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Abstract

The purpose of this thesis is obtaining approximate closed-form solution of the

non linear ordinary differential equation. Finding the exact solution is very hard,

when dealing with non-linear ordinary differential equations. Therefore, in such

conditions, one looks for the approximate solutions. In this thesis, by using

similarity transformation firstly the reduction of partial differential equation is

carried out into an ordinary differential equation. Then the reduced ordinary dif-

ferential equation is solved numerically and an approximate closed form solution

using spectral collocation method is achieved. Both numerical and approximate

solutions are compared by presenting plots. Residuals are used for analyzing

the accuracy of the solution. The residual analysis describes that the obtained

approximate solution is a good approximation of the exact solution.
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Chapter 1

Introduction

Mathematical models describe important features and behavior of physical sys-

tems. Basically, a model is created for obtaining new knowledge and information

about the world and system as well. Thus using reasonable approximations and

by applying relevant physical principles a physical system can be modeled math-

ematically and as a result the equations obtained are often differential equations

(DEs). Differential equations describe the relation between variables and their

derivatives and play a very significant role in diverse fields of science, mathe-

matics and many more. DEs are further categorized in two more types, partial

differential equations (PDEs) and ordinary differential equations (ODEs) [1].

An ODE is defined as an equation which contains the derivatives of one or more

dependent variables with respect to one or more independent variables [1–6] and

PDE contains partial derivatives of one or more dependent variables of two or

more independent variables. [1, 3]. DEs are further categorized depending on
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the types of conditions; Initial-value problems (IVPs) and other is boundary

value problems (BVPs). Equations in which conditions are specified at only one

point are called as IVPs while the differential equations in which conditions are

specified at more than one points are known as BVPs.

DEs are furthermore classified into linear DEs and the non-linear DEs [1]. If the

power of dependent variable and all of its derivatives is one and their coefficients

do not depend on dependent variable and its derivatives, then such equation

are linear differential equation, otherwise the equation is defined as non linear

differential equation. There are different techniques and methods available for

finding the solution of linear DE, however, it is very difficult and also very lim-

ited theory is available for finding the analytic solutions of non-linear DEs. A

technique which is used for the two linear and non-linear DEs is "symmetry

method" [2]. In symmetry method, by using (if available) symmetry transfor-

mations of a partial differential equation, one can find the exact solution by first

reducing the number of independent variables to obtain an ODE and then the

order of the obtained ODE is reduced [2–5,7].

Thesis plan is as follows. In next coming section, some basics terms are defined

for better understanding. In Chapter 2, spectral method, for the solution of DE

is discussed in detail. In Chapter 3, by using similarity transformation, reduc-

tion of a PDE to a non-linear ODE is carried out and then spectral collocation
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method is used for obtaining an approximate solution of the non-linear ODE.

Residuals are used for analyzing the accuracy of the solution. The residual anal-

ysis shows that the obtained approximate closed form solution is a good choice.
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1.1 Basic Definitions

Orthogonality

let h and i are two real-valued functions with respect to the weight function

w(x)>0 defined on the interval (a, b) are called orthogonal if there inner-product

is zero [8], that is

< h, i >=

∫ b

a
h(x)i(x)w(x)dx = 0, whenever h 6= i. (1.1)

For w(x)=1, h and i are said to be simply orthogonal [8].

A polynomial fp(x) of degree p is given as

fp(x) = a0 + a1x+ a2x
2 + .......+ apx

p, ap 6= 0. (1.2)

A sequence of polynomials [fp]∞p=0 is known as orthogonal set of polynomials, if

the polynomials are pairwise orthogonal [8]. Two polynomials fp and fq are two

polynomials they are orthogonal if

< fp, fq >= 0, p 6= q,

and if

< fp, fp >= 1, p = 0, 1, ....

then it is said to be an orthonormal set.

4



Gram Schmidt Process:

Gram-Schmidt process with respect to an inner product is used to construct

for each linearly independent functions a corresponding sequence of orthogonal

functions. [1,9]. Let we have a set of linearly independent functions [ri]ni=1 then

it generates an set of orthogonal functions [si]ni=1 in the following manner.

s1 = r1,

s2 = r2 −
< s1, r2 >

< s1, s1 >
s1,

s3 = r3 −
< s1, r3 >

< s1, s1 >
s1 −

< s2, r3 >

< s2, s2 >
s2,

:

:

sn = rn −
< s1, rn >

< s1, s1 >
s1 −

< s2, rn >

< s2, s2 >
s2,−−−−−−−−,

< sn−1, rn >

< sn−1, sn−1 >
sn−1.

Example:

For generating a set of orthogonal polynomials, we take a linearly independent

sequence (1, x, x2, ....) where (a, b) = (0, 1) with w(x) = 1.

let us take
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s1 = r1 = 1, (1.3)

then we have

s2 = r2 −
< s1, r2 >

< s1, s1 >
s1, = x− < 1, x >

< 1, 1 >
1, (1.4)

since

< 1, x >=

∫ 1

0
xdx = 1/2. and < 1, 1 >=

∫ 1

0
dx = 1. (1.5)

Using Eq. (1.5) in Eq. (1.4), we get

s2 = x− 1/2. (1.6)

Further

s3 = r3 −
< s1, r3 >

< s1, s1 >
s1 −

< s2, r3 >

< s2, s2 >
s2,

= x2 − < 1, x2 >

< 1, 1 >
1− < x− 1/2, x2 >

< x− 1/2, x− 1/2 >
(x− 1/2). (1.7)
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< 1, x2 >=

∫ 1

0
x2dx = 1/3. (1.8)

< x− 1/2, x2 >=

∫ 1

0
x2(x− 1/2)dx = 1/12. (1.9)

< x− 1/2, x− 1/2 >=

∫ 1

0
(x− 1/2)2dx = 1/12. (1.10)

In Eq. (1.7) by substituting all Eq. (1.8) and Eq. (1.9) and Eq. (1.10), we get

s3 = x2 − x+ 1/6. (1.11)

Here we get the polynomials

s1 = 1, s2 = x− 1/2, and s3 = x2 − x+ 1/6. (1.12)

Next, we show that pairs of polynomials in Eq. (1.2) are orthogonal:

< s1, s2 >=< 1, x− 1/2 >=

∫ 1

0
(x− 1/2)dx = 0.

< s1, s3 >=< 1, x2 − x+ 1/6 >=

∫ 1

0
(x2 − x+ 1/6)dx = 0.

< s2, s3 >=< x− 1/2, x2 − x+ 1/6 >=

∫ 1

0
(x− 1/2)(x2 − x+ 1/6)dx = 0.
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Zeros of Orthogonal Polynomials

Theorem: A sequence of orthogonal polynomials [fr(x)]∞r=0 has r distinct zeros

in the interval (p, q) w.r.t the w(x) > 0.

Proof: Let f0 is non-zero constant polynomial. For r > 0, we have

< f0, fr >=

∫ q

p
fr(x)f0w(x)dx, (1.13)

0 = f0

∫ q

p
fr(x)w(x)dx,

∫ q

p
fr(x)w(x)dx = 0. (1.14)

For the interval [p, q] with w(x) > 0, fr(x) change its sign atleast one point

in the given interval. Let us assume that fr(x) changes sign at the points

x1, x2, ....., xk, thus for k ≤ r, fr(x) can have at most r distinct zeros. Let us

suppose that k < r, then the polynomial gk(x) also changes sign at each points

x1, x2, .....xk. [6], where

gk(x) = (x− x1)(x− x2).........(x− xk), (1.15)

Now

< fr(x), gk(x) >=

∫ q

p
fr(x)gk(x)w(x)dx = 0, k < r. (1.16)
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Also gk(x) changes sign at x1 and fr(x) also changes sign at x1 but product of

fr(x)gk(x) does not changes sign in the interval (p, q), similarly for x2, ....., xk,

and ∫ q

p
fr(x)gk(x)w(x)dx 6= 0, (1.17)

which is contradiction and therefore we concluded that k = r. Thus in the

interval (p, q), fr(x) has r distinct real zeros. [6, 9].
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Chapter 2

Spectral Method for Solving Differential
Equation

Spectral methods were first introduced by Lanczos (1938) and later in 1970’s

Orszag introduced spectral methods for solving PDE’s in fluid mechanics (Tre-

fthen 1996) [10]. Orthogonal basis functions are the most crucial component of

spectral methods and it is this very feature that makes them more useful than

the finite-element method and the finite-difference method . The foundation of

these methods are basis functions which are used locally over small sub domains.

The spectral methods take superiority because they use global basis functions

instead of local functions [11,12].

Spectral methods more often exhibit the exponential convergence which yields

the ability of achieving high accuracy or precision with a small number of data

points (spectral accuracy). If the data defining the equation is smooth and on a

single domain, then spectral method is considering the best tool for solving DEs
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to high accuracy [13]. On the other hand it is very difficult for spectral methods

to work with irregular domain as it losses its accuracy and efficiency.

Spectral methods are divided into two sub categories.

1. Non-Interpolating,

2. Collocation.

Tau method and Galerkin methods fall into non-interpolating methods which be-

long to the weighted residual methods. There are no specific collocation points

in these methods. Coefficients can be obtained by using the inner product of

basis functions and unknown functions. In spectral collocation method, a set of

grid points known as collocation points or nodes is choosen. For minimizing the

error, residual must be reduced. Collocation method is a simple choice which

gives accurate results and is recommended when high accuracy is needed.

Basically spectral methods approximates the function (solutions of DEs, PDEs,

etc.) by using truncated series of orthogonal basis functions. A function f(x)

will be approximate by the finite sum where the coefficients an are unknown. [11]

f(x) =

N∑
k=0

akPk(x) (2.1)

Spectral methods are global approximations as the values of the expansion co-

efficients ak influence the function and its derivative for all x.

Suppose we have a two point non-linear boundary value problem defined on
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infinite dimensional space of functions.


L[y(x)] = g, x ∈ (a, b),

y(a) = y(b) = 0,

(2.2)

where L is non-linear differential operator of any specified order.

In spectral collocation method, the above given equation is satisfied by using

the nodes xk of certain grid where k = 1, 2, ..., N − 1, x0 = a, xN = b and the

two boundary conditions are enforced explicitly, in other words


L[yN (xn)]− g(xn) = 0, xn ∈ (a, b),

yN (a) = yN (b) = 0.

(2.3)

Now by using nodes and the two boundary conditions we obtain set of equations

and then this algebraic system of equations is solved for finding the unknown

coefficients an. Spectral methods mainly concern about the selection of basis

functions. These functions should have following properties,

1. Easy computing,

2. Fast convergence,

3. Completeness, meaning that by taking the truncation N to arbitrarily high

accuracy. For non-periodic domains or problems, Chebyshev polynomials (CP)
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and Legendre polynomials are used as suitable orthogonal polynomials for ap-

proximation. Hermite polynomials are used for approximation on real line and

in a semi-infinite domain, Laguerre polynomials are best suited.

Different approaches of spectral methods are used for the solution of DEs over

semi-infinite domain [13]. One direct method is using spectral method along with

orthogonal system like Hermite spectral method and Laguerre spectral method.

Second technique is domain truncation, in which semi-infinite domain [0, L] is

replace by choosing L sufficiently large. One approach for solving problems in

semi infinite domain is rational approximation which is obtained when algebraic

mapping is applied to the Chebyshev polynomials [14].

We have used "Chebyshev polynomials" and "rational Chebyshev functions"

(RCF) in solving our problem through Spectral method, so Chebyshev polyno-

mials and rational Chebyshev functions are discussed in the next given section.
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2.1 Chebyshev Polynomials:

The polynomials Tr(x), r ∈ N are given as

Tr(x) = cos[r cos−1(x)], x ∈ [−1, 1], (2.4)

where Tr(x) denotes the Chebyshev polynomials of first kind (CPF) [9,15,16].

let

x = cos(θ), . (2.5)

θ = cos−1(x), θ ∈ [0, π]. (2.6)

Using Eq. (2.6) and Eq. (2.5) in Eq. (2.4) we transform an algebraic polynomial

into trignometric polynomial as

Tr(x) = cos[rθ], where θ ∈ [0, π]. (2.7)

let we have trignometric identity

Tr+1(x) = cos[(r + 1)θ] = cos[rθ] cos[θ]− sin[rθ] sin[θ]. (2.8)

Tr−1(x) = cos[(r − 1)θ] = cos[rθ] cos[θ] + sin[rθ] sin[θ]. (2.9)

Adding both Eq. (2.8) and Eq. (2.9) we get

Tr+1(x) + Tr−1(x) = 2 cos[rθ] cos[θ], (2.10)
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Tr+1(x) + Tr−1(x) = cos[r cos−1(x)]x, (2.11)

or

Tr+1(x) = cos[r cos−1(x)]x− Tr−1(x), (2.12)

or

Tr+1(x) = 2xTr(x)− Tr−1(x). r > 0. (2.13)

Thus Eq. (2.13) is the three term reccurence relation for CPF [14]. By def (2.1),

T0(x) =1,

then using the recurrence relation Eq. (2.13) we have

T1(x) = x,

T2(x)=2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1.

Chebyshev polynomials are orthogonal with respect to the w(x)=
1√

1− x2
.

Let x = cos(θ), (2.14)

dx = − sin(θ)dθ, dx = −
√

1− x2dθ. (2.15)

Now

< Tg, Th >=

∫ 1

−1
Tg(x)Th(x)

1√
1− x2

dx, (2.16)
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when we use Eq. (2.14) and Eq. (2.15) in Eq. (2.16) it becomes

< Tg, Th >=

∫ π

0
cos(gθ) cos(hθ)dθ. (2.17)

With the use of trigonometric identity,

cos(gθ) cos(hθ) =
1

2
[cos(g + h)θ + cos(g − h)θ)], (2.18)

we have

< Tg, Th >=
1

2

∫ π

0
[cos(g + h)θ + cos(g − h)θ)]dθ.

(2.19)

If h = g.

< Tg, Tg >=
1

2

∫ π

0
cos(2gθ)dθ+

1

2

∫ π

0
cos(0)θdθ,

=
1

2

sin2g

2g
|π0+

1

2

∫ π

0
dθ,

=
1

4g
× [sinπ−sin0]+ 1

2
π,

< Tg, Tg >=
π

2
.

If h 6= g.

< Tg, Th >=
1

2

∫ π

0
cos(g+h)θdθ+

1

2

∫ π

0
cos(g−h)θdθ,

16



=
1

2

sin(g + h)θ

(g + h)
|π0 +

1

2

sin(g − h)θ
(g − h)

|π0 ,

< Tg, Th >= 0.

if h = g = 0.

=
1

2

∫ π

0
cos(0)θdθ +

1

2

∫ π

0
cos(0)θdθ,

< T0, T0 >= π.

In summary, we have

(Tg, Th) =


0, g 6= h,

π
2 , g = h 6= 0,

π, g = h = 0.

(2.20)
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2.1.1 Zeros of Chebyshev Polynomials:

In the interval [-1,1] there are exactly r distinct zeros xp, which are given by

xp = cos

[
(2p+ 1)π

2r

]
, p = 0, 1, 2, ....., r − 1. (2.21)

And there are r + 1 extremas in the interval [-1,1],

xk = cos

(
kπ

r

)
. (2.22)
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2.2 Rational Chebyshev Functions:

By introducing an algebraic mapping to the CPF [14],

y = L

(
x+ 1

1− x

)
, ←→ x =

(
y − L
y + L

)
. (2.23)

Rational Chebyshev functions are defined as

Rr(x) = Tr

[
x− L
x+ L

]
, (2.24)

where Tr(x) is "Chebyshev polynomials" of first kind [14].

L > 0 is a constant map parameter. Varying L may alter the width of the

function without changing their shape.

2.2.1 Reccurence Relation:

Reccurence formula for rational chebyshev function is

Rr+1(x) = 2

(
x− L
x+ L

)
Rr(x)−Rr−1(x). (2.25)

Here by taking L = 1, first few terms are given as [14].

R0(x) = 1,

R1(x) =
x− 1

x+ 1
,

R2(x) =
x2 − 6x+ 1

(x+ 1)2
,
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R3(x) =
x3 − 15x2 + 5x− 1

(x+ 1)3
.

The RCF are orthogonal with respect to w(x) =
1√

x(x+ 1)
and their inner

product is given as

< Rp, Rq >=

∫ ∞
0

Rp(x)Rq(x)
1√

x(x+ 1)
dx =


0, p 6= q,

π
2 , p = q 6= 0,

π, p = q = 0.

(2.26)
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Chapter 3

Approximate solution of Ordinary
Differential Equation.

Mathematically designed models of many physical processes in different subject

area such as wave mechanics, fluid mechanics, diffusion and many more is gov-

erned by non-linear PDEs and generally finding the analytic solution of those

PDEs is very hard. Therefore the approach of reducing PDEs to ordinary dif-

ferential equation is very important which helps us in different physical process.

Thus a powerful technique "Lie-symmetry method" is used for analyzing such

non-linear PDEs and reducing them to the ODEs. By using symmetry method

one can reduce PDE to ODE but in most of the cases the exact solution of those

reduced ODEs is not available. Thus in such type of cases, the reduced ordinary

differential equation can be solved numerically. In the next given section, an ap-

proximation to the numerical solution of reduced ordinary differential equation

is obtained with the help of Spectral method.
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1st step: Reduction of PDE into ODE(s):

By using similarity transformation, if exists, a non-linear PDE can be trans-

formed into an ODE.

2nd step: Numerical solution of the reduced ODE:

When a non-linear PDE is transformed into an ODE solution of that equation

is required.

In the case of a linear ODE, it is not hard to find its solutions but that is gener-

ally very difficult to solve the non-linear ordinary differential equation for exact

solution therefore one looks for the numerical solution.

3rd step: Approximating the numerical solution:

One can also try to find a closed form solution. Idea for finding closed form

solution is to guess a function in order to approximate the numerical solution of

reduced ODE and that guess can be improved untill the desired level of accuracy

is reached.

In the next section, by using above methadology an example of diffusion equa-

tion is solved in order to find the approximate closed form solution.
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3.1 Example

A one dimensional, non-linear PDE that describes the phenomena of gas flow

through a semi infinite porous medium at uniform pressure when t = 0 has been

considered [3], which is given as

∂

∂z

(
P
∂P

∂z

)
= B

∂P

∂t
, (3.1)

where B is constant. The B/C are



P (z, 0) = P0, 0 < z <∞,

P (0, t) = P1(< P0), 0 6 t <∞,

P (∞, t) = P0. 0 < t <∞.

(3.2)

23



using P0 = 1,



P (z, 0) = 1, 0 < z <∞,

P (0, t) = P1(< 1), 0 6 t <∞,

P (∞, t) = 1. 0 < t <∞.

(3.3)

3.1.1 Reduction of PDE to ODE

Taking the following transformations derived in [2]

x =
z√
t

√
B

4
, (3.4)

and

y = α−1(1− P 2), (3.5)
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where

α = 1− P12.

From Eq. (3.5), we have

P =
√

1− αy. (3.6)

The partial derivative of the Eq. (3.4) w.r.t. "z" and also with "t", gives us

∂x

∂z
=

1√
t

√
B

4
, (3.7)

and

∂x

∂t
=
−z
2t3/2

√
B

4
. (3.8)

The derivative of Eq. (3.6) w.r.t. ”t” gives

∂P

∂t
=

αz
√
B

8t3/2
√
1− αy

dy

dx
, (3.9)
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and by taking the derivative of Eq. (3.6) w.r.t. ”z” gives

∂P

∂z
=

−α
√
B

4
√
t
√
1− αy

dy

dx
. (3.10)

When Eq. (3.6), Eq. (3.9) and Eq. (3.10) are substituted in Eq. (3.1), we get

y′′ +
2x√
1− αy

y′ = 0, (3.11)

where derivatives are with respect to x. The boundary conditions are now trans-

formed into


y = 1, at x = 0,

y = 0. when x→∞.
(3.12)
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3.1.2 Numerical solution of the non-linear ODE

By using similarity transformation, PDE given by Eq. (3.1) is transformed into a

non-linear ODE but finding its exact solution is very hard. Therefore NDSolve

in Mathematica is used for solving the non-linear ODE numerically given by the

Eq. (3.11). Graph of numerical solution for α = 0.22471722182 is presented in

Figure 3.1.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: "Numerical solution of the reduced ordinary differential equation".
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3.1.3 Approximation of the Reduced ODE using Spectral Method:

We used a function f(x) for approximating the solution of the non-linear ODE

which can be seen in Figure (3.1), given as:

f(x) =

N∑
r=0

mrRr(x), (3.13)

here Rr(x) are rational Chebyshev functions. Expanding the above function

f(x) for N = 11, Eq. (3.13) is written as

f(x) = y11(x) =

11∑
r=0

mrRr(xr). (3.14)

f(x) = m0R0(x) +m1R1(x) +m2R2(x) + ......+m11R11(x). (3.15)

Now by using the values of RCF in Eq. (3.15), where the first few terms are

given in from section 2.2. We get the following equation

28



f(x) = m0 +m1(
x− 1

1 + x
) +m2(

x2 − 6x+ 1

(1 + x)2
) +m3(

x3 − 15x2 + 15x− 1

(1 + x)3
) +m4(

x4 − 28x3 + 70x2 − 28x+ 1

(1 + x)4
)+

m5(
x5 − 45x4 + 210x3 − 210x2 + 45x− 1

(1 + x)5
) +m6(

x6 − 66x5 + 495x4 − 924x3 + 495x2 − 66x+ 1

(1 + x)6
)+

m7(
x7 − 91x6 + 1001x5 − 3003x4 + 3003x3 − 1001x2 + 91x− 1

(1 + x)7
)+

m8(
x8 − 120x7 + 1820x6 − 8008x5 + 12870x4 − 8008x3 + 1820x2 − 120x+ 1

(1 + x)8
)+

m9(
x9 − 153x8 + 3060x7 − 18564x6 + 43758x5 − 43758x4 + 18564x3 − 3060x2 + 153x− 1

(1 + x)9
)+

m10(
x10 − 190x9 + 4845x8 − 38760x7 + 125970x6 − 184756x5 + 125970x4 − 38760x3 + 4845x2 − 190x+ 1

(1 + x)10
)+

m11(
x11 − 231x10 + 7315x9 − 74613x8 + 319770x7 − 646646x6 + 646646x5 − 319770x4 + 74613x3 − 7315x2 + 231x− 1

(1 + x)11
)

231x− 1

(1 + x)11
)

(3.16)

With the use of linear transformation, the differential equation on any arbitrary

domain can be converted to [-1,1]. Thus in order to find the zeros of rational

Chebyshev functions, we have

xl =

[
(b+ a) + (b− a)xp

2

]
. (3.17)

Here xl denote the lth zero called the collocation points and by using this Eq.

(3.17) we can get collocation points of 11th rational chebyshev functions R11(x),

which are given as
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x0 = −0.991445, x1 = −0.92388, x2 = −0.793353,

x3 = −0.608761, x4 = −0.382683, x5 = −0.130526,

x6 = 0.130526, x7 = 0.382683, x8 = 0.608761,

x9 = 0.793353, x10 = 0.92388, x11 = 0.991445.

By using the boundary conditions from Eq. (3.12) in Eq. (3.16), we get two

equations and ten more equations can be obtained by taking the residual zero

at these collocations points x1, x2, x3, ......, x12. On further by solving this

algebraic system of 11 equations simultaneously in mathematica, we acquire

the values of the coefficients m0,m1,m2, .....,m11.

m0 = 0.364362, m1 = −0.539632, m2 = 0.164749,

m3 = 0.0467228, m4 = −0.0379996, m5 = −0.012027,

m6 = 0.0105087, m7 = 0.00582588, m8 = −0.0020889,

m9 = −0.00213712, m10 = 0.000469001, m11 = 0.00124698.

By substituting the values of these given coefficients in Eq. (3.16) and on

further simplification, we get the approximate solution of the reduced ODE

given as

30



f(x) =
1 + 10.0018x+ 37.1589x2 + 163.064x3 − 174.317x4 + 892.673x5 − 941.741x6

(1 + x)11

+386.694x7 − 77.1672x8 + 7.23166x9 − 0.371938x10 − 5.59448 ∗ 10−17x11

(1 + x)11
.

(3.18)

The graph of approximate solution is shown in Figure 3.2.
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Figure 3.2: Graph of approximate closed form solution

Figure 3.3. gives the approximate and the numerical solutions together. Notice

that the approximate closed form solution matches quite well with the

numerical solution.
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Figure 3.3: Graph of approximate and numerical solutions. Solid line gives numerical solution
while red dashed line represents approximate soution.

3.1.4 Residual Analysis of ODE

The residual of the reduced non-linear ODE given by Eq. (3.11) can be

obtained with respect to the approximate closed-form solution f(x) Eq. (3.18),

as

R =
f

′′
(x) + 2xf

′
(x)√

1− (0.22471721)f(x).
(3.19)
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Here first we have to find f
′
, f

′′
. Differentiation gives us,

f
′
(x) =

−0.998159− 25.7005x+ 154.761x2 − 2001.78x3 + 5683.58x4 − 11006.5x5

(1 + x)12

+7415.57x6 − 2164.11x7 + 296.587x8 − 18.1827x9 + 0.371938x10,

(1 + x)12

(3.20)

and

f
′′
(x) =

−13.7226 + 592.227x− 7552.94x2 + 40750.3x3 − 100501.0x4 + 121539.0x5−
(1 + x)13

59642.2x6 + 13193.3x7 − 1349.99x8 + 58.2675x9 − 0.743877x10.

(1 + x)13

(3.21)

When Eq. (3.18), with Eq. (3.20) along with Eq. (3.21) is used in Eq. (3.19),

we get residual equation. The graph of residual is given in Figure 3.4.
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Figure 3.4: Graph of the residual.

In figure 3.4, our approximation does not give good result in the start as the

curve show fluctuations but later on we can see that it become more stable and

closely matches with the exact solution.
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Chapter 4

Conclusion

The purpose of this thesis was the construction of an approximate closed form

solution of a non-linear ODE on semi-infinite interval. In order to achieve this

goal, spectral collocation method using rational Chebyshev function is

employed. We also obtained the numerical solution of the non-linear ODE.

Residual is used in order to analyze the accuracy of approximate closed-form

solution, which shows that our approximation is a good choice of exact

solution. The maximum absolute error observed for approximate closed form

solution of non-linear ODE is very small and it is found that the given

approximate closed-form solution closely matches with the numerical solution.
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