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Abstract

The marriage model and the assignment model are considered standard models in

the theory of two-sided matching markets problems. These two matching problems

are important because most of the daily life dealings are bilateral. Existence of

a stable matching is the central solution concept of these models. Participants of

these models are partitioned into two disjoint sets. Assignment model is one, in

which indivisible goods are exchanged for money and each participant buys or sells

exactly one item. Marriage model is related to the college admissions and the labour

market for medical interns. Each participant of these markets has a preference list

that depicts the order of his (her) choice. In the marriage model, exchange of money

is not involved. That is why, participants of marriage model are called rigid. In the

assignment game, exchange of money and negotiations are permitted. That is why,

the participants of assignment model are called flexible.

We propose a two-sided matching market model with discrete concave utility

functions and weighted incomes and payments. Our model includes the marriage

model, the assignment model and several well-known hybrid models as special cases.

We propose an algorithm to find a pairwise strictly stable outcome in our model.
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Introduction

Two-sided matching problems have a wide range of applications in practical life.

We observe most of its uses in economics and business. This is due to the reason

that we are faced with bilateral dealings in most of the situations. National Resident

Matching Program (NRMP) of United States is a prominent application of two-sided

matching models.

The concept of two-sided matching markets, was first introduced by Gale and

Shapley in their pioneering work [12]. In two-sided matching markets, the set of

participants is partitioned into two disjoint sets. We aim to match the participants of

one set to that of the other set. A matching is a set consisting of pairs of participants

from opposite sets and each participant appears at most once. A matching is said

to be stable if each participant is acceptable to his (her) partner and there are no

two participants who prefer each other to their partners.

The marriage model due to Gale and Shapley [12] and the assignment game

by Shapley and Shubik [18] are considerd as standard models in the literature. In

these two models, each participant is matched with at most one participant of the

opposite side. Each participant has a strictly ordered preference list mentioning his

(her) order of choice for each participant of the opposite side. Marriage model does

not involve money transfer while the assignment game is based on monetary transfer.

This is the main difference between the two models. This is why, the participants

of marriage model are called rigid and that of the assignment game referred to as

flexible.

Many extensions and developments to these two models [12, 18] have been added

to the literature. The most prominent are the hybrid models by Eriksson and Kar-

lander [5] and Sotomayor [19]. These models are the generalization of the above two

models. Existence of stable outcome and the core is discussed in [5, 19]. Fujishige

and Tamura [9] described generalization of the hybrid models by Eriksson and Kar-

lander [5] and Sotomayor [19]. Fujishige and Tamura [10] used M♮-concave functions

as value functions.



In first chapter of this thesis, we discuss some basic concepts about graphs,

discrete convex analysis, linear programming and two-sided matching problems. Few

results about M/ M♮-concave functions and the linear programming problems are

mentioned in it. The second chapter constitutes the review of the two-sided matching

problems: the marriage model due to Gale and Shapley [12] and the assignment game

due to Shapley and Shubik [18]. The comparison of the two models is also discussed

in this chapter. In chapter three, we extend the model of Fujishige and Tamura

[10] by generalizing payoff functions. We introduce weighted income and weighted

payments. We propose an algorithm to find a pairwise strictly stable outcome. We

also discuss correctness and termination of the algorithm.
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Chapter 1

Preliminaries

This chapter contains some introductory knowledge of graph theory, discrete convex

analysis, linear programming and two-sided matching.

1.1 Graph Theory

Numerous real-world phenomenas are describable through plots composed of a set

of points and lines that join pairs of these points (not necessarily all of them). For

example, electrical network problems, utilities problem, travelling salesman problem,

etc. Mathematical generalization of the description of such problems leads to the

concept of a graph.

A graph is represented by G = (VG, EG), composed of a set of points VG and a

set of lines (curves) EG. The points in VG are called vertices of the graph G and

lines (curves) in EG called the edges of the graph G. Each edge e joins an unordered

pair of vertices u, v of G and is denoted by e = {u, v}. Vertices u and v are called

end vertices of e if e joins u and v. If e joins a vertex u to itself then it is called

a loop. If two edges are associated with same pair of vertices, they are referred to

as parallel edges. A graph containing no loops or parallel edges is called a simple

graph. Total number of vertices in a graph G is called the order of the graph G.

If a vertex u is one of the ends of an edge e then u and e are said to be incident

on each other. Vertices u and v are called adjacent if they are ends of a same edge.

Number of edges incident on a vertex u (where each loop is counted twice) is called
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degree of the vertex u and is denoted by d(u).

The following theorems are evident from the definition of degree:

Theorem 1.1.1 (Bondy and Murty [2]). In a graph G = (VG, EG), the following

holds: ∑
v∈VG

d(v) = 2m

where m is the number of edges in G.

Theorem 1.1.2 (Bondy and Murty [2]). Vertices of odd degree in a graph are always

even in number.

If all vertices of a graph possess same degree, then it is called a regular graph. If

d(v) = k for each v ∈ VG then the graph is called a k-regular graph.

Let G and H be two graphs such that VH ⊆ VG and EH ⊆ EG, then H is called

a subgraph of the graph G. Every graph is considered its own subgraph.

A simple graph G is said to be a complete graph if it contains an edge between

any pair of its distinct vertices. It is written by Kn where n is the order of the graph

G. A graph G is bipartite if its vertex set VG can be partitioned into two subsets

X and Y such that each edge of G has one end in X and the other in Y . The pair

(X,Y ) is called bipartition of G. It is clear from the definition that a bipartite graph

cannot contain a loop.

Theorem 1.1.3 (Bondy and Murty [2]). A graph is bipartite if and only if no odd

cycle is contained in it.

A simple bipartite graph with bipartition (X,Y ) such that every vertex in X is

adjacent to every vertex in Y is called a complete bipartite graph, denoted by Kn1,n2 ,

where n1 = |X| and n2 = |Y |.

1.1.1 Walk, Trail, Path and Cycle

A finite sequence v0, e1, v1, e2, v2, . . . , ek, vk alternating in vertices and edges of a

graph G such that ei = {vi−1, vi} for each 1 ≤ i ≤ k is called a walk in a graph G.

The starting and ending vertices of a walk are called origin and terminus of walk,
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respectively, and number of edges in the sequence is called length of walk. A walk

is obviously a subgraph of the graph G that contains it.

If all edges of a walk in a graph are distinct then it is said to be a trail. If all

vertices of a trail are distinct then it is called a path in the graph. A walk is usually

denoted by W and a path by P . Length of a path is the total number of its edges.

A path has no repeated vertex or edge and if P is considered as a graph itself then

each of its vertex has degree atleast one and at the most two. The vertices of a

path P other than the origin and terminus are called internal vertices of the path.

If there exists a path between the two vertices u and v of a graph, then they are

said to be reachable from each other in the graph.

If origin and terminus of a walk coincide then it is called a closed walk in graph.

A closed trail with just its end points repeated is called a cycle in a graph G. A

loop is the simplest example of a cycle in a graph. It is obvious that when a cycle

is considered as a graph itself, then every vertex of cycle has degree exactly two. A

graph G containing no cycle is called acyclic.

1.1.2 Connected and Disconnected Graphs

A graph G is connected if it contains a path between any pair of its vertices. If there

exist vertices in a graph G that are not reachable from each other by a path then G

is said to be disconnected. Walk, trail, path and cycle are connected graphs. Some

important properties and results are given below:

Theorem 1.1.4 (Bondy and Murty [2]). A graph G is disconnected if and only if

there exists a partition (X,Y ) of the vertex set VG such that there exists no edge in

EG whose one end lies in X and the other in Y .

Theorem 1.1.5 (Bondy and Murty [2]). If a graph contains exactly two vertices u, v

of odd degree, it must contain a path joining u and v (the graph may be connected

or disconnected).
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1.1.3 Directed Graphs (Digraphs)

If the edges of a graph are given some direction then these are called directed edges

or arcs. A graph with directed edges is called a directed graph. Most of the physical

situations require directed graphs to be dealt with. Some basic definitions and

results of directed graphs are discussed in this section.

A graph G = (VG, AG) with set of vertices VG and arc set AG is called a directed

graph (digraph). Each arc a joins an ordered pair of vertices u and v of G and is

denoted by a = (u, v). An arc a = (u, v) is represented by a line (curve) with an

arrow sign on it pointing from u to v and is said to be leaving vertex u and entering

the vertex v.

The number of arcs leaving a vertex u is called out-degree of u and is denoted

by d+(u). The number of arcs entering a vertex u is its in-degree and is denoted by

d−(u). It is obvious that in a directed graph G, the sum of all in-degrees is equal to

the sum of all out-degrees, that is,∑
v∈VG

d+(v) =
∑
v∈VG

d−(v).

A sequence v0, a1, v1, a2, v2, . . . , ak, vk alternating in vertices and arcs in a directed

graph G such that ai = (vi−1, vi) for each 1 ≤ i ≤ k is called a directed walk in G. A

directed walk from u to v is an alternating sequence of vertices and arcs beginning

from u and ending at v. v is said to be reachable from u if there is a directed walk

from u to v. If both the vertices u and v are reachable from each other then they are

called mutually reachable. Vertices and arcs may repeat in a walk. A directed trail is

defined as a directed walk with distinct arcs. A walk with distinct arcs and vertices

is a directed path. A closed directed trail with distinct vertices (except origin and

terminus) is called a directed cycle.

A digraph G is said to be weakly connected if its underlying graph (a simple graph

obtained by replacing arcs by the non-directed edges) is connected. A digraph G is

said to be strongly connected if every two vertices in G are mutually reachable from

each other. A digraph is acyclic if it contains no directed cycle.
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1.1.4 Distance and Weight

Length of a shortest path between any two vertices u and v of a graph G is called

the distance between u and v. It is denoted by d(u, v). If there does not exist a path

between vertices u and v then the distance is defined by d(u, v) = +∞. Distance of

a vertex u from itself is zero, that is, d(u, u) = 0 for each u ∈ VG.

For digraphs, the length of shortest directed path from the vertex u to the vertex

v is called the directed distance d(u, v) from u to v.

Let G be a graph with a given function w : EG → R which maps an edge to

a real number. Such a function w is called weight function. For each e ∈ EG, the

number w(e) is called weight of the edge e. A graph with a weight function is called

a weighted graph. The weight of a path P in G is defined by w(P ) =
∑
e∈P

w(e). The

shortest path from u to v in a weighted graph G is a path P with minimum w(P ).

1.2 Discrete Convex Analysis

For real valued functions defined on integer lattice, Murota [15] developed a theory

called the discrete convex analysis. The theory analogues the ordinary convex anal-

ysis, duality and optimization theory. Submodular functions and exchange axioms

form the technical basis for its development. The field of optimization is crucially

influenced by the convexity concepts for sets and functions. Convex functions pos-

sess many properties. First of all, we formally define a convex set and a concave

function.

A set T ⊆ Rn is said to be a convex set if a line segment joining any two points

of T , lies in T . That means, if y and z are any two points of T then εy + (1 − ε)z

is contained in T for all 0 ≤ ε ≤ 1.

A function f : T → R is called a concave function if it satisfies the inequality

given below:

εf(y) + (1− ε)f(z) ≤ f(εy + (1− ε)z) (∀ ε ∈ [0, 1]).

Remark 1.2.1. A real valued function h : T → R is defined to be a convex function

if −h is concave.
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A concave function f is also defined from Rn → R ∪ {−∞} with its effective

domain S defined by:

S = {z ∈ Rn | f(z) > −∞}.

It is usually denoted by domf .

For the sake of discreteness, we will consider concave functions defined on integer

lattice. Let V be any finite set, say, of the form V = {v1, v2, . . . , vn}. Then ZV is

defined to be a set of orderd tuples of the form z = (z(u) ∈ Z | u ∈ V ). A discrete

concave function f : ZV → R ∪ {−∞} is then defined by

εf(y) + (1− ε)f(z) ≤ f(εy + (1− ε)z) (∀ ε ∈ [0, 1]).

Let U be a subset of V , then the characteristic vector χU of set U is defined by

χU(v) =

{
1 if v ∈ U

0 if v ∈ V \ U.

If U consists of single element u then its characteristic vector is simply denoted by

χu and is given by

χu(v) =

{
1 if v = u

0 if v ̸= u.

For convenience, we define χ0 to be the zero vector on ZV . For a vector z = (z(u) |
u ∈ V ) ∈ ZV , the negative and the positive support of z are denoted by supp−(z)

and supp+(z), respectively, and are defined by:

supp−(z) = {v ∈ V | z(v) < 0} and supp+(z) = {v ∈ V | z(v) > 0}.

1.2.1 M-Concavity

This section contains some basic material on M-concave functions and M-convex

sets.

A set B ⊆ ZV is said to be M-convex set if it satisfies the exchange axiom

(B-EXC[Z]) given as:

(B-EXC[Z]) For each y and z in B and u in supp+(y − z), there exists v

in supp−(y − z) such that y − χu + χv and z + χu − χv belong to B.
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An equivalent of the above axiom is given in the following proposition.

Proposition 1.2.1 (Murota [15]). The following exchange axiom is equivalent to

(B-EXC[Z]) for a set B ⊆ ZV :

(B-EXC+[Z]) For each y and z in B and u in supp+(y − z), there exists v

in supp−(y − z) such that z + χu − χv belongs to B.

For any y ∈ ZV and U ⊆ V , we denote y(U) by

y(U) =
∑
u∈U

y(u).

The following proposition gives some more insight of an M-convex set.

Proposition 1.2.2 (Murota [15]). For any y and z in an M-convex set B, we have

y(V ) = z(V ).

A function f : ZV → R ∪ {−∞} with nonempty effective domain is said to be

an M-concave function if the following axiom holds for it:

(−M-EXC[Z]) For each y and z in domf and u in supp+(y − z), there exists v

in supp−(y − z) for which

f(y) + f(z) ≤ f(y − χu + χv) + f(z + χu − χv).

1.2.2 M♮-Concavity

This section is devoted to the basics of M♮-concave functions. These functions have

several properties due to which they are widely used. Following proposition about

the effective domain of an M-concave function is a prompt outcome of (−M-EXC[Z]).

Proposition 1.2.3 (Murota [15]). The effective domain domf of an M-concave

function f : ZV → R ∪ {−∞} is an M-convex set. Hence, it lies on a hyperplane

{y ∈ RV | y(V ) = p} for some p ∈ Z.

Since the efective domain of an M-concave function lies on a hyperplane (by the

above proposition). So, instead of f in |V | variables, we may consider its projection
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in |V |−1 variables taken along any chosen coordinate axis. We may define a function

f ′ in |V | − 1 variables by

f ′(z′) = f(z(u), z′) with z(u) = p− z′(V \ {u}) (where z ∈ ZV and z′ ∈ ZV \{u}),

where u is the chosen axis. Clearly, the effective domain domf ′ of the function f ′

is the projection of the effective domain domf of the function f along the axis u.

Such a projection f ′ of an M-concave function f is called an M♮-concave function.

Now we define M♮-concave functions formally.

If 0 /∈ V , then put V ′ = {0} ∪ V . Let f ′ : ZV → R ∪ {−∞} and f : ZV ′ →
R ∪ {−∞}. If f defined by

f(z0, z) =

{
f ′(z) if z0 = −z(V )

−∞ otherwise
(z0 ∈ Z, z ∈ ZV ).

is M-concave, then f ′ is called M♮-concave function.

The exchange property for an M♮-concave function f : ZV → R∪{−∞} is given

as:

(−M♮-EXC[Z]) For each y and z in domf and u in supp+(y − z), there exists v

in supp−(y − z) ∪ {0} such that

f(y) + f(z) ≤ min[f(y − χu) + f(z + χu), min
v∈supp−(y−z)

{f(y−

χu + χv) + f(z + χu − χv)}].

M-concave functions and the M♮-concave functions are conceptually equivalent to

each other. But the class of M♮-concave functions is larger than the class of M-

concave functions. This is evident from the following theorem:

Theorem 1.2.4 (Murota [15]). An M-concave function is M♮-concave. But an M♮-

concave function is M-concave if and only if the effective domain of M♮-concave

function is contained in some hyperplane {y ∈ RV | y(V ) = p} for some p ∈ Z.

A set B ⊆ ZV is called M♮-convex if it satisfies the following axiom:

(B♮-EXC[Z]) For each y and z in B and u in supp+(y − z), a vector v exists

in supp−(y − z) ∪ {0} for which y − χu + χv and z + χu − χv are in B.
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Following theorem describes some basic properties of M and M♮-concave functions:

Theorem 1.2.5 (Murota [15]). M and M♮-concave functions have the following

properties:

• For an M-concave function f and a point y ∈ domf we have

f(y) ≥ f(z) (∀ z ∈ ZV ) ⇐⇒ f(y) ≥ f(y − χu + χv) (∀ u, v ∈ V ),

• For an M♮-concave function f and a point y ∈ domf

f(y) ≥ f(z) (∀ z ∈ ZV ) ⇐⇒

{
f(y) ≥ f(y − χu + χv) (∀ u, v ∈ V ),

f(y) ≥ f(y ± χv) (∀ v ∈ V ).

For a function f : ZV → R∪ {−∞} and X ⊆ ZV , the set of maximizers of f on

X is defined by

argmax{f(y) | y ∈ X} = {x ∈ X | ∀y ∈ X : f(x) ≥ f(y)}.

For convenience, we denote

AM(f, z) = argmax{f(y) | y ≤ z}.

That is, AM(f, z) is the set of maximizers of f on the set {y ∈ ZV | y ≤ z}.
In the rest of the section, we give few known results. The next theorem charac-

terizes the set of maximizers of an M♮-concave function.

Theorem 1.2.6 (Murota and Shioura [16]). Let f : ZV → R ∪ {−∞} be an M♮-

concave function and y ∈ domf . Then y ∈ argmax(f) if and only if f(y) ≥
f(y + χu − χv) for each u, v ∈ {0} ∪ V .

The following lemma describes an important property of M♮-convex sets.

Lemma 1.2.7 (Fujishige [8]). Let B be an M♮-convex set and y ∈ B. For any

distinct elements u1, v1, u2, v2, . . . , ur, vr ∈ {0} ∪ V , if y + χvi − χui
∈ B for all

i = 1, . . . , r and y+χvj−χui
/∈ B for all i, j with i < j, then z = y+

r∑
i=1

(χvi−χui
) ∈ B.

Next two lemmas give important properties of M♮-concave functions.
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Lemma 1.2.8 (Fujishige and Tamura [9]). Let f : ZV → R ∪ {−∞} be an M♮-

concave function and u ∈ V . Let z1, z2 ∈ (Z ∪ {+∞})V be vectors such that z1 =

z2 + χu, AM(f, z1) ̸= ∅ and AM(f, z2) ̸= ∅. Then, the following two statements

hold:

(a) For each y ∈ AM(f, z1), there exists v ∈ {0} ∪ V such that

y + χv − χu ∈ AM(f, z2).

(b) For each y ∈ AM(f, z2), there exists v ∈ {0} ∪ V such that

y − χv + χu ∈ AM(f, z1).

Lemma 1.2.9 (Fujishige and Tamura [9]). Let f : ZV → R ∪ {−∞} be an M♮-

concave function and z2 ∈ (Z ∪ {+∞})V . Suppose that AM(f, z2) ̸= ∅. For any

y ∈ AM(f, z2) and z1 ∈ (Z∪{+∞})V such that (i) z1 ≥ z2 and (ii) y(u) = z2(u) =⇒
z1(u) = z2(u), we have y ∈ AM(f, z1).

1.3 Linear Programming (LP)

This section is devoted to some basic study of linear programming. Some basic

definitions and results are stated here. Objective of a linear programming problem

is to optimize a linear function that fulfils some conditions, linear in nature. These

problems are very common and easy to be dealt with because computation is simpler

for linear functions as compared to the nonlinear ones. We come accross many such

problems in daily life. Budgeting problem, diet problem, transportation problem,

warehousing problem and manufacturing problem are few of its applications. The

problem called linear in the sense that each unknown appearing in the whole program

has degree one. The function required to be optimized is called an objective function

and the conditions or restrictions that the unknowns are required to satisfy are called

constraints. These constraints may be linear equalities or inequalities.
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A linear program is written in the following form:

Minimize
n∑

j=1

bjyj

subject to
n∑

j=1

aijyj ≥ ci, i = 1, 2, . . . ,m

yj ≥ 0, j = 1, 2, . . . , n.

Here
n∑

j=1

bjyj is the objective function, aij are coefficients , y1, y2, . . . , yn are unknown

varibles to be found out and
n∑

j=1

aijyj ≥ ci is the i-th constraint. Set of values of yj

(j = 1, 2, . . . , n) that satisfies all the constraints is called a feasible solution. Region

composed of the set of all feasible solutions is called feasible region or space. A

feasible solution that minimizes the objective function is called an optimal solution.

Corner points of the feasible region are called extreme points. If a finite and unique

optimal solution exists for the problem, then it occurs at an extreme point and such

extreme point is called an optimal point. From this we have the following theorem:

Theorem 1.3.1 (Bazaraa and Jarvis [1]). If an optimal solution exists for a linear

program, then an optimal extreme point also exists.

In matrix form, a linear program is expressed by:

minimize by,

subject to Ay ≥ c,

and y ≥ 0,

where b = (b1, b2, . . . , bn) is a row vector, yt = (y1, y2, . . . , yn) is a vector of unknown

variables, A = [aij] is an m× n matrix of coefficients and ct = (c1, c2, . . . , cm).

Following theorems will describe that how can we guess for an optimal solution,

when a solution exists and whether it is unique or the problem has infinitely many

solutions.

Theorem 1.3.2 (Bazaraa and Jarvis [1]). If the objective function has an optimal

solution at two adjacent extreme points of the feasible region, then the problem has

infinitely many solutions because objective function will have optimal value at all the

points on the line segment joining these extreme points.
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Following theorem also gives an insight into solution of a linear program.

Theorem 1.3.3 (Bazaraa and Jarvis [1]). For the given linear programming prob-

lem, no solution for the problem exists if the feasible region is empty.

1.3.1 Dual Problems

With every linear problem, there is a related dual problem. Of these two, one is

of minimization and the other of maximization. If optimal values of the objective

functions of both of the problems are finite, then they are equal. In matrix form, a

dual linear program is written as:

Primal Problem Dual Problem

minimize by maximize wc

subject to Ay ≥ c, subject to wA ≤ b,

y ≥ 0, w ≥ 0,

where wc is the objective function for the dual, w = (w1, w2, . . . , wm) is a row

vector, ct = (c1, c2, . . . , cm), A is the coefficient matrix and b = (b1, b2, . . . , bn) is a

row vector.

The following lemma relates a linear program to its dual.

Lemma 1.3.4 (Luenberger [14]). If y is a feasible solution of the primal problem

and w that of the dual problem, then

by ≥ wc.

This lemma depicts that a feasible solution for one problem introduces a bound

on the value of the other problem. The value of the objective function of the primal

is larger than that of the dual. The primal problem is sought to obtain a minimum

value of the objective function and the dual to obtain a maximum value of the

objective function, each seeks to reach the other. Following is an important corollary

from this.

Corollary 1.3.5 (Luenberger [14]). Let y and w be the feasible solutions for the

primal and the dual problems, respectively. Also, by = wc. Then y and w are the

optimal solutions for the primal and the dual, respectively.
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The converse of the statement in above corollary is also true which is stated in

the following theorem.

Theorem 1.3.6 (Theorem on Dual LP, [14]). If any of the problem possesses

a finite optimal solution, so the other has, and the values of objective functions

associated with both of the problems are same. If the value of the associated objective

function of any of the problems is unbounded, then the other problem has no feasible

solution.

1.4 Stable Matching

In this section, we will discuss the concept of two-sided matching market. Labour

and auction markets are the examples of two-sided markets. A matching is estab-

lished between agents of two finite and disjoint sets. Agents of these sets may be

firms and workers, men and women or sellers and buyers.

To explain a stable matching, we consider the marriage model. Components of

the conventional model are two disjoint and finite sets of individuals M and W .

The set M denotes the set of men and W denotes the set of women. Both of

men and women have preferences over each other. Basically, the preferences of an

individual represent the choice that he or she would make when faced with different

alternatives. These preferences may be such that a man (or a woman) may prefer

to remain single instead of marrying a woman (or a man) whom he (or she) cannot

bear at any cost. An individual m is said to prefer an individual w to the individual

w′ if m chooses w when faced with a choice between w and w′. An individual m

is said to be indifferent between the two individuals w and w′ if both of them are

equally acceptable for him. If an individual m prefers w to w′ or likes them equally

then it is said that m likes w at least as well as w′.

For brief description, we represent the preferences of each individual in the

form of an ordered list. Let us consider that M = {m1,m2, . . . ,mp} and W =

{w1, w2, . . . , wq}. The preference list of a man m is then denoted by Pref(m) and

is defined on the set W ∪ {m} and the preference list of a woman w is denoted by
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Pref(w) and is defined on the set M ∪ {w}. The preference list of m has the form

Pref(m) = w1, w3, wp,m, . . . , w2.

This expresses that he first chooses to marry w1, his second choice for marriage is

w3, third is wp and fourth is to remain single. This means that he would like to

marry w1, w3 or wp if possible, otherwise, he would like to remain single instead

of marrying any other woman. So, for our convenience, we will express the above

preference list of m in the form

Pref(m) = w1, w3, wq.

A man m may be indifferent between any two women. In this case his prefrence list

will be of the form

Pref(m) = wq, [w4, w2], w8

indicating that m prefers wq to w4 but is indifferent between w4 and w2 and if he

is unable to marry any of wq, w4, w2 or w8, he would like to be single instead of

marrying any other woman.

We denote by µmw the rank (position) of woman w in the preference list of man

m. So that, the rank of wq in ms preference list is µmwq = 1 and that of w4 and w2 is

two. Similarly, the rank of m in Pref(w) is denoted by µwm. So, we say that a man

m prefers a woman w to a woman w′ if µmw′ > µmw and is indifferent between them

if µmw′ = µmw. A man m likes w at least as well as w′ if µmw′ ≥ µmw. Similarly, a

woman w likes a man m more than the man m′ if µwm′ > µwm.

A woman w is acceptable to a man m if µmm > µmw, that is, if he ranks w

higher than himself in Pref(m). Similarly, a man m is acceptable to a woman w

if µww > µwm. An individual is said to have strict preferences if he or she is not

indifferent between any two individuals acceptable for him or her. A matching is

a set of pairs of individuals from opposite sets such that each individual appears

exactly once. Now we formally define a matching.

A matching X : M ∪W → M ∪W is a bijective mapping such that if for m ∈ M ,

X(m) ̸= m then X(m) ∈ W and if for w ∈ W , X(w) ̸= w then X(w) ∈ M . We refer

X(m) to be the mate of m under the matching X. It can easily be noticed that this
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matching is of order two, that is, X2(m) = m. For if m and w are matched to each

other under the matching X then X(m) = w which implies X2(m) = X(w) = m.

A matching X is said to be unstable if there is a pair of a man m and a woman w

such that they are not matched to each other but µwm < µwX(w) and µmw < µmX(m).

That is, a matching will be unstable if there is a man woman pair who prefer each

other to their actual mates under the matching and the matching is said to be

blocked by the pair (m,w). In such a case, (m,w) is called the blocking pair for

X. If X(m) = w then m and w are said to be matched under the matching X. If

X(m) = m then m is said to be unmatched or self matched in X. We consider the

following example of matching.

Example 1.4.1. Consider four menm1,m2,m3 andm4 and the four women w1, w2, w3

and w4 with their preference lists given below:

Pref(m1) = w2, w1,

Pref(m2) = w1, w3, w2,

Pref(m3) = w2, w4,

Pref(m4) = w4, w1, w3, w2,

Pref(w1) = m3,m4,

Pref(w2) = m1,m3,m2,

Pref(w3) = m4,m1,m3,

Pref(w4) = m1.

We consider two matchings X1 and X2 given by

X1 =

(
m1 m2 m3 m4

w2 w1 w4 w3

)
and X2 =

(
m1 m2 m3 m4

w3 w2 w4 m4

)
.

Between these two mathings, X1 is stable while X2 is unstble. X2 is blocked by the

pairs (w3,m4) and (m1, w2). Because m4 doesnot like to be single and w3 prefers

m4 to m1, i.e., µw3m1 > µw3m4 . Also, µm1w3 > µm1w2 and µw2m2 > µw2m1 .

Such matchings described among men and women, resemble the situation of

marriages in real life. So, it is called a marriage. It is also denoted by X. Formally,

15



a one to one matching X with each man and woman appearing at the most once is

called a marriage or a set of marriages.
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Chapter 2

Two-Sided Matching Problems

In this chapter, we present two standard models of two-sided matching. Two-sided

matching models are important as they give an insight into general economic models.

Also, most of the real life dealings are bilateral in nature. We will first discuss

the marriage problem by Gale and Shapley [12] and then the assignment game by

Shapley and Shubik [18].

2.1 Marriage Problem

In 1962, Gale and Shapley [12] introduced the concept of two-sided matching mar-

kets. Since then many extensions of their model have been added to the literature.

The main problem in their work [12] is the stable marriage problem. Further, they

extended their model to the college admissions problem. First of all, we discuss the

college admissions problem.

2.1.1 College Admissions

We consider a situation where, there are n students are to be admitted to m colleges.

Each student has preferences over the colleges and each college has preferences over

the students. We consider a situation where n′ (n′ ≤ n) students apply to a college

for admission but the college has a capacity for just q (where q ≤ n′) students to be

enrolled. The college admissions commission will decide that which q students out
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of n′ are the best to be enrolled on the basis of some specific merit criteria of the

college. But it cannot be assumed that all of these q students will accept the offer

of the college, as they would not have just applied to one college. So, if the college

offers admissions to just q students, it may not be able to fulfill its required quota

of admissions as some of the q students may refuse its offer and join some other

college to which they prefer more and has offered them admission. So, to fulfill the

admissions quota, the college must offer admissions to the q best students and should

put the names of those students in the waiting list whom the college can consider for

enrollment. But the introduction of such waiting lists may also be problematic for

colleges as well as for the students. For example, if a student’s name is on waiting

list of first college but at the same time he is offered admission by the second college

which is ranked lower in his preference list than the first college. The student will be

confronted with a state of confusion. Let he accepts the offer of the second college

and gets enrolled but later on the first college, on not fulfilling its quota, offers him

admission. Then the student if accepts the offer and quits the second college to

join the first one, will be responsible for the displeasure of the second college. On

the other hand, if he does not accept the admission offer of the second college and

hopes to get offer from the first college. Then it can create problem for the student

in case when the first college has acquired its quota and does not need to offer any

admissions to the students on its waiting list.

These uncertainties and problems may be avoided by following some specific

procedure for assignment of students to colleges which is acceptable for both, the

colleges and the students at the same time.

2.1.2 Assignment Procedure

Assume that there are n students that are to be admitted to m colleges with quota

of the i-th college being qi. Each student is required to rank the colleges in his pref-

erence list omitting those that are unacceptable for him at any cost. The preferences

must be strict. Similarly, each college also ranks those students in its preference list

who have applied to it, omitting all those who are unacceptable for it even if its

admissions quota remains unfulfilled. Taking this data into consideration, we wish
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to frame a unanimous and fair criterion of assigning students to colleges.

Apparently, this kind of assignment seems very simple but this may not be the

case in actual. Complications may appear even after all this effort. For example,

consider two colleges A and B and two students a and b, where A prefers a to b but

a prefers B to A. In this case, any of the assignments will be unsatisfactory. But

if we form the principle that: the colleges are there to serve the students, that is,

students should get preference over colleges then a will be assigned to B but not to

A. This principle too, may not help much.

Whatever the assignment may be, still this kind of situation must not occur that

is defined in the following definition:

Definition 2.1.1. Let two students a and b are assigned to the colleges A and B,

respectively. If b prefers A to B and A prefers b to a then such an assignment is

called unstable.

This kind of assignment is unstable because A and b may develop a state of

mutual consent between themselves such that A and b may act together to form a

coalition and upset the assignment (b will join A on getting an offer for admission

from it and will upset quota of B, by leaving it). Still, it benefits both of A and b.

This depicts the sense in which the assignment is said to be unstable.

An assignment that is not unstable or that does not tend to get upset by any

college and student pair (or pairs), is called a stable assignment.

We are always interested in finding an assignment, which is not unstable. But

first we need to know that either this is possible to find a stable assignment in every

case or not. If we assume that this may happen then what should be the criteria of

finding that which one of these stable assignments is preferable. For this we turn to

the following definition:

Definition 2.1.2. Consider the set of all stable assignments for a problem. Then

the one among them under which each applicant is atleast as well off than under

any other assignment, is called an optimal assignment.

The existence of stable assignment does not imply the existence of optimal as-

signment. It is obvious indeed that if an optimal assignment exists then it is unique.
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For if there are two different optimal assignments, then it was possible that there

exists at least one applicant who is in better position under one assignment than

under the other. Depicting that one of the assignments is not optimal.

To find whether stable assignments exist, we consider a special case where the

number of the students and the colleges is the same and each college having quota

equal to unity. But this kind of assumption is quite unnatural, so we consider

another situation into which this assumption fits well.

2.1.3 Marriage Model

Consider a certain community with men and women equal in number, say n. They

are to be married. Each of them is required to rank the members of opposite sex in

order of his or her preferences for marriage. We make assignments by taking these

rankings into account. Any assignment of this form is a one to one matching of the

given two sets and the assignment of this form is called a marriage as is described

in Section 1.4. We denote a marriage by X. As defined in the previous section, a

marriage X is said to be unstable if under it two men m and m′ are matched with

the women w and w′, respectively, but m prefers w′ to w and w′ prefers m to m′. It

can be noted easily that in this case, where the number of men and the women is

same, total number of possible assignments is n!. But all of them may not be stable.

We wish to settle down the question that either a set of stable marriages exists

for any form of the preferences. For this we first consider some examples.

Example 2.1.1. Consider three men m1,m2 and m3 and three women w1, w2 and

w3 with their preference lists given below.

Pref(m1) = w2, w1, w3,

Pref(m2) = w1, w3, w2,

Pref(m3) = w2, w3, w1,

Pref(w1) = m1,m3,m2,

Pref(w2) = m2,m1,m3,

Pref(w3) = m1,m2,m3.
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Here six sets of marriages are possible:

X1 = {(m1, w2), (m2, w3), (m3, w1)},

X2 = {(m1, w1), (m2, w3), (m3, w2)},

X3 = {(m1, w3), (m2, w2), (m3, w1)},

X4 = {(m1, w1), (m2, w2), (m3, w3)},

X5 = {(m1, w2), (m2, w1), (m3, w3)},

X6 = {(m1, w3), (m2, w1), (m3, w2)}.

Out of these six sets of marriages X1, X2, X3 and X5 are stable while X4 is unstable

due to w2 and m3 as they prefer each other to their partners and similarly, X6 is

unstable because of m1 and w2.

We consider another example.

Example 2.1.2. Consider four men,m1,m2,m3 andm4 and the four women w1, w2, w3

and w4 with their preference lists given below.

Pref(m1) = w2, w1, w4, w3,

Pref(m2) = w3, w4, w2, w1,

Pref(m3) = w1, w3, w2, w4,

Pref(m4) = w3, w2, w4, w1,

Pref(w1) = m2,m1,m3,m4,

Pref(w2) = m2,m4,m1,m3,

Pref(w3) = m1,m3,m2,m4,

Pref(w4) = m1,m2,m4,m3.

Obviously there are twenty four possible sets of marriages but out of all these the

only stable set of marriages is:

X = {(m1, w1), (m2, w4), (m3, w3), (m4, w2)}.

Note that in this marriage, no one gets his or her first preference. However, the

marriage is still stable.
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The following is an example of matching from a set onto itself which is similar

to the marriage problem.

Example 2.1.3. Consider a situation where 2n (we take even number 2n for our

convenience) students are to be divided into pairs of roommates. Each one is asked

to give his preference list in which he ranks the other 2n − 1 students to be his

roommate. A set of couplings is said to be unstable if there are students who prefer

each other to their roommmates under this coupling. There is a simple example

that shows that stability may not exist in some situations. Consider four students

s1, s2, s3 and s4 with their preference lists:

Pref(s1) = s3, s2, s4,

Pref(s2) = s1, s3, s4,

Pref(s3) = s2, s1, s4,

Pref(s4) = s3, s1, s2.

Since each of s1, s2 and s3 ranks s4 last and s2 ranks s1 first, s1 ranks s3 first and

s3 ranks s2 first, so, no stable coupling exists in this case. For whoever is to share

room with s4, prefers someone else who also prefers him to his own roommate. This

situation is independent of the preferences of s4.

All of these examples predict that stability may be achieved but it may not be

simple or clear at first sight. We have the following theorem on stability of marriages.

Theorem 2.1.1 (Gale and Shapley [12]). For every marriage market with strict

preferences, there exists a stable matching.

To prove this theorem, Gale and Shapley [12] designed an algorithm. Their

algorithm has two versions: When the men are proposers and when the women are

proposers. In either case, the proposers get their best partners. We recall from

Section 1.4 that µmw denotes the rank of woman w in preference list of the man m

(position of w in Pref(m)). Similarly, µwm denotes the rank of man m in preference

list of the woman w (position of m in Pref(w)). The woman w is said to prefer man

m to the man m′ if µwm′ > µwm and vice versa. The number of men and women is

the same and is equal to n. The preferences of each of the individuals are required
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to be strict. The procedure to be adopted is as follows: Let F (W ) denote the set

of all free women and F (M) be that of all free men. X be the set of man-woman

pairs. A man or woman will be free if it is not appeared in X.

2.1.4 Algorithm for a Stable Marriage

Step 0: Set F (M) = M , F (W ) = W , X = ∅.

Step 1: If F (M) = ∅ then stop.

Step 2: Take m ∈ F (M) and w ∈ Pref(m) with µmw = 1.

Step 3: (i) If w ∈ F (W ) then set

X := X ∪ {(m,w)},

F (M) := F (M) \ {m},

F (W ) := F (W ) \ {w}.

(ii) If (m′, w) ∈ X for some m′ ∈ M and µwm < µwm′ then set

X := X \ {(m′, w)} ∪ {(m,w)},

F (M) := F (M) \ {m} ∪ {m′},

F (W ) := F (W ).

(iii) If (m′, w) ∈ X for some m′ ∈ M and µwm > µwm′ then set

X := X,

F (M) := F (M),

F (W ) := F (W ).

Step 4: Set Pref(m) := Pref(m) \ {w}. Go to Step 1.

The termination of the algorithm, the stability and optimality of the set of marriages

can easily be verified in the following lines. No man is allowed to propose a woman

more than once. So, the procedure will terminate as soon as all the women have

been appeared inX. This marriage is called the man-optimal stable set of marriages.

Following lemma is enough to prove the termination of the algorithm.
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Lemma 2.1.2. In each iteration of the algorithm, following hold:

(i) |F (M)| either decreases or remains the same.

(ii) |X| either increases or remains the same.

(iii) |Pref(m)| strictly decreases for m taken at Step 2.

Since all the sets are finite so, procedure terminates after a finite number of steps.

Remark 2.1.1 (Gale and Shapley [12]). The complexity of the above described

algorithm is of order O(n2).

In the above algorithm, if we reverse the roles of men and women (that is, women

acting as proposers), we obtain an algorithm to find a woman-optimal stable set of

marriages. The following theorem about the Gale and Shapley algorithm briefly

states the situation when an optimal set of marriage is attainable.

Theorem 2.1.3 (Gale and Shapley [17]). If each individual has strict preferences

then a man-optimal and a woman-optimal stable set of marriages always exist. Also,

the set of marriages obtained by the men as proposers is man-optimal and that

obtained by women as proposers is woman-optimal stable set of marriages.

This procedure may be applied in the case even when the number of men and

the number of women is not the same. In such case the Step 1 will be modified

as: if either F (M) = ∅ or F (W ) = ∅ then stop. Consider that there are p men

and q women. If p < q then the procedure terminates when all the p men are

in X. If p > q then the procedure terminates when all the q women are in X.

The above mentioned procedure may be opted to find a stable set of marriages in

previously discussed examples. We discuss the following example to implement the

above described algorithm.

Example 2.1.4. Consider four men, m1,m2,m3 and m4 and four women w1, w2, w3
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and w4 with their preference lists given below:

Pref(m1) = w2, w1, w3, w4,

Pref(m2) = w3, w2, w1, w4,

Pref(m3) = w3, w1, w2, w4,

Pref(m4) = w1, w3, w4, w2,

Pref(w1) = m1,m3,m2,m4,

Pref(w2) = m4,m1,m2,m3,

Pref(w3) = m4,m3,m1,m2,

Pref(w4) = m3,m1,m4,m2.

Now we start the procedure. At Step 0 all the men and the women are free. In first

iteration, at Step 2, we start from m1. At Step 3, since µm1w2 = 1 and w2 ∈ F (W )

so X = {(m1, w2)}, F (M) = {m2,m3,m4}, F (W ) = {w1, w3, w4} and at Step 4

Pref(m1) = w1, w3, w4.

In second iteration, at Step 2, we take m2 ∈ F (M). At Step 3, since µm2w3 = 1

and w3 ∈ F (W ) so X = {(m1, w2), (m2, w3)}, F (m) = {m3,m4}, F (W ) = {w1, w4}
and at Step 4 Pref(m2) = w2, w1, w4.

In third iteration, at Step 2, we take m3 ∈ F (M). At Step 3, since µm3w3 =

1, (m2, w3) ∈ X and µw3m2 > µw3m3 hence X = {(m1, w2), (m3, w3)}, F (M) =

{m2,m4}, F (W ) = {w1, w4} and at Step 4 Pref(m3) = w1, w2, w4.

In fourth iteration, at Step 2, take m2 ∈ F (M). At Step 3, since µm2w2 =

1, (m1, w2) ∈ X and µw2m1 < µw2m2 hence X = {(m1, w2), (m3, w3)}, F (M) =

{m2,m4}, F (W ) = {w1, w4} and at Step 4 Pref(m2) = w1, w4.

In fifth iteration, at Step 2, take m2 ∈ F (M). At Step 3, since µm2w1 = 1 in

Pref(m2) and w1 ∈ F (W ) hence X = {(m1, w2), (m2, w1), (m3, w3)}, F (M) = {m4},
F (W ) = {w4} and at Step 4 Pref(m2) = w4.

In sixth iteration, at Step 2, take m4 ∈ F (M). At Step 3, since µm4w1 = 1 in

Pref(m4), (m2, w1) ∈ X and µw1m2 < µw1m4 henceX = {(m1, w2), (m2, w1), (m3, w3)},
F (M) = {m4}, F (W ) = {w4} and at Step 4 Pref(m4) = w3, w4, w2.

In seventh iteration, at Step 2, take m4 ∈ F (M). At Step 3, since µm4w3 = 1 in

Pref(m4), (m3, w3) ∈ X and µw3m4 < µw3m3 henceX = {(m1, w2), (m2, w1), (m4, w3)},
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F (M) = {m3}, F (W ) = {w4} and at Step 4 Pref(m4) = w4, w2.

In eighth iteration, at Step 2, take m3 ∈ F (M). At Step 3, since µm3w1 = 1 in

Pref(m3), (m2, w1) ∈ X and µw1m3 < µw1m2 henceX = {(m1, w2), (m3, w1), (m4, w3)},
F (M) = {m2}, F (W ) = {w4} and at Step 4 Pref(m3) = w2, w4.

In ninth iteration, at Step 2, take m2 ∈ F (M). At Step 3, since µm2w4 = 1

in Pref(m2) and w4 ∈ F (W ) hence X = {(m1, w2), (m2, w4), (m3, w1), (m4, w3)},
F (W ) = ∅, F (M) = ∅ also at Step 4 Pref(m2) = ∅.

Since F (M) = ∅ hence the procedure is stopped and the man-optimal stable

marriage is

X = {(m1, w2), (m2, w4), (m3, w1), (m4, w3)}.

By reversing the roles of men and women, we apply the same procedure to the

problem. Then the woman-optimal stable marriage is

X = {(m1, w2), (m2, w4), (m3, w1), (m4, w3)}.

In the above example, man-optimal solution is just the same as that of the

woman-optimal solution. But, this may not happen in each case. The solutions are

the same only when a unique stable set of marriages exists.

2.1.5 Application to the College Admissions Problem

The algorithm described above can be easily applied to find a stable assignment of

students to the colleges. Let the number of the students is n. Each student applies

to the college he prefers the most. Each college places top q (q is the quota of the

college) students among the students applied to it, on its waiting list and rejects all

of the others. If the number of students who have applied to the college is less than

q, it place all of them on waiting list. The rejected students apply to the college of

their second choice. Each college places top q students from among on its waiting

list or have now applied to it, and rejects all of the others. The process terminates

when each student is either on the waiting list of some college or has been rejected

by all the colleges in his preference list. Each college now allows admission to all

the students on its waiting list. This assignment is surely stable and can be verified

easily. The matching such obtained is not only stable but also optimal. This process
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yields student-optimal assignment. On reversing the role of students and the colleges

in the above process, that is, colleges offerring admissions to the students. We will

get a college-optimal assignment. We have the following lemma regarding a stable

college admissions problem:

Lemma 2.1.4 (Gale and Shapley [17]). A matching of the college admissions prob-

lem is stable if and only if the corresponding matching of the related marriage prob-

lem is stable.

2.2 Assignment Game

In this section, we give a review of the assignment game proposed by Shapley and

Shubik [18]. The Shapley-Shubik model [18] is related to one of the classes of two-

sided game theoretic models. It deals with the problem in which an assignment of

buyers and sellers is to be established and the indivisibility of goods for sale is its

distinctive feature. The goods are of the form like houses, vehicles, automobiles and

etc. We are mainly concerned and have devoted ourselves to the core of the game.

Definition 2.2.1. A core of a game is the assignment of buyers to sellers that is an

optimal assignment.

It means that, it cannot be improved by any other assignment.

A stable matching is said to be weak pareto optimal if there exists any matching

(stable or not) that is preferred by all the participants of a game. Shapley and

Shubik [18] imposed several restrictions on the model, which are as follows:

(i) identification of utility with money,

(ii) permitting third-party payments,

(iii) indivisibility of goods of trade,

(iv) inflexibility of supply and demand functions.
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2.2.1 Game Description

Consider a situation where, there are m homeowners (sellers) and n purchasers

(buyers). The value of the i-th home for its seller is ci and that for the j-th buyer

is hij. There exists a favourable price for both of the seller and the buyer only if

hij > ci. But it cannot be guaranteed that this situation occurs in all the cases.

A move in the game is the case, when a house is transferred from a seller to a

buyer and the money from the buyer to the seller of the home. Here we are only

concerened with the prices and their suitability to the buyers and the sellers. Let

i-th house is sold for pi, to the j-th buyer. Let no arbitrator is involved (that is,

there are no third party payments). Then the profit gained by the seller i is

pi − ci

and the gain of the buyer j is

hij − pi.

Now we can define the characteristic function or the value function for a game. To

find a stable assignment in the game, we wish to maximize the value of characteristic

function.

2.2.2 The Characteristic Function

Any subset C of the set S ∪ B (where S is the set of sellers and B is the set of

buyers) is called an alliance or coalition. The value or worth of any alliance of a

game is called the characteristic function of the game. We denote an alliance by C

and its worth by ν(C). If there is no member or just a single member in C then

obviously ν(C) = 0, as no individual can have a profitable deal with himself. Also,

it is obvious that an alliance is possible only if it is formed between the partners

who are not from the same set. Now we can define ν({i, j}) for i, j ∈ C as

ν({i, j}) =

{
max{0, hij − ci} if i ∈ S and j ∈ B

0 if {i, j} ⊆ S or {i, j} ⊆ B
(∀ i, j ∈ C).

We denote this value by aij (that is, ν(i, j) = aij). It can be noted that this number

is independent of the sale price pi. For larger mixed alliance, that is, for |C| = k > 2
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where k = min{|C∩S|, |C∩B|} and the players of the game be i1, i2, . . . , ik ∈ C∩S

and j1, j2, . . . , jk ∈ C ∩ B. The value of the alliance is obtained by maximizing the

total gain of all possible 2k arrangements. Symbolically, we write

ν(C) = max[ai1j1 + ai2j2 + . . .+ aikjk ].

This gives an optimal assignment for the game. We consider the following examples

for an optimal assignment:

Example 2.2.1. Consider the following matrix (aij) (where i ∈ C∩S and j ∈ C∩B)

for an assignment game:

0 3 0

3 0 3

0 3 0

Here value of the characteristic function is ν(C) = 6 and there are four optimal

assignments shown by the circled entries in the following tables:

0⃝ 3 0

3 0 3⃝
0 3⃝ 0

0 3⃝ 0

3⃝ 0 3

0 3 0⃝

0 3⃝ 0

3 0 3⃝
0⃝ 3 0

0 3 0⃝
3⃝ 0 3

0 3⃝ 0

In the following example, there is only one optimal assignment.

Example 2.2.2. Consider the following matrix (aij) (where i ∈ C∩S and j ∈ C∩B)

4 7 1

6 8 5

1 2 1

The only optimal assignment is shown in the following table with circled entries.
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4 7⃝ 1

6⃝ 8 5

1 2 1⃝

The value of the characteristic function ν(C) = 14.

We can observe that the characteristic function ν(C) is symmetric when de-

scribed in terms of aij in the assignment game, though the model itself is not sym-

metric. So we form an alternative model for our game that is symmetric from the

beginning.

Consider an economic environment with two types of players or agents. For

example, men and women or manufacturers and cutomers. They are restricted to

have unshared (one good is sold to a single person as goods are indivisible) and two-

sided (mixed) dealings with each other. After some negotiations, pairs are formed.

Any kind of trade (of goods and services but not the money) is made between the

partners. Here we are not concerned about the type of the goods or the services.

With each pair {i, j}, there is the number aij (that is, ν({i, j})) that describes the
worth of the alliance of i and j, if it is formed). If we treat this system as our

game then its characteristic function has all those properties that are satisfied by

the original game model.

Any gain is divided into the two partners in the alliance. A deal will be finalized

when each partner will have the best possible terms for him that could not be

attained in any other alliance. The contracts would be settled when the prices are

in harmony for both of the partners of a coalition. It means that the prices not

only satisfy both of the partners but their sum should be equal to the worth of the

partnership. However, we wish to settle down the question that either such prices

(harmonious) exist or not. In a mathematical form, we may express this question

as: do the numbers qi ≥ 0 and rj ≥ 0 exist such that{
qi + rj = aij if i and j are partners,

qi + rj ≥ aij if i and j are not partners.
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2.2.3 Linear Programming Form of the Model

Shapley and Shubik [18] used the linear programming to solve the problem, as it is

usefull and is simpler.

Consider the alliance of all players of the game. Then we wish to determine the

worth of S ∪B. We introduce m+n constraints on mn real variables yij with i ∈ S

and j ∈ B. Then the linear program is:

maximize
∑
i∈S

∑
j∈B

aijyij

subject to
∑
i∈S

yij ≤ 1 ∀ j ∈ B,∑
j∈B

yij ≤ 1 ∀ i ∈ S,

xij = 0 or 1 ∀ i ∈ S, j ∈ B.

The variables yij represent the probability of forming a partnership of i and j in

the case of the partnership game (since the sum of probabilities of all the possible

outcomes is always one. That is why, the sum of variables yij is less than or equal to

1). Maximum value of
∑
i∈S

∑
j∈B

aijyij is obtained when all the variables yij are either

0 or 1 (reader is reffered to Dantzig [4] for a detailed study). So that the continuous

linear programming problem coincides with the discrete assignment game and we

get that

max
∑
i∈S

∑
j∈B

aijyij = ν(S ∪B).

We know that with every linear programming problem, there is associated a dual

linear programming problem. Also, both of the objective functions converge to the

same value. Here in our case, the dual problem is as follows:

minimize
∑
i∈S

ui +
∑
j∈B

vj

subject to ui + vj ≥ aij (∀ i ∈ S, j ∈ B).

From the Fundamental Duality Theorem 1.3.6, we have

min(
∑
i∈S

ui +
∑
j∈B

vj) = max
∑
i∈S

∑
j∈B

aijyij.
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Let the vector (u, v) = (u1, . . . , um, v1, . . . , vn) be the solution of the dual problem.

Then we have∑
i∈S

ui +
∑
j∈B

vj = min(
∑
i∈S

ui +
∑
j∈B

vj) = max
∑
i∈S

∑
j∈B

aijyij = ν(S ∪B). (2.2.1)

This means that the vector (u, v) is a nonnegative, pareto optimal payoff vector for

the game. Also, the constraints for the dual problem show that for each pair {i, j}
with i ∈ S, j ∈ B, we have

ui + vj ≥ aij = ν(i, j).

So that for an alliance C we get that∑
i∈C∩S

ui +
∑

j∈C∩B

vj ≥ ν(C). (2.2.2)

The feasibility of (u, v) is evident from (2.2.1). The constraint ui+vj ≥ αij (∀ i ∈ S,

j ∈ B) assures the stability of the outcome. The optimality of the solution for any

alliance is ensured by (2.2.2). So, the feasibility and the optimality of solution

demonstrates that, it is the core of the game.

On the other hand, any vector in the core satisfies (2.2.1) and (2.2.2) and thus

satisfy all the conditions of a solution to the dual linear programming problem.

Now, we can summarize the above discussion in the form of the following theo-

rem:

Theorem 2.2.1 (Shapley and Shubik [18]). The core of the assignment game and

the solutions to the dual linear programming problem associated with the game, co-

incide with each other.

2.2.4 Mathematical Description

Now we describe the model mathematically. Let E = S ×B and for each (i, j) ∈ E

βij denotes the value of j-th buyer for the i-th seller (that is, profit of the seller i)

and βji the value of i-th seller for the j-th buyer (that is, profit of the buyer j).

Then βij + βji (here βij + βji is the same as aij) is called the total value of the pair

(i, j) if they form a coalition (or alliance). An assignment (or matching) A is called

pairwise stable if there exists (q, r) ∈ RS ×RB such that

32



A1:
∑
i∈S

qi +
∑
j∈B

rj =
∑

(i,j)∈A
(βij + βji).

A2: q ≥ 0 and r ≥ 0.

A3: qi + rj ≥ βij + βji for all (i, j) ∈ A.

It can be easily inferred from A1−A3 that qi + rj = βij + βji for all (i, j) ∈ A and

qi = 0 when i is unmatched and rj = 0 when j is unmatched. Here qi is the payoff

of the seller i and rj is the payoff of the buyer j.

2.3 Comparison of the Two Models

In this section, we will try to figure out the similarities or dissmilarities between the

two models: the marriage model [12] and the assignment game [18].

In both of the games, the matching we wish to obtain is one to one and the

players are partitioned into two disjoint sets. A partnership is possible only if each

pair in the matching constitutes one player from each set. Both allow the players

to be self matched (in marriage model a player can be self matched only in the case

when the number of men and women is not the same).

The basic difference between the marriage model [12] and the assignment game

[18] lies in the fact that the latter involves the exchange of money while the former

does not allow any monetary exchange. The players of the marriage model are

rigid as no negotiations are allowed in the game while the players of the assignment

game are referred to as the flexible. The equality qi + rj = βij + βji reflects that

the players can negotiate and distribute the amount βij + βji between each other

without disturbing the total value of their partnership.
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Chapter 3

A Two-Sided Discrete Concave

Market

In this chapter, we extend the model of Fujishige and Tamura [10] by generaliz-

ing payoff functions. We introduce weighted income and weighted payments. We

propose an algorithm to find a pairwise strictly stable outcome. We also discuss

correctness and termination of the algorithm. At first, we give a brief description of

our model.

3.1 Our Model

We extend the model of Fujishige and Tamura [10] by introducing general payoff

functions. We give here a brief description of the model.

Consider two disjoint and finite sets P and Q of agents. The agents in P are

called workers and the agents in Q are called firms. The set of all ordered pairs

(i, j) of agents i ∈ P and j ∈ Q is denoted by E = P ×Q. Each worker i ∈ P can

supply multi units of labor time and each firm j ∈ Q can employ workers with multi

units of labor time and pay a salary to worker i if j hires i. For each i ∈ P and

j ∈ Q, we define E(i) = {i} ×Q and E(j) = P × {j}. The number of units of labor

time for a firm j that hires a worker i is denoted by x(i, j). The labor allocation

is represented by a vector x = (x(i, j) ∈ Z | (i, j) ∈ E). We assume that each pair
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(i, j) ∈ E may have a lower and an upper bound on a salary per unit of labor time.

The lower and upper bounds of salaries per unit of labor time are denoted by two

vectors π ∈ (R∪{−∞})E and π ∈ (R∪{+∞})E where π ≤ π. For a vector y ∈ RE

and k ∈ P ∪Q, the restriction of y on E(k) is denoted by y(k). For each k ∈ P ∪Q,

the value function fk is defined as fk : ZE(k) → R ∪ {−∞}. Moreover, we assume

that for each k ∈ P ∪Q, the value function fk satisfies the following:

(A) The effective domain domfk is bounded and hereditary, and contains 0 ∈ ZE(k)

as a lower bound.

Here heredity means that [0, y]Z ⊆ domf for each y ∈ domf .1 A vector x ∈ ZE

is called feasible allocation if x(k) ∈ domfk for each k ∈ P ∪ Q. A vector s ∈ RE

is called a feasible salary vector if π(i, j) ≤ s(i, j) ≤ π(i, j) for each (i, j) ∈ E. For

a feasible allocation x ∈ ZE and a feasible salary vector s ∈ RE, the pair (x, s) is

called an outcome.

Let α = (α(i, j) ∈ R+ | (i, j) ∈ E) be a given positive vector. For each

i ∈ P , the sum
∑
j∈Q

s(i, j)α(i, j)x(i, j) is called weighted income of i from the

firms that hire i. Similarly, for each j ∈ Q, the sum
∑
i∈P

s(i, j)α(i, j) x(i, j) is

called weighted payment of the firm j to the workers that firm j hires. We de-

fine payoff functions more general than the payoff functions defined by Fujishige

and Tamura [10]. The payoff of a worker i on an outcome (x, s) is defined by

fi[+s(i), α(i)](x(i)) = fi(x(i)) +
∑
j∈Q

s(i, j)α(i, j)x(i, j). This means that the payoff of

a worker i on an outcome (x, s) is the sum of value of i on x and the weighted income

from the firms that hire i. Similarly, the payoff of a firm j on an outcome (x, s) is

defined by fj[−s(j), α(j)](x(j)) = fj(x(j)) −
∑
i∈P

s(i, j)α(i, j)x(i, j). This means that

the payoff of a firm j on an outcome (x, s) is the difference of the value of firm j on

x and the weighted payments to the workers that firm j hires. If α is all-one vector

then our model coincides with the model of Fujishige and Tamura [10].

An outcome (x, s) is said to satisfy the incentive constraints if no agent can

1For x, y ∈ domf , we define [x, y]Z = {z ∈ ZE | x(e) ≤ z(e) ≤ y(e) ∀e ∈ E}.
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unilaterally decrease the units of labour time x at the salary s. That is, if it satisfies

fi[+s(i), α(i)](x(i)) = max{fi[+s(i), α(i)](y) | y ≤ x(i)} (∀ i ∈ P ), (3.1.1)

fj[−s(j), α(j)](x(j)) = max{fj[−s(j), α(j)](y) | y ≤ x(j)} (∀ j ∈ Q). (3.1.2)

An outcome (x, s) is said to be pairwise unstable if it does not satisfy the incentive

constraints (3.1.1) and (3.1.2) or there exist i ∈ P , j ∈ Q, γ ∈ [π(i, j), π(i, j)],

y′ ∈ ZE(i) and y′′ ∈ ZE(j) such that

fi[+s(i), α(i)](x(i)) < fi[+sj(i)[γ], α(i)](y
′),

y′(i, j′) ≤ x(i, j′) (∀ j′ ∈ Q \ {j}),
(3.1.3)

fj[−s(j), α(j)](x(j)) < fj[−si(j)[γ], α(j)](y
′′),

y′′(i′, j) ≤ x(i′, j) (∀ i′ ∈ P \ {i}),
(3.1.4)

y′(i, j) = y′′(i, j). (3.1.5)

An outcome (x, s) is said to be pairwise stable if it does not satisfy (3.1.3)−(3.1.5)

and is said to be pairwise quasi-unstable if it does not satisfy the incentive constraints

(3.1.1) and (3.1.2) or there exist i ∈ P , j ∈ Q, γ ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and

y′′ ∈ ZE(j) that satisfy (3.1.3) and (3.1.4) ((3.1.5) is not required to be satisfied).

Now we give the concept of pairwise strictly stable outcome. For any s ∈ RE, γ ∈
R, i ∈ P and j ∈ Q, the vector sj(i)[γ] is defined as a vector obtained from s(i) by

replacing (i, j)-component by γ. Similarly, we define si(j)[γ].

An outcome (x, s) is pairwise strictly stable if and only if for each i ∈ P , j ∈ Q

and γ ∈ R with π(i, j) ≤ γ ≤ π(i, j), the following hold:

(PSS1) fi[+s(i), α(i)](x(i)) = max{fi[+s(i), α(i)](y) | y ≤ x(i)},

(PSS2) fj[−s(j), α(j)](x(j)) = max{fj[−s(j), α(j)](y) | y ≤ x(j)}.

(PSS3) Either

(i): fi[+s(i), α(i)](x(i)) ≥
max{fi[+sj(i)[γ], α(i)](y) | y(i, j′) ≤ x(i, j′),∀j′ ̸= j}
or

(ii): fj[−s(j), α(j)](x(j)) ≥
max{fj[−si(j)[γ], α(j)](y) | y(i′, j) ≤ x(i′, j), ∀i′ ̸= i}.
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Remark 3.1.1. It can be easily noticed that an outcome (x, s) is pairwise strictly

stable if it is not pairwise quasi-unstable. As, a pairwise unstable outcome is also

pairwise quasi-unstable. Hence a pairwise strictly stable outcome is also pairwise

stable.

The following lemma is the modification of Lemma 3.1 [10]. It states the conditions

for which a pairwise stable outcome becomes pairwise strictly stable.

Lemma 3.1.1. If fk(k ∈ P ∪Q) are M♮-concave functions satisfying (A) and if one

of the following conditions:

(i) π = π,

(ii) domfk ⊆ {0, 1}E(k) for all k ∈ P ∪Q,

(iii) there exists a vector u ∈ ZE such that for each k ∈ P ∪ Q, we have domfk =

{y ∈ ZE(k) | 0 ≤ y ≤ u(k)} and fk is linear over domfk

holds, then any pairwise stable outcome is pairwise strictly stable.

Proof. Contrarily, suppose that (x, s) is not pairwise strictly stable outcome. Then

by the Remark 3.1.1, it is pairwise quasi-unstable. We show that it is also pairwise

unstable. Since the outcome is pairwise stable. So, it satisfies incentive constraints

(3.1.1) and (3.1.2). By our supposition, since the outcome is pairwise quasi-unstable.

So, there exist i ∈ P , j ∈ Q, γ ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) , and y′′ ∈ ZE(j) satisfying

(3.1.3) and (3.1.4).

(i): In this case s(i, j) = γ (because s(i, j), γ ∈ [π, π]). Since (x, s) satis-

fies incentive constraints, so we must have y′(i, j) > x(i, j) and y′′(i, j) > x(i, j).

Assume y′(i, j), y′′(i, j) as small as possible and satisfying (3.1.3) and (3.1.4). By

(−M♮-EXC[Z]) for e = (i, j) ∈ supp+(y′−x(i)), there exists e
′ ∈ supp−(y′−x(i))∪{0}

such that

fi[+sj(i)[γ], α(i)](y
′) + fi[+s(i), α(i)](x(i))

= fi[+sj(i)[γ], α(i)](y
′) + fi[+sj(i)[γ], α(i)](x(i))

≤ fi[+sj(i)[γ], α(i)](y
′ − χe + χe′) + fi[+sj(i)[γ], α(i)](x(i) + χe − χe′).
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By choice of y′, we get fi[+sj(i)[γ], α(i)](y
′) > fi[+sj(i)[γ], α(i)](y

′ − χe + χe′). This

gives

fi[+s(i), α(i)](x(i)) < fi[+sj(i)[γ], α(i)](x(i) + χe − χe′).

This implies that y′(i, j) = x(i, j) + 1 (as x(i) + χe − χe′ can be chosen as y′). By

the same procedure, we can show that y′′(i, j) = x(i, j) + 1. This implies that (x, s)

also satisfies (3.1.5). This proves that (x, s) is a pairwise unstable outcome, which

is a contradiction. Hence (x, s) is pairwise strictly stable outcome.

(ii): The case for s(i, j) = γ can be treated like the Case (i). The case for

s(i, j) > γ can be dealt by rearranging roles of firms and workers in the following

arguments. So, we only deal with the case where s(i, j) < γ. The case for x(i, j) = 0

can be proceeded like Case (i). So, we suppose that x(i, j) > 0. We get

fi[+s(i), α(i)](x(i)) < fi[+sj(i)[γ], α(i)](x(i)),

fj[−s(j), α(j)](y) ≥ fj[−si(j)[γ], α(j)](y)
(∀ y ≤ x(j)).

Hence y′′(i, j) must be greater than x(i, j). So that y′′(i, j) ≥ 2, which is not possible

as domfk ⊆ {0, 1}E(k) . So, we deal with Case (iii).

(iii): Replace y′ by x(i) + (y′′(i, j)− x(i, j))χ(i,j) ∈ domfi. Then

fi[+sj(i)[γ], α(i)](y
′) > fi[+s(i), α(i)](y

′).

As x(i, j) > 0, fi is linear over domfi and (x, s) satisfies incentive constraints. So,

we have

fi[+s(i), α(i)](y
′) ≥ fi[+s(i), α(i)](x(i)).

Hence (3.1.3) and (3.1.5) are satisfied by the new y′. This is again a contradiction.

So, we conclude that if any of the three cases hold, any pairwise stable outcome is

pairwise strictly stable under given conditions.

Generally, the condition of hereditary on the domain of a value function is useful.

However, when the value functions are M♮-concave, we may relax the condition of

hereditary because of the following lemma.

Lemma 3.1.2. Let f : ZE → R∪{−∞} be an M♮-concave function. Then [x, y]Z ⊆
domf for each x, y ∈ domf with x ≤ y.
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Proof. Let ỹ ∈ [x, y]Z with ỹ ̸= y. We show that ỹ ∈ domf . Then note that

ỹ = y −
∑

e∈supp+(y−ỹ)

(y(e)− ỹ(e))χe. Let e1 ∈ supp+(y − ỹ). Then e1 ∈ supp+(y − x)

and since f is M♮-concave, we have

f(x) + f(y) ≤ f(x+ χe1) + f(y − χe1).

This shows that y′ = y − χe1 ∈ domf . If supp+(y′ − ỹ) = ∅ then y′ = ỹ and

the assertion is true. Otherwise, take e2 ∈ supp+(y′ − ỹ)(⊆ supp+(y − ỹ)). Then

e2 ∈ supp+(y′ − x) and since f is M♮-concave, we have

f(x) + f(y′) ≤ f(x+ χe2) + f(y′ − χe2).

This shows that y′′ = y′ − χe2 ∈ domf . That is, y − χe1 − χe2 ∈ domf for e1, e2 ∈
supp+(y− ỹ). By continuing this process, we get ỹ = y−

∑
e∈supp+(y−ỹ)

(y(e)− ỹ(e))χe ∈

domf .

Corollary 3.1.3. Let f : ZE → R∪{−∞} be an M♮-concave function. Then domf

is hereditary.

Thus, when the value functions are assumed to be M♮-concave, we can re-write

the condition (A) by dropping the condition of hereditary in the following way: For

each k ∈ P ∪Q, the value function fk satisfies the following:

(A′) The effective domain domfk of fk is bounded and contains 0 ∈ ZE(k) as a lower

bound.

In the following theorem, we see that if value functions are M♮-concave satisfying

(A′) then there exists a pairwise strictly stable outcome.

Theorem 3.1.4 (Fujishige and Tamura [10]). For M♮-concave functions fk(k ∈
P ∪ Q) satisfying (A′) and for vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E

with π ≤ π, there exists a pairwise strictly stable outcome (x, s).

The next theorem characterizes the pairwise strictly stable outcome. This theo-

rem is the modification of the Theorem 3.3 [10].

Theorem 3.1.5. For each k ∈ P ∪ Q, assume that fk is an M♮-concave function

satisfying (A′). Let x be a feasible allocation. Then there exists a feasible salary
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vector s forming a pairwise strictly stable outcome (x, s) if and only if there exist

p ∈ RE, zP = (z(i) | i ∈ P ) ∈ (Z∪ {+∞})E and zQ = (z(j) | j ∈ Q) ∈ (Z∪ {+∞})E

such that

x(i) ∈ AM(fi[+p(i), α(i)], z(i)) (∀i ∈ P ), (3.1.6)

x(j) ∈ AM(fj[−p(j), α(j)], z(j)) (∀j ∈ Q), (3.1.7)

π ≤ p ≤ π, (3.1.8)

e ∈ E, zP (e) < +∞ ⇒ p(e) = π(e), zQ(e) = +∞, (3.1.9)

e ∈ E, zQ(e) < +∞ ⇒ p(e) = π(e), zP (e) = +∞. (3.1.10)

Moreover, for any x, p, zP , and zQ satisfying (3.1.6)−(3.1.10), (x, p) is a pairwise

strictly stable outcome.

Proof. The Only-If Part: Let (x, s) be a pairwise strictly stable outcome. Then

for each pair (i, j) ∈ E with x(i, j) = 0, we define r(i, j) as the supremum of

the set of γs satisfying (PSS3(i)) without the constraint γ ≤ π(i, j). (we have

r(i, j) ̸= +∞ if there exists y ∈ domfi such that y(i, j) > 0 and y(i, j′) ≤ x(i, j′) for

all j′ ∈ Q\{j}.) If r(i, j) = +∞, then redefine r(i, j) as the infimum of the set of γs

satisfying (PSS3(ii)) without the constraint π(i, j) ≤ γ. (We have r(i, j) ̸= −∞ if

there exists y ∈ domfj such that y(i, j) > 0 and y(i′, j) ≤ x(i′, j) for all i′ ∈ P \{i}.)
If r(i, j) = −∞, then we redefine r(i, j) = −ε for a sufficiently large positive number

ε. For each (i, j) ∈ E, we redefine p ∈ RE, zP , zQ ∈ (Z ∪ {+∞})E by

p(i, j) =


s(i, j) if x(i, j) > 0,

r(i, j) else if π(i, j) ≤ r(i, j) ≤ π(i, j),

π(i, j) else if r(i, j) < π(i, j),

π(i, j) else if π(i, j) < r(i, j).

(3.1.11)

zP (i, j) =

{
x(i, j) if (PSS3(i)) does not hold for γ = p(i, j),

+∞ otherwise.
(3.1.12)

zQ(i, j) =

{
x(i, j) if (PSS3(ii)) does not hold for γ = p(i, j),

+∞ otherwise.
(3.1.13)

Since s is feasible hence (3.1.8) is satisfied by p. It follows from pairwise strict sta-

bility of (x, s) that zP (i, j) = +∞ holds. We consider the case where zP (i, j) < +∞.

40



In this case, there exists y′ ∈ ZE(j) such that fi[+p(i), α(i)](x(i)) < fi[+p(i), α(i)](y
′)

and y′(i, j′) ≤ x(i, j′) for all j′ ∈ Q \ {j}. Here we note that fi[+p(i), α(i)](x(i)) =

fi[+s(i), α(i)](x(i)) and fi[+p(i), α(i)](y
′) = fi[+sj(i)[p(i, j)], α(i)](y

′). We will show

(3.1.9). On contrary, suppose that p(i, j) > π(i, j). If x(i, j) > 0 then for a suffi-

ciently small number δ > 0, we get

fi[+p(i), α(i)](x(i)) < fi[+p(i) − δχ(i,j), α(i)](y
′),

fj[−p(j), α(j)](x(j)) < fj[−p(j) − δχ(i,j), α(j)](x(j)).

This implies that (PSS3) does not hold for γ = p(i, j) − δ ≥ π(i, j), which is

a contradiction. So, we assume that x(i, j) = 0. Since p(i, j) > π(i, j), we get

p(i, j) ≤ r(i, j) by (3.1.11). Since (PSS3(i)) is nondecreasing in γ and p(i, j) ≤
r(i, j). So, the definition of r(i, j) guarantees that (PSS3(i)) holds for γ = p(i, j).

This contradicts zP (i, j) < +∞. So, (3.1.9) is satisfied.

Now we consider the case zQ(i, j) < +∞ and prove that (3.1.10) holds. On the

contrary, suppose that p(i, j) < π(i, j). If x(i, j) > 0, we reach a contradiction in

the same way as above. Hence, assume that x(i, j) = 0. By (3.1.11) and by the

assumption, we have p(i, j) ≥ r(i, j). If r(i, j) is defined by (PSS3(i)) then for a

sufficiently small number δ > 0, (PSS3) does not hold for γ = p(i, j) + δ ≤ π(i, j).

This is a contradiction.

In the other case (where r(i, j) is either defined by (PSS3(ii)) or set to be suffi-

ciently small −ε), (PSS3(ii)) holds for γ = p(i, j) because p(i, j) ≥ r(i, j). This is a

cotradiction to the assumption that zQ(i, j) < +∞. Hence, we get (3.1.10).

Now we have to prove (3.1.6). On the contrary, suppose that (3.1.6) does

not hold. Then for some i ∈ P there exists y′ ∈ AM(fi[+p(i), α(i)], z(i)) with

fi[+p(i), α(i)](x(i)) < fi[+p(i), α(i)](y
′). We choose y′ ∈ AM(fi[+p(i), α(i)], z(i)) with

fi[+p(i), α(i)](x(i)) < fi[+p(i), α(i)](y
′) that minimizes

∑
{y′(e)−x(i)(e) | e ∈ supp+(y′

− x(i))}. Since fi[+s(i), α(i)](y) = fi[+p(i), α(i)](y) holds for all y ∈ ZE(i) with

0 ≤ y ≤ x(i). So, (PSS1) implies the existence of e ∈ E(i) with y′(e) > x(i)(e).

By (−M♮-EXC[Z]), there exists e′ ∈ supp−(y′ − x(i)) ∪ {0} such that

fi[+p(i), α(i)](y
′) + fi[+p(i), α(i)](x(i)) ≤ fi[+p(i), α(i)](y

′ − χe + χe′)

+fi[+p(i), α(i)](x(i) + χe − χe′).
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By definition of y′ , we have

fi[+p(i), α(i)](y
′) > fi[+p(i), α(i)](y

′ − χe + χe′).

Using the above two inequalities, we have fi[+p(i), α(i)](x(i)) < fi[+p(i), α(i)](x(i) +

χe − χe′). This yields zP (e) = x(i)(e) by (3.1.12), which contradicts that y′ ≤ z(i).

Hence (3.1.6) holds. ((3.1.7) has a similar proof).

The If Part: Let p ∈ RE and zP , zQ ∈ (Z ∪ {+∞})E be vectors that satisfy

(3.1.6) − (3.1.10). We take s = p and prove that (x, s) is a pairwise strictly stable

outcome. Since for all k ∈ (P ∪Q) x(k) ≤ z(k), hence (PSS1) and (PSS2) are evident

directly from (3.1.6) and (3.1.7). Contrarily, suppose that there exist i ∈ P , j ∈ Q,

γ ∈ [π(i, j), π(i, j)], y′ ∈ ZE(i) and y′′ ∈ ZE(j) such that (3.1.3) and (3.1.4) hold.

Since y′ ≥ 0. So, using (3.1.6), condition (3.1.3) implies that either (Case i)

y′(i, j) > z(i)(i, j) or (Case ii) y′(i, j) ≤ z(i)(i, j) and p(i, j) < γ holds. Simi-

larly, (3.1.7) and (3.1.4) imply that either (Case iii) y′′(i, j) > z(j)(i, j) or (Case

iv) y′′(i, j) ≤ z(j)(i, j) and γ < p(i, j) holds. But the (Case ii) and the (Case iv)

are trivially inconsistent. Also, (3.1.9) or (3.1.10) assures that the (Case i) and the

(Case iii) cannot hold simultaneously. Further, (Case i) and (3.1.9) together imply

that p(i, j) = π(i, j) is inconsistent with the (Case iv). Similarly, due to (3.1.10),

(Case ii) is inconsistent with the (Case iii). This means that (3.1.3) and (3.1.4)

cannot hold at a time, which is a contradiction to our supposition. Hence proved

that (x, s) is a pairwise strictly stable outcome.

For each x ∈ ZE, we define two aggregated functions as follows:

fP (x) =
∑
i∈P

fi(x(i)), fQ(x) =
∑
j∈Q

fj(x(j)). (3.1.14)

Then one can see that fP is an M♮-concave function on ZE if fi is an M♮-concave

function on ZE(i) for each i ∈ P . Similarly, fQ is an M♮-concave function on ZE if

fj is an M♮-concave function on ZE(j) for each j ∈ Q.

Lemma 3.1.6 (Fujishige and Tamura [10]). For each i ∈ P , x(i) ∈ AM(fi [+p(i), α(i)]

, z(i)) if and only if x ∈ AM(fP [+p, α], zP ). Similarly, for each j ∈ Q, x(j) ∈
AM(fj[−p(j), α(j)], z(j)) if and only if x ∈ AM(fQ[−p, α], zQ).
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For aggregated functions fP and fQ defined by (3.1.14), we now re-write (A′) in

the following way:

(A′′) The effective domains domfP and domfQ of fP and fQ, respectively, are

bounded and contain 0 ∈ ZE as a lower bound.

Theorem 3.1.7. Let fP , fQ : ZE → R ∪ {−∞} be M♮-concave functions satisfying

(A′′) and, π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π. Then there exist

x ∈ ZE, p ∈ RE and zP , zQ ∈ (Z ∪ {+∞})E such that

x ∈ AM(fP [+p, α], zP ) ∩ AM(fQ[−p, α], zQ), (3.1.15)

π ≤ p ≤ π, (3.1.16)

e ∈ E, zP (e) < +∞ ⇒ p(e) = π(e), zQ(e) = +∞, (3.1.17)

e ∈ E, zQ(e) < +∞ ⇒ p(e) = π(e), zP (e) = +∞. (3.1.18)

By Lemma 3.1.6 and Theorem 3.1.5, we see that Theorem 3.1.4 is a direct con-

sequence of Theorem 3.1.7. Thus, to find a pairwise strictly stable outcome in our

model, it is enough to prove Theorem 3.1.7. To prove Theorem 3.1.7, we will give

an algorithm in the next section.

In view of Theorem 3.1.7, we say that a pair (x, p) of x ∈ ZE and p ∈ RE

is pairwise strictly stable if there exist vectors zP , zQ ∈ (Z ∪ {+∞})E that satisfy

(3.1.15)−(3.1.18).

3.2 An Algorithm

In this section, we prove Theorem 3.1.7 by proposing an algorithm. Our algorithm

and the algorithm proposed by Fujishige and Tamura [10] have the same essence.

However, the technique used by Fujishige and Tamura [10] to modify the salary

vector does not work in our case due to generality of our model. We will employ

linear programming to modify the salary vector in each iteration of the algorithm.

Moreover, our presentation of the algorithm is much simpler than that of Fujishige

and Tamura [10].

First, we give few lemmas that will play a crucial role in devising algorithm. At

the end of this section, we present the algorithm and discuss its correctness and
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termination. We remark that Lemmas 3.2.1 and 3.2.2 are extracted from Section 5

of Fujishige and Tamura [10] with substantial modifications.

Lemma 3.2.1. For M♮-concave functions fP , fQ : ZE → R∪{−∞} satisfying (A′′)

and for vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with π ≤ π, there exist

xP , xQ ∈ ZE, zP , zQ ∈ (Z ∪ {+∞})E and p ∈ RE such that

xQ ≤ xP , (3.2.1)

xP ∈ AM(fP [+p, α], zP ), (3.2.2)

xQ ∈ AM(fQ[−p, α], zQ), (3.2.3)

π ≤ p ≤ π, (3.2.4)

e ∈ E, zP (e) < +∞ ⇒ p(e) = π(e), zQ(e) = +∞, (3.2.5)

e ∈ E, zQ(e) < +∞ ⇒ p(e) = π(e), zP (e) = +∞ and

xP (e) = xQ(e) = zQ(e).
(3.2.6)

Proof. We will find vectors xP , xQ ∈ ZE, zP , zQ ∈ (Z ∪ {+∞})E and p ∈ RE that

satisfy (3.2.1)−(3.2.6). For each e ∈ E, we define p(e) and zP (e) by:

p(e) =

{
π(e) if π(e) < +∞
b otherwise,

zP (e) = +∞,

where b is a sufficiently large positive number. Then p satisfies (3.2.4). Let xP ∈
AM(fP [+p, α], zP ) and define zQ(e), for each e ∈ E, by:

zQ(e) =

{
xP (e) if π(e) < +∞
+∞ otherwise.

Let xQ ∈ AM(fQ[−p, α], zQ). If there is e ∈ E with xQ(e) < xP (e) and p(e) = π(e),

we set zQ(e) = +∞. Lemma 1.2.9 guarantees that xQ ∈ AM(fQ[−p, α], zQ) for

the updated zQ. Then xP , xQ, zP , zQ and p satisfy (3.2.5) and (3.2.6). Moreover,

since b is chosen sufficiently large positive number and by (A′′), domfQ is bounded

below by 0 ∈ ZE, we have xQ(e) = 0 for each e ∈ E with π(e) = +∞. Therefore

xQ(e) ≤ xP (e) for each e ∈ E. Thus (3.2.1) is also true.
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For a given feasible salary vector s ∈ RE and for vectors x, y ∈ ZE, we denote

Ls = {e ∈ E | s(e) = π(e)}, (3.2.7)

Txy = supp+(x− y). (3.2.8)

Lemma 3.2.2. Let fP , fQ : ZE → R ∪ {−∞} be M♮-concave functions satisfying

(A′′) and xP , xQ ∈ ZE, zP , zQ ∈ (Z ∪ {+∞})E and p ∈ RE are the vectors that

satisfy (3.2.1)−(3.2.6). Assume that Lp∩TxP xQ
̸= ∅ and ẽ ∈ Lp∩TxP xQ

. Then there

exist vectors x′
P , x

′
Q, z

′
P , z

′
Q and p′ = p that satisfy (3.2.1)−(3.2.6) and2

z′P ≤ zP , zQ ≤ z′Q, (3.2.9)∑
e∈E

(x′
P (e)− x′

Q(e)) ≤
∑
e∈E

(xP (e)− xQ(e)), (3.2.10)

z′P (ẽ) < zP (ẽ), (3.2.11)

xQ(ẽ) = x′
Q(ẽ) ≤ x′

P (ẽ) = xP (ẽ)− 1. (3.2.12)

Proof. We will find vectors x′
P , x

′
Q, z

′
P and z′Q by modification of xP , xQ, zP and zQ.

From (3.2.6), we see that zQ(e) = +∞ for each e ∈ Lp ∩ TxP xQ
. Therefore, we can

define z′P (e) for each e ∈ E by

z′P (e) =

{
xP (e) if e ∈ Lp ∩ TxP xQ

zP (e) otherwise.

Then one can readily see that xP ∈ AM(fP [+p, α], z′P ). Let z′P := z′P − χẽ. By

Lemma 1.2.8 there exists e′ ∈ {0}∪E \{Lp∩TxP xQ
} such that x′

P := xP +χe′ −χẽ ∈
AM(fP [+p, α], z′P ). Obviously, z′P ≤ zP and z′P (ẽ) < zP (ẽ).

If e′ = 0 or zQ(e
′) = +∞ then no modification is needed for e′ and we take

x′
Q := xQ and z′Q := zQ.

If zQ(e
′) < +∞ then x′

P (e
′) = xQ(e

′) + 1 = zQ(e
′) + 1. In this case, we set

z′Q := zQ + χe′ . By Lemma 1.2.8, there exists e′′ ∈ E ∪ {0} such that x′
Q :=

xQ − χe′′ + χe′ ∈ AM(fQ[−p, α], z′Q). If e′ = e′′ then x′
Q(e

′) < x′
P (e

′) = z′Q(e
′) and

we set z′Q(e
′) = +∞. In this case, Lemma 1.2.9 implies x′

Q ∈ AM(fQ[−p, α], z′Q). If

e′ ̸= e′′ then x′
P (e

′) = x′
Q(e

′) = z′Q(e
′) and no further modification is needed for e′.

2This means that (3.2.1)−(3.2.6) remain true if xP , xQ, zP , zQ and p are replaced by

x′
P , x

′
Q, z

′
P , z

′
Q and p′, respectively.
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Now, if z′Q(e
′′) < +∞ then we put z′Q(e

′′) = +∞. Lemma 1.2.9 gives x′
Q ∈

AM(fQ[−p, α], z′Q). If z
′
Q(e

′′) = +∞ then no modification is needed for e′′. Then one

can see that (3.2.1)−(3.2.6) and (3.2.9)−(3.2.12) hold for the vectors x′
P , x

′
Q, z

′
P , z

′
Q

and p.

We see that if Lp ∩TxP xQ
̸= ∅ in Lemma 3.2.2 then p remains unchanged. In the

next lemma, we will see that if Lp ∩ TxP xQ
= ∅ then we need a modification of the

salary vector p.

Lemma 3.2.3. Let fP , fQ : ZE → R ∪ {−∞} be M♮-concave functions satisfying

(A′′) and xP , xQ ∈ ZE, zP , zQ ∈ (Z ∪ {+∞})E and p ∈ RE are the vectors that

satisfy (3.2.1)−(3.2.6). Assume that xP ̸= xQ and Lp ∩ TxP xQ
= ∅. Then there exist

vectors x′
P , x

′
Q, z

′
P , z

′
Q and p′ ≤ p that satisfy (3.2.1)−(3.2.6), (3.2.9) and (3.2.10).

Moreover, at-least one of the following holds:

Lp ⊂ Lp′ , (3.2.13)∑
e∈E

x′
P (e) <

∑
e∈E

xP (e), (3.2.14)∑
e∈E

xQ(e) <
∑
e∈E

x′
Q(e), (3.2.15)

zQ ̸= z′Q, (3.2.16)

Lp′ ∩ Tx′
P x′

Q
̸= ∅. (3.2.17)

Proof. Define a subset U ⊆ E by

U = {e ∈ E | zQ(e) < +∞} (3.2.18)

and3 let

S = {0} ∪ Lp ∪ U. (3.2.19)

We will find vectors x′
P , x

′
Q, z

′
P , z

′
Q and p′ by modification of xP , xQ, zP , zQ and p.

3Note that Lp ⊆ U at this stage. However, it may not be true in the subsequent iterations of

the algorithm.
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For each x ∈ ZE, we define

FP (x) =

{
fP (x) if x ≤ zP

−∞ otherwise,

FQ(x) =

{
fQ(x) if x ≤ zQ

−∞ otherwise.

(3.2.20)

Obviously, FP and FQ are M♮-concave, xP ∈ argmaxFP [+p, α] and

xQ ∈ argmaxFQ[−p, α].

Let Ê = {0} ∪E. Construct a directed graph G = (Ê, A), where A is the union

of two sets AP and AQ defined by:

AP = {(e, e′) ∈ Ê × Ê | e ̸= e′, xP + χe − χe′ ∈ domFP},
AQ = {(e, e′) ∈ Ê × Ê | e ̸= e′, xQ − χe + χe′ ∈ domFQ}.

(3.2.21)

Define weight ℓ(e, e′) of each arc (e, e′) ∈ A by:

ℓ(e, e′) =

{
FP [+p, α](xP )− FP [+p, α](xP + χe − χe′) if (e, e′) ∈ AP

FQ[−p, α](xQ)− FQ[−p, α](xQ − χe + χe′) if (e, e′) ∈ AQ.

(3.2.22)

By Theorem 1.2.6, ℓ(e, e′) ≥ 0 for each (e, e′) ∈ A. Also, 0 ∈ domFP by (A′′).

Lemma 3.1.2 implies [0, xP ] ⊆ domFP which further implies that xP − χe ∈ domFP

for each e ∈ TxP xQ
. Hence, (0, e) ∈ AP for each e ∈ TxP xQ

. This shows that there

is a path from S to TxP xQ
in G. Let P be the set of paths from S to TxP xQ

in the

graph G. Denote the terminal arc of each path P ∈ P by eP . Define

m̃ = min{

∑
a∈P

ℓ(a)

α(eP )
| P ∈ P}. (3.2.23)

Let P̃ , denoted by (e0, a1, e1, . . . , an, en), be a path from S to TxP xQ
which satisfies

(3.2.23). Furthermore, suppose that P̃ has the minimum number of arcs among
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those paths that satisfy (3.2.23). We define a linear program by:

Maximize
∑
e∈E

d(e) (3.2.24)

subject to

ℓ(e, e′) + α(e)d(e)− α(e′)d(e′) ≥ 0 ∀(e, e′) ∈ A,

d(e) = 0 ∀e ∈ S,

0 ≤ α(e)d(e) ≤ α(en)m̃ ∀e ∈ E \ S,

0 ≤ d(e) ≤ p(e)− π(e) ∀e ∈ E \ S.

Note that the feasible region is bounded and zero vector is a feasible solution of the

linear program (3.2.24). Thus there is an optimal solution d̃ = (d̃(e) | e ∈ E), say,

of the linear program (3.2.24). We shall write ℓ̃(a) = ℓ(a)+α(e)d̃(e)−α(e′)d̃(e′) for

each a = (e, e′) ∈ A. Since ℓ̃(e, e′) ≥ 0 for each (e, e′) ∈ A, it holds that ℓ̃(e, e′) ≥ 0

for each e, e′ ∈ Ê. This together Theorem 1.2.6 gives

xP ∈ argmaxFP [+(p− d̃), α], xQ ∈ argmaxFQ[−(p− d̃), α]. (3.2.25)

Let p′ = p−d̃. Then xP , xQ, zP , zQ and p′ satisfy (3.2.1)−(3.2.6), (3.2.9) and (3.2.10).

If d̃(e) = p(e)− π(e) for some e ∈ E \ S then obviously Lp ⊂ Lp′ , that is, (3.2.13) is

true.

Next, we consider the case when d̃(e) < p(e)− π(e) for each e ∈ E \ S. We first

prove the following claim:

Claim: If d̃(e) < p(e)− π(e) for each e ∈ E \ S then d̃(en) = m̃.

[Proof of Claim:] Obviously, d̃(en) ≤ m̃. On contrary, suppose that d̃(en) < m̃. Let

Ã = {(e, e′) ∈ A | ℓ̃(e, e′) = 0}. (3.2.26)

We define a subset Ẽ ⊆ E by:

Ẽ = {e ∈ E | en is reachable from e by a path of arcs in Ã}. (3.2.27)

Then there is no path from S to en of arcs in Ã. For otherwise, if P is a path from S

to en of arcs in Ã then ℓ̃(e, e′) = 0 for each (e, e′) ∈ P . This gives
∑
a∈P

ℓ(a)/α(en) =

d̃(en) < m̃ which contradicts (3.2.23). Consequently, we have

S ∩ Ẽ = ∅. (3.2.28)
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Since ℓ̃(e, e′) = 0 and ℓ(e, e′) ≥ 0 for each (e, e′) ∈ Ã, it holds that α(e)d̃(e) ≤
α(e′)d̃(e′). By assumption, α(en)d̃(en) < α(en)m̃ which implies

α(e)d̃(e) < α(en)m̃ ∀e ∈ Ẽ.

Observe that if there is an arc (e, e′) ∈ A with e /∈ Ẽ and e′ ∈ Ẽ then ℓ̃(e, e′) > 0.

Thus one can choose a positive real number ε which satisfies the following:

d̃(e) +
ε

α(e)
≤ p(e)− π(e) ∀e ∈ Ẽ,

α(e)

(
d̃(e) +

ε

α(e)

)
≤ α(en)m̃ ∀e ∈ Ẽ,

ℓ(e, e′) + α(e)d̃(e)− α(e′)

(
d̃(e′) +

ε

α(e′)

)
≥ 0

∀(e, e′) ∈ A with e /∈ Ẽ and e′ ∈ Ẽ.

(3.2.29)

We define

d̂ = d̃+
∑
e∈Ẽ

ε

α(e)
χe. (3.2.30)

The definition of d̂ together with (3.2.28) and (3.2.29) imply that

ℓ(e, e′) + α(e)d̂(e)− α(e′)d̂(e′) ≥ 0 ∀(e, e′) ∈ A,

d̂(e) = d̃(e) = 0 ∀e ∈ S,

α(e)d̂(e) ≤ α(en)m̃ ∀e ∈ E \ S,

d̂(e) ≤ p(e)− π(e) ∀e ∈ E \ S.

(3.2.31)

This shows that d̂ is a feasible solution of the linear program (3.2.24). However,

d̂ ≥ d̃ and d̂(en) > d̃(en) which contradicts to the fact that d̃ is an optimal solution

of the linear program (3.2.24). Hence, d̃(en) = m̃. [end of proof of Claim]

By the constraints in the linear program (3.2.24) and the above claim, we have

d̃(e0) = 0, (3.2.32)

m̃ =

∑
a∈P̃

ℓ(a)

α(en)
, (3.2.33)

α(ei)d̃(ei) ≤ m̃α(en) (∀ ei ∈ P̃ , i ∈ {1, 2, . . . , n− 1}), (3.2.34)

d̃(en) = m̃. (3.2.35)
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Since last arc in P̃ is an = (en−1, en). Using (3.2.32)− (3.2.35) we have

0 ≤ ℓ̃(an) = ℓ(an) + α(en−1)d̃(en−1)− α(en)d̃(en)

= ℓ(an) + α(en−1)d̃(en−1)−
∑
a∈P̃

ℓ(a)

≤ −
∑

a∈{P̃\{an,an−1}}

ℓ(a) + α(en−2)d̃(en−2)

...

≤ −
∑

a∈{P̃\{an,an−1,...,a1}}

ℓ(a) + α(e0)d̃(e0)− ℓ(a1)

≤ α(e0)d̃(e0) = 0.

From above inequalities, it is easily seen that ℓ̃(a) = 0 for each a ∈ P̃ . This together

with (3.2.25) gives

xP + χe − χe′ ∈ argmaxFP [+p′, α] ∀(e, e′) ∈ AP ∩ P̃ , (3.2.36)

xQ − χe + χe′ ∈ argmaxFQ[−p′, α] ∀(e, e′) ∈ AQ ∩ P̃ . (3.2.37)

Now, we prove that the arcs of P̃ alternate in arcs of AP and AQ. suppose contrarily

that there are two consecutive arcs (e, e′), (e′, e′′) ∈ P̃ that belong to AP . Then

xP+χe′−χe′′ and xP+χe−χe′ belong to domFP (by (3.2.21)). Since P̃ has minimum

number of arcs and, FP and FQ are M♮-concave. So, applying (−M♮-EXC[Z]), we

have

FP [+p, α](xP + χe′ − χe′′) + FP [+p, α](xP + χe − χe′)

≤ max

{
FP [+p, α](xP + χe − χe′′) + FP [+p, α](xP )

FP [+p, α](xP + χe + χe′ − χe′′) + FP [+p, α](xP − χe′)

}
.

Again applying (−M♮-EXC[Z]), we get

FP [+p, α](xP + χe′ − χe′′) + FP [+p, α](xP + χe − χe′)

≤ max

{
FP [+p, α](xP + χe − χe′′) + FP [+p, α](xP )

FP [+p, α](xP + χe) + FP [+p, α](xP − χe′′)

}
.

Applying (−M♮-EXC[Z]) again on the last inequality, we get

FP [+p, α](xP + χe′ − χe′′) + FP [+p, α](xP + χe − χe′)

≤ FP [+p, α](xP + χe − χe′′) + FP [+p, α](xP ).
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Using (3.2.22), the last inequality implies that

ℓ(e, e′) + ℓ(e′, e′′) ≥ ℓ(e, e′′).

This contradicts that P̃ has minimum number of arcs. Consequently, we have

{e1, e′1} ∩ {e2, e′2} = ∅ for each two distinct arcs (e1, e
′
1), (e2, e

′
2) ∈ AP ∩ P̃ . Sim-

ilarly, {e1, e′1} ∩ {e2, e′2} = ∅ for each two distinct arcs (e1, e
′
1), (e2, e

′
2) ∈ AQ ∩ P̃ .

This together with Lemma 1.2.7 gives

x′
P := xP +

∑
(e,e′)∈AP∩P̃

(χe − χe′) ∈ argmaxFP [+p′, α], (3.2.38)

x′
Q := xQ −

∑
(e,e′)∈AQ∩P̃

(χe − χe′) ∈ argmaxFP [−p′, α]. (3.2.39)

With this modification, we see that

x′
P ∈ AM(fP [+p′, α], zP ), x′

Q ∈ AM(fQ[−p′, α], zQ).

Moreover, x′
Q ≤ x′

P and π ≤ p′ ≤ π. Let z′P := zP and z′Q := zQ. Then at this

stage, (3.2.1)−(3.2.5), (3.2.9) and (3.2.10) are attained for x′
P , x

′
Q, z

′
P , z

′
Q and p′.

a1 = (e0, e1) is the first arc of P̃ . If e0 /∈ U (i.e., e0 = 0 or e0 ∈ Lp′) then (3.2.6)

is also true for x′
P , x

′
Q, z

′
P , z

′
Q and p′. If e0 = 0 then either (3.2.14) or (3.2.15) is

attained. If e0 ∈ Lp′ then x′
Q(e0) < x′

P (e0), that is, (3.2.17) is true.

Finally, we consider the case when e0 ∈ U . By (3.2.38) and (3.2.39), we see that

either x′
Q(e0)+1 = x′

P (e0) = z′Q(e0)+1 (i.e., a1 ∈ AP ) or x
′
Q(e0)+1 = x′

P (e0) = z′Q(e0)

(i.e., a1 ∈ AQ). We modify vectors x′
P , x

′
Q and z′Q to attain (3.2.6) while preserving

(3.2.1)−(3.2.5), (3.2.9) and (3.2.10).

If x′
Q(e0) + 1 = x′

P (e0) = z′Q(e0), we remove e0 from U by setting z′Q(e0) := +∞.

Lemma 1.2.9 guarantees that x′
Q ∈ AM(fQ[−p′, α], z′Q) for the modified z′Q. Thus,

(3.2.6) and (3.2.16) are obtained.

If x′
Q(e0) + 1 = x′

P (e0) = z′Q(e0) + 1 then we fix z′Q(e0) := z′Q(e0) + 1, i.e.,

z′Q(e0) is increased by one. Then by Lemma 1.2.8(b), there exists e′ ∈ Ê such that

x′
Q−χe′+χe0 ∈ AM(fQ[−p′, α], z′Q) for the modified z′Q. We fix x′

Q := x′
Q−χe′+χe0 .

If e′ ∈ U , we remove it from U by fixing z′Q(e
′) := +∞. Lemma 1.2.9 implies that

x′
Q ∈ AM(fQ[−p′, α], z′Q) for the modified z′Q. If e′ /∈ U then we keep z′Q(e

′) the

same. Hence, (3.2.6) and (3.2.16) are obtained.
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An algorithm for finding a pairwise strictly stable outcome:

Input: Two disjoint and finite sets P and Q, the set of ordered pairs E = P ×Q,

a vector α ∈ RE
+, two vectors π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E with

π ≤ π, two aggregated M♮-concave functions defined by (3.1.14).

Output: Vectors xP , xQ ∈ ZE, zP , zQ ∈ (Z ∪ {+∞})E and p ∈ RE that satisfy

(3.2.1)−(3.2.6) and xP = xQ.

Step 0: Find xP , xQ, zP , zQ and p that satisfy (3.2.1)−(3.2.6) by Lemma 3.2.1.

Step 1: If xP = xQ then stop.

Step 2: Define Lp and TxP xQ
by (3.2.7) and (3.2.8), respectively. If Lp ∩ TxP xQ

̸= ∅
then go to Step 3; else go to Step 4.

Step 3: Find x′
P , x

′
Q, z

′
P , z

′
Q and p′ = p that satisfy (3.2.1)−(3.2.6) and (3.2.9)

−(3.2.12) by Lemma 3.2.2. Go to Step 5.

Step 4: Find x′
P , x

′
Q, z

′
P , z

′
Q and p′ ≤ p that satisfy (3.2.1)−(3.2.6), (3.2.9) and

(3.2.10) by Lemma 3.2.3. Go to Step 5.

Step 5: Set xP := x′
P , xQ := x′

Q, zP := z′P , zQ := z′Q and p := p′. Go to Step 1.

We now show correctness and termination of the Algorithm.

Lemma 3.2.4. In each iteration of the Algorithm, the following statements hold:

(i) zP decreases or remains the same. zQ increases or remains the same.

(ii)
∑
e∈E

(xP (e)− xQ(e)) decreases or remains the same.

(iii) Lp enlarges or remains the same.

Proof. Note that the vectors xP , xQ, zP , zQ and p are modified at Step 5 of the

Algorithm. When the Algorithm goes from Step 3 to Step 5 then (3.2.9) and (3.2.10)

hold by Lemma 3.2.2, which implies that (i) and (ii) hold. If the Algorithm goes from

Step 4 to Step 5 then (3.2.9) and (3.2.10) hold by Lemma 3.2.3, which implies that
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(i) and (ii) hold. Also, if the Algorithm goes from Step 3 to Step 5 then p remains

unchanged at Step 5 and consequently, Lp remains the same. If the Algorithm goes

from Step 4 to Step 5 then (3.2.13) implies that Lp remains the same or enlarges at

Step 5. This proves the lemma.

Lemma 3.2.5. In each iteration of the Algorithm at Step 5, at-least one of the

following holds:

(i) Some component of zP decreases.

(ii) Some component of zQ increases.

(iii)
∑
e∈E

(xP (e)− xQ(e)) decreases.

(iv) Lp enlarges.

(v) Lp ∩ TxP xQ
̸= ∅.

Proof. If the Algorithm goes from Step 3 to Step 5 then (3.2.11) holds by Lemma

3.2.2 so that,(i) holds. If the Algorithm goes from Step 4 to Step 5 then at-least

one from (3.2.13)−(3.2.17) holds by Lemma 3.2.3, so that, (i)-(iii) and atleast one

of (iv) and (v) hold. Therefore, the lemma is proved.

It is noteworthy to mention that if Lp ∩ TxP xQ
̸= ∅ in some iteration at Step 5

then in next iteration at Step 5, (i) of Lemma 3.2.5 is true.

If the Algorithm terminates at Step 1 then the vectors xP , xQ ∈ ZE, zP , zQ ∈
(Z ∪ {+∞})E and p ∈ RE satisfy (3.2.1)−(3.2.6) and xP = xQ. Hence, by letting

x = xP = xQ, we see that (3.1.15)−(3.1.18) hold true.

Lemma 3.2.6. If the Algorithm terminates then the output satisfies (3.1.15)−(3.1.18)

with x = xP = xQ. Consequently, there exists a pairwise strictly stable outcome.

Lemma 3.2.7. The Algorithm terminates after a finite number of iterations.

Proof. The termination depends on
∑
e∈E

(xP (e)− xQ(e)), zP , zQ and Lp. By (A′′) and

by definitions of xP , xQ, zP , zQ and Lp, we have the following:

•
∑
e∈E

(xP (e)− xQ(e)) is bounded below by 0 and has an upper bound.
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• 0 ≤ xP ≤ zP , that is, zP is bounded below by 0.

• If zQ(e) < +∞ for some e ∈ E then zQ(e) = xQ(e) by (3.2.6), that is, zQ(e) has

an upper bound.

• |Lp| ≤ |E|.

The termination follows from Lemmas 3.2.4 and 3.2.5.

3.3 Open Problems

In this chapter, we extended the economic model of Fujishige and Tamura [10] by

defining the payoff functions in more general way. We proposed an algorithm to find

a pairwise strictly stable outcome in our model.

1. Suppose that α = (α(i, j) ∈ R+ | (i, j) ∈ E) and β = (β(i, j) ∈ R+ | (i, j) ∈
E) be two given positive vectors. Let us define payoff of a worker i on an outcome

(x, s) by

fi[+s(i), αi](x(i)) = fi(x(i)) +
∑
j∈Q

s(i, j)α(i, j)x(i, j). (3.3.1)

Similarly, define payoff of a firm j on an outcome (x, s) by

fj[−s(j), βj](x(j)) = fj(x(j))−
∑
i∈P

s(i, j)β(i, j)x(i, j). (3.3.2)

It is an open problem to find a pairwise strictly stable outcome in our model by

defining the payoff of workers and firms by (3.3.1) and (3.3.2), respectively.

2. In our model, we assume that the feasible salary vector s is a real vector, that

is, s ∈ RE. It is an open problem to find a pairwise strictly stable outcome in our

model by assuming s ∈ ZE.
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