y) = −y3 + b2y
2 − b1y + b0 = 0. (4.4.1)

Equation (4.4.1) shows that m = 0, i.e., there is no negative real root of Eq. (3.1.1)

and hence, f(y) lies on the positive side of y-axis. By using the second derivative

test and the product of roots of f ′(y), one can find the uniqueness of solution of Eq.

(3.1.1) in the interval (0, 1). For this purpose, taking the first derivative of f(y) of

Eq. (3.1.1) and putting it equal to zero, we have

f ′(y) = 3y2 − 16y + 8(3− 2Γ) = 0. (4.4.2)

For Γ ≤ 1/6, the discriminant of Eq. (4.4.2) is −32+192Γ ≤ 0, and hence f ′(y) ≥ 0,

which means that there is no turning point of the graph of cubic Eq. (3.1.1) and

function is increasing, therefore, real root of Eq. (3.1.1) is unique in the interval

(0, 1) for Γ ≤ 1/6 . For Γ > 1/6, the discriminant of Eq. (4.4.2) is −32 + 192Γ > 0,

then the two roots of Eq. (4.4.2) are real and distinct, therefore, there are two

turning points of the graph of cubic Eq. (4.4.2) for Γ > 1/6. These two real roots

of Eq. (4.4.2) are given by quadratic formula as

y1 =
8 + 2

√
12Γ− 2

3
, y2 =

8− 2
√

12Γ− 2

3
. (4.4.3)

By taking second derivative of f(y), we have

f ′′(y) = 6y − 16. (4.4.4)

Now by substituting y1 in f ′′(y), we get

f ′′(y1) = 4
√

12Γ− 2. (4.4.5)

For Γ > 1/6

f ′′(y1) = 4
√

12Γ− 2 > 0, (4.4.6)
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and hence y1 = ymin which is denoting the point of minimum value of the function

f(y). After substituting y2 in f ′′(y), we have

f ′′(y2) = −4
√

12Γ− 2. (4.4.7)

For Γ > 1/6

f ′′(y2) = −4
√

12Γ− 2 < 0, (4.4.8)

and consequently y2 = ymax which is denoting the point of maximum value of the

function f(y). The product of two roots (turning points) of Eq. (4.4.2) by using

Eq. (4.4.3) is given by

yminymax = 8
3
(3− 2Γ). (4.4.9)

Since for Γ > 1/6, (3− 2Γ) > 1, we have

yminymax =
8

3
(3− 2Γ) >

8

3
. (4.4.10)

Since from Descarte’s method, it is observed that function lies on the positive side

of y-axis, therefore, both turning points (ymin and ymax) are positive. From Eq.

(4.4.3), it is obvious that ymin > ymax for Γ ∈ (1/6, 3/4). There exists two cases

Case 1: ymax < 1

From Eq. (4.4.10)

ymin >
8
3

1
ymax

,

=⇒ ymin >
8
3
> 1. (4.4.11)

Hence

0 < ymax < 1 < ymin (4.4.12)
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Case 2: ymax ≥ 1

Since ymin > ymax, therefore

1 ≤ ymax < ymin (4.4.13)

From both these cases and by using the fact that f(0) < 0 and f(1) > 0, it is

obvious that there is a unique solution of Eq. (3.1.1) in the interval (0, 1). Since

function is on the positive side of y-axis and other real roots are lying outside the

interval (0, 1), therefore, if there are two or three distinct real roots of Eq. (3.1.1),

then the smallest real one will relate to Rayleigh wave speed.

To explain the Malischewsky’s formula (3.1.3) on the basis of study provided in

section (4.3), Vinh and Ogden [6] introduced the variable x

x = y +
1

3
b2 (4.4.14)

where b2 is given by Eq. (3.1.2)1. The expressions for x in Eqs. (4.3.1) and (4.4.14)

are not same. By substituting the value of variable y from Eq. (4.4.14) in Eq.

(3.1.1) and by using Eq. (3.1.2), we have

x3 + (
8

3
(1− 6Γ))x+

1

27
(16(17− 45Γ)) = 0. (4.4.15)

Equation (4.4.15) can also be written in the form

x3 − 3(
8

9
(6Γ− 1))x+

1

27
(16(17− 45Γ)) = 0. (4.4.16)

so Eq. (3.1.1) is converted into

x3 − 3u2x+ v = 0, (4.4.17)

where

u2 =
8

9
(6Γ− 1), v =

1

27
(16(17− 45Γ)). (4.4.18)

It is important to note that the values of coefficients u and v in Eq. (4.3.6) are

different from the values given by Eq. (4.4.18).
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In order to find the roots of cubic Eq. (4.4.17), we are following the same

procedure as given from Eq. (4.3.8) to Eq. (4.3.26). So the three possible roots of

Eq. (4.4.17) are

x1 = P +Q, x2 = −1

2
(P +Q) + ι̇

√
3

2
(P −Q), x3 = −1

2
(P +Q)− ι̇

√
3

2
(P −Q),

(4.4.19)

where

P =
3

√
V +
√
D, Q =

3

√
V −

√
D,

D = V 2 + U3 =
1

27
(64(11− 62Γ + 107Γ2 − 64Γ3)),

V = −1

2
v =

1

27
(8(45Γ− 17)), U = −u2 =

1

9
(8(1− 6Γ)),

(4.4.20)

where D is the discriminant of Eq. (4.4.17). Note that the roots given in Eq.

(4.3.26) are unlike the roots given in Eq. (4.4.19), also the values of the expressions

P, Q, D, V, U, given in Eqs. (4.3.27) and (4.3.9) are not same as given by Eq.

(4.4.20). The values of
√
D, V and U in terms of si(Γ) functions defined in Eq.

(3.1.4) are given by

√
D = 8

27
s1(Γ), V1 = 1

27
(8(s2(Γ)− s1(Γ)),

V2 = − 8
27

(s3(Γ)− s1(Γ), U = 16(s4(Γ)). (4.4.21)

Equation (4.4.20)3 implies that D is a function of Γ, where D(Γ) = 0 is written as

D(Γ) = Γ3 − 107

64
Γ2 +

31

32
Γ− 11

64
= 0, Γ ∈ (0, 3/4). (4.4.22)

First derivative of D(Γ) is given by

D′(Γ) = 3Γ2 − 107

32
Γ +

31

32
. (4.4.23)

Discriminant of Eq. (4.4.23) is (−107
32

)2−12(31
32

) < 0, and hence D′(Γ) > 0. From Eq.

(4.4.22), D(0) < 0 and D(3/4) > 0, so according to the section 2.2, the real root
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of Eq. (4.4.22) is unique in the interval (0, 3/4). To find this real root Eq. (4.4.22)

can be converted into the simplified form by introducing the variable x∗ [4]

x∗ = Γ− 107

192
, (4.4.24)

By substituting the value of Γ from Eq. (4.4.24) into the Eq. (4.4.22), we have

(x∗ +
107

192
)3 − 107

64
(x∗ +

107

192
)2 +

31

32
(x+

107

192
)− 11

64
= 0. (4.4.25)

After simplification, Eq. (4.4.25) becomes equal to

x∗3 +
455

12288
x∗ +

77293

3538944
= 0. (4.4.26)

Equation (4.4.26) can be written in the form

x∗3 + u∗x+ v∗ = 0, (4.4.27)

where

u∗ =
455

12288
, v∗ =

77293

3538944
. (4.4.28)

The discriminant of the Eq. (4.4.27) is given as

D∗ =
v∗2

4
+
u∗3

27
. (4.4.29)

Substitution of the values of u∗ and v∗ from Eq. (4.4.28) into the Eq. (4.4.29) results

in D∗ > 0, and hence, Eq. (4.4.27) has one real and two complex conjugate roots,

consequently, Eq. (4.4.22) has one real root and two complex conjugate roots. As

real root is of interest only, so by using Eqs. (2.5.18) and (2.5.26) of section 2.5, the

real root of Eq. (4.4.27) is given by

x∗1 = 3

√
−v
∗

2
+
√
D + 3

√
−v
∗

2
−
√
D. (4.4.30)

From equation (4.4.28), (4.4.29) and (4.4.30), x∗1 = −0.2357955391. By substituting
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the value of x∗1 in Eq. (4.4.24), the corresponding real root of Eq. (4.4.22) is given

by

Γ∗ =
107

192
− 0.2357955391 = 0.3214984... (4.4.31)

hence Γ∗ = 0.3214984 is the real root of Eq. (4.4.22) at which D(Γ) = 0.

4.4.2 Discussion about different cases of parameter Γ to ex-

plain Malischewsky’s formula

In this section, the smallest real root of Eq. (4.4.17) is denoted by x0
∗ by Vinh and

Ogden [6], in which the roots are generally assumed as complex roots taking their

principal values, and Malischewsky’s formula is explained with respect to different

cases of parameter Γ.

Case 1: 0 < Γ ≤ 1/6.

For this range of Γ, Eq. (4.4.20) implies that U ≥ 0, V < 0 and D > 0. Since

D > 0, therefore, Eq. (4.4.17) has one real and two complex conjugate roots and

are given by Eq. (4.4.19). Let this real root is represented by x0
∗, given by x1 from

Eq. (4.4.19)1, where roots are assumed to be real. In the case of D > 0,
√
D is

considered as real and positive. Since V < 0 and U ≥ 0 which implies that

V +
√
D ≥ 0, V −

√
D < 0, (∵ V <

√
D when U > 0). (4.4.32)

Therefore x0
∗ can be written in the form

x0
∗ = − 3

√
−V +

√
D +

3

√
V +
√
D. (4.4.33)

As −V +
√
D > 0 and V +

√
D ≥ 0, so according to section 2.1.4,

3
√
−V +

√
D and

3
√
V +
√
D are principal cube roots.

For 0 < Γ < 1/6, Eq. (3.1.4)4 implies s4(Γ) > 0, consequently sign[s4(Γ)] = 1,

hence Eq. (3.1.3) results in

y =
2

3
[4− 3

√
s3(Γ) + 3

√
s2(Γ)]. (4.4.34)
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From Eq. (4.4.21) and Eq. (4.4.33), we have

x0
∗ = − 3

√
−(− 8

27
(s3(Γ)− s1(Γ))) +

8

27
s1(Γ) +

3

√
− 8

27
(s3(Γ)− s1(Γ)) +

8

27
s1(Γ).

(4.4.35)

After simplification, we get

x0
∗ = −2

3
3
√
s3(Γ) +

2

3
3
√
s2(Γ). (4.4.36)

Substitution of Eq. (4.4.36) in Eq. (4.4.14) results in Eq. (4.4.34), and hence Eq.

(3.1.3) is valid.

For Γ = 1/6, Eq. (3.1.4)4 implies s4(Γ) = 0, hence sign[s4(Γ)] = 0, therefore,

Eq. (3.1.3) results in

y =
2

3
[4− 3

√
s3(Γ)]. (4.4.37)

since Γ = 1/6, therefore, Eq. (3.1.4)2 implies s2(Γ) = 0. On substituting s2(Γ) = 0

in Eq. (4.4.36), we have

x0
∗ = −2

3
3
√
s3(Γ). (4.4.38)

With the help of Eqs. (4.4.14), (4.4.37) and (4.4.38), we infer that Eq. (3.1.3) is

once more valid.

Case 2: 1/6 < Γ < Γ∗

Γ∗ is given by Eq. (4.4.31). In this case V < 0, U < 0 and D > 0. Since

D > 0, therefore as mentioned in Case 1, there is only one real root of Eq. (4.4.17),

represented by x0
∗, given by Eq. (4.4.19)1. Since V < 0 and U < 0 and

√
D is

considered as real and positive, therefore

V −
√
D < 0, V +

√
D < 0. (4.4.39)

Hence x0
∗ can be written in the form

x0
∗ = − 3

√
−V +

√
D − 3

√
−(V +

√
D), (4.4.40)
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where

−V +
√
D > 0, −(V +

√
D) > 0. (4.4.41)

With the help of section 2.1.4,
3
√
−V +

√
D and 3

√
−(V +

√
D) are principal cube

roots in Eq. (4.4.40).

In this case Eq. (3.1.4)4 implies that s4(Γ) < 0, therefore, sign[s4(Γ)] = −1, so

from Eq. (3.1.3)

y =
2

3
[4− 3

√
s3(Γ)− 3

√
−s2(Γ)]. (4.4.42)

From Eq. (4.4.21) and Eq. (4.4.40), we have

x0
∗ = − 3

√
−(− 8

27
(s3(Γ)− s1(Γ))) +

8

27
s1(Γ)− 3

√
−(− 8

27
(s3(Γ)− s1(Γ)) +

8

27
s1(Γ)).

(4.4.43)

By simplifying, Eq. (4.4.43) becomes

x0
∗ = −2

3
3
√
s3(Γ)− 2

3
3
√
−s2(Γ). (4.4.44)

Substitution of Eq. (4.4.44) in Eq. (4.4.14) leads to Eq. (4.4.42), hence Eq. (3.1.3)

is valid.

Case 3: Γ = Γ∗

For Γ = 0.3214984, we have D = 0 and V < 0. Since D = 0, therefore all three

roots of Eq. (4.4.17) are real and at least two of them are equal. As D = 0, then

Eq. (4.4.20)3 implies V 2 + U3 = 0, and hence v = 2u3 . Equation (4.4.17) then

becomes

x3 − 3u2x+ 2u3 = 0, (4.4.45)

Since x = −2u is satisfying the Eq. (4.4.45), therefore, (x+ 2u) is the factor of Eq.

(4.4.45). The other two factors are given by synthetic division

−2u 1 0 −3u2 2u3

−2u 4u2 −2u3

1 −2u u2 0
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Here, quotient= x2 − 2ux+ u2 and remainder= 0. Hence, the other two factors are

as (x− u)2. Therefore, the three real roots of Eq. (4.4.45) are given by

x1 = −2u, x2 = u, x3 = u, (4.4.46)

where x2 and x3 are equal. As V < 0 and v = 2u3,hence from Eq. (4.4.20)4, u > 0.

Therefore, x1 is the smallest real root in this case. Lets denote this smallest real root

by x0
∗. Equation (4.4.20)4 implies V = −1

2
(2u3) = −u3. Since from Eq. (3.1.4)4,

s4(Γ) < 0, therefore, sign[s4(Γ)] = −1, and hence Eq. (3.1.3) results in

y =
2

3
[4− 3

√
17− 45(Γ) + s1(Γ)− 3

√
−s2(Γ)], (4.4.47)

since V = −u3, Eq. (4.4.21) implies that s1 = 27
8

√
D and s2(Γ) = 27

8
(−u3), so Eq.

(4.4.47) takes the form

y =
2

3
[4− 3

√
17− 45(Γ) +

27

8

√
D − 3

√
−(

27

8
(−u3))], (4.4.48)

since D = 0, so after simplification, we have

y =
8

3
− 2u . (4.4.49)

Substitution of x0
∗ = −2u in Eq. (4.4.14) results in Eq. (4.4.49), therefore, Eq.

(3.1.3) is valid.

Case 4: Γ∗ < Γ < 3/4

The case Γ > Γ∗ implies that D < 0, therefore, we have three distinct real roots of

Eq. (4.4.17). In the case of D < 0,
√
D = ι̇

√
−D, hence Eq. (4.4.20) implies that

P and Q are complex cube roots and each of them has three possible values. In this

case, the phase angle of V + ι̇
√
−D lies in the interval (0, π), therefore, the phase

angle of complex cube root P confined in the interval (0, π
3
). By following the same
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procedure as given from Eq. (4.3.33) to Eq. (4.3.41), we have

x0
∗ = 2u cos(θ +

2π

3
), θ ∈ (0, π/3). (4.4.50)

Note that the expressions for smallest real root in both equations (4.3.40) and

(4.4.50) are different in values with respect to u and phase angle θ. From Eq.

(3.1.4)4, s4(Γ) < 0, consequently, sign[s4(Γ)] = −1, and by using Eq. (3.1.4), Eq.

(3.1.3) can be written in the form

y =
2

3
[4− 3

√
s3(Γ)− 3

√
17− 45(Γ) + s1(Γ)− 2s1(Γ)]. (4.4.51)

Equation (4.4.51) can also be written as

y =
8

3
− 3

√
−[− 8

27
(s3(Γ)− s1(Γ))] +

8

27
s1(Γ)− 3

√
−[− 8

27
(s3(Γ)− s1(Γ)) +

8

27
s1(Γ)].

(4.4.52)

After using Eq. (4.4.21)(1,2), Eq. (4.4.52) takes the form

y =
8

3
− 3

√
−V +

√
D − 3

√
−(V +

√
D). (4.4.53)

By using Eqs. (4.4.14), (4.4.50) and (4.4.53), we have

− 3

√
−V +

√
D − 3

√
−(V +

√
D) = 2u cos(θ +

2π

3
), θ ∈ (0, π/3). (4.4.54)

For the validity of Eq. (3.1.3), we show that left side of Eq. (4.4.54) is equal to its

right side. If 3θ is the phase angle of V +
√
D = V + ι̇

√
−D, we have

Arg(V +
√
D) = 3θ, Arg(V −

√
D) = −3θ, θ ∈ (0, π/3), (4.4.55)

where V −
√
D = V − ι̇

√
−D is complex conjugate of V +

√
D. Hence

Arg[−(V +
√
D)] = 3θ − π, Arg[−(V −

√
D)] = −3θ + π, θ ∈ (0, π/3). (4.4.56)
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Since from Eq. (4.3.35) and Eq. (4.3.36), |V +
√
D| 13 = u and also |V −

√
D| 13 = u,

therefore

| − (V +
√
D)|

1
3 = u, | − (V −

√
D)|

1
3 = u. (4.4.57)

By using Eqs. (2.1.5), (4.4.56) and (4.4.57), we have

3

√
−(V +

√
D) = ueι̇(θ−π/3),

3

√
−(V −

√
D) = ueι̇(−θ+π/3), (4.4.58)

where roots are principal cube roots. After substitution of Eq. (4.4.58) in Eq.

(4.4.54), we get

−ueι̇(−θ+π/3) − ueι̇(θ−π/3) = 2u cos(θ + 2π
3

),

=⇒ −2u cos(π + (θ − π
3
)) = 2u cos(θ + 2π

3
),

=⇒ 2u cos(θ + 2π
3

) = 2u cos(θ + 2π
3

), (∵ cos(θ + π) = − cos θ). (4.4.59)

Hence Eq. (3.1.3) holds in this case.

It is noticed that, all above cases are expressed by a single formula y which is

given by Eq. (3.1.3).

4.4.3 Equivalence through graphs

It is really difficult to prove the indistinguishability of both formulae by hand. There-

fore, we plot the solutions of both as a function of parameter Γ, and the plots show

the equivalence of both formulae as follows
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Figure 4.1: Graph of solution (3.1.3)
for Γ ∈ (0, 3/4)
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Figure 4.2: Graph of solution (4.3.47)
for Γ ∈ (0, 3/4)
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Chapter 5

Conclusions

In this thesis, two different formulas for Rayleigh wave speed in compressible isotropic

linear elastic solids proposed by Malischewsky [5] and Vinh and Ogden [6], have been

reviewed and commented.

It is concluded that Malischewsky [5] in his paper did not explain the use of

MATHEMATICA using Cardan’s formulas alongside trigonometric formulas. Whereas

Vinh and Ogden [6] have comprehensively discussed the application of the theory

of cubic equations and Cardan’s formulas with trigonometric formulas for deriving

the Rayleigh wave speed formula.

The function sgn(−Γ + 1/6) appears in the formula presented by Malischewsky

[5] (see Eq. (3.1.3)) and holds significant role for conversion of real roots to complex

ones with their principal values, while the formula presented by Vinh and Ogden [6]

(see Eq. (4.3.47)) is explicit and does not need this signum function.

Both the formulas, given by Malischewsky [5] as well as Vinh and Ogden [6], are

equivalent, however the latter formula is well-derived and better explained.
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