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Abstract 

Carbon nanotubes analysis is done for an unsteady physiological flow in a non-uniform channel 

of finite length. For the non-dimensional governing equations subject to physically realistic 

boundary conditions, exact solutions are acquired. The effects of carbon nanotubes on effective 

thermal conductivity, axial velocity, transverse velocity, temperature, and pressure difference 

distributions along the length of non-uniform channel by varying the flow parameters, are studied 

with the help of graphs plotted on Mathematica. Trapping is also studied. We observed that Multi 

walled carbon nanotubes have this exceptional quality to increase the axial velocity as well as the 

transverse velocity of the governing fluids.  
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Chapter 1 

                    Introduction 

Peristalsis is the process of muscle contractions and expansions in a wave-like fashion. It is the 

reflexive movements of the longitudinal and disc-shaped muscles which move the food in the 

digestive tract and other vacant tubes of the body. This phenomenon of peristalsis arises in the 

esophagus and intestines which initiates when a food  bolus is consumed. In 1969, Shapiro AH [1] 

studied the fluid movements by considering long wavelengths throughout the peristaltic 

pumping. Abstract results are shown for plane and axis symmetric geometries. The theoretical 

pressure decreases in a linear way with an increase in time-mean flow, for a considered amplitude 

ratio. Calculation of the specific fluid motions show that the net time is algebraic difference among 

the forward time-mean flow which is at the interior tube and the backward time-mean flow which 

is close to the periphery of the tube. This research opened new horizons for researchers to study 

peristalsis under different circumstances. Radhakrishnamacharya G [2] has considered the 

channel having two dimensions, power law fluid is examined by her which is moving peristaltically. 

By assuming that the peristaltic wavelength is greater than the mean half-width of the channel. 

The output for the stream function is acquired as.an…asymptotic growth. The influence of the 

flow behavior index over the shear stress and streamline pattern is observed. Srivastava LM [3] 

investigated…the flow of couple stress fluid across the stenotic blood vessels. By the study it is 

observed that by fixing stenosis size, there is an increase in shear stress and flow resistance when 

couple stress is decreased from unity. A detailed study on the peristaltic flow inside the human 

body was given by Pozrikidis [4]. A new study on the unsteady peristaltic transport in limited 

length tubes was first given by Li and Brasseur [5]. The peristaltic transport is migrating because 

of the sinusoidal wave through the boundary of incompressible filled fluid tube. The solution is 

acquired by taking zero Reynold number and by considering infinite wavelength. Several 

interesting articles on the peristaltic flow with applications in drug delivery, bacterial growth and 

clot blood model are presented in references [6-9]. The drug which is delivered via permeable 
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medium in a peristaltic blood flow of nanofluid is discussed. Perturbation method is used to get 

the analytic solution for temperature profiles, frictional force and nanoparticle concentration 

profiles. The impact of flow and peristaltic merging on increase in the number of bacteria in the 

gut, is modelled by a channel by arranging the membrane valves which basically permits colonic 

wall contraction. The bacterial profile shows changing spatial reliance, which is relying on the rate 

of flow and frequency of contractions. In the last case heat transfer has been observed on the clot 

blood model with variable viscosity. The peristaltic motion generates the propagation of blood 

along the annulus. This clot blood model is made by using the lubrication approach. 

Recent advancements in fluid mechanics combined the studies of the nanofluids with peristaltic 

motion. Nanofluids are fluids containing nanoparticles, which are basically suspended in a base 

fluid. Nano fluids are well known for their vast applications in engineering, bio-medical sciences 

and industry. Nanofluids act as coolants in radiators because of their enhanced thermal properties 

[10-14]. Akbar and Butt [13] have done the investigation on heat transfer on the movement of 

copper nanofluids. Where numbers of cilia work simultaneously in such a way that generate 

waves to convey the fluid to finite length tube. Akbar NS, Butt AW [14] have also inspected the 

peristaltic movement of copper nanofluids in a bended channel with controllable walls. The exact 

solution is acquired by considering long wavelength approximation, for temperature profile and 

velocity of the fluid [14]. Khaliq and Kafafy [15] have done their work on increasing the 

effectiveness of polymerase chain reaction by using graphene Nano flakes. Mahian and kianifar 

[16] have done the analysis on the practical uses of nanofluids in solar energy. Nanofluids as liquid 

mixture are brought into service with nanometer-sized suspended solid particles. The impacts of 

nanofluids in the functioning of solar collectors and solar water heaters are observed. Some 

proposals are made to use nanofluids in various photovoltaics, solar thermoelectric cells and also 

in thermal systems. 

The nanoparticles utilized in nanofluids are usually prepared of carbon nanotubes (Cnt’s), made 

by dense sheets of carbon having a minor length-to-diameter ratio. These nanotubes have empty 

cylindrical nanostructures with the walls. They are widely used in the industry for their improved 

thermal conductivity, mechanical and electrical properties. Cnt’s also have applications as 

preservatives in different structural materials containing the segments of cars. These carbon 

nanotubes are categorized as single-walled nanotubes (SWCnt’s) and multi-walled nanotubes 

(MWCnt’s). SWCnt’s have a diameter near to 1 nanometer. MWCnt’s are multiple nanotubes 
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having common center, exactly nested within one another. Its separate shells can be narrated as 

SWCnt’s. These nanotubes have semiconductor behavior and are used in the progress of 

intermolecular field-effect transistors. Akbar and Butt [17-18] have studied various properties of 

Cnt’s in different geometries and boundary conditions but the unsteady flow has not been studied 

in this direction. Recent studies associated to the topic are cited in Refs: [19-24]. Over the entropy 

generation Ellahi R [21] has examined the shape impacts of nanosize particles which are present 

in Cu- H₂0 nanofluid. Mathematical model is studied to see the convection boundary layer flow 

adjacent to the cone which is inverted. He examined the impacts of porous medium, radiation 

and power law index. Nonlinear equations are solved analytically with the assumption of 

Bousinessq approximations.  Ellahi R [24] has examined the model which is based on the Nano 

layer..single..and..multi-wall..carbon..nanotubes..hanged..in..salt water…solutions..to.study.the 

natural convection MHD nanofluids. BVPh 2.0 for solving the nonlinear partial differential 

equations. Motivated from the above researches and to fill the void, we have studied the 

unsteady flow of MWCnt’s in a non-uniform medium. The governing flow equations are made 

dimension less and solved. to. find. the analytical solutions of the velocity, temperature and 

pressure profiles. Results are analyzed with graphical illustrations, streamlines for the flow are 

also plotted.  
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Chapter 2  

                      Preliminaries   

2.1 Fluid  

A fluid is a substance that faces continuous deformation when a shear stress is exerted on it. 

Fluid is classified into two main groups. 

(1) Liquids. 

(2) Gases. 

2.2 Types of Flow 

Some types of flows are: 

(1) Compressible flow. 

(2) Incompressible flow. 

2.2.1 Compressible flow 

By changing pressure or volume of the fluid, the density or volume of the fluid changes then the 

fluid is said to be compressible. 

2.2.2 Incompressible flow 

If there is no change in density or volume of the fluid when the pressure or volume of the fluid 

changes then the fluid is said to be incompressible. 
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2.3 Two-dimensional flow 

 The two-dimensional flow is one in which the variation of flow characteristics can be          

described by two spatial coordinates. At each point, the velocity of a flow is parallel to a static    

plane.    

2.4 Nanofluid  

The fluids possess nanoscale colloidal suspensions are called Nano fluids. Nano fluid basically 

contains two parts, nanoparticles and base fluids.  

2.5 Nanoparticles 

 Nanoparticles are the particles between 1 to 100 nanometer in size. Common nanoparticles are 

carbon nanotubes, cerium oxide, titanium dioxide and nano silver. 

2.6 Base fluids 

The base fluids are the fluids in which nanoparticles are to be suspended. Some base fluids are 

water, oil, ethylene glycol etc. 

2.7 Thermal capacitance 

It is measure of temperature variation in a material based on its volume. It is also known as the 

ability of a material to store heat. 

2.8 Prandtl number 

Prandtl number is the ratio of kinematic viscosity to thermal diffusivity. 

2.9 Convection 

This process occurs when there is a change in temperature among two parts of a fluid. The hot 

part of fluid moves upward and the cooler part drops down. It happens because the hot water is 

less dense than cold water. Convection occurs only in fluids (liquids and gases). 
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2.10 Reynolds number 

Reynolds number is the dimensionless number which is the ratio of inertial forces to viscous 

forces. It computes whether the fluid is streamlined, steady or unsteady, laminar or turbulent. 

2.11 Thermal expansion 

A change in shape, area or volume of a material in a reaction to change in the temperature is 

called thermal expansion. 

2.12 Brownian motion 

Brownian motion occurs when fast moving atoms or molecules in the gas or liquid collide with the 

suspended particles in a fluid.  
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Chapter 3 
A…Study….on….Peristaltic….Flow…..of 

Nanofluids. 

3.1. Introduction: 

In this chapter the peristaltic flow of nanofluids via two dimensional channel is studied. The 

investigation is done by considering the long wavelength and low Reynolds number 

approximations. The walls of the channel surface propagate sinusoidally along the channel.   The 

flow geometry is taken as a uniform channel of finite length. Buongiorno formulation for Nano 

fluids is used. Approximate analytical solutions for nanoparticle fraction field, temperature field, 

axial velocity, volume flow rate, pressure gradient and stream function are acquired. The effects 

of thermal Grashof number, Brownian motion parameter, thermophoresis parameter and basic-

density Grashof number on nanoparticle fraction profile, temperature profile, velocity profile and 

also the trapping phenomenon is computed numerically.  
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3.2. Mathematical Model: 
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 Fig. 3.1. Geometry of the peristaltic channel flow pattern.  

 

In this chapter we consider the peristaltic flow of nanofluids across a uniform and two 

dimensional channel. The equation for the wall of geometry due to the propagation of train of 

waves can be written as: 

                    )
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tcbath  



 ,                                                                                     (3.1)  

h is the transverse vibration of the wall , t  represents time and   represents the axial coordinate. 

Whereas a  is the half width of the channel,b is amplitude of the wave,   is the wavelength and c  

is the wave velocity. The channel flow is examined where the surface of the wall has sinusoidal wave 

form. The values of the temperature at the center line and at the channel’s wall are 0T  and 1T . The 

values of nanoparticle fraction at the center line and at the channel’s wall are 0F  and 1F respectively. 

Applying the Oberbeck-Boussinesq approximation and by taking up the most relevant practical case 

in which reference temperature is appropriate and dilute concentration of nanoparticles is taken. 

The ruling equation for the conservation of mass, momentum, thermal energy and nanoparticle 

fraction from refs: [30, 38, 39] can be set out as: 
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Where f   represents the fluid density,T  is temperature , p  nanoparticle mass density, u is 

the axial velocity, v is the transverse .velocity,   is the .transverse coordinate, p~  is the pressure, 

  is the fluid viscosity, g is the acceleration due to gravity,   is the volumetric. Expansion 

coefficient of the fluid,   fc  represents the heat capacity of fluid,  pc is the effective heat 

.capacity…of nanoparticle, k  is the thermal conductivity, F is the nanoparticle volume fraction, 

BD  is the Brownian diffusion coefficient, 
TD  is the  thermophoretic diffusion coefficient, and 0f

is the nanofluid density at the reference temperature ( 0T ). We then present the subsequent non-

dimensional parameters  

, ,
ct

t
a

 
 

 
       ,

~

c

u
u  ,

v
v

c
  

2pa
p

c 
  

0

0 1 0

, 1 sin(2 ), , ,
f

T Ta h b
h

a a T T


     

 


      


 

3

0 1 0

2

1 0

(1 )( )
,Re ,

fo
T

caF F ga F T T
Gr

F F v

 



  
   


                                                              (3.7) 

3

0 1 0

2

0

( )( )
,

p f

f

f

ga F F
Gr

v

  



 


 
,Pr

k

c f
  

   
,

01

k

FFDc
N

Bp

b




    
,

0

01

kT

TTDc
N

Tp

t





                                       



10 
 

 

where   is non-dimensional axial coordinate, g  is non-dimensional transverse coordinate, t  is 

dimensionless time, u  and  are non-dimensional axial and transverse velocity components, p  

is dimensionless pressure, h  is transverse vibration of the wall, δ is wave number,  is rescaled 

nanoparticle volume fraction, tN  represents thermophoresis parameter,   represents the 

amplitude ratio,   represents the nanofluid kinematic viscosity,  is dimensionless temperature, 

Re is Reynold number, TGr  is thermal Grashof number, FGr  represents the basic-density Grashof 

number, bN is  the Brownian motion parameter, Pr represents the Prandtl number,  k  is Nano 

fluid thermal conductivity. 

The Reynold number Re0and δ0 because of the long wavelength approximation. At the 

same time δ0 cuts out the curvature impacts. Whereas Re0 represses the inertial forces. 

As a result of these approximations Eqs. (3.2) to (3.6) become: 
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The thermal and hydronamic boundary conditions which are cited in Refs: [1, 29 ,30] , are given as 

follows.  

0 0   ,  1,h    0 0  , 1h  , 
0

0
u










,    0

h
u


 . (3.13)                                                                                

               

Integrate Eq. (3.12) two times with respect to η and apply the first, second, third and fourth 

boundary conditions, we acquire the nanoparticle fraction field as:           
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Where, 
Nt Nb

n
h


 . To find the temperature field, put the Eq. (3.14) into Eq. (3.11) and 

integrate Eq. (3.11) two times with respect to   and then apply the second and fourth boundary 

conditions of Eq. (3.13). 
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To find the axial velocity, replace the values of   and  in Eq. (3.9) and double integrate it with 

respect to   and then apply the fifth and sixth boundary conditions of Eq. (3.13). 
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The volume flow rate is defined as follows [28]  


h

udQ
0

 .                                                                                                                                           (3.17)                                                                                                                            

The following equation is obtained by using Eq. (3.16) into Eq. (3.17). 
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The wave frame ( X ,Y ) is going with the velocity c, the transformation among a wave frame ( X

,Y ) and the fixed frame ( ,  ) are considered as cited in Refs: [32-37]:  

, , ,X ct Y U u c V v                                                                                                (3.19)                                                                                                  

Where (U ,V ) are the velocity components in the wave frame and (u , v ) are the velocity 

components in the fixed frame respectively. The volume flow rate in wave frame can be calculated 

with the following relation: 
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We integrate it and get the following expression:  
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By taking the average of volume flow rate through one time period, we have: 
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From Eq. (3.21) and Eq. (3.22), we reach to following equation:  
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Eq. (3.18) and Eq. (3.23) produce a compressed form for the pressure gradient: 

3 2 3

1
33 3 1 3

( 1 ) 1
2 8

F

nh

b

h
hnGrdp nQ h m

d h n h n e nh N

  
   

          
  
   

 .                   (3.24)                                                                                                                                                                                                                          



13 
 

The pressure difference over one wavelength (∆p) is: 
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   ,                                                                                                                            (3.25) 

 From Eq. (3.16) and applying the transformations of Eq. (3.19), the stream function in the wave 

frame (obeying the Cauchy–Riemann equations ,U V
 

 

 
  
 

) becomes: 

3 3 2 4
2 2 3

2

1 1 1 1 1
( , )

2 3 2 3 3 6 4

n
nh F

b

nGrdp e
h m e h h h

d n n n n N

   
        






           
                      

           
     

                                                                                                                                                       (3.26)    

 

3.2 Numerical Results and Discussion: 

 

The peristaltic fluid regime’s geometry is demonstrated in the figure 2. The impact of Nano fluid 

features on the peristaltic flow pattern is studied graphically.  

All explanations have been produced by using Mathematica software. The impacts of Brownian 

motion parameter 𝑁𝑏 and also the impacts of thermophoresis parameter 𝑁𝑡 on Nanoparticle 

fraction profile and temperature profile are depicted in Figs. 3.2 and 3.3.  
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       Fig. 3.2(a) Nanoparticle fraction profiles ( , )   (η) at   =0.5, ξ=1.0 for 𝑁𝑡  =1.0, 𝑁𝑏=1,2,3,4               

                                                 

    Fig. 3.2(b) Nanoparticle fraction profiles ( , )  at   =0.5,  =1.0 for  𝑁𝑏=1, 𝑁𝑡 =1,2,3,4. 

                                          

(a) 

(b) 
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Fig. 3.3(b) Temperature profile ( , )    at  =0.5,  =1.0 for 𝑁𝑏=1, 𝑁𝑡 =1,2,3,4.                    

      

Fig. 3.3(a) Temperature profile ( , )   at  =0.5,  =1.0 for (a) 𝑁𝑡 =1.0, 𝑁𝑏=1,2,3,4                                       

 

Brownian motion parameter 𝑁𝑏 emerges in the energy and species conservation equations. 

Definitely Brownian motion parameter 𝑁𝑏  is a significant parameter thus in impacting the species 

(b) 

(a) 
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diffusion. Fig. 3.2a shows the effect of Brownian motion parameter 𝑁𝑏, by increasing the values 

of Brownian motion parameter 𝑁𝑏 the nanoparticle fraction profile is increased. The Nano fluid 

acts similar to a fluid as compare to the solid-fluid mixtures in which comparatively huge particles 

with millimeter and micrometer orders are dangled. Nano fluid is basically two-phase fluid and 

unspecified motion of the dangled nanoparticles increases the energy interchange rate but in the 

meanwhile oppresses the concentration in the flow regime. We observe that for the larger values 

of the dimensionless transverse coordinate there is a clear divergence in profiles. For example, as 

we relocate from the channel center line the profiles move aside. This movement has been 

noticed by Akbar and Nadeem [25]. With an increase in the value of 𝑁𝑡   from 0 to 4 there is a 

noticeable decrease in ( ) . Just like Brownian motion parameter 𝑁𝑡   emerges in energy as well 

as nanoparticle volume concentration conservation equations (3.11) and (3.12). Thus species 

diffusion is highlighted with thermophoresis. The pattern is unchanged with macroscopic 

convection flows as displayed by Zueco J [26]. Same results have been acquired in Nano fluid 

studied by Kuznestov and Nield [27].  

Figs.3.3 (a) and 3.3(b) show that 𝑁𝑡  and 𝑁𝑏 have same effects on temperature distributions for 

some transverse distance from the center of the channel. At the start ( )   is increased with an 

increase in 𝑁𝑡  and 𝑁𝑏. Thermophoresis is the phenomenon in which nanoparticles move towards 

decreasing temperature gradient. Clearly this phenomenon has vigorous impact on temperature 

evolution.  
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           Figs. 3.4.(a) Velocity  profile ( , )u    at   =0.5,  =1.0 for 𝑁𝑡  =1, 𝐺𝑟𝑇=1, 𝐺𝑟𝐹=1, 𝑁𝑏=1,2,3,4                    

    

      Figs. 3.4.(b) Velocity  profile ( , )u   at  =0.5,  =1.0 for  𝑁𝑏=1, 𝐺𝑟𝑇=1, 𝐺𝑟𝐹=1, 𝑁𝑡 =0.5,1,1.5,2          

 

(a) 

(b) 
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Figs. 3.4.(c) Velocity  profile ( , )u    at  =0.5,  =1.0 for (c) 𝑁𝑡 =1, 𝐺𝑟𝐹=1, 𝑁𝑏=1, 𝐺𝑟𝑇=0.5,1,1.5,2                            

    

 Figs.3.4.(d) Velocity  profile ( , )u   at  =0.5,  =1.0 for  𝑁𝑡 =1, 𝑁𝑏=1, 𝐺𝑟𝑇=1, 𝐺𝑟𝐹=1,2,3,4.                                                         

(c) 

(d) 
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    Figs.3.4.(e) Velocity  profile ( , )u    at  =0.5 ,=1.0 for  𝑁𝑏=1, 𝑁𝑡  =1, 𝐺𝑟𝑇=0,1,  𝐺𝑟𝐹=0,1 . 

 

Figs.3.4(a)-(e)exhibit that for the channel half space the axial velocity is negative therfore reverse 

flow occurs. Velocities are maximum at the centre of the channel and reaches to zero at the wall 

of the channel. 

Fig. 3.4(a) shows that the magnitude of the velocity decreases with an increase in values of 𝑁𝑏 

from 1  to 4. 

Fig. 3.4(b) indicates that with an icrease in  the values of Brownian motion parameter  Nt from 

0.5 to 1 to 1.5 to 2, the magnitude of the axial velocity increases.   

Fig. 3.4(c) Indicates the impact of thermal grashof number 𝐺𝑟𝑇 on axial velocity.Grt indicates the 

relative impact of viscous hydronamic force and thermal buyoncy force.For 𝐺𝑟𝑇 >1 the peristaltic 

reigon is governed by buyoncy forces. For 𝐺𝑟𝑇  <1  peristatic reigon is governed by viscous forces. 

And for the case where 𝐺𝑟𝑇 is equal to the value 1, thermal buyoncy forces and viscous forces 

having same magnitude as explained by Beg et al.[38]. The immensity of the axial velocity 

increases with an increase in the values of 𝐺𝑟𝑇  . The monotonic pattern is observed for 0.5< 𝐺𝑟𝑇  

(e) 
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<1.5. But for 𝐺𝑟𝑇 =2, the profile which is noticed has a wavy form the centre of the channel to the 

wall of the channel. Fig. 3.4(c) indicates that magnitude of the velocity increases with an increase 

in the values of 𝐺𝑟𝑇 . 

Fig. 3.4(d) indicates that magnitude of the axial velocity increases with an increase in basic density 

grashof number 𝐺𝑟𝐹   i.e. it aggravates the reversal flow reverse flow in the domain. 

𝐺𝑟𝐹  is the ratio of species buyoncy force to viscous hydronamic force. Axial velocity is lessened 

at 𝐺𝑟𝐹  =1. In Fig.3.4(e) we have done the comparison between non thermal, Newtonian results 

of shapiro AH [1] and thermal species buyoncy forces which are equivalent to the viscous force. 

Nanofluids evidently reveal the reduced reversal flow compared with Newtonian fluids. 

                    

Figs. 3.5.(a) Pressure diffrence across one wavelength ( )p  vs (Q ) at ɸ=0.5 for  𝑁𝑡  =1, 𝐺𝑟𝑇=1, 

𝐺𝑟𝐹=1, 𝑁𝑏=0.5,1,1.5              

(a) 
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  Figs. 3.5. Pressure diffrence across one wavelength ( )p  vs (Q ) at ɸ=0.5 for (b) 𝑁𝑏=1, 𝐺𝑟𝑇=1, 

𝐺𝑟𝐹=1, 𝑁𝑡  =1,2,3,4 

  

Figs. 3.5.(c) Pressure diffrence across one wavelength ( )p  vs  (Q ) at ɸ=0.5 for 𝑁𝑡 =1, 𝐺𝑟𝐹=1, 

𝑁𝑏 =1, 𝐺𝑟𝑇=0.5,1,1.5,2.   

(b) 

(c) 
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Figs. 3.5.(d) Pressure diffrence across one wavelength ( )p  vs (Q ) at ɸ=0.5 for 𝑁𝑡 

=1, 𝑁𝑏=1,𝐺𝑟𝑇=1, 𝐺𝑟𝐹=1,2,3. 

                                  

 Figs. 3.5.(e) Pressure diffrence across one wavelength ( )p  vs (Q ) at ɸ=0.5 for  𝑁𝑡 

=1, 𝑁𝑏=1, 𝐺𝑟𝑇=0,1, 𝐺𝑟𝐹=0,1. 

(d) 

(e) 
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Figs. 3.5(a)-(e) represents the impacts of Brownian motion parameter 𝑁𝑏, thermal Grashof 

number 𝐺𝑟𝑇 , thermophoresis parameter  𝑁𝑡  and basic-density Grashof number 𝐺𝑟𝐹  on pressure 

difference over one wave length. In each time linear distributions are noticed. Akbar and Nadeem 

got the same trend however they used the homotopic perturbation method. 

p  >0, p =0, p <0 are three ranges of pumping. We are interested in dealing with first two 

ranges because they are more applicable in medial engineering. 

Fig. 3.5(a) shows that there is a decrease in pressure difference with an increase in Brownian 

motion parameter 𝑁𝑏. 

Fig. 3.5(b) shows that pressure difference strongly increases with an increase in Thermophoresis 

Parameter 𝑁𝑡. Therefore in Nano-peristaltic pumps, pressure difference can be simply maintained 

by increasing the Brownian motion effect and thermophoretic effect for all functioning flow rates. 

Fig. 3.5(c) shows that the pressure difference increases rapidly with an increase in 𝐺𝑟𝑇 for all flow 

rates. 

Fig. 3.5(d) illustrates that pressure difference increases with an increase in 𝐺𝑟𝐹 for all flow rates. 

In Fig. 3.5(e) we compared the Nano fluids with Newtonian fluids. Nano fluids present a 

fundamental increase in pressure difference that is why they are more suitable in practical 

peristaltic pumps.  

 



24 
 

    

  Fig. 3.6.(a) Stream lines at Q  =0.9, ɸ=0.4, 𝑁𝑏=1,  𝑁𝑡 =1, 𝐺𝑟𝑇= 0, 𝐺𝑟𝐹=0 (Newtonian fluids)                                       

    

Fig. 3.6. (b) Stream lines at (Q ) =0.9,  ɸ=0.4, 𝑁𝑏=1,  𝑁𝑡 =1, 𝐺𝑟𝑇=0.1, 𝐺𝑟𝐹=0.01. 

(a) 

(b) 
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Fig. 3.6.(c) Stream lines at Q  =0.9, ɸ=0.4, 𝑁𝑏=0.5,  𝑁𝑡 =1, 𝐺𝑟𝑇=0.1, 𝐺𝑟𝐹=0.01    

                       

                                   

Figs. 3.6.(d)Stream lines at Q =0.9, ɸ=0.3, 𝑁𝑏=1, 𝑁𝑡 =0.5, 𝐺𝑟𝑇=0.1, 𝐺𝑟𝐹=0.01. 

(d) 

(c) 
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  Fig. 3.6.(e) Stream lines atQ  =0.9, ɸ=0.4, 𝑁𝑏=0.5,  𝑁𝑡 =1, 𝐺𝑟𝑇=0.1, 𝐺𝑟𝐹=0.01 .                                    

  

Figs. 3.6. (f) Stream lines at Q  =0.9, ɸ=0.4, 𝑁𝑏=1  𝑁𝑡 =0.1, 𝐺𝑟𝑇=0.1, 𝐺𝑟𝐹=0.01.                                                                

(e) 

 

(f) 
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    Figs. 3.6.(g) Stream lines at Q =0.9, ɸ=0.4, 𝑁𝑏=1,  𝑁𝑡 =1, 𝐺𝑟𝑇=0.05, 𝐺𝑟𝐹=0.01.                     

       

Figs. 3.6. (h) Stream lines at Q  =0.9, ɸ=0.4, 𝑁𝑏=0.5, 𝑁𝑡 =1, 𝐺𝑟𝑇=0.01, 𝐺𝑟𝐹=0.01. 

(g) 

(h) 
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Fig. 3.6.(i)  Stream lines at Q  =0.8, ɸ=0.4, 𝑁𝑏=1, 𝑁𝑡 =1, 𝐺𝑟𝑇=0.1, 𝐺𝑟𝐹=0.02.   

                                                 

  

 

Fig. 3.6. (j) Stream lines atQ =0.5, ɸ=0.4, 𝑁𝑏=1,  𝑁𝑡 =1, 𝐺𝑟𝑇=0.1, 𝐺𝑟𝐹=0.03 

(j) 

(i) 
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From Fig. 3.6(a)-(j) ten streamline distributions are shown, the impacts of Brownian motion 

parameter 𝑁𝑏, thermal Grashof number 𝐺𝑟𝑇, thermophoresis parameter 𝑁𝑡  and basic-density 

Grashof number 𝐺𝑟𝐹   on trapping are represented. In each case ɸ and the average volume flow 

rate Q  are fixed at 0.5 and 0.6 respectively. Only one parameter is changed for each pair. The 

streamlines are categorized under particular conditions to encircle the bolus of fluid particles 

called trapping, which is the feature of peristaltic motion as explained by Fung and Yih [28]. The 

bolus has the same speed as that of the wave as it is trapped by the wave. 

Comparing Fig. 3.6(a) and 3.6(b), we have increased the values of thermal Grashof number from 

0.0 to 0.1 and basic density Grashof number from 0.0 to 0.01 the magnitude of the trapped bolus 

is reduced. 

Comparing 3.6(c) and 3.6(d), by decreasing the value of Brownian motion parameter 𝑁𝑏 from 0.5 

to 0.1 the dual bolus is reduced to the single bolus. 

Comparing 3.6(e) and 3.6(f), with decreasing the value of thermophoresis parameter from 0.5 to 

0.1 the magnitude of the bolus is increased. 

Comparing 3.6(g) and 3.6(h), the bolus size is magnified when thermal Grashof number is 

decreased from the value 0.05 to 0.01. 

Comparing 3.6(h) and 3.6(i), species Grashof number is increased from the value 0.02 to 0.03, the 

dual bolus is contracted to single bolus. This shows that Nano fluids features therefore 

unquestionably apply a meaningful effect on peristaltic flow patterns.  
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Conclusions: 

The effects of nanofluid features on peristaltic heat transfer in a two dimensional have been 

observed by using Mathematica. Numerical computations have shown that: 

1. ( , )   increases by increasing the values of 𝑁𝑏. Also ( , )  decreases by increasing the 

values of 𝑁𝑡 . 

2. ( , )   increases with an increase in 𝑁𝑏 and 𝑁𝑡 . 

3. The magnitude of axial velocity reduces by increasing the values of 𝑁𝑏. 

4. The magnitude of axial velocity increases with the increase in the values of 𝐺𝑟𝑇.  

5. The pressure difference is reduced by increasing 𝑁𝑏 . The pressure difference increases by 

increasing the values of 𝑁𝑡 . 

6. The pressure difference increases by increasing the values of 𝐺𝑟𝑇 and  𝐺𝑟𝐹. 

7. Size of boluses increases by decreasing values of  𝑁𝑡 . 

8. Size of boluses increases by decreasing the values of 𝐺𝑟𝑇. 

9. A dual bolus reduces to single bolus by increasing the values of 𝐺𝑟𝐹. 
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Chapter 4 

Carbon Nanotube Analysis for an 

Unsteady Physiological Flow in a Non-

Uniform Channel of Finite Length.                 

4.1. Introduction: 

An analytical investigation is presented to study the unsteady peristaltic transport of nanofluids. 

Carbon nanotubes analysis is taken into account. To investigate our model for broad scale of 

biomedical applications, the flow geometry is taken as non-uniform channel of finite length. For 

the non-dimensional governing equations subject to physically realistic boundary conditions, 

exact solutions are acquired. With the help of graphical illustrations, the impacts of carbon 

nanotubes on effective thermal conductivity, axial velocity, transverse velocity, temperature, and 

pressure difference distributions along the length of non-uniform channel by varying different 

flow parameters are studied. An inherent characteristic of peristaltic transport i.e. trapping is also 

studied. We have noticed that MWCnt’s have this exceptional quality to increase the axial velocity 

as..well..as..the..transverse..velocity…of..the..governing..fluids.This.model.is.applicable.in..drugs

delivery.system.where.different.geometries.of..drugs...are.delivered.and.it.is.also.applicable.to.

design.a.micro.peristaltic.pump.for.transportation.of.Nano-fluids.  

4.2. Mathematical Formulation: 

The geometric model for the peristaltic transport of nanofluid with different nanoparticles via a 

non-uniform finite length channel, as depicted in Fig.4.1 is taken as: 

( , ) ( ) cos ( )h t a b ct


  


   ,       (4.1) 
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where 0( )a a    , is the half width of the channel at any axial distance   from inlet and 0a

,b , , ,c , t
~

 are the half width at the inlet, amplitude, wavelength, axial coordinate, wave 

velocity and time.   is non-uniformity constant, when 0 , the non-uniform channel reduces 

to a uniform channel. 

 

Fig. 4.1: Schematic representation of unsteady peristaltic transport through finite length non-

uniform channel. 

 

The.peristaltic.flow.geometry.is.approximated.to.a.finite.length.non-uniform.channel.with 

sinusoidal waves propagating along the flow direction. The channel walls are supposed to be 

distensible and identical in constitution. Damping characteristics are ignored. Flow equations will 
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be modified with low-Reynolds number regime (laminar flows) under long wavelength 

assumption. The magnitudes for temperature T  at the wall of the channel ( h ) are denoted 

as 1T . Under the usual Boussinesq approximation, with an appropriate reference pressure, the 

transport equations in Ref: [40] for the regime are respectively with the following assumptions: 

(a) laminar incompressible flow, (b) no chemical reactions, (c) negligible external forces, (d) 

negligible viscous dissipation, (e) negligible radioactive heat transfer, (f) nanoparticles and base 

fluid locally in thermal equilibrium. 

 

Law of conservation of mass in component form: 

v
0,

u



 
 


  (4.2)  

Axial momentum equation: 
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Transverse momentum equation: 
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Energy equation:                           
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In above equations u~  axial velocity, v~  transverse velocity, ~  transverse coordinate, T
~

 is the 

temperature, 0

~
Q  constants heat absorption parameter, nf  is the nanofluid density, kf is the 

thermal conductivity of the fluid, g is the acceleration due to gravity, p~  is pressure, 
1T  is wall 

temperature,  nf is the thermal expansion coefficient and  
nfpc  is the heat capacitance. 
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To linearize the boundary value problem, a set of dimensionless parameters are given below:

2
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            (4.6) 

Where  ,Re,,,,,, TGr are non-dimensional wave number, amplitude ratio, kinematic 

viscosity, dimensionless temperature, rescaled nanoparticle volume fraction, Reynolds number, 

thermal Grashof number and heat absorption parameter respectively. Under the long wavelength 

approximation (i.e. peristaltic wavelength is much greater than channel width, viz, a  , it 

follows that 0  and also the Reynolds number vanishes ( 0Re ).  Prescribing 0  

negates conduit curvature effects and 0Re  negates convective inertial forces relative to 

viscous hydrodynamic forces. Implementing these approximations, it follows that Equations 

(4.2) − (4.6) become:                                                      
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The relevant boundary conditions are specified as follows: 
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𝑝|𝜉=0 = 𝑝0, 𝑝|𝜉=𝑙 = 𝑝𝑙,                                                                           (4.14) 

 

The thermo physical properties of the nanofluids [17] are defined as follows: 

(𝜌𝛾)𝑛𝑓 = (1 − 𝜑)(𝜌𝛾)𝑓 + 𝜑(𝜌𝛾)𝑠, 𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5.                                                                   (4.15a) 
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In above equations; f  density of the base fluid, s  density of the nanoparticles, fk  thermal 

conductivity of the base fluid, 𝑘𝐶𝑁𝑇 is thermal conductivity of the single wall and multiwall carbon 

nanotubes, nf  is the thermal expansion coefficient, f  is the thermal expansion coefficient of 

base fluid 𝜑  is the nanoparticle volume fraction, and s  is the thermal expansion coefficient of 

the nanoparticles. 

 

4.3. Analytical Solutions: 

The analytical solutions of governing equations (4.8) − (4.10) are obtained as: 

𝜃(𝜉, 𝜂, 𝑡) =
1

2
[

𝑘𝑓

𝑘𝑛𝑓
𝛽(ℎ − 𝜂)(ℎ + 𝜂)],                                   (4.16) 

 

𝑢(𝜉, 𝜂, 𝑡) =
(𝜂2−ℎ2){

𝑘𝑓

𝑘𝑛𝑓
𝛽𝐺𝑟𝑇

(𝜌𝛾)𝑛𝑓

(𝜌𝛾)𝑓
(𝜂2−5ℎ2)}+12

𝑑𝑃

𝑑𝜉

24(1−𝜑)−2.5 .                                                                            (4.17) 

 

To find the transverse velocity, we use the axial velocity equation (4.17) in the mass conservation 

equation (4.7) along with boundary condition( 4.13). The expression for transverse velocity takes 

the form 

 

𝑣(𝜉, 𝜂, 𝑡) =
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(
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𝑑2𝑃
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.                            (4.18)                       
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Using the transverse vibration boundary condition leads to: 

(1 − 𝜑)−2.5 𝜕ℎ

𝜕𝑡
=

𝜕ℎ

𝜕𝜉
(
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(−

2

3
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𝑑𝜉
) +

ℎ3

3

𝑑2𝑃

𝑑𝜉2
.               (4.19)                                                                                                  

 

Re-arranging and integrating equation (4.19) w.r.t. 𝜉 gives pressure gradient: 

𝜕𝑃

𝜕𝜉
=

3

ℎ3 {𝐴(𝑡) +
𝜖∗cos 𝜋(𝜉−𝑡)
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(𝜌𝛾)𝑓
(

2

5

𝑘𝑓

𝑘𝑛𝑓
𝛽ℎ2),                           (4.20)                 

 

Integration of equation (4.20) w.r.t. 𝜉 provides the pressure difference Δ𝑃 across the length of 

the channel: 

Δ𝑃(𝜉, 𝑡) = ∫
3

ℎ3 {𝐴(𝑡) +
𝜖∗cos 𝜋(𝜉−𝑡)
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Upon substituting Δ𝑃(𝜉, 𝑡) = 𝑝(𝜉, 𝑡) − 𝑝(0, 𝑡) and  𝜉 = 𝑙, and using the finite length condition, 

we obtain: 

𝑝𝑙 − 𝑝0 = ∫ {
3
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Where 𝐴(𝑡) is evaluated by re-arranging the above integral and using appropriate integration 

techniques in Mathematica 10.0 software: 

𝐴(𝑡) =
(𝑝𝑙−𝑝0)−∫ [

3𝜖 cos 𝜋(𝜉−𝑡)
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4.4. Graphical Representation and Discussion: 

To observe the effective thermal conductivity of the fluid with single wall carbon nanotube 

(SWCnt) and multiwall carbon nanotube (MWCnt), we fixed all the other constraints to a constant 

value and observed that the thermal conductivity is higher for SWCNT and slightly lesser for 

MWCnt as shown in Fig. 4.2. This can be depicted in Fig. 4.3 where the temperature rise is 

marginally greater in case of MWCnt’s and slightly lesser in case of SWCnt’s. Note that the 
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temperature rise is directly proportional to the heat absorption parameter 𝛽. However, the rise 

in temperature is greater in case of a non-uniform channel. 

From Fig. 4.4, we observe that the axial velocity ( , )u    increases with an increase in both 𝛽 and 

𝐺𝑟𝑇. MWCnt attains higher axial velocity as compared to the SWCnt in all cases but the increase 

in velocity is slightly greater in case of uniform channel. Velocity is maximum at the center of the 

tube where 𝜂 = 0. The transverse velocity ( , )v   and its variation for heat absorption parameter 

and thermal Grashof number is shown in Fig. 4.5. The transverse velocity carries similar features 

as that of the axial velocity except that it is minimum at the center of the tube where 𝜂 = 0. We 

have noticed that MWCnt’s have this exceptional quality to increase the axial velocity as well as 

the transverse velocity of the governing fluids. 

Fig. 4.6 depicts that pressure gradient has a sinusoidal behavior. It is directly proportional to the 

thermal Grashof number. For non-uniform channel i.e. 𝛼 ≠ 0, the pressure gradient increases as 

we increase the length of the channel. 

Figs.4.7, 4.8 (a, b) shows the streamlines for different values of heat absorption parameter β for 

SWCnt and MWcnt it is seen that by increasing β, number of bolus increases and size of the bolus 

decreases for SWCnt but for the case of MWCnt results are different, by increasing β number of 

bolus decreases and size of the of the bolus increases.  

Figs. 4.9, 4.10 (a, b) present the streamlines for different values of Grashof number 𝐺𝑟𝑇 for SWCnt 

and MWcnt it is observed that increasing Grashof number 𝐺𝑟𝑇  size of the of the bolus decreases 

for SWCnt as well as for the case of MWCnt. 
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Fig. 4.2 Effective thermal conductivity of the nanofluid 
𝑘𝑛𝑓

𝑘𝑓
 for SWCnt and MWCnt. 

   

Fig. 4.3 Temperature profile ( 𝜃(𝜉, 𝜂) 𝑣𝑠 𝜂 ) for various value of (a) heat absorption parameter 𝛽 

in uniform channel 𝛼 = 0, (b) heat absorption parameter 𝛽 in a non-uniform channel 𝛼 = 0.1. 
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Fig. 4.4 Axial velocity profile ( 𝑢(𝜉, 𝜂) 𝑣𝑠 𝜂 ) for various value of (a) Heat absorption parameter 𝛽 

in a uniform channel 𝛼 = 0.  (b) Heat absorption parameter 𝛽 in a non-uniform channel 𝛼 = 0.1. 

(c) Grashof number 𝐺𝑟𝑇   in uniform channel 𝛼 = 0. (d) Grashof number 𝐺𝑟𝑇   in a non-uniform 

channel 𝛼 = 0.1. 
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Fig. 4.5 Transverse velocity profile ( 𝑣(𝜉, 𝜂) 𝑣𝑠 𝜂 ) for various value of (a) Heat absorption 

parameter 𝛽 in uniform channel 𝛼 = 0. (b) Heat absorption parameter 𝛽 in a non-uniform channel 

𝛼 = 0.1.  (c) Grashof number 𝐺𝑟𝑇 in uniform channel 𝛼 = 0. (d) Grashof number 𝐺𝑟𝑇 in a non-

uniform channel 𝛼 = 0.1. 
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Fig. 4.6 Pressure difference for various values of (a) Heat absorption parameter 𝛽 in uniform 

channel 𝛼 = 0.  (b) Heat absorption parameter 𝛽 in a  non-uniform channel 𝛼 = 0. (c) Grashof 

number 𝐺𝑟𝑇 in uniform channel 𝛼 = 0, (d) Grashof number 𝐺𝑟𝑇 in and non-uniform channel 𝛼 =

0.1. 
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Figs. 4.7 Streamlines (SWCnt) for various values of 𝛽. (a) 𝛽 = 0.5. (b)  𝛽 = 0.8.    other parameters 

are 𝐺𝑟𝑇 = 0.5 , 𝛼 = 0.4, φ = 0.2, ε = 0.3, δ = 0.1, t = 0.5. 

            

  

Figs. 4.8 Streamlines (MWCnt) for various values of 𝛽. (a) 𝛽 = 0.5. (b)  𝛽 = 0.8.    other 

parameters are 𝐺𝑟𝑇 = 0.5 , 𝛼 = 0.4, φ = 0.2, ε = 0.3, δ = 0.1, t = 0.5. 
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Figs.4.9 Streamlines (SWCnt) for various values of 𝐺𝑟𝑇. (a) 𝐺𝑟𝑇 = 0.3. (b)  𝐺𝑟𝑇 = 0.6, 𝛽 = 0.5 , 

𝛼 = 0.4, φ = 0.2, ε = 0.3, δ = 0.1, t = 0.5. 

  

 

Figs 4.10 Streamlines (MWCnt) for various values of 𝐺𝑟𝑇. (a) 𝐺𝑟𝑇 = 0.3. (b)  𝐺𝑟𝑇 = 0.6.    other 

parameters are 𝛽 = 0.5 , 𝛼 = 0.4, φ = 0.2, ε = 0.3, δ = 0.1, t = 0.5.  
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Conclusions: 

1. Thermal conductivity is higher for single wall carbon nanotubes. 

2. Temperature rise is marginally greater in case of multi wall carbon nanotubes. 

3. Axial velocity increases with an increase in both the heat absorption parameter and the thermal 

grashof number 

4. The pressure difference reduces by increasing Brownian motion parameter 𝑁𝑏 . The pressure 

difference is increased by increasing thermophoresis parameter 𝑁𝑡 . 

6. The pressure difference reduces by increasing the values of heat absorption parameter and 

thermal Grashof number. 

7. Number of trapped bolus increases by increasing heat absorption parameter and number of 

trapped bolus is decreased by increasing heat absorption parameter 

8. Size of boluses decreases by decreasing increasing thermal Grashof number. 

9. Size of boluses decreases by increasing thermal Grashof number.  
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