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Abstract

Theory of fixed points is of significant importance because it provides us the ana-
logue results to the existence of solution as a fixed point of certain set function. The
aim of this study is to investigate the lattice structure of stable matchings by using
fixed point approach. Set of stable matchings behave as a fixed point under an ap-
propriate function. The research incorporates the review of various literature mainly
include the study of lattice structure of one to one and many to one bipartite stable
matchings. Earlier, the lattice structures are studied with fixed preference lists with
no price externality(price negotiation). In this present thesis a set of pairwise stable
outcomes is obtained in two sided hybrid matching market with price externality. In
this market the valuation of agents depends upon money and externality arises when
they negotiate for the price. The most important feature is to devise an algorithm that
characterize the stable matchings as fixed points of an increasing function 7". Also the
termination and correctness of this fixed point algorithm is proved. Furthermore, the
lattice structure of the set of stable outcomes is studied as an application of Tarski’s

fixed point theorem.
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Chapter 1

Introduction

In a broad range of mathematical problems of existence of a solution is equivalently con-
vertible to the problem of existence of a fixed point. The existence of a fixed point is
therefore of prime importance in different areas of mathematics and other sciences.
The results of fixed points provide conditions under which a problem may have solu-
tions. There is an interconnection between fixed points methods and theory of stable
matching. Matching is considered as one of the significant functions of Economic mar-
kets. Who gets which jobs, who marries whom, which school places, these assist in
shaping careers and lives. Stable matching behave as a fixed point of certain set func-
tion. Establishing the lattice structure of set of stable matching, is an important result

in the matching literature.

This present work is basically a study of an application of fixed point theory. In the
literature, various work is available on the lattice structure of stable matchings by using
Tarski’s fixed point theorem. But their approach does not involve price negotiation.
The current research aims at investigating the interlinks between fixed point theorem
and theory of stable matchings. Also the study of lattice structure of stable matchings
that involves price externality by using Tarski’s fixed point theorem which no one did
before. This research is conducted by the review of various literature.

In this thesis, the novel hybrid model of Ali and Farooq [2] and Echenique and
Oviedo [6] is designed for finding a stable matchings. The obtained stable matchings

behave as a fixed points of a certain set function. The lattice structure of these stable



matchings is also studied. Moreover, a detailed review of the Adachi [1] and Echenique

and Oviedo [6] on the lattice structure of stable matchings is also given.

Chapter 2 covers few basic concepts related to the field of study. It includes the
study related to concepts of fixed point theory, bipartite matching theory and lattice
theory. It also summarizes the main findings of certain studies conducted in this field of
research. Chapter 3 is devoted to the detail study of one to one stable matchings of Gale
and Shapley’s marriage problem in an alternative way. The stable matching’s lattice
structure is proved as a direct implication of Tarski’s fixed point theorem. Chapter
4 is a detailed review of many to one stable matchings. The devised T-algorithm
characterizes the stable matchings. Stable matchings behave as a fixed point under
the set function 7. The stable matching’s lattice structure is also given at the end.
Chapter 5 includes the formation of novel hybrid model. An algorithm is devised that
characterizes the set of stable matchings. It also comprises the lattice structure of

stable matchings. Chapter 6 incorporate the conclusion.



Chapter 2

Preliminaries and history

In this chapter, some prerequisite ideas and concepts are discussed that reader should
familiar with. It mainly includes study related to fixed point theory, bipartite matching

theory and lattice theory.

Chapter 2 also provides some background of the current study. Moreover, Tarski’s
fixed point theorem is stated here, which will be use for the formation of lattice struc-

ture of stable matchings.

2.1 Functions and fixed points

Fixed point theory is considered as an interdisciplinary subject which can be applied in
different disciplines of mathematics and mathematical sciences like game theory, opti-
mization theory, mathematical economics, variational inequalities and approximation
theory. Fixed point theory deals itself with a very simple and essential mathematical
setting. A point is said to be a fixed point when it remains invariant, irrespective of
the type of transformation it undergoes. Under appropriate conditions, the fixed point

theorem states the existence of fixed points.

Definition 2.1.1. Consider the two sets S and B. R* is a binary relation from S to
B is defined as subset of S x B. For an order pair (7,7) in S x B, i is related to j by
R*, represent as:

iR*j < (i,§) € R*.

3



And if 7 is not related to j written as:
iR G (i) ¢ R

Relation consists of all those ordered pairs whose elements are related by given con-

dition.

Definition 2.1.2. A function 7" : S — B is defined as a relation R* from set S to B
that satisfies the following properties:

(i) every element of S is the first element of an ordered pair of T,
(ii) no two distinct ordered pairs in 7" have the same first element.
If T is a function from S to B, we write it as:

jg=T() < (i,5) € T.

Functions are basically used to describe the change in one variable as a result of change
in other variable. They can be percieved as a rule which operates on input and produces

an output.

Example 2.1.1. Consider S = {1,2} and B = {1,2,3}, and define a binary relation
R* from S to B as provided below:

(i,7) € S x B<i—jis even.
The Cartesian product of S and B consists of ordered pairs:
SxB={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}.
and the ordered pairs which are in R* stated as:
R*={(1,1),(1,3),(2,2)}.

This given relation R* is not a function since it is not satisfying the property (i7)

of a function.



Example 2.1.2. Let S = {1,2,3} and B = {1, 3,5}, define a relation R* from S to B
as follows:

V(i,j) € Sx B, (i,j) € R" < i<].

Here, a relation R* = {(1,3),(1,5),(2,3),(2,5),(3,5)} from S (Domain) to B (Co-
domain) in the form of Fig. 2.1.

Figure 2.1: Relation

This given relation R* is not a function since it is not satisfying the property (i7)

of a function.

Figure 2.2: Function

Example 2.1.3. Consider S = {1,2,3,4} and B = {1,2,3,4,5,6,7,8,9}. Define a



relation R* as:

V (i,j)eSxB, (,j))eER&j=2+1

Here, the relation R* = {(1,3),(2,5),(3,7),(4,9)} is a function because it satisfies
both properties (i) and (ii) of function. Graphical illustration is given in Fig. 2.2.

Example 2.1.4. Consider S ={2,4,6} and B = {1, 3,5}. Define a relation R* as:
V(i,j) € Sx B, (i,j)€R & j=i+l.

Here the relation R* = {(2,3), (4,5)} is anot a function as it does not satisfy property
() of function. Graphically present it as Fig 2.3.

]

Figure 2.3: Not a function

Definition 2.1.3. The floor function f(q) is defined for real numbers as the largest
integer less than or equals to ¢. The notation |¢] is used for f(q).

Example 2.1.5. [2.5] =2, |-2.8] = —

Definition 2.1.4. The ceiling function ¢(q) is defined for real numbers as the smallest

integer greater than or equals to ¢. The notation [¢] is used for ¢(q).
Example 2.1.6. [1.7] =2, [-2.7] =—

Definition 2.1.5. ( Epp [17]) A relation R* on a set S is said to be a partial order if
R* is:

1. iR*q 1 Vie S (reflexive).

6



2. 1 R*ia Nig R 11 = 11 = 19 D Vig, 19 € S (anti—symmetric).
3. il R Z’Q VAN ’L.Q R ig = il R* ’i3 . Vil, iQ, 'i3 eS (transitive).

A set together with the partial order R* is called a poset or a partially ordered set.
Represent this poset by (S, R*).

Example 2.1.7. Let S = {1,2,3,4,12} be the set. Consider the relation R* of divisi-
bility on S as
11 R*Z2<I;>21‘ZQ Vil, ip € S. (21)

R* is a partial order on S. Fig. 2.4 is the Hasse Diagram (two-dimensional presentation
of a directed acyclic graph all of whose edges are drawn without arrowheads but which

are supposed to be directed upwards) of this defined relation R*.

12

Figure 2.4: Partial order

Example 2.1.8. If we define a relation R* on S = {1,2,3,4, 12} such that
iW R i =iy <y Viy, i €S, (2.2)
Then this relation < is not a partial order. Since < is not reflexive.
Definition 2.1.6. Let (S5, R*) be the poset. A function
T:5—S
is said to be an increasing if for all i1, € S, we have



Example 2.1.9. Let S = {—1,0,1,5,8} be the poset under the less than equals to

relation as

11 R* 19 < 11 < 19 Vil, 19 € S. (23)
. Consider a function
T:S—S
such that
T(i1) =1.

T is an increasing function on S. Graphically it can be viewed as Fig. 2.5:

Figure 2.5: Increasing function under less than equals to relation.

Definition 2.1.7. If S is a set and a mapping
T:5—S5
is a function then ¢ € S is called fixed point of T if
T(i1) =1.

Example 2.1.10. Let S = {—1,0,1,5,8}. Consider the function 7" : S — S defined
as T'(i) = i. Then this function has all elements of S as a fixed points. Graphically,
presented in Fig. 2.6:



Figure 2.6: Fixed points of S.

Probably, Feder [10] and Subramanian [22] were the first one’s who indicated a
relationship among fixed points and stable matchings. Next section involves the rela-

tionship between fixed points and stable matchings.

2.2 Bipartite matchings

Since many years matching theory has been widely studied by economists, game the-
orist and mathematicians due to its extensive applications in many related fields.
Decision-making in today’s world requires coordination of a group of agents, which may
comprise cyber, physical or human elements. These agents naturally engage in build-
ing an opinion matching on certain resources of interest that may include attitudes,
prices or predictions about macroeconomic variables. In social networks, interact-
ing agents can influence each other and gradually form an opinion matching. A num-
ber of physical models have been developed to explore human opinion propagation.
Hence the matching theory is the study of resource allocation among the sets of agents
with respect to the preferences of these agents, so that the allocation has important
implications for their well-being.

The present section gives an introduction to the primary fundamentals of matching

theory. Basically, in this thesis, our main results comprise lattice structure of one to

9



one bipartite stable matchings. But the literature review also include lattice structure

of many to one stable matchings.

Definition 2.2.1. (Echenique and Oviedo [6]). Let S and B be any two non-empty
finite sets. A pair of functions v = (vg, vp) is known as pre-matching if the functions

vg: S — SUB and v : B— SUB are such that:
1. for alli € S, v; € BU {i} where vg(i) := v;.
2. for all j € B, v; € SU{j} where vg(j) := vj.

Example 2.2.1. If S = {i,is,i3} and B = {j1,J2,j3} be the two disjoint and fi-

nite sets. Here, v be an arbitrary pre-matching shown in Fig. 2.7 such that vg =

{1, 51), (@2, J3), (43, j2) } and vp = {(j1,43), (2, 1), (J3, 83) }-

SHRES:

S SUB B SUB

Figure 2.7: Pre-matching

Definition 2.2.2. A matching p: SUB — S U B is one to one correspondence of
order two (An order two matching is the one for which p?(y) = y) such that if u(4) # i
then u(i) € B and if p(j) # j then u(j) € S.

Denote (i) = p; and p(j) = p;. Matchings and pre-matchings v have a close
connection with each other. One can always define a pre-matching v from matching p.

But pre-matching v may not be a matching p. Relation between them is present next.

Consider S and B be the two finite sets.

10



e 4 defines v if for a given y, a function v = (vg,vg) define by
v;:=p; and w;:=p; Vie Sandje B.
e v induces p if for a given v, a function p define by
pi =v; and p;i=wv;.
is a matching.

e ;, and v are equivalent if matching p defines pre-matching v and v induces pu.

Definition 2.2.3. (Echenique and Oviedo [6]). A pre-matching v = (vg, vp) is said to
be a one to one matching p if and only if v is one to one and self invertible (v; = 7 if

and only if j = v;).

Example 2.2.2. Let S = {iy,12,i3} and B = {j1, j, j3} be the two disjoint and finite

sets. /15 = {(ilujl)u (Z'27j3)7 <i37j2)} and ﬂB - {(j17i1)7 (j27i3)7 (]37Z2)} be a matching
defined in Fig. 2.8.

| (3

S SUB B SUB

Figure 2.8: Matching

An alternative way of presenting matching i = {(i1, j1), (i2, J3), (i3, j2)} is given in
Fig. 2.9.

Consider a pre-matching v given in Fig. 2.7, it is not a matching because a pre-

matching v such that v;, = j1, vy, = Jjs, viy = J2, v;, = i3, Vj, = @1, V;, = 13 does not

11



-

Figure 2.9: Alternative presentation of matching

induce a matching as v;, = j; but v;, =43 # ¢;. While, a matching given in Fig. 2.8

defines a pre-matching such that v;, = j1, vi, = J3, viy = J2, vj, = 11, Vj, = i3, Vj, = %a.

Definition 2.2.4. (Echenique and Oviedo [7] ). A strict preference relation P on the
set S U B is a complete, anti-symmetric, and transitive binary relation on S U B. We
denote by R the weak preference relation associated to P; so xRy if and only if x =y

or xPy.

Definition 2.2.5. A matching p is said to be stable if it is individually rational and

there is no blocking pair in it.

Individually rational means an individual (agent) is preferring its partner at least
as much as to remain isolated (single). Whereas, no blocking pair means there is no

such pair which strictly prefer each other over their current matched partners under p.

Example 2.2.3. Let S = {iy,1i2,i3} and B = {j1, ja, j3} be the two disjoint and finite
sets of Men and women respectively, having the preferences given in the following

Tables:

Pi) | J2 |1 | Js | & P(j1) |41 |43 | i | 5

Plig) | j1 | Js | J2 | fo P(j2) | i3 | 91 | i2 | Jo

P(iz) | j1 | Ja | J3 | i3 P(j3) |41 |43 | i2 | js
Table 2.1: Set S preference list Table 2.2: Set B preference list

Matching p = {(i1, j2), (i2, j3), (i3, 71)} given in Fig. 2.10 is a stable matching.

12



Figure 2.10: Stable matching

While, matching p given in Fig. 2.11 is not a stable matching. Here, the pairs

Figure 2.11: Not a stable matching

(11,71) and (i3, j1) blocks .

In the present work we deal with bipartite model and our work based upon the
application on Tarski’s fixed point theorem. The study of bipartite models originated
with the work of David Gale and Lloyd Shapley. In [14] they solved the stable marriage
problem for two equal and finite sets of men and women who have strict preferences
over each other. Set of matchings among different men and women is a marriage scheme
in this model. Such scheme is said to be stable if there does not exist a pair which
is either preferring each other over their current partners or unmatched. A marriage
scheme is unstable if it is not stable. Gale and Shapley [14] not only proposed the
existence of a stable marriage scheme for any preference ranking of n men and n women,

but they also devised a finite procedure, known as deferred acceptance algorithm(DAA)

13



to obtain that scheme. Shapley and Shubik [20] gave another standard model named
as one-to-one buyer seller model, characterized as an assignment game that clarifies the
role of money. They showed the formation of non-empty complete lattice structure of
stable matchings under this assignment game. In literature several studies conducted
on the adjuncts and variations of Gale and Shapley’s marriage model and Shapley’s
and Shubik’s assignment game.

Indivisible goods have been extensively studied with respect to the mathematical
economics markets. A Gross Substitute (GS) condition was developed by Kelso and
Crawford [16] through a two-sided matching model with money. With the help of this
GS condition they also showed the existence of the stable matching. Above mentioned
two-sided matching model is the combination of marriage model by Gale and Shapley
[14] and assignment game by Shapley and Shubik [20]. Recently, Baroon et. al. [5]
studied peer effects and stability in matching markets.

Ali and Farooq [2]| has observed the presence of pairwise one to one stable matching
in two sided market of sellers and buyers with externalities. In their model each seller
possesses at most one indivisible good and each buyer possesses a finite amount of
money which is an integer variable. Their four step algorithm assigns sellers the most
optimal partners and buyers has to accept their best from those sellers who proposed
them. The main feature of their algorithm is that the agents are flexible i.e; if the
buyers have more than one choice and they rejected some sellers then the rejected
sellers negotiate (modify) price to attract their favorite buyers. The process continues

until no rejections left from the buyer’s side.

2.3 Lattices

Lattice theory provides an elementary account of a noteworthy branch of contempo-
rary mathematics concerning lattice theory. A lattice named as an abstract structure

studied in the mathematical sub disciplines of abstract algebra and order theory.
Definition 2.3.1. Let (S, R*) is a poset, the elements i; and iy of S are comparable if
il R* ig or ig R* il.

14



Definition 2.3.2. Let (S, R*) is a poset, the elements i; and is of S are incomparable
if
le ﬁ* ig and 7:2 R* le.
In poset, every pair of element need not to be comparable.

Definition 2.3.3. Let S be a poset, if every pair of elements in S is comparable, then
S is called a linearly ordered set (or totally ordered set) and the partial order is said

to be a linear order. In this case, S forms a chain.

Example 2.3.1. Let S = {1,2,3,4,12} be the set. Consider the relation R* of < on
S. Every two pairs are comparable under relation R*. Therefore, it forms a linearly

ordered set. Graphical presentation can be viewed in Fig. 2.12.

12

Figure 2.12: Totally ordered set.

Example 2.3.2. Consider the relation R* of divisibility on S given in Example 2.1.7,
then the elements 2 R* 3 and 3 R* 2. Similarly, 3 R* 4 and 4 R* 3. Therefore, the

pairs (2,3) and (3,4) are incomparable. S is not linearly ordered set.

Definition 2.3.4. Let (S, R*) is a partial ordered set and X be the subset of S. If

there exists an element 7 € S such that:

UB
TR :VzeX.

L.UB
(xR'y :VzeX):VyeS=iRy.

15



then ¢ is called the least upper bound of X. It is represented by UX.

The first condition of Definition 2.3.4 states that UX is an upper bound (U.B) and
the second states that it is least(L.U.B).

Definition 2.3.5. Let (S, R*) is a partial ordered set and X be the subset of S. If

there exists an element ¢ € S such that:

L.B
1Rz : Vo e X.

G.L.B
(yR'z :VexeX) :VyeS=yR"i.

then ¢ is called the greatest lower bound of X. It is represented by NX.

The first condition of Definition 2.3.5 states that NX is an lower bound (L.B) and
the second states that it is greatest(G.L.B).

Definition 2.3.6. Lattice is a partially ordered set (L, R*) in which every subset
{z,y} consisting of two elements has a least upper bound (L.U.B) and a greatest lower
bound(G.L.B). Represent L.U.B({x,y}) by  Vy and say it the join of z and y. Simi-
larly, represent G.L.B({x,y}) by = A y and say it the meet of z and y.

Definition 2.3.7. L is said to be a complete lattice if every subset of lattice L has a

least upper bound and greatest lower bound.

Example 2.3.3. Consider the set S = {2,4,8,16}. Define a relation R* such that
11 R PR= il‘ig Vil, ig € S.

Hasse diagram of the partial order on S is shown in the Fig. 2.13. For every subset
X of S there exists a greatest lower bound and least upper bound in S. So S forms a

complete lattice.

16
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* 2

Figure 2.13: L.U.B and G.L.B of S.

Figure 2.14: Not a lattice

Example 2.3.4. Consider a poset S = {iy, is, i3, 14, i5, i6, i7, i3 }, whose Hasse diagram
is shown in Fig 2.14.

Assume two subsets of S, say X7 = {i1,i2} and Xy = {i3,i4,15}. L.U.B of X is i3
and there is no G.L.B of it. And there is no L.U.B of X, while GG.L.B is i3. Therefore,

S do not form a lattice.

Example 2.3.5. Let 51 = {2,4,8,12} and S, = {2, 3,6, 12}. Define a relation R* of
divisibility on S; and S5. Hasse diagram is shown in Fig. 2.15.

In (a) subset {12, 8} have no L.U.B while every subset of S; has a G.L.B under R*.
On the other hand, in (b) subset {2,3} have no G.L.B while every subset of Sy has a
L.U.B under R*. Both S; and S5 are not the lattices.

Example 2.3.6. Consider Dy, be the set of all positive divisors of 20. Then Dy is a

17



12 8 12

(a) (b)

Figure 2.15: L.U.B and G.L.B of S; and 55.

lattice under the divisibility relation. The Hasse diagram of Dy is shown in Fig. 2.16.
Since, every pair in Dy under divisibility relation consists of least upper bound and
greatest lower bound in Dyy. Thus it forms a lattice. It is also a complete lattice since

it is finite (every finite lattice is a complete lattice).

20

Figure 2.16: Lattice structure
Example 2.3.7. Given P{iy,is,i3} under inclusion map C forms a complete lattice.
See the lattice structure in Fig. 2.17.
Following theorem is due to Tarski [23].
Theorem 2.3.1. (Tarski [25]). Let
1. (A, R*) be a complete lattice,
2. f: A— A be an increasing function.
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{i1,i2,i3}

{in.iz} {i1,i2} {iq.i3)

{i2} {i} {i}

{}

Figure 2.17: Complete lattice

3. P be the set consists of all fixed points of f.

Then, P is non-empty set and the system (P, R*) is a complete lattice; in particular

we have

UP = UE,.[zR" f(x)] € P.

NP =NE,[f(z)R*x] € P.

Theorem 2.3.1 is an elementary lattice-theoretical fixed point theorem that holds
in arbitrary complete lattices. It has a wide range of applications and extensions in
the theories of simply ordered sets, topology, real functions, general set theory, as well
as in Boolean algebras and matching theory.

Adachi [1] studied the stable matchings in Gale and Shapley [14] behave as fixed
points of certain increasing function. By using Theorem 2.3.1 they showed the lat-
tice structure of stable matchings. We will study their work in detail in subsequent
Chapter 3. For more results on lattice structure one can also see Blair [4] and Alkan [3].
Fleiner [11, 12| studied the lattice structure of generalized stable matchings. Farooq,
Flenier and Tamura [9] studied many to many matching model with contracts. They
extended model of Hatfield and Milgrom [15]. The key to their results is Theorem
2.3.1. For more recent work one can see also Li [18] and Fleiner [13|. Recently Py-

cia and Yemnez [19] obtained matching with externalities. Their work also observed
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stable matchings as fixed points but their technique is not based upon Theoren 2.3.1
and hence no lattice structure of the matching is discussed. Very recently Uetake and
Watanabe [24] devised an algorithm for two-sided matching model with externalities
but again their work is not based on fixed point approach. Echenique and Oviedo
in [6, 7] observed stable many to one and many to many matchings as fixed points
of a certain function. Their characterization presents an algorithm for finding stable
assignments and the lattice structure of stable matchings. Their algorithm is named as
T-algorithm which is a procedure of iterating T, starting at some pre-matching v. And
it stops when T'w is a matching. They also proved the obtained matching is indeed a
fixed point of T. The detailed discussion on their work is present in Chapter 4. They
further discussed the lattice structure of the set of fixed points of T'. But the stable
matchings attained in their model only deals with the fixed preference profile with no
externalities.

In this work we apply Theorem 2.3.1 to study the lattice structure of two sided
matching market with externalities i.e; the agents are flexible and can negotiate on
price. We also present an algorithm that obtain the stable matching as a fixed point

of an increasing function.
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Chapter 3

Lattice structure of one to one stable
matchings

This chapter is devoted to the detailed review of Adachi [1] that deals with the study of
stable matchings as a fixed points of defined increasing function in the Gale-Shapley’s
marriage problem. The lattice property and existence of stable matchings are proved

as a direct application of Theorem 2.3.1.

In Section 3.1, the brief introduction to the marriage model of Gale and Shapley
and the key statement which guides to their formulation is presented. When agents
have strict preferences, the alternative way of formulation that characterizes the stable

matching’s set and the formation of lattice structure is presented in Section 3.2.

3.1 Gale-Shapley marriage problem

Consider the two disjoint and finite sets of men and women represented as
S = {iy,i2,...,i,} and B = {j1, Jo, - .. jr} respectively, in the marriage market. Each
agent on one side of the market has a preferences over the agent on the opposite side
of the market. An agent may prefer to remain isolated/single than to get married.
Therefore, man i’s preference ordering >; is denoted by an ordered list over the set
WU{i} and similarly it is defined for the women. Assume that preferences are rational.
Denote j >; j to mean ¢ prefers j to J, and j >; 7 to mean 4 likes j at least as much

as J. Define indifferent between two agents as j =; j, and write j = j means j is the
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same person as j. Women j is acceptable to man i if j >; . An agent is said to have
a strict preferences if it is not indifferent among two acceptable choices. Throughout

this chapter, assume that preferences of agents are strict and matching p is one to one.

Definition 3.1.1. A matching p is a stable matching if the two conditions given below
holds:

(IR) p; >;i,Vie S and pu; >; j, Vj € B; i.e pis individually rational matching.

(S) there does not exists a (i, j) such that j >; p; and i >; u;; i.e there is no blocking

pair in p.

Lemma 3.1.1. Suppose that the strict preference assumption holds. Let matching
satisfies individually rational condition (IR). Then the matching p satisfies stability
condition (S) if and only if the condition given below get fulfilled:

(S) there does not exists a (i,7) such that {j >; p; and i >; p;} or {j >; p; and
0>}

Example 3.1.2. Let S = {iy,is,i3} and B = {j1, j2, j3} having the preferences:

P(i1) | g2 | 7 | J3 | &a P(j1) | i1 | i3 | @2 | /1

P(ia) | j1 | J3 | J2 | i P(ja) | i3 | i1 | 2 | Jo

P(i3) | j1 | J5 | Js | i3 P(js) | 1 | i3 | 15 | Js
Table 3.1: Men preference list Table 3.2: Women preference list

Each agent has strict preferences over the agent of opposite side and preferring each
other to remain single. For instance, man i; prefers j, the most, then j;, and so on.
Matching /i is the women optimal stable matching among the two optimal matchings
and it is denoted by *. The significant observation that guides to the formulation is that
the partner of agent i; under fi, fi;, = ji, is the greatest element (w.r.t i;’s preferences)
between those potential partners who prefer i; at least as much as their partners under
the i, {j € B : 4y >, 1;} U {i1}. For every agent this property holds. This observation

indicates that when the preferences are strict, the set of stable matchings may be
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represented by the solution to a set of individual maximization problems.

According to the Gale and Shapley [14] if the preferences are strict, there exists men
and women optimal stable matching for every marriage problem. Further, set of stable
matchings forms a complete lattice. Adachi [1] addresses the marriage problem in an

alternative way through their formulation.

3.2 Formulation

This section involves an alternative formulation to address the marriage problem.

Let Tg and T g represent the set of all such functions vg and vg respectively and
T .= TS X TB: (Xzeg(BU{Z})) X (X]€B(SU{]})) (31)

represents the set of all pre-matchings v. This expresses Tg as the set of vectors in
Xies(BU{i}) and of Ty as that in x;ep(SU{j}). Adachi finds pre-matching as more
suitable for their formulation than matching and have close connection among them. .

This guides to the following observation, which will be helpful later.
Remark 3.2.1. A pre-matching v induces a matching p if and only if v is such that
(% :j Zﬁ 7= Uj.

Therefore, if v induces a matching and v; = j(or equivalently, v; = i), then vgovg(i) = i

and vg ovg(j) = 7.

Proposition 3.2.2. Suppose that the assumption of strict preferences hold. Then

(1) If a matching p is stable, then the pre-matching v defined by p solves (3.2) and

v; = m>qa:{j €B:i>;vfU{i} Vies. (3.2)

v; = m>qx{i €eS:j>vrU{j} VjeB. (3.3)

(ii) If a pre-matching v solves (3.2) and (3.3), then v induces a matching u, which is
stable.
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Proof. (i). Let p be a stable matching and suppose the pre-matching v defined by p.
Then by the definition of stability and Lemma 3.1.1, v satisfies

(5 Zz 1 and vj ZJ] Vie S, VJ € B. (34)
and
does not exists (4, j) such that {j >; v;andi >, v;} or {i >; v;andj >; v;}. (3.5)

When the preferences are strict, it is instant that these two above conditions are equiv-
alent to v being a solution to the set of equations (3.2) and (3.3).

In (3.2) maximization is taken with respect to each man i’s preference ordering >;
over the set BU{i} under the constraint ¢ >, v,. Since we have assumed the preferences
of agents are strict and they are of finite numbers, the RHS of (3.2) and (3.3) is well
defined and singleton for each ¢ and each j. This proves (i).

The next Lemma will be use in order to prove the part (ii) of proposition.

Lemma 3.2.3. Suppose that the presumption of strict preferences hold. If a pre-
matching v = (vg,vp) solves (3.2) and (3.3), then the conditions given below are equiv-

alent:

(1) ] Zz (4 andz Z] Uj,

(2) j=wv; and i = vj,

(3) ] = Vi,

(4) 1= Vj.

Proof. Suppose that (1) holds. Assume j >; v; or ¢ >; v;. Since v = (vg,vp) is
the solution of individual maximization problems. Either case contradicts the given
assumption that v solves the (3.2) and (3.3). Therefore, it must be j =; v; and
i =; v;. But, with the strict preference assumption this indicate j = v; and 7 = v;. So,
(1) = (2).

Suppose that (2) holds. Since, j = v; and ¢ = v;. This indicate (2 = 1), (2 = 3),
(2 = 4) are immediate.
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Suppose that (3) holds. Assume ¢ >; v;. But with this assumption it contradicts
(3.3). Also assume that ¢ <; v;. This also contradicts the (3.2). Therefore, it must
be i =; v;, which indicate ¢ = v; under the strict preference assumption. This implies

(3)= (4) = (2). O

(ii). Suppose that the assumption of strict preferences hold. Let a pre-matching v
solves (3.2) and (3.3). By the part (3) and (4) of Lemma 3.2.3 and Remark 3.2.1, pre-

matching v induces a matching p. Also, v satisfies the condition given in (3.4) and

~

(3.5). This means that u satisfies the conditions (IR) and (5), which implies the
conditions (IR) and (S). O

For a lattice structure, the set of solutions to (3.2) and (3.3) is non-empty and is a
complete lattice. In order to show this, firstly define a partial ordering on Tg, T and
T.

Definition 3.2.1. Suppose v = (vg,vp) € T. Define
1. A partial ordering >g on Tg by vg >g vg if and only if v; >; v; Vi € S.
2. A partial ordering >p on Ty by vg >p 0p if and only if v; >; 9, V j € B.
3. A partial ordering 25 on T by vg >g 0y if and only if vg >g U5 and 95 >p v5.

Consider a function T' = (71,T3), where T} : T — Tg and Ty : T — T define
as
Ti(v) = m>qa:{j €eB:i>jv}u{i} Vies. (3.6)

Tr(v) = r@qx{i €S j>ivrJu{j} Vj € B. (3.7)

Proposition 3.2.4. The set T of solutions to (3.2) and (3.3) is non-empty and (T,>g)

forms a complete lattice.

Proof. To show that set of fixed points of function 7" has this above property and this
proposition will be prove by the application of Theorem 2.3.1. Firstly, to show (T, 2g)

is a complete lattice. Since, =g be a partial ordering on Y. For any two pre-matchings,
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either one is better than other(comparable) or if un-comparable then there exists a
pre-matching (by consensus property i.e pre-matching form by giving the best partners
among both of them) to which they are comparable. Thus for any two elements there
is supremum and infimum. Hence, set of pre-matchings forms a lattice. Since, numbers
of agents are finite. So, (Y, 2g) is a complete lattice. Now to show T': T — T is
an increasing function w.r.t 2g. Consider any two pre-matchings v = (vg,vp) and

0 = (0g,0p) such that v 2g v (i.e U5 >gvs and v <pwvg). Then

>, max{j € B:i>;v;} U{i}
>i

= T (Uz)

Since, {j € B:i>; v;} 2 {j € B:i >, v;}. The above inequality >; follows from
this fact. Hence, T'(0;) >; Tv;. Similarly,

Tr(0;) = m>a_x{i €S:j >0 u{j}
J
<; maz{i € 5 j > vif U{j}

=i Ta(v;).

Since, {i € S :j >; 6;} C{i € S:j>;v;}. The above inequality <; follows from
this fact. Hence, T5(0;) <; T5(v;). Hence, T0 2 Tv. Now the proof follows from the

application of Theorem 2.3.1. O]

With the strict preference assumption, Proposition 3.2.2 and 3.2.4 indicate that we
can identify stable matchings with the set T of the solutions to (3.2) and (3.3). In this
case, we call v € T itself a stable matching, and T the set of stable matchings. Let
represent the greatest and smallest elements with respect to =g in T by v = (vg,Up)
and v = (vg,vp) respectively. A man optimal matching is v and every man likes it
whereas every women dislike it. A women optimal matching is v and every women
likes it whereas every man dislike it. The S- and B- equilibria, can be obtain by

0

iterative procedure: to find v, set v° = (93, 9%) such a way v2(i) := maz-,j such that

v,
j € BU{i} for all i and v%(j) := j for all j. Define a sequence v = (v%,v}) by
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To'=1 .= for [ > 1. Since the sets S and B are finite, after a finite [ the sequence

o' converges to ¥ := lim¥'. The limit ¥ is the S-optimal stable matching. Similarly,

to find B-optimal equilibrium, define a sequence v' = (vk, vl) by Tov!™! := o starting
with v§(¢) := i and ©%(j) := max~, i such that i € SU {i}. Then v := limv' is the

B-optimal stable matching.
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Chapter 4

Lattice structure of many to one core
matchings

This chapter is about the detailed review of Echenique and Oviedo [6]. It incorporates
the study of core many to one matchings. An allocation of group of workers to each
firm is said to be a many to one matching. For any given matching, if the workers are
unhappy with the existing employers and the firms that are unhappy with their current
group of workers may re-contract in some mutually favorable way, thus destroying the
proposed matching. The formalization of such kind of matching that is robust to the
re-contracting is said to be a core matching. In order to attain a core matchings non-
empty, the structure impose on the firm preferences is substitutable. Thus when the
preferences are substitutable, a matching is in the core iff it is stable. This chapter
characterizes the core as a set of fixed points of a function T". By proving 7' a monotone

increasing function, the lattice structure is obtained by using Theorem 2.3.1.

In Section 4.1 model and definitions are presented. Section 4.2 introduce the fixed
point approach to the core. T-algorithm is given in Section 4.3. Section 4.4 includes

the lattice structure.

4.1 Model

Consider the two finite and disjoint sets of firms B and workers S. Each worker ¢ € .S

has a strict, transitive and complete preference relation P(i) over B U () and similarly
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each firm j € B has a strict, transitive and complete preference relation P(j) over the
set of all subsets of S. Preference profile are (n + m)-tuples of preference relations;
we symbolize them by P* = (P(i1),..., P(in); P(j1),..., P(jm)). For a given P(i),
firm preferred by ¢ to the empty set are called acceptable. In this case worker ¢ may
prefer to remain unemployed than working with an un-acceptable firm. Similarly, for
a given P(7), set of workers that j prefers to the empty set are called acceptable. In
this case firm j may prefer not hiring any worker than hiring an un-acceptable set of
workers. Thus only the acceptable partners matter, and preference relation is the list

of acceptable partners. For example,
P(ix) = j1, Js-
depicts that j; P(iy,)j3 P (ix)0.
P(j) = {u,ds}, {i2}, {ir}, {is}-

depicts that {iq,i3}P(j;){i2} P(5){i1 } P (i) {is}-
The weak preference orders associated with P is denoted by R. Therefore, 7, R(7)7;
if j = ji or jpP(i)j;. Similarly, define for R(j). The study involves the matching of

wokers to the firms and firms with the group of workers.

Definition 4.1.1. Consider the preference profile. For a set W C S| let C(W, P(5))
represent firm B’s most preferred subset of W according to its preference ordering P(j).
Say C(W, P(j)) the choice set of W according to P(j). That is A = C(W, P(j)) if and
only if A C W and AP(j)D for all D C W with A # D.

Definition 4.1.2. A matching p is a mapping from set SU B into the set of all subsets
of set S U B such that for all: € S and j € B

(i) if p; #ithen | p; |=1 and p; € B.
(li) %71 € 25.
(iii) p; = j if and only if i € u(j).
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In words, workers can work at most one firm. Whereas, firm can hire more than
one worker. P(S) there is denoting the power set of S. p is a matching if it is self

invertible. Denote set of all matching by M.

Example 4.1.1. Consider two finite sets S = {iy, s, 13,14} and B = {ji, jo} where S
represent the set of workers and B represent the set of firms. The preference profile

P~ is given by Table 4.1 and 4.2.

P(iy) | j1 | J2
P(is) | jo | 71
P(is) | j1 | Jo
P(is) | J1 | Jo

Table 4.1: Worker’s S preference list

P(jy) | {ivda} | {ds,da} | {d1,03) | {inda} | {in} | {io} | {is} | {ia}
P(ja) | {ix,do} | {i s} | {do, 04} | {dzda} | {in} | {io} | {is} | {ia}

Table 4.2: Firm’s B preference list

Consider the matching p = {({41, 73}, j1), (44, jo)} shown in the Fig. 4.1.

S B

Figure 4.1: Set-wise matching
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For a given preference profile P* and a matching u say,

(IRC) if
wiR(4)0 Vi e S,

and
pj = Clug, P(j)) VjeB.

(BC) A worker firm pair (7, j) blocks p if i ¢ p;

jP(i)p; and i€ C(u; U{i}, P(j)).

Matching p is individually rational (IRC) if no agent can unilaterally improve over
its assignment by pu, workers by choosing to remain un-employed and firms by firing
some of its workers. Whereas, matching p contains blocking pair (BC) if ¢ and j are
not in matching p, worker i prefers firm j over the current match under p and firm j

wants to hire ¢ possibly after firing some of its current workers under pu.

Definition 4.1.3. A matching p is (pair-wise) stable if it is individually rational
(IRC) and there is no worker firm pair that blocks u (BC).

For a given preference profile P* and a matching u say,
(BC*) A pair (F,j) € 25 x B with () # F C S blocks* yu if
jP(i)  VieF
and there is G C p; such that
[FUGIP(j) ;-

In words, (F,j) blocks* y if all workers in F' prefer j over the current partners
under matching p. And if firm j is willing to hire the workers in F', possibly after

firing some of its current partners under the matching .

Definition 4.1.4. A matching is (set-wise) stable* if it is individually rational (IRC)
and there is no pair that blocks* u (BC*).
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Figure 4.2: Set-wise stable matching

Example 4.1.2. Consider the preference profile given in Example 4.1.1, the matching
w={{i1,i2}, 52), ({i3,i4},71)} be the set-wise stable shown in Fig. 4.2.

While, if we consider matching p given in Fig. 4.3 within the same preference profile
given in Example 4.1.1, then it is not a set-wise stable matching. Dotted line here is

the description of blocking pair in pu.

Figure 4.3: Not set-wise stable matching

Say the set of stable matchings by M, and set of stable* matchings by M. Mg«

equals the core is proved in the subsequent results.
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Lemma 4.1.3. Let M, be the pairwise stable matchings and M be the set-wise stable
matchings. Then My C M, holds.

Proof. Assume that u € M+, and contrary suppose that u ¢ M. As p is individually
rational (IRC), and p ¢ M,, then there exists a pair (i,7) € S x B such that

3P (@) i (4.1)
and
i € Clu; Ui}, P(j). (42)
(4.2) implies that
Cu; Ui}, P(5)P()ms- (4.3)

Let consider F' = {i}, and G = C(p; U {i}, P(5)) N p;. To show that (F,j) blocks* p.
As F = {i}, (4.1) provides us the individually rational condition(IRC). Also

G = Cluy U{i}, (7)) N gy
= Clp; U{i}, P()) \ {i}
= Clu U{i}, POD\ F,

Therefore, (4.3) implies that
[FUG] = Cu; ULa}, P(5) P () py

This shows that (F,j) is a blocking pair for u. Thus g ¢ M. This proves the
result. O

Definition 4.1.5. Suppose P be a preference profile. The core is the set of match-
ings p in which there is no S C S, B C B with SUB # () and /i € M such that for
alli e S and for all j € B
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(ifi) 1 R(7) 115
(iv) and fi, P(r)p, for at least one r € S U B.

Denote the core by K.

Theorem 4.1.1. Let M- be the set-wise stable matchings and K 1is the core. Then
My = K holds.

Proof. To prove this, it will show that M, C K and K C M. Consider, first
Mg C K. Suppose p € Mg, and let contrary assume that p ¢ K. Then by definition,
let S C S, B C B with SUB # (), and suppose i € M such that, for all i € 5', and
for all j € B

4; C B, and [i; CS, (4.4)
(i R (1) s, (4.5)
1y R(j) ks, (4.6)
and
fi,R(r)p, for atleast one r e SU B. (4.7)

The next result will be helpful in proving the result.

Lemma 4.1.4. There exists j € B, such that 1 P (), iff there is i € S such that
fii P (7) i

Proof. Suppose 4i;P(j)u;. Since p is individually rational, also fi; € u;, therefore let
i € fi;\ j1;. By (4.4), we have i € ji; € S; then 7 ¢ p; and (4.5) implies that

~

[P () ;.

Now assume that there exists i € S such that /i; P(i)p;. Let j = fi;. Then j # ju;, so
i ¢ p5. Thus fi; # pi5, and the (4.6) implies that /i P(j)p;. O
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By the Lemma 4.1.4, one can assume that there exists j € B such that Qi # .
Let F' = fi; \ ptj and G = f1; N p1; then

GUF = i;P(j) ;. (4.8)

Now, F' C f1; C S, Fn pj = 0. (4.5) implies that, for all i € S,
J = AR(i) i, (4.9)
(4.8) and (4.9) contradicts u € M- O

Now to prove K C M. Let u € K, and contrary suppose that p ¢ M. First to
show g is individually rational (IRC). Suppose that there exists j € B such that

i # C(uj, P(5))-

Let ji; = C(u;, P(j)). B={j} € B, S = ji; € S. Then one can easily see that u ¢ K,
as fi;R(i)p;, for all i € S, while i;R(j)u;. Thus

;= Clus. P(j)). (4.10)

for all j € B.

Now assume that there is ¢ € S such that
OP (i) (4.11)
Let i, = 0, S = {i}, B =0. As earlier, u ¢ K because ji;R(i);. Thus
i R(4)0. (4.12)

for all i € S. (4.10) and (4.12) shows that p is individually rational.
Suppose there exists (F,j) € 2° x B with F # (), such that for all i € F

JP (@) .
and there exists G C p; such that
G U FIP();.

Denoting ji; = G U F, B = {j} and S = F, it implies that y ¢ K. This is a

contradiction to given statement.

35



4.2 Core as a set of fixed points

Now to construct a function T" on the superset (1) of matchings M in such a way the

set of fixed points of T' is the core.

4.2.1 T and the core

Consider the pre-matching v € T, and denote
and
V(i,v)={j€ B:ieCv;U{i}), P(j)} U{0}. (4.14)

The set U(i,v) consists of the workers i that are willing to give up its partner v; in
exchange for the firm j. The set V' (j,v) consists of the firms j, that are willing to hire

worker 7, possibly after firing some of its workers it was assigned under v.

Now define a function T : T — Y such that forv € T

C(U(r,v), P(r)) for re B,
vy = (4.15)
Tg(a%' {V(r,v)} for resS.

The function T' has simple interpretation: 7'w; means the firm preferred by worker ¢
among the firms that are willing to make partnership with ¢. Whereas T'v; means the

firm j’s optimal team of workers, among those workers who wants to work for j.

Denote ¢ the set of fixed points of T', therefore, £ = {v € T : v = Tv}.

Theorem 4.2.1. Let & be the set of all fized points under the T and Mg« be the collection
of all stable* matchings. Then & = M holds.

Proof. Let consider the pre-matching v such that v € ¢ and first to show that for
v € £ C My«. Then it will prove that M, C &. This will completes the proof.

Consider firstly v = (vg,vp) € £. First to show v is a matching, it is divided into

two parts.
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1. Let ¢ € v;, we will prove that j = v;. Since, v € £
i € vy =Tv; = C(U(j,v), P(j))-

This implies i € U(j,v).

By the definition of (4.13)
JR(i)v;. (4.16)

Now, v; U {i} = v; and v € £, imply that

v; = Tv; = C(U(j,0), P(j)). (4.17)
Therefore,
Clu;, P() 2 C(CU3,v), PG)), P())
D W), PG))
@

-
Equality (i) and (éi7) follows from the (4.17). Equality (i7) is the property of
choice sets: C(C(W, P(3)), P(j)) = C(W, P(j)). Therefore, we have that

v; = C(vj, P(j)) (4.18)

Now for ¢ € v; implies that C'(v;, P(j)) = C(v;U{i}, P(j)). So the (4.18) implies
that j € V(i,v). But

v; = Tv; = max{V (i,v)}.
naa{V/(i,0)}

So
v;R(1)j. (4.19)

(4.16) and (4.19) and by the anti-symmetry property of preference relations imply
that, 7 = v;.

2. Let j = v;, we will prove that ¢ € v;. Since j = v; implies that
ieU(j,v). (4.20)
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Secondly, because of v € &, we have

| =v; = Tv; = max{V(,v)}.
j P(i){( )}

Here, we get
Now, j € V(i,v), then by definition of V' (i,v), we have

i € C(v; U{i}, P(j))R(j)v;,

Since, v € &
Uj = T’Uj = C(U(jvv)v P(]))

By the definition of choice set
v; € U(j,0).
and
0 RG)U G v).
By (4.20) and (4.24) give
U(G,v) 2 Clv; U{i}, P(4)).

By the definition of choice set implies that

v;R(7)C(v; U {i}, P(j)).

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.22) and (4.25) and by the anti-symmetry property of preference relations imply

that, i € v;.

imply that v is individually rational(IRC).
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By the parts 1 and 2, i € v; iff j = v;. Therefore, v is a matching. (4.18) and (4.21)

By the above results we have seen that v is an individuall rational matching. To
show v is stable*, assume that j € B, FF C S such that F' # (). We suppose that for all
1€ F,

(4.26)



According to the definition of (4.13), we have
F CU(j,v). (4.27)

Let G C v;. Since v is a matching, we have for all i € G, j = v;. Therefore, the
definition of (4.13) implies that
G CU(j,v). (4.28)

Also, v €, s0v; =Tv; = C(U(j,v), P(j)); (4.27) and (4.28) imply then
v;R(j)C(GUF,P(j))R(j)G U F. (4.29)

(4.26) and (4.29) depicts that there is no (F,j) that blocks* v. Thus v € £ C M.

Now, to prove M, C & For this, suppose v € M, and contrary assume that
v # Tv. Let suppose there exist 7 € B such that

v; # (Tv;) = C(U,0), P(j)) = H C UG, v).

Let G = HNwvj;, and F = H \ v;. Since, v is an individually rational matching so
we have v; C U(j,v) and F' # ). Now,

GUF = HP(j)u;. (4.30)

Also,
JP(i)v;. (4.31)

forall i € G, as G C H C U(j,v). (4.30) and (4.31) depicts that (G, j) blocks* v,

which is a contradiction to the given condition v € M«. Therefore, for all j € B,
v; = Twv; (4.32)
Let there exists ¢ € S such that
v; # Tv; = nggv{‘/(i, v)} =7 € V(i,v).
so by the definition of (4.14)
i € C(v; U{i}, P(7)).
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Since v is a matching therefore we have that i ¢ v; and v; € V/(i,v). This implies that
JP(i)v;. (4.33)

and
i€ Cv; U{i}, P(j)) = H.

Let G = HNv; = H \ {i}, and F' = {i}. Then (F, ) blocks* v because of
H = [GU FIP()v;
and the (4.33). Therefore, for all i € S,
v; = T;. (4.34)
(4.32) and (4.34) depicts that v = T'w. Hence, v € . O

By Theorem 4.1.1 and Theorem 4.2.1, we obtain the next result.

Corollary 4.2.1. Let & be the collection of fixed points of T and K 1s the core. Then
& = K holds.

4.3 T-algorithm

This algorithm is very simple as it starts from some pre-matching v € T and iterate Tw

until two the iterations are identical. It get stops when two iterations are identical.

It will be prove that when algorithm stops, it must be a core matching and the
matching p it attains will be in the core. Therefore, T-algorithm strolls around the
pre-matching until it attains a matching. The algorithm must cycle, when the core is

empty, and the cycle will only include the pre-matchings that are not the matching.

4.3.1 Algorithm
(1) Set v’ =wv. Set v! = Tv? and put xk = 1
(2) While v* # v*~!, do:
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(i) Set kK =k + 1,

(i) Set v® = Twv" 1
(3) Set p = v". Stop.

Proposition 4.3.1. If the T-algorithm stops at u € Y, then p is a stable match-
g and s i core. If v™ is a core matching, for some iteration k of T-algorithm,
then algorithm stops at = v".

Proof. 1f the T-algorithm stops at p = T'wv implies the two iterations are identical i.e.

p=v"=v""1qe

p=v"=Tv 1 =Ty,

So, € & Then by Corollary 4.2.1, p € ¢ = K.
On the other hand, if v" is a core matching, then v* is a fixed point of T by the
Corollary 4.2.1. Then

v® = Tov* 1 = p.
implies that the T-algorithm stops at p = v". O]

Proposition 4.3.2. For some iteration k in the T-algorithm, iof v* s matching, then

the algorithm stops at = v", and thus v" is a core matching.
Proof. The proof of Proposition is presented as two Steps:

Step 1 Firstly it will show that for a pre-matching v € Y, if v! = Tw is a matching,

then v! is individually rational.

For all j € B,
vl' = ij = (U(],U),P(]))

J

So,

Ceh PG) 2 Cewiv), PG)), PG))
D W), PG))
@) 4

- /UJ.
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Equality (i) and (iii) follows from v' = Tw. Equality (i) is the property
of choice sets. Therefore, for all j € B,

v; = C(v;, P(j)). (4.35)
For all i € S,
v} = Tv; = n}z(@)x{V(i, v)}U{0}.
So,

v R(7)0. (4.36)
(4.35) and (4.36) shows that v! is an individually rational matching.
Step 2 For v € T, if v! = Tw is a matching, then Tw is a core matching. Thus the

T-algorithm must stop at v® if v* = Tw"~! is a matching, and thus v* is a core

matching.

We shall prove this by showing if v € T is a pre-matching, and v' = T is a
matching then v!' € M., then the result follows from Proposition 4.3.1. Since
Ms* — f — K

By Step 1, v is individually rational, contrary suppose that v! # M,.. Therefore,

there exist a pair (F,j) that blocks v!. Hence, for all i € F

JP(i)v;. (4.37)

)

and there exist G C vjl- such that

[GUFIP(j)v;. (4.38)

But v! is a matching, and v! = T, therefore we have for all i € S, i € v!(v}).
But
vl (v;) = To(v;) = C(U(v;,v), P(v;)).

So that, ¢ € U(v},v), i.e
v R(i)v;. (4.39)



(4.37) and (4.39) depict that, for all i € F, jR(i)v;, i.e
F CU(j,v).
Now, G C v} and vj = Tw; = C(U(j,v), P(j)), so

G CU(j,v).

(4.40)

(4.41)

(4.38) ,(4.40) and (4.41) contradicts v; = Tv; = C(U(j,v), P(j)). Thus v' € M.

By Step 1 and Step 2 result of the proof follows.

]

Example 4.3.3. Consider two finite sets S = {i1, 2, 13,14} and B = {ji, jo} where S

represent the set of workers and B represent the set of firms. The preference profile

P* is given by Table 4.1 and 4.2 in Example 4.1.1.

T-algorithm starting at

Ji J2 1 19 i3
V0 = {i1, 9} {iy, 2} 0 0 0
does:
J1 J2 i1 iy i3
U(5,0°)/V(i,0°) = {ir,d0,d3,04}  {ir,d0,83,04}  J1, 02 Ji,d2 0
ot = {i1,da} {i1, 12} J1 Jjo 0
U(j,0")/V(i,v') = {i1,13,14} {245,914} J1,52  J1,52 0
v = {is,ia} {12,144} J1 Jj2 0
UG, 0*)/V(i,0*) = {iis,ia}  {igyisia}  J2 2
vt = {is, 14} {ig, 14} J2 Jo T
U(j,0°)/V(i,0°) = {i1,is, 74} {i1, 2} Jo jo
vt = {is,14} {11,132} Jo J2 1
Now, v? is a matching, therefore by Proposition 4.3.2, v* is a core matching.
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Next example is an illustration of an empty core in the T-algorithm.

Example 4.3.4. Consider two finite sets S = {iy,42,i3} and B = {Ji, j2, j3} where S

represent the set of workers and B represent the set of firms. The preference profile

P~ is given by Table 4.3 and 4.4.

P(iy) | j1 | 73 | J2
P(iz) | g2 | 71 | J3
P(is) | js | j2 | 7

Table 4.3: Worker’s preference list

T-algorithm starts at

gu) | {1, iz}

{is}

J2) | {ia2, i3}

{1}

J3) | {i1, i3}

{ia}

Table 4.4: Firm’s preference list

J1 J2 J3 1 io 13
v° = 0 0 0 J1 Jo J3
The T-algorithm does
J J2 J3 i1 i2 i3
TRV (R I 7 S 4 S () S A
vt = 0 0 0 J2 J3 J1
UG.o)/V(iv) = Ainisdst {ivizdsh {inizish  j2 s
v = {i1, 02} {ia, i} {i1, 13} J2 J3 J1
U(j,0°)/V(i,v*) = {irio,iz}  {insio,i3}  {i1,i2d3)  Ji.ds Ji,de 2, Js
v = {i1,ia} {ia, 13} {i1, i3} J1 J2 J3
U(j,0*)/V(i,0°) = {ir} {is} {is}  Ju,js Jude JosJs
vt o= 0 0 0 J1 J2 J3
Note here v*,xk = 0,---,4 in T are not matchings. Algorithm cycles because v° = v*.

In this case core is empty.
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4.4 The lattice structure of the core

Now a partial order on pre-matchings T will be introduce in such a way that if the
preferences of the agents are substitutable, 7" is a monotone increasing function. Then

the Theorem 2.3.1 implies a lattice structure on &, and thus on K.

Definition 4.4.1. Define the partial orders on Y5, Tg and T given below:
1. P(B) on T by vgP(B)0p if and only if 05 # vp and for all j € B
v; = C(v; U5, P(j))
2. P(S) on Tg by vgP(5)vg if and only if 05 # vg and
v R(1)v; ViesS
3. The weak partial order associated to P(B) and P(S) are denoted R(B) and

R(S), defined as: vgR(B)vp if vg = Up or vgP(B)ig and vgR(S)vg if vg = vg
or vgP(S)0g

4. P(B) on T by vP(B)v iff vgP(B)og and 0sR(S)vs.
5. P(S)on T by vP(S)o iff vgP(S)is and vpR(B)vp.

Definition 4.4.2. A firm j's preference ordering P(j) satifies substitutability condition
if for any W C S containing workers i and i (i # 1), if i € C(W, P(j)) then i €
(C(W \ {1}, P(j)). A preference profile P* is substitutable if, for each firm j, the

preference ordering satisfies subtitutability.

Theorem 4.4.1. Consider the preference profile P be the substitutable. Then (K;(P), P(B))
and (K;(P), P(S)) forms the non empty complete lattices, and

(i) suppp)Ki(P) = infps) Ki(P).

(ii) in fpp) K (P) = supp(s)Ki(P).
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According to Theorem 4.4.1 there are two core matchings, ps and pp in such a way
that: For workers jig = supp(s)K;(P)is better, and pup = infps)K;(P) is worse than
other core matchings. For firms, pp = suppp)Ki(P) is better and g = infpp K;(P)

1s worse, than any other core matchings.

Let T = {v €T :v(s)R(s)0, Vs € BUS}. This means Vo € T, Tv € T. Consider
P be the substitutable.

Proof. Theorem 4.4.1 is presented by four lemmas.

Lemma 4.4.3. (T, P(B)) is a complete lattice.

Proof. For each i, let X; = {j € B: jR(i)0}; (X;, R(i)) is a totally ordered finite set,
so is a complete lattice.

Similarly, for each j, let X; = {G C S : GR(j)0}; and suppose >p be the partial
order on X; defined by G > F if and only if G = F or G = C(G U F, P(j)). By Blair
[4], (X;,>p) is a complete lattice.

Now, T = (XicsX;) X (X;epX;), and P(B) is the product order of the partial orders
introduced above. Hence (T, P(B)) is a complete lattice. O

Lemma 4.4.4. Let p and [i be pre-matchings. If fR(B)u then, ¥Yi € S and j € B,
U(j, 1) C UG, 1),
V(i fr) CV(i,p).

Proof. Let i € U(j, ). We have that jR(i)u(i), but the definition of pR(S)4 implies
w(i)R(i)fu(i). So, by using transitive property we have jR(i)(i). This implies i €
U(j, f1). This proves U(j, p) C U(j, f1).
Now to show V' (i, 1) C V(i, ). Firstly, if V (i, i) = 0, there there is nothing to prove,
because ) = V' (i, 1) C V (i, ). Consider if V (i, i) # 0, and suppose j € V (i, f1). Then
by definition we have that

i€ Cp; U{i}, P(5)). (4.42)
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but the definition of 4R(B)u implies that for all j € B, either fi; = p; therefore we
have from (4.42) we have ¢ € C'(u; U {i}, P(j)), or

fij = Cfi; U pj, P(7)).
Then by the (4.42) implies that
i€ C(p U{i}, P())

C(C (15 U g, P(5)) U {i}, P(4))
C(f; U py UL}, P(5))-

—
—
~—

From Blair [4], the equality (1) holds according to the choice set property. He showed,
if preference profile P is substitutable, then C(GUF, P(j)) = C(C(G, P(j))UF, P(j))
for all G and F. Now by substitutability of P implies that

i€ Clp; U{i}, P(j)).
This implies j € V (i, ). Thus proves V (i, i) € V (i, ). This completes the proof. [

Lemma 4.4.5. £ is non-empty and a complete lattice.

Proof. Firstly, we will show that 7" |4 is a monotone increasing. Let consider the two
pre-matchings. p = (up, ps) and 1 = (B, fts). We have to show, if gR(B)u, then
TiR(B)Tp. Consider iR(B)u, let j € B and i € S. Since by Lemma 4.4.4 says
U(j,n) CU(j, ). Firstly we will show that

CUG, @), P() = CCWU G, i), (7)) U CWUG, 1), P(5))], P(7))- (4.43)

In order to show this, suppose Y C C(U(4, ), P(5)) U C(U(4, 1), P(5)). Then Y C
U(g, ) WU, 1) = U(j, 1), therefore C(U (4, i), P(j))R(7)Y . But C(U(j, 1, P(j)) <
CU, i), P(5)) U CUG, 1), P(5)), so we get Eq.(4.43).
Now, T, = C(U(j, iv), P(j)) and Tp; = C(U(j, 1), P(j)), therefore (4.43) implies
that
Th; = C([Th; U Twgl, P(j)). (4.44)
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Now to show that T'u; R(¢)(T'f1;). Since, Lemma 4.4.4 says that V (i, 1) C V (i, u).

Tpi = ﬂ}}(agv{v(i,u)} for ieS
J
R(2) maz{V (7, i
(@) mar{V(i.j)}
= Th,.

Hence
T R(i)T . (4.45)

i.e from (4.44) and (4.45) imply that TuR(B)T 1.

Finally, T(Y) C Tso & C T, and € equals the set of fixed points of T' |¢. T(T) € T
also implies that the restricted map 7" | has a range in T.
Now, (T, P(B)) be a complete lattice by Lemma 4.4.3. Define T on T, such that T
be an increasing function on T to T as shown above. & be the set of all the fixed
points of 7. Then £ be not empty and the system (£, P(B)) is a complete lattice by
the Tarski’s fixed point theorem. Hence, proved O

Lemma 4.4.6. (K;(P),P(B)) and (K;(P), P(S)) forms the non-empty complete lat-

tices, and
(’l) supp(B)Ki(P) = z'nfp(s)Kl-(P).

Proof. By Corollary 4.2.1 and Lemma 4.4.5 we get (K;(P), P(B)). The orders P(S)
and P(B) are the order-duals, hence (K;(P), P(S)) is a non empty complete lattice

and (i) and (ii) are immediate in the Lemma. O

]
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Chapter 5

The study of lattice structure of
bipartite stable matchings with
flexible agents

In the currrent chapter we follow the idea presented by Ali and Farooq [2] and Echenique
and Oviedo [6] to devise an algorithm that characterizes the set of stable matchings
for hybrid model. At the end we study the lattice structure as a prompt application
of Theorem 2.3.1. We also give an example to support our results. This chapter based

work is published [21].

This chapter is structured as follows. We divide our main results into following sec-
tions: In Section 5.1, we demonstrate the model, some basic notations and definitions.
Subsection 5.1.1 involves the mathematical presentation of modified T-algorithm and
its termination. The working of algorithm with the help of example is also given at
the end of this section. Moreover, it includes a precise description of Ali and Farooq
[2] work through an example along with the motivation and comparison of it with our
modified T-algorithm. Subsection 5.1.2 consists of lattice structure of the set of stable
one to one matchings obtained through the hybrid algorithm. Throughout this chapter
we consider two finite and disjoint sets of same cardinality n, the set of sellers S and

the set of buyers B.
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5.1 Seller-Buyer hybrid model

In this model, we consider two sets of agents. Namely, sellers (set S) that possess
some commodity to sell and buyers (set B) that possess finite amount of money. Each
agent can trade with at most one agent of opposite side. Also assume that the money
is bounded and has a discrete/integer values. We present our model in mathematical
terms as follows. For each (i,j) € E, we define set of all possible seller-buyer pairs

by I/ = S x B. We define the increasing valuations w;; and wj; by:
wij(y) = Aijy + 6ij ; wji(=y) = =Xjiy + dji. (5.1)

where \;; , Aj; € R, 4,5, 0, € Rand y € Z for each (i,j) € E. Here, w;;(—y;;) repre-
sent the utility to buyer j if he/she trades with the seller ¢ and pays a price/money
yij. It means that ¢ is always considered as a payee. The negative sign in wj;(—v;;)
means j is always considered as a payer. Now, price vector p is defined by' Ali and

Farooq [2] as:

(5.2)

B Tij if wji(=Ti5) 2 0,

Pi =\ maz Tijs = otherwise.
YK

Furthermore, for each (i,j7) € E. The lower and upper bounds of price are

given by the two vectors =, @ € Z"” and m; < m; for each (i,5) € E* A

vector p = (pij € Z | (i,j) € E) is called feasible money /price vector if 7,; < p;; < 7y

for each (i,7) € E. In the proceeding chapter, the term c¢;; denotes any feasible price.

Definition 5.1.1. An agent is said to have a strict preference relation P if it is not
indifferent among two alternatives. We say jP(z)j at some y;; and y;; means ¢ is
strictly preferring j at price y;; to j at price Yi; if wij(yi;) > wi5(y;5). We denote it
by { ]P(Z)}};Z Similarly, we define for buyers iP(j)i at some yi; and y;; means j is
strictly preferring ¢ at price y;; to i at price Yi; if wij(—vij) > wy;(—y;) and denote it
by {iP(j)i}ys-

'y] =sup{n € Z:y > n}
27F stands for integer lattice whose points are indexed by E
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Definition 5.1.2. An agent is said to have a weak preference relation R, if it is either
indifferent among two alternatives or strictly preferring its partner. In this case, we
say jR(z)j at some y;; and y;; means ¢ is weakly preferring j at price y;; to J at price
y;; if wij(yi;) > wi3(y;;) and denote it by {jR(z)j}thj Similarly we can define it for
buyers.

Note that R is a total order on S'U B. Also from Definition 5.1.2 we have:

{p:R(1)j };ﬁ’uz for price ¢;; < p;,, means ¢ is preferring its partner under p over j if
wij(cij) < Wi, (Pigs )-

Similarly, {ujR(j)z'};fj ; for price —p,,; > —c;; means j is preferring its partner
under g over 4 if wyi(—cij) < Wy, (—pu,j)-
Definition 5.1.3. Given a seller’s strict preference relation P(7), the buyers j pre-
ferred by ¢ to remain isolated (single) at some amount y;; are called acceptable if
wij(yi;) > 0 for j € B . This signifies that ¢ is willing to trade with j at price y;;.
We denote it as {jP(i)0},,,. Similarly, given a preference relation of buyer P(j), the
seller i preferred by j to remain isolated (single) at some price y;; are called acceptable
if wj;i(—y;;) > 0 for i € § . This signifies that the seller ¢ is acceptable to buyer j at
price y;;. We denote it as {iP(j)0},,,.

In the Definition 5.1.3, if the strict preference relation P is replaced by weak pref-
erence relation R, then it is assume that an agent is either indifferent (i.e; an agent
may prefer to remain isolated /single /unmatched) or strictly preferring its partner (i.e;

an agent always prefer to be matched).

Definition 5.1.4. A 2-tuple (u,p) is said to be pairwise stable outcome if the two

conditions mentioned below are hold:

IR (p,p) is individually rational if: for all (i,j) € F
{iR(i)0}p,,, and  {u; R(j)0}yp, ;-
N.B.P Any (i,j) € E for ¢;; € [z;;,7;;] does not block (p, p) if:

Lago

{miR(0)i}s, or {mR()iky:

Pujj’
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Condition (IR) says that the matching (u,p) at a price vector p is individu-
ally rational. Condition (N.B.P) means (u, p) is not blocked by any seller-buyer pair.

A matching p is called pairwise stable if (i, p) is pairwise stable.

5.1.1 Mathematical presentation of modified T-algorithm

With the help of various mathematical tools and a constructive evidence, we show
that the model described in Section 5.1 always depicts an existence of pairwise stable
outcome. Initially, we define p € Z by (5.2). At the start of algorithm we will exclude
all those pairs that are not acceptable to each other and define a function T on the
set of pre-matchings YT that assigns each seller a better partner. By setting any random

9 we are looking for a matching by iterative applications of 7" on

pre-matching v = v
v°. During this process there might be some mutually acceptable seller-buyer pairs in
which seller is not matched with the buyer. For such pairs we will modify price vector.
This price externality results in new preference profile in which a matched agent may
change his partner if some better potential partner appears in the preference profile.
i.e; an agent on the accepting side might want to go back to a proposer that is already
rejected, or an agent on the proposing side might want to withdraw a partner that al-
ready made. Throughout the procedure, we will exclude two types of unmatched pairs,
if they exist. Firstly, those seller-buyer pairs in which the buyer is not acceptable to
the seller and secondly, those seller-buyer pairs in which price vector becomes less than
its lower bound. It is beneficial to take note that the price vector is non-increasing
and the size of the set of acceptable seller-buyer pairs is non-decreasing at each step
of the algorithm. As long as, the price vector is bounded and discrete and the number
of agents is finite, the algorithm will terminate after a finite number of iterations and

a stable outcome is achieved as a fixed point of a function 7'

We now state our algorithm in mathematical terms. We first define two subsets Ly

and Ej of E by that will be helpful to find a matching satistfying N.B.P as follows:

Ly = {(Z,]) ek wji(—p,»j) < 0} (53)
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and FEj as:
Ey = {(i,5) € E: wij(ps;) < 0}. (5.4)

Here, Lo consists of set of those seller-buyer pairs in which the seller is not accept-
able to the buyer. Whereas, Fj consists of the set of those seller-buyer pairs in which
buyer is not acceptable to the seller. Note that, when certain agent becomes unac-
ceptable then that agent may prefer to remain un-matched (isolated) rather than to
match with an un-acceptable partner. It reveals that only acceptable partners matter,
so we shall write preference relation briefly as lists of acceptable partners. Both of
these two sets enables us to define the set of mutually acceptable seller-buyer pairs as
follows:

E=FE\{LyUE}. (5.5)

Let v € T be a pre-matching and price vector p defined by (5.2). We define:
UGv)={ieB: iRG) vk} (5.6)

and

V(j,o)={iesS: {jR()v}p} (5.7)
The set U(i,v) consists of those buyers j that prefers i at price p;; atleast as much
as they prefer their partners under pre-matching v. Similarly we can define the set
V(j,v). Now define a function 7": T — Y such that for v € T

Tv; = 17;?)3: {U(i,v)} for ieS,

Ty — (5.8)

Tv; = Tg(aév{V(j,v) :Tv; =j} for jeB.
J
The function T" has simple interpretation: 7T'v; means the buyer preferred by ¢ among
the buyers that are willing to make partnership with 7. Whereas Tv; means the seller
preferred by j among those sellers who prefer j as their partner under 7. A matching
1 C E is then consists of matched members of Tw. So we define (q,r) € RS x RP

- wire, (pirw,) if (6, Tv;) € p, .
" { 0 otherwise. (i €5S) (5.9)
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and

= ijvj(_pijj) if (Tv;,j) € p, '
b { 0 otherwise. (7 € B) (5.10)

Now the 2-tuple (u, p) obviously satisfies I.R but still N.B.P may not hold. To ensure
N.B.P, we will modify price vector. Particularly, we will modify the price vector for

pairs in Y defined below:

YV ={(,Tv;) € (Tv\ p) : {TviR(i)0}p,7, }- (5.11)
Note that Y C E that consists of all those seller-buyer pairs in which buyer is
most preferred by the seller but the seller is unmatched in p. During price modifica-
tion we will make sure that IR and the feasibility of p are preserved. To modify p,
we find an integer 7,7, for each (i,Tv;) € Y, by ?

NiTe, = Maz {1, [TT’” - “’T””(_p””iﬂ } . (5.12)

)\Tvii

A subset L of Y is defined by
L= {(Z,TUZ) eY: Ditv; — NiTw; < EiTvi}' (513)
Now we modify the price vector p that is denoted by p. For each (i,j) € E modi-

fied price vector p is defined by

1’5” O max {EiTviapiTvi - niTvi} if (Z>TU1) € K (5 14)
K Dij otherwise. '

A subset Ey of Y is defined by:
Ey = {(i,Tv;) €Y : wire, (Pirw,) < 0}. (5.15)

We now finally present our algorithm.

Modified T'-Algorithm:

Step-I Initially define p, Ly, Ey, E, any random pre-matching v, U(i,v) £ 0, V(j,v)
and Tv by (5.2)-(5.8), respectively. Set v = v. Set v! = Tv? and k = 1. Find
a matching y within T'v consists of matched members of T'w. Define r and Y by

(5.10) and (5.11), respectively.

lyl =inf{n € Z:y < n}
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Step-II  If = Tv implies Y = () then stop(i.e Tu = pu).

Step-II1  For each pair (i, Tv;) € Y, calculate n;p,, by (5.12) and find p by (5.14).
Define L and E, by (5.13) and (5.15) respectively. Update Ey by Ey := FyU E,
and LO by LO = LO U L.

Step-IV  Put p := p and modify E by (5.5). Set k = k + 1. Set v* = Tw*~! for
updated E and p. Find a matching g in T which consists of matched members

of Tv. Define r and Y by (5.10) and (5.11) respectively. Go to Step II.
Note that we can always obtain a seller optimal stable matching by taking v € T with

vi=marB and v, {0}

For buyer optimal stable matching we have the following two cases:

Case 1 A buyer optimal stable matching can be found by taking v € T with

v; = {0} and v; =mazS.
{0} j = ma

provided that all buyers have different optimal preference in their preference list,
(see Example 5.1.1). Hence the set of stable matchings M; contains at least two

matchings and we can define a lattice structure in this case.

Case 2 Unlike in Case 1, if some buyers have equally likely optimal preferences, then
we cannot obtain a buyer optimal matching. Hence, in this case we claim that

we always get a unique stable matching.

Let £ = {v e T :v=Tuv} be the set of all fixed points of function 7" and M, be the
collection of pairwise stable matchings. We show that £ # () and the above algorithm

terminates.

Lemma 5.1.5. Let v be a pre-matching such that v € & , then v is an individually

rational matching.
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Proof: As we are considering pairs from E thus it is trivial to show v is individually

rational. Let v = (vg ,up) € £. Now we show that v is a matching i.e
Vi = j 1= Vj.
First suppose that j = v; then (5.7) implies that

i€ maz{V(j,v):Tv;,=j}, (5.16)
R(7)

we may write
i = Tv;. (5.17)
and
since v € £ implies that Tv; = v; thus (5.17) gives i = Tv; = vj. Neat suppose that
i = v; then we shall prove that j = v;. First we note that i = v;, (5.6) implies that

Jj e Ul(i,v).
Secondly, due to v € £ note that
i=v;=Tv; = T]f%L((L)x {V(j,v): Tv; =3} for je€B. (5.18)
J

Since by defined condition partner of j is such kind of element whose image under T

18 J t.e Tv; = 7 this proves the result.

Theorem 5.1.1. Let £ be the set of all fized points of T and M be the collection of
all stable matchings. Then & = M.

Proof: To do this, we will first show & C My and My, C &. Firstly, we will show
ve&C M, By Lemma 5.1.5 we know that v is individually rational matching. We
have to show that v € My means no blocking pair exists in v. On contrary assume that

there exist (i,j) € E, and ¢;; € [m;;,Ti;] such that

—lj’

{@R(j)TUj}IcZW for ¢ < piry, - (5.19)
Then by definition of U(i,v) by (5.6)
jeU(,v). (5.20)
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Since, v € £ so,

v, =Tv; = n;(q)x {U(i,v)}  for i€ 8. (5.21)
By (5.21) v; # j, because with ¢ < pipy,
wij(€) < Wit (Pirw,)-

Hence we write

{TviR(i)j}y;, (5.22)

PiTwv; "

(5.19) and (5.22) show that there is no such pair (i,j) that blocks v. Thus
veE Mg for ¢<piry,.
Similarly, on contrary suppose
{jR(i)TUz‘}Z?i for ¢ > pry;. (5.23)
By definition of V (j,v) from (5.7) implies
ieV(j,v).
Since v € £, so
v; =Tv; = n}g(ajgc {V(j,v): Tv; =3} for j€ B.
This means j is preferring its partner over i that is
wji(—¢) < wjr,(=prv;;)  for ¢ > piry,.

Therefore, we obtain
{ijR(j)i};iijjj. (5.24)

(5.23) and (5.24) shows that there is no pair (i,j) that block v.
Thus,

vE M, for c> pry;.
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Hence, v e My  for Cij € [7T' ﬁij]-

_zj7

Let v € M, and suppose that v # Tv. First we suppose that there exist i € S such that

v; # To; = mag {U(i,v)} =7 € U(i,v). (5.25)
From (5.25)
{FR()vi}p (5.26)

By the definition of U(i,v) from (5.6)

c.

{iR(j)v;}p. . (5.27)

ij

(5.26) and (5.27) imply that (i,7) blocks v which contradicts that v € M. Therefore,
foralli e S

Similarly, suppose that there exists j such that for j € B
v; # Tvj = 'rg(@)x {(V(j,v) : Tvi = j} =1 € V(j,v). (5.29)
j

So, by definition of V(j,v) (5.7)

{IR@)v;}, - (5.30)
By (5.29) indicates that
{iR(j)v;}p - (5.31)

Then (i, 7) blocks v because of (5.30) and (5.31) which contradicts that v € M,. Hence,
forall j € B
V; = TUj. (532)

(5.28) and (5.32) imply that
v="Tv.
This proves v € .

Next, we state two Lemma’s which will be helpful in the termination of algorithm.
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Lemma 5.1.6 (Ali and Farooq [2]). In each iteration of the algorithm, E remains the
same or reduces. In particular, if L # 0 or E, # O at Step III then E reduces
at Step IV.

Lemma 5.1.7 (Ali and Farooq [2|). In each iteration of the algorithm at Step IV,
if wji(—cij) > wjre,(—prv,;) for some (i,j) € E then cy; is the mazimum integer in

[, 5] for which the inequality holds.

Theorem 5.1.2. For some iteration k in the modified T-algorithm, if v* is matching,

then the algorithm stops at p = v*, and thus v* is a stable matching.

Proof: We will present the proof of this Theorem 5.1.2 as two Steps:

Step-1  First we will show that for a pre-matching v¥ € Y |, if p =% = TvF 1 is a

matching, then v* is individually rational. In order to show this, for v~ € T we
have Tv*=1 = v¥ = p, where p is a matching. Suppose that algorithm terminates
at Step Ii.e Tv® =v'. This implies Y = () and (v',p) be the 2-tuple obtained at
termination where we find a matching v'.

Initially we define E by (5.5). Therefore

wij(pij) 20 and  w;i(—pi;) 20 ((i,)) € E). (5.33)
at Step-I of algorithm. For alli € S

v} = Tv? = max {U(i,v°)},

R(i)

Since U(i,v°) # 0, so

{0l R()0},,, (5:34)
For all j € B
vj = Tof = maz {V(5,0") : Tof! = j} .
This implies
{0} R0}, (5:35)
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Asv' C E. The (5.34) and (5.35) imply that v* is indiidually rational. Since
in each iteration we modify E by (5.5) at Step IV of algorithm. So, (5.33) holds
in each iteration at Step IV by Lemma 5.1.6. Thus if ;1 = v* is a matching then
v C E and IR hold’s for all pairs at the termination of algorithm.

Step-2  For v*=' € T, if v¥ = Tw*! is a matching, then the modified T-algorithm
must stop at v*, and v* is a stable matching.

k is a match-

We shall prove that, if v*=1 € Y is a pre-matching and Tv*~1 = v
ing, then v* € M. By Step-1, v* is individually rational. Assume that v* ¢ M,.

So there must exist (i,7) at c;j € [m;;, 7ij] that blocks v*. We will prove this by

g
considering the two cases:
Case 1: Assume that {iR(j)Tv;}e, " for ¢i; < pire,. We will show {Tv:R(i) ]}, -

Contrary suppose there exists (i,j) that blocks v* i.e for ci; < piry,

. Nk pvfj
{iR(j)v; ter) - (5.36)
and
piv’.c
{FR@)vi }e" - (5.37)

But v* is a matching and v* = Tv*=1 by the given condition, so we have that for

j =v*(v}) € B. But

o (F) = T (vh) = 717%@(%1;; {U@F,v* 1)}
J

for vf € S. So that Uk(vf) =j€ U(Uf,vk_l). This implies

C I.Cilj
(ARG (5:39
By transitive property, (5.36) and (5.38) imply that,
Ck—1;
{iRG)v;  Yel
By definition of U(i,v) from (5.6)
jeUivi). (5.39)
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and by given condition

vf =Tl = rg?)x {U(, vf’l)} : (5.40)
(5.37) and (5.39) contradicts (5.40). Thus v* € M,. Since we are giving the most
optimal partners to the seller i among the potential partner in each iteration of

algorithm, this implies that the following equation
{Toi ' R(D)j}y7 .-

holds at each Step.

Case 2: Assume that {jR(i)Tv;}e,, " for cij > pro,;. We will show {Tv;R(j)i f,ﬁfjj

Cij
If the algorithm terminates in the first iteration then (5.2) is the mazimum price
so it hold’s trivially. We get stability by Case 1. Otherwise we divide our argu-
ment in two parts: wii(—ci;) < Wjrw, (—Pro;5) 0r Wii(—cij) > Wity (—Prv;5)-
To show, for {jR(i)Tvi}es" for cij > PiTv;, we have {Tv;R(j)i Z?Ujj. This
means wj;(—ci;) < Wi, (—Pro;;). For this we assume that there exist a (i, j) that

blocks v* i.e for ¢ > PiTv;
Pk,
J

{iR(j)v}}e (5.41)
{R()oE (5.42)

But v* is a matching, v* = Tv*"1, so we have that i = v*(vF) € S. Hence

vi(vf) = TvEH(vf)

= mag {V (0, 0" 1)« To* 1 (0F (0F)) = o)}
R(v)

for  oF(wF) e S,
So that v*(vF) =i € V(vF,v*Y). This implies by (5.7)

k1
{vi R (5.43)
By transitive property, (5.42) and (5.43) imply that,
k1
{iRGv ey
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From (5.7)
i€ V(j,v" ). (5.44)

and by given condition, for j € B, U;‘? = va’l
= ﬂ};b(q)x {V(G, "1 Tvk_l(vf) =j}. (5.45)
j

(5.41) and (5.44) contradicts (5.45). Thusv* € M. And ifwji(—ci;) > WjTw,; (—PTv;5)
then by Lemma 5.1.7 c;j 1s the mazimum price. Thus we get stability by above

Case 1.

By Step-1 and Step-2, we deduce that if v* is a matching for some iteration k in
modified T-algorithm, then v* is a stable matching. If v* = p is a stable matching,
then v* is a fized point of modified T by the Theorem 5.1.1. Then

b = ofH =Tk =y

implies that the T-algorithm stops at j = v*. Thus this proves Theorem 5.1.2.

Theorem 5.1.1 shows that the stable matching is a fixed point of 7" and Theorem

5.1.2 shows the termination of the algorithm.

Example 5.1.1. Consider two finite and disjoint sets S = {ig, 41,142,913} and B =
{Jo, J1,J2, 73} where S represent the set of sellers and B represent the set of buyers.
The set of all possible seller-buyer pair is given by £ = S x B. Define the lower and
upper bounds for all (7, 7) € E as given below:

Ty = -1 V(i,j) €L,
fijo - 3 = ﬁij:{ VZ € S,
ﬁijg = 2 == ﬁijg VZ € S

We assume valuations given by (5.1), where \;;, Aji, 0;;, and d;; for each (i,j) € FE
are given in the Tables 5.1-5.4 respectively.
We begin from the Step I of the modified T-algorithm. We find price vector
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Aij | Jo| g1 J2| Js Njii | to | 1| d2| i3
ol 2 (251 1] 1 bl2 2212
11 2 125 1 1 J1 1252525125
o] 2 125 1 1 Jo | 1 1 1 1
sl 2 1251 1 1 Bl 1T 1] 11
Table 5.1: >\Z] for (Z,]) e F Table 5.2: )\ﬂ for (Z,j) <
Oij | Jo| g1 | Jo J3 i io i1 (5 i3
| 25| -3 2 110.5 Jo | -0.5 [ 125 | 7.5 | -6.5
711 851] 25 |55 -3 71 1105 11251 20.5 | 0.5
51 45] 1.5 |6.5] 5.5 Jo | 11.5 1 10.5 | 3.5 0
13 1 2.5 1105 |85 ] 3.5 g3 | 10.5 | 11.5 | 12.5 | 13.5
Table 5.3: ¢;; for (i,7) € E Table 5.4: ¢ for (i,j) € E

P = (Piojo» Pioji» Piojos Pingss Pirgos Pinjrs " * * s Pisgs) DY (5.2). We have wj;(—7;;) > 0 for
(2,7) € E\A{(i1, J3), (i3, Jo) } and wji(—=75) < 0 for (i,7) € {(21,J3), (i3,o)}. Therefore,
we have p = (—1,3,2,2,3,3,2,2,3,3,2,2,—1,0,0,2). Using the values given in Tables
5.1-5.4 and price vector p from (5.2), we get w;;(p;;) and w;;(—p;;) from (5.1) for each
(1,7) € E as follows in Tables 5.5 and 5.6.

wi;(pij) | Jo J1 | J2 J3 wii(=pij) | do | 1| g i3
10 0.5 | 4.5 4 | 125 70 15165 | 1.5 | -4.5
11 1451 10 | 75| -1 7 3 5 13 0.5
19 10.5 9 85| 7.5 7o 95|85 | 1.5 0
13 0.5 |10.5 |85 ] 5.5 73 85195 110.5 1] 11.5
Table 5.5: w;(p;;) for (i,7) € E Table 5.6: w;i(—p;;) for (i,5) € E

By (5.3) and (5.4), we have Ly = {(i3, jo)} and Ey = {(i1,73)}. By (5.5), we obtain

the set of mutually acceptable seller-buyer pairs which is presented by:

E = E\{(i1,J3), (i3, jo) }-

(Here we will consider the two different pre-matchings to get the two extreme(optimal)
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matchings of hybrid model). Let consider a pre-matching

io i i2 i3 Jo J1 J2 J3

v = J3 Jo Jo n o0 0 0

Ui, 0)[V(5,0°) = Jo,jidesds Josdisda JosJisdesfs Junjasds inia iz 0 g
T =v' = J3 Jo Jo n iv i3 0 o

and define p which consists of matched member of Tv° = v!

= {(io, j3), (i1, Jo), (i3, j1) }-
We find r by (5.10) and get:
Tjo = 657 i = 057 Tj, = O, Tjs = 8.5.

By (5.11) we have Y = {(is,jo)}. This finishes the Step I. After this we switch to the
Step II since Y # (). Finding 7;,;, by (5.12) we get 1;,, = 3. Modifying price vector p
by (5.14) we get:

p=1(-1,3,22.3,3,220,3,2,2,-1,0,0,2).

For the obtained modified price vector p, we have the values wi,j;,(Dijo) = 4.5,
Wigia (—Pisjo,) = 7.5 and the remaining values given in the Table 5.5 and 5.6 remain
unchanged. Both L and E, are empty for the obtained modified price vector. There-
fore, Ey and Ly remain unchanged for the modified vector p.

At Step 4, we modify E by (5.5). As both L and Ej are empty, it implies that E

remains unchanged.
10 i1 19 i3 Jo Ji J2 J3
vo= J3 Jo Jo J1 1 is 0 20
Ui, o)V (G, 0"Y) = ji,d0,d3 Josdisdz JosJi,d2, 03 Jisdosjs 1,49 fo,i3 iz g, ia
Tv' =v* = J3 Jo J1 J1 i ia 0 10
1= { (%0, J3), (11, Jo), (42, J1) }-
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We find r by (5.10) and get:
Tjo = 65, Ty = 13, Tj, = O, Tjs = 8.9.

By (5.11) we have Y = {(i3,j1)}. This finishes the Step I. Since Y # () we move to
Step III. Finding 7;,;, by (5.12) we get 1;,;, = 5. Modifying price vector p by (5.14)
we get:

ﬁ = (_1737272737 37272707 372727 _17 _1707 2)

For the obtained modified price vector p, we have the values wiyj, (Pisj,) = 8, Wjis(—Digjr) =

3 and the remaining values given in the Table 5.5 and 5.6 remain unchanged. For the
obtained modified price vector, by (5.13) we have L = {(i3, j1)}. Therefore, Ey and Ly
get changed for p.

At Step IV, we modify E by (5.5). Thus E = E \ {(i1, js), (i3, jo), (i3, j1)}. For this

updated E, we have now

i i1 i i3 Jo J1 Je J3

v = J3 Jo J1 I SR P io

U@, 0)|[V(j,v®) = Jouds  JosJo  JosJisjasJs  Jads G g2 i3 do,is
Tv: =03 = J3 Jo J1 Jo 1 a3 10

and
1= {(io, j3), (i1, jo), (ia; j1), (43, j2) }-
Since Y = (). Algorithm at this point terminates and matching
= { (o, J3), (i1, Jo), (42, j1), (i3, J2) }-
is a pairwise seller optimal matching.

Let consider another pre-matching

0 11 g 13 Jo Ji Jo J3

0 . . . .

o= 0 0 0 0 i1 io 10 i3

U(%U )|V(],U ) = J2 Jo J1 J3 1lo,l1,%2 10,%1,%22,%3 10,%1,02,23 10,72,13
T 0o __ 1 o . . . . . . . .

v =v = J2 Jo 71 J3 (51 192 () 13
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and
w = {<i0’ jQ)? (ilu jO)a (i27 j1)7 (2.37 ]3)}
Since Y = (). Our algorithm terminates at this point and the matching p is a pairwise

buyer optimal matching. Thus we can say that M, consists of at least two stable

optimal matchings.

Next we will give an example to show the working of Ali and Farooq [2] algorithm

for finding a stable matching.

Example 5.1.2. We consider two finite and disjoint sets S = {ig, i1, 42,93} and B =
{Jjo, J1,J2, 73} where S represent the set of sellers and B represent the set of buyers.
The set of all possible seller-buyer pair is given by E = S x B. Define the lower and
upper bounds for all (i,j) € E as follows:

Ty = —1 v (i,j) € E,
ﬁijo = 3= ﬁijl Vi € S,
f,’jQ = 2 == ﬁi]é VZ € S

We assume valuations given by (5.1), where \;;, Aji, 0;;, and §j; for each (i,j) € E are
given as in the Tables 5.1 - 5.4 respectively.

We begin from the first step of the algorithm given by Ali and Farooq [2]. Here we
set 7 = 0 and Q = 0. Whereas, define r as:

_ J wil=py) if  (i,j) € p, for some i€ S, .
E { 0 otherwise. (J € B) (5.46)
and Q as:

Q= {j € B:jis matched in pu}. (5.47)

We find price vector p = (Digjo» Pioj1» Pivjas Piojss Pirjos Pivirs * * » Pisjs) DYy Eq.(5.2). We
have w;;(—7;;) > 0 for (i,7) € E\ {(41,73), (i3, o)} and w;;(—7;;) < 0 for (i,5) €
{(i1,J3), (i3, Jo) }. Therefore, we have p = (—1,3,2,2,3,3,2,2,3,3,2,2,—1,0,0,2). Us-
ing the values given in Tables 5.1 - 5.4 and price vector p from (5.2), we get w;;(p;;)
and wj;(—p;;) by (5.1) as follows in Table 5.5 and 5.6.
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Define Ly and Ey by (5.3) and (5.4) respectively. We get Lo = {(i3,70)} and

Ey = {(i1,73)}. By
E:=FE\ {LyU E,}. (5.48)

we obtain the set of mutually acceptable seller-buyer pairs which is given by:

E = E\{(i1, J3), (i3, jo) }-

Define
G = maz{w;(py) : (i,j) € E}. (5.49)
By (5.49), we find
Gi, = 125 ¢, =145 ¢, =105 ¢, = 10.5. (5.50)
Now,
Eg={(i,j) € E : wi(ps) = @} (5.51)

we get Eg = { (io,Js), (i1,J0), (i2,jo), (is,j1)}. Since r = 0, we have Eg = Eg.
Where

Es = {(i,j) € Es : wji(—py;) = ;}. (5.52)
and define p be a matching in bipartite graph (S,B,E’g) which satisfies the two
conditions. First one is 1 matches all members of Q. Second one is it maximizes

> (i.jyenWsi(—pi;)) among the matchings satisfying first condition. So, we obtain

p=A (io,Js), (i1,J0), (is,51)}.

We find r by (5.46) and get:

Updating Q by (5.47), we obtain

Q = {j07j17.j3}' (553)

Now,

Y = {(i,j) € Eg : i is unmatched in s} (5.54)
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We get Y = {(is, 7o)} This finishes the first step. After this we switch to the second
step of their algorithm because Y # ). By

N = max {1, [ %j(_pﬂ } . (5.55)

finding 7;,;,, we get n;,;, = 3. Modifying price vector p as:

_ fmax{ my, py -yt i (4,4) €Y, .
b= { Dij otherwise. (.)€ & (5.56)
we get:
p=1(-1,3,2,2,3,3,2,2,0,3,2,2,-1,0,0,2).
For the obtained modified price vector p, we have the values Wizjo(ﬁizjo) = 4.5,

Wipis(—Disjo) = 7.5 and the remaining values given in the Table 5.5 and Table 5.6
remain unchanged. Both L and E, are empty for the obtained modified price vector.
Therefore, Fy and Ly remain unchanged for the modified vector p.

At forth step of their algorithm, modify E by (5.48). As both L and Ej are empty, it
implies that F remains unchanged. By (5.49), we get

Gi, =125 ¢, =145 ¢, =9 ¢, = 10.5.
By updating and Eg and Eg by (5.51) and (5.52), respectively, we obtain
ES:{ (i07j3>7 (ilajO)a (iZ:jl)a (237.71>}

and

A

Es ={ (i0,J3), (i1,70), (i2,51), (3,71)}-
In bipartite graph (S, B, ES), a matching
p={ (io,Js), (i1,Jo); (i2,J1)}-
We find r by (5.46) and get:

Tjo = 6‘57 Ty = 137 Tjy = O, Tjy = 8.5.
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By (5.54) we have Y = {(i3, j1)}. This finishes the second step. Since Y # () we move
to the third step of their algorithm. Finding 7;,;, by (5.55) we get n;,;, = 5. Modifying
price vector p by (5.56) we get:

ﬁ = (_17 37 27 27 37 37 27 27 OJ 37 27 27 _17 _17 07 2)

For the obtained modified price vector p, we have the values wi,;, (Pi;,) = 8,
Wiyis(—Disjy) = 3 and the remaining values given in the Table 5.5 and 5.6 remain
unchanged. For the obtained modified price vector, by (5.56) we have L = {(is, j1)}
Therefore, Ey and Ly get changed for p.
At forth step, we modify E by (5.48). Thus £ = E\ {(i1, js), (i3, jo), (i3, j1)}. For this
updated E, we have now

(jio =125 (jz‘l =14.5 Cjig =9 quS = 8.5.
Again by updating Eg and Eg by (5.51) and (5.52), respectively, we obtain

Es = {(io, js), (i1, jo), (i2, j1), (i3, j2) }-
and
Es = {(io, J3), (i1, jo), (2, j1), (i3, ja) }-
In bipartite graph (S, B, ES), a matching
= {(io, J3), (i1, Jo), (42, j1), (i3, J2) }-
Since Y = (). Our algorithm terminates at this point and matching
= {(i07j3)7 <i17j0)7 (i27j1)7 (237]2)}
is a pairwise seller optimal matching.

A limitation of Ali and Farooq [2] model is that it suggests the seller optimal

matching only.

Remark 5.1.3. If we use the algorithm given by Ali and Farooq [2], we obtain only one
optimal stable matching as working given in Example 5.1.2. While if we use modified
T-algorithm using the same given conditions as in Example 5.1.2, then one can obtain

more than one stable matching as working given in Example 5.1.1.

The motivation of this work is to find more stable matchings within their model.
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5.1.2 Lattice structure of stable one to one matching

If the preferences of the agents are flexible, by using Theorem 2.3.1, we obtain a lattice

structure on &.

Definition 5.1.8. Define the following complete partial orders on Tg,Tg and T:
1. R®(S) on Tg by vgR®(S)0s if and only if:
{vR@)o: )y Vi€ S.
2. R®(B) on Tp by vpR®(B)0p if and only if:
{v; R}, Vi€ B.
3. The strict partial order associated to R®(S) and R®(B) are represented by P%(S)
and P®(B) can be defined similarly.
4. Xg on T by v =g v if and only if:
vsR®(S)0s and ©0pR¥(B)vs.

5. The strict partial order associated to <g on T is represented by <g and can be

defined similarly.

T defined in (3.1) contains all pre-matchings either having acceptable or un-acceptable
partners. Since, modified T-algorithm only involves acceptable partners so we define

the following sub collection.
T={veT: {vR(s)0},.., Vs SUB}. (5.57)

T consists of all such pre-matchings in which agents are weakly preferring their partners
to remain isolated at a feasible price. This implies Y C Y. Thus, Yo € Y, Tv € T. It

is worth noting that the function 7' : T — 7T is a self map.
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Lemma 5.1.9. Let T be the collection of pre-matchings defined in (5.57). Then ('AT, <s
) forms a complete lattice.

Proof: For each i, let T; = {j € B: {iR(#)0}p,, } Then, (T;, R(7)) is a totally ordered
finite set and so is a complete lattice. Similarly (Tj,R(j)), for each j is a complete
lattice where T; = {i € S : {iR(4)0},,}

Note that Y defined in (5.57) can be viewed as T = (XiesTi) X (X;enY;). Hence
(Y, =) is also a totally ordered finite set and forms a complete lattice where =g is

the complete partial order given in Definition 5.1.8.

Lemma 5.1.10. Let p and ji be pre-matchings. If i g p then, T =g Tu i.e; T

defined in (5.8) is monotone increasing function on T.

Proof: Let j € U(i, ). We have that {iR(j)u; ;ij, but the definition of i =g p implies
~ Y Chji

{,ujR(j)/lj}cﬂjj So, by using transitive property we have {iR(j)f;}p;] . This implies

Cujd”

j e Ui, ). This proves U(i, ) € Ui, t). Now,
T = ﬂ}gg)ﬂc{U(Lﬂ)} for ieS
R(z) mazx{U(z,

@) mar{UG. 0}

= quti.
This implies TR®(S)T .

Similarly let i € V(j,f1). Then by definition we have that {jR(i)ju;}ps, but the

definition of i =g p implies {; R()u; iz So, by using transitive property we have
{iR(i)p;}pt. This implies i € V (5, 1). Thus proves V(j, 1) C V (4, 1). Now

Tp; = mar{V(jp):To;=j} for jeB
R(j) max{V (j,f) : Tvi = j}
R(j)
= Ti.

This implies TR®(B)T . The above arguments show that T =g Tfi. This completes

the proof that T is an increasing function on Y.

Since T(Y) C T, the restriction T |+ is an increasing function on T. Also, the set

of fixed points of T" equals the set of fixed points of T |5.
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Theorem 5.1.3. The set of fixed points & of T is non-empty and forms a complete
lattice.

Proof: Since (T,jg) 15 a complete lattice by Lemma 5.1.9 and T s an increasing
function from TtoX from Lemma 5.1.10. If £ is the set of all the fixed points of T
then from Theorem 2.3.1 £ is non-empty and the system (£, =g) is a complete lattice.

Remark 5.1.4. If we switch the role of sellers with buyers and define a price vector

by:

T if wij(m;) =0

bij = { min {ﬁij, [%j—‘} otherwise. (5.58)
Then, by following the same strategy of the above hybrid model, we obtain another set

of stable matchings. All the above results will hold in this case too.
Here we will demonstrate this above fact within an Example 5.1.1.

Example 5.1.5. We will solve Example 5.1.1 by taking price vector as given in (5.58).
We begin from the Step I of the algorithm. We find price vector

P = (Piojo» Piojr» Pioja» Piojss Pirjos Pingns* * * s Pisgs) DY Ed.(5.58). We have wji(—7;) > 0
for (7, 7) € E\ {(41, Js), (i3, jo) } and w;;(—7;;) < 0 for (4, j) € {(i1,J3), (i3, Jo)}. There-
fore, we have p = (-1,2,-1,-1,-1,-1,-1,2,-1,0,—-1,—-1,—1,—1,—1,—1). Using
the values given in Tables (5.1)-(5.4) and price vector p from (5.58), we get w;;(pij)
and w;;(—p;;) from (5.1) for each (i, j) € E as follows in Tables 5.7 and 5.8.

wij(pij) | Jo| Ji| Jo| Js wjii(=pij) | o 11 (> i3
10 0.5 2 1 195 Jo 1.5 | 145| 95 | -4.5

1 6.5 0 |45 ]| -1 J1 5.5 15 | 20.5 3

19 2511555145 Jo 125 | 11.5 | 4.5 1
13 05 8 | 75|25 73 11.5 | 95 | 13.5 | 14.5
Table 5.7: wij(pij) for (Z,j) ek Table 5.8: wji(—pij) for (Z,]) ek

By (5.3) and (5.4), we have Ly = {(i3,j0)} and Ey = {(i1,43)}. By (5.5), we ob-

tain the set of mutually acceptable seller-buyer pairs which is given by:
E = E\{(i1, ), (i, jo) }-
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(Here we will consider the two different pre-matchings to get the two extreme(optimal)

matchings of hybrid model). Let consider a pre-matching

0 1l 13 Jo Ji J2 J3

o= 0 0 0 0 i1 io 10 13

U(%U )|V(j,U ) = J2 Jo J1 J3 lo,l1,%2 10,%1,%2,%3 10,%1,%2,%3 10,172,103
T 0o__ .1 o . . . . . . . .

v = = J2 Jo 71 J3 (41 12 20 13

= { (o, J2), (i1, Jo), (42, j1), (i3, Ja) }-
Since Y = (). Algorithm at this point terminates and the matching yu is a pairwise
buyer optimal matching.

Let consider another pre-matching

10 i lo i3 Jo J1 J2 J3

o = Js Jo J2 a0 0 0 0

U@, )V (§,0°) = Josjv.da:ds Josdvsdz JosJisdasds Jisdeds i1 iz da i
T =o' = J3 Jo J2 Jiotioi3 lg 1

and define p which consists of matched member of Tv° = v!

1= {(io, 33), (i1, Jo), (iz, j2), (i3, 51) }-

Since Y = ). Our algorithm terminates at this point and the matching p is a pairwise
seller optimal matching. Thus we can say that M for the price vector given by (5.58)

consists of at least two stable optimal matchings.

Remark 5.1.6. The lattice structure obtain from using the price vector (5.58) is in-
comparable as obtained with the price vector (5.2) because due to the different price

vectors, valuations get change and results in a different optimal stable matchings.
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Chapter 6

Conclusion

This chapter finishes up the research by expressing and summarizing the inferences
and findings. The knowledge assists the reader to understand the essence of the study

and parting ways for future undertakings identified with this territory of research.

The main aim of this thesis is to study the lattice structure of stable matchings. We
initiated by taking Theorem 2.3.1, and see its application in the formation of lattice
structure by reviewing various papers, mainly reviewed papers are stated in Chapter
3 and 4. Then finally, we present a hybrid model to the theory of stable matchings.
This model designed with the help of modified T-Algorithm and it differs from the two

existing models presented in 2] and [6] in the following way:

1. The modified T-Algorithm not only gives the seller optimal stable matching as
obtained by Ali and Farooq [2] but because of the fact that it starts with any
random pre-matching, more than one stable matchings can be achieved including
the buyer and the seller optimal matchings. Moreover, these stable matchings

can be characterize as fixed points of T" and hence forms a complete lattice.

2. The modified T-Algorithm is better from T-algorithm by Echenique and Oviedo
[6] because this hybrid algorithm involves flexible agents and price externalities

(modification) unlike T-algorithm that involves no price negotiation.
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