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Abstract

This dissertation is the review of study of the effect of rotation on the speeds of

surface waves propagating through anisotropic solids. Surface wave solutions are

obtained by solving the governing equations for both cases (with and without ro-

tation). These solutions satisfy the boundary conditions. The frequency equations

are obtained for Rayleigh and Love waves propagating through hexagonal and or-

thotropic materials. Speed of waves in various materials is calculated using frequency

equations under rotational and non-rotational effects. Various graphs are plotted

for illustration purposes and analysis of results. The graphs are plotted between

non-dimensional speed and non dimensional rotation for different choices of elastic

constants. The results obtained are valid for wave of shorter wavelength. It is found

that the speed of Rayleigh waves is affected considerably by rotation. The speed of

Love wave however remains un-affected by rotation.
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Chapter 1

Introduction

Among the endless possible motions of matter, wave motion plays a particularly

vital role. Waves or oscillations can be defined as the processes distinguished by a

certain degree of repetition.

Waves appear widely in nature and every day life. Most information about our

surroundings comes to us in the forms of waves. The sound that comes to our ears,

light to our eyes, and electromagnetic signals to our radios and television sets are

all through wave motion. Ultrasonic waves are used to detect cracks in machinery.

They also have wide applications in medical field for the diagnostics of many fatal

diseases like cancer and tumors etc. Another application of wave phenomenon is

SONAR (sound navigation and ranging), a technique in which sound waves are used

to navigate, detect and communicate under the surface of water. Geologists study

the geological structure of earth by sending in waves. They are also used to detect

oil and gas deposits under earth surface. Properties of materials are determined

through the behavior of waves transmitted from them.

Explanation of many natural phenomena requires an understanding of waves.

For instance, although skyscrapers and bridges appear to be rigid, they actually

oscillate, a fact that architects and engineers who design and build them must take

into account. Earthquakes are detected and investigated by studying properties of

waves they generate. To understand how radio and television operate one must
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understand the origin and nature of electromagnetic waves and how they propagate

through space. Waves or the oscillatory processes are at the very foundations of

various branches of engineering. For example, radio engineering owes its existence

to phenomenon of waves.

The history of study of wave phenomenon goes back hundreds of years. The

earliest studies were naturally more observational than quantitative and frequently

with musical tones or water waves, two of the most common associations with wave

motion.

Applications of elastic waves in various fields such as geophysics was a stimulus

for scientists and mathematicians to study the waves. The propagation of surface

waves in isotropic elastic half space was first studied by Rayleigh [1] . He considered

plane waves propagating through isotropic material. He made an assumption that

the amplitude of these waves decays exponentially as they move away from the free

surface. These waves were found to be non-dispersive and were later called Rayleigh

waves after his name.

Love [2] proposed the idea of another type of surface waves, now called Love

waves after his name. He found that these waves require an isotropic elastic half

space covered with the layer of an isotropic elastic material for their propagation.

These waves were dispersive in nature unlike Rayliegh waves, and were called Love

waves after

Bouden and Datta [3] dedicated their study to the propagation of Rayleigh and

Love waves in cladded anisotropic medium. It was reported that the relative material

properties affects the behavior of surface waves.

In recent years, surface wave propagation through anisotropic elastic solids has

been a subject of great interest for researchers because of its extensive applications

in various branches of science and technology. Pham and Ogden [4] investigated

the formulae for the speed of Rayleigh waves propagating through orthotropic com-

pressible elastic solids. They explained the formulae explicitly by using the theory

of cubic equations. Wave speed was expressed as continuous function of three di-
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mensionless material parameters.

Abd-Allah [5] studied the propagation of Rayleigh waves in elastic half-space of

orthotropic material. He studied the effect of initial stress and gravitational field

on the propagation of the Rayleigh waves through orthotropic solid and frequency

equation was obtained in this case.

Abd-Allah et al. [6] discussed propagation of Rayleigh waves in generalized

magneto-thermo-elastic orthotropic material under initial stress and gravity field.

The authors obtained the frequency equations which determine velocity of the waves.

The solutions of generalized equations were obtained for thermo-elastic coupling by

Helmoltz’s theorem.

Baljit et al. [7] worked on the dispersion relation for Rayleigh waves in rotating

orthotropic micropolar elastic solid half-space. A frequency equation was obtained

with the help of which approximated speed of Rayleigh waves under rotational effects

through orthotropic micropolar elastic solid was defined.

Recently, Abo-Dahab and Biswas [8] studied the effect of rotation on Rayleigh

waves in magneto-thermoelastic transversely isotropic with thermal relaxation times.

It was concluded that Rayleigh wave speed varies inversely with rotation and directly

with magnetic field.

The focus of this thesis is to review the work of [15] and [16]. The effect of

rotation on Rayleigh waves through anisotropic materials, particularly hexagonal

and orthotropic elastic solids is explored. Various steps involved for the calculation

of the wave speed under rotational effects have been detailed including graphical

analysis. The summary of each chapter is given below:

Chapter 2 gives the readers a detailed description and understanding of the key

concepts of theory of the elasticity. Definitions of strain, stress, Hooks law and

the effects of symmetries on material properties of hexagonal and orthotropic solids

are revised briefly. Wave motion, types of waves with their sub types are defined.

Finally, wave equation is also derived in this chapter.

Chapter 3 is a review work of the effect of rotation on Love waves. In the first
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section, dispersion relation for Love waves traveling through hexagonal material is

derived. It also includes graphs showing the phase velocity for lowest mode of Love

waves through hexagonal materials. In the second section, dispersion relation for

Love waves traveling through orthotropic elastic materials is derived along with the

graphs. Finally the effect of rotation on Love waves is investigated. It is found that

the rotations of orthotropic and hexagonal materials do not effect the speed of Love

waves in these materials.

Chapter 4 includes the study of effect of rotation on Rayleigh surface waves. In

the first section the effect of rotation on the speed of the waves traveling through

hexagonal elastic solids is studied. Secular equation is established in case of the

rotating hexagonal material. The wave speed for some solids is calculated numeri-

cally. Second section of the chapter contains the study on Rayleigh wave propagation

through rotating orthotropic elastic solids. The secular equation thus obtained is

almost similar to the one for hexagonal materials except for few material constants.

Various numerical values of the elastic stiffness parameters are used to demonstrate

the effects of rotation on the speed of Rayleigh waves. The plots of dimensionless

speed verses rotation are finally discussed. Significant impact of rotation on speed

of Rayleigh waves on contrary to Love waves is noticed.

In chapter 5 we conclude the results presented in the thesis.
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Chapter 2

Fundamentals of the Theory of

Elasticity

In this chapter we shall study the fundamentals of the theory of elasticity, basic

concepts of stress, strain and Hook’s law. Wave motion, types of waves and equation

of propagation of waves are also briefly discussed.

2.1 Theory of elasticity

Matter is composed of molecules, which in turn consist of atomic and subatomic

particles. These particles are bonded by forces of attraction. Significant distances

exist between these bonded atoms, called inter-atomic or intermolecular spaces.

Thus matter is not continuous, rather it consists of discrete particles. However, in

everyday life we come across many aspects of materials that cannot be described and

predicted accurately without neglecting the molecular structure of a material. In

continuum mechanics, we regard matter as indefinitely divisible. We assume that it

is distributed continuously so that we can think of density, volume etc as a continuous

function of position. This approximation is called continuum approximation. For

the motion of waves of small wavelength, this may not be a fine approximation but

for long wavelength this approximation gives very good results [9].
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2.2 Tensor analysis

Tensors are mathematical objects that can be used to describe physical properties

of materials. Mathematically, a linear transformation T : V −→ V is called tensor

of order 2, where V is a vector space.

By definition the n-rank tensor components T
′

ijk... transform as follows;

T
′

...ijk... = ...qliq
m
j q

n
k ...T...lmn, where {i, j, k, ..} = {1, 2, 3, ..n} . (2.2.1)

where qµν denotes the n×n transformation matrix from unprimed to primed coordi-

nates. Generally the tensor of zero order is regarded as a scalar, and that of order

one is a vector. Formally, tensors are represented by matrix notation. We will use

tensors to represent the material properties such as stress, strain, elasticity etc.

2.3 Stress, strain and their relationship

2.3.1 Strain

Strain is the measure of deformation produced in a body as a result of applied

forces. The deformation may be in length, shape or volume of a body. If u(x,t) is

the displacement of particles, its gradient is deformation. The strain tensor S under

the assumption of linear approximation can be defined as follows [10]

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (2.3.1)

It is evident that Sij = Sji. i.e. S is a symmetric tensor of order 2. In three

dimensional space the strain tensor has 9 components out of which 6 are linearly

independent.

2.3.2 Stress

When deformation occurs in a material body the arrangement of molecules of the

body changes. This disturbs the original state of equilibrium. Forces therefore arise
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which tend to bring the body back to its equilibrium state. Stress is the physical

quantity which describes these internal forces that are exerted by neighboring parti-

cles of continuous material on each other to regain equilibrium. Consider a surface

∆sk which has a normal in the xk direction. Suppose the force due to stress be ∆ F

Tik = lim
∆sk→0

∆Fi
∆sk

. (2.3.2)

In Figure 2.1, τik denote the components of stress tensor. The first index i specifies

the direction in which the stress component acts and the second index k specifies

the orientation of the surface upon which it is acting. Therefore the ith component

of force acting on a surface whose outward normal points in kth direction is τik.

Figure 2.1: Components of Stress Tensor in 3-D

Like strain, the stress tensor is also symmetric. In 3-dimensional space it has 9

components out of which 6 are linearly independent.

2.3.3 Stress, strain relationship – Hook’s Law

The relationship between the deformation of an elastic body and the forces respon-

sible for it was stated by Robert Hooke in 1778. He stated that “the extension

is directly proportional to the force”. This law was generalized later by Cauchy

as “within the elastic limits each stress is a linear function of strain components”.
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Cauchy called it generalized Hooks law [9]. Mathematically it can be written as

Tij = CijklSkl, (2.3.3)

where {i, j, k, l} = {1, 2, 3}.

It is clear that every component of stress is a linear combination of components

of strain. In the above equation, Cijkl is the fourth-rank elasticity tensor or the

compliance tensor in the linear theory of elasticity. Its coefficients are called elastic

parameters or elastic constants. In 3 dimensional space it has 34 = 81 components.

But these components reduce in number due to symmetries as explained in the

section below.

2.4 Symmetries of components of the elasticity

tensor

As mentioned earlier, Tij is symmetric tensor i.e., Tij = Tji, so due to this symmetry

the elasticity tensor is symmetric in first two indices. i.e.

Cijkl = Cjikl. (2.4.1)

This symmetry reduces the number of components of Cijkl from 81 to 56. Also Skl

is symmetric i.e Skl = Slk. Because of this symmetry Cijkl is symmetric in last two

indices as well i.e.

Cijkl = Cijlk. (2.4.2)

Due to the above symmetry the components of Cijkl are reduced to 36. Further

reduction of components from 36 to 21 can be done by using the relation for potential

energy due to strain. i.e. the strain-energy function, which is defined as:

ε =
1

2
CijklSijSkl. (2.4.3)
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It is evident from the above equation that Cijkl is also symmetric pair wise i.e.,

(ij)↔ (kl). It implies

Cijkl = Cklij. (2.4.4)

For convenience, we use the famous two index Voigt’s notation to express Cijkl into

6× 6 matrix. Thus each pair of indices corresponds to a single index. In this way,

(11)→ (1)

(22)→ (2)

(33)→ (3)

(23)→ (4)

(13)→ (5)

(12)→ (6)

(2.4.5)

Now Cijkl can be represented as 6× 6 symmetric matrix, Cαβ and is given below,

Cαβ =



C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66


. (2.4.6)

In this matrix stars denote linearly dependent components of Cαβ.

2.5 Crystal structures and their symmetry

A crystalline solid or crystal is a substance the constituent particles of which possess

a regular orderly arrangement. Structurally, in the ideal case, a crystal is bounded by

plane surfaces, or faces. The morphological study of crystals of different symmetries

showed that they could be classified into seven crystal systems based on the presence
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of certain crystallographic axes [12]. The focus of this study is on hexagonal and

orthorhombic crystals .

To derive symmetries of crystal systems we first need to understand rotation

axis. A rotation axis is an axis such that, if the cell is rotated about it through

some angle, the cell remains invariant. This axis is called n-fold if the angle of

rotation is 2π/n.

2.5.1 Orthorhombic system

In orthorhombic system there are three mutually perpendicular 2-fold rotation axis,

i.e. n = 2. Let a, b, and c are the lengths of basis vectors along x1, x2 and x3

directions respectively. Also let α be the angle between (b, c), β be angle between

(a, c) and γ be angle between (a, b) as shown in Figure 2.2.

Figure 2.2: Orthorhomic structure.

For orthorhombic system,

a 6= b 6= c, and α = β = γ = 90o. (2.5.1)

. General rotation matrix for rotation about x3 for 3D is

Q =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (2.5.2)
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Assume that the axis of symmetry of the orthorhombic material is along x3 axis and

θ = π, then the above matrix becomes

Q =


−1 0 0

0 −1 0

0 0 1

 . (2.5.3)

The transformation of Cijkl after rotation along X3-axis is as follows,

C
′

ijkl = QpiQqjQrkQslCpqrs, (2.5.4)

where, C
′

ijkl denotes the stiffness constants after rotation, and Cpqrs denotes those

before rotation. Using Eq. (2.5.3) in Eq. (2.5.4) we get

C
′

1111 = (−1)4C1111, (2.5.5)

or using Voigt’s Notation,

C
′

11 = C11. (2.5.6)

Similarly, we get twelve non zero components of Cαβ. Nine of them are linearly in-

dependent and three are linearly dependent. The matrix representing elastic moduli

for orthorhombic material is

Cαβ =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (2.5.7)
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2.5.2 Hexagonal system

Figure 2.3: Hexagonal structure

The principal axis of hexagonal crystal has order six. The crystal, therefore, behaves

as a combination of A2 and A3-axes. Let a, b, and c are the lengths of basis vectors

along x1, x2 and x3 directions respectively. Also let α be the angle between (b, c), β

be angle between (a, c) and γ be angle between (a, b) as shown in the Figure 2.3.

The rotation is assumed to be along x3-axis. In Eq. (2.5.2) we assume that

θ = 2π
n
6= π The invariant relation (2.5.4) is now more complicated to analyze since

it involves many components. In order to deal with this we use the rotation matrix

presented by Eq. (2.5.2) in Eq. (2.5.4). Therefore, Cαβ finally becomes

Cαβ =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


with C66 =

C11 − C12

2
. (2.5.8)

The above matrix shows that there are only five independent components of elasticity

tensor Cαβ for hexagonal material.

A crystal which is independent of rotation about n-fold axis is called a trans-

versely isotropic crystal. It can be proved easily that the hexagonal crystals are
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transversely isotropic. We will examine here the behavior of linearly independent

moduli C11, C12, C13, C33 and C44 under arbitrary rotation about x3-axis. Using

Eq. (2.5.2),

C
′

1111 = Qp1Qq1Qr1Qs1Cpqrs where, {i, j, k, l} = {1, 1, 1, 1} ,

⇒ C
′

11 = Q4
11C11 + 2Q2

11Q
2
21C12 + 4Q2

11Q
2
21C66 +Q4

21C22,

= (cos2 θ + sin2 θ)2C11,

= C11. (2.5.9)

C
′

3333 = Qp3Qq3Qr3Qs3Cpqrs where, {i, j, k, l} = {3, 3, 3, 3} ,

⇒ C
′

33 = Q4
33C3333,

= (1)4C33,

= C33. (2.5.10)

C
′

2323 = Qp2Qq3Qr2Qs3Cpqrs where, {i, j, k, l} = {2, 3, 2, 3} ,

⇒ C
′

44 = (Q2
12Q

2
33 +Q2

22Q
2
33)C44,

= (sin2 θ + cos2 θ)C44,

= C44. (2.5.11)

C
′

1122 = Qp1Qq1Qr2Qs2Cpqrs where, {i, j, k, l} = {1, 1, 2, 2} ,

⇒ C
′

12 = 2 cos2 θ sin2 θC11(cos4 θ + sin4 θ)C12

−2 cos2 θ sin2 θ(C11 − C12),

= (cos2 θ + sin2 θ)2C12,

= C12. (2.5.12)

C
′

1133 = Qp1Qq1Qr3Qs3Cpqrs where, {i, j, k, l} = {1, 1, 3, 3} ,

⇒ C
′

13 = (Q2
11Q

2
33 +Q2

21Q
2
33)C13,

= (cos2 θ + sin2 θ)C13,

= C13. (2.5.13)

Similarly it can be shown for all other components of Cijkl.
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2.6 Wave motion

Wave is a disturbance or oscillation that travels through space and matter accompa-

nied by transfer of energy. Wave motion transfers energy from one point to another,

often with no permanent displacement of particles of the medium i.e. with little or

no associated mass transport. The propagation of waves through different media

and their effects like tidal waves, remote sensing and earthquakes are always a sub-

ject of interest. Minerals, inside the earth can be detected by sending in the elastic

waves and by studying how they are reflected. Another important application of

wave motion is seismology i.e the study of earthquakes.

2.6.1 Types of waves

Waves have been classified into two main categories,

• Mechanical waves.

• Electromagnetic waves.

Mechanical waves require medium for their propagation, whereas the electromag-

netic waves do not require medium to travel. The mechanical waves can be further

classified as body waves and surface waves.

Body waves

These are high frequency waves that can propagate into the interior of the material.

They can be classified as,

• Longitudinal waves.

• Transverse waves.
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Longitudinal waves

In these waves every particle of the medium, vibrates about its equilibrium position

along the direction of propagation of waves. Longitudinal waves produce compres-

sions and rarefaction in the material through which they are traveling, but they

are not responsible for any rotation in the medium. These are also called com-

pressional, or ir-rotational waves. In seismology they are known as P-waves or the

primary waves, being the first waves appearing on the seismographs [14].

Transverse waves

In these waves the particles of medium vibrate perpendicular to the direction of

propagation of waves. The material undergoes shearing and rotation when the

transverse waves pass through it. These are also called shear or rotational waves.

However, in seismology they are known as S-waves or the secondary waves [14].

Surface waves

These waves travel along the surface of material. The amplitude of these waves

decreases exponentially as they move away from the surface.There are two types of

surface elastic waves:

• Rayleigh waves.

• Love waves.

Rayleigh waves

Rayleigh waves travel near the surface of homogeneous half space. The particles

of the medium vibrate in anti-clockwise elliptical paths as shown in the Figure 2.4.

This fact was discovered by Lord Rayleigh [1] in 1885.
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Figure 2.4: Rayleigh wave motion at different times.

Love waves

Love waves named after A. E. Love [2] are guided surface waves. These waves

are transverse in nature and the particles vibrate parallel to the surface as shown

in Figure 2.5. Unlike Rayleigh waves, Love waves do not travel in homogeneous

half-space, rather they require a half-space covered with homogeneous layer [14].

Figure 2.5: Love wave motion at different times.

2.6.2 Wave equation

The forces acting on a body can be categorized as body or surface forces. Body

forces are intrinsic and act on the entire volume of the body, for example gravity,
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whereas the surface or contact forces act only on the surface of body. Examples are

tension and pressure force. An arbitrary point in continuum experiences a force due

to stress, which is

Fi =
∂Tij
∂xj

+ ρfi, {i, j} = {1, 2, 3} . (2.6.1)

Here
∂Tij
∂xj

are pressure forces and ρfi are body forces. Here, the usual summation

convention is assumed on repeated indices. We have assumed a continuous solid

(continuum approach) and when a disturbance is produced, it propagates through

the solid so it is locally in motion [13]. If we consider an arbitrary point of the

solid with coordinates xk, having displacement ui, where ui = ui(xk, t) and {i, k} =

{1, 2, 3}. According to Newton’s second law of motion

Fi = ρ
∂2ui
∂t2

. (2.6.2)

Comparing Eqs. (2.6.1) and (2.6.2), we get

ρ
∂2ui
∂t2

=
∂Tij
∂xj

+ ρfi. (2.6.3)

Ignoring the body forces in Eq. (2.6.3), we have

ρ
∂2ui
∂t2

=
∂Tij
∂xj

. (2.6.4)

The stress tensor Tij is defined in Eq. (2.3.3) and by substituting the value of strain

tensor from Eq. (2.3.1) into Eq. (2.3.3), we have

Tij = Cijkl
1

2
(
∂uk
∂xl

+
∂ul
∂xk

). (2.6.5)

We know that the strain tensor is symmetric, therefore

Tij = Cijkl
∂uk
∂xl

. (2.6.6)

Substituting Eq. (2.6.6) in Eq. (2.6.4), we get

ρ
∂2ui
∂t2

= Cijkl
∂2uk
∂xj∂xl

, {i, j, k} = {1, 2, 3} . (2.6.7)

The set of these three second order partial differential equations represents the wave

motion.
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Chapter 3

Effect of Rotation on Love Waves

In this chapter the effect of rotation on speed of the Love waves is discussed. The dis-

persion relations for love waves traveling through hexagonal and orthotropic media

first without rotation and than under rotational effects are presented.

3.1 Dispersion relation for Love waves traveling

through hexagonal materials

Consider the half space x2 ≥ 0 of hexagonal elastic material with the mass density

ρ, and the stiffness constant C44. x2 is considered positive in the downward direc-

tion throughout the thesis. We consider the Love waves traveling along x3-axis,

perpendicular to (x1x2) plane as shown in the Figure 3.1. The non zero component

of displacement is u3(x1, x2, t). Thus

u = u3(x1, x2, t), u1 = u2 = 0. (3.1.1)

For i = 3, Eq. (2.6.7) can be written as

ρ
∂2u3

∂t2
= C3jkl

∂2uk
∂xj∂xl

. (3.1.2)
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After expanding the above expression and substituting the components of Cijkl for

hexagonal materials from Eq. (2.5.8) we get

ρ
∂2u3

∂t2
= C44

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)
, (3.1.3)

or

ρ

C44

(
∂2u3

∂t2

)
=
∂2u3

∂x2
1

+
∂2u3

x2
2

. (3.1.4)

Since the amplitude of Love waves decreases exponentially when they move away

from the surface, so we assume solution of the form

u3 = Ae−bx2 exp [ik(x1 − ct)] , (3.1.5)

where b must have positive real part. A is the amplitude of Love wave and c is the

phase velocity. Differentiating above equation with respect to x1, x2 and t twice we

get

∂2u3

∂x2
1

= −k2Ae−bx2 exp [ik(x1 − ct)] , (3.1.6)

∂2u3

∂x2
2

= b2Ae−bx2 exp [ik(x1 − ct)] , (3.1.7)

∂2u3

∂t2
= −k2c2Ae−bx2 exp [ik(x1 − ct)] . (3.1.8)

Substitute Eqs. (3.1.6), (3.1.7) and (3.1.8) in Eq. (3.1.4) we obtain

−k2 + b2 =
ρ

C44

(−k2c2), (3.1.9)

or

b = k

√
1− ρc2

C44

. (3.1.10)

Boundary condition for free surface implies that the stress component

T32 = C44
∂u3

∂x2

, (3.1.11)

vanishes at x2 = 0 i. e. ,

T32 = C44
∂u3

∂x2

= 0, at x2 = 0. (3.1.12)
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Equation (3.1.11) is obtained by substituting Eq. (2.3.3) in Eq. (2.6.6). Eq. (3.1.12)

implies

−C44bAe
−bx2 exp[ik(x1 − ct)] = 0. (3.1.13)

Equation (3.1.13) can be satisfied only if either b = 0 or A = 0. Both these cases do

not represent Love wave. This implies that Love wave propagation is not possible

along free boundary. It was proposed by Love [2] that for Love wave propagation

the half space should be covered by a layer of hexagonal elastic material having

thickness H. Let the material constant in the layer be C
(l)
44 and mass density of

material of layer be ρ(l) as shown in the Figure 3.1,

Figure 3.1: Geometery of the problem: Hexagonal elastic half space covered with a

layer of another hexagonal material.

For layer, Eq. (3.1.4) becomes

ρ(l)

C
(l)
44

(
∂2u

(l)
3

∂t2

)
=
∂2u

(l)
3

∂x2
1

+
∂2u

(l)
3

x2
2

, (3.1.14)

where u
(l)
3 is the component of displacement in the layer. We assume the solution

of the form

u
(l)
3 = f(x2) exp [i(kx1 − ωt)] , where ω = kc. (3.1.15)
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Differentiating Eq. (3.1.15) with respect to x1, x2 and t twice we get

∂2u
(l)
3

∂x2
1

= −k2f(x2) exp [i(kx1 − ωt)] , (3.1.16)

∂2u
(l)
3

∂x2
2

= f
′′
(x2) exp [i(kx1 − ωt)] , (3.1.17)

∂2u
(l)
3

∂t2
= −ω2f(x2) exp [ik(x1 − ct)] . (3.1.18)

Substitution of Eqs. (3.1.16), (3.1.17) and (3.1.18) in Eq. (3.1.14) yields

−k2f(x2) + f
′′
(x2) = − ρ

(l)

C
(l)
44

ω2f(x2), (3.1.19)

or

f
′′
(x2) + f(x2)

[
ρ(l)ω2

C
(l)
44

− k2

]
= 0. (3.1.20)

Let

q(l)2 =
ρ(l)ω2

C
(l)
44

− k2. (3.1.21)

Equation (3.1.20) becomes

f
′′
(x2) + q(l)2f(x2) = 0. (3.1.22)

The general solution of the above second order linear ordinary differential equation

is

f(x2) = k1 cos(q(l)x2) + k2 sin(q(l)x2). (3.1.23)

Equation (3.1.15) becomes

u
(l)
3 =

[
k1 cos(q(l)x2) + k2 sin(q(l)x2)

]
exp(i(kx1 − ωt)). (3.1.24)

The condition of continuity is that the stress in layer must be equal to stress in half

space, at x2 = 0

T
(l)
23 = T23, at x2 = 0. (3.1.25)
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Using Eq. (3.1.11) in Eq. (3.1.25), we get

C44bA+ C
(l)
44 k2q

(l) = 0. (3.1.26)

The continuity of displacement at x2 = 0 implies

u
(l)
3 = u3 at x2 = 0, (3.1.27)

which gives

A− k1 = 0. (3.1.28)

The condition of vanishing shear stress at the free surface (x2 = −H) implies

T
(l)
23 = 0, at x2 = −H, (3.1.29)

which gives

k1 sin(q(l)H) + k2 cos(q(l)H). (3.1.30)

The matrix form of Eqs. (3.1.26), (3.1.28) and (3.1.30) is
bC44 0 q(l)C

(l)
44

1 −1 0

0 sin(q(l)H) cos(q(l)H)



A

k1

k2

 = 0. (3.1.31)

For non trivial solution the determinant of Eq. (3.1.31) should vanish.∣∣∣∣∣∣∣∣∣
bC44 0 q(l)C

(l)
44

1 −1 0

0 sin(q(l)H) cos(q(l)H)

∣∣∣∣∣∣∣∣∣ = 0. (3.1.32)

This implies

C
(l)
44 sin(q(l)H)− bC44 cos(q(l)H) = 0. (3.1.33)

Further simplification gives

sin(q(l)H)

cos(q(l)H)
=

bC44

q(l)C
(l)
44

, (3.1.34)
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or

tan(q(l)H) =
bC44

q(l)C
(l)
44

. (3.1.35)

Substituting values of q(l) from Eq. (3.1.21) and b from Eq. (3.1.10) in Eq. (3.1.35)

we get

tan

[√
ρ(l)ω2

C
(l)
44

− k2H

]
=
kC44

√
1− ρc2

C44

C
(l)
44

√
ρ(l)c2

C
(l)
44

− 1

. (3.1.36)

For hexagonal material, the transverse wave velocity is [13]

c2
T =

C44

ρ
, c

(l)2

T =
C

(l)
44

ρ(l)
, (3.1.37)

where, cT is the transverse wave speed in a hexagonal elastic half space and c
(l)
T is

the transverse wave speed in layer. Equation (3.1.36) after substituting Eq. (3.1.37)

becomes

tan

[
kH

(√
c2

c
(l)2

T

− 1

)]
−

C44

√
1− c2

c2T

C
(l)
44

√
c2

c
(l)2

T

− 1
= 0. (3.1.38)

The above equation shows that Love waves are dispersive in nature, i.e. their speed

depends upon wave number. The left hand side of Eq. (3.1.38) is positive for

c = cT and is negative for c = c
(l)
T . Therefore, real roots are possible in the interval

c
(l)
T < c ≤ cT . No real root will exist for cT < c

(l)
T . If kH is considered as independent

variable then for kH = 0, we have from Eq. (3.1.38)

C44

√
1− c2

c2T

C
(l)
44

√
c2

c
(l)2

T

− 1
= 0,

which implies c = cT . Let us introduce the following notation

x =
2kH

π
⇒ xπ

2
= kH, y =

c

cT
, (3.1.39)
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and

c

c
(l)
T

=
c

cT

cT

c
(l)
T

⇒ c

c
(l)
T

= y.
cT

c
(l)
T

, (3.1.40)

Using Eqs. (3.1.39) and (3.1.40) in Eq. (3.1.38), we have

tan

[
xπ

2

(√
yc2

T

c
(l)2

T

− 1

)]
− C44

√
1− y2

C
(l)
44

√
y2 c2T

c
(l)2

T

− 1

= 0. (3.1.41)

Figure 3.2: Phase velocity for lowest mode of Love waves through hexagonal mate-

rials. Here, α = cT

c
(l)
T

It can be observed from above graph that phase velocity decreases with the

increase in kH values.

3.2 Dispersion relation for Love waves traveling

through orthotropic materials

The dispersion relation for Love waves traveling through the half space of orthotropic

elastic material will be discussed in this section. It is assumed that the Love waves

are traveling along x3-axis, perpendicular (x1x2) plane with the component of dis-
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placement u3 as in Eq. (3.1.1). For orthotropic materials, Eq. (3.1.2) after substi-

tuting the values of elastic parameters from Eq. (2.5.7) becomes

ρ
∂2u3

∂t2
= C55

∂2u3

∂x2
1

+ C44
∂2u3

x2
2

. (3.2.1)

Assuming the solution of the form given in Eq. (3.1.5) and substituting it in Eq.

(3.2.1) we get

b = k

√
C55 − ρc2

C44

. (3.2.2)

The condition for free boundary comes out to be the same as that for hexagonal

material, as expressed in Eq. (3.1.12). For the existence of Love wave there should

be a layer of orthotropic material over the half space having thickness H. Let the

material constants in the layer be C
(l)
44 , C

(l)
55 and ρ(l) as shown in the Figure 3.3

Figure 3.3: Geometry of the problem: Orthotropic elastic half space covered with a

layer of another orthotropic material.

For orthotropic layer Eq. (3.2.1) becomes

ρ
∂2u

(l)
3

∂t2
= C

(l)
55

∂2u
(l)
3

∂x2
1

+ C
(l)
44

∂2u
(l)
3

x2
2

. (3.2.3)
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We assume the solution of the form as expressed in Eq. (3.1.15), which on substi-

tution in Eq. (3.2.3) yields

−k2C
(l)
55 f(x2) + C

(l)
44 f

′′
(x2) = −ρ(l)ω2f(x2), (3.2.4)

or

f
′′
(x2) + f(x2)

[
−k2C

(l)
55 + ω2ρ(l)

C
(l)
44

]
= 0. (3.2.5)

We get the general solution as expressed in Eq. (3.1.23), which gives similar ex-

pression for u3 as mentioned in Eq. (3.1.24). But here the value of q(l) is slightly

different because of different parameters i.e.

q(l) = k

√√√√ρ(l)c2 − C(l)
55

C
(l)
44

. (3.2.6)

By imposing the boundary conditions expressed in Eq. (3.1.25), (3.1.27) and (3.1.29)we

get the equation similar to Eq. (3.1.31) whose determinant should vanish for non

trivial solution. We finally get the following expression

tan

kH

√√√√ρ(l)c2 − C(l)

55

C
(l)
44

−
√√√√C44

C
(l)
44

(
C55 − ρc2

ρ(l)c2 − C(l)
55

)
= 0. (3.2.7)

For orthotropic materials, the transverse wave velocity is [13]

c2
T =

C55

ρ
, c

(l)2

T =
C

(l)
55

ρ(l)
, (3.2.8)

where cT is the transverse wave speed in orthotropic elastic half space and c
(l)
T is the

transverse wave speed in orthotropic layer. Equation (3.2.7) after substituting Eq.

(3.2.8) becomes

tan

kH
√√√√ρ(l)c2

C
(l)
44

(
1− c

(l)2

T

c2

)−
√√√√√ ρC44

ρ(l)C
(l)
44

 c2T
c2
− 1

1− c
(l)2

T

c2

 = 0 (3.2.9)

Equation (3.2.9) is again a dispersive relation for phase velocity of Love waves in

which the real roots are possible only for the interval c
(l)
T < c ≤ cT . For simplification
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consider

α =
ρc2

T

C44

, α(l) =
ρ(l)c

(l)2

T

C
(l)
44

, β =
C44

C
(l)
44

, kH =
xπ

2
, y =

c

cT
, η =

cT

c
(l)
T

. (3.2.10)

Substituting all the above values in Eq. (3.2.9), we get

tan

[
xπ

2

√
α(l) [(ηy)2 − 1]

]
− β

√
α

α(l)

(
1− y2

(ηy)2 − 1

)
= 0 (3.2.11)

Where, η = cT
c2T

.

Figure 3.4: Phase velocity for lowest mode of Love waves through orthorhombic

materials.

The graph in the Figure 3.4 is displaying the lowest modes of Love waves through

two orthorhombic materials having different stiffness constants and mass densities.

It displays that the phase velocity shows the similar behavior with change in kH

values as in hexagonal materials given in Figure (3.2) i.e. the phase velocity decreases

with the increase in kH values.

It can be concluded from the graphs shown in the Figures 3.2 and 3.4 that

the phase velocity of Love waves decreases with the increase in dimensionless wave

number kH irrespective of the type of crystal they are passing through.
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3.3 Effect of rotation on Love waves traveling through

hexagonal and orthotropic materials

In this section the Love wave propagation through a rotating hexagonal material

will be discussed. The half space x3 ≤ 0 of hexagonal elastic solid is considered. If

the material is rotated along x3-axis with constant angular velocity Ω, the time rate

of change of displacement vector u is (u̇+Ω×u). This expression can be rephrased

as (üi + εijkΩjuk). Where εijk is Levi-Civita tensor defined as

εijk =


1, for even permutations of ijk,

−1, for odd permutations of ijk,

0, otherwise.

Similarly the second derivative of the displacement vector u with respect to time

becomes (üi + ΩjujΩi − Ω2ui + 2εijkΩju̇i). The wave equation given in Eq. (2.6.7)

in a rotating medium can be written as

Tij,j = ρ(üi + ΩjujΩi − Ω2ui + 2εijkΩju̇k), (3.3.1)

where Ω = Ω(0, 0, 1).

For i = 3, Eq. (3.3.1) becomes

T3j,j = ρ(ü3 + ΩjujΩ3 − Ω2u3 + 2ε3jkΩju̇k) (3.3.2)

T31,1 + T32,2 = ρ
[
ü3 + Ω2u3 − Ω2u3

]
, (3.3.3)

or

T31,1 + T32,2 = ρü3 (3.3.4)

The rotation terms disappear in Eq. (3.3.4). This shows that rotation does not

affect the speed of Love waves traveling through hexagonal medium if the medium

is rotated in the direction of propagation of the waves.
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If the axis of rotation is perpendicular to the direction of propagation of the

waves, i.e. the rotation is along x1 axis then the angular velocity vector will be

Ω = Ω(1, 0, 0). For i = 1 and rotation along x1 axis Eq. (3.3.1) becomes

T11,1 + T12,2 + T13,3 = 2ρu̇3 (3.3.5)

Left hand side of Eq. (3.3.5) is zero for hexagonal material, which implies

2ρu̇3 = 0 (3.3.6)

For i = 2 in Eq. (3.3.1) we obtain the similar expression as in Eq. (3.3.6). For i = 3

and rotation along x1 axis Eq. (3.3.1) becomes

T31,1 + T32,2 = ρ
[
ü3 − Ω2u3

]
(3.3.7)

For a hexagonal material

T31,1 + T32,2 = C44

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)
(3.3.8)

Comparing Eqs. (3.3.7) and (3.3.8) we get

C44

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)
= ρ

[
ü3 − Ω2u3

]
(3.3.9)

But Eq. (3.3.6) implies ü3 = 0, so Eq. (3.3.9) becomes

C44

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)
= −ρΩ2u3 (3.3.10)

Equation (3.3.10) shows that there is no term having time derivative of u3 which

implies that there is no phase velocity and hence Love wave propagation is not

possible.

Similarly, if we consider Love wave propagation through rotating orthotropic

material we will obtain the same expressions as given in Eqs. (3.3.4) and (3.3.10).

From this it can be concluded that the speed of Love waves is not affected if they

travel through rotating half space. And this fact remains unchanged, irrespective of

the medium through which the waves propagate.
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Chapter 4

Effect of Rotation on Rayleigh

Waves

In this chapter the effect of rotation on the speed of Rayleigh waves is studied. In

the first section the effect of rotation on the speed of the waves traveling through

hexagonal material is studied. Second section is dedicated to the study of rotational

effects on the speed of Rayleigh waves traveling through orthotropic materials.

4.1 Effect of rotation on the speed of Rayleigh

waves traveling through hexagonal elastic solids

Consider the infinite free surface of transversely isotropic elastic solid as shown in

Figure 4.1. The rectangular coordinate system is chosen in such a way that x3-

axis is perpendicular to the surface and the material is placed in the plane x3 ≤ 0.

Rayleigh waves are considered to be traveling in x1-direction in x1x3-plane with the

components of displacement (u1, 0, u3). The displacement vector is,

ui = ui(x1, x3, t) where, i = {1, 3} and u2 = 0. (4.1.1)
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Figure 4.1: Hexagonal elastic half space.

We obtain the following set of equations for transversely isotropic solid by sub-

stituting Eq. (2.3.1) in Eq. (2.3.3)

T11 = C11u1,1 + C33u3,3, (4.1.2)

T33 = C13u1,1 + C33u3,3, (4.1.3)

T13 = C44(u1,3 + u3,1). (4.1.4)

where the stiffness constants C11, C33, C13, C44 satisfy the following inequalities [4],

Cii > 0, i = 1, 3, 4, C11C33 − C2
13 > 0. (4.1.5)

Equation (4.1.5) represents the conditions for positive definiteness of material energy

which means that the strain energy is equal to or greater than zero for all states

of strain and is zero only if all the components of strain are zero. If the material

is rotated along x3-axis with constant angular velocity Ω = (0, 0,Ω), then for i =

{1, 3}, Eq. (3.3.1) can be written as

T11,1 + T13,3 = ρ(ü1 − Ω2u1), (4.1.6)

T31,1 + T33,3 = ρü3. (4.1.7)

Substituting Eqs .(4.1.2)-(4.1.4) in Eqs. (4.1.6) and (4.1.7) we get

C11u1,11 + C13u3,31 + C44(u1,33 + u3,13) = ρ(ü1 − Ω2u1),

C13u1,13 + C33u3,33 + C44(u1,31 + u3,11) = ρü3.
(4.1.8)
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The boundary conditions for free surface are

T3i = 0; i = 1, 3 on the plane x3 = 0. (4.1.9)

By definition of the surface wave, wave displacement and the components of stress

decay when it moves away from the surface. This implies

ui → 0, Tij → 0 (i, j = 1, 3) as x3 → −∞. (4.1.10)

For the waves propagating in x1-direction, by following Pham and Ogden [4], we

assume solution of the form

uj = Ψ(kx3) exp[ik(x1 − ct)]; j = 1, 3. (4.1.11)

Where, c is the speed of Rayleigh wave and k is the wave number, Ψ, j = 1, 3 are

the functions to be determined. For j = 1,

u1 = Ψ1(kx3)exp[ik(x1 − ct)], (4.1.12)

and for j = 3

u3 = Ψ3(kx3)exp[ik(x1 − ct)]. (4.1.13)

Differentiating Eq. (4.1.12) w.r.t x1 and x3 gives

u1,11 = −k2Ψ1(kx3)exp[ik(x1 − ct)], (4.1.14)

u1,13 = ik2Ψ
′
1(kx3)exp[ik(x1 − ct)], (4.1.15)

u1,33 = k2Ψ
′′
1(kx3)exp[ik(x1 − ct)]. (4.1.16)

Differentiating Eq. (4.1.13) w.r.t x1 and x3 gives,

u3,11 = −k2Ψ3(kx3)exp[ik(x1 − ct)], (4.1.17)

u3,13 = ik2Ψ
′
3(kx3)exp[ik(x1 − ct)], (4.1.18)

u3,33 = k2Ψ
′′
3(kx3)exp[ik(x1 − ct)]. (4.1.19)
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Substituting Eqs. (4.1.12)-(4.1.19) in Eq. (4.1.8) and (4.1.8) gives

C44k
2Ψ

′′

1 + ik2Ψ
′

3(C13 + C44) + [k2(ρc2 − C11) + pΩ2]Ψ1 = 0, (4.1.20)

C33Ψ
′′

3 + i(C13 + C44)Ψ
′

1 + Ψ3(ρc2 − C44) = 0. (4.1.21)

By considering Eqs. (4.1.2), (4.1.3) ,(4.1.4) and Eq. (4.1.11), the boundary condi-

tions at x3 = 0 given in Eq. (4.1.9) give

Ψ
′

1 + iΨ3 = 0, (4.1.22)

and

C33Ψ
′

3 + iC13Ψ1 = 0, (4.1.23)

also Eqs. (4.1.10) and (4.1.11) give

Ψ
′

j → 0 as x3 → −∞. (4.1.24)

The Laplace transform of Eqs. (4.1.20) and (4.1.21) using Eq. (4.1.22) and (4.1.23)

yields

[k2(C44s
2 + ρc2 − C11) + ρΩ2]Ψ̄1(s) + ik2(C44 + C13)sΨ̄3(s) (4.1.25)

= C44k
2[sΨ1(0) + Ψ

′

1(0)] + ik2(C44 + C13)Ψ3(0),

i(C13 + C44)sΨ̄1(s) + (C33s
2 − C44 + ρc2)Ψ̄3(s) (4.1.26)

= i(C44 + C13)Ψ1(0) + C33[Ψ3(0)s+ Ψ
′

3(0)].

Solving Eqs. (4.1.25) and (4.1.26) we get

Ψ̄1(s) =

∣∣∣∣∣∣C44k
2sΨ1 + Ψ

′
1 + ik2(C13 + C44)Ψ3 ik2(C13 + C44)s

i(C13 + C44)Ψ1 + C33

(
sΨ3 + Ψ

′
3

)
(C33s

2 − C44 + ρc2)

∣∣∣∣∣∣
Q

, (4.1.27)

where

Q = k2C33C44s
4 + [k2{(C44 + C13)2 + C33(ρc2 − C11) (4.1.28)

+C44(ρc2 − C44)}ρΩ2C33]s2 + (ρc2 − C44){k2(ρc2 − C11) + ρΩ2}.

33



For a non trivial solution the determinant in numerator of Eq. (4.1.27) must be

zero. Since Ψ̄1(s) 6= 0, it implies that the expression in denominator should be zero,

which is 4th order equation in ‘s’. It implies

k2C33C44s
4 + [k2

{
(C13 + C44)2 + C33(ρc2 − C44)

}
(4.1.29)

+C33ρΩ2]s2 + (ρc2 − C44)
{
k2(ρc2 − C11) + ρΩ2

}
= 0.

Let the roots of Eq (4.1.29), which is quadratic in s2 , be s2
1 and s2

2. Since s is the

Laplace variable so the roots s2
1 and s2

2 must have positive real parts. Equation.

(4.1.27) after factorization of Eq. (4.1.29) becomes

Ψ̄1(s) =
A1

s− s1

+
A2

s− s2

+
A3

s+ s1

+
A4

s+ s2

. (4.1.30)

In the above equation A1, A2, A3 and A4 are constants to be determined. The

inverse Laplace transformation of Eq. (4.1.30) using (4.1.24) yields

Ψ1(y) = A1 exp(s1y) + A2 exp(s2y). (4.1.31)

By Eqs. (4.1.25), (4.1.26) and (4.1.27), it is clear that Ψ̄1(s) and Ψ̄3(s) are linearly

dependent, so they can be written in linear combination of each other.

Ψ3(y) = α1A1 exp(s1y) + α2A2 exp(s2y). (4.1.32)

Since Ψ1 and Ψ3 are linearly dependent, Eq. (4.1.27) implies,

αj = i
[C44k

2s2
j + k2(ρc2 − C11) + ρΩ2]

k2(C44 + C13)sj
, j = 1, 3. (4.1.33)

Let s2
1 and s2

2 be the roots of Eq. (4.1.29), the sum of roots is

s2
1 + s2

2 = −k2[(C44+C13)2+C33(ρc2−C11)+C44(ρc2−C44)]+C33ρΩ2

k2C33C44
. (4.1.34)

and the product of roots of Eq. (4.1.29) is

s2
1s

2
2 =

(ρc2 − C44)[k2(ρc2 − C11) + ρΩ2]

k2C33C44

. (4.1.35)
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Substituting values of Ψ1 and Ψ3 from Eqs. (4.1.31) and (4.1.32) into Eqs. (4.1.22)

and (4.1.23)

iC13[A1 exp(s1y) + A2 exp(s2y)] + (4.1.36)

C33[α1 A1s1 exp(s1y) + α2 A2 s2 exp(s2y)] = 0,

which gives, at y = 0

[iC13 + C33α1s1]A1 + [iC13 + C33α2s2]A2 = 0. (4.1.37)

Equation. (4.1.23) becomes,

A1(s1 + iα1) + A2(s2 + iα2) = 0. (4.1.38)

Equations (4.1.37) and (4.1.38) represent homogeneous system, in which A1 and

A2 are to be determined. The matrix of coefficients must be singular, i.e. the

determinant must vanish for non trivial solution.∣∣∣∣∣∣iC13 + C33α1s1 iC13 + C33α2s2

s1 + iα1 s2 + iα2

∣∣∣∣∣∣ = 0. (4.1.39)

It implies,

(iC13 + C33α1s1)(s2 + iα2)− (iC13 + C33α2s2)(s1 + iα1) = 0. (4.1.40)

Using Eqs. (4.1.33), (4.1.34) and (4.1.35) in Eq. (4.1.40), after simplification we get

(ρc2 − C44)[k2C2
13 + C33{k2(ρc2 − C11) + ρΩ2}]− (4.1.41)

kρc2
√
C33C44

√
{k2(ρc2 − C11) + ρΩ2}(ρc2 − C44) = 0.

Simplifying it further√
C33

C44

(
ρc2

C11

− C44

C11

)[
k2C2

13

C11C33

+
k2ρc2

C11

− k2 +
ρΩ2

C11

] (4.1.42)

−kρc2

√
k2(

ρc2

C11

− 1) +
ρΩ2

C11

= 0,
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or √√√√C33

C44

( ρc
2

C11
− C44

C11
)

( ρc
2

C11
− 1 + ρΩ2

k2C11
)
[
C2

13

C11C33

+
ρc2

C11

− 1 +
ρΩ2

C11k2
]− ρc2

C11

= 0. (4.1.43)

If we let

u =
ρc2

C11

, a =
C44

C33

, b =
C44

C11

, p =
C2

13

C11C33

, and r =
ρΩ2

k2C11

. (4.1.44)

Equation (4.1.43) becomes√
1

a

(u− b)
(u+ r − 1)

[p+ u+ r − 1]− u = 0, (4.1.45)

or

u =

√
1

a

(u− b)
(u+ r − 1)

[p+ u+ r − 1] . (4.1.46)

Squaring above Eq. (4.1.46) yields

u2 =
1

a

(u− b)
(u+ r − 1)

(p+ u+ r − 1)2, (4.1.47)

or

(u− b)(p+ u+ r − 1)2 = au2(u+ r − 1). (4.1.48)

After simplification we get cubic equation in u as follows

(1− a)u3 + {2p− b+ (2− a)(r − 1)}u2 (4.1.49)

+(p+ r − 1)(p+ r − 1− 2b)u− b(p+ r − 1)2 = 0.

One can solve this equation by using MATLAB or MATHEMATICA. Three values

are obtained after solving it by MATHEMATICA, out of which one is real and

two are complex conjugates. But of course we are interested in real roots of non

dimensional wave speed u.
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4.1.1 Rayleigh waves speed in some transversely isotropic

materials for an angular frequency.

In Eq. (4.1.43),Ω is arbitrary, so its value can be chosen at random. For our

convenience, we set

(
Ω

k
)2 =

C11

ρ
, (4.1.50)

which on substituting in Eq. (4.1.44) gives

u =
c2Ω2

k2
. (4.1.51)

Using Eq. (4.1.51) in Eq. (4.1.44), we get r = 1. Substituting r = 1 in Eq. (4.1.49)

(1− a)u3 + (2p− b)u2 + p(p− 2b)u− bp2 = 0. (4.1.52)

Equation (4.1.52) can be solved for u for different materials. As an example we will

solve it here for Cadmium, following [15]. Stiffness constants and mass density for

Cadmium are as follows:

ρ = 4824Kg m−3, C11 = 11.6× 1010 Nm−2, C13 = 4.1× 1010 Nm−2.

C33 = 5.09× 1010 Nm−2, C44 = 1.96× 1010 Nm−2. (4.1.53)

Substituting all these values in Eq. (4.1.44) we get,

a =
C44

C33

= 0.385069,

b =
C44

C11

= 0.168966, p =
C2

13

C11C33

= 0.284703. (4.1.54)

Using a, b, p and r in Eq. (4.1.52) we get

0.614931 u3 + 0.40044 u2 − 0.015154456 u− 0.013695674 = 0. (4.1.55)

Solving this equation by MATHEMATICA we obtain three values of u, two

of which are negative, but we will choose only positive real value, because we are

interested in real, positive roots of c. Eq. (4.1.55) implies,

u = 0.178648, c = 1780.46 m/s. (4.1.56)
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The material properties and mass densities for various other hexagonal materials

[13] used for the calculation of speed are given in Table 4.1.

Stiffness

(1010N/m2)

Be Ceramic

PZT

ZnO Ti

C11 29.2 13.9 20.97 16.24

C12 2.67 7.8 12.11 9.20

C13 1.4 7.4 10.51 6.90

C33 33.64 11.5 21.09 18.07

C44 16.25 2.56 4.25 4.67

Mass

density

(ρ)Kg/m3

1848 7500 5676 4506

Table 4.1: Elastic stiffness constants and mass densities of various materials.

The speed of Rayleigh waves in some other rotating hexagonal materials is given

in Table 4.2.

Material u Rayleigh

wave

speed(m/s)

Beryllium(Be) 1.07281 13019.7

Ceramic PZT-4 0.189525 3775.63

Zinc Oxide(ZnO) 0.230412 2917.56

Cadmium Sulphide (CdS) 0.178648 1780.46

Titanium (Ti) 0.324916 3422.02

Table 4.2: Rayleigh wave speeds for rotating hexagonal materials.

We now consider the non-rotating case i.e let us set Ω = 0. In Eq. (4.1.44),
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putting Ω = 0 implies r = 0. Eq. (2.5.4) becomes,

(1− a)u3 + {2p− b− 2 + a}u2 +

(p− 1)(p− 1− 2b)u− b(p− 1)2 = 0. (4.1.57)

Considering Eq. (4.1.44), we calculate the speed of Rayleigh wave through non-

rotating solids. As an example we will consider Cadmium Sulphide again. Using

Eq. (4.1.54) in Eq. (4.1.57) we get the following cubic equation

0.8408u3 − 1.48208u2 + 0.79355u− 0.093676 = 0, (4.1.58)

which on solving for u by Mathematica gives three values for u, two of which are

negative, but for real roots of c only positive real value of u will be considered.

Equation (4.1.58) implies,

u = 0.163166, c = 1701.56. (4.1.59)

This value of c is satisfying

ρc2 < min {C11, C44} . (4.1.60)

This condition was proposed by Pham and Ogden [4]. In the similar way the speed

of Rayleigh waves in some other non-rotating hexagonal materials is calculated as

shown in Table 4.3

Material u Rayleigh

wave

speed(m/s)

Beryllium(Be) 0.414131 4726.996

Ceramic PZT-4 0.163705 3509.03

Zinc Oxide(ZnO) 0.185062 2614.79

Cadmium Sulphide (CdS) 0.163166 1701.56

Titanium (Ti) 0.25184 3012.73

Table 4.3: Rayleigh wave speed for non-rotating hexagonal materials.
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4.1.2 Numerical results for Rayleigh wave speed through

some hexagonal materials

Now we shall discuss the numerical results for the wave speed through orthotropic

elastic materials. For this purpose, the expression represented by Eq. (4.1.44) will

be written with simple notations. Let

u =
ρc2

C11

, r =
ρΩ2

C11k2
. (4.1.61)

Equation (4.1.43) will become√√√√[C33

C44

(
u− C44

C11

u− 1 + r

)][
(C13)2

C11C33

+ u− 1 + r

]
− u = 0. (4.1.62)

Using the values of material constants and mass density for Beryllium from Table

4.1 we obtain the following graph as shown in Figure 4.2

Figure 4.2: Variation in speed of Rayleigh wave with rotation in Beryllium.

Continuous curve indicates the variation of dimensionless speed with rotation, where

as the dashed curve shows the behavior of the speed without rotational effects in

Beryllium.
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The graph shown in Figure 4.2 represents the variation of the Rayleigh wave

speed with rotation in Beryllium. It is evident that as rotation r increases, the

dimensionless speed u decreases initially but after some time it turns out to be

constant which illustrates that further increase in rotation does not effect the wave

speed. The dotted curve represents the non dispersive case. The dashed line is

plotted by substituting Ω = 0 in Eq. (4.1.43). The wave speed is calculated at

Ω = 0 and plotted as constant horizontal line for the particular value of u. The

plots of few more hexagonal elastic materials are shown in the following figures.

Figure 4.3: Variation in speed of Rayleigh wave with rotation in Cadmium Sulphide.
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Figure 4.4: Variation in speed of Rayleigh wave with rotation in Ceramic-PZT.

Figure 4.5: Variation in speed of Rayleigh wave with rotation in Titanium.
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Figure 4.6: Variation in speed of Rayleigh wave with rotation in Zinc Oxide.

The graph shown in Figure 4.3 shows that the Rayleigh wave speed in rotating

Cadmium Sulphide varies with rotation. It is evident that like Beryllium it decreases

initially when the rotation r increases and become constant after some time. The

dotted line lying exactly on the continuous line indicates that when there is no

rotation the speed of the Rayleigh wave can be less than or equal to the speed with

certain rotation. Figure 4.4, 4.5, and 4.6 shows the effect of rotation on Rayleigh

wave speed through Ceramic-PZT, Titanium and Zinc Oxide respectively. They

show nearly the same behavior as in Beryllium i.e. the speeds without rotation are

strictly less than the ones under rotational effects.
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4.2 Rayleigh waves propagation through rotating

orthotropic medium

In this section the effect of rotation on the speed of Rayleigh waves traveling through

orthotropic materials will be studied. Consider a semi infinite stress free elastic half

space of orthotropic material as shown in the Figure 4.7

Figure 4.7: Orthotropic elastic half space.

It is evident from the above figure that the material is placed in the plane X3 ≤ 0.

C11, C12, C13, C33 and C55 are the material properties and ρ is the mass density of

orthotropic material. The rectangular coordinate is chosen in such a way that X3-

axis is perpendicular to the surface. Rayleigh waves are again considered to be

traveling along X1 direction in X1X3-plane. The displacement vector is same as

expressed in Eq. (4.1.1). By substituting Eq. (2.5.7) in generalized Hook’s law

represented by Eq. (2.3.3), the following set of equations is obtained

T11 = C11
∂u1

∂x1

+ C33
∂u3

∂x3

, (4.2.1)

T33 = C13
∂u1

∂x1

+ C33
∂u3

∂x3

, (4.2.2)

T13 = C55

(
∂u1

∂x3

+
∂u3

∂x1

)
, (4.2.3)

where the elastic parameters C11, C13, C33, andC55 satisfy inequalities mentioned in

Eq. (4.1.5). These equations represent the necessary and sufficient conditions for the
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positive definiteness of strain energy function of the material as mentioned earlier.

If a homogenous orthotropic elastic body is considered to be rotating along x3-

axis with a constant angular velocity Ω = Ω(0, 0, 1). The equations of motion

for infinitesimal deformation in the absence of body forces in rotating orthotropic

medium are similar to those represented by Eq. (3.3.1). For i = (1, 3) Eq. (3.3.1) for

orthotropic material becomes exactly similar to the expression given by Eq. (4.1.6).

Substituting Eqs .(4.2.1), (4.2.2) and (4.2.3) in Eqs. (4.1.6) and (4.1.7) we get,

C11
∂2u1

∂x2
1

+ C13
∂2u3

∂x3∂x1

+ C55

(
∂2u1

∂x2
3

+
∂2u3

∂x1∂x3

)
= ρ

(
∂2u1

∂t2
− Ω2u1

)
,(4.2.4)

C13
∂2u3

∂x1∂x3

+ C33
∂2u3

∂x2
3

+ C55

(
∂2u1

∂x3∂x1

+
∂2u3

∂x2
1

)
= ρ

∂2u3

∂t2
. (4.2.5)

The boundary conditions for zero traction are represented by Eq. (4.1.9). Usual

requirements that the displacement and the stress components of surface waves

decay when they move away from the boundary implies Eq. (4.1.10). We consider

the solution of the form

uj = ξj(kx3) exp[ik(x1 − ct)]; j = 1, 3, (4.2.6)

where, c is the speed of Rayleigh wave and k is the wave number, ξj, j = 1, 3 are the

functions to be determined. Substituting Eq. (4.2.6) in Eqs. (4.2.4) and (4.2.5) we

get

C44k
2ξ

′′

1 + ik2ξ
′

3(C13 + C55) + [k2(ρc2 − C11) + ρΩ2]ξ1 = 0, (4.2.7)

C33ξ
′′

3 + i(C13 + C55)ξ
′

1 + ξ3(ρc2 − C55) = 0. (4.2.8)

By considering Eqs. (4.2.1), (4.2.2) ,(4.2.3) and Eq. (4.2.6), the boundary conditions

given in Eq. (4.1.9) become

ξ
′

1 + iξ3 = 0, (4.2.9)

and

C33ξ
′

3 + iC13ξ1 = 0, on the plane x3 = 0, (4.2.10)
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also Eqs. (4.1.10) and (4.1.11) gives

ξj, ξ
′

j → 0 as x3 → −∞. (4.2.11)

The Laplace transformation of Eqs. (4.2.7) and (4.2.8) using Eq. (4.2.9) and (4.2.10)

yields

[
k2
(
C55s

2 + ρc2 − C11

)
+ ρΩ2

]
ξ̄1(s) + ik2 (C55 + C13) sξ̄3(s) =

C55k
2
(
sξ1(0) + ξ

′

1(0)
)

+ ik2 (C55 + C13) ξ3(0), (4.2.12)

i (C13 + C55) sξ̄1(s) +
(
C33s

2 − C55 + ρc2
)
ξ̄3(s) =

i (C55 + C13) ξ1(0) + C33

(
ξ3(0)s+ ξ

′

3(0)
)
. (4.2.13)

Solving Eqs. (4.2.12) and (4.2.13) we get

ξ̄1(s) =

∣∣∣∣∣∣C55k
2sξ1 + ξ

′
1 + ik2(C13 + C55)ξ3 ik2(C13 + C55)s

i(C13 + C55)ξ1 + C33

(
sξ3 + ξ

′
3

)
(C33s

2 − C55 + ρc2)

∣∣∣∣∣∣
R

,

(4.2.14)

where

R = k2C33C55s
4 + [k2{(C55 + C13)2 + C33(ρc2 − C11)

+C55(ρc2 − C55)}ρΩ2C33]s2 + (ρc2 − C55){k2(ρc2 − C11) + ρΩ2}. (4.2.15)

For non trivial solution the determinant in numerator of Eq. (4.2.14) must be zero.

Since ξ̄1(s) 6= 0, it implies that the expression in denominator should be zero, which

is 4th order equation in ‘s’. It implies

k2C33C55s
4 + [k2

{
(C13 + C55)2 + C33(ρc2 − C55)

}
+

C33ρΩ2]s2 + (ρc2 − C55)
{
k2(ρc2 − C11) + ρΩ2

}
= 0. (4.2.16)

Let the roots of Eq (4.2.16), which is quadratic in s2 , be s2
1 and s2

2. Since s is the

Laplace variable so the roots s2
1 and s2

2 must have positive real parts. Eq. (4.2.14)

after factorization of Eq. (4.2.16) becomes

ξ̄1(s) =
B1

s− s1

+
B2

s− s2

+
B3

s+ s1

+
B4

s+ s2

. (4.2.17)
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In the above equation B1, B2, B3 and B4 are constants to be determined.The inverse

Laplace transformation of Eq. (4.2.17) using (4.2.11) yields

ξ1(y) = B1 exp(s1y) +B2 exp(s2y). (4.2.18)

By Eqs. (4.2.12), (4.2.13) and (4.2.14), it is clear that ξ̄1(s) and ξ̄3(s) are linearly

dependent, so they can be written in linear combination of each other.

ξ3(y) = β1B1 exp(s1y) + β2B2 exp(s2y). (4.2.19)

Since ξ1 and ξ3 are linearly dependent, Eq. (4.2.14) implies

βj = i
[C55k

2s2
j + k2(ρc2 − C11) + ρΩ2]

k2(C55 + C13)sj
, j = 1, 3. (4.2.20)

Let s2
1 and s2

2 be the roots of Eq. (4.2.16), the sum of roots is

s2
1 + s2

2 = −k2[(C55+C13)2+C33(ρc2−C11)+C55(ρc2−C55)]+C33ρΩ2

k2C33C55
, (4.2.21)

and the product of roots of Eq. (4.2.16) is

s2
1s

2
2 =

(ρc2 − C55)[k2(ρc2 − C11) + ρΩ2]

k2C33C55

. (4.2.22)

Substituting values of ξ1 and ξ3 from Eqs. (4.2.18) and (4.2.19) into Eqs. (4.2.9)

and (4.2.10)

iC13[B1 exp(s1y) +B2 exp(s2y)] + (4.2.23)

C33[β1 B1s1 exp(s1y) + β2 B2 s2 exp(s2y)] = 0,

at y = 0,

[iC13 + C33β1s1]B1 + [iC13 + C33β2s2]B2 = 0. (4.2.24)

Equation (4.2.10) becomes,

B1(s1 + iβ1) +B2(s2 + iβ2) = 0 (4.2.25)
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Equations (4.2.24) and (4.2.25) represent homogeneous system, in which B1 and

B2 are to be determined. The matrix of coefficients must be singular, i.e. the

determinant must vanish for non trivial solution.∣∣∣∣∣∣iC13 + C33β1s1 iC13 + C33β2s2

s1 + iβ1 s2 + iβ2

∣∣∣∣∣∣ = 0. (4.2.26)

It implies,

(iC13 + C33β1s1)(s2 + iβ2)− (iC13 + C33β2s2)(s1 + iβ1) = 0. (4.2.27)

Using Eqs. (4.2.20), (4.2.22) and (4.2.23) in Eq. (4.2.27), after simplification we

get,

(ρc2 − C55)[k2C2
13 + C33{k2(ρc2 − C11) + ρΩ2}]−

kρc2
√
C33C55

√
{k2(ρc2 − C11) + ρΩ2}(ρc2 − C55) = 0. (4.2.28)

Simplifying it further,√
C33

C55

(
ρc2

C11

− C55

C11

)[
k2C2

13

C11C33

+
k2ρc2

C11

− k2 +
ρΩ2

C11

]

−kρc2

√
k2(

ρc2

C11

− 1) +
ρΩ2

C11

= 0, (4.2.29)

or √√√√C33

C55

( ρc
2

C11
− C55

C11
)

( ρc
2

C11
− 1 + ρΩ2

k2C11
)
[
C2

13

C11C33

+
ρc2

C11

− 1 +
ρΩ2

C11k2
]− ρc2

C11

= 0. (4.2.30)

Equation (4.2.30) gives the speed of Rayleigh waves propagating through orthotropic

materials.

4.2.1 Rayleigh waves speed in some orthotropic materials

for an angular frequency

The angular velocity Ω can be chosen randomly but for convenience let

(
Ω

k
)2 =

C11

ρ
. (4.2.31)
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Substituting Eq. (4.2.31) in Eq. (4.2.30) we get√√√√C33

C55

( ρc
2

C11
− C55

C11
)

( ρc
2

C11
)

[
C2

13

C11C33

+
ρc2

C11

]− ρc2

C11

= 0. (4.2.32)

If we let

u =
ρc2

C11

, λ =
C55

C33

, µ =
C55

C11

, p =
C2

13

C11C33

, and r =
ρΩ2

k2C11

. (4.2.33)

Equation (4.2.32) becomes√
1

λ

(u− µ)

(u+ r − 1)
[p+ u+ r − 1]− u = 0, (4.2.34)

or

u =

√
1

λ

(u− µ)

(u+ r − 1)
[p+ u+ r − 1] . (4.2.35)

Squaring above Eq. (4.2.35) yields

u2 =
1

λ

(u− µ)

(u+ r − 1)
(p+ u+ r − 1)2, (4.2.36)

or

(u− µ)(p+ u+ r − 1)2 = λu2(u+ r − 1). (4.2.37)

After simplification we get cubic equation in u as follows

(1− λ)u3 + {2p− µ+ (2− λ)(r − 1)}u2 (4.2.38)

+(p+ r − 1)(p+ r − 1− 2µ)u− µ(p+ r − 1)2 = 0.

It is evident from Eq. (4.2.38) that there will be three values for u but here only

those positive real values are considered which satisfy the following expression [4]

ρc2 ≤ min {C11, C55} . (4.2.39)

Other values of u will be treated as extraneous roots. We will now consider some

orthotropic materials and calculate the wave speed in them by using Mathematica.
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The values of elastic parameters of orthotropic materials along with their mass

densities are given in Table 4.4

Stiffness

(1010N/m2)

Iodic acid

(HIO3)

Barium Sodium

Nioabte

(Ba2NaNb5O15)

C11 3.01 23.9

C13 1.11 5.0

C33 4.29 13.5

C55 2.06 6.6

Density

(ρ) Kg/m3

4640 5300

Table 4.4: Elastic stiffness constants and mass densities of some orthotropic mate-

rials.

The wave speeds for two rotating orthotropic solids are given in the Table 4.5.

Material u c (m/s)

Iodic acid(HIO3) 1.1599 3966.36

Barium Sodium Niobate(Ba2NaNb5O15) 0.424613 4375.8

Table 4.5: Rayleigh wave speed for rotating orthotropic materials.

We now consider the non-rotating case i.e let us set Ω = 0 in Eq. (4.2.30) The

speed of Rayleigh waves through some materials without rotation effect is calculated

by solving Eq. (4.2.37) using Mathematica software. The values of elastic param-

eters and densities are substituted from the Table 4.5. Three values for c will be

obtained through each orthotropic material but only those will be considered which

satisfy (4.2.39). Wave speeds for two non rotating orthotropic solids are given in

Table 4.6.
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Material u c m/s)

Iodic acid(HIO3) 0.441176 1691.73

Barium Sodium Niobate(Ba2NaNb5O15) 0.233231 3243.05

Table 4.6: Rayleigh wave speed for non rotating orthotropic materials.

It is evident from the Table 4.6 that the rotation effect has enhanced the speed

of Rayleigh wave propagating through orthotropic material.

4.2.2 Numerical results for Rayleigh wave speed through

orthotropic materials

Now we shall discuss the numerical results for the wave speed through orthotropic

elastic materials. Let

y =
ρc2

C11

, x =
ρΩ2

C11k2
. (4.2.40)

The expression represented by Eq. (4.2.32) will become simpler.√√√√[C33

C55

(
y − C55

C11

y − 1 + x

)][
(C13)2

C11C33

+ y − 1 + x

]
− y = 0. (4.2.41)

Using the values of material constants and mass density for Iodic acid from Table

4.4 we obtain the following graph as shown in Figure 4.8.
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Figure 4.8: Variation in speed of Rayleigh wave with rotation in Iodic Acid.

It is evident from the graph shown in Figure 4.8 that as rotation r increases,

the dimensionless speed decreases initially but after some time it turns out to be

constant which illustrates that further increase in rotation does not effect the wave

speed. The dotted curve represents the non dispersive case.

Similarly by using the values of material constants and mass density for the

material Barium Sodium Niobate from Table 4.5 we obtain the following graph as

shown in Figure 4.9.
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Figure 4.9: Variation in speed of Rayleigh wave with rotation in Barium Sodium

Niobate.

It can be seen from the plot shown in Figure 4.8 and 4.9 that the speed of

Rayleigh waves passing through these particular materials also decreases to some

extent like hexagonal materials but as we go on increasing the angular velocity

further it becomes constant. Here too the dotted curve represents zero rotation.

The value of u is calculated for Ω = 0 and plotted.

Moreover it is also clear from both the plots shown in Figures 4.8 and 4.9 that

the speed of the waves is always greater if the rotation is added. The speed have

less values when rotation is zero.
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Chapter 5

Conclusions

In this dissertation the effect of rotation on the speeds of surface waves particularly

Love and Rayleigh waves propagating through anisotropic media has been discussed.

The brief summary of results and conclusion is as follows.

It is noted that the Love waves are dispersive in anisotropic elastic half-spaces,

particularly those of hexagonal and orthotropic materials unlike Rayleigh waves.

The propagation of Love waves requires a half-space covered with a layer. The Love

wave speed is independent of rotation.

The effect of rotation on the speed of Rayleigh waves traveling through anisotropic

solids is observed. Rayleigh waves show dispersive nature under the effect of rota-

tion. Ω can be any arbitrary number but in this thesis a special case is considered

i.e. (Ω
k

)2 = C11

ρ
. For this case it is observed that the rotation can reduce the wave

speed to some extent. The wave speed however becomes independent of rotation for

higher values of Ω.
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