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Abstract

Fractional Calculus is one of the branches of mathematical analysis which involves study of

differential operator by taking the real number powers. Generalizing the differential equations in

terms of fractional calculus, fractional differential equation evolves. Integral transforms are very

well known tool for solving the differential equations, so as for fractional differential equations.

In this dissertation brief history, definitions and applications of fractional calculus is discussed.

It also covers the Laplace integral definition and existence of integral and the fractional Laplace for-

mulas. Numerical inversion of the Laplace transform using series solution include problems in which

the solutions with integer orders and fractional orders are compared. Double Laplace transform is

also discussed, with its basic properties and applications to fractional partial differential equations.

Also, non-linearity of fractional differential equations is discussed and a humble effort is made to

describe a method for finding the numerical solution of non-linear fractional ordinary and partial

differential equations. The results were found using computer algebra system.
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Chapter 1

Introduction

The typical derivative and integrals, to say the least about them, are a staple for technology pro-

fessional and a fundamental mean of understanding while dealing with natural and non-natural

systems. Fractional calculus is a subdivision of mathematics which grows away from typical defini-

tions of these integrals and derivatives. It is the same outgrowth of definitions of these operators

as of exponents with integer orders. Physical consideration of exponents, according to primary

school teacher, the repeated multiplication of a numerical value by itself, exponent provides a short

notation of it. To grasp this idea, no difficulty can be faced as it is very easy and straight forward.

This clear physical definition turns into a huge confusion when exponents are of non-integer value.

To explain the lines, one can easily verify y5 = y.y.y.y.y, but what if one has to evaluate y4.5, or

moreover the transcendental exponent yπ, one can not conceive the idea how to multiply the same

quantity 4.5 or π times by itself and yet a definite value of these expressions exist for any value

of y, which can be verified by infinite series expansion or being more practical, with the help of a

calculator.

In the similar approach we consider the derivatives and integrals as they are indeed the concept

of more intricacy by nature but it is an easy job to represent their physical meaning. Once attain-

ing the perfection over it, the idea of completing numerous of these operations, i.e, integration and

differentiation follows naturally. Having a satisfaction of few restrictions like continuity of function,

finding n derivatives are as methodical as multiplication. But being more curious about it, one may

definitely ask about the derivative of non-integer order. Physical meaning of this become convo-

luted at first sight, but fractional calculus flows somewhat naturally from our typical definitions.

It will become apparent that differentiation of fractional order is a matter of fact in many modern

problems.
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1.1 History and Mathematical Background

The birthday of fractional calculus cited by most authors is 30th September 1695. As in a letter

from L’Hopital to Leibniz asking about his notation of nth derivative of a function in his publication,

Dn

Dxn
(f(x)) .

L’Hopital inquired about the order of derivative if it would be a fraction, i.e, n = 1
2 , Leibniz answer

to this was "An apparent paradox, from which one day useful consequences will be drawn. . . ". This

declaration gave birth to fractional calculus [1].

Following this first inquisition from L’Hopital, the study of fractional calculus was reserved pri-

marily to best minds in mathematics. Mentioning a few famous names in the field of mathematics

Fourier, Laplace and Euler who worked on fractional calculus and its mathematical consequences.

Many mathematicians presented their own definitions using their personal line of attack that fit to

the concept of fractional derivative or integral. Reimann-Liouville and Grunwald-Letnikov proposed

their own definitions and these are famous in fractional calculus. Although the shear number of

authentic definitions is as numerous as the mathematicians worked in this field but these all are

some kind of variations of definitions by Reimann and Grunwald.

Most of mathematical study applied to fractional calculus was earlier to the turn of 20th century.

However, what went before in last 100 years, the influence of fractional calculus in engineering and

scientific applications have been found. To congregate the requirements of physical reality some

changes in some cases are necessary to be made by mathematics.

Caputo transformed the definition of Reimann-Liouville fractional derivative for a purpose to

use integer order initial conditions for solving fractional order differential equations [2]. In 1996,

Kolwankar reformed again the Reimann-Liouville definition to differentiate no-where differentiable

fractal functions. In his publication he discussed the fractional differentiability of "Weiestrass func-

tion" which has the property that it is continuous everywhere but differentiable nowhere.

Wα(t) =
∞∑
k=0

α(s−2)k sinαkt, α > 1.

Leibniz response, after the study of 300 years proved atleast half true. Study of the 20th

century yet brought fractional calculus far from impossible by the help of physical manifestations

and numerous applications. The physical meaning is arguably impossible to grasp because the

definitions are no more rigorous then integer order counterparts.

To clear the understanding in the definitions of fractional calculus, first we discuss some necessary

yet simple mathematical definitions that will go through to the sight in the study of these concepts.
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1.1.1 Gamma Function

The bond of gamma function and fractional calculus is ionic by definition. Generalization of factorial

is a very simple interpretation of gamma function for all real numbers. Gamma function can be

defined by,

Γ(x) =

∫ ∞

0
e−ttx−1dt, ∀x ∈ R+.

To express the beauty of this function one cannot only rely on its properties. First,

Γ(x+ 1) = xΓ(x), x ∈ R

and

Γ(x) = (x− 1)!, x ∈ N.

Observation of the above two equations, gamma function is unique in the value of any quantity

and these can be shown by simple integration by parts. These relations for integer values of x are

simple factorials. While the gamma function is undefined for negative integers but yet also defined

for non-integers values. The figure demonstrates the behavior of gamma function at and around

zero [1].

Figure 1.1: Plot of Gamma Function

1.1.2 Mittage-Leffler Function

Mittage-Leffler function finds extensive use on the planet of fractional calculus and owns alot of

importance. Just as the exponential function which appears in the solution of integer order differ-
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ential equations, however, Mittage-Leffler function plays parallel role in the solution of fractional

differential equations [1].

The definition of Mittage-Leffler function is,

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0.

If α = 1 the Mittage-Leffler function is simple exponential function. Using two arguments, α and

β, Mittage-Leffler function has the form,

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0.

This is more general form but not always a necessity for fractional differential equations. Since

Mittage-Lefller function is an entire function, the series of this function is absolutely convergent on

the disk |z| < R, whenever z is on the complex plane.

1.2 Few Definitions of Fractional Integral and Derivative

Following the descending order first comes the definition of L. Euler (1730),

dn

dtn
tm = m(m− 1) . . . (m− n+ 1)tm−n, m > n

by using the following property of Gamma function,

Γ(m+ 1) = m(m− 1) . . . (m− n+ 1)Γ(m− n+ 1),

to obtain
dn

dtn
tm =

Γ(m+ 1)

Γ(m− n+ 1)
tm−n.

Then coming down to J.B. Fourier (1820− 1822), by means of integral representation,

f(t) =
1

2π

∫ ∞

−∞
f(z)dz

∫ ∞

−∞
cos(ωt− ωz)dω,

he wrote,
dn

dtn
f(t) =

1

2π

∫ ∞

−∞
f(z)dz

∫ ∞

−∞
cos(ωt− ωz +

nπ

2
)dω.

N.H. Abel (1823− 1826) considered,

ϕ(t) =

∫ t

0

p
′
(µ)

(t− µ)α
dµ,
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for arbitrary α and derivative of p, he proposed,

p(t) =
1

Γ(1− α)

d−α

dt−α
ϕ(t).

J. Lioville (1832− 1855), in his first generalization, he used the exponential function and defined,

dµ

dtµ
f(t) =

∞∑
i=0

cia
µ
i e

ait,

and after that he defined fractional integral and derivative,∫ ν

ψ(t)dtν =
1

Γ(ν)

∫ t

−∞
(t− y)ν−1ψ(y)dy,

dν

dtν
f(t) =

(−1)ν

hν
(f(t)

ν

1
f(t+ h) +

ν(ν − 1)

1.2
f(t+ 2h)− . . .).

G.F.B Riemann (1847− 1876) defined,

D−µf(t) =
1

Γ(µ)

∫ t

a
(t− y)µ−1f(y)dy + ϕ(y).

Next, N.Ya.Sonin (1869), A.V. Letnikov (1872), H. Laurent (1884), N. Nekrasove (1888) and K.

Nishimoto (1987) , they all worked on Cauchy integral and proposed the following definition after

few substitutions,

Dµf(z) =
Γ(µ+ 1)

2πi

∫ y+

a

f(x)

(x− z)µ+1
.

Reimann and Liouville defined the fractional derivative which became the basis of further research,

they joined the two definitions and came up with their own,

Dα
t f(t) =

1

Γ(m− α)
(
d

dt
)m
∫ t

0

f(y)

(t− y)α−n+1
dy.

Another joined definition was given by Grunwald and Letnikove,

βD
α
t f(t) = lim

h→0
h−α

[ t−c
h

]∑
i=0

(−1)i
(
α

i

)
f(t− ih).

K.S. Miller and B. Ross (1993) used the differential operators of the form,

Dαif(t) = Dα1Dα2 . . . Dαnf(t), i = 1, 2, 3, . . . ,

where Dαi are Reimann-liouville or Caputo definitions of differential operators [3].
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1.3 Fractional Integral and Derivative: Caputo’s Approach

To describe the Caputo definition of fractional differential and integral, first one has to know about

Reimann-Liouville definition which are refined by Caputo to come up with his own.

If α is positive real, then

Jα
a [f(x)] =

1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt,

for a ≤ x ≤ b is Reimann-Liouville fractional integral and considering α to be real positive and n is

ceiling of α, then

Dα
xf(x) = DmJn−α

a f(x),

is the Reimann-Liouville fractional differential operator of α order.

Later the definitions faced a few disadvantages when discussion reached the real world phe-

nomenon with fractional differential equations. Caputo’s fractional derivative is defined as,

∗D
α
t f(t) =

1

Γ(n− α)

∫ t

0

fn(τ)

(t− τ)α−n+1
dτ.

It is the case when n − 1 < α ≤ n and if α meets n in value then the fractional derivative is just

the ordinary derivative for integer value [5].

1.3.1 Elementary Properties for Fractional Derivative

The idea of derivative is only associated to integer in general. For a given function f(t) one can

differentiate it one, two and three times and so on. Considering a few elementary properties of

ordinary derivative with integer order also we would like fractional derivative to share them all [6].

Firstly, the linearity,

∗D
n
t [cf(t)] = c∗D

n
t [f(t)],

where c is a constant. The second one is fulfilling the requirements of distributive law,

∗D
n
t [f(t)± g(t)] = ∗D

n
t [f(t)]± ∗D

n
t [g(t)].

The last property is, the operator follows Leibniz rule for the product of functions,

∗D
n
t [f(t)g(t)] =

n∑
k=0

(
n

k

)
∗D

n−k
t [f(t)]∗D

k
t [g(t)] =

n∑
k=0

(
n

k

)
∗D

n−k
t [g(t)]∗D

k
t [f(t)],

where
(
n
k

)
= n!

k!(n−k)! , is binomial coefficient. Now in fractional calculus, fortunately the Leibniz rule

have a replacement of factorial with gamma function.

∗D
α
t [f(t)g(t)] =

∞∑
k=0

(
α

k

)
∗D

α−k
t [f(t)]∗D

k
t [g(t)] =

∞∑
k=0

(
α

k

)
∗D

α−k
t [g(t)]∗D

k
t [f(t)],
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where (
α

k

)
=

Γ(α+ 1)

Γ(k + 1)Γ(α+ 1− k)
,

where α is real positive. Then,

∗D
α
t [f(t)g(t)] =

∞∑
k=0

(
α

k

)
∗D

α−k
t [t0]∗D

k
t [f(t)± g(t)],

=
∞∑
k=0

(
α

k

)
∗D

α−k
t [t0]∗D

k
t [g(t)]±

∞∑
k=0

(
α

k

)
∗D

α−k
t [t0]∗D

k
t [g(t)],

= ∗D
α
t [f(t)]± ∗D

α
t [g(t)],

and

∗D
α
t [f(t)C] =

∞∑
k=0

(
α

k

)
∗D

α−k
t [f(t)]∗D

k
t [C] = ∗D

α
t [f(t)]C.

Similarly,

∗D
α
t [f(at)] = aα[f(x)]; x = at,

and for the monomial function f(t) = t−m, where m is positive definite integer.

∗D
α
t [f(t)] = (−1)α

Γ(m+ α)

Γ(m)
t−(m+α).

The above definition convert the real function to complex function and vice versa for the reason

that there is complex factor (−1)α = eiαπ.

1.4 Physical and Geometrical Interpretation of Fractional Differen-

tiation and Integration

An obvious lack of physical and geometrical interpretations of fractional integration and differenti-

ation which is realized in many international conferences in USA and Tokyo. It is difficult to say

something acceptable about geometrical interpretation if one can not see the picture some where.

R. Rutman and F. Ben Adda suggested different approaches to fractional integration and differ-

entiation but still they are not analogous with simple interpretations of their integer order which

complements.

Igor Podlubny [7] considered the axes τ, g and f . He plotted the function gt(τ) in a plane (τ, g)

for 0 ≤ τ ≤ t. He built a fence of varying height along the obtained curve, so that the edge of fence is

a three dimensional line (τ, gt(τ), f(τ)). His geometrical interpretation of the fractional integration

is "Shadows on the Wall". His physical interpretation of fractional derivative (Reimann Liouville

and Caputo) is "Shadows of the Past". In regard to this he described the two types of time, the
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Figure 1.2: Snapshots of the changing "shadow" of changing "fence" for 0I
α
t f(t), α = 0.75, f(t) =

t+ 0.5 sin(t), 0 ≤ t ≤ 10, with the time interval ∆t = 0.5 between the snapshops.

cosmic time and the individual time. Cosmic time which is also known as time since the big bang, is

the time coordinate frequently used in the Big Bang models of physical cosmology. Individual time

is the time experienced by the object itself. If we follow the change of the "shadow" on the wall

(g, f), which is changing simultaneously with the "fence" (see Fig. 1.2), then we have a dynamical

geometric interpretation of the fractional integral as a function of the variable t.

1.5 Fractional Differential Equations

As, an equation involving the derivatives of a function is called a differential equation. In the same

manner, an equation involving a fractional derivative is called a fractional differential equations [8].

For instance,

[Dnα + bn−1D
(n−1)α + . . .+ b0D

0]f(t) = 0, t ≥ 0,

is fractional differential equation with constant coefficients where α is real positive.

An example of fractional integral equation is Abel’s integral equation,∫ t

0
(t− τ)α−1f(t)dt = g(t), 0 < α < 1,

where g(t) is the given function. This equation can be expressed in fractional integral as,

Γ(α)Jα
t f(t) = g(t).
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Fractional diffusion equation is an example of fractional partial differential equation,

∗D
α
t u(x, t) = k

∂2u(x, t)

∂x2
, x ∈ R and t > 0,

with initial and boundary conditions,

u(x, t) → 0 as |x| → ∞,

[ut(x, t)]t=0 = f(x), for x ∈ R

and k is the constant.

1.6 Applications of Fractional Calculus

Fractional calculus was first applied by Abel for the purpose of solving integral equations which

occur in formulation of tautochronous problem, which deals with determination of shapes of friction-

less plane curve through the origin in a vertical plane alongside a particle with some mass can drop

in a time that does not depend on starting position.

In the last decades of 19th century , Heaviside was honored with success in development of

his operational calculus, in 1892, he brought fractional derivatives in study of electric transmission

lines. Heaviside used a letter p for differential operator and came up with the solution of diffusion

equation. Fractional calculus plays a part in description of the viscous interactions between fluids

and solid structures, reflections and transmission scattering operators which are derived from the

slab of human cancellus bone in elastic frame using Bolt’s theory. R.L Margin modeled the cardiac

tissue electrode interface, using fractional calculus.

In engineering, fractional calculus is applied to sound wave propagation in Rigid Porous material,

literal and longitudinal control of autonomous vehicle, in theory of visco elasticity, fractional dif-

ferentiation for edge detection, wave propagation in viscoelastic horns using the fractional calculus

rheology model. Last but not the least fractional calculus has a great influence in fluid mechanics

as well.

These are few glimpse of where the fractional calculus is applied, yet its application ground is

very vast [3].

Above are few mathematical models in which fractional calculus plays a part. To grasp the idea,

we explain diffusion equation with integer and fractional order. Considering the general represen-

tation,
∂γ

∂tγ
y(x, t) = D

∂2

∂x2
y(x, t),
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where D is constant. If γ < 1 then it is sub diffusion, γ = 1 it represents normal diffusion and γ > 1

is super diffusion.

Choice of γ is the bridging regime between diffusion equation (γ = 1) and wave equation(γ = 2).

Extending the space derivative to fractional derivatives,

∂

∂t
y(x, t) = D

∂α

∂xα
y(x, t),

is the same bridging regime between half wave equation(α→ 1) and diffusion equation(α→ 2) [4].

1.7 Laplace Transform; Definition and Existence

The Laplace transform is a famous integral transform used in mathematics with a lot of applications

in physics as well as in engineering. The Laplace transform is originated from the Fourier integral.

The Laplace transform has a vital use in solution of differential and integral equations as Fourier

transform does. In an analysis, the Laplace transform is also interpreted as a transformation from

the time-domain, that is inputs and outputs are time functions, to the frequency-domain where the

same inputs and outputs are functions of complex angular frequency. Setting a simple mathematical

description of an input or output of a system, the Laplace transform gives substitute another

mathematical description that frequently simplifies the process of examine the behavior of the

system.

Definition: Considering the Fourier integral,

g(t) =
1√
2π

∫ ∞

−∞
eiktdk

[
1√
2π

∫ ∞

−∞
e−ikxf(x)dx

]
,

replacing f(t) by H(t)e−atf(t) for t > 0, where H(t) is Heaviside function,

H(t)e−atf(t) =
1

2π

∫ ∞

−∞
eikxdk

∫ ∞

−∞
e−t(a+ik)f(t)dt,

or

H(t)f(t) =
1

2π

∫ ∞

−∞
e(a+ik)xdk

∫ ∞

−∞
e−t(a+i k)f(t)dt.

Substituting s = a+ ik which implies ds = idk, we have for t > 0 and c to a,

H(t)f(t) =
1

2πi

∫ c+i∞

c−i∞
exsds

∫ ∞

0
e−stf(t)dt. (1.7.1)

Thus, we have the definition of the Laplace transform for all values of t > 0, where f̄(s) and £{f(t)}
denotes the Laplace transform of the function f(t),

f̄(s) = £{f(t)} =

∫ ∞

0
e−stf(t)dt,
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where s is real positive or complex number with positive real parts so that the integral is convergent.

For convergence of integral function, it must be of exponential order.

Also from eq(1.7.1) we have,

f(t) = £−1{f̄(s)} =
1

2πi

∫ c+i∞

c−i∞
exsf̄(s)ds,

for all x. This complex integral defines the inverse Laplace transform denoted by £−1{f̄(s)} = f(t).

Sufficient Condition for Existence: Let g(t) be piecewise continuous over the interval 0 ≤ t <∞
and of exponential order for t ≥ T , then £{g(t)} exists for s > c.

Proof:

£{g(t)} =

∫ ∞

0
e−stg(t)dt

=

∫ τ

0
e−stg(t)dt+

∫ ∞

τ
e−stg(t)dt

= I0 + I1.

The integral I0 exists because it can be written as a sum of integrals over intervals for which e−stg(t)

is continuous.

|I1| ≤
∫ ∞

τ
|e−stg(t)|dt ≤M

∫ ∞

τ
e−stectdt

= M

∫ ∞

τ
e−(s−c)tdt = −M e−(s−c)t

s− c
|∞τ

= M
e−(s−c)τ

s− c
, for s > c.

Since
∫∞
τ Me−(s−c)tdt converges, then

∫∞
τ |e−stg(t)| converges by comparison test for improper

integrals, which in return implies that I1 exist for s > c. The existence of I0 and I1 implies the

existence of Laplace integral.

Initial and Final Value Theorem: If

£{g(t)} =

∫ ∞

0
e−stg(t)dt,

is the Laplace transform of g(t) then initial value theorem says,

lim
t→0

g(t) = lim
s→∞

sG(s).

Final value theorem states that,

lim
t→∞

g(t) = lim
s→0

sG(s),

where G(s) is Laplace transform of g(t).
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1.8 Laplace Transform of Fractional Derivatives and Integrals

Considering the Reimann-Liouville fractional derivative definition,

Dα
t [f(t)] =

1

Γ(α)

dm

dtm

∫ t

0
(t− τ)α−1f(τ)dτ,

is clearly a convolution. Applying Laplace transform,

£{Dα
t f(t)} = £{f(t) ∗ g(t)}

= £{f(t)}£{g(t)}

= s−αf̄(s), (1.8.1)

where g(t) = tα−1

Γ(α) and ḡ(s) = s−α. The result is also true for α = 0,

£

{
tα−1

Γ(α)

}
α=0

= [s−α]α=0 = 1,

from the same result ,

£{Dα
t t

β} =
Γ(β + 1)

sβ−α+1
.

Equivalently,

Dα
t t

β = £−1

{
Γ(β + 1)

sβ−α+1

}
=

Γ(β + 1)

Γ(β − α+ 1)
tβ−α.

A very important property of Laplace transform which is commonly used in this dissertation is [8],

£{∗Dα
t f(t)} = sαf̄(s)−

m−1∑
k=0

sα−k−1fk(0),

keeping in mind the convergence of the Laplace integral is conditional i.e function should be of

exponential order as t→ ∞.

In next chapters we will numerically find the inverse Laplace transform of fractional differential

equations and also try to find solution of non-linear fractional ordinary and partial differential

equations by the help of the Laplace transform.



Chapter 2

Taylor Series Method for Inversion of the

Laplace transform

The inverse Laplace transform is proved to be the most tough step in applying the Laplace

transform technique. There are an inadequate number of the Laplace transforms and inverse Laplace

transforms available in literature to provide inversion automatically. The lack of inverse transforms

cut down the effectiveness of the Laplace transform method. However, numerical algorithms subsist

for providing inverse Laplace transforms numerically and they are strong tools that can be used

widen to the applicability of the Laplace transform method.

Method of finding the inverse Laplace transform using polynomial series is discussed in this

chapter. It is obvious that any polynomial series basis vector can be converted into Taylor polyno-

mial by the use of suitable substitutions.

The particular series which is discussed for functions of a certain family, is a somewhat general-

ized form of the Taylor expansion formula. It is important to have considerable sets of conditions

on ȳ(s) under which this series expansion is valid, for here too it frequently happens that a formal

application of this series fails to give the inverse of Laplace transformation.

2.1 Method of Series Expansion

Generally, it is observed,

£{tn} =
Γ(n+ 1)

sn+1
,

inverse of which is,

£−1

{
Γ(n+ 1)

sn+1

}
= tn,

17
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i.e, we approximate functions as linear combination of predefined expansion functions. Further is

illustrated with following examples.

Example 1.1.1: If,

f̄(s) =
e

−a
s

s
3
2

,

then it is known that

e−t =
∑ (−t)n

n!
.

So,

f̄(s) =
1

s3/2

(
1− a

s
+

a2

2!s2
− a3

3!s3
− . . .

)
,

f̄(s) =
1

s3/2
− a

s5/2
+

a2

2!s7/2
− a3

3!s9/2
− . . ..

We know that,

£−1

{
1

s3/2

}
=

2t1/2√
π
,

£−1

{
1

s5/2

}
=

4

3

t3/2√
π
.

Generalizing to nth term,

£−1{s−(n+ 1
2
)} =

2n

(2n− 1) · · · 3.1
tn−

1
2

√
π
, n = 1, 2, · · · ,

f(t) =
2t1/2√
π

− 4a

3.1

t3/2√
π

+
8a2

2!5.3.1

t5/2√
π

− . . .+
(−1)n2n+1an

n!(2n+ 1) · · · 3.1
tn+

1
2

√
π
, n = 0, 1, · · · ,

series is convergent for all t>0, where the exact solution of problem is (aπ)−( 1
2
) sin 2

√
at.

Example 1.1.2: If,

f̄(s) =
1

1 +
√
s
,

we can write,

f̄(s) =
1

√
s(1 + 1√

s
)
.

Expanding,

f̄(s) =
1√
s

(
1− 1√

s
+

1
√
s
2 +

1
√
s
3 − . . .

)
,

f̄(s) =
1√
s
− 1

√
s
2 +

1
√
s
3 +

1
√
s
4 − . . .,
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f̄(s) =

(
1√
s
+

1
√
s
3 +

1
√
s
5 . . .

)
−
(
1

s
+

1

s2
+

1

s3
+ . . .

)
.

Taking term by term inverse of the series,

£−1

{
1

s
+

1

s2
+

1

s3
+ . . .

}
= 1 + t+

t2

2!
+
t3

3!
+ . . . ,

which is the form of exponential series, and

£−1

{
1√
s
+

1
√
s
3 +

1
√
s
5 . . .

}
=

1√
tπ

(
1 + 2t+

2t2

3
+ . . .+

(4t)n

(2n)!
+ . . .

)
.

Above series clearly converges for all t > 0, but as t→ 0, the series goes infinite which restricts the

range of t.

Before moving on to next section first understanding few concepts are requirement of topic.

Hilbert Matrix: Hilbert matrix was introduced by Hilbert in 1894, on the query in Approximation

theory, "Assume that I = [a, b] is a real interval. Is it then possible to find a non-zero polynomial

P with integral coefficients, such that the integral∫ b

a
P (x)2dx

is smaller than any given bound e > 0, taken arbitrarily small?" Hilbert derived the formula for

finding the determinant of Hilbert matrices and investigated about their asymptotic. So, Hilbert

matrices are square matrices with all entries being the unit fractions

H =
1

i+ j − 1
, i, j = 1, 2, 3, n.

These matrices can be regarded as derived from integral

Hij =

∫ 1

0
xi+jdx.

Hilbert matrices are symmetric and positive definite as well as totally positive i.e determinant of

every sub matrix is positive [9].

2.2 Taylor Series Expansion

Chung and Sun [10] reported the technique of Taylor series expansion for inverting the Laplace

transform. Method includes the inversion of Hilbert matrix. A function f(t), analytic in the neigh-

borhood of t0 = 0 might be expanded in power series (using Maclaurin formula)

f(t) =
∞∑
n=0

anyn(t),
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where yn(t) = tn and an = 1
n!f

n(0). Assuming f(t) to be analytic, restricting the series upto finite

terms say m, we have,

f(t) w
m−1∑
0

anyn(t),

f(t) w aT y(t),

where aT is a vector of the form,

aT = [a0, a1, a2, . . . , am−1],

and

yT (t) = [y0(t), y1(t), . . . .ym−1(t)],

y(t) represents the basis function vector. For any z, y(z) can be written as

y0(z) = 1,

y1(z) = z,

y2(z) = z2,

...

yi(z) = zi.

Now integrating yi(z)yj(z) over the interval [0, 1]∫ 1

0
yi(z)yj(z)dz =

1

i+ j + 1
. (2.2.1)

For the purpose of finding inverse Laplace transform domain has to be expanded to [0,∞), for this

purpose a substitution is introduced,

z = e−
t
c .

So that the basis function becomes yi(t) = e−it/c, inserting in (2.2.1),∫ ∞

0
yi(t)yj(t)e

− t
cdt =

c

i+ j + 1
.

For c = 1 ∫ ∞

0
yi(t)yj(t)e

− t
cdt =

1

i+ j + 1
, Hij , (2.2.2)

Finding the inverse Laplace transform, of any function f(t) can be represented in terms of series

expansion necessary to be finite. Performing the steps of this method, f(t) is represented in Taylor

polynomial,

f(t) w
m−1∑
i=0

aiyi(t), (2.2.3)
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where, ai are the coefficients, whose values are to be determined. Second step is to multiply (2.2.2)

yj(t)e
−t/c and integrating over the interval [0,∞),∫ ∞

0
f(t)yj(t)e

−t/cdt =

m−1∑
i=0

ai

∫ ∞

0
yi(t)yj(t)e

−t/cdt, (2.2.4)

where j = 0, 1, 2, . . . ,m− 1 inserting (2.2.2), (2.2.4) transforms into,

m−1∑
i=0

Hijai =

∫ ∞

0
f(t)e−t/cyj(t)dt. (2.2.5)

The Laplace transform is defined as,∫ ∞

0
f(t)e−stdt = £{f(t)} = f̄(s). (2.2.6)

Now for different variation of j, ∫ ∞

0
f(t)e−t/cy0(t)dt = f̄(1/c),

∫ ∞

0
f(t)e−t/cy1(t)dt = f̄(2/c),∫ ∞

0
f(t)e−t/cy2(t)dt = f̄(3/c),

...∫ ∞

0
f(t)e−t/cyj(t)dt = f̄ ((j + 1)/c) . (2.2.7)

So, (2.2.5) and (2.2.7) yields a consistent system of m linear equations which helps to determine the

values of coefficients ai. Functional estimation for inverse Laplace can be obtained by re-inserting

the coefficients in (2.2.3).

Example 2.2.1: If f(t) = t−1(1− cos t) and

f̄(s) =
1

2
log(1 +

1

s2
),

then by Taylor series method
m−1∑
i=0

Hijai = f̄

(
j + 1

c

)
considering c = 1 and m = 5

a0 +
1

2
a1 +

1

3
a2 +

1

4
a3 +

1

5
a4 =

1

2
log(2),
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1

2
a0 +

1

3
a1 +

1

4
a2 +

1

5
a3 +

1

6
a4 =

1

2
log

(
3

2

)
,

1

3
a0 +

1

4
a1 +

1

5
a2 +

1

6
a3 +

1

7
a4 =

1

2
log

(
4

3

)
,

1

4
a0 +

1

5
a1 +

1

6
a2 +

1

7
a3 +

1

8
a4 =

1

2
log

(
5

4

)
,

1

5
a0 +

1

6
a1 +

1

7
a2 +

1

8
a3 +

1

9
a4 =

1

2
log(3).

Solving the above system of linear equations, we get

a0 = 0.4244, a1 = 3.6200, a2 = −15.8660, a3 = 20.9806, a4 = −9.2215.

So the inverse Laplace,

f(t) ≃ 0.4244 + 3.6200e−t − 15.8660e−2t + 20.9806e−3t − 9.2215e−4t.

Varying the values of m and comparing for estimation of error in Table(2.1).

m = 5 m = 10 m = 50

t exact Taylor error Taylor error Taylor error

0.1 0.0500 0.0714 0.0214 0.0545 0.0045 0.0483 0.0017

0.5 0.2448 0.2167 0.0281 0.2503 0.0055 0.2467 0.0019

0.9 0.4204 0.4316 0.0112 0.4186 0.0018 0.4235 0.0031

1.3 0.5635 0.6063 0.0428 0.5677 0.0042 0.5618 0.0017

1.7 0.6640 0.6738 0.0098 0.6527 0.0113 0.6665 0.0025

2.1 0.7166 0.6662 0.0504 0.7222 0.0056 0.7102 0.0064

2.5 0.7205 0.6258 0.0947 0.7391 0.0019 0.7250 0.0045

10 0.1839 0.4245 0.2406 0.0478 0.1361 -0.0081 0.192

50 0.1284 0.4244 0.296 0.0467 0.0817 -0.0094 0.1375

Table 2.1: Comparison of numerical solution with exact solution and estimation of absolute error

Example 2.2.2: If,

f̄(s) =

(
1√
s

)
e−

√
5s,

which has approximated solution for m = 3 and c = 1.

f(t) ≃ 0.5385− 1.7025e−t + 1.1905e−2t,
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whereas exact solution is,

f(t) =
1√
tπ

sin(
5

2t
).

See Table(2.2),

m = 5 m = 10 m = 50

t exact Taylor error Taylor error Taylor error

0.1 -0.2361 0.0958 1.1941 -0.1479 0.0882 -0.1871 0.049

0.5 -0.7651 -0.2329 0.5322 -0.4773 0.2878 -0.9958 0.2307

0.9 0.2116 -0.0007 0.2123 0.2058 0.0058 0.1074 0.1042

1.3 0.4644 0.3801 0.0843 0.4735 0.0091 0.3593 0.1051

1.7 0.4305 0.5457 0.1152 0.3824 0.0481 0.5202 0.0897

2.1 0.3615 0.5191 0.1576 0.4027 0.0412 0.4253 0.0638

2.5 0.3003 0.4020 0.1017 0.3408 0.0405 0.1090 0.1913

10 0.0441 -0.1860 0.2301 0.2243 0.1802 -0.4794 0.5235

50 0.0040 -0.1865 0.1905 0.2248 0.2208 -0.4834 0.04874

Table 2.2: Comparison of numerical solution with exact solution and estimation of absolute error

2.3 Application to Fractional Differential Equations

Solving an ordinary fractional differential equation by the help of Laplace transform may

not yield the exact solution due to the difficulty in finding the inverse of Laplace transform. In the

section fractional differential equation is converted into algebraic equation using Laplace transform

and for the purpose to find numerical solution, Taylor series method is applied to the following

examples.

Example 2.3.1: Consider the inhomogeneous fractional differential equation

∗D
α
t f(t) = te

t
2 ,

where 1 < α ≤ 2 and

f(0) = f
′
(0) = 0.

Applying the Laplace transform we get,

£{∗Dα
t f(t)} = £{te

t
2 },
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sαf̄(s)− sα−1f(0)− sα−2f
′
(0) =

1

(s− 1
2)

2
,

sαf̄(s) =
1

(s− 1
2)

2
,

f̄(s) =
1

(sα)(s− 1
2)

2
.

For different values of ”α”,comparison of results are shown in Fig.(2.1) represents the behavior of

solutions of fractional α to its integer value solution.

−3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

x

y

x = t, y = 612254093624299/(17179869184 exp(2 t)) −...+ 283599142624743/4398046511104

alpha=1.125

alpha=1.5
alpha=1.95

alpha=2

−4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

7

x

y

x = t, y = 6014029451469825/(68719476736 exp(2 t)) −...+ 175237386379375/2199023255552

Figure 2.1: Behaviour of numerical solution for different fractional values of ”α” at m = 10 and

m = 50

Example 2.3.2: Considering the fractional differential equation

Df(t)− ∗D
α
t f(t) + f(t) = et,

where 0 < α < 1 and

f(0) = 1.

Solution: Applying Laplace transform, we have

£{Df(t)} −£{∗Dα
t f(t)}+£{f(t)} = £{et},

(sf̄(s)− f(0))− (sαf̄(s)− sα−1f(0)) + f̄(s) =
1

s− a
,

(s− sα + 1)f̄(s) =
1

s− a
+

1

s
− sα−1

s
,
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f̄(s) =
1

(s− a)(s− sα + 1)
+

1

s(s− sα + 1)
− 2

sα−1

s(s− sα + 1)
,

for α = 1
2 the exact solution is obtained in terms of Mittage Lefller function and insertion of values

of these functions we get the solution,

f(t) =
1

16
[4(3t2 + 12t+ 4)et + (15 + 48t+ 16t2 − 3t3)erfc(

√
t) + 2

√
t

π
(3t

3
2 + 8t+ 17)].

yet the method is not at all suitable for this example.

2.4 Conclusion

In the letter pointing out that the execution of Taylor series method involves the inversion of an

Hilbert matrix. This results in numerical instability and makes the algorithm unreliable, example(2.3.2)

clearly support this argument. Alternative approaches which give a least-square fit for the solution

are also identified. The exponential functions make a good combination with this method as the

results are at a level of accuracy.



Chapter 3

Method of Weeks for Inversion of

Laplace Transform

Numerical inversion of Laplace transform by the help of Laguerre polynomials can be found in text

books (Lancoz, 1956, Ch.4; Luke, 1969, Ch.16; Krylov et al., 1969, Ch.5). Beatman followed the

idea back to 1835 introduced to the method adopted by Romanovsky (1924). Initially Ward(1954)

concluded that if the Laplace integral equation,

ȳ(s) =

∫ ∞

0
e−sty(t)dt,

contain six to twelve terms of the form (s− c)−1 ,the error might be in a typical case of order 0.05

if ten terms of the series were used. Papoulis(1956) used eleven terms of the series,

y(t) = e−attα
∞∑
k=0

αkLk(bt), (3.0.1)

with a = 0. Khamis(1960) calculated three values of beta probability function using the first nine

terms of

y(t) = e−attα
∞∑
k=0

αkLk(bt),

but in integrated form, with b = a and α by equating mean and variance of distribution to the mean

and variance of leading term (3.0.1).

A similar method was used by Tiku(1965) for the approximation of non-central χ2 distribution.

The term of his tenth zero converged to zero up to accuracy of four decimal places between three

and sixteen terms, depending upon the size of non-centrally parameter λ and accurate result up to

four decimal for y(t).

26
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The Laguerre method of numerical inversion of the Laplace transform is an old set method

based on Tricomi-Wildder theorem which approves the possibility of expansion of needed function

as weighted sum of Laguerre functions. A lot of variance to this method can be found in literature.

For example, Fourier series method for calculation of Laguerre weight functions, systematic methods

of scaling etc.

Week’s method is one of the most well known and comparatively more effective then series

method. It yields an explicit expression dependant on time domain as expansion of Laguerre poly-

nomials. Method was introduced by Picone [11] and was rigourously used by Ticomi [12]. Since

then many results of theoretical and practical nature have followed. Firstly a few results are given to

establish the series expansion of Weeks method [13,14]. Finally, application to fractional differential

equations highlight the utility of Weeks method.

Theorem 3.1: If ȳ(s) can be expanded in absolutely convergent series of the form,

ȳ(s) =

∞∑
k=0

αk

sµk
, |s| > R, (3.0.2)

where µk form an increasing sequence of numbers 0 < µ0 < µ1 < . . . ,→ ∞ then,

f(t) =
∞∑
k=0

αkt
µk−1

Γ(µk)
, (3.0.3)

the series is convergent for all t, real and complex.

Theorem 3.2: If ȳ(s) can be expanded in the neighborhood of s = βk, in the complex s-plane, in

the form of an absolutely convergent power series with arbitrary exponents,

ȳ(s) =
∞∑
k=0

bk(s− βk)
µk , − k < µ0 < µ1 < . . . ,→ ∞, (3.0.4)

then there exist a contribution to the asymptotic expansion of y(t) as t→ ∞ of the form,

eβkt
∞∑
k=0

βkt
µk−1

Γ(−µk)
, (3.0.5)

where 1
Γ(−µk)

= 0 if µk is a positive integer or zero.

Watson’s Lemma: Suppose that the function f(t) satisfies,

f(t) ∼
∞∑
k=0

βkt
βk , as t→ 0+ (3.0.6)

where −1 < Re(β0) < Re(β1) < . . . and lim(Reβk) = ∞ whenever k → ∞, then for any δ > 0,

ȳ(s) ∼
∞∑
k=0

βkΓ(βk + 1)

sβk+1
as s→ ∞, |arg(s)| < π

2
− δ. (3.0.7)
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Parseval’s Theorem: A generalization of Parseval’s theorem for the Laplace transform is,

1

2π

∫ ∞

−∞
|y(a+ it)|2dt =

∫ ∞

0
e−2aω|f(ω)|2dω. (3.0.8)

Although the relation needs some arguments for its equivalence.

3.1 Weeks Method

The method combine the idea of Papoulis and Lancoz [13, 14]. Purpose of this method is to find

the series expansion of y(t) in terms of orthonormal Leguerre function,

ϕk(t) = e−
t
2Lk(t), k = 0, 1, 2, . . . , (3.1.1)

where Lk(t) represent the kth Leguerre polynomial. Orthogonality of a function can be confirmed

if a function satisfies the following condition,∫ ∞

0
ϕk(t)ϕl(t)dt = 0, (3.1.2)

whenever k ̸= l.

If the same function posses unit norm along with fulfilling the orthogonality condition is known

to be orthonormal function. Particularly ϕ(0) = 1.

For any function y(t) satisfying,

|y(t)| = O(eγt),

along with Theorem 3.1 and Theorem 3.2 also Watson′s Lemma, own an approximation by the

function yN (t) of the form,

yN (t) = eat
∞∑
k=0

αkϕk(
t

T
), (3.1.3)

for T > 0, being the scale factor and

αk =
1

T

∫ ∞

0
e−aty(t)ϕk(

t

T
)dt, (3.1.4)

the approximation of y(t) ensures the convergence of integral i.e for any ϵ > 0, there exist an N0

such that, ∫ ∞

0
e−2at|y(t)− yN (t)|2dt < ϵ, whenever N > N0. (3.1.5)
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The Laplace transform of yN (t) is,

yN (t) =

∫ ∞

0
e−styN (t)dt

=

∫ ∞

0
e−(s−a)t

N∑
0

αkϕk(
t

T
)dt

=

N∑
0

αk

∫ ∞

0
e−(s−a)te−

t
2T Lk(

t

T
)dt

=
N∑
0

αk
(s− a− 1

2T )
k

(s− a+ 1
2T )

k+1
. (3.1.6)

As a consequence of Parseval’s theorem,∫ ∞

0
e−2at|y(t)− yN (t)|2dt = 1

2π

∫ ∞

−∞
|ψ(a+ iω)− ψN (a+ iω)|2dω, (3.1.7)

where the convergence of |ȳN (a + iω)| is obvious with increasing N to y(a + iω). Since both y(t)

and yN (t) are of exponential order. If a > γ then for any ϵ > 0, there exist N0 such that,

1

2π

∫ ∞

−∞
|ψ̄(a+ iω)− ψ̄N (a+ iω)|2dω < ε, (3.1.8)

whenever N > N0.

Weeks expanded the Laplace transform trigonometrically. A substitution of (3.1.6) in (3.1.8) for

s = a+ iω yields,

1

2π

∫ ∞

−∞

∣∣∣∣∣ψ(a+ iω)−
N∑
k=0

αk
(iω − 1

2T )
k

(iω + 1
2T )

k+1

∣∣∣∣∣
2

dω < ϵ, (3.1.9)

whenever N > N0.

Suppose ω = 1
2T cot 1

2θ and the identities,

i cos 1
2θ − sin 1

2θ

i cos 1
2θ + sin 1

2θ
= eiθ,

∣∣∣∣i cos 12θ + sin
1

2
θ

∣∣∣∣2 = 1,

we have,

T

2π

∫ π

−π


∣∣∣∣∣( 1

2T
+

i
2T

cot
1

2
θ)ψ̄(a+ i cot

1

2
θ)−

N∑
k=0

αke
ikθ

∣∣∣∣∣
2
 dθ < ϵ, (3.1.10)

whenever N > N0, the inequality implies,

(
1

2T
+

i
2T

cot
1

2
θ)ψ̄(a+

1

2T
cot

1

2
θ) ≈

N∑
k=0

αke
ikθ, (3.1.11)
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the right hand side of above equation converges in the mean to left hand side as N increases.

Defining the two separate functions of ψ(a+ iω) as ψ1(a+ iω) and ψ2(a+ iω) such that,

ψ(a+ iω) = ψ1(a+ iψ) + iψ2(a+ iψ), (3.1.12)

then the real part of (3.1.11)is restricted to expansion and is reduced to,

G(θ) ≈
N∑
k=0

αk cos kθ, (3.1.13)

and

G(θ) =
1

2T
(ψ1(a, ω) + ψ2(a, ω) cot

1

2
θ).

Trigonometric interpolation assist in approximation of the coefficients αk,

α0 =
1

N + 1

N∑
i=0

G(θi), (3.1.14)

αk =
2

N + 1

N∑
i=0

G(θi) cos kθi, k > 0 (3.1.15)

where,

θi = (
2i + 1

N + 1
)
π

2
. (3.1.16)

The interpolation formulas from (3.1.13) to (3.1.16) become the usual Tchebychef interpolation

as one introduces the substitution of z = cos kθ, then kθ = Tk(z) is the Tchebychef polynomial

of degree k.Proper and credible choice of the scale factor T and the constant "a" will make the

convergence process faster. Although the convergence in the series (3.0.5) was established for any

positive T and a. Considering the scalar factor T , we know that the function ϕk(t) is the product

of Leguerre polynomial and death function(i.e the decreasing exponential function). The Leguerre

polynomial has n real and positive zeros, however the largest zero tk of Lk(t) satisfies the inequality,

tk ≤ 4k − 6, k ≥ 4.

Thus the function ϕk(t) do not drop down to zero and never exceed 4k−6 i.e oscillation is within

the interval 0 < t < 4k − 6, function decreases monotonically and approaches to the limiting value

of zero for t > 4k − 6. Hence the expectation will be an oscillatory function representable in linear

combination of ϕ’s over the interval (0, tmax).

tmax

T
< 4N − 6,
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Weeks suggested, the choice of parameter T is obtained by taking,

T =
tmax

N
,

which ensures the good approximation of y(t) in (0, tmax) depending upon the proper choice of "a"

and taking N to be sufficiently large.

Weeks also proposed a suitable value of "a". In principle, "a" could be any non-negative number

sufficiently large to guarantee the convergence of Laplace integrals, the smallest number a0 is abassica

of the Laplace integral for which,∫ ∞

0
e−ct|y(t)|dt

∫ ∞

0
e−ct|y(t)|2dt,

converge.

Marking a position of a line through right most singularity for s = a0, then

a = (a0 +
1

tmax
)u(a0 +

1

tmax
), (3.1.17)

where u(x) is the unit step function.

Examining ψ̄(s) to find position of right most singularity in the order to obtain the abscissa of

convergence a0.

Computational process to find the inverse Laplace ψ̄(s) depends upon largest value to which one

desire to evaluate function y(t). Suppose tmax stands for this value , step two is locating the right

most singularity of ψ̄(s). Further, supposing s0 to be the singularity(right most) then Re(s0) = a0

is abscissa of convergence of the Laplace integral will give us the value of constant "a". Choosing

N i.e the number of terms for the expansion of series of y(t). The choice of tmax and N will help

to compute T .

Calculation of coefficients αk, involves the evaluation of function ψ1(a, ω) and ψ2(a, ω) defined

in (3.1.12). G(θ) should be evaluated only for N + 1 values of θ. Thus,

G(θi) =
1

2T
ψ1(a+ ιωi), for i = 0, 1, 2, . . . , (3.1.18)

where,

ωi =
1

2T
cot

1

2
θi, i = 0, 1, 2, . . . , N. (3.1.19)

θi given by eq.(3.1.16), ωj can be recursively calculated by,

ωi =
γωi − 1− δ

ωi − 1 + γ
,

where γ = 1
2T cot θ0 and δ = 1

4T 2 starting value can be defined as,

ω0 =
1

2T
cot

1

2
θ0,
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ω0 =
1

2T

(
1 + cos θ0
sin θ0

)
,

and

cos θi = a cos θi−1 − b sin θi−1,

sin θi = b cos θi−1 + a sin θi−1,

where,

a = cos 2θ0 = 2 cos2 θ − 1,

θ = sin 2θ0 = 2 sin θ0 cos θ0.

Furthermore, we can calculate cosnθi for n = 2, using identity,

cosnθi = 2 cos θi, cos(n − 1)θi − cos(n − 2)θi.

Thus collecting all the trigonometric functions required to calculate αn according to (3.1.15), we

have

ϕ0(t) = e
−t
2 ,

ϕ1(t) = (1− t)ϕ0(t),

kϕk(t) = (2k − 1− t)ϕk−1(t)− (k − 1)ϕk−2(t), k > 1.

3.2 Examples

Example 3.2.1: Let the function whose inverse Laplace transform has to be evaluated is given as,

f̄(s) =
2

s(s2 + 4)

which is the Laplace transform of,

f(t) = sin2 t.

Table(3.1) shows the exact values along with the numerical value to calculate the accuracy of Weeks

method.

Example 3.2.2: If,

f(t) = csc t sin 5t,

when applied Laplace transform to above function it results in a function of the form,

f̄(s) =
1

s
+

2s

s2 + 4
+

2s

s2 + 16
,

finding the numerical solution by Weeks method and results are analyzed in Table(3.2),
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m = 10 m = 50 m = 100

t exact numeric error numeric error numeric error

0.1 0.0117 0.0103 0.0014 0.0100 0.0017 0.0483 0.0017

2 0.8268 0.8273 0.0005 0.8268 0.0000 0.2467 0.0000

3 0.0199 0.0290 0.0091 0.0199 0.0000 0.4235 0.0000

4 0.5728 0.4470 0.1258 0.5728 0.0000 0.5618 0.0000

5 0.9195 1.3751 0.4556 0.9195 0.0000 0.6665 0.0000

6 0.0781 -0.0059 0.084 0.0781 0.0000 0.7102 0.0000

7 0.4316 -2.5670 2.9986 0.4316 0.0000 0.7250 0.0000

8 0.9788 1.4940 0.5152 0.9788 0.0000 -0.0081 0.0000

9 0.1698 17.3656 17.1958 0.1698 0.0000 -0.0094 0.0000

Table 3.1: Comparison of numerical solution with exact solution and estimation of absolute error

3.3 Application to Fractional Differential Equations

Difference Fractional Differential Equation: Finding the numerical solution of,

∗D
α
t f(t)− f(t− 1) = 1,

where 0 < α ≤ 1 and f(0) = 0.

Application of Laplace transform to above fractional differential equation yields,

f̄(s) =
1

s(sα − e−s)
.

Fig.(3.1) indicates that the solution of fractional order differential equation follows the same behavior

as the solution of ordinary differential equation for integer order α and gives the numerical values.

Transfer and Impulse Response Function: Considering,

fα(t) + 2fα−1(t) + 5f(t) = g(t),

function along with conditions 1 < α ≤ 2 and

f(0) = 0, f ′(0) = −1.

Applying the fractional Laplace transform formulas, we get

f̄(s) =
1

sα + sα+1 + 5
− sα−1

2sα + sα−1 + 5
.
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m = 10 m = 50 m = 100

t exact numeric error numeric error numeric error

0.1 4.8023 5.0558 0.2536 4.8028 0.0006 4.8023 0.0000

2 -0.5983 1.1842 1.7825 -0.5996 0.0013 -0.5983 0.0000

3 4.6080 -0.0095 4.6175 4.6011 0.0069 4.6081 0.0000

4 -1.2063 4.5893 5.7956 -1.1627 0.0436 -1.2061 0.0002

5 0.1380 4.6798 4.5418 0.3660 0.2280 0.1385 0.0005

6 3.5361 -20.7244 24.2604 3.0481 0.4880 3.5375 0.0014

7 -0.6517 -28.6729 28.0211 -1.0442 0.3925 -0.6482 0.0035

8 0.7531 93.1598 92.4067 4.5504 3.7973 0.7529 0.0003

9 2.0647 332.2628 0330.1981 -9.3677 11.4324 2.0320 0.0327

Table 3.2: Comparison of numerical solution with exact solution and estimation of absolute error

Considering different fractional values of α and observing the behavior of solution in Fig.(3.2).

Example 3.3.3: Considering a fractional differential equation with a restriction 1 < α ≤ 2,

∗D
α
t f(t) + ∗D

α−1
t f(t) + f(t) = cos t− sin t,

where,

f(0) = f ′(0) = 1.

Application of fractional Laplace formulas and implementation of initial conditions result in,

(sα + sα−1 + 1)f̄(s) =
s− 1

s2 + 1
+ sα−1 + 2sα−2,

f̄(s) =
s− 1

(s2 + 1)(sα + sα−1 + 1)
+

sα−1

sα + sα−1 + 1
+

2sα−2

sα + sα−1 + 1
,

the exact solution for α = 2 is f(t) = cos t+ sin t.

Fig.(3.3) represents the behavior of fractional differential equation.

Example 3.3.4: Considering two dimensional heat equation,

∂α

∂tα
f(x, t) =

∂2

∂x2
f(x, t), 0 < α ≤ 1, (3.3.1)

along with boundary conditions,

f(x, 0) = g(x),
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f(0, t) = f(t), |f(x, t)| <∞,

where g(x) = 1,f(t) = 0 and c = 1.

Applying the Laplace transform we get the ordinary differential equation of the form,

(D2 − sα)f̄(x, s) = −1.

Using method of undetermined coefficient and applying the boundary conditions we get,

f̄(x, s) =
1

s
(1− exs

−α
2 ).

Fig.(3.4) shows the fixed value of x and varying t. Weeks method MATLAB algorithm is used for

plotting the graph of numerical solution and to check the behavior of solution by comparing it with

classical case i.e α = 1.

Example 3.3.5: Considering the partial differential equation,

∂1+α

∂x∂tα
f(x, t) = sinx sin t,

where 0 < α ≤ 1 initial conditions,

f(x, 0) = 1 + cosx, ft(0, t) = 2 sin t.

Assuming that fx(x, t) and ft(x, t) are differentiable in the domain of defining function f(x, t), i.e

∂2

∂x∂t
f(x, t) =

∂2

∂t∂x
f(x, t).

Now substituting ∂α

∂tα = F,
∂

∂x

∂α

∂tα
f(x, t) = sinx sin t,

∂

∂x
F (x, t) = sinx sin t,

taking the Laplace transform w.r.t x and putting the initial conditions,

F (s, t) = −−2 sin t

s
+ sin t(

1

s
− s

1 + s2
),

and the inverse Laplace yields,

F (x, t) = −2 sin t+ sin t(1− cosx).

Now,
∂α

∂tα
f(x, t) = −2 sin t+ sin t(1− cosx).
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Application of Laplace transform to above equation and of initial condition yields,

f(x, s) = (1 + cosx)(
1

s
− 1

sα(1 + s2)
).

Whereas the solution for classical case i.e α = 1 is,

f(x, t) = − cos t(1 + cosx).

Fig.(3.5) represents the behavior of fractional numerical solution in comparison with integer order

derivative.

Figure 3.1: Behaviour of numerical solution for different fractional values of ”α” at m = 50 and

m = 100

Figure 3.2: Behaviour of numerical solution for different fractional values of ”α” at m = 50 and

m = 100
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3.4 Conclusion

Weeks method in comparison to Taylor series method is more efficient and fast convergent yet

accuracy level is not very high. Drawback of Weeks method, up to a specified extent it repeats the

values rather refining it on increment of iterations. The parameter ”b” in

f(t) =

∞∑
k=0

αkLk(bt),

is an element to accelerate the convergence of series. The efficiency factor of this method is highly

dependant upon convergence of this series. So, change of parameters can also help to find numerical

inversion of the Laplace transform for few problems.
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Figure 3.3: Behaviour of numerical solution for different fractional values of ”α” at m = 10 and

m = 50

Figure 3.4: Behavior of numerical solution for different fractional values of ”α” for fixed x = 1 and

x = 2
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Figure 3.5: Behavior of numerical solution for different fractional values of ”α” for fixed x = 1.



Chapter 4

Double Laplace Transform

Describing the importance of ordinary differential equation one can not deny the importance of par-

tial differential equations. These are frequently used in mathematical physics, branches of physics,

applied mathematics and engineering as well. These equations are of two types, one is homoge-

neous equation with constant coefficients which posses many method for its solution like separation

of variable and method of characteristics etc. The other type is non homogeneous equation with

constant coefficient and the non-linear partial differential equations are also a part of this field to

deal with. Double Laplace transform is very useful method to solve partial differential equations

and also has a very effective role in simplification of calculation in many branches of engineering

and mathematics.

The theory of double laplace transform originated from a paper by Humbert [15]. Applications

are also described in books by Volker and Doetsch [16], Sneddon [17] and also by Ditkin and Prud-

nikov [18,19]. The technique is yet not very liked in recent years because of the difficulty in inversion

of integral. This approach has its worth because it is very straight forward method with a flexibility

of using a numerical method for inversion of this transform [20].

Understanding the importance of partial differential equation in mathematics and physics ,

many mathematicians worked on methods to find the solution of these equations. Eltayeb and

Kilicman [21, 22] worked on a relationship between double Samudu transform and double Laplace

transform. In a line of this, Singh and Mandia [23] developed the relation between double Mellin

transform and double Laplace transform. Recently, Eltayeb and Kilicman [24] implemented the

technique of double Laplace transform for the solution of general linear telegraph and partial inte-

gro differential equations.

In the chapter we will go through the properties of double Laplace transform and then will apply

this technique to fractional partial differential equations.

40



41

4.1 Double Laplace Transform; Definition and Existence

Let f(y, t) be a function of two variables y and t, where y, t > 0. The double Laplace transform of

f(y, t) is defined as,

£t£y{f(y, t)} =

∫ ∞

0
e−s1tdt

∫ ∞

0
e−s0yf(y, t)dy, (4.1.1)

whenever the integral(improper) converges [25].

The existence or convergence of double Laplace integral is strongly bonded to the function to

be of exponential order. Hence the existence criteria for the double Laplace transform is same for

single Laplace transform as well.

4.2 Basic Properties of Double Laplace Transform

Some properties of double Laplace transform are described as follows, [25]

Linearity:

If p(y, t) and q(y, t) be the functions of y and t such that,

£t£y{p(y, t)} = p̄(s0, s1),

and

£t£y{q(y, t)} = q̄(s0, s1),

then

£t£y{ap(y, t) + bq(y, t)} = a£t£y{p(y, t)}+ b£t£y{q(y, t)}.

Scale Property:

If,

£t£y{p(y, t)} = p̄(s0, s1),

then

£t£y{p(αy, βt)} =
1

αβ
p̄(
s0
α
,
s1
β
),

where α and β are constants.

Proof: From the definition (4.1.1) we have,

£t£y{p(αy, βt)} =

∫ ∞

0
e−s1t

∫ ∞

0
e−s0yp(αy, βt)dxdt, (4.2.1)
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assuming αy = µ and βt = ν in (4.2.1), we get

£t£y{p(αy, βt)} =

∫ ∞

0
e
−s1(

ν
β
)
∫ ∞

0
e−s0(

µ
α
)p(µ, ν)

µ

α

ν

β

=
1

αβ

∫ ∞

0
e
−s1(

ν
β
)
∫ ∞

0
e−s0(

µ
α
)p(µ, ν)dµdν

=
1

αβ
p̄(
s0
α
,
s1
β
).

First Shifting Property:

If,

£t£y{p(y, t)} = p̄(s0, s1),

then ,

£t£y{eαy+βtp(y, t)} = p̄(s0 − α, s1 − β),

where α and β are constants.

Proof: From the definition (4.1.1) we have

£t£y{eαy+βtp(y, t)} =

∫ ∞

0
e−s1t

∫ ∞

0
e−s0yeαy+βtp(y, t)dxdt

=

∫ ∞

0
e−(s1−β)t

∫ ∞

0
e−(s0−α)yp(αy, βt)dxdt

= p̄(s0 − a, s1 − b).

Double Laplace of Partial Derivatives: If,

£t£y{p(y, t)} = p̄(s0, s1),

then,

£t£y{pyt(y, t)} = s0s1p̄(s0, s1)− s0p̄(s0, 0)− s1p̄(0, s2) + p(0, 0).

Proof: From definition (4.1.1),

£t£y{eαy+βtpyt(y, t)} =

∫ ∞

0
e−s1t

∫ ∞

0
e−s0ypyt(y, t)dydt

=

∫ ∞

0
e−s0y[

∫ ∞

0
e−s1tpy,t(y, t)dt]dy

=

∫ ∞

0
e−s0y[e−s1tpy(y, t)|∞0 −

∫ ∞

0
−s1e−s1tpy(y, t)dt]dy

=

∫ ∞

0
e−s0y[−py(y, 0) + s1

∫ ∞

0
e−s1tpy(y, t)dt]dy

= −
∫ ∞

0
e−s0ypy(y, 0)dy + s1

∫ ∞

0
e−s0y

∫ ∞

0
e−s1tpy(y, t)dtdy

= −[e−s1tpy(y, 0)|∞0 −
∫ ∞

0
e−s0y(−s0)p(y, 0)dt] + s1

∫ ∞

0
e−s1t

∫ ∞

0
e−s0ypy(y, t)dydt
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£t£y{eαy+βtpyt(y, t)} = [p(0, 0) + s1

∫ ∞

0
e−s0yp(y, 0)dx] + s1

∫ ∞

0
e−s1t[e−s0yp(y, t)|∞0

−
∫ ∞

0
e−s1t(−s0)p(y, t)dy]dt

= p(0, 0)− s0p̄(s0, 0) + s1

∫ ∞

0
e−s1t[−p(0, t) + s0

∫ ∞

0
e−s0yf(y, t)dy]dt

= p(0, 0)− s0p̄(s0, 0)− s1

∫ ∞

0
s−s1tp(0, t)dt+ s0s1

∫ ∞

0
e−s1t

∫ ∞

0
e−s0yf(y, t)dydt

= s0s1p̄(s0, s1)− s1p̄(s1, 0)− s1p̄(0, s1) + f(0, 0).

In general,

£t£y

{
∂n

∂xn
f(y, t)

}
= sn0£t£y{f(y, t)} −

n−1∑
k=0

sn−1−k
1 £t

{
∂k

∂yk

}
f(0, t),

£t£y

{
∂n

∂tn
f(y, t)

}
= sn1£t£y{f(y, t)} −

n−1∑
i=0

sn−1−i
1 £x

{
∂i

∂ti

}
f(y, 0),

£t£y

{
∂n+m

∂tn∂ym
f(y, t)

}
= sm0 s

n
1 [£t£y{f(y, t)} −

n−1∑
i=0

sn−1−i
0 £x

{
∂i

∂ti

}
f(y, 0)−

n−1∑
k=0

sn−1−k
1 £t

{
∂k

∂yk

}
f(0, t)

+
n−1∑
k=0

m−1∑
i=0

s−k−1
0 s−i−1

1

∂k+i

∂yk∂ti
f(0, 0)].

4.3 Solution of Fractional Partial Differential Equations using Dou-

ble Laplace Transform

Fractional Wave Equation: Considering the fractional wave equation,

∗D
α
t f(y, t)−

1

π2
∂f(y, t)

∂x2
= 0, (4.3.1)

with initial conditions,

f(y, 0) = sinπx, ft(y, 0) = 0,

f(0, t) = 0, fy(0, t) = πEα(−tα),

where 0 < α ≤ 2 and c = − 1
π2 .

First applying the double Laplace transform over initial conditions for the ease in further solution.

£y{f(y, 0)} = f̄(s0, 0) =
π

s20 + π2
,

£y{ft(y, 0)} = f̄y(s0, 0) = 0,
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£t{f(0, t)} = f̄(0, s1) = 0,

£t{fy(0, t)} = f̄t(0, s1) =
πsα−1

2

1 + sα1
.

Applying double laplace to (4.3.1) ,

π2[sα1 f̄(s0, s1)− sα−1
1 f̄(s0, 0)− sα−2

1 f̄(s0, s1)f̄x(s0, 0)]− [s20f̄(s0, s1)− s0f̄(0, s1)− f̄t(0, s1)] = 0.

Putting the conditions and arranging the equation we get,

(π2sα1 − s20)f̄(s0, s1) =
π3sα−1

1

s20 + π2
− πsα−1

1

1 + sα1
,

after simplification,

f̄(s0, s1) =
πsα−1

1

(s20 + π2)(1 + sα1 )
.

Applying the inverse double Laplace we get the solution of the form,

f(y, t) = sinπyEα(−tα).

Fractional Heat Equation: Considering the fractional form of heat equation,

∗D
α
t f(y, t)−

∂2

∂y2
f(y, t) = 0, (4.3.2)

with initial conditions,

f(y, 0) = 1,

f(0, t) = 1, fy(0, t) = 0,

which transforms in the way,

£y{f(y, 0)} = f̄(s0, 0) =
1

s0
,

£t{f(0, t)} = f̄(0, s1) =
1

s1
,

£t{fy(0, t)} = 0.

Applying Double Laplace to (4.3.2),

(sα1 − s20)f̄(s0, s1) =
sα−1
1

s0
− s0
s1
.

After simplifying,

f̄(s0, s1) =
1

s0s1
,

inversion will result in,

f(y, t) = 1.
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The examples readily depicts that the solution by this transformation is yet possess a high level of

dependency on the conditions.

Fractional Kleinn-Gordon Equation: Let us consider

ftt − c2∆f +m2f = 0, (4.3.3)

is called Kleinn-Gordan equation which appears in quantum field theory where m denotes the mass

and considering the dissipation or damping term in (4.3.3),

ftt − c2∆f + aft +m2f = 0,

which in one dimension is called the Telegrapher’s equation because it governs in electrical trans-

mission in telegraph cable when possibility of current leakage to ground is expected.

Now considering fraction Klein-Gordon equation in one dimension with c2 = 1 and m2 = 1,

ftt − ∗D
α
t f + f = 0, (4.3.4)

with initial conditions,

f(y, 0) = 0, ft(y, 0) = Eα(y
α),

f(0, t) = t, fy(0, t) = 0,

which on application of the Laplace transform results in,

£y{f(y, 0)} = f̄(s0, 0) = 0,

£y{ft(y, 0)} = f̄t(s0, 0) =
sα−1
0

sα0 − 1
,

£t{f(0, t)} = f̄(0, s1) =
1

s21
,

£t{fy(0, t)} = f̄y(0, s1) = 0.

Applying double Laplace on (4.3.4),

£t£y{ftt − yD
α
∗ f + f} = 0,

and putting the conditions, we get

[(s21 − sα0 + 1)]f̄(s0, s1) =
sα−1
0

sα0 − 1
− sα−1

0

s21
,

=
sα−1
0 (s21 − sα0 + 1)

s21(s
α
0 − 1)

,

f̄(s0, s1) =
sα−1
0

s21(s
α
0 − 1)

,

inverse double Laplace yields,

f(y, t) = tEα(y
α).
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4.4 Conclusion

Double Laplace transform possess the same properties of single Laplace integral and the conver-

gence condition is same as well. Introducing this technique spares from an extra effort of applying

single Laplace integral twice on two different variables, which can be sometimes a cause of confusion.



Chapter 5

Adomian Decomposition Method For

Solution Of Non-linear Fractional

Differential Equations

Discussion of non-linear problems of differential equations, Adomian decomposition method has

been developed to solve with accuracy, ease and with efficiency, a large family of linear and non-

linear ordinary, partial, deterministic or stochastic differential equations [26]. The method comes

out very well to physical problems since linearization , perturbation or any other restriction is not a

necessary requirement and also it does not involve any kind of assumptions which may modify the

problem being solved, sometimes seriously.

Khuri [27] was the first who proposed Laplace decomposition method (LDM) for approximation

of solutions for a family of non-linear ordinary differential equations. E. Yosufoglu [28] in the year

of 2006 worked on this method to solve Duffing equations. Further exploitation to this method was

done by S. Nasser [29] for the solution of Falkner-Skan equation. Laplace decomposition method

was shown to be more compatible with the flexible nature of physical problems and was applied to

a bigger family of functional equations [30,31].

Non-linear phenomenon owns a crucial part in applied mathematics and physics. Unlike classi-

cal techniques, Laplace decomposition method solves the non-linear equations easily and elegantly

without transforming the equation. Laplace decomposition method provides a proficient, explicit

and numerical solution with high order of accuracy, numerical calculations and avoidance of physi-

cally unrealistic assumptions [32].

Various methods have been projected to deal with non linearities such as Laplace decomposition
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method and Adomian decomposition method [31]. Furthermore a combination of Laplace transform

method with well known homotopy perturbation method [33] and iteration method [34], to produce

highly effective techniques for solving non-linear problems. Modified Laplace decomposition method

is also an easier to implement method in comparison to Adomian decomposition method.

In this chapter the method of Adomian decomposition [27] is illustrated and applied to fractional

differential equations in order to find the absolute and relative error.

5.1 Adomian Decomposition Method

Considering a non-linear second order initial value problem,

y′′ + a(t)y′ + b(t)y = f(y), (5.1.1)

y(0) = α, y′(0) = β, (5.1.2)

where f(y) is non-linear operator and a(t) and b(t) are the functions from functions space. The

method initiates with the first step of applying Laplace transform to the both sides of (5.1.1),

£{y′′}+£{a(t)y′}+£{b(t)y} = £{f(y)}. (5.1.3)

Applying the Laplace formulas and initial conditions,

s2£{y} − sy(0)− y′(0) +£{a(t)y′}+£{b(t)y} = £{f(y)}, (5.1.4)

s2£{y} = β + sα−£{a(t)y′} −£{b(t)y}+£{f(y)}, (5.1.5)

or

£{y} =
β

s2
+
α

s
− 1

s2
£{a(t)y′} − 1

s2
£{b(t)y}+ 1

s2
£{f(y)}. (5.1.6)

The Laplace transform decomposition method moves further to another step which is, symbolizes

the solution as an infinite series of the form,

y =

∞∑
k=0

yk, (5.1.7)

where the terms yk are recursively computed.

The non-linear factor f(y) goes through the process of decomposition as follows,

f(y) =

∞∑
k=0

Ak, (5.1.8)
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where Ak = Ak(y0, y1, . . . , yk) are called Adomian polynomials. The first few polynomials are

A0 = f(y0),

A1 = y1f
′(y0),

A2 = y2f
′(y0) +

1

2!
y21f

′′(y0),

A3 = y3f
′(y0) + y1y2f

′′(y0) +
1

3!
y31f

′′′(y0). (5.1.9)

Substituting (5.1.7) and (5.1.8) in (5.1.6) results in,

£

{ ∞∑
k=0

yk

}
=
α

s
+
β

s2
− 1

s2
£

{
a(t)

∞∑
k=0

y′k

}
− 1

s2
£

{
b(t)

∞∑
k=0

yk

}
+

1

s2
£

{ ∞∑
k=0

Ak

}
. (5.1.10)

Using the linearity property of Laplace transform,

∞∑
k=0

£{yk} =
α

s
+
β

s2
− 1

s2

∞∑
k=0

£{a(t)y′k} −
1

s2

∞∑
k=0

£{b(t)yk}+
1

s2

∞∑
k=0

£{Ak}. (5.1.11)

Matching both sides of (5.1.11) yields the following iterative algorithm,

£{y0} =
α

s
+
β

s2
, (5.1.12)

£{y1} = − 1

s2
£{a(t)y′0} −

1

s2
£{b(t)y0}+

1

s2
£{A0}, (5.1.13)

£{y2} = − 1

s2
£{a(t)y′1} −

1

s2
£{b(t)y1}+

1

s2
£{A1}. (5.1.14)

In general,

£{yk+1} = − 1

s2
£{a(t)y′k} −

1

s2
£{b(t)yk}+

1

s2
£{Ak}. (5.1.15)

Applying the inverse Laplace transform to (5.1.12) yields,

y0 = βt+ α, (5.1.16)

substituting the value of y0 into (5.1.13) gives,

£{y1} = − 1

s2
£{βa(t)} − 1

s2
£{b(t)(α+ βt)}+ 1

s2
£{A0}. (5.1.17)

Evaluating the Laplace transform of the quantities on the right-hand side of (5.1.17) then application

of inverse Laplace transform, we get the value of y1. The other terms can also be recursively obtained

by using (5.1.15).
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5.2 Application to Fractional Differential Equations

Duffing Equation: George Duffing is the person who first introduced "Duffing Equation" , which

is non-linear, second order differential equation which is commonly used in damped and driven

oscillators. Duffing equation is of the form,

y
′′
+ δy

′
+ ay + by3 = γ cosω0t

and it describes the motion of damped oscillator with more complicated potential then in simple

harmonic motion.

We consider the fractional Duffing equation when γ = 0 which means there is no driving force

in the system but damping coefficient(δ) is present.

tD
α
∗ y(t) + 0.2y

′
(t) + 1.2y(t) + y3(t) = 1, (5.2.1)

where 0 < α ≤ 2 and initial conditions are,

y(0) = 0.3, y′(0) = −2.8.

Applying Laplace Transform on (5.2.1),

[sα£{y(t)} − sα−1y(0)− sα−2y
′
(0)] = −0.2£{y′

(t)} − 1.2£{y(t)} −£{y3(t)}+£{1}. (5.2.2)

According to Adomian Decomposition method, suppose

y(t) =

∞∑
i=0

yi(t),

f(y) = y3 =

∞∑
i=0

Ai.

Now

£{yi} =
0.3

s
− 2.8

s2
− 0.2£{y′

(t)} − 1.2£{y(t)} −£{y3(t)}+£{1}, (5.2.3)

then

£{y0} =
0.3

s
− 2.8

s2
,

y0 = −2.8t+ 0.3. (5.2.4)

Using the mathematica code for generation of Adomian Polynomials, we generated upto 15 Poly-

nomials,

A0 = 0.027 + 0.756t+ 7.056t2 − 21.925t3,
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A1 = (0.756 + 14.112t− 65.775t2)y1,

A2 =
1

2
(14.112− 131.55t)y21 + (0.756 + 14.112t− 65.775t2)y2,

...

A15 = −131.55(y
3
2
1 + y21y2 + y21y3 + y21y4 + y21y5 + 1/2y21y6 + y21y7 +

1

2
y21y8 +

1

2
y21y9 +

1

2
y21y10 +

1

2
y21y11 +

1

2
y21y13) + (14.112− 131.55t)(y1y2 + y1y4 + y1y6

+y1y8 + y1y10 + y1y12 + y1y14) + (0.756 + 14.112t− 65.775t2)y15.

Summing the assumed series of solution upto fifteen we get,

0.2 0.4 0.6 0.8 1.0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

Figure 5.1: Numerical approximation of fractional Duffing equation with no driving force

The graph of the duffing equation with no driving force is maximum and high damping can be

clearly seen in the solution which is some how the desired behavior but still the error rate is very

high which cannot be neglected as well as can be reduced by refined series solution.

Example 5.2.2: Considering a non-linear partial differential equation with no fractional deriva-

tive,
∂

∂t
y(x, t) =

∂2

∂x2
y(x, t) + y(x, t)

∂

∂x
y(x, t),

with initial condition,

y(x, 0) = 1 +
2

x
.

Application of Adomian decomposition method upto only nine iterations, we get the Adomian

polynomials of the form,

A0 = f(y0(x, t)),
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A1 = y1(x, t)f
(1,0)(y0(x, t)),

A2 = y2(x, t)f
(1,0)(y0(x, t)) +

1

2
y21(x, t)f

(2,0)(y0(x, t)),

A3 = y3(x, t)f
(1,0)(y0(x, t)) + y1(x, t)y2(x, t)f

(2,0)(y0(x, t)) +
1

6
y31(x, t)f

(3,0)(y0(x, t)),

A4 = y4(x, t)f
(1,0)(y0(x, t)) +

1
2y

2
2(x, t)f

(2,0)(y0(x, t)) + y1(x, t)y3(x, t)f
(2,0)(y0(x, t))

+ 1
2y

2
1(x, t)y2(x, t)f

(3,0)(y0(x, t)) +
1
24y

4
1(x, t)f

(4,0)(y0(x, t)),

A5 = y5f
(1,0)(y0(x, t)) + y2(x, t)y3(x, t)f

(2,0)(y0(x, t)) + y1(x, t)y4(x, t)f
(2,0)(y0(x, t))

+ 1
2y1(x, t)y

2
2(x, t)f

(3,0)(y0(x, t)) +
1
2y

2
1(x, t)y3(x, t)f

(3,0)(y0(x, t))

+ 1
6y

3
1(x, t)y2(x, t)f

(4,0)(y0(x, t)) +
1

120y
5
1(x, t)f

(5,0)(y0(x, t)),

...

A9 = y9(x, t)f
(1,0)(y0(x, t)) + y4(x, t)y5(x, t)f

(2,0)(y0(x, t)) + y3(x, t)y6(x, t)f
(2,0)(y0(x, t))

+ y2(x, t)y7(x, t)f
(2,0)(y0(x, t)) + y1(x, t)y8(x, t)f

(2,0)(y0(x, t)) +
1
6y

3
3(x, t)f

(3,0)(y0(x, t))

+ y2(x, t)y3(x, t)y4(x, t)f
(3,0)(y0(x, t)) +

1
2y1(x, t)y

2
4(x, t)f

(3,0)(y0(x, t))

+ 1
2y

2
2(x, t)y5(x, t)f

(3,0)(y0(x, t)) + y1(x, t)y3(x, t)y5(x, t)f
(3,0)(y0(x, t))

+ y1(x, t)y2(x, t)y6(x, t)f
(3,0)(y0(x, t)) +

1
2y

2
1(x, t)y7(x, t)f

(3,0)(y0(x, t))

+ 1
6y

3
2(x, t)y3(x, t)f

(4,0)(y0(x, t)) +
1
2y1(x, t)y2(x, t)y

2
3(x, t)f

(4,0)(y0(x, t))

+ 1
2y1(x, t)y

2
2(x, t)y4(x, t)f

(4,0)(y0(x, t)) +
1
2y

2
1(x, t)y3(x, t)y4(x, t)f

(4,0)(y0(x, t))

+ 1
24y1(x, t)y

4
2(x, t)f

(5,0)(y0(x, t)) +
1
4y

2
1(x, t)y

2
2(x, t)y3(x, t)f

(5,0)(y0(x, t))

+ 1
12y

3
1(x, t)y

2
3(x, t)f

(5,0)(y0(x, t)) +
1
6y

3
1(x, t)y2(x, t)y4(x, t)f

(5,0)(y0(x, t))

+ 1
24y

4
1(x, t)y5(x, t)f

(5,0)(y0(x, t)) +
1
36y

3
1(x, t)y

3
2(x, t)f

(6,0)(y0(x, t))

+ 1
24y

4
1(x, t)y2(x, t)y3(x, t)f

(6,0)(y0(x, t)) +
1

120y
5
1(x, t)y4(x, t)f

(6,0)(y0(x, t))

+ 1
240y

5
1(x, t)y

2
2(x, t)f

(7,0)(y0(x, t)) +
1

720y
6
1(x, t)y3(x, t)f

(7,0)(y0(x, t))

+ 1
5040y

7
1(x, t)y2(x, t)f

(8,0)(y0(x, t)) +
1

362880y
9
1(x, t)f

(9,0)(y0(x, t)).
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The approximated series is of the form,

y(x, t) ≃ ( 1
x19 )(2 + x)(2489344t9 + 4978688t9x+ 366080t8x2 + 4100096t9x2

+ 640640t8x3 + 1793792t9x3 + 54912t7x4 + 448448t8x4 + 448448t9x4

+ 82368t7x5 + 160160t8x5 + 64064t9x5 + 8448t6x6 + 47520t7x6

+ 30800t8x6 + 4928t9x6 + 10560t6x7 + 13200t7x7 + 3080t8x7

+ 176t9x7 + 1344t5x8 + 4800t6x8 + 1800t7x8 + 140t8x8

+ 2t9x8 + 1344t5x9 + 960t6x9 + 108t7x9 + 2t8x9

+ 224t4x10 + 448t5x10 + 80t6x10 + 2t7x10 + 168t4x11

+ 56t5x11 + 2t6x11 + 40t3x12 + 36t4x12 + 2t5x12

+ 20t3x13 + 2t4x13 + 8t2x14 + 2t3x14 + 2t2x15

+ 2tx16 + x18).

Figure 5.2: Numerical approximation of partial differential equation in example 5.2.2

5.3 Conclusion

The technique is very useful to solve non-linear differential equations, yet mathematica software is

not very supportive for fetching the updated values, using them for calculation of new values and

repeating the process again and again. That is why solutions are approximated for a small series.



Further Workable Content

I have worked on few techniques for finding the numerical inversion of the Laplace transform. The-

ses techniques are yet effective but there is always a chance of improvement.

Third chapter of this dissertations is about Weeks method, application of this method is found

very useful but when we desired for applying this method to n-dimensional Laplace transform we

realized that this technique lacks numerical coding for dimension more then one. In future, we will

put our efforts on developing an algorithm for this in matlab software.

Adomian decomposition method is discussed for the solution of non-linear fractional differential

equations and applied numerically using mathematica scheme. If the algorithm is applied using

matlab the results would be more satisfying.
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