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Abstract

In this dissertation the accelerated expansion of the Universe and its causes are discussed.

It is thought that dark energy is responsible for the negative pressure which results in the

cosmic accelerated expansion. Various candidates of dark energy including the cosmological

constant, scalar fields, the Chaplygin gas, holographic dark energy and Ricci dark energy

models are discussed in detail.

In the first chapter a brief review of some basic concepts of differential geometry is given

then an introduction of the Einstein field equations and their derivation is included and at

the end some basic concepts of cosmology are discussed.

The second chapter contains the introduction of dark energy then its candidates are intro-

duced. Furthermore, holographic dark energy and some of its versions, including the entropy

corrected and power law entropy corrected holographic dark energy models are reviewed in

the remaining part.

In the third chapter we have extended the work of a recently proposed model of Ricci en-

tropy corrected holographic dark energy. In particular, the model Ricci Power Law Entropy

Corrected Holographic Dark Energy is proposed. Also the dynamics of some scalar fields cor-

responding to this model are studied.

The dissertation is concluded in the last chapter and some further lines to extend the work

are presented.



Chapter 1

Introduction

The expansion of the Universe is an interesting phenomenon in cosmology. The observations

of Edwin Hubble opened new ways of thinking about the origin and the evolution of the

Universe. By extending the observed rate of the speedily moving apart galaxies, backward in

time, the big bang theory originated.

In 1905 Albert Einstein showed that all inertial frames are equivalent and the speed of

light is constant in every inertial frame. Later he extended these postulates to non inertial

frames as well. In 1915 he published a set of differential equations known as the Einstein field

equations (EFEs). These equations relate the bending or curvature of the spacetime with

the presence of mass, energy and momentum. These quantities are collectively called stress

energy or mass energy density. Einstein believed that the Universe is static and to balance

the gravitational pull he added a cosmological constant to the field equations.

After the discovery of the expanding Universe by Hubble, Einstein dropped the cosmo-

logical constant from the EFEs calling it the biggest blunder of his career. Later in early

1980s while studying the accelerated expansion of the Universe, the cosmological constant

re-entered the EFEs, but this time in the sense of dark energy: a mysterious type of energy

causing this accelerating expansion [1]. After the experimental acceptance of the Einstein

theory of relativity it was used as the standard theory of gravitation. Since gravitation is

a universal effect on all kinds of energy and matter, it is important in cosmology and has a

dominant role in neutron stars, black holes etc. The evolutionary equations of cosmology are

derived with the help of EFEs.
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To overcome some other problems in cosmology, particularly the horizon and flatness

problems the (important) idea of inflationary cosmology was introduced by Alan Guth in

1980 and later by Katsukiko Sato and Andrei Linde [2]. This hypothesis is about the rapid,

exponential expansion of the Universe caused by the vacuum energy density. The vacuum

energy density, or dark energy, has become the most important issue under discussion in this

century.

The remaining part of this chapter consists of the derivation of the EFEs by using the vari-

ational principle, the derivation of evolutionary equations of the standard cosmological model

based on the Friedmann-Robertson-Walker (FRW) metric and some problems in cosmology

with their possible solutions in the form of inflationary cosmology.

Throughout the dissertation the signature of the metric is (−,+,+,+), unless stated

otherwise. The Planck mass and the reduced Planck mass are represented by mpl = (
√

G)−1

and Mpl = (
√

8πG)−1 respectively, here G is Newton’s gravitational constant and we have

taken c = ~ (= h
2π ) = 1. c is the speed of light and h the Planck’s constant. These constants

are related as κ2 = 8πG = 8πm−2
pl = M−2

pl .

Since differential geometry is the tool for deriving the EFEs so the basic concepts of

differential geometry are reviewed first.

1.1 Review of Differential Geometry

This review has been restricted to the formulations which are important in the study of gen-

eral relativity. Supposing that reader has basic knowledge of vectors and tensors, we have not

included the basics in this dissertation. A discussion of the metric tensor, curvature tensor

and other related tensors and some techniques including covariant derivative and affine con-

nections is given in this section.

1.1.1 Minkowski Space and the Metric Tensor

Minkowski space or Minkowski spacetime is a flat four dimensional manifold having three

ordinary dimensions of space combined with a single dimension of time. Individual points
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inside a Minkowski spacetime are known as events. An event is represented by a vector

having three spatial coordinates and one time coordinate. Such vectors are known as four

vectors.

Consider any two events A and B in Minkoski spacetime with coordinates (tA, xA, yA, zA)

and (tB, xB, yB, zB) respectively. The distance between these two events denoted by ds2 is

defined as

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.1)

This is known as the line element of Minkoski spacetime. and it is an invariant second rank

tensor. Depending on the sign of ds2 the interval separating any two events can be categorized

in three types:

timelike if ds2 < 0,

spacelike if ds2 > 0,

lightlike or null if ds2 = 0. (1.2)

Physically it means that if the interval between two events say A and B is timelike then an

inertial frame can be found in which the events occur at the same spatial coordinate. For the

spacelike interval we can find an inertial frame in which the events occur at the same time

coordinate. Eq. (1.1) can be written as

ds2 = gαβdxαdxβ , α, β=0,1,2,3

= g00dx0dx0 + gijdxidxj , i, j=1,2,3, (1.3)

where dx0 and dxi are its time and spatial components respectively.

In Eq. (1.1) g00 = −c2, g11 = g22 = g33 = 1. Here g is a position dependent, non

degenerate able second rank covariant symmetric tensor called the metric tensor. It maps any

two vectors u and v into R [5] i.e.

g(u,v) = gabu
avb

= u.v (1.4)
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1.1.2 Covariant Differentiation

The partial derivatives of a tensor of rank one or higher are not tensor. To reserve the

invariance of the derivatives more complex rule of differentiation is used, known as covariant

differentiation. In this process there is a guarantee for the obtained result, to ba a tensor,

satisfying the condition of invariance under the coordinate transformation.

The covariant derivative of a contravariant vector V is given by

V a
;c = V a

,c + Γa
bcV

b. (1.5)

It is denoted by a semicolon below the corresponding vector. Similarly the covariant derivative

of a one-form Va can be written as [5],

Va;b = Va,b − Γc
abVc, (1.6)

and for a mixed tensor it is

V a
b;d = V a

b,d + Γa
cdV

c
b − Γc

bdV
a
c , (1.7)

and the covariant derivative of a second rank tensor Aab;c is

Aab;c = Aab,c − Γd
acAdb − Γd

bcAad. (1.8)

Here Γe
bd is the christoffel symbol and its expression in terms of partial derivatives of the

components of metric tensor is as follow

Γe
bd =

1
2
gae(gab,d + gad,b − gbd,a). (1.9)

Furthermore, the covariant derivative of a metric tensor is zero.

gac;b = 0, (1.10)

1.1.3 The Curvature Tensor

The curvature tensor Ra
bcd is constructed out of a metric and its first and second derivatives.

It is also called the Riemann tensor [5] and is related to the curvature of a manifold. Here

Ra
bcd = Γa

bd,c − Γa
bc,d + Γe

bdΓ
a
ec − Γe

bcΓ
a
ed. (1.11)
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It can be proved very easily that Ra
bcd = 0 is a necessary and sufficient condition for a manifold

to be flat. The Riemann tensor Ra
bcd can also be written as

Rabcd = gaeR
e
bcd. (1.12)

It satisfies the following identity, known as the first Bianchi identity [5].

Ra
bcd + Ra

cdb + Ra
dbc = 0. (1.13)

The covariant derivative of Rabcd also satisfies the identity

Rabcd;e + Rabde;c + Rabec;d = 0, (1.14)

which is called the second Bianchi identity.

The Ricci Tensor: By contracting Ra
bcd of the first and third indices a new symmetric tensor

called the Ricci tensor is obtained [5] i.e.

Rab = Rc
acb. (1.15)

Also

Rc
cab = 0. (1.16)

Rc
abc = −Rab (1.17)

The Ricci Scalar: Contracting Rab with gab one gets a scalar ‘R’, known as the Ricci scalar

[5],

gabRab = R. (1.18)

1.2 Einstein’s Theory of General Relativity as a Foundation of
Cosmology

The EFEs are required to understand the evolutionary behavior of the Universe. Before

studying cosmology it is necessary to understand the basic components of these equations.
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1.2.1 The Einstein Tensor

There is a very important tensor obtained from a unique combination of Ricci tensor and the

curvature tensor, known as the Einstein tensor. It is a symmetric and divergence free tensor,

used by Einstein in developing the gravitational field equations.

We start from the second Bianchi Identity, contracting Eq. (1.14) with gab and using the fact

that gac
; e = 0 from Eq. (1.10) one gets

Rbd; e + Rc
bde;c −Rbe;d = 0. (1.19)

Contracting again the above obtained equation with gbd we get

(Red − 1
2
gedR);d = 0. (1.20)

Where Red− 1
2gedR can be replaced by a special tensor Ged, called the Einstein tensor [5], i.e.

Ged = Red − 1
2
gedR. (1.21)

This tensor specifies the geometric properties of a spacetime.

1.2.2 The Energy Momentum Tensor (EMT)

The energy momentum tensor (EMT) is the second most important tensor used in the EFEs

describing the density and flux of energy and momentum in the spacetime. It plays an

important role as a source of the gravitational field, just as mass is responsible for this field in

Newtonian physics. EMT is a second rank, symmetric tensor, describing matter and energy

distribution at each point of the spacetime. For the derivation of EMTs, the Lagrangian for

matter and energy is used. The action integral is given by

IM =
1
2κ

∫
LM
√
−gd4x. (1.22)

Here κ is constant and LM represent the Lagrangian density for all the fields except the

gravitational field[6]. Using the variation principle, δI = 0, in particular

δIM = 0, (1.23)
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one can derive the result. As LM is a function of metric and its first derivative only, therefore,

varying the action with respect to gµν and its derivative

δIM =
∫

δ(LM
√
−g)dx4

=
∫

∂(LM
√
−g)

∂gµν
δgµνdx4 +

∫
∂(LM

√
−g)

∂gµν
,λ

δgµν
,λdx4. (1.24)

But we know that[∂(LM
√
−g)

∂gµν
,λ

δgµν
]
,λ

=
[∂(LM

√
−g)

∂gµν
,λ

]
,λ

δgµν +
∂(LM

√
−g)

∂gµν
,λ

δgµν
,λ,

or

∂(LM
√
−g)

∂gµν
,λ

δgµν
,λ = [

∂(LM
√
−g)

∂gµν
,λ

δgµν ] ,λ − [
∂(LM

√
−g)

∂gµν
,λ

],λδgµν . (1.25)

Using Eq. (1.25) in Eq. (1.24), one gets

δIM =
∫

∂(LM
√
−g)

∂gµν
δgµνdx4 +

∫
[
∂(LM

√
−g)

∂gµν
,λ

δgµν ] ,λdx4

−
∫

[
∂(LM

√
−g)

∂gµν
,λ

],λδgµνdx4. (1.26)

Last term is negligible by Gauss divergence theorem so

δIM =
∫ (

∂(LM
√
−g)

∂gµν
− [

∂(LM
√
−g)

∂gµν
,λ

],λ

)
δgµνdx4

= −1
2

∫
− 2√

−g

(
∂(LM

√
−g)

∂gµν
− [

∂(LM
√
−g)

∂gµν
,λ

],λ

)
√
−gδgµνdx4. (1.27)

The EMT, Tµν , is defined by

Tµν = − 2√
−g

(
∂(LM

√
−g)

∂gµν
− [

∂(LM
√
−g)

∂gµν
,λ

],λ

)
. (1.28)

Using the Eq. (1.28) in Eq. (1.27), it becomes

δIM = −1
2

∫
Tµν
√
−gδgµνdx4. (1.29)

The EMT for a frictionless fluid, in thermal equilibrium, described by the energy density ρo

and pressure p reduces to the form [5],

Tµν = (ρo + p)uµuν − pgµν , (1.30)

here uµ is the four velocity of the fluid. And

Tµν
;ν = o, (1.31)
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1.2.3 The Einstein Field Equations (EFEs)

Einstein’s theory of general relativity is based on the fact that we are living in a 4 dimensional

space. Einstein related the mass and energy of each point in this space with the help of some

useful equations, known as EFEs. These equations describe the geometry and the structure

of the space. Using the action integral IG for the gravitational field [6],

IG =
1
2κ

∫
LG(gµν)

√
−gd4x, (1.32)

these equations can be derived. The field Lagrangian is

LG = R− 2Λ, (1.33)

here Λ is called the cosmological constant and it is a dimensional parameter with units of

(length)−2. Using this Lagrangian in Eq. (1.32) one gets

IG =
1
2κ

∫
(R− 2Λ)

√
−gd4x

=
1
2κ

∫
(gµνRµν − 2Λ)

√
−gd4x

=
1
2κ

∫
(gµνRµν

√
−g − 2Λ

√
−g)d4x. (1.34)

By the least action principle we know that δI = 0 i.e.

δIG =
1
2κ

∫ (
gµνδRµν

√
−g + Rµνδ[gµν√−g]− 2Λδ

√
−g
)
d4x = 0. (1.35)

Consider a small volume element V such that on its boundary the variation of the metric and

its first derivative are zero. Now introducing local coordinate system in this volume element

V , we get Γµ
νγ = 0. So in such a frame the components of the Ricci tensor are

Rµν = Γλ
µν,λ − Γλ

µλ,ν ,

and

δRµν = δΓλ
µν,λ − δΓλ

µλ,ν

= (δΓλ
µν),λ − (δΓλ

µλ),ν . (1.36)
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In our proposed frame gµν,λ = 0, therefore

gµνδRµν = (gµνδΓλ
µν − gµλνΓν

µν),λ. (1.37)

Integrating over the volume element i.e.∫
gµνδRµν

√
−gd4x =

∫
(gµνδΓλ

µν − gµλνΓb
µν),λ

√
−gd4x, (1.38)

only boundary term of the integral on the right hand side of Eq. (1.38) will contribute. Since

the metric and its derivative vanish at the boundary of V , therefore∫
(gµν√−gδRµν)d4x = 0. (1.39)

Using Eq. (1.39) in Eq. (1.35) gives

δIG =
1
2κ

∫
(Rµνδ[gµν√−g]− 2Λδ

√
−g)d4x = 0. (1.40)

Now

δ
√
−g =

∂
√
−g

∂gµν
δgµν =

−1
2
√
−g

(
∂g

∂gµν
)δgµν . (1.41)

But

g =
∑

µ

gµνCofac(gµν) =
Cofac(gµν)

gµν
, (1.42)

where Cofac(gµν) is the cofactor matrix of the element gµν in the matrix made of the compo-

nents of the metric tensor, differentiating Eq. (1.42) with gµν , we get

∂g

∂gµν
= Cofac(gµν) = ggµν . (1.43)

Using Eq. (1.43) in Eq. (1.41) we get

δ
√
−g =

1
2
√
−ggµνδgµν . (1.44)

To calculate δgµν , we have

gγµgµν = δγ
ν ,

δ(gγµgµν) = 0, (1.45)

gγµδgµν = −gµνδg
γµ, (1.46)

δgµν = −gµγgνδδg
γδ. (1.47)
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Using Eq. (1.46) in Eq. (1.44), to get

δ
√
−g = −1

2
√
−ggµνδg

µν . (1.48)

Now

δ(gµν√−g) =
√
−gδgµν + gµνδ

√
−g. (1.49)

By substituting Eq. (1.48) in Eq. (1.49), it becomes

δ(gµν√−g) =
√
−g

(
δgµν − 1

2
gµνgµνδg

µν

)
. (1.50)

Putting Eq. (1.48) and Eq. (1.50) in Eq. (1.40), we have

δIG =
1
2κ

∫ √
−g

(
Rµν −

1
2
Rgµν + Λgµν

)
δgµνd4x = 0. (1.51)

This is true only if

Rµν −
1
2
Rgµν + Λgµν = 0, (1.52)

which are the required vacuum Einstein field equations. To obtain the full version of EFEs

we consider that there are other fields present beside the gravitational field. These fields can

be described by an appropriate Lagrangian density LM . The action integral for this case is

[6],

I =
1
2κ

∫
(LG + LM )

√
−gd4x

=
1
2κ

∫
LG
√
−gd4x +

1
2κ

∫
LM
√
−gd4x

= IG + IM , (1.53)

the expressions for IM and IG are given in Eq. (1.22) and Eq. (1.32), Inserting Eq. (1.51)

and Eq. (1.29) in the variational principle δI = δIG + δIM = 0, we get

δI = −1
2

∫ (
Rµν −

1
2
Rgµν + Λgµν − κTµν

)√
−gδgµνdx4 = 0. (1.54)

It is true only if

Rµν −
1
2
Rgµν + Λgµν = κTµν , (1.55)

10



which are the required EFEs in the presence of matter. These are 16 coupled highly nonlinear

partial differential equations. Using the symmetry of Gµν and Tµν the number of equations

reduces to 10. These equations show the principle that matter tells spacetime how to curve,

and curved space tells matter how to move, (John Wheeler, University of taxes at Austin).

The curve of the space is clear from the L.H.S of Eq. (1.55) and the R.H.S explains the

location and motion of the matter.

1.3 Basics of Cosmology

Cosmology is the study of the Universe, unlike atomic physics it is the study of the large-scale

structure of the Universe and deals with the evolution of these structures over long periods of

time. The origin of the Universe, the stages through which our Universe passed to arrive at

its present form and its future are studied in this field. When we look at the large scale the

matter distribution is very uniform. There is evidence showing that the Universe is isotropic

on the large scale to high accuracy for example the Cosmic Microwave Background (CMB)

radiation, to be discussed later.

1.3.1 Preliminaries

Here are some very fundamental definitions required for our purpose [1].

1. Red Shift: The term red shift is used to describe the situation when an astronomical

object is observed moving away from the observer. The light coming from the object

that is moving away is increased in wavelength and it shifts to the red part of spectrum.

We denote it by z given by z = (λ1−λo)/(λ0), here λo and λ1 are emitted and observed

wavelengths of the radiation.

2. Hubble Law: It is the direct correlation between the distance to a galaxy and its

recessional velocity as determined by the red shift. Mathematically, it is written as:

V = Hor here V , Ho and, r are the recessional speed of the galaxy, Hubble constant

and the distance of the galaxy from the observer respectively. Hubble constant is used to

estimate the size and age of the Universe. Currently its value, measured by the WMAP

survey, is 71km/s/Mpc. Another way of defining the Hubble constant is to emphasize
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on the fact that the space itself is expanding, then H = ˙a(t)/a(t)= ratio of the rate of

change of the scale factor a(t), to the current value of the scale factor.

3. Deceleration parameter: It is the measure of how fast the cosmological expansion is

speeding up or slowing down and is denoted by qo. A positive value of the deceleration

parameter implies that the Universe is slowing down, if it is zero it means the Universe

is expanding at a constant speed, and a negative value means it is accelerating.

4. Equation of State (EoS): Equation of state is a formula that provides the connection

between various macroscopic properties of the system. The EoS of a perfect fluid is given

by p = ωρ , it is characterized by a dimensionless number ω, called EoS parameter. Here

p and ρ are the pressure and density of the fluid respectively.

5. Cosmological Principle: Cosmological principle is the hypothesis that the Universe

is spatially homogeneous and isotropic, i.e. at any particular time, the Universe looks

the same in all directions from all positions in space. The homogeneity and the isotropy

of the Universe does not apply to the Universe in general, but only to a smeared out

Universe i.e. over the cells of very large diameter including galaxies, clusters and super

clusters etc .

1.3.2 A Brief History of the Universe

Our Universe is estimated to be 13.7 billion years old. Initially it was supposed that the

Universe is static, with no beginning, no end and unchanging. But now research has proved

that we are living in a dynamical Universe. The Big Bang model is the standard model

scientifically for explaining the origin of every thing. For all practical purposes we consider

the Big Bang as the beginning of every thing. The Big Bang model has its beginning with the

Hubble Law discovery in 1929. If the Universe is currently expanding then by running time

backwards we conclude that the Universe must have been like a point in the past. So a long

time ago all matter and energy existed in an infinitely small point of infinite density and has

been expanding as our Universe. Since the Big Bang was not an explosion in the Universe, it

was an explosion of the Universe, so it has no center from where the Big Bang started. The

Planck epoch: when the Universe was 10−43sec old, i.e. at t = 10−43sec it was 1032K hot.
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Electrons did not exist at this age, this age is studied by the quantum cosmologists. It was

radiation dominated era. When it was 10−35sec old, it cooled by a factor of 104 to 1028K.

Now the subatomic particles were able to be generated and survive. At t = 10−35sec, there

occurred a rapid expansion called inflation. When it has been in existence for 1sec , it had

cooled to 1010K(100 times hotter than the sun core). When it was a few minutes old the

temperature had dropped to 109K and light atoms like H and He could form. Initially it

was radiation dominated, then at t = 44, 000 yrs transition from the radiation dominated

Universe to a dust dominated model occurred. The dynamics of the Universe was studied by

matter and vacuum energy at that time. At t = 400, 000 yrs radiations cooled down and it did

not have enough energy to keep the atoms ionized. When free electrons do not have enough

energy to overcome the attraction, they get bound to the nuclei and form a neutral atom.

So the photons moved freely as there were no free electrons to cause the Compton scattering.

Thus the Universe became essentially transparent. This time is called the recombination

era. These photons make out the cosmic microwave background (CMB) radiations. These

radiations emitted after approximately 300, 000 years after the Big Bang. The formation of

stars came to being when the Universe continued to cool and expand. The gigantic clouds of

atoms formed a filament like network throughout the Universe, inside these clouds the first

stars formed. After the generation of the stars the Universe started to look much the same

as it is today.

1.3.3 The Cosmic Microwave Background Radiation

There is whelming evidence the Big Bang. In 1964 the existence of the CMB radiations

was predicted by Penzias and Wilson [7]. They noticed that a Dicke radio meter used for

satellite communication experiments, had an excess of temperature3.5K which they could

not account for. Later observations lower the estimate to about 2.72548 ± 0.0005K. It lies

primarily in the microwave portion of the electromagnetic spectrum and is invisible to the

naked eye. But it fills the Universe and can be detected every where and its distribution is

uniform. This uniformity is one compelling reason to interpret the radiation as the remnant

heat from the Big Bang, because it would be very difficult to imagine a local source of such

uniform radiation. As it is believed that CMB radiation was emitted 13.7 billion years ago,
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only a 105years after the Big Bang so it has traveled over such a long distance. By studying

the detailed properties of these radiations we learn about the conditions of very early stages

of the Universe at very early times.

1.3.4 The Components of the Cosmological Fluid

In general the Universe is assumed to contain both matter and radiations and a non zero

cosmological constant (Λ). Thus the cosmological fluid consist of three components namely

matter, radiation, and the vacuum energy (because the modern interpretation of Λ is in terms

of energy density of the vacuum). Each component has a different EoS. The total mass density

of the Universe is simply the sum of the individual contributions

ρ(t) = ρm(t) + ρr(t) + ρΛ(t), (1.56)

where t is the cosmic time. Although matter and radiation interacted in the early Universe

but in this chapter we shall assume that these components do not interact (unless stated

otherwise). Each component of the cosmological fluid is modeled as a perfect fluid with EoS

of the form pi = ωiρi, for pressureless dust ω = 0, for radiation ω = 1/3, and for vacuum

ω = −1. There have been many proposed models for the Universe like, Lamda-CDM, deSitter

model and some others. But we will discuss only the most accepted and the best model for

the observable Universe, the Friedmann-Robertson-Walker (FRW) model.

1.3.5 Friedmann-Robertson-Walker (FRW) Universe

As discussed earlier, the EFEs are used to describe the dynamics of the Universe. The

equations are very complicated and non-linear, but by making the assumptions of homogeneity

and isotropy the FRW Universe is obtained. The FRW metric is given by [8]

ds2 = −dt2 + a2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.57)

where a(t) is the scale factor that determines the scale of the expansion of the Universe. k

measures the spatial curvature, its value can be k > 0, k = 0 or k < 0. For k > 0 the curvature

of the spatial surfaces is a positive constant and are usually called closed models. For k = 0

the spatial surfaces have zero curvature and are called flat models, lastly for k < 0 the spatial
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surfaces have constant negative curvature and are called open models.It is convenient to write

Eq. (1.57) in the following

ds2 = −dt2 + a2(t)[dχ2 + f2
k (χ)(dθ2 + sin2 θdφ2)], (1.58)

where

fk(χ) =


sin−1 χ k = +1
χ k = 0
sinhχ k = −1.

(1.59)

In the background of the FRW Universe, the components of the Ricci tensor are obtained as:

R0
0 = 3

ä

a
, (1.60)

Ri
j =

( ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)
δi
j , (1.61)

while the Ricci scalar is

R = 6
( ä

a
+

ȧ2

a2
+

k

a2

)
, (1.62)

where ȧ denotes the derivative with respect to t. Considering the perfect fluid approximation

for the source of energy momentum tensor in the FRW spacetime, from Eq. (1.30), we can

write

Tµ
ν = (ρ + p)uµuν − pδµ

ν , (1.63)

or

Tµ
ν = diag(−ρ, p, p, p). (1.64)

Here ρ and p are the density and pressure of all the species present in the Universe at a specific

epoch.

The purpose of including Λ in the equation was to explain the static model of the Uni-

verse: the negative pressure induced by the cosmological constant could balance the equal

gravitational pull of the matter without disturbing the spherically symmetric distribution of

matter. Using Eq. (1.55), without Λ, and replacing κ by 8πG we can obtain

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.65)

ä

a
= −4πG

3
(ρ + 3p). (1.66)
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Here H is the Hubble parameter. Since the energy momentum tensor is preserved by virtue of

Bianchi identities, Tµν
;ν = 0, we have the equation of continuity (energy conservation equation)

for the FRW Universe

ρ̇ + 3H(ρ + p) = 0. (1.67)

This equation can be derived by using Eqs. (1.65) and (1.66), so two of the Eqs. (1.65)-(1.67)

are independent. By using the expression of dimensionless density parameter Ω = ρ/ρcr, Eq.

(1.65) can be written as

Ω− 1 =
k

(aH)2
, (1.68)

here

ρcr = 3H2/8πG, (1.69)

is the critical density, the average density of spacetime required for the flat Universe, and its

value is approximately 2× 10−26 kg/m3. The spatial geometry of the Universe is determined

by the matter distribution, i.e.

Ω > 1 or ρ > ρc ⇔ k = +1, (1.70)

Ω = 1 or ρ = ρc ⇔ k = 0, (1.71)

Ω < 1 or ρ < ρc ⇔ k = −1. (1.72)

As mentioned earlier, from Eqs. (1.65)-(1.67) two equations are independent in three depen-

dent variables p, ρ and a(t). So to solve these equations we need one more equation relating

pressure and density, commonly this equation is called equation of state (EoS). Now we shall

consider the evolution of the Universe filled with a perfect fluid. The observations show that

our Universe is spatially flat, so we shall consider k = 0 from here to onwards unless otherwise

stated.

Solving the EFEs. (1.65) and (1.67) with EoS, one gets

H =
1

3(1 + ω)(t− to)
, (1.73)

a(t) = ao(t− to)
2

3(1+ω) , (1.74)

ρ = ρoa
−3(1+ω). (1.75)
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Figure 1.1: Evolution of a Friedmann Universe (scale factor vs time) for different
choices of curvature parameter k

Using the values for the EoS parameters of radiation and dust dominated Universe, the above

equations reduce to

Radiation : a(t) ∝ (t− to)1/2, ρ ∝ a−4, (1.76)

Dust : a(t) ∝ (t− to)2/3, ρ ∝ a−3. (1.77)

These are evolutionary equations of the Universe.

1.3.6 Some Problems in Cosmology

Although the modern cosmology has explained various aspects of the Universe successfully. It

has effectively explained the origin of light chemical elements, formation of structures (galax-

ies and galaxy clusters) and the black body spectrum of CMB radiation etc. But there are

still some challenging open problems in cosmology, like the Horizon problem, the Flatness

problem and the Monopole problem. The details of the first two problems will be discussed in

the next subsection. Restricting to the definition of the Monopole problem it can be stated

as Some cosmologists predict that in the early Universe a very large number of heavy, stable

magnetic monopoles should have been produced. But still these are not observed, and even if
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they are discovered, definitely they will be in a minor amount. The details of this problem

are not included.

The Horizon Problem:

Thermal radiation emitted from opposite directions of the sky seem to be at the same temper-

ature. This extreme isotropy of the CMB radiation is the origin of the horizon problem. There

is an explanation required for the cause of this interesting observation. It can be explained in

the way that the Universe has indeed reached a state of thermal equilibrium by interactions

between its different parts in the past, but it is not possible in the Big Bang theory, even if

these regions are separated by 1o on the CMB radiation sky. So the problem is to explain

how the regions which have not been in causal contact have nevertheless thermalized to give

the same background temperature with an accuracy of ≤ 10−4. The particle horizon of each

photon in the last scattering surface covers only a small patch of the sky and at the time of

decoupling its volume (Vph)d can be determined as

(Vph)d =
(

td
to

)3

Vo, (1.78)

where td and to are the time of decoupling and the present time respectively, and Vo is the

current horizon volume. The radiation and everything else inside the (Vph)d had been in

thermal contact and in thermal equilibrium because of the fact that the things occurring

inside the particle horizon are in causal contact with each other. The magnitude of Vo at the

time of decoupling, denoted by (Vo)d, can be calculated as

(Vo)d =
a3(td)
a3(to)

Vo =
(

td
to

)2

Vo. (1.79)

By comparing the last two equations, we have

(Vph)d

(Vo)d
=

td
to

. (1.80)

The approximated values are: td = 3× 105 years and to = 15× 109 years. Using these values

we find that at the time of decoupling the horizon was a small patch of size 2 × 10−5 of the

observable part of our Universe. The problem is to understand how this small connected

region be responsible for the same microwave background.

The Flatness Problem:
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While studying the Friedmann equation without contribution from the cosmological constant

and using the density parameter, Ω(t) = ρ/ρcr we have

Ωtot − 1 =
k

aH2 =
k

ȧ2
= Ωk. (1.81)

If Ωtot is a constant equal to unity, it will remain that forever, otherwise it evolves with time

i.e. in the matter dominated Universe we know that a(t) ∝ t2/3, so |Ωtot − 1| ∝ t2/3 while in

the radiation dominated phase, a(t) ∝ t1/3 so, we have |Ωtot − 1| ∝ t. Using the last relation

we can estimate that at the time of big bang nucleosynthesis, we have |Ωtot − 1| ∼ 10−16 and

near the Planck time, |Ωtot − 1| ∼ 10−60. From this relation we conclude that the Universe

was spatially flat in its start. The recent observations show that we are again in the spatially

flat phase of the Universe. Therefore, the flatness problem is to find out the reason that why

Ωtot is so close to unity or why the spatial curvature k is almost zero.

Cosmic Coincidence Problem:

Recent observations show that density parameters for both, matter and dark energy are

almost the same at present; another puzzle in the FRW Universe model, called the coincident

problem. From this inspection it is expected that the cosmological constant must be negligible

in the previous history of the Universe and in the future ΩΛ should be near unity. Hence a de

Sitter type Universe is predicted. In the history of the Universe, present epoch is very special

time in the sense being having ΩΛ ∼ Ωm [9]. But we know that matter and dark energy have

independent evolutionary equations, ρm ∝ a−3 and ρΛ ∝ a−3(1+ωΛ). For the justification of

the observed data, it is required that ρΛ ∝ ρm. Hence a modified model is required to fulfill

these requirements or to solve these problems.

1.3.7 Cosmological Inflation: A Proposed Solution to the Cosmological
Problems

In 1981 Alan Guth proposed a solution for cosmological problems [10]. This is the currently

favored candidate for explaining the origin of the Universe structure. The problems faced by

the Big Bang model are actually the motivation for the inflationary cosmology. It gives a best

solution to the flatness problems and the horizon problem. The fundamental idea behind the

inflation is that the Universe undergoes exponential accelerated expansion at some time in

the past.
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Chapter 2

Causes of Accelerated Expansion of
the Universe

Apart from the evidence for acceleration of the Universe, observations also show that there

is a mismatch between the gravitational mass and the luminous mass of galaxies and clusters

of galaxies. Hence there must be some non-luminous matter in galaxies, called, dark matter.

Current dark matter models show that it interacts weakly and has gravitational effects.

2.1 Dark Energy (DE)

The efforts made to understand the accelerated expansion of the Universe shows that there is

a possibility that this expansion is a consequence of dark energy but the existence of DE is

not proven yet. The concept of DE was introduced in 1998 [1].

2.1.1 Observational Evidence for Dark Energy

Since it is already discussed that the proposal of DE is favored by the observations of the

expanding Universe [1] i.e. this energy is introduced to explain the phenomenon of accelerated

expansion of the Universe. Luminosity distances to observe supernova, age of the Universe,

and CMB radiations, for example.

Luminosity Distance:

Luminosity distance dL is defined with the help of luminosity of stellar objects. It is very

important in the supernova observations. The luminosity Ls of the source and its energy flux
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F at a distance dL are related by

d2
L =

Ls

4πF
. (2.1)

Let us consider an observer at χ = 0 and a source object with a luminosity Ls located at a

coordinate distance χs from the observer. The relation between the energy ∆E1 of the light

emitted from the source object with the time interval ∆t1 and the luminosity Ls is:

Ls =
∆E1

∆t1
, (2.2)

L0 =
∆E0

∆t0
, (2.3)

where ∆E0 is the energy reaching the sphere of radius χs and L0 is the luminosity at χ = 0.

These energies are proportional to the frequencies of the light at corresponding coordinate

distances, i.e. ∆E1 ∝ ν1 and ∆E0 ∝ ν0. Using the frequency wavelength relation, the speed

of light at χ = χs and χ = 0 is given by c = ν1λ1 and c = ν0λ0, since speed of light is constant

so
λ0

λ1
=

ν1

ν0
=

∆E1

∆E0
=

∆t0
∆t1

= 1 + z. (2.4)

here λ denotes the wavelength of the light. Eq. (2.4) along with Eqs. (2.2) and (2.3) yields

Ls = L0(1 + z)2. (2.5)

Since the light moves along the geodesics

ds2 = −dt2 + a2(t)dχ2 = 0, (2.6)

while traveling along the χ-direction, so using Eq. (2.6) we obtain

χs =
∫ χs

0
dχ =

∫ t0

t1

dt

a(t)
=

1
a0H0

∫ z

0

dz′

h(z′)
, (2.7)

here h(z) = H(z)
H0

. Using the FRW metric given in Eq. (1.57) the area of the sphere at t = t0

is given by

S = 4π(a0fK(χs))2, (2.8)

where fK(χs) is defined in Eq. (1.59). Thus the observed energy flux becomes

F =
L0

4π(a0fK(χs))2
, (2.9)
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Eq. (2.1) with Eqs. (2.7) and (2.9) gives the luminosity distance for an expanding Universe

as

dL = a0fK(χs)(1 + z), (2.10)

which for a flat FRW background (fK(χ) = χ) and with a use of Eq. (2.7) becomes

dL =
1 + z

H0

∫ z

0

dz′

h(z′)
. (2.11)

Using this equation the Hubble parameter H(z) can be written as{ d

dz

(dL(z)
1 + z

)}−1
. (2.12)

This relationship shows that the expansion rate of the Universe can be determined if we are

able to make the measurements of the luminosity distance by observations. The evolutionary

equation of density ρ given in Eq. (1.75) can be written by adding all the components present

in the Universe and using 1 + z = a/a0, as follow:

ρ = Σiρ
(0)(a/a0)−3(1+ωi) = Σiρ

(0)(1 + z)3(1+ωi), (2.13)

where ρ(0) is present energy density and i = 1, 2, 3 correspond to matter, radiation, and dark

energy respectively. Using Eq. (1.73) the Hubble parameter can be written as

H2 = H2
0ΣiΩ

(0)
i (1 + z)3(1+ωi), (2.14)

where Ω(0)
i is the density parameter for each component of the present Universe. Thus the

expression of luminosity distance in the flat FRW Universe becomes

dL =
1 + z

H0

∫ z

0

dz′√
ΣiΩ

(0)
i (1 + z′)3(1+ωi)

. (2.15)

Plotting Eq. (2.15) for two components Universe: matter and the cosmological constant,

shows that luminosity distance increases when the cosmological constant is present

Age of the Universe:

Age of the Universe, t0, is calculated by comparing it with the age of the oldest stellar objects,

ts, subject to t0 > ts. The age of Globular Cluster in Milkiway determined separately by two

cosmologist Jimenez and Hensen is 13.5± 2Gyrs and 12.7± 0.7Gyrs respectively [14]. Thus

the lower bound of the age of the Universe becomes t0 > 11− 12Gyrs.
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Using ρ given in Eq. (2.13) and considering the contributions from radiation (ω = 1/3),

dust (ω = 0) and cosmological constant (ω = −1), the Friedmann equation given in Eq. (1.65)

becomes

H2 = H2
0 [Ω(0)

r (a/a0)−4 + Ω(0)
m (a/a0)−3 + Ω(0)

Λ − Ω(0)
k (a/a0)−2]. (2.16)

Here Ωm, Ωr, and and ΩΛ correspond to energy densities of matter, radiation and dark energy

respectively. The age of the Universe can be obtained from the integral∫ t0

0
dt =

∫ ∞

0

dz

H(1 + z)
(2.17)

=
∫ ∞

0

dz

H0x[Ω(0)
r x4 + Ω(0)

m x3 + Ω(0)
Λ − Ω(0)

k x2]1/2
. (2.18)

In these equations we have used 1+z = a0/a and x(z) ≡ 1+z respectively. Since this integral

is hardly effected by z ≥ 1, 000 it is reasonable to neglect the radiation dominated Universe

while calculating the age of the Universe, i.e. using Ω(0)
r = 0. Further, we start from the case

when the cosmological constant Ω(0)
Λ = 0, so Ω(0)

m − 1 = Ω(0)
k , and Eq. (2.18) gives

t0 =
∫ ∞

0

dz

(1 + z)2
√

1 + Ω(0)
m z

. (2.19)

For a flat Universe Ω(0)
m = 1 and Ω(0)

k = 0, in that case above expressions reduces to

t0 =
2

3H0
. (2.20)

Using the value of the Hubble parameter obtained from the recent observations of the Hubble

telescope key project [15], H−1
0 = 9.776h−1Gyr, 0.64 < h < 0.80, age of the Universe is

obtained as t0 = 8 − 10Gyrs. This value is not consistent with the lower bound set by the

age of stellar objects.

From Eq. (2.19) we can see that in case of an open Universe ( Ω(0)
m < 1 ) the age of

the Universe is larger than the flat case. Observations of the CMB radiations [16] show that

curvature of the Universe is very small, however even in this case its age remains less than

the age of the oldest stellar object. For the flat case and Ω(0)
Λ 6= 0, Eq. (2.18) gives

H0t0 =
∫ ∞

0

dz

(1 + z)
√

(1 + z)3Ω(0)
m + Ω(0)

Λ

=
2

3
√

Ω(0)
Λ

ln

1 +
√

Ω(0)
Λ

Ω(0)
m

 . (2.21)
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Here Ω(0)
Λ +Ω(0)

m = 1 and the age increases as Ω(0)
m decreases. For the recently observed energy

density parameters, Ω(0)
Λ = 0.7 and Ω(0)

m = 0.3, the above equation gives t0H0 = 0.96 for

h = 0.72 and the corresponding age becomes 13.1Gyrs, satisfying the lower age limit set by

the age of the oldest stellar object. Thus to solve problem of age of the Universe presence of

Λ, which corresponds to the dark energy, is needed. There are some other age estimates that

are more precise. The best estimate is 13.76± 0.02Gyrs.

2.2 Candidates of DE

In this subsection some of the most accepted candidates of dark energy are included. At

present there are a lot of proposals for theoretical candidates of DE including cosmological

constant, scalar fields and Chaplygin gas to name some of them.

Cosmological Constant (Λ):

The oldest candidate of DE is Cosmological Constant. It is the simplest candidate having

constant energy density in space and time [1]. It was originally introduced by Einstein in

1917 to achieve a static Universe. For the FRW Universe, defined in Eq. (1.57), the modified

EFEs with cosmological constant give the following equations

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ
3

, (2.22)

ä

a
= −4πG

3
(ρ + 3p) +

Λ
3

. (2.23)

It is clear from Eq. (2.23) that Λ contributes positively to the pressure term and causes a

repulsive effect. In the pressureless (p = 0), matter dominated Universe, the static Universe,

corresponds to

ρ = Λ/4πG, Λ = k/a2. (2.24)

Eq. (2.24) shows that the density ρ in the Universe is determined by Λ. In fact, if Λ/3 >

4πGρ/3 then a growing a in Eq. (2.23), shows that the Universe is not static. If Λ/3 <

4πGρ/3, the Universe moves away from the static point with decreasing a.

Cosmological Constant Problem:

If the cosmological constant energy (ρΛ) is the vacuum energy density then the observed

energy density related to ρΛ is very small compared to the theoretical one. This problem asks
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why is the energy density today so small compared to the typical particle physics scale?

For an accelerated expansion of the Universe the observed value of cosmological constant Λ is,

of the order of square of the present the Hubble parameter H0, equal to the Hubble parameter

[1]

Λ ≈ H2
0 = (2.13× 10−42)2GeV 4. (2.25)

Interpreting it as an energy density, we get

ρΛ =
Λm2

pl

8π
≈ 10−47GeV 4. (2.26)

The vacuum energy density can be calculated by summing the zero-point energies of the

quantum fields of an arbitrary mass m is estimated as [1]

ρvac ≈ 1074GeV 4. (2.27)

Comparison of Eqs. (2.26) and (2.27) shows that theoretical energy density is 10121 orders

of magnitude greater than the observed one. Due to this cosmological problem many take a

cosmological constant zero, and introduce other mechanisms like scalar fields to explain DE

[1].

Scalar Fields and Dark Energy:

A class of scalar fields is one of the most important and promising candidate of DE. Exper-

imentally there is no evidence for the scalar fields. but they are required in all unification

theories. Due to the cosmological constant problem it has been proposed that, due to cou-

pling with other matter fields, the vacuum energy density can be a time-dependent function,

instead of a constant quantity [1]. There is need of a model for the description of dark energy,

which could solve the cosmological problem.

In general we can take the EoS of dark energy to change with time. A variety of scalar

field DE models have been proposed in the literature. Some of these are: quintessence, k-

essence, phantom energy, dilatonic dark energy and tachyon scalar field. While studying the

scalar fields we assume that Λ is zero due to some unknown mechanism and DE is caused

by the dynamics of the scalar field. Although the cosmological constant problem remains

unsolved even in this case, but it is another way of dealing with DE and its problems. The

best possibility for this model is a dynamical, time dependent scalar field Φ whose potential
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V (Φ) evolves slowly. For a homogeneous, time dependent, scalar field Φ we can take the

energy density and pressure to be defined by:

ρΦ =
σ

2
Φ̇2 + V (Φ), (2.28)

pΦ =
σ

2
Φ̇2 − V (Φ). (2.29)

σ = −1 corresponds to the phantom, while σ = +1 represents the standard scalar field known

as quintessence field, and V (Φ) is the potential. In this case wΦ is given by

wΦ =
pΦ

ρΦ
=

σΦ̇2 − 2V (Φ)
σΦ̇2 + 2V (Φ)

. (2.30)

Using Eqs. (2.28) and (2.29) we get the kinetic energy and the scalar potential terms as

Φ̇2 =
1
σ

(1 + ωΦ)ρΦ, (2.31)

V (Φ) =
1
2
(1− ωΦ)ρΦ. (2.32)

Quintessence Scalar Field Model (Q):

Its EoS is dependent on the redshift ω(z), particularly −1 < ω(z) ≤ 0 and it evolves with

time. Hence the cosmological constant model and Q model have different expansion history

of the Universe. The action for Q is given by [17, 18]

S =
∫

d4x
√
−g[

1
2
gµν∂µΦ∂νΦ− V (Φ)], (2.33)

here V (Φ) is potential of the field that leads to the accelerating Universe. In the flat Friedmann

background, using σ = +1 in Eq. (2.30) shows that the EoS parameter for the field Φ lies in

the range −1 ≤ ω ≤ 1. So the continuity equation

ρ̇ + 3H(ρ + p) = 0, (2.34)

becomes

ρ = ρo exp
[
−
∫

3(1 + ωΦ)
da

a

]
, (2.35)

or

ρ = ρoa
−3(1+ωΦ), (2.36)
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where ρo is the constant of integration. If ωΦ = −1 then Eq. (2.36) gives ρ = const, which

corresponds to the slow roll inflation i.e. Φ̇2 � V (Φ), and if ωΦ = +1, then Φ̇2 � V (Φ),

which makes ρ ∝ a−6. For all other values of ω the energy density behaves as

ρ ∝ a−m, 0 < m < 6. (2.37)

For 0 ≤ m < 2 the Universe is in an accelerated expansion, since ωΦ = −1/3, is a separation

between the accelerating and decelerating Universes. When −1 < ω < −1/3 the Universe

is in quintessence phase, for ω < −1 it is in phantom phase and at ω = −1 the Universe is

dominated by the cosmological constant i.e. for accelerating Universe, Ḣ > 0 is required and

vice versa. But there is a need of theoretical explanation for the transition from Ḣ < 0 to

Ḣ > 0.

k-essence:

k-essence was first introduced as a possible model of inflation. Later it was noted that k-

essence can also yield interesting models for DE. The negative pressure of k-essence model

is from the non-linear kinetic energy of scalar field. The speed of evolution of the k-essence

changes in dynamics. The general form of the scalar field action SK for k-essence scalar field

as a function of φ and χ = φ̇/2 is given by [19]

SK =
∫

d4x
√
−g p (φ, χ) . (2.38)

From the Lagrangian given in Eq. (2.38), the pressure, p (φ, χ), and the energy density,

ρΛ (φ, χ), of the k-essence can be obtained respectively as:

p (φ, χ) = f (φ)
(
−χ + χ2

)
, (2.39)

ρ (φ, χ) = f (φ)
(
−χ + 3χ2

)
. (2.40)

The EoS parameter ωK of k-essence scalar field is

ωK =
p (φ, χ)
ρ (φ, χ)

=
χ− 1
3χ− 1

. (2.41)

It is clear from the above equation that ωK < −1 (the phantom behavior of k-essence scalar

field) is possible if χ lies in the range 1/3 < χ < 1/2. Hence the kinetic term χ plays an

important role in finding the EoS of the scalar field.
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Tachyon Field:

Tachyon scalar field is one of the possible sources which can provide negative pressure for

acceleration of the Universe. The EoS parameter of a rolling tachyon smoothly changes

between −1 and 0 [22]. Here we shall start from the Lagrangian Ltach without worrying

about its origin. Particularly without making attempts to connect the form of V (φ) with the

string theoretic models. The effective Lagrangian for the tachyon field was taken to be [24]

L = −V (φ)
√

1− gµν∂µφ∂νφ, (2.42)

where V (φ) represents the potential of tachyon and gµν is the metric tensor. The energy

density ρφ and pressure pφ for the tachyon field are respectively given by:

ρφ =
V (φ)√
1− φ̇2

, (2.43)

pφ = −V (φ)
√

1− φ̇2. (2.44)

The EoS parameter of tachyon scalar field reads

ωφ =
pφ

ρφ
= φ̇2 − 1. (2.45)

In the FRW background we have derived the Friedmann equations. Using Eqs. (1.65) and

(1.67) we obtain the equations of motion as

H2 =
8πGV (φ)

3
√

1− φ̇2

, (2.46)

and

φ̈

1− φ̇
+ 3Hφ̇ +

1
V

dV

dφ
= 0. (2.47)

Combining the above equations one gets

ä

a
=

8πGV (φ)

3
√

1− φ̇2

(
1− 3

2
φ̇2

)
. (2.48)

So for an accelerated expansion φ̇2 < 2
3 is required.

Phantom (ghost) Field:
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So far we have discussed about the scalar field models with ω ≥ −1, but recently it is observed

that the EoS parameter lies in the narrow strip around ω = −1. The region where the EoS

parameter is less than −1 is called Phantom (ghost) dark energy.

It is a scalar field with a negative kinetic energy, and Lagrangian,

LΦ = −1
2
∂µΦ∂µΦ− V (Φ). (2.49)

The action for the phantom field minimally coupled to gravity is given by

S =
∫

d4x
√
−g

[
1
2
(∇φ)2 − V (φ)

]
. (2.50)

For this field we consider the perfect fluid energy momentum tensor, with the Lagrangian

given in Eq. (2.49), to express the energy density and the pressure respectively as:

ρΦ =
1
2
Φ̇2 + V (Φ), (2.51)

ρΦ =
1
2
Φ̇2 − V (Φ). (2.52)

Since ω < −1, the energy density of phantom energy varies proportional to the power of scale

factor a(t)

ρ ∝ a3|1+ω|, ω < −1, (2.53)

unlike the behavior of ordinary matter. Caldwell called this matter phantom energy [25]. The

most remarkable feature of phantom energy model is that it predicts the end of the Universe

with a Big Rip, breaking the fabric of the spacetime. The idea of Big Rip was first introduced

by Caldwell et al [26]. Explaining the final singularity of this Universe in the form of Big

Rip. The literature contains work on how the Big Rip concept could be avoided [25, 27]. The

interaction between matter and energy is the best explanation for this purpose. Many models

on the interacting DE and DM have been proposed [28, 29].

Chaplygin Gas (CG)

The Chaplygin gas interpolates the evolution of Universe from dust phase to the acceleration

phase. It has been suggested as an interesting candidate of unified model of dark matter and

dark energy and it fits best with the observational data [30]. The CG is defined as

pΛ = −D

ρΛ
(2.54)
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Here D is a positive constant. The density evolution of CG, calculated by using the density

conservation equation, is given by

ρΛ =
[
D +

B

a6

]1/2
, (2.55)

where B is the constant of integration. There are some generalizations of this fluid, each

different from the other, due to inclusion of new parameters.

Generalized Chplygin gas (GCG) is a commonly studied generalization of CG given by

pΛ = −Aρ−α
Λ , here 0 < α ≤ 1 [31]. For α > 0, the pressure decreased relative to the energy

density in the early Universe. In late Universe the negative pressure becomes important for

realizing the cosmic acceleration. Hence a fluid with EoS, like Chaplygin gas behaves like dust

at early stages of Universe and as dark energy in late times. So it can in principle replace

both. The corresponding equation of density evolution for GCG is

ρΛ =
[
D +

B

a3(1+α)

] 1
1+α

. (2.56)

The kinetic energy and the scalar potential terms of Chaplygin gas are the same as for a

homogeneous and time dependent scalar field ‘Φ’ , given in Eqs. (2.31) and (2.32). The more

general form of CG, known as modified Chaplygin gas (MCG), was proposed by Debnath et

al [32], with EoS given by:

pΛ = Aρ− D

ρα
Λ

. (2.57)

Here X and D are positive constants and α is an arbitrary constant. The density evolution

of MCG, calculated by using the density conservation equation, is given by

ρΛ =
[ D

1 + A
+

B

a3(1+α)(1+A)

] 1
1+α

, (2.58)

where B is the constant of integration. CMB radiation data shows that −0.35 ≤ A ≤ 0.025

and −0.021 ≤ α ≤ 0.54 [33]. It is recently shown that for MCG stable attractor solution

exists at ω = −1 i.e. the EoS of MCG approaches to ω = −1 from either ω > −1 or ω < −1,

independent of the choice of its initial density parameter and the ratio of pressure to critical

density [34]. This result suggests that the Universe would not end up in a Big Rip. MCG best

fits with other cosmological parameters if α = 1/4 and A = 1/3 [35]. Further a new modified

Chaplygin gas is an other extension of CG.
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Problems Related to DE:

There are some problems related to dark energy:

1. Observations show that the EoS for dark energy is not a constant but it varies with

time.

2. Determine the EoS parameter such that −1.38 < ω < −0.82

3. Explanation of the phantom divide: the transition from the quintessence regime to

phantom regime.

4. The explanation for the same order of magnitude of energy densities of matter and dark

energy in the present time of the Universe, (cosmic coincidence problem).

5. If we are sure about the existence of DE, its magnitude should be close to the cosmo-

logical energy density. Theoretical considerations roughly measure the value of ρvac as

1050 − 10120 times higher than is deduced from the empirical data, it is known as Fine

Tuning Problem. Hence the other main problem in this scenario is why observed vacuum

energy is so small.

6. If DE is not the source of accelerated expansion of the Universe then which agent is

responsible for that? Is it explainable by the present knowledge of physics or some new

physics is required for its explanation?

Recently many new models have been constructed, to overcome these problems.

2.3 Holographic Dark Energy(HDE)

It is proposed that a consistent theory of quantum gravity should give complete and correct

description of DE.

Holographic Principle:

This principle was proposed by ‘t Hoofs and Susskind [36] it states that the entropy of a

system does not change with its volume but it changes with its surface area.

Holographic Principle is about encoding information from (D+1 )-dimensional space onto

D-dimensional space. For a better understanding, we can take it as the interference pattern
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on a photographic plate from a 3 -dimensional object. Using the holographic principle a model

of HDE was proposed [37].

2.3.1 Introduction of HDE

Recently a paradigm for DE has been constructed by using holographic principle of quantum

gravity theory and it represents some interesting features of DE. It is considered as a form of

gravitational DE. This paradigm may solve the coincidence problem also. Cohen has shown

in [38] that in a quantum field theory a short distance cut-off Λ is related to a long distance

cut-off LΛ due to the limit set by forming a black hole. Since for a box of size L and ultraviolet

cut-off Λ, the effective field theory gives the relation for entropy, S, scaling as: S ∼ L3Λ3 [39].

Bekenstein’s postulate gives the maximum entropy of this box growing only with the area of

the box. So this postulate can hold in an effective field theory only if the following condition

fulfills,

L3Λ3 ≤ SBH ≡ L2M2
p . (2.59)

It gives

Λ ≤

(
M2

p

L

)1/3

. (2.60)

If ρΛ = Λ4 is the quantum zero point energy density caused by a short distance cut-off, then

use of Eq. (2.60) in the expression L3Λ4 gives L3ρΛ ≤ LM2
p , which yields that the total

energy of the system of size LΛ should not exceed the mass of black hole of the same size.

We can write it as L3
ΛρΛ ≤ LΛM2

p , here M2
p is the reduced planck’s constant. When L is

saturated the equality is obtained

ρΛ = 3c2M2
p L−2

Λ , (2.61)

it is the HDE for that L. Here 3c2 is introduced for convenience it is a numerical constant.

It is interesting to note that the derivation and definition of HDE depends on the entropy-

area relation, S ∼ A ∼ L2, but not only on holographic principle. Recent observational data

shows that for a non-flat Universe c = 0.815+0.179
−0.139 and for the flat case c = 0.818+0.113

−0.097 [40, 41].

It is claimed that the reasonability and the simplicity of HDE model provide a suitable frame
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to investigate the DE problems compared to other models proposed in literature. The funda-

mental assumption that matter and HDE do not conserve separately solves the coincidence

problem. In recent years HDE is studied as a possible candidate for DE and many models

have been proposed by extending this idea.

2.3.2 Proposals for Horizon (L)

When HDE was introduced, the next target was to find an appropriate horizon L. In this

subsection we shall discuss some important horizons proposed for the HDE.

L = Hubble Horizon H−1:

In the first attempt, size of the current Universe, Hubble scale was chosen as Horizon. This

resulted in a DE density comparable to the present day DE density, while Hsu et al have

recently pointed out that in this case the EoS does not match the experimental data Hsu et

al [42]. His argument can be refined by replacing ρ in the Friedman equation ρ = 3M2
p H2

with ρm + ρΛ, and using ρΛ given in Eq. (2.61) with

L = H−1, (2.62)

we get

ρm = 3M2
p H2[1− c2], (2.63)

which shows that the behavior of ρm varies as H2, but Eq. (2.61) along with Eq. (2.62) shows

that ρΛ also has the same behavior. But we know that ρm scales with the Universe scale factor

as a−3, so ρΛ will also scale similarly. It implies that DE is pressureless i.e. P = ωρ; ω = 0.

While ω < −1/3 is the requirement of an accelerating Universe and recently obtained data

indicates ω < −0.76 with 95% confidence level [43]. Hence they find that the proposal for

horizon given in Eq. (2.62) is not able to explain the DE dominated (present) Universe.

Particle Horizon L = Rh:

The particle horizon, Rh, is used by Fischler and Susskind [44] and is defined as

Rh = a

∫ t

0

dt

a
= a

∫ a

0

da

Ha2
. (2.64)

Replacing this L in Eq. (2.61) the solution of Friedmann equation with another energy

component say matter is obtained. But unluckily the required results are not obtained in
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this case also. We shall briefly discuss it here. In the dark energy dominated Universe the

Friedmann equation reduces to
1

Ha2
= c

d

da
(

1
Ha

). (2.65)

One gets H−1 = αa1+1/c ;α = constant. The dark energy becomes

ρΛ = 3α2M2
p a−2(1+1/c). (2.66)

Hence the EoS parameter becomes ω = −1
3 + 2

3c > −1
3 . Since c = HRh > 0 always, so ω > −1

3

and Eq. (2.65) shows that Hubble scale 1/H compared to scale factor a is always increasing.

But from the inflationary cosmology we know that for an accelerating Universe a shrinking

Hubble scale is required. Hence this proposal does not gives the required results [45].

Future Event Horizon:

In order to get the results which correspond to an accelerating Universe the particle horizon

is replaced by the future event horizon

Rh = a

∫ ∞

t

dt

a
= a

∫ ∞

a

da

Ha2
. (2.67)

This Horizon is the boundary of the volume observable by a fixed observer. In a similar way

as we have discussed in the particle horizon, here one gets ω = −1
3 −

2
3c . This describes the

DE with ω < −1
3 for the specific case, c = 1, it becomes ω = −1, a similar behavior as that

of a cosmological constant. For c < 1 this horizon gives ω < −1, a value obtained only in

phantom model.

Granda-Oliveros Infrared Cut-Off Proposal for the Holographic Density:

Initially, it was proposed that the unknown vacuum DE density, ρΛ, is proportional to the

square of the Hubble scale. It solves the fine tuning problem, leaving the problem of accel-

erated expansion unsolved. As discussed above, the use of the particle horizon as a length

scale did not give the required results. The future event horizon faces the causality problem

but gives the explanation for the acceleration regime. For dimensional reasons a new infra

red cut-off for HDE has been proposed by L. N. Granda and A. Oliveros named as Granda-

Oliveros cut-off. We shall review the useful results of their work [46] in this subsection. They

proposed the holographic energy density as

ρ = 3(αH2 + βḢ). (2.68)
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Here α and β are constants and H = ȧ/a. This expression of density includes time derivative

of the Hubble parameter and fits best with the observational data. The new term is contained

in the Ricci scalar which scales with L−2 (we will discuss later about Ricci scalar HDE). They

have shown by plotting the EoS parameter against z that for β = 0.5 this model evolves like

that of some scalar field models of DE. This model of HDE with new cut-off depending on

local quantities avoids the causality problem.

2.4 Granda-Olivers Infrared Cut-Off and HDE Models

In this section few models of HDE with Granda-Olivers (GO)infrared (IR) Cut-Off are re-

viewed.

2.4.1 New Infrared Cut-Off for the Holographic Scalar Fields Model of
Dark Energy

Holographic Scalar Fields have been reconstructed by L. N. Granda and A. Oliveros [48].

Their study is restricted to the DE dominated phase of the Universe (present age). The HDE

is given by

ρΛ = 3M2
p (αH2 + βḢ). (2.69)

The Friedmann equation becomes

H2 = αH2 + βḢ. (2.70)

Integrating this equation with respect to cosmic time, t, one obtains

H =
β

(α− 1)t
. (2.71)

It gives

a ∝ tβ/α−1. (2.72)

For β/α− 1 = 2/3, the parameter a given in the above equation shows a matter dominated

Universe. Which indicates that this model solves the coincidence problem. Using the equation

of energy conservation and EoS for the HDE and pressure densities pΛ = ωΛρ, the EoS

parameter for this HDE model is obtained as [48]

ωΛ = −1− 2αHḢ + βḦ

3H(αH2 + βḢ)
. (2.73)
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Using H given in Eq. (2.71) it becomes

ωΛ = −1 +
2(α− 1)

3β
. (2.74)

Here α and β are constants. Eqs. (2.71) and (2.74) show that if one considers the phase

−1 < ωΛ < −1/3 i.e. to obtain the accelerated expansion, it is required that β > α − 1 if

α > 1 or β < α− 1 if α < 1 . And for α < 1 ; β > 0 or α > 1 ; β < 0, a phantom like phase

of evolution ω < −1 can be obtained.

A correspondence has been established by L. N. Granda and A. Oliveros between their model

of HDE and various scalar fields. The results are in the favor of accelerated expansion of the

Universe. Hence the model with this infrared cut-off is viable [48].

2.4.2 HDE in a Non-Flat Universe with GO Cut-Off

Although an early inflation era leads to a flat Universe, but if the number of e-foldings is not

very large it is not necessary that the Universe is perfectly flat [49] . So it is not wise to study

only spatially flat Universe. Some experiments of CMB and WMAP favor this concept [50] -

[52]. Motivated from these studies for the non-flat Universe K. Karami and J. Fehri [53] have

generalized the Granda-Oliveros model [46] to the non-flat Universe.

By comparing the HDE density for the GO cut-off given in Eq. (2.69) with Eq. (2.61)

they obtained the corresponding IR cut-off L for their model as:

L = H−1

(
1 +

βḢ

αH2

)−1/2

. (2.75)

Note that for β = 0 Hubble horizon is obtained. The first Friedmann equation in the non-flat

Universe becomes:

H2 =
1
3
(ρm + ρr + ρΛ + ρk), (2.76)

here ρm , ρr, ρΛ and ρk are the contributions of non relativistic matter , radiation, dark energy

and of curvature respectively. Here ρk = −3k/a2 and k represents the curvature of the space,

k = 0, 1,−1 for a flat, closed and open Universe respectively.

For the special case when Ωko = 0, the results obtained for the deceleration parameter and

EoS parameter, reduce to the equations obtained in case of flat Universe, discussed earlier.
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They have plotted the DE density parameter, decelerating parameter and EoS parameter,

versus redshift z. The numerical values of the evolutionary behavior of open, closed and flat

Universe with the auxiliary parameters, β = 0.5, Ωko = ±0.015 (for open and close case

respectively) show that with this small curvature the non-flat and flat cases differ only by an

order of 10−2.

2.5 Entropy Corrected Holographic Dark Energy (ECHDE)

So far we have discussed the HDE models which have been studied widely in literature [54]

- [68]. In this section we shall discuss Entropy Corrected Holographic Dark Energy model.

The entropy area relation, S = (A/4G), has been modified to

S = (A/4G) + γ̃ ln(A/4G) + β̃, (2.77)

where γ̃ and β̃ are constants of order unity and their exact values are still unknown. These

corrections appear in the black hole entropy due to the quantum fluctuations, thermal equi-

librium fluctuations or mass and charge fluctuations in loop quantum gravity [69, 70, 71, 72].

Using the entropy-area relation given in Eq. (2.77) the relation for ECHDE is obtained as

[73]

ρΛ = 3n2M2
p L−2 + γ1L

−4 ln(M2
p L2) + γ2L

−4. (2.78)

Here n2, γ1 and γ2 are dimensionless constants of order unity. For the special case when

γ1 = γ2 = 0, the well known HDE is obtained.

2.5.1 Interacting Holographic Dark Energy with Logarithmic Correction

Since observations show that the energy densities of matter and DE are almost same at

present time, which is not expected in the DE dominated Universe, the coincidence problem.

A possible solution for this problem was given by Wetterich in 1995. There is a possibility

that these components interact directly with each other and exchange their energy during

evolution, to keep this ratio roughly constant in the Universe [4]. Jamil and Farooq have

studied this model [74] with IR cut-off proposed by Li. They also made a correspondence of

this model with generalized Chaplygin gas in their work. Here we shall briefly discuss their

work.
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For a result compatible with the accelerated Universe, Li proposed that L should be the

future event horizon defined as [45]

L = a(t)
sin(

√
|k|y)√
|k|

, y =
Rh

a(t)
, (2.79)

where Rh is the size of the future event horizon defined as

Rh = a(t)

∞∫
t

dt′

a(t′)
= a(t)

r1∫
0

dr√
1− kr2

. (2.80)

The integral can be written explicitly as

r1∫
0

dr√
1− kr2

=
1√
|k|

sin−1(
√
|k|r1) =


sin−1(r1), k = +1,

r1, k = 0,

sinh−1(r1), k = −1.

(2.81)

To overcome the cosmic coincidence problem and the cosmic fine tuning problem, a model of

interacting DE with DM has been proposed [74, 75, 76]. In the FRW back ground spacetime

given in Eq. (1.57), the Einstein field equation is

H2 +
k

a2
=

1
3M2

p

[ρΛ + ρm] . (2.82)

In the dimensionless form it is written as

1 + Ωk = ΩΛ + Ωm. (2.83)

The density parameters are defined as

Ωm =
ρm

ρcr
=

ρm

3M2
p H2

, ΩΛ =
ρΛ

ρcr
=

ρΛ

3M2
p H2

, Ωk =
k

(aH)2
, (2.84)

where ρcr is the critical density. For the interacting model the equations of energy conservation

are given by [77]

ρ̇Λ + 3H(ρΛ + pΛ) = −Q, (2.85)

ρ̇m + 3Hρm = Q. (2.86)

Here Q is an arbitrary function of cosmological parameters like the Hubble parameter and

energy densities and is used as an interacting term. Up to linear order in energy densities
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Q ' H(ρΛ + ρm), by using a coupling parameter b2 this term can be saturated as Q =

3b2H(ρΛ + ρm) [78, 79, 80]. Observations of galactic clusters and CMB show that b2 < 0.025,

i.e. it is a small positive constant of order unity [81]. The effective EoS for DE and DM are

defined as [82]

ωeff
Λ = ωΛ +

Γ
3H

, ωeff
m = − 1

rm

Γ
3H

. (2.87)

Using Eq. (2.87) in Eqs. (2.85) and (2.86) one gets

ρ̇Λ + 3H(1 + ωeff
Λ )ρΛ = 0, (2.88)

ρ̇m + 3H(1 + ωeff
m )ρm = 0. (2.89)

the definitions of ΩΛ and ρcr are used to get

HL =

√
3n2M2

p + γ1L−2 ln(M2
p L2) + γ2L−2

3M2
p ΩΛ

. (2.90)

Using Eq. (2.90), the differentiation of L gives

L̇ =

√
3n2M2

p + γ1L−2 ln(M2
p L2) + γ2L−2

3M2
p ΩΛ

− cosn(
√
|k|y). (2.91)

Using Eq. (2.91) the differentiation of Eq. (2.78) with respect to t is completed to get ρ̇Λas

ρ̇Λ =
[
2γ1L

−5 − 4γ1L
−5 ln(M2

p L2)− 4γ2L
−5 − 6n2M2

p L−3
][√

h(a)

−cosn(
√
|k|y)

]
, (2.92)

where h(a) = 3n2M2
p+γ1L−2 ln(M2

p L2)+γ2L−2

3M2
pΩΛ

.

Use of Eq. (2.92) in Eq. (2.85) gives the EoS parameter ωΛ as

wΛ = −1− g(a)
[
1−

√
3M2

p ΩΛ

3n2M2
p + γ1L−2 ln(M2

p L2) + γ2L−2

×cosn(
√
|k|y)

]
− b2(1 + Ωk)

ΩΛ
, (2.93)

where g(a) = 2γ1L−2−4γ1L−2 ln(M2
p L2)−4γ2L−2−6n2M2

p

3(3n2M2
p+γ1L−2 ln(M2

p L2)+γ2L−2)
.

The expression for the weff
Λ is obtained by using the above equation in Eq. (2.87) and is

given by

weff
Λ = −1− g(a)

[
1−

√
3M2

p ΩΛ

3n2M2
p + γ1L−2 ln(M2

p L2) + γ2L−2

×cosn(
√
|k|y)

]
. (2.94)

39



The above equation is the effective equation of state parameter for ECHDE model, here g(a)

is the same one, used in previous equation. For the flat Universe this parameter reduces to −1

, for non-flat case phantom divide is possible for the suitable selection of parameters. They

have also made a correspondence of their model with the Chaplygin gas.

Interacting Entropy Corrected Holographic Scalar Fields in Non-Flat Universe:

The experimental evidences from the CMB radiation favor that we are living in a non-flat FRW

Universe. In the light of above mentioned arguments Khodam-Mohammadi and Malekjani

worked on a model including interacting DM and DE with a non-flat universe [83]). They

started with the FRW metric containing DM and DE. The Friedmann equation is the same

as given in Eq. (2.83) and the energy conservation equations for both components were

considered as given in Eqs. (2.85) and (2.86). Using the L proposed by Li [45] as given in

Eqs. (2.79)-(2.81) and following the similar steps as mentioned earlier in Eqs. (2.87)-(2.93),

the EoS parameter for this model is obtained. In the limiting cases when ECHDE reduces to

HDE and without interacting term i.e. by taking b = 0 the EoS parameter becomes similar

to the one obtained by Setare [84]. Khodam-Mohammadi and Malekjani have established

correspondence between interacting ECHDE and scalar fields including, k-essence, tachyon

and dilaton scalar fields. The potentials and dynamics of these scalar fields are reconstructed

in order to show that these scalar fields describe the evolutionary behavior of interacting

ECHDE model. From this analysis it is shown that ECHDE tachyon model can not cross the

phantom divide but other two models can cross it.

2.5.2 Reconstructing Interacting Entropy Corrected Holographic Scalar
Fields of Dark Energy in Non-Flat Universe

Khaledian et al [85] have completed a reconstruction of the potentials and dynamics of the

quintessence, tachyon, k-essence and dilaton scalar field models according to the evolutionary

behavior of the interacting ECHDE model. In particular they discussed the explicit evolution-

ary forms of the corresponding scalar fields for both phases of the expansion of the Universe,

for the inflationary age, i.e. by taking L = Rh = H−1 : H = constant, and for the late-time

acceleration, by taking L = Rh 6= H−1 : H 6= constant, they have shown that the vacuum

energy producing inflation at the early cosmic time and the one responsible for the late-time
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cosmic acceleration are fundamentally different. So at different times in the history of the

Universe, same scalar fields move in different potentials.

2.6 Power Law Entropy Corrected Relation

By the power law corrections to the entropy area relation the power law corrected entropy

has been given as [86]

S =
Ah

4G

(
1−KαA1−α

2

)
, (2.95)

where α is a dimensionless positive constant with unknown value, A = 4πR2 is the area of

the cosmological horizon of radius R and

Kα =
α(4π)

α
2
−1

(4− α)r2−α
c

, (2.96)

where rc represents the crossover scale. The second term in Eq. (2.95) is a power law

correction to the area law and it is due to the entanglement, when the wave function of the

field is chosen to be a superposition of ground state and excited state [87]. So only excited

state is responsible for the entropy correction. Also note that the correction term falls off

rapidly with A. So the correction term contributes in the small black holes.

Sheykhi and Jamil [88] have proposed a new version of HDE called Power Law Entropy

Corrected HDE Model (PLECHDE). Following the derivations of HDE [89] and ECHDE [73]

they have obtained the PLECHDE as

ρΛ = 3γM2
p L−2 − βM2

p L−α. (2.97)

Note that when β = 0 or α = 2 the above expression reduces to ordinary HDE density. For

α > 2 the corrected term with small L is compatible with the first term. Details are available

in [88].

41



Chapter 3

Ricci Power Law Entropy Corrected
Holographic Dark Energy and Scalar
Fields

As already mentioned, recent observations favor an accelerating Universe with a present den-

sity of 70% exotic components having negative pressure and pushing the expansion of the

Universe into an accelerating phase. Various candidates of DE have been put forward in

order to find out the solution of this strange phenomenon. These proposals start from the

cosmological constant and move on to scalar field theories of DE, but two fundamental prob-

lems of fine tuning and coincidence are faced. To alleviate these problems another model

known as HDE model has been proposed (details are already discussed in previous chapter).

HDE and its other versions including interacting HDE models are the proposals which fit best

with observations. However, these models have some serious conceptual problems. Gao et al

[90] pointed out that using the future event horizon as an infra-red cut-off for the HDE model

leads to a causality problem. Since for a flat FRW Universe a future event horizon exists if

and only if the Universe is accelerating, the HDE model has itself assumed the acceleration

of the Universe in order to understand the cosmic acceleration.

3.1 Ricci Dark Energy (RDE) Model

Whenever there is a shortcoming in model under discussion, alternative solutions are tried.

Motivated by the HDE models, Gao et al proposed a new model [90]. In this work the
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infrared cuf-off L is taken as the average radius of the Ricci scalar curvature, R−1/2, giving

ρ ∝ R. This model is known as the RDE model. Gao et al investigated the phenomenological

properties of the model and showed that their model not only resolve the causality problem

but also solves the coincidence problem. Gao et al further pointed out that α ' 0.46 yields

the correct DE density and equation of state today. Moreover, the RDE model is compatible

with observational data from supernova and CMB radiation [91]. However, there is some

criticism on RDE model: Kim et al [92] pointed out that an accelerating phase of the RDE is

that of a constant DE model. This implies that the RDE may not be a new model to explain

the present accelerating Universe.

3.1.1 Interacting Ricci Dark Energy with Logarithmic Correction

Recently a model has been proposed by Pasqua et al, in which the entropy corrected HDE

model in the non-flat FRW Universe with the Ricci scalar curvature as the infrared cut-off

[93] has been studied. They calculated the EoS parameter, deceleration parameter and the

density parameter. Further, a correspondence of this model with some scalar fields has been

established in their work.

Following the idea we have extended their work for the power law entropy corrected version.

In the following section this model is presented.

3.2 Ricci Power Law Entropy Corrected HDE and Dynamics
of scalar Fields

We consider the Rici power law entropy corrected holographic dark energy (R-PLECHDE)

model in the non-flat FRW Universe, with the future event horizon replaced by R−1/2. We

derive the equation of state (EoS) parameter ωΛ and the evolution of energy density parameter

Ω′
D in presence of interaction between DE and DM. We consider the correspondence between

our R-PLECHDE model and the GCG, the MCG and some scalar fields like tachyon, k-

essence, dilaton and quintessence. The potential and the dynamics of the scalar field models

according to the evolutionary behavior of the interacting power law entropy corrected Ricci

holographic DE model have been reconstructed.
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Motivated by the previous study of Gao et al [90] we consider the entropy corrected version

of Ricci power law entropy corrected HDE as

ρΛ = 3γM2
p R− βM2

p Rα/2, (3.1)

where R represents the Ricci scalar and is given by

R = 6
(
Ḣ + 2H2 +

k

a2

)
. (3.2)

3.2.1 Interacting Model in a Non-Flat Universe

We assume the background spacetime to be the FRW metric given in Eq. (1.57). The

corresponding Friedmann equation in the dimensionless form is given in Eq. (2.83). In order

to preserve the Bianchi identity or local energy-momentum conservation law, i.e. ∇µTµν = 0,

the total energy density ρtot = ρΛ + ρm must satisfy the relation, given in Eq. (1.67), which

represents the energy conservation equation. Since we are considering the interaction between

DE and DM, the two energy densities ρΛ and ρm are preserved separately and the equations

of conservation are as given in Eqs. (2.85) and (2.86) Now we derive the expression for EoS

parameter ωΛ for our R-PLECHDE model. Using the Friedmann equation given in (2.82),

the Ricci scalar, R, can be rewritten in the following form

R = 6
(

Ḣ + H2 +
ρm + ρΛ

3M2
p

)
. (3.3)

Also

Ḣ =
k

a2
− 1

2M2
p

[ρm + ρΛ (1 + ωΛ)] . (3.4)

Adding Eqs. (2.82) and (3.4), we get

Ḣ + H2 =
ρm + ρΛ

3M2
p

− 1
2M2

p

[ρm + ρΛ (1 + ωΛ)] . (3.5)

So, the Ricci scalar given in Eq. (3.3) can be rewritten as

R =
ρm + ρΛ

M2
p

− 3ρΛωΛ

M2
p

. (3.6)

The EoS parameter ωΛ can be derived from Eq. (3.6) as

ωΛ = −
RM2

p

3ρΛ
+

ΩΛ + Ωm

3ΩΛ
. (3.7)
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where we used the relation ρΛ+ρm

3ρΛ
= ΩΛ+Ωm

3ΩΛ
.

Substituting the expression of the energy density ρΛ given in Eq. (3.1) in Eq. (3.7), also using

Eq. (2.82) we get

ωΛ = − 1
3(3γ − βR

α
2
−1)

+
(1 + Ωk)

3ΩΛ
. (3.8)

This is the EoS parameter for the R-PLECHDE model.

For completeness, we can also derive the expression of the deceleration parameter q, which

is defined as

q = − äa

ȧ2
= − ä

aH2
= −1− Ḣ

H2
. (3.9)

The deceleration parameter, combined with the Hubble parameter H and the dimensionless

density parameters, form a set of very useful parameters for the description of the astrophysical

observations. Taking the time derivative of the Friedmann given in Eq. (2.82) and using Eqs.

(2.83), (2.85) and (2.86), it is possible to write the deceleration parameter q as

q =
1
2

[1 + Ωk + 3ΩΛωΛ] . (3.10)

Substituting the expression of the EoS parameter ωΛ given in Eq. (3.8) we obtain

q = 1− 1
2

(
ΩΛ

3γ − βRα/2−1

)
+ Ωk. (3.11)

We can now derive the important quantities of the R-PLECHDE model in the limiting case,

for a flat dark dominated Universe, i.e. when β = 0, ΩΛ = 1 and Ωk=0.

The energy density ρΛ given in Eq. (3.1) reduces to

ρΛ = 3γM2
p R. (3.12)

From the Friedmann equation given in (2.82), we can derive the following expressions for the

Hubble parameter H and the Ricci scalar curvature R

H =
6γ

12γ − 1

(
1
t

)
, (3.13)

R =
36γ

(12γ − 1)2

(
1
t2

)
. (3.14)

45



Finally, the EoS parameter ωΛ and deceleration parameter q respectively, reduce, to

ωΛ =
1
3
− 1

9γ
, (3.15)

q = 1− 1
6γ

. (3.16)

Using Eq. (3.14) in (3.12) we can write the energy density as

ρΛ = 3γM2
p

( 36γ

(12γ − 1)2
1
t2

)
. (3.17)

From Eq. (3.15) we see that, the EoS parameter of DE becomes ωΛ < −1, for γ < 1/12,

hence the phantom divide can be crossed. Since the Ricci scalar R diverges at γ = 1/12, this

value of γ can not be taken into account. From Eq. (3.16), we obtain that the acceleration

starts at γ ≤ 1/6, where the quintessence regime is started (ωΛ ≤ −1/3).

3.3 Correspondence between R-PLECHDE and Scalar Fields

In this Section we establish a correspondence between the interacting Ricci power law entropy

corrected model and the tachyon, k-essence, dilaton and quintessence scalar field models, the

GCG and the MCG. The importance of this correspondence is that the scalar field models

are an effective description of an underlying theory of DE. Therefore, it is worthwhile to

reconstruct the potential and the dynamics of scalar fields according the evolutionary form

of Ricci scalar model. For this purpose, we first compare the energy density of Ricci scale

model given in Eq. (3.1) with the energy density of corresponding scalar field model. Then

we equate the EoS parameters of scalar field models with the EoS parameter of Ricci scalar

model given in Eq. (3.8).

Interacting Tachyon Model:

The effective Lagrangian of the tachyon scalar field is motivated from open string field theory

[94] and it is a successful candidate for cosmic acceleration. It has the Lagrangian given in

Eq. (2.42). The energy density, ρΦ, and pressure, pΦ, and the EoS parameter, ωΦ, for the

tachyon field are given, respectively, in Eqs. (2.43), (2.44), and (2.45). We derive the following

expression for the potential V (Φ) of the tachyon field

V (Φ) = ρΛ

√
1− Φ̇2. (3.18)
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Instead, equating Eqs. (3.8) with Eq. (2.45), we obtain the expressions of the kinetic energy

term Φ̇2 for the R-PLECHDE as

Φ̇2 = 1 + ωΛ = 1− 1

3
(
3γ − βR

α
2
−1
) +

(1 + Ωk)
3ΩΛ

. (3.19)

Moreover, using Eq. (3.19) into Eq. (3.18), it is possible to write the potential of the tachyon

as

V (Φ) = ρΛ

√
−ωΛ = ρΛ

√√√√ 1

3
(
3γ − βR

α
2
−1
) − (1 + Ωk)

3ΩΛ
. (3.20)

Using Φ̇ = Φ′H, in Eq. (3.19) we get

Φ′ =
1
H

√√√√1− 1

3
(
3γ − βR

α
2
−1
) +

(1 + Ωk)
3ΩΛ

. (3.21)

Then, from Eq. (3.21), it is possible to derive the evolutionary form of the tachyon scalar

field as

Φ (a)− Φ (a0) =
∫ a

a0

da

aH

√√√√1− 1

3
(
3γ − βR

α
2
−1
) +

(1 + Ωk)
3ΩΛ

, (3.22)

where a0 represents the present value of the scale factor a(t). Here

da

aH
=

da

a(ȧ/a)
=

da

da/dt
= dt, . (3.23)

In the limiting case for flat DE dominated Universe i.e. when β = 0, ΩΛ = 1 and Ωk=0, using

Eq. (3.17) the scalar field expression and potential of the tachyon assume the following form:

Φ(t) =
√

12γ − 1
9γ

t, (3.24)

V (Φ) =
4M2

p

(12γ − 1)

√
γ (1− 3γ)

1
Φ2

. (3.25)

The above equation is obtained by replacing the expression of 1/t2 with the one given in Eq.

(3.24). In this correspondence, the scalar field exist when γ > 1/12, which shows that the

phantom divide can not be achieved.
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Interacting k-essence Model:

Model of k-essence was proposed as a solution to the problem of small cosmological constant

and late-time cosmic acceleration [95]. Its action is defined in Eq. (2.38). According to the

Lagrangian (2.38), the pressure, p(Φ, χ), the energy density, ρ, and EoS parameter, ωK , of

k-essence scalar field are defined in Eqs. (2.39) - (2.41) respectively. In order to consider

the k-essence field as a description of the interacting R-PLECHDE density, we establish the

correspondence between the k-essence EoS parameter, ωK , and the interacting R-PLECHDE

EoS parameters.

The expressions of χ for R-PLECHDE can be obtained by equating Eqs. (3.8) with Eq. (2.41)

as

χ =
ωΛ − 1
3ωΛ − 1

=
−1− 1

3
�
3γ−βR

α
2 −1

� + (1+Ωk)
3ΩΛ

−1− 1�
3γ−βR

α
2 −1

� + (1+Ωk)
ΩΛ

, (3.26)

Equating Eqs. (3.1) and (2.40), we obtain

f (Φ) =
ρΛ

χ(3χ− 1)
. (3.27)

Using Φ̇2 = 2χ and remembering that Φ̇ = Φ′H, we can write

Φ′ =
√

2
H

√√√√√√−1− 1

3
�
3γ−βR

α
2 −1

� + (1+Ωk)
3ΩΛ

−1− 1�
3γ−βR

α
2 −1

� + (1+Ωk)
ΩΛ

. (3.28)

Integrating Eq. (3.28) we can find the evolutionary form of the k-essence scalar field as

Φ (a)− Φ (a0) =
√

2
∫ a

a0

da

aH

√√√√√√−1− 1

3
�
3γ−βR

α
2 −1

� + (1+Ωk)
3ΩΛ

−1− 1�
3γ−βR

α
2 −1

� + (1+Ωk)
ΩΛ

. (3.29)

In the limiting case for flat dark dominated Universe the scalar field and potential of k-essence

field reduce to

Φ(t) =

√
12γ + 2

3
t, (3.30)

and

f(Φ) =
36γM2

p

(12γ − 1)2
1
Φ2

. (3.31)
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Notice that as γ is an arbitrary constant and can assume all real values, therefore, our Universe

may behave in all accelerated regimes (phantom and quintessence).

Interacting Dilaton Model:

Dilaton model arises as a low-energy limit of string theory and is found to be a useful candidate

of DE [96]. The expressions of its pressure and energy density are

pD = −χ + ceλΦχ2, (3.32)

ρD = −χ + 3ceλΦχ2, (3.33)

where c and λ are positive constants and 2χ = Φ̇2. The negative coefficient of the kinematic

term of the dilaton field in the Einstein frame makes a phantom-like behavior for dilaton field.

The EoS parameter for the dilaton scalar field is given by

ωD =
pD

ρD
=
−1 + ceλΦχ

−1 + 3ceλΦχ
. (3.34)

In order to consider the dilaton field as a description of the interacting R-PLECHDE density

we now establish a correspondence between the dilaton EoS parameter and the EoS parameter

of the R-PLECHDE model. By equating Eqs. (3.8) and (3.34), we obtain

ceλΦχ =
ωΛ − 1
3ωΛ − 1

=
−1− 1

3
�
3γ−βR

α
2 −1

� + (1+Ωk)
3ΩΛ

−1− 1�
3γ−βR

α
2 −1

� + (1+Ωk)
ΩΛ

. (3.35)

Since Φ̇2 = 2χ, Eq. (3.35) can be rewritten as

eλΦ/2Φ̇ =
−1− 1

3
�
3γ−βR

α
2 −1

� + (1+Ωk)
3ΩΛ

−1− 1�
3γ−βR

α
2 −1

� + (1+Ωk)
ΩΛ

. (3.36)

Integrating Eq. (3.36) we obtain

eλΦ(a)/2 = eλΦ(a0)/2 +
λ

2
√

c

∫ a

a0

da

aH

√√√√√√−1− 1

3
�
3γ−βR

α
2 −1

� + (1+Ωk)
3ΩΛ

−1− 1�
3γ−βR

α
2 −1

� + (1+Ωk)
ΩΛ

. (3.37)

The evolutionary form of the dilaton scalar field is given by

Φ (a) =
2
λ

log

eλΦ(a0)/2 +
λ√
2c

∫ a

a0

da

aH

√√√√√√−1− 1

3
�
3γ−βR

α
2 −1

� + (1+Ωk)
3ΩΛ

−1− 1�
3γ−βR

α
2 −1

� + (1+Ωk)
ΩΛ

 . (3.38)
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In the limiting case for flat dark dominated Universe with the use of Eq. (3.17) the scalar

field of dilaton field reduces to the following form

Φ(t) =
2
λ

ln

[
λt

√
1 + 6γ

6c

]
. (3.39)

We see that γ can assume all the possible values. Therefore, by this correspondence the

Universe may behave both in phantom and quintessence regime.

Quintessence:

Quintessence is described by a time dependent and homogeneous scalar field, Φ, which is

minimally coupled to gravity and has a potential V (Φ) that leads to the accelerating Universe.

Taking σ = 1 in Eqs. (2.28) - (2.32) one can get the expressions for energy density, pressure ,

EoS, kinetic energy, and scalar potential of this field. Substituting Eq. (3.8) into Eqs. (2.31)

and (2.32), the kinetic energy term Φ̇2 and the quintessence potential energy V (Φ) can be

easily found as follow

Φ̇2 = ρΛ

1− 1

3
(
3γ − βR

α
2
−1
) +

(1 + Ωk)
3ΩΛ

 , (3.40)

V (Φ) =
ρΛ

2

1 +
1

3
(
3γ − βR

α
2
−1
) − (1 + Ωk)

3ΩΛ

 . (3.41)

From Eq. (3.40) we can obtain the evolutionary form of the quintessence scalar field as

Φ (a)− Φ (a0) =
∫ a

a0

da

a

√
3M2

p ΩΛ

(
1− 1

3(3γ − βR
α
2
−1)

+
(1 + Ωk)

3ΩΛ

)
, (3.42)

In the limiting case for flat dark dominated Universe and using Eq. (3.17) the scalar field and

potential of quintessence reduces to

Φ(t) =
6γMp√

3γ(12γ − 1)
ln (t), (3.43)

V (Φ) =
6γ(6γ + 1)
(12γ − 1)2

M2
p exp

[
−
√

3γ(12γ − 1)
3γMp

Φ

]
. (3.44)

The potential exists for all values of γ > 1/12 (which correspond to the quintessence regime).
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3.3.1 Generalized Chaplygin Gas (GCG)

In this Section, we want to obtain a correspondence between the GCG and the R-PLECHDE.

The equations of pressure and density evolution of GCG are given in Eqs. (2.54) and (2.55)

respectively. Using Eq. (2.54) along with EoS we know that

ωΛ = − D

ρθ+1
Λ

, (3.45)

which corresponds to

D = −ωΛρθ+1
Λ . (3.46)

If we now substitute in Eq. (3.46), the EoS parameter of the R-PLECHDE given in Eq. (3.8)

then D can we written as

D = ρθ+1
Λ

[
1

3
(
3γ − βRα/2−1

) − 1
3

(
1 + Ωk

ΩΛ

)]
. (3.47)

From Eq. (2.55) we have B = a3(θ+1)
(
ρθ+1
Λ −D

)
, which can be rewritten in the form

B =
(
a3ρΛ

)θ+1 (1 + ωΛ) . (3.48)

Substituing in Eq. (3.48) the expression of D given in Eq. (3.47), we obtain

B =
[
a3ρΛ

]θ+1

[
1− 1

3
(
3γ − βRα/2−1

) +
1
3

(
1 + Ωk

ΩΛ

)]
. (3.49)

Using Eqs. (3.45), (3.47), and (3.49) in Eqs. (2.31) and (2.32), along with σ = 1 we can

derive the kinetic and the potential terms for the R-PLECHDE as

σΦ̇2 = ρΛ

[
− 1

3
(
3γ − βRα/2−1

) +
1
3

(
1 + Ωk

ΩΛ

)
+ 1

]
, (3.50)

2V (Φ) = ρΛ

[
1 +

1
3
(
3γ − βRα/2−1

) − 1
3

(
1 + Ωk

ΩΛ

)]
. (3.51)

We can obtain the evolutionary form of the GCG by integrating Eq. (3.50)

Φ (a)− Φ (a0) =
∫ a

a0

{[
3M2

p ΩΛ

σ

(
− 1

3
(
3γ − βRα/2−1

) +
1
3

(
1 + Ωk

ΩΛ

)
+ 1

)]}1/2
da

a
.(3.52)
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where we used the relation Φ̇ = Φ′H.

In the limiting case for flat dark dominated Universe with use of Eq. (3.17) the scalar field

and the potential of the GCG reduce to

Φ (t) =
6γMp√

3γσ (12γ − 1)
ln (t) , (3.53)

and

V (Φ) =
6γ(6γ + 1)
(12γ − 1)2

M2
p exp

[
−
√

3γ(12γ − 1)
3γMp

Φ

]
, (3.54)

respectively.

Modified Chaplygin Gas (MCG):

The MCG is a generalization of the GCG with the addition of a barotropic term [97] -[100].

The MCG seems to be consistent with the 5-year WMAP data and supports the unified

model with DE and matter based on GCG. The density evolution of the MCG, calculated by

using the density conservation equation is given in Eq. (2.58). For a homogeneous and time

dependent scalar field, Φ, energy density, pressure and EoS parameter are defined in Eqs.

(2.28) - (2.29), along with σ = 1. Now we want to reconstruct the potential and dynamics of

the scalar field in the light of R-PLECHDE model. We know that the EoS parameter can be

written as

ωΛ = A− D

ρα+1
Λ

, (3.55)

or

D = ρα+1
Λ

(
A− ωΛ

)
. (3.56)

Inserting the EoS parameter ωΛ of the R-PLECHDE given in Eq. (3.8) into Eq. (3.56) we

obtain

D = [ρΛ]θ+1

[
A +

1
3
(
3γ − βRα/2−1

) − 1
3

(
1 + Ωk

ΩΛ

)]
. (3.57)

From Eq. (2.55), we can derive B = a3(θ+1)(A+1)(ρθ+1
Λ − D

A+1) which is equivalent to the

equation

B =
(
a3(A+1)ρΛ

)1+θ
(

1− A− ωΛ

1 + A

)
. (3.58)
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Inserting in Eq. (3.58) the EoS parameter ωΛ of the R-PLECHDE given in Eq. (1.77), we

have

B = [a3(θ+1)(A+1)ρΛ]θ+1

[
1− 1

A + 1

(
A +

1
3
(
3γ − βRα/2−1

) − 1
3

(
1 + Ωk

ΩΛ

))]
. (3.59)

Taking σ = 1 in Eqs. (2.31) and (2.32) and using the result with Eqs. (3.57) and (3.59) we

obtain the kinetic and potential terms for the scalar field as:

σΦ̇2 = ρΛ

[
1− 1

1 + A

(
A +

1
3
(
3γ − βRα/2−1

) − 1
3

(
1 + Ωk

ΩΛ

))]
, (3.60)

2V (Φ) =

[
1 +

1
A + 1

(
A +

1
3
(
3γ − βRα/2−1

) − 1
3

(
1 + Ωk

ΩΛ

))]
(3.61)

We can find the evolutionary form of the MCG scalar field by integrating Eq. (3.60)

Φ (a)− Φ (a0) =
∫ a

a0

{[
3M2

p ΩΛ

σ

(
1− 1

1 + A
(f(a))

)]}1/2
da

a
, (3.62)

where f(a) = A + 1
3(3γ−βRα/2−1) −

1
3

(
1+Ωk
ΩΛ

)
, also we have used the relation Φ̇ = Φ′H. In the

limiting case for flat dark dominated Universe and using Eq. (3.17) the scalar field and the

potential of the MCG reduce to

Φ (t) =
6γMp

(12γ − 1)

√
12γ − 1− 9γA

3γσ (1 + A)
ln (t) , (3.63)

V (Φ) =
54γ2M2

p

(12γ − 1)2

(
6γ + 18γA + 1

9γ (1 + A)

)
1
t2

. (3.64)

In the limiting case of A = 0, Eqs. (3.63) and (3.64) reduce to

Φ (t) =
6γMp√

3γσ (12γ − 1)
ln (t) , (3.65)

V (Φ) =
6γ(6γ + 1)
(12γ − 1)2

M2
p exp

[
−
√

3γ(12γ − 1)
3γMp

Φ

]
. (3.66)

which are the same results obtained for the GCG in the previous paragraph.

Notice that a correspondence has been completed between the interacting R-PLECHDE

model and the tachyon, k-essence, dilaton, GCG, MCG and quintessence scalar field models

in the hypothesis of non-flat FRW Universe.
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Chapter 4

Conclusion

In this dissertation we have studied holographic dark energy with power law entropy correc-

tions replacing the infrared cut-off with R−1/2.

In the first chapter the basics of differential geometry are studied. This is helpful in

understanding the Einstein field equations (EFEs). These equations are the most important

in the study of cosmology, describing the relation between mass and the curvature of the

spacetime. We have restricted the study of the Einstein theory of general relativity only to

the derivation of EFEs by variational principle.

In the remaining chapter an introduction of Cosmology is given. Inclusion of a brief

description of history of the Universe, its components, and the basics of the evolutionary

equations of the most accepted model of the Universe the Friedmann-Robertson-Walker (FRW)

Universe make the reader able to understand the further work presented in this thesis. Some

problems of cosmology are discussed in the end of this chapter. These problems are Horizon

problem, Flatness Problem and the Fine tuning problem. Since inflation is the best proposed

solution of most of the cosmological problems, so a brief introduction of inflation is also

included.

The second chapter is devoted to the study of the most important discovery of the 20th

century that our Universe is expanding and this expansion is at an accelerating rate. Some

observational evidences of this hypothesis are supernova and cosmic microwave background.

It is believed that there is some mysterious component of the Universe which causes this

acceleration. A discussion on some candidates of dark energy is completed. The cosmological

constant was introduced as the first candidate but it faces the fine tuning problem.
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The fine tuning problem is that, the simplest form of dark energy, the cosmological con-

stant has the same properties as the vacuum energy in quantum field theory. But the estimated

size of the vacuum energy is ρ ' ρp where ρp ' m4
p is the Planck density. While the observed

value ρ ' 10−123ρp so the observed value is less than the exact value of the vacuum energy

by the factor of 10123 hence the fine tuning of the vacuum energy is required.

As a possible alternative of cosmological constant, some scalar fields are introduced, these

are quintessence, k-essence, tachyon and phantom fields to name some of them. These fields

differ from the cosmological constant, in the sense that they have a time dependent EoS

parameter. In this way they can correspond to cosmological constant if ω = −1, and when

−1 < ω < −1/3 it corresponds to the quintessence phase and it will be phantom phase

Universe for ω < −1. But the phantom divide ω = −1 can not be crossed by the quintessence

or phantom alone.

Some progressive efforts are made by the cosmologists for obtaining a dark energy model

with EoS crossing the phantom divide. The HDE is one of them, it is based on the holographic

principle. by applying this principle the upper bound of the entropy of the Universe can be

obtained. The literature review shows that HDE model is viable if the infrared cut-off is set

as the future event horizon.

Since the HDE density depends on the entropy area relation of the black hole so there

could appear a modification in this relation. A new version of the HDE, named as ECHDE

model has been proposed with these corrections to the entropy of a black hole. For the

ECHDE dominated Universe with H > 0 and L = H−1 works and give the beneficial results

for the inflation in the early Universe. But still there are two unsolved problem in the case of

these scalar fields as well. These are the fine tuning problem and the coincidence problem.

The coincidence problem is that, why densities of dark energy and dark matter are com-

parable today? While they evolve differently in expansion of the Universe and if there is no

interaction between two densities.

These problems are the motivations to study another model of dark energy. In the last

sections of second chapter holographic dark energy and some of its versions, the entropy

corrected and the power law entropy corrected holographic dark energy models, are discussed.

In the third chapter we have studied the power law entropy corrected version of the HDE
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model which is in interaction with DM in the non-flat FRW Universe. We considered the

power law corrected term to the energy density of HDE model. Using the expression of

this modified energy density, we obtained the EoS parameter, deceleration parameter and

evolution of energy density parameter for the interacting R-PLECHDE model. Moreover,

we established a correspondence between our model and the MCG, the tachyon, k-essence,

dilaton and quintessence scalar field models in the hypothesis of non-flat FRW Universe.

These correspondences are important because they allow us to understand how the various

candidates of DE are mutually related to each other. The limiting case of flat dark dominated

Universe without entropy correction were studied in each scalar field and we see that the EoS

parameter is constant in this case and we calculate the scalar field and its potential which

can be obtained by idea of power law expansion of scalar field.

Further, working in this area of research, a similar studies can be done for other versions of

HDE. In particular some one can reconstruct the f(R) theory of gravity (a theory dealing with

studies of the accelerated expansion of the Universe) with the help of the under discussion

models of HDE.
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