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Abstract 

This research introduces a novel approach to predict and analyze the presence of 

microcracks in gallium arsenide (GaAs) by employing ensemble learning tree (ELT), 

support vector machine (SVM), decision tree (DT), and gaussian process regression 

(GPR). The selection of the model is accomplished by assessing the value of the 

coefficient of determination (R²) and the root mean square error (RMSE). The process of 

selecting the model involves evaluating the R² and RMSE values and the performance of 

these four models differs depending on the characteristics of the data. In the genetic 

algorithm (GA), the values of R² for GPR, SVM, DT, and ELT are 0.9979, 0.9780, 0.7744, 

and 0.9829, respectively, and the corresponding RMSE values are 6.25E-16, 2.61E-14, and 

6.10E-4 and 3.26E-14. In contrast, particle swarm optimization (PSO) yields R² values of 

0.9979, 0.9721, 0.7744, and 0.9581, with corresponding RMSE values of 7.31E-16, 2.10E-

14, 5.10E-4, and 2.87E-6. Moreover, the GPR model demonstrates superior performance in 

dealing with complex variable target relationships as compared to other machine learning 

(ML) models in cracking detection. Additionally, the investigation of partial dependence 

plots (PDP) emphasizes the significance of load and displacement parameters for 

precision crack prediction. It helps in understanding complex model behaviors and 

revealing feature target relationships. Lastly, a user-friendly Graphical User Interface 

(GUI) has been meticulously designed to take advantage of the GA-based GPR model, 

enabling smooth computation of crack detection. The incorporation of these sophisticated 

methodologies not only improves prediction accuracy but also provides researchers with 

valuable tools to identify the anticipation of microcrack formation, contributing to the 

development of predictive modelling and materials science. 

Keywords: 

Nanoindentation, Machine Learning, Genetic Algorithm, Particle Swarm 

Optimization, Gallium Arsenide, Crack Prediction, Partial Dependence analysis.
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Chapter 1:  

Introduction 
 

1.1. Gallium Arsenide  

Gallium arsenide (GaAs), a compound semiconductor with a zinc blende crystal structure, 

has a direct bandgap of approximately 1.42 electron volts [1]. Its distinct characteristics 

greatly influence a wide range of real-world applications [2]. Unlike silicon, which has an 

indirect bandgap and inefficient photon emission, GaAs has a direct bandgap that allows 

for efficient photon emission, which makes it perfect for optoelectronic devices [2]. In 

addition, GaAs has more electron mobility than silicon and performs better in high-

frequency electronic circuits, which makes it a perfect material for complex 

communication systems [3]. Moreover, power amplifiers and other high-power 

components may benefit from its great thermal conductivity and effective heat dissipation 

[4]. The versatile nature of GaAs, as evidenced by its higher frequency and robust thermal 

characteristics, empowers it to assume a pivotal function in numerous specialized 

electronic and telecommunication fields, despite the challenges associated with 

integration and comparatively increased manufacturing expenses [5]. 

1.2. Manufacturing Techniques 

GaAs semiconductor materials can be manufactured utilizing an extensive array of 

manufacturing processes (MP) and techniques. Each approach has its own distinct set of 

benefits and is chosen by the specific quality requirements of the end products. [6]. The 

most popular techniques are Liquid Encapsulated Czochralski (LEC), Vertical Gradient 

Freeze (VGF), Metal-Organic Chemical Vapor Deposition (MOCVD), and Metal Beam 

Epitaxy (MBE). The LEC method demands the controlled melting of high-purity gallium 

and arsenic elements in order to produce single crystal GaAs. A seed crystal is then dipped 

into the molten mixture and slowly withdrawn while being encapsulated to grow a single, 

high-quality GaAs crystal [7]. In VGF, a seed crystal is similarly pulled to the chamber's 

surface utilizing a regulated temperature gradient. This precise process results in the 

production of single crystal GaAs wafers [8]. In MBE, it utilizes heated sources to emit 
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atom beams that deposit gallium and arsenic atoms on a heated substrate, layer by layer 

[9]. On the other hand, MOCVD involves the introduction of arsenic and gaseous 

organometallic gallium compounds into a reactor compartment, where they transform into 

crystals and subsequently adhere to a heated substrate [10]. All strategies offer precise 

control over the growing environment in order to provide the necessary material 

properties. 

1.3. Comparative Analysis of GaAs Manufacturing Techniques 

This comparative analysis of GaAs is crucial for the advancement of electronic and 

optoelectronic device technology. Their quality, efficacy, and applicability are all 

determined by the manufacturing processes employed in the production of GaAs crystals. 

There are four well-known techniques for fabricating GaAs are evaluated: LEC, VGF, 

MBE, and, MOCVD. The unique characteristics of each method, focus on crystal quality, 

cost, impurity control, and applications, and provide decision-makers and researchers with 

the knowledge to choose the most suitable strategy for their GaAs-related projects. For 

example, LEC excels in applications requiring high purity and cost-effectiveness as a 

result of the liquid encapsulation process, which reduces impurity levels and provides a 

cost-effective solution [11]. Prioritizing extraordinary crystal quality and purity over 

growth rate, LEC becomes the preferred option when a moderate growth rate is acceptable 

[12]. On the contrary, when a quicker rate of growth is of the utmost importance, the VGF 

technique emerges as a feasible alternative, facilitating advanced crystal formation [8]. 

Despite its comparatively lower reputation for crystal quality in comparison to LEC, VGF 

is still capable of generating crystals of exceptional quality; thus, the selection between 

the two processes in the semiconductor industry is dependent upon particular growth 

parameters and application demands. In the semiconductor industry, MOCVD is 

extensively utilised to mass produce GaAs-based devices, regardless of its lower cost for 

large-scale GaAs production due to its greater growth rates and reduced apparatus 

expenditures [10]. MBE offers precise control and high purity but comes with higher 

equipment cost and slower growth rate, making it suitable for high-quality, low-volume 

applications [13].  
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1.4. Segmenting Challenges 

A significant challenge that arises after the manufacturing of GaAs is the integration of 

multiple identical pattern circuits layered upon each other on a single wafer. This 

complexity necessitates the need for precise techniques to convert a single wafer into 

multiple chips [14]. A wide range of methodologies are available for performing the dicing 

operation; but the 'scribe and break' technique remains the most frequently employed, as 

displayed in Figure 1.  

 

Figure 1: Schematic Depiction of Breakage Mechanism [15]. 

In order to commence this process, an initial cracking is generated on the wafer's surface 

through the scratching of its surface with a diamond instrument. Subsequently, the wafer 

is exposed to controlled stress or pressure. The separation is then completed by slicing the 

wafer along particular crystallographic planes [16]. However, this process can be 

cumbersome and may introduce stress concentrations in the material, potentially leading 

to defects and reduced chip quality [17]. To address these challenges, nanoindentation 

emerged as an effective method. In contrast to conventional dicing, nanoindentation 

improves the process of chip fabrication by generating indents at a precise distance to the 

thickness of the chip [18]. 
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1.5. Challenges in Nanoindentation 

The utilization of nanoindentation becomes increasingly significant in understanding 

mechanical properties as we proceed into the domain of the nanoscale, where materials 

show distinctive characteristics. However, the goal of perfection presents an array of 

enormous challenges. In nanoindentation, when an external force is applied through the 

indenter, achieving a critical stress, it results in the nucleation, movement, and interaction 

of new dislocations with pre-existing structural defects [19]. This process creates a larger 

stress field, leading to various types of microcracks, such as radial cracks, lateral cracks, 

and median cracks [20]. Among all of these, radial cracking is the most frequent type, 

which extends outward from the corners of the indentation and is more common with 

sharp indenters like Vickers or Berkovich tips as shown in the figure 2 [21]. 

 

Figure 2: SEM images of radial cracks around Berkovich indentation at different depths 

- (a) 20 µm and (b) 1 µm  [21]. 

In contrast, lateral and median cracks occur beneath the indenter and extend underneath 

the surface [22]. To overcome these challenges through the application of both ex-situ or 

in-situ techniques is not easily feasible due to several challenges. Ex-situ nanoindentation 

involves observing cracks after each indentation, is not a viable or feasible solution [23]. 

In contrast, in-situ nanoindentation is useful in extracting real-time analysis and observing 

cracks during indentation but due to a range of challenges such as instrumentation costs, 

setup complexity, environmental control, real-time monitoring, sample preparation, safety 

protocols, data interpretation, training, maintenance, compatibility, resource allocation, 

and risk mitigation, the utilization of this advanced technique is itself challenging [24]. 
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1.6. Cutting-Edge AI Techniques 

In an age consumed by novelty, the advancements in artificial intelligence methodologies 

shed light on our path, providing an opportunity for advancement as well as a paradigm 

change in how we understand, adapt, and thrive in the digital era. Therefore, a machine 

learning (ML)-based model is needed to provide a suitable solution that could eliminate 

the need for both ex-situ and in-situ nanoindentation [25]. Consequently, the primary aim 

of this study is to utilize nanoindentation data actively for the purpose of making 

predictions about crack formation, effectively addressing this gap in the present research. 

1.7. Problem Statement  

In the segmentation procedure for slicing GaAs wafers, nanoindentation has been 

implemented to generate indentations at a distance proportional to the thickness of the 

chip. However, a significant challenge has emerged in the form of a cracking phenomenon 

that has been observed throughout this procedure. In order to overcome this problem, an 

AI-based ML approach helps to predict the cracking phenomenon based on the 

nanoindentation data. 

1.8. Proposed Methodology  

An approach is to develop a rigorous methodology that is centered on a comprehensive 

and methodical strategy that is specifically designed to tackle the challenges in order to 

identify the microcracks initiation. This section presents an in-depth overview of the 

complete procedure, including data extraction, the development of a machine learning 

model, the optimization of hyperparameters that follow, and the creation of a graphical 

user interface. Several ML models, such as Ensemble Learning Tree (ELT), Gaussian 

Process Regression (GPR), Support Vector Machine (SVM), and Decision Tree (DT), are 

developed for the prediction of crack formation based on nanoindentation data. Figure 3 

depicts an overview of using nanoindentation data for training models for crack 

prediction. Basically, the use of load (mN) and displacement (µm) data as input 

parameters for these ML models. The application of data-driven modelling techniques led 

to the building of optimized models for process validation and prediction. In the 

subsequent step, the formulation of particle swarm optimization (PSO) and genetic 

algorithm (GA)-based ML models optimize the parameters that are effective for predicting 
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and evaluating cracking phenomena using nanoindentation data [26]. This integrated 

approach, which combines the use of ML models with GA and PSO tuning, has significant 

potential for experimental crack prediction research employing ML models. Finally, a 

graphic user interface will be developed using MATLAB, integrating both optimal 

features and ML algorithms to enable the prediction of nanoindentation-based crack 

occurrence. This study offers ease to researchers in terms of both reduced time 

consumption and efficient resource utilization through a trained ML model based on 

nanoindentation data. 

 

1.9. Objectives  

▪ Data collection from the relevant literature. 

▪ Development of Machine Learning models. 

▪ Optimization of ML models’ hyperparameters using PSO and GA. 

 

Figure 3: Schematic of the Workflow for Crack Prediction Utilizing Machine Learning. 
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Chapter 2:  

Literature Review 
 

2.1. Nanoindentation  

As a result of the fact that materials exhibit distinct behavior at the nanoscale, so, 

nanoindentation is an essential technique for determining the material's mechanical 

properties. [27]. It is an indentation test in which the dimension of the penetration is 

quantified in nanometers. Machines can precisely record small loads and movements in 

the form of load vs displacement data as depicted in the figure 4, and determine the 

modulus and other mechanical properties of thin films and coatings such as, hardness, 

yield stress, complex modulus, strain rate sensitivity, and fracture toughness [28]. 

 

       Figure 4: Load-Displacement Curve during Nanoindentation [29]. 

This is important in fields like microelectronics, where the performance and durability of 

thin layers are very important to understand [30]. It is not only limited to these properties, 

but the viscoelasticity, creeping, phase transition, dislocation movement,  strain hardening 

effect, and residual stress, can also be determined [31]. It studies the effects of surface 
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treatments such as ion implantation and chemical doping. Moreover, it has a wide range 

of applications in the biomedical industry, including bone and dental materials’ analysis 

[28]. The tool and its cross-sectional representation of the G200 Nano-indenter, are 

depicted in Figure 5. 

 

 

Figure 5: (a) Nano-indenter G2000, (b) Cross-sectional View of G200 Nano-indenter 

[32]. 
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2.1. Types of Nano-indenters  

Nanoindentation uses a variety of indenter types, primarily wedge-, spherical-, and 

pyramid-shaped indenters. Typical pyramidal indenters include the cubic-angled indenter, 

rectangle pyramidal Vickers indenter, triangle pyramidal Berkovich indenter, and Knoop 

indenter [33]. Each indenter has its own specific applications and limitations. As an 

illustration, the Berkovich indenter is a suitable instrument for quantifying hardness and 

elastic modulus due to its well-defined geometry and three-sided pyramidal shape [34]. 

The conical indenter is advantageous in particular situations involving materials that 

exhibit non-linear properties, owing to its conical shape. The spherical indenter, which is 

constructed in the shape of sphero-cones to facilitate mounting, exhibits negligible initial 

contact stress [34]. As a result, they are appropriate for evaluating flexible materials and 

simulating contact damage that may occur in use. Nevertheless, the attainment of 

submicron-scale spherical diamond indenters' superior quality poses a significant obstacle 

to wider implementation. In addition, cube-edge indenters have a pyramidal shape with a 

minutely cleaved corner and are used for the micro-indentation of the soft materials [35].  

2.2. Indentation Methods  

The nano-indenter is a nanoindentation device that operates in two modes: continuous 

stiffness measurement (CSM) and quasi-static loading [36]. The quasi-static loading 

method gives significant insight into the behavior of materials under gradual constant 

force application for determining hardness and elastic modulus under static conditions. 

When substances are subjected to continuous, long-lasting stress, this mode becomes 

critical. The CSM mode, developed by MTS Systems Corporation, offers an alternative 

approach to dynamic nanoindentation. The process involves applying a low-amplitude 

signal to the indenter while it is advancing through the material. This methodology enables 

simultaneous assessment of hardness and elastic modulus across multiple depths within 

one single indentation [33]. When examining gradient differences in mechanical 

properties across the depth of thin films, coatings, or layered materials, this feature is 

particularly useful. Moreover, when analyzing the viscoelastic features of materials that 

show both elastic and viscous properties when deformed, the CSM mode is especially 

beneficial. Researchers are able to gain in-depth information into the behavior of these 

materials in real-world scenarios by analyzing the way in which they respond to varying 
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stresses over time, due to the dynamic nature of CSM. The CSM mode may also adjust 

the strain rate indefinitely, allowing for consistent evaluation of materials under 

comparable strain rate settings and research into strain rate sensitivity in sectors such as 

aerospace and automotive. In addition, the CSM mode simplifies the correction of the 

indenter's area function, which is crucial for precisely identifying material qualities [37]. 

Overall, the nano-indenter provides extensive material characterization capabilities, with 

the quasi-static loading mode giving critical data on material reactions under constant load 

and the CSM mode providing dynamic testing capabilities. 

2.3. Pop-in Events in Load-Displacement Curve 

Nanoindentation provides load-displacement data as output, demonstrating the material's 

behavior, which changes based on alterations in the material or its characteristics  [38]. 

Pop-in events in the load-displacement curve represent the material's response at different 

applied loads. A pop-in event is defined as an abrupt displacement bursting that is detected 

during a nanoindentation test under a constant load condition. This event happens due to 

variations in the properties of the material beneath the surface. [39]. These pop-in 

occurrences are attributed to various factors. For example, the very first pop-in event is 

typically the result of the elastic-to-plastic transition, as illustrated in Figure 6(a).  

Figure 6: (a) First Pop-in Occurrence within the Load-Displacement Curve, 

(b) Multiple Subsequent Pop-in Events. 
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Additionally, multiple pop-in events can be caused by various factors such as phase 

transformations, dislocation nucleation and movement, cracking phenomena, and the 

transmission of dislocations from one grain to an adjacent grain. Figure 6(b) visually 

represents the occurrence of multiple pop-in events. These events serve as significant 

sources of information regarding the mechanical characteristics of materials, including 

hardness, fracture toughness, and elastic modulus. One prevalent factor contributing to the 

occurrence of pop-ins is the cracking phenomenon, which can manifest in diverse forms, 

including radial cracking, lateral cracking, and median cracking, among others [34]. 

2.4. Cracking in GaAs   

This particular segment is dedicated to a comprehensive analysis of the characteristics and 

occurrence of the cracking phenomenon in GaAs. The cracking phenomenon ensures that 

a pop-in event will occur in the load vs displacement curve during nanoindentation [40]. 

The goal of this study is to forecast the initiation of microcracks in order to streamline the 

segmenting process of GaAs wafers, that’s why it is an essential to discuss this section 

separately. This specialized inquiry not only emphasizes the importance of understanding 

the cracking characteristics of GaAs but also enables a focused analysis that provides 

subtle insights that are crucial for applications where material reliability and crack 

resistance are of the utmost importance. However, it is critical for understanding crack 

morphology and the manufacturing of high-quality GaAs-based devices, which are related 

to the physical features, appearance, and form of the microcracks in the material. As a 

result, nanoindentation is a well-known technology for investigating cracking evolution 

and material mechanical properties [31]. It describes the crack's formation, propagation, 

and interaction with pre-existing defects in the material. Many research and studies have 

previously been addressed to the investigation of indentation on GaAs and crack 

formation. The major purpose is to comprehend the distribution of radial cracks in various 

crystallographic orientations [41]. For example, the crack formation appears anisotropic 

when a sharp indenter is used to indent GaAs with varying doping conditions. Because of 

the radius of the indenter, the pop-in stress is greater for the spherical indentation than for 
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the sharp indentation. These insights are essential for material characterization and 

understanding mechanical behavior at a small scale.   

2.5. Crack Observing Techniques   

Cracking analysis can give significant insights into the mechanical behavior and failure 

mechanisms of materials. There are two distinct methodologies have been developed to 

examine the structure and behavior of cracking in GaAs: (1) controlled cleavage cross-

sectioning at specific locations within the indentation zones; and (2) in-situ 

nanoindentation with continuous indentation load and displacement recording. [14]. The 

first approach is used to precisely characterize the orientations, shapes,  and sizes of 

subsurface indentation cracks [42]. The second approach involves combining surface 

cracking observations with load-displacement data to determine cracking dynamics [43].  

2.5.1. Ex-Situ Study  

Ex-situ studies involve the segregation of the indentation process from the statistical 

procedures, which provides a greater degree of experimental flexibility and control. 

Researchers perform indentation in a specific environment or under specific conditions 

and later examine the effects, such as deformation, cracking, or phase transformations, 

using various analytical tools.  Numerous researches have been conducted to understand 

the crack morphology using ex-situ nanoindentation. For example, Pharr et al. [44] 

successfully developed the most straightforward methodologies for quantifying the 

mechanical properties of thin films using nanoindentation. They extracted information by 

the impression of the indentation and utilized it in finding the characteristics of films. 

Using a nanoindentation test, Xia et al. [45] find out the influence of surface roughness on 

the mechanical property of a material. Moreover, Rodriguez et al. [46] devised an 

innovative technique utilizing instrumented indentation to determine the cohesive-

frictional mechanical properties of amorphous materials.  Stephania et al. [47] utilized 

deep learning algorithms to investigate pop-in identification in nanoindentation curves. 

The objective of this study was to create a binary classifier based on image detection that 

could accurately distinguish between the presence and absence of pop-in events in load-

displacement curves obtained from nanoindentation experiments. Moreover, Baiocco et 

al. [48] have recently applied ANNs and other ML tools to the prediction of yield stress, 
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indentation curves, and the volume fraction of precipitated secondary phases for duplex 

stainless steel grade 2205. Similarly, Yescas et al. [49] also investigated the prediction of 

the Vickers hardness of austempered ductile metals in relation to their composition, 

austenitizing and austempering temperatures and durations, and in the design of such 

irons. In addition, Windsor et al.[50] conducted research on the relationship between heat 

treatment conditions, density, and residual stresses in powder metallurgy steels. Through 

this investigation, she developed a model that effectively predicted the yield stress of 

irradiated ferritic steels. 

2.5.2.  In-Situ Study 

In the fields of materials science and nanotechnology, in-situ nanoindentation is a 

technique whereby nanoindentation investigations are performed under identical 

conditions or surroundings that are utilized for subsequent analyses or observations. In 

contrast to ex-situ nanoindentation, which involves the separation, preparation, and 

subsequent analysis of samples, in-situ nanoindentation enables the continuous 

monitoring and characterization of material responses while they are undergoing 

indentation. Basically, the examination of discontinuities in the loading and unloading 

curves prove beneficial in identifying discrete events that happen within the material 

during experimentation. However, ascertaining the deformation mechanisms responsible 

for these discrete events is inherently speculation due to the impossibility of observing the 

actual processes during testing. 

2.5.2.1. Cracking Sequence 

A significant number of researches have been conducted using in-situ nanoindentation, 

providing a unique understanding of the behavior of materials. This includes phenomena 

such as crack initiation and propagation, pile-up, elastic and plastic transitions, and sink-

in. This understanding is obtained by combining nanomechanical testing with direct 

observation via electron microscopy. The primary goal of this research is the investigation 

of the cracking phenomenon; therefore, comprehending real-time microcrack initiation is 

crucial to understanding. The sequence of cracking observed in Figure 7 is as detailed 

below: (i) A preliminary set of radial cracks (1) aligned with the [100] or [010] orientations 

are initiated by early loading. These microcracks are also known as Palmqvist cracks; (ii)  
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Figure 7: Sequential micrographs illustrating the cracking process with a conical 60° 

indenter under varying loads, captured during in situ nanoindentation: (a) Loading at 150 

mN, (b) Loading at 300 mN, (c) Unloading at 50 mN, (d) Full load at 500 mN, (e) 

Unloading complete with indenter withdrawal, and (f) Corresponding Load–

Displacement Curve. The arrows (1) and (2) indicate radial cracks, while the arrow (3) 

and arrow (4) indicate slide lines and fragments, respectively [14]. 
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they undergo a transition, after which a subsequent set of radial cracks (2) aligned with 

the [110] or [010] directions form and expands upon the initial set. The microcracks under 

consideration are commonly known as half-penny cracks. (iii) Following this, chip 

formation (4) takes place either at the surface during loading or unloading. [14]. The 

aforementioned complementary methodologies provided significant insights into the 

sequence of cracking and the morphology of the cracks in the indentation area.  

2.6. Artificial Intelligence  

Artificial Intelligence (AI) is a specialized domain within computer science that aims to 

create systems capable of outperforming human intelligence across a range of tasks, such 

as comprehending natural language and solving problems. ML is a subfield of AI,  

 

Figure 8: Visualization encompassing key elements of AI. ML, DL, and ANN [51]. 

concentrates on the development of various models that enable machines to improve their 

performance over time through data-driven learning. Deep Learning, a significant ML 

technique, makes use of multilayered neural networks that are especially effective at 

speech and image recognition [51]. Natural Language Processing facilitates computers in 

comprehending and generating human language, while Computer Vision interprets visual 

data. A comprehensive representation of AI and its subfields is mentioned in the figure 8 
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[51]. AI finds utility in a multitude of fields, encompassing expert systems, natural 

language generation, and robotics. General AI works to emulate human intellect more 

comprehensively, while narrow AI is specifically engineered to execute designated tasks. 

[52]. It is of critical importance to the development of intelligent systems and automation, 

influencing sectors ranging from finance to healthcare. Our data is based on numerical 

values, and, ML is particularly well-suited for handling numerical data, often excels in 

tasks that involve quantitative information. Therefore, it is better to use ML approach in 

order to develop a model for the prediction of cracking phenomenon. Moreover, ML is a 

purposeful endeavor rooted in the acknowledgment of its capacity for revolutionization. 

It emerges as a catalyst for revealing valuable insights, automating complex processes, 

and enhancing decision-making capabilities in a world filled with data. Exploring the 

domain of ML provides individuals with the necessary skills to effectively navigate the 

complexities of data analytics, predict future trends, and derive practical insights [53]. A 

detailed overview of machine learning is addressed in the subsequent section. 

2.6.1. Machine Learning  

A branch of artificial intelligence (AI) called machine learning (ML) is devoted to 

developing statistical models and algorithms. Without being explicitly programmed, these 

models enable computers to acquire knowledge independently and generate predictions 

or decisions  [54]. ML techniques are used to analyze and interpret data, discover patterns, 

and make informed decisions based on the data [55]. Here's an overview of ML and its 

methods. It operates on the principle that computers can learn from data and improve their 

performance over time [56]. The key components of ML are as follows: 

Data: ML algorithms need data to train itself with the help of patterns and make 

predictions. High-quality and relevant data is crucial for successful machine learning. 

Features: Features are the specific characteristics or the columns of the input variables in 

the data that the ML algorithm uses to make predictions. Feature selection or engineering 

is an important step in ML. 

Model: The purpose of a model is to depict the relationships between the objective 

variable and the data features through a mathematical representation. By means of training 
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on past data, the model acquires the capability to generate predictions on novel, 

unobserved data. 

Training: During the training phase, the ML model learns from historical data by 

adjusting its internal parameters to minimize prediction errors. 

Testing and Evaluation: After training, the model is tested on new data to assess its 

performance and accuracy. Various evaluation metrics are used, depending on the 

problem type (e.g., classification, regression) [57]. 

2.6.2. ML Models 

ML comprises an extensive array of methodologies and strategies. The method selection 

is determined by the nature of the data available and the issues at hand. Total of four ML 

models SVM, GPR, ELT, and DT were used to train and forecasting the microcracks using 

load vs displacement data in MATLAB. Detailed descriptions of each of these models are 

presented in the subsequent sections: 

2.6.2.1. Decision Tree 

Decision trees are considered a fundamental technique in discriminant analysis for the 

purpose of knowledge discovery. The efficiency, promptness of operation, and 

uncomplicated implementation of the system all contribute to its elevated status. In this 

technique, an extensive arrangement of nodes and branches constitutes a tree-like 

structure. The division of individuals into groups is achieved through the utilization of 

specific functions for regression or classification by internal nodes that possess outgoing 

edges. In addition, values may be maintained at the terminal nodes or leaves or computed, 

depending upon the type of model [58]. The most basic form of regression tree is 

represented by a constant value at the root level, which is usually the mean value of the 

target attribute. In order to expand upon this notion, model trees substitute linear or 

nonlinear regression functions for these constants. A model proceeds from the root to a 

leaf to predict a value, with the instance's attributes guiding the path at each internal node. 

Then, the prediction is generated by the leaf's regression model [59]. The decision tree 

algorithm, which is composed of samples provided, is the core of the decision tree's 

functionality. By minimizing a fitness function, this algorithm attempts to locate the 
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optimal tree. When classes are not predefined, a regression model is fitted to the objective 

variable by utilizing independent variables. For each variable, the dataset is partitioned 

into multiple positions. The algorithm evaluates the variation between reported and 

predicted values at each division, utilizing the fitness function as its basis. The procedure 

proceeds recursively, selecting the division point that minimizes the error, as mentioned 

earlier [60]. Decision trees are effective when they are capable of processing complex 

datasets and generating results that are easily interpretable. Due to their capacity to 

streamline decision-making procedures and predict results satisfactorily, and they find 

extensive application across diverse domains, including finance, healthcare, and machine 

learning. A graphical depiction of the complete operational process of the DT algorithm 

is illustrated in Figure 9 [61]. 

Figure 9: Representation of Decision Tree 

Structure. 
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2.6.2.2. Support Vector Machine 

 Support Vector Machines (SVM) is a supervised machine learning method that excels at 

both classification and regression. [62]. It manages the relationship between a output 

variable and one or more predictors as an extension of the SVM algorithm. The SVR 

algorithm acquires knowledge of a regression function that establishes a correspondence 

between input variables and observed response values through the formulation of an 

optimization problem [26]. SVR is renowned for its ability to precisely balance model 

complexity and prediction accuracy, which makes it exceptionally proficient in the 

management of high-dimensional data. This equilibrium is maintained by employing 

several fundamental principles derived from SVM and refined for regression. (a) the soft 

margin; (b) the kernel function; (c) the separating hyperplane; and (d) the maximum-

margin hyperplane. In SVM, the separating hyperplane is a crucial concept, establishing 

a boundary to distinguish between classes in classification tasks. The maximum-margin 

hyperplane as mentioned in the figure 10, which enhances classification robustness by 

optimizing this boundary to maximize the distance from the closest data points of various 

classes. The soft margin approach further refines SVMs by accommodating real-world 

data imperfections and balancing margin width against misclassification levels to increase 

the model's generalizability. Additionally, both SVM and SVR depend heavily on the 

kernel function, a fundamental tool that addresses nonlinear challenges by transforming 

the input variables into a higher-dimensional space, thereby enabling linear discrimination 

Figure 10:  Representation of SVM Structure. 
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in more complex situations. Unlike SVM's focus on optimizing class margins, and fits a 

hyperplane that most data points are within a specified distance (ε-tube) in order to 

minimize the error. Whereas support vectors are critical in determining the position of the 

hyperplane, points that deviate from this tolerance are penalized [63]. Because of its 

methodology, SVR is an effective predictive analytics tool that can extract valuable 

insights from large, complicated datasets in a variety of industries, including 

environmental modeling, healthcare, and finance [64].  

2.6.2.3. Gaussian Process Regression 

GPR in the figure 11 is a highly adaptable supervised learning methodology that is utilized 

for both classification (with discrete outputs) and regression (with continuous outputs). Its 

utility covers an extensive range of situations, including the analysis of data sets and 

integration into more complex problem-solving procedures [65]. GPR is built upon the 

Gaussian process, which is a collection of random variables of any finite number that share 

a jointly consistent Gaussian distribution. The utilization of this statistical framework 

enables the imperfect prediction of continuous values through GPR [66]. GPR is a unique 

method because it is not linear or parametric. This makes it easier to connect data points 

in complex, high-dimensional spaces. GPR operates on the foundation of Bayesian 

probability theory, which facilitates the seamless integration of observed data and prior 

knowledge in order to produce predictions. GPR works well with other Bayesian 

framework regression methods, especially Kernel Ridge Regression (KRR) and linear 

Figure 11: Representation of GPR Structure. 
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regression using radial basis functions. This exemplifies the adaptability and robustness 

of the framework in handling various predictive modeling scenarios [67]. The Bayesian 

approach, within the domain of neural networks, utilizes a prior distribution over weights 

that is analogous to a distribution over functions. A posterior is produced for prediction 

functions when this initial assumption is combined with a noise model. However, 

approximations are often necessary for practical implementations due to the intricate 

nature of this function distribution in neural networks [68]. The management of 

uncertainty and model complexity by the Bayesian framework of GPR differs from that 

of techniques like KRR. A comprehensive understanding of these differentiations is 

crucial for the selection of the most suitable tool for specific ML tasks, especially those 

that require precise interpolation and quantification of uncertainty. 

Figure 12: Representation of ELT Structure. 
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2.6.2.4. Ensemble Learning Tree 

ELT methods are distinguished by the incorporation of a large number of learners, which 

are integrated in a specific manner to enhance the precision of predictions [69]. Tree-based 

machine learning models are characterized by their transparency and simplicity, which set 

them apart from earlier, more obfuscator-oriented algorithms. These models are 

particularly effective at handling both linear and nonlinear problems. The method under 

consideration is predicated on two essential model categories: meta-learners and base 

learners. Base learners have the duty of forecasting the posterior class probabilities of a 

provided sample. On the other hand, the meta-learner determines the final class 

designation by combining these predictions as visualized in the figure 12 [70]. The 

implementation of a dual-model approach enables more nuanced data processing, which 

in turn yields more precise predictions. An aspect that sets this approach apart is its 

extensive use of multi-objective optimization during the model development phase, 

placing particular emphasis on the combination and selection of models. This strategy 

helps to optimize ensemble complexity while minimizing accuracy and simultaneously 

ensuring precision and interpretability. The ensemble method additionally employs a hill-

climbing algorithm to establish a stable collection of diagnostic principles. The method 

described above is based on strategic prioritization and selection of rules, which ensures 

that the ensemble delivers satisfactory results and offers valuable insights. This ensemble 

learning method is a big step forward in the field of ML because it uses base and meta-

learners strategically and multi-objective optimization. It's especially useful for making 

diagnostic tools that are easy to understand [71]. 

2.6.3. Overview of Optimization Algorithm   

A comparative analysis was carried out to identify significant features and optimize the 

hyperparameters with the help of two distinct optimization algorithms. The Genetic 

algorithm comes first, followed by Particle Swarm Optimization. 

2.6.3.1. Genetic Algorithm 

Generating computational algorithms is a technique that draws inspiration from the 

principles of natural evolution. It identifies the optimal solution from a set of potential 

solutions to a given problem. This methodology involves conceptualizing every possible 
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resolution as a "chromosome" and evaluating its excellence through the utilization of a 

specialized metric called the "fitness function." [72]. This fitness function is employed by 

GA in order to quantify the efficacy of every proposed solution. The algorithm iteratively 

evaluates these solutions and terminates execution when it identifies an adequate solution 

that satisfies the predetermined criteria. In the event that the intended solution remains 

unattainable, and GA proceeds to generate alternative solution candidates through 

processes including selection, crossover, and mutation, which collectively comprise the 

subsequent generation of possibilities [73]. During this iterative procedure, solutions that 

exhibit exceptional performance are retained, whereas those that fall short of perfection 

are discarded. As this process goes on, solutions that work well are kept, and the others 

are discarded. This way, over time, GA helps in finding ever-improving solutions to that 

problem. The key is to use these operations wisely to improve the solutions until the best 

one is found. Figure 13 visually describe the whole process effectively [74]. 

Figure 13: Representation of workflow of GA. 
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2.6.3.2. Particle Swarm Optimization 

PSO is a sophisticated optimization method that is characterized by its stochastic, self-

adaptive, and population-based attributes as described in the figure 14. Particles are 

utilized to symbolize potential solutions within a specified search space in this 

methodology. Every individual particle establishes its own optimal position and function 

value by taking into account its present velocity and the optimal positions of its associates. 

This assessment guides the particles as they adjust their positions and velocities, 

guaranteeing that they approach the optimal solutions. By implementing regular 

adjustments to the positions, velocities, and adjacent interactions of particles, it is possible 

to constrain them to predetermined boundaries [75].  PSO operates on the fundamental 

principle of being capable of traversing vast solution spaces in pursuit of optimal values 

for various system characteristics, all the while considering cost limitations. This approach 

is widely employed across diverse scientific fields to tackle challenges that require optimal 

solutions while effectively controlling expenses. In PSO, every solution can be likened to 

a soaring particle or bird traversing the search space. These particles determine the optimal 

positions in concert as a swarm. In this multivariate space, particles are associated with 

position and velocity vectors. It is imperative to comprehend the relationship between the 

position and movement pattern of a particle, as this determines the limits that particles can 

Figure 14: Nature inspired Technique (PSO). 
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traverse. This approach has been useful in clarifying complex motion patterns 

and improving our comprehension of optimization challenges in a variety of scientific 

disciplines. It is imperative to acknowledge that the adaptability and collaborative nature 

of PSO among particles render it an excellent instrument for tackling practical challenges, 

guaranteeing effective resolutions while accommodating the intricacies included in 

various scientific investigations. Figure 15 illustrates the comprehensive visual 

representation of the PSO algorithm's operation [76]. 

 

 

 

 

 

 

 

Figure 15: Workflow of PSO. 
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Chapter 3:  

Methodology 
 

3.1. Data Collection  

A detailed investigation of the existing literature unveils an all-encompassing 

investigation comprising a diverse collection of scholarly articles. A detailed review was 

conducted using reputable databases (Google Scholar, Web of Science, and Science 

Direct), incorporating key terms such as, nanoindentation, pop-in, crack initiation, and 

machine learning. This literature review studies multiple aspects of research, with a 

specific emphasis on the approaches utilized in ex-situ and in-situ. The discussion not only 

encompasses the wide range of papers that were examined but also thoroughly evaluates  

 

each methodology's intricacies, illuminating the unique advantages and practical uses 

linked to ex-situ and in-situ strategies. A particular paper was selected due to its significant 

focus on in-situ techniques, to attain a more complicated comprehension [14]. The 

justification for selecting this particular paper is based on its credibility and dependability, 

ascribed to its real-time analysis implementation. In this paper, in-situ nanoindentation is 

Figure 16: Data Classification Using Python Programming Language 
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utilized for the analysis of the cracking phenomenon, which offers a singular and 

invaluable perspective. The findings are strengthened by the emphasis on real-time 

analysis, which contributes significantly to the wider discussion on methodologies for 

material analysis and characterization. After the successful selection of this prestigious 

paper, data points were carefully extracted from the graphical image and prepare for the 

subsequent steps. Secondly, these data points were classified using the python language 

by loading the data file in the CSV format as shown in the figure 16. A number of 

algorithms were executed on the provided data to attain the data insights in terms of box 

plots, pair plots, and Pearson correlation. 

3.1.1. Overview of Python Plotting  

Python plots have a significant impact on data exploration and analysis due to their ability 

to convert unorganized datasets into informative narratives. Python plots facilitate the 

discernment of correlations, trends, and patterns within the data through the utilization of 

visualization capabilities; they provide a dynamic lens through which information is 

brought to life. This functionality not only improves our comprehension of complex 

datasets but also enables us to convey discoveries in a persuasive and easily 

comprehensible manner. Various plots, such as box plots, pair plots, and Pearson 

correlation, can be obtained from the Python language [77]. 

3.1.1.1. Box Plots 

Box plots in Python, also known as box-and-whisker plots, are highly effective graphical 

depictions employed to illustrate crucial statistical information concerning the distribution  

 

Figure 17: Algorithmic Representation of Box Plots 
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of a provided dataset. The key insights derived from box plots include: outliers, skewness, 

symmetry, variability, and central tendency. A following algorithm in the figure 17 is 

required to attain the box plots on the basis of provided data sets [78]. 

3.1.1.2. Pair Plots 

 Pair plots, in Python often created with libraries like Seaborn provide a visual way to 

explore the relationships between variables in a dataset. The histograms on the show the 

distribution of each variable individually helping us understand their unique 

characteristics. Scatter plots on the display bivariate relationships allowing us to easily 

identify correlations, clusters and potential outliers. These diagrams serve as a tool for 

understanding how variables are interrelated and how their distributions are shaped. They 

simplify the analysis of datasets and offer guidance for further investigation. The process, 

for generating these plots is illustrated in Figure 18 [79]. 

3.1.1.3. Pearson Correlation 

The Pearson correlation coefficient, abbreviated by the symbol "r," finds out the direction 

and intensity of a linear relationship between dependent and independent variables. A 

correlation of +1 indicates an ideal positive linear association on a scale from -1 to +1, 

while a correlation of -1 shows an ideal negative linear relationship; and a correlation of 

0 implies the absence of any linear association. Pearson correlation algorithm as depicted 

in the figure 19, is used to assess the extent of association between variables, offers 

valuable insights into the correspondence between changes in one variable and another. It 

is imperative to acknowledge that correlation does not necessarily imply a connection, and 

Figure 18: Algorithmic Representation of Pair Plots. 
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the measure's validity is predicated on the assumption of a linear association between the 

variables under investigation; furthermore, it may be susceptible to outliers in the data.  

Different ML models were developed by integrating (1) GA and (2) PSO for the prediction 

of microcracks. The operational parameters include load and displacement. Before the 

data was imported from an Excel sheet in MATLAB R2021, the data was well classified 

in the Python programming language and identified the significance of each attribute with 

the independent variables. For the prediction of microcracks and feature selection, the 

optimization algorithms, which included GA and PSO, were integrated with ML models. 

Apart from that, a machine learning model was trained using the data set that predicted 

the initiation of microcracks by taking nanoindentation data under hypothetical 

parameters. In this study, a GPR-GA-based model was selected over all other models to 

predict crack initiation. Therefore, the workspace of the GA-based GPR model was used 

for building the GUI that fulfills the main objective of this study [80]. 

3.2. Data Pre-processing  

After successfully classifying and getting visual insights of the extracted data using python 

language, it is ensured that it is ready for subsequent ML steps. Firstly, all data points 

were standardized to maintain logical values and prevent any single feature from exerting 

excessive influence. Careful scrutiny and the removal of unusual data points were 

Figure 19: Algorithmic Representation of Box Plots 
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performed to maintain the prediction accuracy. The dataset was then split into two parts: 

80% for training our models and 20% for accuracy testing, ensuring fairness through 

random selection. Thoughtful handling of missing data involved either filling in gaps or 

removing problematic sections. ML models, SVM, GPR, DT, and ELT, were trained and 

evaluated using metrics such as coefficient of determination (R²) and root mean square 

error (RMSE) through specialized apps. Advanced techniques like GA and PSO were 

employed to fine-tune our models, and enhanced their predictive abilities significantly. 

Figure 20: Machine Learning Workflow. 
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Thorough testing yielded impressive results, with R² and RMSE values close to 1 and 0, 

respectively, indicating the precision of our predictions. This meticulous approach not 

only ensured accuracy but also optimized the overall performance of our models. Figure 

20 visually represents the entire process, from data collection to crack prediction. 
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Chapter 4:  

Results and Discussion 

 

4.1. Box plot, Pair plot, Correlation heatmap 

 A rigorous classification procedure using the Python programming language in the 

Google Colab environment is conducted for the classification of a comprehensive 

Figure 21: (a) Load (mN) and Displacement (µm) Box 

Plot representation (b) dp, dh, dh/dp, dp/dh Box Plot 

representation. 
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exploratory data analysis using a variety of visualization techniques to obtain an in-depth 

comprehension of the dataset's complex characteristics. Additionally, box graphs, as 

shown in Figure 21, proved invaluable for visually summarizing the distribution of data 

across multiple categories or features. These plots facilitated the identification of median 

points, potential outliers, skewness, clusters, and spread in the load-displacement and 

dp/dh data sets, enriching the understanding of the dataset's nuances. The utilization of 

Figure 22: Pair Plot representation, (a), (e), (I), shows the histogram. (b), (c), (d), (f), 

(g), and (h), indicate bivariate relationships. 
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pair graphs, which are illustrated in figure 22, was integral to exhaustive analysis. The 

provided plots offer a graphic representation of data dispersion, recognizable patterns, 

histograms for individual variables, and an overall comprehension of the interconnections 

among numerous factors. A careful examination of these diagrams could enable us to 

discern possible connections, clusters, and correlations among the data points. The linear 

correlations between the variables in the data were subsequently ascertained using Pearson 

correlation analysis. It provides the correlation coefficient, and crucial details about the 

connections between variables such as load, depth, dp, dh, dp/dh, and dh/dp measures the 

strength and direction of linear correlations. It identifies significant connections through 

this technique, which may be utilized to direct future modeling or research efforts. It is  

 

observed that the components dp, dh, dp/dh, or dh/dp have a significant correlation with 

the load and depth in our situation. Furthermore, it is obvious that the dp/dh relationship  

 

Figure 23: Pearson Correlation between inputs and output. 
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with load and displacement is stronger than the dh/dp, dp, or dh. Because dp/dh is positive 

over the entire box, yet dh/dp, dh, and dp have negative values as mentioned in the figure 

23. In this way, a machine learning model will be developed to predict the value of dp/dh 

on the basis of input parameters (load and displacement). So, a journey through data 

analysis in Google Colab with Python included sorting the data into groups, exploring it 

with box plots and pair plots, and finally a thorough look at the relationships between 

variables using the Pearson correlation coefficient. These efforts collectively aimed to 

enhance our understanding of the dataset's characteristics and pave the way for more 

informed decision-making in subsequent data-related tasks. 

4.2. Performance Criterion of ML models 

The coefficient of determination (R²) and root mean square error (RMSE) are essential 

metrics employed for assessing the efficacy of various models, specifically in regression 

tasks. R² shows the amount of the output variable's variability that can be explained by the 

independent variables. A higher R² value indicates a stronger relationship between the 

variables and a more accurate fit of the model. On the other hand, RMSE finds out the 

average discrepancy between projected and observed values, where smaller values 

indicate higher levels of predictive precision [81]. The R² metric is commonly employed 

to evaluate the extent to which the features of a model explain the variability in the data. 

On the other hand, the RMSE value emphasis on the precision of the model's predictions. 

It is customary to employ both measures in conjunction, as a model that exhibits a high 

R² value and a low RMSE value achieves a harmonious equilibrium between elucidating 

variance and generating precise predictions. Nevertheless, the selection between these 

options should be in accordance with the particular objectives of the analysis, taking into 

account whether one prioritizes the adequacy of the model or the accuracy of predictions, 

or even both, depending on the given circumstances [82]. In this study, a range of ML 

models, including SVM, GPR, DT, and ELT, were utilized. These models were trained 

using the regression toolbox available in MATLAB R2021b. The objective of the training 

was to develop predictive capabilities for identifying the presence of cracks. In order to 

evaluate the predictive accuracy of these ML models, the graphs illustrating the 

correlation between predicted and actual crack occurrences were analyzed. A combination 
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of GA and PSO-based feature selection and hyperparameter optimization techniques were 

employed by the ML models to accurately predict the microcracks. The accomplishment 

was achieved by utilizing a training dataset, which accounted for 80% of the complete 

dataset consisting of more than 126 data points, alongside a testing dataset that formed the 

remaining 20% (31 data points). The ML models underwent training utilizing the features 

that were identified through the use of the GA and PSO, as outlined in Table 1. 

Furthermore, the machine learning models were trained using optimal hyperparameters, 

which were established through the process of feature selection and hyperparameter 

tuning. The data points obtained from the location  

Table 1: GA and PSO parameters. 

 

Algorithm Parameters 

Genetic Algorithm  Value 
Particle Swarm 

Optimization  
Value 

Number of generations 100 Max. Iterations 100 

Crossover Scattered Max. Velocity -1-1 

Crossover Probability 0.8 Inertia weight 0.4-0.9 

Elite Count 3.95 
Cognitive 

Coefficient  
2.0 

Population Size 50 Swarm Size 25 

Population Type Bitstring Social Coefficient  2.0 

Mutation Uniform 

Mutation Probability 0.1 
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of the microcracks exhibit a horizontal straight line along x = y, suggesting a high level 

of accuracy in the prediction performance. Nevertheless, it is crucial to acknowledge that 

ML models often demonstrate more accuracy in predicting outcomes on the training 

dataset as opposed to the testing dataset. 

4.3. Features Selection 

In certain scenarios, when constructing and training a model, the number of input 

parameters can be extensive. However, not all of these parameters contribute 

meaningfully to the output. In such cases, creating a user interface with a vast array of 

input parameters becomes impractical and overwhelming. To address this challenge, 

feature selection emerges as a crucial strategy for identifying and prioritizing the input 

parameters that genuinely influence output predictions. GA and PSO are particularly 

effective in this regard, as they aid in the removal of redundant or less impactful features 

Table 2: GA and PSO based Features Selection. 

  

GA and PSO based features selection 

Models Selected Features 

SVM Load, Depth 

GPR Load, Depth 

DT Load, Depth 

ELT Load, Depth 
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from the input set. Essentially, the GA assesses the significance of each input parameter 

and evaluates its effectiveness in producing meaningful results. For example, in this study, 

both GA and PSO consistently selected load and displacement as essential input 

parameters across all models, as shown in Table 2. This decision was based on the crucial 

influence of these factors in accurately predicting the output. This technique proves 

exceptionally valuable when dealing with a large number of input parameters, enhancing 

model efficiency, and facilitating the creation of a user-friendly interface. 

4.4. GA and PSO based hyperparameters tuning 

To determine the tuning parameters for multiple ML models, the regression model toolkit 

was utilised. Utilizing standardized data and performing a 5-fold cross-validation 

comprised the tuning procedure. The selected hyperparameters, along with their 

corresponding ranges and the optimized values, are detailed in the table. The 

hyperparameters for the DT, SVM, GPR, and ELT models were fine-tuned and optimized 

using the GA and PSO approaches. In this study, the SVM model was optimized with 

specific values using GA and PSO. For GA, the optimal values included a box constraint 

of 915.2512, a kernel scale of 1.3608, a kernel function of Gaussian, and an epsilon value 

of 0.0656. In PSO, the values were a box constraint of 999.99, a kernel scale of 0.2239, a 

kernel function of Gaussian, and an epsilon value of 0.0071. The ensemble model 

hyperparameters were fine-tuned using GA and PSO as well. 

Table 3: Parameter Ranges and Optimized Values in Selection Process. 

Models Hyperparameters Ranges 
Selected Range 

GA PSO 

 

SVM 

Box Constraint 0.001-1000 915.2512 999.9999 

Kernel Scale 0.001-1000 1.3608 0.2239 

Kernel Function 

Gaussian, 

Linear, 

Quadratic, 

Cubic 

Gaussian Gaussian 

Epsilon 10-50 0.0656 0.0071 

GPR Sigma 0.0001-55.069 1.1767 13.7360 
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4.5. Models’ performance 

A number of ML models such, as GPR, DT, SVM and ELT were employed in order to 

predict the occurrence of microcracks. and successfully made predictions by utilizing 

input variables load vs displacement. All the models were selected through a feature 

selection approach based on GA and PSO methods. Table 4 illustrates a comparison of 

these models, indicating that overall GPR and SVM exhibited satisfactory performance in 

crack prediction compared to ELT and DT. R² values for GPR, ELT, and SVM in GA 

during testing were 0.9982, 0.9829, and 0.9780, with corresponding RMSE values of 

6.25E-16, 3.26E-14, and 2.61E-14, respectively. In the case of PSO, GPR, DT, and SVM 

showed satisfactory performance in crack prediction compared to ELT. The R² and RMSE 

values obtained for GPR, DT, and SVM during testing were 0.9979, 0.7744, and 0.9721,  

 

 

Kernel Function 

Non/iso-tropic 

Exponential, 

Non/iso-tropic 

Matern 3/2, 

Non/iso-tropic 

Matern 5/2 

Non/iso-tropic 

Rational 

Quadratic, 

Non/iso-tropic 

Squared 

Exponential, 

 
Squared  

Exponential 

Basic Function 
Constant, Zero, 

Linear 
  

Kernel Scale 0.523-523 324.9509 320.9508 

DT Leaf Size 1-61 8.3739 8.5496 

ELT 

No. of Learners  10-500 457.5542 
 

133.5503 

Learning Rates 0.001-1 0.6554 0.001 

Methods LSBoost, Bag LSBoost Bag 
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Table 4: Comparison of ML methods using PSO and GA. 

 

Models 

 R² in Training R² in Testing RMSE in Training RMSE in Testing 

GA PSO GA PSO GA PSO GA PSO 

ELT 0.9854 0.9684 0.9829 0.9581 1.32E-13 2.87E-6 3.26E-14 2.87E-6 

GPR 0.9729 0.9981 0.9982 0.9979 3.73E-8 2.87E-6 6.25E-16 7.31E-16 

SVM 0.9693 0.9725 0.9780 0.9721 0.1703 0.0185 2.61E-14 2.10E-14 

DT 0.9518 0.9518 0.7744 0.7744 7.53E-14 7.53E-14 6.10E-4 5.10E-4 
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with corresponding RMSE values of 7.31E-16, 5.10E--4, and 2.10E-14, respectively, as 

detailed in table 4. In comparison to alternative models, the comparatively inadequate 

performance of DT in GA and ELT in PSO can be attributed to the non-linear nature of 

crack occurrences with respect to input variables. The testing and training outcomes for 

the DT and ELT models were less than ideal, as indicated by the testing R² and RMSE 

values of 0.7744 and 6.10E-4 for DT in GA and 0.9581 and 2.87E-6, respectively, for ELT 

in PSO. As a whole, throughout the training and testing phases in GA, the GPR and ELT 

models exhibited superior performance compared to all other models. Similarly, in PSO, 

the GPR and SVM models outperformed the competition. By comparing the R² and RMSE 

values of the models, it was determined that the GPR in the GA model performed better 

than other ML models. Therefore, we selected the GPR workspace in order to develop the 

graphical user interface. 

4.6. Partial dependence plots 

Partial Dependence Plots (PDPs) in the figure 24, are used in machine learning to show 

the relationship visually between predictor variables and the expected result [83]. Distinct 

non-linear correlations with the goal variable 'Y' are shown by the two PDPs that are 

provided, one for 'Displacement' and the other for 'Load'. The 'Displacement' PDP has 

complicated effects on 'Y', with a steep early reduction, a plateau, and a continuing 

decrease. On the other hand, the connection between 'Y' and the 'Load' PDP is smoother. 

Y rises to a peak and then gently declines, indicating a different but equally significant 

effect on the result. These charts emphasize the complex dynamics at work in predictive 

models, which also emphasize how important it is to understand feature interactions 

to enhance and interpret models. 
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Figure 24: PDP’S Demonstrating the Influence of Inputs on Microcrack 

Prediction. 
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4.7. Graphical representation between actual and predicted 

cracks 

The graphical representations in Figure 25 provide a comprehensive overview of the 

actual and predicted performance of GPR in GA and SVM in PSO. Additionally, other 

graphs showcasing SVM, DT, and ELT in the context of GA, and GPR, ELT, and DT 

within PSO, offer clear evidence of minimal deviation between predicted crack outcomes 

and the actual data. 
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4.8. Graphical user interface 

A graphical-user interface (GUI) was constructed utilizing graphical images and figures 

derived from the GPR-GA model. It facilitates communication between operators and 

electronic equipment. The GUI developed in this study allowed for the input of derived 

data from the nanoindentation, specifically load and displacement. The GUI uses the GPR 

model's prediction function to forecast the existence of cracks. The MATLAB 2021b 

software was employed to develop the GUI. The model was activated via a push button, 

as illustrated in Figure 26, with load (mN) and displacement (µm) entered as inputs in the 

Figure 25: (a) DT-GA (b) ELT-GA (c) GPR-GA (d) SVM-GA predicted vs actual crack 

(e) SVM-GA (f) DT-PSO (g) ELT-PSO (h) GPR-PSO predicted crack against actual 

crack 
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GUI. The discrepancy between the output predicted by the GUI and the yield observed in 

the experiment was below 2%. 

 

Figure 26: Screenshot of Graphical User Interface. 
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Conclusions and Recommendations 

Conclusions 

1. By utilizing nanoindentation data, four distinct categories of ML models were 

applied to the prediction of microcracks. 

2. Employed GA and PSO to hyper-tune the GPR, SVM, DT, and ELT parameters. 

3. The prediction accuracy of the GPR model in GA was superior to that of all other 

models, as evidenced by its R² value of 0.9982. 

4.  The analysis of partial dependence plots demonstrated that the parameters 

selected via GA-based optimization have a substantial influence on the 

prognostication of the fracture phenomenon. 

5. A user-friendly graphical user interface was created in accordance with the GPR 

workspace in order to inspect the fracture phenomenon. 

Recommendations 

1. A novel hybrid of GA and PSO can be applied in pop-in prediction in future which 

will eliminate the need of ex-situ nanoindentation. 

2. The application of Regression learner can be useful in the field of materials science 

because it has never been done before. 

3. This method can be extended to the prediction of the type of crack which leads to 

the better understanding of materials’ behavior which is not available in the 

literature. 
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