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Abstract

This thesis considers a mathematical model for studying the transmission dynamics of

hepatitis C virus (HCV) infection. In addition to the usual compartments for susceptible,

exposed, and infected individuals, this model includes compartments for individuals who

are under treatment and those who have had vaccination. It is assumed that the immunity

provided by the vaccine fades with time. The model exhibits the phenomenon of back-

ward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic

equilibrium when the basic reproductive number R0 < 1. It is shown that the use of a

perfect vaccine can eliminate backward bifurcation completely. Further, the model has an

endemic equilibrium, which is shown to be globally asymptotically stable under certain

restrictions on the parameter values. Numerical simulation results are given to support

the theoretical predictions.
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Chapter 1

Introduction

Infectious (or communicable) diseases, are those diseases which spread by means of contact

between individuals of same or different species of population. Indeed, there have been

great advancements in the field of medicine, new and improved antibiotics have been

developed, and there is a lot of progress in creating new immunization methods, still,

infectious diseases continue to be a main reason of mortality. With the fast increase in

the world population, deforestation, rapid industrial growth, and environmental pollution,

there has been an increase in the outbreak of new infectious diseases as well, such as Lyme

disease, Legionnaires disease, hepatitis C, severe acute respiratory syndrome (SARS), avian

influenza, heartland virus disease and corona virus infection [1]. Due to global warming,

and changes in climatic conditions, diseases such as malaria and yellow fever have spread to

almost all parts of the world. Disease causing agents mainly include viruses and bacteria,

but recently, new infectious agents, named prions, have been discovered. With time,

these infectious agents acquire resistance to drugs and antibiotics, and hence improved

antibiotics have to be made to fight the resistant agent. The emergence of new infectious

diseases has led to an increase in the need to formulate methods to help control their

negative impact on the human population.

Epidemiology refers to the study of disease patterns in a population. It describes the

distribution of disease, and can be used to test different theories related to the field of

health sciences. It is important to analyze the modes of transmission of any disease, so

that various techniques can be developed to counter its effects. Infectious diseases are

a major cause of high death rate, especially in under developed countries. In developed

countries, chronic diseases such as cancer, and heart diseases are a major source of attention

and research. Even though there have been great breakthroughs in the field of medicine

and vaccination is available for prevention of many infectious diseases, these diseases still

are a major source of mortality. The transmission of disease in any population is a very

complex process, it effects different individuals in different ways according to their gender,
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age, occupation, geographical location, and a number of other factors. A mathematical

model makes it easier to understand and predict the large scale dynamics of the disease

spread.

The mathematical model developed in this thesis analyzes the transmission dynamics of

hepatitis C virus (HCV) infection. Ordinary differential equations are used to model the

HCV infection. The basic aim is to meticulously analyze the model and examine various

parameters to explore their effect on transmission of HCV and its control. The model

focuses on studying the effects of imperfect vaccines on the control of hepatitis C. This can

help us achieve awareness about the spread of HCV infection and assess the effectiveness

of immunization techniques.

The model compartmentalizes the total population into six classes: susceptible, exposed,

acutely infectious, chronically infectious, treated, and vaccinated. Individuals are recruited

into the susceptible class by birth and by waning vaccination. Those who are exposed to

the HCV, enter the acutely infectious stage. If treated, they return to the susceptible

class, otherwise they progress to the chronic stage of the infection. Individuals leave

all classes through natural mortality. As a result of these assumptions, a mathematical

model consisting of six differential equations is established, with one independent variable

for every class. Disease free and endemic equilibrium solutions of the mathematical model

are then calculated, and their local and global stability (and instability) is determined.

Using the next generation operator method [2], the threshold quantity, R0, is computed,

which determines wether the disease will persist in the population or not. For R0 < 1,

HCV infection is locally eliminated, whereas for R0 > 1, HCV infection persists in the

population. It is seen that when R0 < 1, a stable disease free equilibrium (DFE) may exist

along with a stable endemic equilibrium, a phenomenon referred to as backward bifurcation.

It is proved that backward bifurcation can be eliminated by the use of a perfect vaccine.

This implies that when R0 < 1 and a perfect vaccine is used, the DFE becomes globally

stable, i.e, the infection is removed completely from the entire population. Also, a unique

endemic equilibrium is shown to be globally stable if certain changes are made in the

parameter values. Finally, these results are verified using numerical techniques.

This thesis is based on formulating a mathematical model which focuses on the spread

and control of HCV infection. In Chapter 1, few basic facts about the HCV infection

are given, and several ways of prevention from this disease are also provided. In Chapter

2, definitions and theorems are presented, which are later used in this thesis. Chapter 3

focuses on developing the mathematical model based on HCV infection, and some results

are established, which are later proved numerically in Chapter 4.
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1.1 Functions of the liver

Since the liver plays a very crucial role in the metabolism of foodstuffs, it has been aptly

termed as the commissariat of the body [3]. The liver is responsible for maintaining normal

blood sugar level in the body. Glucose is stored in the liver in the form of glycogen,

and glycogen can be converted to glucose by the liver. It is the site of synthesis of fat,

cholesterol, many fractions of serum proteins, immune factors and coagulation factors [4].

Liver is the storage site for proteins and vitamins A, C and D. The liver breaks down toxic

and harmful substances, and it is the exclusive producer of urea by deamination of amino

acids, that is, it converts harmful ammonia into urea. Liver produces bile, whose function

is the breakdown of fats during digestion in the small intestine.

1.2 Infections of the liver-hepatitis

The liver is one of the most frequently damaged organs in the body, and it is indeed

fortunate that it has a very large functional reserve. In the experimental animal, it has

been shown that only 10% of the hepatic parenchyma (the functional part of the liver) is

required to maintain normal liver function [5]. The liver can be infected due to a variety

of infectious agents such as parasites, viruses, and bacteria, and the diseases of liver have a

variety of causes such as obstructive, vascular, metabolic and toxic involvements. In most

developed countries, the two major causes of hepatic failure are cirrhosis (scarring) and

liver failure.

Hepatitis is the most common illness of the liver. Hepatitis is the inflammation of the

liver. It is most commonly caused by viruses and is of different types such as hepatitis A,

B, C, D, E and G [6]. Hepatitis can also be caused by over usage of certain drugs, very

heavy alcohol use and certain bacteria.

1.2.1 Acute hepatitis

Acute hepatitis is inflammation of the liver which spans over a period of weeks to a few

months, not lasting more than six months. Most of the times, acute (viral) hepatitis is

asymptomatic, that is, there are no visible signs or symptoms. 80% of the cases of hepatitis

A are asymptomatic, minor illness usually occurs in children. Similarly, hepatitis B and

C patients usually show no symptoms, except for intravenous drug users who might show

signs of jaundice (yellow color of the skin and whites of the eye) associated with hepatitis

B. Acute hepatitis is characterized by moderate liver injury and if symptoms appear, they

include fatigue, loss of appetite, abdominal pain, fever and jaundice. Generally, these

conditions clear over a span of weeks to a few months, and rarely cause death [5].
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1.2.2 Chronic hepatitis

Almost all patients who have had acute hepatitis A, and a large percentage of those with

hepatitis B and C, recover completely. But, some patients develop a long term illness

known as chronic hepatitis (massive necrosis of the liver). Chronic hepatitis lasts for more

than six months and may span over a period of many years. In most people, it is mild

and their condition may improve. But, in others, chronic hepatitis may damage the liver,

cause cirrhosis, hepatic failure, and sometimes liver cancer. Necrosis (destruction of the

cells) of the lobes of the liver, or even the entire liver, can be caused by viral infections and

toxic chemicals. The liver damage may slowly develop in the form of chronic hepatitis, or

it may be in the form of an overwhelming attack leading to death within one day [5].

1.3 HCV infection in Pakistan

HCV infection is a huge health problem worldwide, including Pakistan. About 4% of the

population of Pakistan is infected with HCV. Those who are at high risk include health care

workers (4-6%), hemodialysis patients (24-44%), and Thalassemia patients (24%). After

the year 2000, analysis of eleven studies from different areas of Pakistan show 50-80%

anti HCV positivity in hepatocellular carcinoma patients. Prevalence of HCV infection in

children is 0.4-4.09%. In professional blood donors, there is 20% prevalence of anti HCV

antibodies [7].

A mortality analysis carried out in 2002 in Pakistani hospitals showed that 7% of the

deaths in hospitals were caused by liver disease out of which 1.53% were due to hepatitis,

0.48% were because of liver cancer, and 5.46% of the deaths were due to chronic disease

of the liver [7]. Eight years data from a tertiary care hospital showed that about 20%

deaths were caused by HBV and HCV infections. In different provinces of Pakistan,

the prevalence of chronic liver disease due to HCV is variable. HCV virus infection is

continuously increasing in Pakistan. In studies done before 1997, 16.6% of chronic liver

disease patients were infected with HCV, while recent studies show that 60-70% of chronic

liver disease patients are anti HCV positive [8].

1.4 HCV infection

1.4.1 Modes of transmission

HCV can be transmitted through various routes. Mostly, HCV infection occurs through

parenteral transmission, i.e., to administer a substance into the body through means other

than the alimentary canal, such as intra muscular, intra venous, or by subcutaneous means.

Rarely, non-parenteral transmission may also occur, such as perinatal transmission, sexual
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exposure and household contacts [6].

HCV is usually spread through contact with blood or contaminated needles. In the third

world countries, a major cause of HCV transmission is injection drug use and treatment

with unsterilized equipment. In developed countries such as United States, intravenous

drug use is the most common mode of transmission of HCV. Drug addicts who administer

drugs through injections are not only at a high risk of exposure to HCV, but also hepatitis

B virus (HBV) and HIV. In the subcontinent, one of the major cause of transmission of

chronic HCV infection is through blood transfusions. In Pakistan, 25-83% of chronic liver

disease patients have a history of blood transfusions [7]. Non-sterile medical, surgical and

dental practices by unqualified health care workers, tattooing, ear and nose piercing are

also one of the modes of transmission of HCV virus.

1.4.2 Signs and symptoms, diagnosis and treatment

HCV infection is sometimes known as the ‘silent killer’ or the ‘hidden disease’. This is

because people infected with HCV often exhibit no symptoms at all. But if present, they

may include flu like symptoms, fatigue, general weakness, dark urine, anxiety or depression,

joint pain, loss of appetite and nausea [9].

HCV infection is diagnosed by certain tests known as liver function tests that are performed

on a blood sample. In case of chronic hepatitis, severity of the infection is determined by

liver biopsy, in which a small sample of the liver tissue is obtained and then tested. Acute

HCV infection is difficult to diagnose, since most patients are asymptomatic and the exact

time of acquisition is not definite. Patients who do show symptoms, should be kept under

observation for about twelve weeks. Most likely, spontaneous clearing of infection will

occur. Patients in whom HCV infection is not cleared out after twelve weeks should

be treated with standard interferon therapy and ribavirin. Patients with HCV related

cirrhosis and renal diseases are to be treated with different medications.

1.4.3 Impact on public health and economy

Today, HCV infects an estimated 170 million persons worldwide. Countries with the

highest prevalence of chronic liver infection are Egypt (15%), Pakistan (4.8%) and China

(3.2%) [10]. HCV infection is a public health crisis in Pakistan and most of south east Asia.

At present, there is no vaccine available which can help protect against HCV infection.

HCV is a highly changeable virus. Many endeavors are being made to create a vaccine

against HCV infection, for example, protein vaccines, oral vaccines and epitope vaccines

[11].

In Pakistan, 7.5 million people are infected with HCV. Majority of HCV infected patients

are asymptomatic, more than 50% become chronically infected in about 20 years, and out
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of these, 5% develop liver cancer. At mass level, it is important to create awareness about

public health, and how to control the transmission of HCV. In 2005, the government

of Pakistan started the ‘National Program for Prevention and Control of Hepatitis’ in

the country [7]. The main aim of this program was to provide disposable syringes and

free hepatitis B vaccination, proper waste disposal and provision of blood screening for

transfusions. In Pakistan, the cost of an antibody screening test is about 1000 rupees.

Six months of treatment with combined Pegylated Interferon and Ribavirin costs around

5000 US dollars, whereas conventional interferon costs 1000 dollars per patient [7]. Very

few people can afford such expensive treatment, and most have to rely on government

supported public hospitals, where treatment is not available for everyone.

1.4.4 Prevention of HCV infection

Prevention of hepatitis C depends essentially on preventing the transfer of infected blood.

Instruments used for different medical procedures must always be sterile, for example, a

separate needle and syringe should be used for each individual patient. Before transfusion

of blood, blood screening must be carried out. Those persons who have a history of

jaundice in the previous year must be excluded as blood donors. Whenever possible, blood

products must be sterilized [12]. Sharing needles and syringes, razors and toothbrushes

with an infected person must be avoided. HCV can even be contracted by accidental

pricking with a contaminated needle. In health care facilities, it is essential that health

care workers adhere to universal precautions for control and prevention of HCV infection.

Isolation facilities should be made available in the hospitals, and patients should not be

transferred to other units. Unnecessary blood transfusions should not be carried out.

HCV infection is relatively common among patients who have kidney diseases and are

on dialysis, as well as kidney transplant recipients. So, renal transplantation should be

carried out at the earliest opportunity and patients with acute renal failure should be

treated in a separate unit. Maximum use of disposable articles should be encouraged, so

that they can be incinerated. Laboratory staff must take special precautions such as blood

samples should be taken wearing gloves and protective clothing, cuts and abrasions should

be covered with waterproof dressings.

Practitioners of alternative medical treatments should be educated about methods of min-

imizing blood contamination. Similarly, tattooists, and barbers should be made aware of

the hazards of using contaminated instruments. People who are infected with HCV should

never share tooth brushes, razors, scissors and towels. They should not donate blood or

body organs. Persons with a history of blood transfusions should have their blood tested

for possibility of HCV infection.
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Chapter 2

Preliminaries

2.1 Introduction on compartmental modeling

Mathematical epidemiology uses mathematical methods to formulate models based on dif-

ferent infectious diseases. The basic aim of any mathematical model on a disease is to

determine its process of transmission. In this way, various cost effective means can be

developed to understand, and thereby control the spread of infection. The use of mathe-

matical modeling in immunology and virology is growing very rapidly [13]. Epidemiological

models can be used to identify the risk factors of different diseases which help to find why

everyone in a particular population does not have the same disease uniformly.

One of the earliest mathematical models was given by Bernoulli in 1760, in which he

studied the effect of cowpox vaccination to control smallpox. It was the first time that

a mathematical model based on an infectious disease was used to determine the appli-

cability of a vaccination programme [13]. Over the last century, a lot of work has been

done by various mathematicians on disease epidemiology. In 1906, Hamer developed a

mathematical model based on the epidemiology of measles. In his model, it was assumed

that the rate of new infections depends upon the product of the number of susceptible and

infectious individuals [1]. In 1911, Ross made models comprising of differential equations

that discussed control of malaria. Anderson and May developed models on tuberculosis in

the early 1990’s. In 1927, 1932, and 1933, Kermack and McKendrick formulated classical

mathematical models which had a great impact in the field of epidemiological modeling,

and are still relevant in a large number of epidemic situations. These models opened new

avenues for mathematical analysis of infectious diseases, making way for others in this field

to explore and enhance knowledge and perspectives.

In classical models based on infectious diseases, the size of the total population is taken to

be constant, and is partitioned into mutually exclusive compartments. Consider a simple

infectious disease, which confers immunity after recovery. If the disease is lethal, it includes
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IS R
susceptibles

new infections recovery

removal removal removal

Figure 2.1: Transfer diagram for an endemic SIR model.

IS R
αSI νI

Figure 2.2: Transfer diagram for Kermack-McKendrick model.

death. Let the total population be divided into three mutually exclusive compartments:

susceptible individuals, S, who are at risk of getting the infection; infective individuals, I,

who have the infection; and the recovered individuals, R, who have had the disease and

are now immune to it [13]. This model is known as the endemic SIR model (Fig. 2.1).

In the epidemic SIR model by Kermack and McKendrick, S(t) is the number of individuals

who are susceptible to the disease, I(t) denotes the number of infected individuals, and

R(t) is the number of individuals who have recovered from the disease or are immune to it

(Fig. 2.2). It consists of a system of three differential equations which represent the rate

of change of susceptible, infected and recovered populations

dS

dt
= −αSI, S(0) > 0,

dI

dt
= αSI − νI, I(0) > 0,

dR

dt
= νI, R(0) > 0.

(2.1.1)

The rate at which individuals enter the infective class is directly proportional to the number

of individuals in the infected and susceptible class, i.e., αSI, where α > 0 is the infection

rate, and is a constant parameter. The infective individuals exit the infected compartment

at a rate that is directly proportional to the population of the infectives, i.e., νI, where

ν > 0.

8



S I

Figure 2.3: Transfer diagram for an SI model.

S I

Figure 2.4: Transfer diagram for an SIS model.

The number of compartments in any model depends upon the disease under considera-

tion. The SI model has only the susceptible and infected compartments. In such cases,

the individuals do not recover from the disease. In SIS model, recovery does not give

immunity. In SIRS model, recovery gives only temporary immunity. This means that

persons who recover from the disease again become susceptible. The SEIR model has a

susceptible compartment, S, a compartment in which the disease is latent, E, an infectious

compartment, I, and a recovered compartment, R (Figs. 2.3, 2.4, 2.5, 2.6).

Below, some important definitions and known results are presented, which would provide

a background for the research work in subsequent chapters.

Definition 2.1.1. Epidemic: An infectious disease is said to be an epidemic if it suddenly

outbreaks in an area and spreads quickly in a population. Plague, smallpox, and yellow

fever are major examples of epidemic diseases which have wreaked havoc in the world over

the past few centuries. More recent epidemics include Avian influenza outbreaks in Egypt,

Indonesia, Vietnam and Ebola hemorrhagic fever in Uganda in 2012 [14].

Definition 2.1.2. Endemic: If an infectious disease persists in a population for a long

time, it is said to be an endemic, during which there is a continuous renewal in the sus-

ceptible pool by birth, ineffective or waning vaccination, and reinfection due to temporary

acquired immunity. Hepatitis, AIDS (acquired immune deficiency syndrome), and malaria

are endemic diseases in the world.

Definition 2.1.3. Vaccine efficacy: Vaccine efficacy refers to the ability and effective-

ness of a particular vaccine to produce the desired effect, that is, the capacity of a vaccine

to control an infection.

9



S I R

Figure 2.5: Transfer diagram for an SIRS model.

S E I R

Figure 2.6: Transfer diagram for an SEIR model.

2.2 Disease incidence

Disease incidence is the rate at which new infections occur in a population [15]. Assume

that a simple infectious disease persists in a population. Let N(t) denote the total number

of individuals in the host population at time t. Let S(t) and I(t) denote the number of hosts

in the susceptible and infected compartment, respectively, at time t. Let η be the contact

rate, that is, the average number of contacts with the infectious individuals required by

the susceptible individuals for disease transmission per unit time [1]. Then, the incidence

is given by

ηSI

N
. (2.2.1)

Depending on the disease epidemiology, the disease incidence may be taken to be of many

forms, two most commonly used in mathematical modeling include mass action incidence

(also known as bilinear incidence) and standard incidence (or proportionate incidence).

Definition 2.2.1. Mass Action Incidence: When it is assumed that the total popula-

tion size, N , is a constant, the contact rate, η, will be directly proportional to N .

η ∝ N.

Or

η = βN,

where β is known as the transmission coefficient. Hence, in this case, using equation

(2.2.1), the disease incidence is given by

βS(t)I(t). (2.2.2)
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Definition 2.2.2. Standard Incidence: In the case of standard incidence, N(t) is

assumed to vary with time, and η is taken to be independent of the population size,

N [15]. Hence, the incidence is simply

ηS(t)I(t)

N(t)
. (2.2.3)

2.3 Stability in first order systems

In this section, nonlinear, first order, ordinary differential equations (ODEs) are discussed.

Stability theory and techniques useful in the analysis of systems of such differential equa-

tions are introduced. In particular, methods for determining local and global stability

of equilibrium solutions are studied. The primary aim of this portion of the thesis is

determining the stability of solutions using Liapunov functions.

2.3.1 Non linear systems and equilibrium solutions

An autonomous system of differential equations is a system of ODEs which does not

explicitly depend on the independent variable. Mathematical models on infectious diseases

usually consider autonomous systems, hence, these systems and the conditions for the

existence and uniqueness of their solutions are given in detail in this subsection. Moreover,

equilibrium solutions of autonomous systems are defined, and their local stability is also

discussed below.

Consider an n-dimensional autonomous system of nonlinear ODEs with initial conditions:

dx1

dt
= g1(x1, x2, ..., xn), x1(t0) = x10,

dx2

dt
= g2(x1, x2, ..., xn), x2(t0) = x20,

...

dxn
dt

= gn(x1, x2, ..., xn), xn(t0) = xn0.

The above system can be written as

dX

dt
= G(X), X(t0) = X0, (2.3.1)

where X = (x1, x2, ..., xn)T , G(X) = (g1(x1, x2, ..., xn), g2(x1, x2, ..., xn), ..., gn(x1, x2, ..., xn))T ,

where G does not explicitly depend on t. It is assumed that the interval of existence of

solutions is [t0,∞), and that a unique solution exists to the initial value problem as stated

in the following theorem:
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Theorem 2.3.1. Suppose that for j = 1, 2, ..., n, the functions G and
∂G

∂xj
are continuous

functions of (x1, x2, ..., xn) on Rn. Then, for any initial value X0 ∈ Rn, the system (2.3.1),

with initial condition X(t0) = X0, has a unique solution.

Definition 2.3.2. Equilibrium solution: An equilibrium solution (also known as fixed

point or critical point) of the differential system (2.3.1) is a constant solution X̄ such that

G(X̄) = 0 [16].

An equilibrium solution X̄ of the differential system (2.3.1) is locally stable if all solutions

of the system (2.3.1) which start close to X̄ (meaning that the initial conditions are in a

neighborhood of X̄) always remain close to X̄ for all time, or more formally:

An equilibrium solution X̄ of (2.3.1) is said to be locally stable at t = t0, if for each ε > 0,

there exists a δ > 0 with the property that

|X(t)− X̄| < ε,

whenever

|X0 − X̄| < δ,

for all t ≥ t0.

If the equilibrium solution is not locally stable, it is said to be unstable [16].

An equilibrium solution X̄ of the differential system (2.3.1) is locally asymptotically stable

if X̄ is locally stable and all solutions starting close to X̄ converge to it when t→ ∞, or

more formally:

An equilibrium solution X̄ is said to be locally asymptotically stable if it is locally stable,

and if it is locally attractive, i.e., there exists ξ > 0 such that

|X0 − X̄| < ξ,

implies

lim
t→∞
|X(t)− X̄| = 0.

An equilibrium solution X̄ is said to be globally asymptotically stable if it is locally

asymptotically stable for all initial conditions X0, i.e, if every solution of the differential

system (2.3.1) satisfies

lim
t→∞

X(t) = X̄,
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for any choice of initial conditions.

2.3.2 Routh-Hurwitz criterion

Stability of the solutions of a linear system of ODEs depends upon the roots of the char-

acteristic equation of the Jacobian matrix, which is defined as follows:

Definition 2.3.3. Jacobian Matrix: Let f = g(y) be a set of n equations in n variables

y1, ..., yn, i.e.,

f1 = g1(y1, ..., yn),

...

fn = gn(y1, ..., yn),

then, the Jacobian matrix, J , is defined as

J(y1, ..., yn) =


∂f1

∂y1
. . .

∂f1

∂yn
...

. . .
...

∂fn
∂y1

. . .
∂fn
∂yn

 .

For a linear system to be stable, all roots (eigenvalues) of the characteristic polynomial of

the Jacobian matrix must have negative real parts. The Routh-Hurwitz criterion is not

a method to compute all the roots, it is merely a test that gives necessary and sufficient

conditions for the eigenvalues of the characteristic equation to lie in the negative half of

the complex plane [16].

Theorem 2.3.4. Routh-Hurwitz Criteria: Consider the characteristic polynomial,

p(λ) = λn + c1λ
n−1 + ...+ cn−1λ+ cn,

where, the coefficients ci, i = 1, 2, ...n are real constants. All roots of the polynomial p(λ)

have negative real parts if and only if

Φ1,Φ2, ...,Φn > 0,
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where

Φk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 1 0 0 0 0 . . . 0

c3 c2 c1 1 0 0 . . . 0

c5 c4 c3 c2 c1 1 . . . 0
...

...
...

...
...

... . . .
...

c2k−1 c2k−2 c2k−3 c2k−4 c2k−5 c2k−6 . . . ck

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and cj = 0 if j > k. Φk are known as Hurwitz determinants.

Lienard-Chipart criterion: This criterion is a modified form of the Routh-Hurwitz

criterion. It is a method used to reduce the calculation of Hurwitz determinants. By

using this method, it becomes necessary and sufficient to calculate only even or only odd

Hurwitz determinants.

Consider a polynomial

p(λ) = λn + c1λ
n−1 + ...+ cn−1λ+ cn.

Let Φ1,Φ2, ...,Φn be its Hurwitz determinants. Then, for the given polynomial to have

negative real roots, any one of the following conditions is necessary and sufficient:

1. cn > 0, cn−2 > 0,...,Φ1 > 0, Φ3 > 0,...,

2. cn > 0, cn−2 > 0,...,Φ2 > 0, Φ4 > 0,...,

3. cn > 0, cn−1 > 0, cn−3 > 0,...,Φ1 > 0, Φ3 > 0,...,

4. cn > 0, cn−1 > 0, cn−3 > 0,...,Φ2 > 0, Φ4 > 0,....

2.3.3 Determining local stability in differential equations

(1) Local asymptotic stability in first order ODEs

Let

dx

dt
= g(x) (2.3.2)

be an an autonomous differential equation with an equilibrium solution x̄. Assume that g

has two continuous derivatives in an interval containing x̄. The function g can be expanded

about x̄ using Taylor’s formula. Let u(t) = x(t)− x̄, then

du

dt
= g(x̄) + g′(x̄)u+

g′′(ς)u2

2
,
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where ς is some number between x and x̄. The linearization of (2.3.2) is defined as

du

dt
= g′(x̄)u, (2.3.3)

since g′(x̄) = 0, and second order term u2 can be neglected.

The following theorem is then established:

Theorem 2.3.5. Let g be continuous in an open interval containing x̄, where x̄ is an

equilibrium solution of (2.3.2), then x̄ is locally asymptotically stable if g′(x̄) < 0, and

unstable if g′(x̄) > 0.

(2) Local asymptotic stability in first order systems of ODEs

Consider the autonomous differential system

dX

dt
= G(X), (2.3.4)

and its component form

dx1

dt
= g1(x1, x2, ..., xn), (2.3.5)

...

dxn
dt

= gn(x1, x2, ..., xn),

with an equilibrium solution (x̄1, ..., x̄n). Let G(X) have continuous first order partial

derivatives. Then, the system (2.3.5) can be expanded using Taylor’s formula:

dx1

dt
= g1(x̄1, ..., x̄n) +

∂g1

∂x1
(x̄1, ..., x̄n)(x1 − x̄1) + ...+

∂g1

∂xn
(x̄1, ..., x̄n)(xn − x̄n) + OH(X),

...

dxn
dt

= gn(x̄1, ..., x̄n) +
∂gn
∂x1

(x̄1, ..., x̄n)(x1 − x̄1) + ...+
∂gn
∂xn

(x̄1, ..., x̄n)(xn − x̄n) + OH(X),

where OH(X) symbolizes higher order terms.

Using the fact that g1(x̄1, ..., x̄n),..., gn(x̄1, ..., x̄n) = 0, the linearized system about (x̄1, ..., x̄n)

is defined as

dU

dt
= JU, (2.3.6)

15



where

U =


x1 − x̄1

...

xn − x̄n

 ,

and

J =


∂g1(x1, ..., xn)

∂x1
. . .

∂g1(x1, ..., xn)

∂xn
...

. . .
...

∂gn(x1, ..., xn)

∂x1
. . .

∂gn(x1, ..., xn)

∂xn


∣∣∣∣∣
x1=x̄1,...,xn=x̄n

.

The following theorem is then established:

Theorem 2.3.6. Assume that the first order partial derivatives of g1, ..., gn are continuous

in some open interval containing the equilibrium (x̄1, ..., x̄n) of the system (2.3.5). Then,

the equilibrium is locally asymptotically stable if all the eigenvalues of the Jacobian matrix

have negative real parts.

2.3.4 Liapunov functions

The most important and useful tool in the theory of stability is known as the direct method

of Liapunov. A function known as a Liapunov function is formed in order to establish the

asymptotic stability of an equilibrium solution in some given region.

Definition 2.3.7. A basin of attraction is a subset W in Rn containing the equilibrium

solution with the property that all solutions which begin in W , approach the equilibrium

[16].

By using this method by Liapunov, estimates for the basin of attraction of the equilibrium

can be obtained. In the subsequent discussion, it is assumed that the equilibrium of

interest is the origin.

Definition 2.3.8. Positive definite: Let U be an open subset of Rn, containing the

origin. A real valued C1 function, L : U → R , is called a positive definite function on the

set U if these conditions are satisfied:

1. L(Y) > 0 for all Y ∈ U , with Y 6= 0.

2. L(0)=0.

L is said to be negative definite if -L is positive definite [16].
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Definition 2.3.9. Liapunov function: A positive definite function L, in an open neigh-

borhood, U , of the origin is said to be a Liapunov function for the differential system

dY

dt
= G(Y), if

dL

dt
≤ 0 for all Y ∈ U − {0} [16].

Theorem 2.3.10. Liapunov’s stability theorem: Let
dY

dt
= G(Y) be an autonomous

system of differential equations, where Y ∈ Rn. Let Y* = 0 be an equilibrium solution of

the system, and let U ∈ Rn be a neighborhood of Y* = 0. Also, suppose that L : U → R
is a continuously differentiable positive definite function in U , then Liapunov’s stability

theorem states that:

1. If
dL(Y)

dt
≤ 0, for Y ∈ U − {0}, then 0 is stable,

2. If
dL(Y)

dt
< 0, for Y ∈ U − {0}, then 0 is asymptotically stable,

3. If
dL(Y)

dt
> 0, for Y ∈ U − {0}, then 0 is unstable.

Definition 2.3.11. Positively invariant: A set U ∈ Rn is said to be invariant with

respect to the system
dY

dt
= G(Y), if for any initial value Y0 ∈ U implies that the

solution Y(Y0, t) ∈ U for all time. The set is said to be positively invariant if every

solution that begins in U , stays in U , for all time t > 0.

Theorem 2.3.12. LaSalle’s Invariance Principle: Let Φ be a bounded, positively in-

variant set with respect to the system
dY

dt
= G(Y). Let L : D ∈ Rn → R be a continuously

differentiable function such that
dL(Y)

dt
≤ 0 on Φ. Let P be the set of all points in Φ so

that
dL(Y)

dt
= 0 , and N be the largest invariant set in P . Then, LaSalle’s Invariance

Principle states that all solutions starting in Φ approach N as t→∞ [17].

2.4 Basic reproduction number, R0

The basic reproduction number is defined as the average number of secondary infections

produced in a completely susceptible population when an infectious individual is intro-

duced into it [1]. In other words, R0 is the threshold quantity which determines the

average number of new infectious individuals generated by a single infection carrying in-

dividual in the total time span of the disease. The primary concern about any infection

is wether it spreads in the population, or it may be controlled. A disease free equilibrium

solution is that equilibrium solution of a mathematical model, at which the population
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is free of the disease. In classical epidemiological models, if R0 < 1, it implies that the

one infectious person transmits infection to less than one person, hence the disease will

eventually die out. On the other hand, R0 > 1 means that one infectious person transmits

infection to more than one person, hence the disease spreads in the population. The next

generation method used for finding the basic reproduction number is given below [2].

Consider any simple epidemiological model, with m compartments. The number of people

in each compartment is z = (z1, ..., zm) with zj > 0 for all j = 1, ...,m. Assume that the

first r compartments consist of infected persons. In order to find the basic reproduction

number, it is necessary to separate the infected compartments from the uninfected ones.

Let Υa be the collection of all those compartments which do not have disease, i.e.,

Υa = {z ≥ 0|zj = 0, j = 1, ..., r}.

Now, let Fj(z) represent the rate at which new infections occurs in the compartment j.

Let Vj+(z) represent the rate at which persons move into compartment j.

And Vj−(z) represents the rate at which persons move out of compartment j.

Let Vj = Vj− − Vj+. Suppose that the epidemiological model consists of the following

system of first order ODEs.

dzj
dt

= gj(z) = Fj(z)− Vj(z), (2.4.1)

and the functions Fj , Vj+, and Vj− satisfy the following conditions:

1. For j = 1, ...,m, if z ≥ 0, then Fj ,Vj+,Vj− ≥ 0. This means that all functions are

non negative because they symbolize transfer of persons between compartments.

2. Vj− = 0, if zj = 0, which implies that if there are no individuals in a compartment,

then clearly no individuals can transfer out of it.

3. Fj = 0 when j > r. This assumption implies that for those compartments which do

not have infection, incidence of infection will not take place.

4. For j = 1, ..., r, if z ∈ Υa, then Fj = 0, and Vj+ = 0, which means that if the

population is initially disease free, then it remains disease free.

5. If F(z) is assumed to be 0, then all eigenvalues of the Jacobian matrix, Jg(z0),

evaluated at disease free equilibrium, z0, have negative real part. This implies that

in the absence of new infections, the disease free equilibrium is locally stable.

If the above conditions are satisfied, then the derivatives JF(z0) and JV(z0) are partitioned

as
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JF(z0) =

(
M 0

0 0

)
,

and

JV(z0) =

(
N 0

J3 J4

)
,

where M and N represent

M =
∂Fj
∂zj

(z0),

and

N =
∂Vj
∂zj

(z0).

The quantity MN−1 is known as the next generation matrix, and the basic reproduction

number, R0, is defined as

R0 = τ(MN−1), (2.4.2)

where τ(H) stands for the spectral radius of a matrix H.

A theorem regarding the local stability of disease free equilibrium, given in [2], is repro-

duced below:

Theorem 2.4.1. Consider the model given in (2.4.1), with g(z) satisfying the above given

conditions from 1 to 5. A disease free equilibrium, z0, of the model is locally asymptotically

stable if R0 < 1, and unstable if R0 > 1.
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Chapter 3

Mathematical Analysis of the

HCV Model

The effects of an infectious disease on population dynamics have always been an area

of great interest. Regardless of the preventive measures taken, HCV infection has made

quite an impact on the general health and decline of the world population. ODEs are

an important tool in the study of population dynamics. This chapter focuses on the

formulation of a mathematical model based on HCV infection. The model consists of six

first order ODEs, which take into account the spread of HCV infection by acutely infected

as well as chronically infected individuals. The main aim of this chapter is to asses the use

of imperfect immunization on the control and spread of this lethal infection. A vaccine for

HCV infection has not been created yet, although many efforts to do so are under way.

This model shows that an imperfect vaccine reduces the number of individuals who are

exposed to HCV, and a perfect vaccine completely removes them.

Some mathematical models on HCV infection have been formulated recently, but much

work has not been done yet, since HCV infection is a new disease which has been discovered

only a few years ago. In contrast, more research has been carried out on HBV infection.

The modes of transmission of both HCV and HBV are same, i.e., through blood, thus

mathematical models on both infections are somewhat inter related. These models help

in understanding the viral infections, so that they may be combated effectively. Some

mathematical models, that were formed, considered infected cells, uninfected cells and

viral cells in the human host. The basic aim of these models was to study the effects of

liver transplant in patients with HBV and HCV infections. But, in major cases, HBV

or HCV infection is not completely eliminated even after the transplant, and returns to

infect the host in a few years. Thus, these models were extended to include more infected

compartments [18]. However, the newer models also had a few drawbacks; they did not

give an exact description of viral dynamics after liver transplantation. These models were
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again modified to include the desired results, and backward bifurcation analysis was also

carried out [19].

Several epidemiological models have focused on the effects of preventive measures as well

as control of HBV infection [20]. These models incorporate various infectious compart-

ments, such as acute and chronically infected individuals. These have been extended to

include compartments containing individuals who have been vaccinated. This has helped

in creating cost effective disease prevention techniques. Little work has been carried out

on HCV infection, since it is a relatively new disease and much data is not available on ac-

count of the high variability of the HCV. The available models focus only on the infection

carrying compartments, since a vaccine for HCV infection is still in testing phase. The

mathematical model developed here, includes a compartment of individuals undergoing

treatment, and another for vaccinated individuals. As soon as this, presently under trials,

vaccine is developed, the model, given below, will provide measures to estimate the time

required for total elimination of HCV infection from the population.

The following section formally introduces the HCV transmission model.

3.1 Model formulation

Let N(t) be the total population at time t. N(t) is partitioned into mutually exclusive

compartments of susceptible persons, S(t); persons who have been exposed to HCV but

are not yet infectious, E(t); persons who are acutely infected with HCV, I(t); chronically

infected persons, Ch(t); persons undergoing treatment, T (t); and vaccinated persons, V (t),

so that

N(t) = S(t) + E(t) + I(t) + T (t) + Ch(t) + V (t). (3.1.1)

It assumed that the mode of transmission of HCV infection is horizontal, that is, HCV

spreads through direct contact between individuals. It is further assumed that mixing of

individual hosts is homogeneous (every person in the population N(t) has an equal chance

of getting HCV). In other words, the number of contacts between individuals of different

compartments depends only on the number of individuals in each compartment.

To define the dynamics of HCV infection with waning immunity, the following system of

ODEs has been formulated:
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dS

dt
= (1− b)Λ + ρT + αV − (β1I + β2Ch + β3T )S + σCh − µS,

dE

dt
= (β1I + β2Ch + β3T )S + (1− ψ)(β1I + β2Ch + β3T )V − (ε+ µ)E,

dI

dt
= εE − (κ+ µ)I,

dT

dt
= π1κI + π2Ch − (ρ+ µ)T,

dCh
dt

= (1− π1)κI − (π2 + σ + µ)Ch,

dV

dt
= bΛ− (α+ µ)V − (1− ψ)(β1I + β2Ch + β3T )V.

(3.1.2)

The recruitment rate of susceptible humans is Λ. A proportion, b, of these susceptible

individuals is vaccinated. The natural death rate is denoted by µ. The rate of progression

from acute infected class to both treated and chronic infected class is given by κ. The

acutely infected proportion of individuals who enter the treated class is π1. The remaining

infected proportion, (1−π1), progresses to chronic infectious stage. The rate of progression

for treatment from chronic hepatitis is given by π2. The term ε is the rate of progression

from exposed class to acute infected class. The recovery rates due to treatment and

naturally from the chronic group are ρ and σ, respectively.

The transmission coefficients of HCV infection by individuals with acute hepatitis C,

I(t), chronic hepatitis C, Ch(t) and individuals undergoing treatment but not yet cured,

T (t) are β1, β2, and β3, respectively. Following effective contact with I(t), Ch(t), and

T (t), susceptible individuals can acquire HCV at a rate (β1I + β2Ch + β3T ). Also, it is

supposed that the vaccine is not perfect. Let ψ (0 < ψ ≤ 1) represent the vaccine efficacy.

ψ = 1 represents a perfect vaccine, and ψ ∈ (0, 1) corresponds to an imperfect vaccine

which will wane with time. (1 − ψ) corresponds to the decrease in disease transmission

in vaccinated individuals, in contrast to susceptible individuals who are not vaccinated.

Hence, vaccinated individuals acquire HCV at a reduced rate (1− ψ)(β1I + β2Ch + β3T ).

α is the rate at which the vaccine wanes. The variables and parameters are summarized

in Tables 3.1 and 3.2, respectively.
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Table 3.1: Description of variables of the mathematical model (3.1.2).

Variable Description

S(t) Number of susceptible persons

E(t) Number of exposed persons

I(t) Number of acutely infected persons

T (t) Number of persons undergoing treatment

Ch(t) Number of chronically infected persons

V (t) Number of vaccinated persons

Table 3.2: Description of parameters of the mathematical model (3.1.2.)

Parameter Description

Λ recruitment rate

µ natural death rate

α waning rate of vaccine

ψ vaccine efficacy (0 < ψ ≤ 1)

βi transmission coefficients (i=1, 2, 3)

b proportion of vaccinated individuals

κ rate of progression from acute state

to treated and chronic state

ε rate of transfer from exposed class

to acute infected class

π1 proportion of individuals who enter the treated

class from acutely infected class

π2 rate of progression for treatment

from chronic hepatitis

ρ rate of recovery due to treatment

σ rate of recovery from the chronic class
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3.2 Analysis of the model

From equation (3.1.1), it can be seen that

dN

dt
=

dS

dt
+
dE

dt
+
dI

dt
+
dT

dt
+
dCh
dt

+
dV

dt

= Λ− µN.
Solving the first order linear differential equation

dN

dt
= Λ− µN,

and letting t→∞, gives:

N =
Λ

µ
. (3.2.1)

Hence, in the proposed model (3.1.2), the total population is S+E+ I+T +Ch+V = Λ
µ

for all t ≥ 0, provided that S(0) + E(0) + I(0) + T (0) + Ch(0) + V (0) = Λ
µ .

Lemma 3.2.1. The set

Ω =

{
(S,E, I, T, Ch, V ) ∈ R6 : S + E + I + T + Ch + V =

Λ

µ

}
, (3.2.2)

is positively invariant for the mathematical model (3.1.2).

3.2.1 Disease free equilibrium (DFE) and its local stability

For the mathematical model (3.1.2), the DFE, P0, is given by

(S0, E0, I0, T0, Ch0, V0) =

(
(1− b)Λ

µ
+

αbΛ

µ(α+ µ)
, 0, 0, 0, 0,

bΛ

α+ µ

)
. (3.2.3)

The basic reproduction number, R0, is defined as the average number of secondary in-

fections produced by an infected individual in a completely susceptible population. R0

completely describes the dynamics of HCV infection in the proposed population. It is

determined by using the next generation operator method [2] on system (3.1.2).

Using the same notation as in [2], the matrices F and V are given by

F =



0

(β1I + β2Ch + β3T )S + (1− ψ)(β1I + β2Ch + β3T )V

0

0

0

0


,
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Λ

E

I

V

Ch

T

µS

(β1I + β2Ch + β3T )S

κI

(1− ψ)(β1I + β2Ch + β3T )V

σCh

bΛαV
ρT

εE

π1κI + π2Ch

µI

µE

µV

µCh

µT

Figure 3.1: Flow diagram for the HCV transmission model (3.1.2).
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and

V =



(b− 1)Λ− ρT − αV + (β1I + β2Ch + β3T )S + µS

K1E

−εE +K2I

−π1κI − π2Ch +K3T

−(1− π1)κI +K4Ch

−bΛ +K5V + (1− ψ)(β1I + β2Ch + β3T )V


,

where

K1 = ε+ µ, K2 = κ+ µ, K3 = ρ+ µ, K4 = π2 + σ + µ,

K5 = α+ µ.

The infected compartments are E, I, T and Ch. Hence, the matrix F, V, and V−1 evaluated

at P0 are given by

F =


0 β1S0 + (1− ψ)β1V0 β3S0 + (1− ψ)β3V0 β2S0 + (1− ψ)β2V0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

V =


K1 0 0 0

−ε K2 0 0

0 −π1κ K3 −π2

0 (π1 − 1)κ 0 K4

 ,

V−1 =



1

K1
0 0 0

ε

K1K2

1

K2
0 0

επ1κ

K1K2K3
+
επ2(1− π1)κ

K1K2K3K4

(1− π1)κπ2

K2K3K4
+

π1κ

K2K3

1

K3

−π2

K3K4

ε(1− π1)κ

K1K2K4

(1− π1)κ

K2K4
0

1

K4


.

Using the definition in [2], R0 is given by

R0 = τ
(
FV−1

)
,

where τ
(
FV−1

)
is the spectral radius of the matrix FV−1. Hence, R0 is given as
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R0 =
ε

K1K2

(
(1− b)Λ

µ
+
αbΛ

µK5
+ (1− ψ)

bΛ

K5

)[
β1 + β2

κ(1− π1)

K4
+ β3

(π1κK4 + π2κ(1− π1))

K3K4

]
.

(3.2.4)

The following result is now established:

Theorem 3.2.2. The DFE, P0(S0, 0, 0, 0, 0, V0), is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1.

Proof : To prove the local asymptotic stability of P0, it is shown that all roots of the

characteristic polynomial of the Jacobian matrix (computed at P0) have negative real

parts.

The Jacobian matrix, J , of system (3.1.2) calculated at P0 is

J =



−µ 0 −β1(
Λ

µ
− bΛ

K5
) ρ− β3(

Λ

µ
− bΛ

K5
) σ − β2(

Λ

µ
− bΛ

K5
) α

0 −K1 β1A β3A β2A 0

0 ε −K2 0 0 0

0 0 π1κ −K3 π2 0

0 0 (1− π1)κ 0 −K4 0

0 0 −(1− ψ)β1Λb

K5
−(1− ψ)β3Λb

K5
−(1− ψ)β2Λb

K5
−K5



,

where

A =
(1− b)Λ

µ
+
αbΛ

µK5
+ (1− ψ)

bΛ

K5
.

The characteristic equation, in λ, of J is given as

(−µ− λ)(−K5 − λ)
(
λ4 +D1λ

3 +D2λ
2 +D3λ+D4

)
= 0 (3.2.5)

with
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D1 = K1 +K2 +K3 +K4,

D2 = K3K4 +K1K3 +K2K3 +K1K4 +K2K4 +K1K2 − β1εA,

D3 = K1K3K4 +K2K3K4 +K1K2K3 +K1K2K4 − β1εA(K3 +K4)− β3κπ1εA

−(1− π1)β2κεA,

D4 = K1K2K3K4(1−R0).

The characteristic equation (3.2.5) has two negative roots, −µ and −K5. The remaining

four roots are given by the following equation in λ:

λ4 +D1λ
3 +D2λ

2 +D3λ+D4 = 0. (3.2.6)

To compute the signs of roots of (3.2.6), Routh-Hurwitz criteria is used to show that when

R0 < 1, all roots of (3.2.6) have negative real parts. It is necessary and sufficient to show

that D1, D2, D3, D4 > 0 and D1D2D3 > D2
3 +D2

1D4 (using the Lienard-Chipart test). It

can be seen that D1 is always positive, and D4 is positive when R0 < 1. D2 and D3 can

be rewritten in terms of R0 as follows:

D2 = K1K2(1−R0)K3K4 +K1K3 +K2K3 +K1K4 +K2K4 +
β2(1− π1)κεA

K4

+β3
π1κK4 + π2(1− π1)κεA

K3K4
,

D3 = K1K2K3(1−R0) +K1K2K4(1−R0) +K1K3K4 +K2K3K4 + εA
[β2(1− π1)κK3

K4

+
β3π2(1− π1)κ

K4
+ β3

π1κK4 + π2(1− π1)κ

K3

]
.

Clearly, D2 and D3 are also positive when R0 < 1, and it can be verified that

D1D2D3 > D2
3 +D2

1D4. (3.2.7)

It is obvious that D1D2D3 > 0, since D1 > 0, D2 > 0, and D3 > 0 when R0 < 1. Similarly,

D2
3 + D2

1D4 > 0, since D4 > 0 when R0 < 1 Writing D1, D2, D3, and D4 in terms of β1,

β2, and β3 gives:
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D1D2D3 = (K1 +K2 +K3 +K4)
[
3K1K2K3K

2
4 + 3K1K2K

2
3K4 + 3K1K

2
2K3K4

+3K2
1K2K3K4 +K1K

2
3K4 +K2K

2
3K4 − β1εAK

2
3K4 − β1εAK3K

2
4 − (1− π1)β2

κεAK3K4 − β3κπ1εAK3K4 +K1K
2
3K4 +K2

1K
2
3K2 − β1εAK1K

2
3 − β1εAK1K3K4

−(1− π1)β2κεAK1K3 − β3κπ1εAK1K3 +K1K
2
2K

2
3 +K2

2K
2
3K4 − β1εAK

2
3K2

−β1εAK2K3K4 − (1− π1)β2κεAK2K3 − β3κπ1εAK2K3 +K2
1K

2
4K3 +K2

1K
2
2K4

−β1εAK1K3K4 − β1εAK1K
2
4 (1− π1)β2κεAK1K4 − β3κπ1εAK1K4 +K2

2K3K
2
4

+K1K
2
2K4 − β1εAK2K3K4 − β1εAK2K

2
4 − (1− π1)β2κεAK2K4 − β3κπ1εAK2K4

+K2
1K

2
2K3 +K2

1K
2
2K4 − β1εAK1K2K3 − β1εAK1K2K4 − (1− π1)β2κεAK1K2

−β3κπ1εAK1K2 −K1K2K4β1εA−K2K3β1εA−K1K2K3β1εA−K1K2K4β1εA

+β2
1ε

2A2(K3 +K4) + β1β3ε
2A2π1κ+ (1− π1)β1β2ε

2A2κ
]
> 0.

(3.2.8)

Right hand side of (3.2.7) is

D2
3 +D2

1D4 = K2
1K

2
3K

2
4 +K2

2K
2
3K

2
4 +K2

1K
2
2K

2
3 +K2

1K
2
2K

2
4 + β2

1ε
2A2K2

3 + β2
1ε

2A2K2
4︸ ︷︷ ︸

+2K1K2K
2
3K

2
4 + 2K2

1K2K3K
2
4 + 2K2

1K2K3K
2
4 − 2β1εAK1K

2
3K4 − 2β1εAK1K3K

2
4︸ ︷︷ ︸

−2β3κπ1εAK1K3K4 − 2β2(1− π1)κεAK1K3K4 + 2K1K
2
2K

2
3K4 + 2K1K

2
2K3K

2
4︸ ︷︷ ︸

−2β1εAK2K
2
3K4 − 2β1εAK1K2K3K

2
4 − 2β3κπ1εAK2K3K4 − 2β2(1− π1)κεAK2K3K4︸ ︷︷ ︸

+2K2
1K

2
2K3K4 − 2β1εAK1K2K

2
3 − 2β1εAK1K2K3K4 − 2β3κπ1εAK1K2K3︸ ︷︷ ︸

−2β2(1− π1)κεAK1K2K3 − 2β1εAK1K2K3K4 − 2β1εAK1K2K
2
4 − 2β3κπ1εAK1K2K4︸ ︷︷ ︸
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−2β2(1− π1)κεAK1K2K4 + 2β2
1ε

2A2K3K4 + β1β3ε
2A2κπ1K3 + β1β2(1− π1)κε2A2K3︸ ︷︷ ︸

+β1β2(1− π1)κε2A2K4︸ ︷︷ ︸+β2
3κ

2π2
1ε

2A2 + β2
3κ

2(1− π2
1)ε2A2 + β1β3ε

2A2κπ1K3

+β1β2(1− π1)κε2A2K3 + β1β2(1− π1)κε2A2K4 + 2β1β3κπ1ε
2A2K4 + 2β2β3κ

2(1− π1)

ε2A2 + (K1 +K2 +K3 +K4)2
[
K1K2K3K4 −K3K4εAβ1 − εAK3β2(1− π1)κ

−εAβ3[π1κK4 + π2(1− π1)κ]
]
> 0.

(3.2.9)

The terms under brace in (3.2.9) are similar to some terms of (3.2.8), and are canceled. β1

is then replaced with R0 in the remaining terms of (3.2.8) and (3.2.9), and similar terms

are again canceled on both sides. (3.2.9) then becomes

D2
3 +D2

1D4 = −ε
2A2κ2K3π1β2β3(1− π1)

K4
− ε2A2κ2K3β

2
2(1− π1)

K4
− ε2A2κ2π2β

2
3(1− π1)

K4

−ε2A2κ2π1β2β3(1− π1)− ε2A2κ2π2β2β3(1− π1)2

K4
− β3[π1κK4 + π2(1− π1)κ]

K3K4
×

(
2ε2A2β3κπ1K4 + ε2A2K4(1− π1)β2κ

)
− εA

(
K1 +K2 +K3 +K4

)2
×

[
K3K4β1 +K3β2(1− π1)κ+ β3[π1κK4 + π2(1− π1)κ]

]
< 0.

(3.2.10)

Hence, D1D2D3−D2
3 −D2

1D4 > 0. From Routh-Hurwitz criteria, all roots of (3.2.6) have

negative real parts. Therefore, all eigenvalues of the Jacobian matrix of the linearized

system have negative real parts only. Hence, P0 is locally asymptotically stable when

R0 < 1.

When R0 > 1, Descartes‘s rule of signs can be used to show that positive roots of (3.2.6)

exist. Clearly D1 is always positive, and D4 is negative when R0 > 1. Hence, irrespective

of the signs of D2, and D3, equation (3.2.6) will always have at least one positive root,

whenever R0 > 1. Therefore, P0 is unstable when R0 > 1.

3.2.2 Determining endemic equilibria

Endemic equilibria are those equilibria where all those compartments of the model which

involve infection are non-zero. To determine the endemic equilibria of system (3.1.2), and
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to make calculation easier, equations (3.1.1) and (3.2.1) will be used. Putting the value of

N from equation (3.2.1) into (3.1.1) gives:

S(t) =
Λ

µ
− E − I − T − Ch − V.

Hence, the following reduced system of ODEs is formulated:

dE

dt
= (β1I + β2Ch + β3T )(

Λ

µ
− E − I − T − Ch − ψV )−K1E,

dI

dt
= εE −K2I,

dT

dt
= π1κI + π2Ch −K3T,

dCh
dt

= (1− π1)κI −K4Ch,

dV

dt
= bΛ−K5V − (1− ψ)(β1I + β2Ch + β3T )V,

(3.2.11)

in the invariant region Ω1 =

{
E + I + T + Ch + V ≤ Λ

µ

}
.

The endemic equilibrium, P ∗(E∗, I∗, T ∗, C∗h, V
∗), for the system (3.2.11) is determined by

setting the right hand side of the system equal to zero,

where

E∗ =
K2I

∗

ε
,

T ∗ =
(π1κK4 + π2(1− π1)κ)I∗

K4K3
,

C∗h =
(1− π1)κI∗

K4
,

V ∗ =
bΛ

K5 + (1− ψ)
[
β1 + β2

κ(1− π1)

K4
+ β3

(π1κK4 + π2κ(1− π1))

K3K4

]
I∗
,

(3.2.12)

and I∗ is the positive root of the quadratic equation

a1I
∗2 + a2I

∗ + a3 = 0, (3.2.13)
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with

a1 = (1− ψ)B2
[
µK2K3K4 + εµ K3K4

+ (π1κK4 + π2κ(1− π1)) εµ+ εκµ(1− π1)K3

]
,

a2 = B
[
µK2K3K4K5 + εµK3K4K5 + (1− ψ)µK1K2K3K4

+εµK5(π1κK4 + π2(1− π1)κ) + (1− π1)εκµK3K5

−(1− ψ)ΛεBK3K4

]
,

a3 = µK1K2K4K3K5(1−R0),

(3.2.14)

where

B =

[
β1 + β2

κ(1− π1)

K4
+ β3

(π1κK4 + π2κ(1− π1))

K3K4

]
.

The endemic equilibrium of the system(3.2.11) can be then obtained by solving for I∗

from the quadratic equation (3.2.13), and substituting the positive values of I∗ into the

expressions in (3.2.12). S∗ can be determined from

S∗ =
Λ

µ
− E∗ − I∗ − T ∗ − C∗h − V ∗.

From (3.2.14), it can be seen that a1 is always positive for an imperfect vaccine (ψ 6= 1).

Also, a3 is positive when R0 < 1, and negative when R0 > 1. Hence, the following cases

regarding the existence of positive endemic equilibria can be discussed.

The HCV model (3.2.11) has:

Case (i): unique endemic equilibrium if a3 < 0⇔ R0 > 1

Let p1 and p2 be the roots of the quadratic equation (3.2.13). The product of the

roots is p1p2 = a3
a1

. Now, a1 is always positive, and a3 is negative when R0 is greater than

unity, hence, p1p2 < 0. Since, the product of the roots is negative, there exists only one

positive root of equation (3.2.13). Therefore, a unique positive endemic equilibrium exists

for R0 > 1.

Case (ii): a unique endemic equilibrium if a2 < 0, and a3 = 0 or a2
2 − 4a1a3 = 0

For a3 = 0, the quadratic equation (3.2.13) becomes

a1I
∗2 + a2I

∗ = 0.
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Figure 3.2: Backward bifurcation diagram, with parameter values β1 = 0.03, β3 = 0.19, µ =

0.00004, α = 0.1, ρ = 0.152, π1 = .001, π2 = 0.02, ε = 0.022, κ = 0.032, Λ = 0.0052, σ = 0.2,

ψ = 0.95. Here, E.E denotes endemic equilibrium.

Solving the above equation gives I∗ = 0 (which corresponds to the DFE) and I∗ = −a2
a1

.

Since a2 is negative, and a1 is always positive, −a2
a1

will be positive. Hence, a unique,

positive endemic equilibrium exists in this case.

Case (iii): two endemic equilibria if a3 > 0, a2 < 0 and a2
2 − 4a1a3 > 0

This case clearly indicates a possible chance of backward bifurcation (in which case, a

locally asymptotically stable disease free equilibrium exists along with a locally asymptot-

ically stable endemic equilibrium when R0 < 1). Since, for a3 > 0, R0 < 1, the model will

have one DFE and two endemic equilibria. To check for this, the discriminant a2
2 − 4a1a3

is set to zero and is solved for the critical value of R0, denoted by Rc, given by

Rc = 1− a2
2

4a1µK1K2K5K3K4
.

Backward bifurcation occurs for those values of R0 such that Rc < R0 < 1. This is

illustrated by simulating the model with these parameter values: β1 = 0.03, β3 = 0.19,

µ = 0.00004, α = 0.1, ρ = 0.152, π1 = 0.001, π2 = 0.02, ε = 0.022, κ = 0.032, Λ = 0.0052,

σ = 0.2, ψ = 0.95. (These values are used merely for illustration purposes, and may not

be realistic from epidemiological point of view.) The result is shown in Fig. 3.2. It can be

seen that a locally asymptotically stable disease free equilibrium, a locally asymptotically

stable endemic equilibrium, and, an unstable endemic equilibrium coexist when R0 < 1.
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3.3 Backward bifurcation analysis

In classical mathematical models based on disease transmission, the basic reproduction

number being less than unity is a necessary as well as sufficient condition for complete

disease eradication from the population under consideration. However, in some cases,

backward bifurcation phenomenon may occur. From epidemiological point of view, the

importance of backward bifurcation is that the classical requirement of having R0 < 1

becomes necessary, but is no longer sufficient for disease elimination. Backward bifurcation

refers to the effect in which a locally stable disease free equilibrium can coexist with a

locally stable endemic equilibrium when R0 < 1. Hence, it is crucial to study the effects of

this phenomenon on disease control, since R0 < 1 could mean the disease still persisting

in the population. There are several mathematical models based on infectious diseases in

which the effects of backward bifurcation have been discussed [21,22].

To analyze the effects of backward bifurcation in the HCV transmission model, formulated

in this thesis, the following theorem will be used. This theorem is based on the centre

manifold theory and is given in [23].

Theorem 3.3.1. Consider the following general system of ODEs with a parameter φ:

dy

dt
= f(y, φ), f : Rn × R→ R, and f ∈ C2(R× R). (3.3.1)

Without loss of generality, it is assumed that 0 is an equilibrium for system (3.3.1) for all

values of the parameter φ, ( that is f(0, φ) ≡ 0 ∀ φ ).

Assume

A1: A = Dyf(0, 0) =

(
∂fi
∂yj

)
is the linearized matrix of system (3.3.1) around the equi-

librium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues

of A have negative real parts;

A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector u corresponding

to the zero eigenvalue.

Let fk be the kth component of f

and

a =

n∑
k,i,j=1

ukwiwj
∂2fk
∂yi∂yj

(0, 0),

b =

n∑
k,i=1

ukwi
∂2fk
∂yi∂φ

(0, 0).
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The local dynamics of system (3.3.1) around 0 are totally determined by a and b.

Case (i): a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable

and there exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and there

exists a negative and locally asymptotically stable equilibrium;

Case (ii): a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ� 1, 0 is

locally asymptotically stable, and there exists a positive unstable equilibrium;

Case (iii): a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists

a locally asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a

positive unstable equilibrium appears;

Case (iv): a < 0, b > 0. When φ changes from negative to positive, 0 changes its

stability from stable to unstable. Correspondingly, a negative unstable equilibrium becomes

positive and locally asymptotically stable. Particularly, if a > 0 and b > 0, then a backward

bifurcation occurs at φ = 0.

To apply this method, the following change of variables is made on model (3.1.2). Let

y1 = S, y2 = E, y3 = I, y4 = T, y5 = Ch, and y6 = V . Let Y = (y1, y2, y3, y4, y5, y6)T .

Thus, system (3.1.2) can now be written as dY
dt = (f1, f2, f3, f4, f5, f5, f6)T given below

dy1

dt
= f1 = (1− b)Λ + ρy4 + αy6 − (β1y3 + β2y5 + β3y4)y1 + σy5 − µy1,

dy2

dt
= f2 = (β1y3 + β2y5 + β3y4)y1 + (1− ψ)(β1y3 + β2y5 + β3y4)y6 −K1y2,

dy3

dt
= f3 = εy2 −K2y3,

dy4

dt
= f4 = π1ky3 + π2y5 −K3y4,

dy5

dt
= f5 = (1− π1)ky3 −K4y5,

dy6

dt
= f6 = bΛ−K5y6 − (1− ψ)(β1y3 + β2y5 + β3y4)y6.

(3.3.2)

To explore the possibility of backward bifurcation, choose β1 as the bifurcation parameter,

and let R0=1. Solving for β1=β̄1 from R0=1 gives

β1 = β̄1 =
K1K2

εA
− β2(1− π1)κ

K4
− β3(π1kK4 + π2(1− π1)κ)

K3K4
,
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where

A =
(1− b)Λ

µ
+
αbΛ

µK5
+ (1− ψ)

bΛ

K5
.

The Jacobian matrix (J) of system (3.3.2) calculated at the DFE, P0, with β1 = β̄1 is

given as follows:

J =



−µ 0 −β1(
Λ

µ
− bΛ

K5
) ρ− β3(

Λ

µ
− bΛ

K5
) σ − β2(

Λ

µ
− bΛ

K5
) α

0 −K1 β1A β3A β2A 0

0 ε −K2 0 0 0

0 0 π1κ −K3 π2 0

0 0 (1− π1)κ 0 −K4 0

0 0 −(1− ψ)β1Λb

K5
−(1− ψ)β3Λb

K5
−(1− ψ)β2Λb

K5
−K5



.

The characteristic equation (in λ) of the jacobian matrix, J , is given as

(−µ− λ)(−K5 − λ)
(
λ4 +D1λ

3 +D2λ
2 +D3λ+D4

)
= 0 (3.3.3)

where

D1 = K1 +K2 +K3 +K4,

D2 = K3K4 +K1K3 +K2K3 +K1K4 +K2K4 +K1K2 − β1εA,

D3 = K1K3K4 +K2K3K4 +K1K2K3 +K1K2K4 − β1εA(K3 +K4)− β3κπ1εA

−(1− π1)β2κεA,

D4 = K1K2K3K4(1−R0).

For R0=1, the characteristic equation (3.3.3) becomes

λ(−µ− λ)(−K5 − λ)
(
λ3 +D1λ

2 +D2λ+D3

)
= 0 (3.3.4)

Hence, the equation (3.3.4) has a zero eigenvalue and two negative eigenvalues, −µ and

−K5. The remaining three eigenvalues are given by the following cubic equation in λ:
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λ3 +D1λ
2 +D2λ+D3 = 0. (3.3.5)

D1 is clearly positive, and replacing β1 with β̄1 in D2 and D3 gives:

D2 = K3K4 +K1K3 +K2K3 +K1K4 +K2K4 +
β2(1− π1)κεA

K4
+ β3

π1κK4 + π2(1− π1)κεA

K3K4
,

D3 = K1K3K4 +K2K3K4 + εA
[β2(1− π1)κK3

K4
+
β3π2(1− π1)κ

K4
+ β3

π1κK4 + π2(1− π1)κ

K3

]
.

Clearly, D2 and D3 are also positive, and it is easy to verify that D1D2 −D3 is positive

as well. Hence, from Routh-Hurwitz criterion [16], all roots of the characteristic equation

(3.3.5) have negative real parts. Therefore, the Jacobian matrix of the linearized system

has a simple zero eigenvalue, with all other eigenvalues having negative real parts. Hence,

the Centre Manifold Theory can be used to analyze the dynamics of system (3.3.2).

Corresponding to the zero eigenvalue, the Jacobian matrix J |β1=β̄1
can be shown to have

a right eigenvector denoted by w= [w1, w2, w3, w4, w5, w6]T ,

where

w1 =
1

µ

[
ρ

(
π1κK4 + π2(1− π1)κ

K3K4

)
+ σ

(1− π1)κ

K4
− K1K2

εA

(
(1− b)Λ

µ
+
αbΛ

µK5
+
α(1− ψ)bΛ

K2
5

)]
w3,

w2 =
K2

ε
w3,

w3 = w3,

w4 =
π1κ

K3
w3 +

π2(1− π1)κ

K3K4
w3,

w5 =
(1− π1)κ

K4
w3,

w6 =
−(1− ψ)bΛK1K2

K2
5εA

w3.

Similarly, corresponding to the zero eigenvalue, J |β1=β̄1
has a left eigenvector given by

u=[u1, u2, u3, u4, u5, u6], where

u1 = 0,

u2 =
ε

K1
u3,

u3 = u3,

u4 =
εβ3A

K1K3
u3,
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u5 =
εβ2A

K1K4
u3 +

εβ3π2A

K1K4K3
u3,

u6 = 0.

Calculation of a. For the system (3.3.2), the corresponding non-zero partial derivatives

of fi (i = 1, 2, ..., 6) calculated at the DFE, P0, are given by

∂2f1

∂y1∂y3
= −β1,

∂2f1

∂y1∂y5
= −β2,

∂2f1

∂y1∂y4
= −β3,

∂2f2

∂y1∂y3
= β1,

∂2f2

∂y1∂y5
=

β2,
∂2f2

∂y1∂y4
= β3,

∂2f2

∂y3∂y6
= (1 − ψ)β1,

∂2f2

∂y5∂y6
= (1 − ψ)β2,

∂2f2

∂y4∂y6
= (1 −

ψ)β3,
∂2f6

∂y3∂y6
= −(1− ψ)β1,

∂2f6

∂y3∂y6
= −(1− ψ)β2,

∂2f6

∂y4∂y6
= −(1− ψ)β3.

Consequently, the associated bifurcation coefficient, a, is given by

a =
6∑

k,i,j=1

ukwiwj
∂2fk
∂yi∂yj

(0, 0)

=
εu3w

2
3

K1µ

(
β1 + β2

κ(1− π1)

K4
+ β3

(π1κK4 + π2κ(1− π1))

K3K4

)[
ρ

(
π1κK4 + π2(1− π1)κ

K3K4

)

+σ
(1− π1)κ

K4
− K1K2

εA

(
(1− b)Λ

µ
+
αbΛ

µK5
+
α(1− ψ)bΛ

K2
5

)
− (1− ψ)2µbΛK1K2

K2
5εA

]
.

Calculation of b. The required partial derivative, for the computation of b, is calculated

at the DFE, i.e.,

∂2f2

∂y3∂β1
= A.

Hence, the associated bifurcation coefficient, b, is given as

b =
6∑

k,i=1

ukwi
∂2fk
∂yi∂φ

(0, 0) =
Aεu3w3

K1
> 0.

The coefficient b is clearly always positive, hence Theorem (3.3.1) implies that the system

(3.3.2) experiences backward bifurcation if the coefficient a is positive. Hence, the following

result is formulated.

Theorem 3.3.2. The HCV transmission model (3.3.2) exhibits backward bifurcation at

R0 = 1 whenever the coefficient a is positive.
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3.3.1 Use of a perfect vaccine to eliminate backward bifurcation

The phenomenon of backward bifurcation poses a lot of problems, since it jeopardizes the

possibility of total disease eradication from the population, when the basic reproduction

number is less than unity. Hence, it is instructive to try to eliminate the backward bi-

furcation effect. Since, this effect requires the existence of at least two endemic equilibria

when R0 < 1 [21, 22], it may be removed by considering such a model, in which positive

endemic equilibria cease to exist.

The backward bifurcation behavior of the proposed HCV infection model (3.1.2), can be

eliminated by using a perfect vaccine, i.e., when ψ=1. For ψ=1, the original model now

becomes

dS

dt
= (1− b)Λ + ρT + αV − (β1I + β2Ch + β3T )S + σCh − µS,

dE

dt
= (β1I + β2Ch + β3T )S −K1E,

dI

dt
= εE −K2I,

dT

dt
= π1κI + π2Ch −K3T,

dCh
dt

= (1− π1)κI −K4Ch,

dV

dt
= bΛ−K5V.

(3.3.6)

The system (3.3.6) has a DFE, P0(S0, 0, 0, 0, 0, V0), which is the same as the original

model given in equation (3.1.2). The corresponding vaccinated reproduction number, R̄0,

for model (3.3.6) is given as

R̄0 = R0 |ψ=1=
ε

K1K2

(
(1− b)Λ

µ
+
αbΛ

µK5

)(
β1+β2

κ(1− π1)

K4
+β3

(π1κK4 + π2κ(1− π1))

K3K4

)
.

Consider the quadratic equation (3.2.13), rewritten below for convenience

a1I
∗2 + a2I

∗ + a3 = 0.

For ψ = 1, using the values given in equation (3.2.14), the coefficients a1, a2, and a3 of the

above quadratic equation reduce to a1 = 0, a2 > 0, and a3 ≥ 0 (whenever R̄0 = R0 |ψ=1≤
1). In this case, the quadratic equation (3.2.13) will have just a single non positive solution
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Figure 3.3: Simulation of the model (3.3.6), showing a contour plot of R̄0 as a function of

proportion of vaccinated humans (b) and vaccine efficacy (ψ). The parameter values used are as

given in Table 4.1.

I∗ = −a3

a2
≤ 0.

Hence, whenever R̄0 ≤ 1, the model (3.3.6), with perfect vaccine, has no positive endemic

equilibrium. This clearly suggests the impossibility of backward bifurcation (because for

backward bifurcation to occur, there must exist at least two endemic equilibria whenever

R̄0 ≤ 1).

A contour plot of vaccinated reproduction number (R̄0) as a function of proportion of

vaccinated humans (b) and vaccine efficacy (ψ) is shown in Fig. 3.3. The parameter values

used to generate this diagram are as given in Table 4.1. The contours illustrate a significant

decrease in the vaccinated reproduction number, R̄0, with increasing vaccine efficacy, ψ,

and proportion of vaccinated humans, b. It can be seen that very high vaccine efficacy

and vaccine coverage is required to control HCV infection effectively in the population.

Almost all of the susceptible individuals should have had vaccination, and vaccine efficacy

must be 100% for R̄0 to be less than one, so that the spread of HCV infection is controlled

effectively.

3.4 Global stability of the DFE

The global stability of the DFE, P0, can be proved in the region Ω defined in (3.2.2), as

follows.

Theorem 3.4.1. For a perfect vaccine (ψ = 1), P0 is globally asymptotically stable in Ω
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whenever

R̄0 ≤
S0µ

Λ
< 1,

where

S0 =
(1− b)Λ

µ
+

αbΛ

µ(α+ µ)
.

Proof : Let

V = A1E +A2I +A3T +A4Ch,

where

A1 =
S0µ

Λ
, A2 =

S0K1µ

εΛ
, A3 =

β3S0

K3
, A4 =

β2S0

K4
+
β3S0π2

K3K4
.

Then,

V ′ = A1E
′ +A2I

′ +A3T
′ +A4C

′
h

= A1

[
(β1I + β2Ch + β3T )S −K1E

]
+A2

[
εE −K2I

]
+A3

[
π1κI + π2Ch −K3T

]
+A4

[
(1− π1)κI −K4Ch

]
.

Now

S + E + I + T + Ch + V =
Λ

µ
,

implies that

S ≤ Λ

µ
.

Therefore V ′ becomes

V ′ ≤ A1

[
(β1I + β2Ch + β3T )

Λ

µ
−K1E

]
+A2

[
εE −K2I

]
+A3

[
π1κI + π2Ch −K3T

]

+A4

[
(1− π1)κI −K4Ch

]

= E
[
−K1A1 + εA2

]
+ I
[
β1A1

Λ

µ
−K2A2 + π1κA3 +A4κ(1− π1)

]
+ T

[
β3A1

Λ

µ

−K3A3

]
+ Ch

[
β2A1

Λ

µ
+ π2A3 −K4A4

]
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= I
[
S0

(
β1 + β2

κ(1− π1)

K4
+ β3

(π1κK4 + π2κ(1− π1))

K3K4

)
− S0K2K1µ

εΛ

]

=
IK1K2

ε

[
R̄0 −

S0µ

Λ

]
≤ 0,

whenever

R̄0 ≤
S0µ

Λ
< 1.

Hence, V ′ ≤ 0 for R̄0 ≤
S0µ

Λ
. It should also be noted that

S0µ

Λ
=

Λ
µ −

bΛ
α+µ

Λ
µ

< 1. V ′ = 0

when E = 0, I = 0, T = 0, Ch = 0, which corresponds to the set {(E, I, T, Ch) : E = I =

T = Ch = 0}. In this set, system (3.3.6) is given as

dS

dt
= (1− b)Λ + αV − µS,

dE

dt
=

dI

dt
=

dT

dt
=

dCh
dt

= 0,

dV

dt
= bΛ− (α+ µ)V.

(3.4.1)

When t→∞, the solution of the last equation in the system (3.4.1) becomes

V =
bΛ

α+ µ
. (3.4.2)

Putting this value back into the equation

dS

dt
= (1− b)Λ + αV − µS,

and letting t→∞ gives:

S =
(1− b)Λ

µ
+

αbΛ

µ(α+ µ)
. (3.4.3)

This implies that solutions which started at E = 0, I = 0, T = 0, Ch = 0 approach the

DFE, P0(S0, 0, 0, 0, 0, V0), when t → ∞. Therefore, using LaSalle-Lyapunov invariance

principle, P0 is globally asymptotically stable, i.e., all solutions starting in Ω approach

P0(S0, 0, 0, 0, 0, V0).
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3.5 Global stability of the endemic equilibrium

In this section, global stability of the endemic equilibrium P ∗(S∗, E∗, I∗, T ∗, C∗h, V
∗) is

discussed. The method employed here is given in [24,25]. At the endemic equilibrium P ∗,

using system (3.1.2), the following equations are satisfied:



(1− b)Λ + ρT ∗ + αV ∗ − (β1I
∗ + β2C

∗
h + β3T

∗)S∗ + σC∗h − µS∗ = 0,

(β1I
∗ + β2C

∗
h + β3T

∗)S∗ + (1− ψ)(β1I
∗ + β2C

∗
h + β3T

∗)V ∗ − (ε+ µ)E∗ = 0,

εE∗ − (κ+ µ)I∗ = 0,

π1κI
∗ + π2C

∗
h − (ρ+ µ)T ∗ = 0,

(1− π1)κI∗ − (π2 + σ + µ)C∗h = 0.

bΛ− (α+ µ)V ∗ − (1− ψ)(β1I
∗ + β2C

∗
h + β3T

∗)V ∗ = 0.

(3.5.1)

Let

x1 =
S

S∗
, x2 =

E

E∗
, x3 =

I

I∗
, x4 =

T

T ∗
, x5 =

Ch
C∗h

, and x6 =
V

V ∗
.

Then (3.1.2) can be rewritten as

x′1 = x1

[(1− b)Λ
S∗

(
1

x1
− 1

)
+
ρT ∗

S∗

(
x4

x1
− 1

)
+
αV ∗

S∗

(
x6

x1
− 1

)
− β1I

∗(x3 − 1)

−β2C
∗
h(x5 − 1)− β3T

∗(x4 − 1) +
σC∗h
S∗

(
x5

x1
− 1

)]
,

x′2 = x2

[β1I
∗S∗

E∗

(
x3x1

x2
− 1

)
+
β2C

∗
hS
∗

E∗

(
x1x5

x2
− 1

)
+
β3T

∗S∗

E∗

(
x1x4

x2
− 1

)

+(1− ψ)
β1I
∗V ∗

E∗

(
x3x6

x2
− 1

)
+ (1− ψ)

β2C
∗
hV
∗

E∗

(
x5x6

x2
− 1

)
+ (1− ψ)

β3T
∗V ∗

E∗

(
x4x6

x2
− 1

)]
,

x′3 = x3

[εE∗
I∗

(
x2

x3
− 1

)]
,

x′4 = x4

[π1κI
∗

T ∗

(
x3

x4
− 1

)
+
π2C

∗
h

T ∗

(
x5

x4
− 1

)]
,

x′5 = x5

[
(1− π1)

κI∗

C∗h

(
x3

x5
− 1

)]
,

x′6 = x6

[ bΛ
V ∗

(
1

x6
− 1

)
− (1− ψ)β1I

∗(x3 − 1)− (1− ψ)β2C
∗
h(x5 − 1)− (1− ψ)β3T

∗(x4 − 1)
]
.

(3.5.2)
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The endemic equilibrium P ∗(S∗, E∗, I∗, T ∗, C∗h, V
∗) corresponds to the positive equilibrium

P̄ ∗(1, 1, 1, 1, 1, 1) of (3.5.2). Since, the global stability of P̄ ∗ is the same as that of P ∗, the

global stability of P̄ ∗ is described below instead of P ∗.

The Liapunov function is defined as

L = a1S
∗(x1 − 1− lnx1) + a2E

∗(x2 − 1− lnx2) + a3I
∗(x3 − 1− lnx3)

+a4T
∗(x4 − 1− lnx4) + a5C

∗
h(x5 − 1− lnx5) + a6V

∗(x6 − 1− lnx6),

where a1, a2, a3, a4, a5 and a6 are positive numbers which are determined later.

The time derivative of L along the solutions of system (3.5.2) is given as

L′ = a1(x1 − 1)
[
(1− b)Λ

(
1

x1
− 1

)
+ ρT ∗

(
x4

x1
− 1

)
+ αV ∗

(
x6

x1
− 1

)
− β1I

∗S∗(x3 − 1)

−β2C
∗
hS
∗(x5 − 1)− β3T

∗S∗(x4 − 1) + σC∗h

(
x5

x1
− 1

)]
+ a2(x2 − 1)

[
β1I
∗S∗
(
x3x1

x2

−1

)
+ β2C

∗
hS
∗
(
x1x5

x2
− 1

)
+ β3T

∗S∗
(
x1x4

x2
− 1

)
+ (1− ψ)β1I

∗V ∗
(
x3x6

x2
− 1

)
+ (1− ψ)

β2C
∗
hV
∗
(
x5x6

x2
− 1

)
+ (1− ψ)β3T

∗V ∗
(
x4x6

x2
− 1

)]
+ a3(x3 − 1)

[
εE∗

(
x2

x3
− 1

)]

+a4(x4 − 1)
[
π1κI

∗
(
x3

x4
− 1

)
+ π2C

∗
h

(
x5

x4
− 1

)]
+ a5(x5 − 1)

[
(1− π1)κI∗

(
x3

x5
− 1

)]

+a6(x6 − 1)
[
bΛ

(
1

x6
− 1

)
− (1− ψ)β1I

∗V ∗(x3 − 1)− (1− ψ)β2C
∗
hV
∗(x5 − 1)

−(1− ψ)β3T
∗V ∗(x4 − 1)

]

= a1

(
2(1− b)Λ + ρT ∗ + αV ∗ − β1I

∗S∗ − β2C
∗
hS
∗ − β3T

∗S∗ + σC∗h
)

+ a2

(
β1I
∗S∗

+β2C
∗
hS
∗ + β3T

∗S∗ + (1− ψ)β1I
∗V ∗ + (1− ψ)β2C

∗
hV
∗ + (1− ψ)β3T

∗V ∗
)

+ a3εE
∗

+a4π1κI
∗ + a5(1− π1)κI∗ + a6

(
2bΛ− (1− ψ)β1I

∗V ∗ − (1− ψ)β2C
∗
hV
∗ − (1− ψ)β3

T ∗V ∗
)
− x1

(
a1(1− b)Λ + a1ρT

∗ + a1αV
∗ − a1β1I

∗S∗ − a1β2C
∗
hS
∗ − a1β3T

∗S∗ + a1σ
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C∗h
)

+ x2

(
− a2β1I

∗S∗ − a2β2C
∗
hS
∗ − a2β3T

∗S∗ − a2(1− ψ)β1I
∗V ∗ − a2(1− ψ)β2C

∗
hS
∗

−a2(1− ψ)β3T
∗V ∗ + a3εE

∗)+ x3

(
a1β1I

∗S∗ − a3εE
∗ + a4π1κI

∗ + a5(1− π1κI
∗

+a6(1− ψ)β1I
∗V ∗)

)
+ x4

(
a1ρT

∗ + a1β3T
∗S∗ − a4π1κI

∗ − a4π2C
∗
h + a6(1− ψ)

β3T
∗V ∗

)
+ x5

(
a1β2C

∗
hS
∗ + a1σC

∗
h + a4π2C

∗
h − a5(1− π1)κI∗ + a6(1− ψ)β2C

∗
hV
∗)

−x6

(
− a1αV

∗ + a6bΛ− a6(1− ψ)β1I
∗V ∗ − a6(1− ψ)β2C

∗
hV
∗ − a6(1− ψ)β3T

∗V ∗
)

+x5x6

(
a2(1− ψ)β2C

∗
hV
∗ − a6(1− ψ)β2C

∗
hV
∗)+ x1x3

(
− a1β1I

∗S∗ + a2β1I
∗S∗
)

+x1x5

(
− a1β2C

∗
hS
∗ + a2β2C

∗
hS
∗)+ x1x4

(
− a1β3T

∗S∗ + a2β3T
∗S∗
)

+x3x6

(
a2(1− ψ)β1I

∗V ∗ − a6(1− ψ)β1I
∗V ∗

)
+ x4x6

(
a2(1− ψ)β3T

∗V ∗ − a6(1− ψ)

β3T
∗V ∗

)
+

1

x1

(
− a1(1− b)Λ

)
+

1

x6

(
− a6bΛ

)
+
x6

x1

(
− a1αV

∗)+
x3

x5

(
− a5(1− π1κI

∗)
)

+
x5

x4

(
− a4π2C

∗
h

)
+
x3

x4

(
− a4π1κI

∗)+
x2

x3

(
− a3εE

∗)+
x3x6

x2

(
− a2(1− π)β1I

∗V ∗
)

+
x3x1

x2

(
− a2β1I

∗S∗
)

+
x5x1

x2

(
− a2β2C

∗
hS
∗)+

x1x4

x2

(
− a2β3T

∗S∗
)

+
x4x6

x2

(
− a2(1− π)

β3T
∗V ∗

)
+
x5x6

x2

(
− a2(1− π)β2C

∗
hV
∗)+

x4

x1

(
− a1ρT

∗)+
x5

x1

(
− a1σC

∗
h

)
=: G(x1, x2, x3, x4, x5, x6).

To make G(x1, x2, x3, x4, x5, x6) ≤ 0, positive constants ai(i = 1, 2, ...6) are required to be

chosen. Hence, the following function is defined:

H =
dL

dT
=

K∑
k=1

bk

(
nk − hk,1 − hk,2 − ...− hk,nk

)
, (3.5.3)

where bk ≥ 0 (k = 1, 2, ...,K), and hk,i is an expression which involves only x1, x2, ..., xn

and satisfies Πnk
i=1hk,i = 1. Then, by using the property that the arithmetic mean is

greater than or equal to the associated geometric mean, it can be proved that the function

in (3.5.3), and hence G(x1, x2, x3, x4, x5, x6), is less than or equal to zero.

Now, all the terms of G(x1, x2, x3, x4, x5, x6) which satisfy Πnk
i=1hk,i = 1 are collected.
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[
x1,

1

x1

]
,
[
x6,

1

x6

]
,
[
x1,

1

x6
,
x6

x1

]
,
[ 1

x1
,
x1x3

x2
,
x2

x3

]
,
[ 1

x6
,
x3x6

x2
,
x2

x3

]
,
[ 1

x1
,
x1x4

x2
,
x2

x3
,
x3

x4

]
,

[ 1

x6
,
x4x6

x2
,
x3

x4
,
x2

x3

]
,
[ 1

x6
,
x5x6

x2
,
x3

x5
,
x2

x3

]
,
[ 1

x6
,
x1x3

x2
,
x6

x1
,
x2

x3

]
,

[ 1

x1
,
x1x5

x2
,
x3

x5
,
x2

x3

]
,
[ 1

x1
,
x1x4

x2
,
x3

x5
,
x2

x3
,
x5

x4

]
,
[ 1

x6
,
x6x4

x2
,
x3

x5
,
x2

x3
,
x5

x4

]
,

[ 1

x6
,
x1x4

x2
,
x3

x4
,
x2

x3
,
x6

x1

]
,
[ 1

x6
,
x1x5

x2
,
x3

x5
,
x2

x3
,
x6

x1

]
.

The function H =
∑14

i=1 Pi is now defined, where Pi(i = 1, 2, ..., 14) are given as

P1 = b1

(
2− x1 −

1

x1

)
,

P2 = b2

(
2− x6 −

1

x6

)
,

P3 = b3

(
3− x1 −

1

x6
− x6

x1

)
,

P4 = b4

(
3− 1

x1
− x1x3

x2
− x2

x3

)
,

P5 = b5

(
4− 1

x1
− x1x4

x2
− x3

x4
− x2

x3

)
,

P6 = b6

(
4− 1

x1
− x1x5

x2
− x3

x5
− x2

x3

)
,

P7 = b7

(
5− 1

x1
− x1x4

x2
− x5

x4
− x2

x3
− x3

x5

)
,

P8 = b8

(
3− 1

x6
− x3x6

x2
− x2

x3

)
,

P9 = b9

(
4− 1

x6
− x4x6

x2
− x3

x4
− x2

x3

)
,

P10 = b10

(
5− 1

x6
− x4x6

x2
− x5

x4
− x2

x3
− x3

x5

)
,

P11 = b11

(
4− 1

x6
− x5x6

x2
− x3

x5
− x2

x3

)
,

P12 = b12

(
4− 1

x6
− x1x3

x2
− x6

x1
− x2

x3

)
,

P13 = b13

(
5− 1

x6
− x1x5

x2
− x6

x1
− x2

x3
− x3

x5

)
,

P14 = b14

(
5− 1

x6
− x1x4

x2
− x6

x1
− x2

x3
− x3

x4

)
.

(3.5.4)
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To determine all the coefficients,
(
ai > 0 (i = 1, 2, ..., 6), bi ≥ 0 (i = 1, 2, ..., 14)

)
let

G(x1, x2, x3, x4, x5, x6) = H. Comparing coefficients of G and H, it is seen that the terms

x2, x3, x4, x5, x5x6, x1x3, x1x5, x1x4, x3x6, x4x6,
x4

x1
and

x5

x1
of G do not appear in H. Hence

their coefficients will be equal to zero, i.e.,

−a2β1I
∗S∗ − a2β2C

∗
hS
∗ − a2β3T

∗S∗ − a2(1− ψ)β1I
∗V ∗ − a2(1− ψ)β2C

∗
hS
∗

−a2(1− ψ)β3T
∗V ∗ + a3εE

∗ = 0,

(3.5.5)

a1β1I
∗S∗ − a3εE

∗ + a4π1κI
∗ + a5(1− π1)κI∗ + a6(1− ψ)β1I

∗V ∗ = 0, (3.5.6)

a1ρT
∗ + a1β3T

∗S∗ − a4π1κI
∗ − a4π2C

∗
h + a6(1− ψ)β3T

∗V ∗ = 0, (3.5.7)

a1β2C
∗
hS
∗ + a1σC

∗
h + a4π2C

∗
h − a5(1− π1)κI∗ + a6(1− ψ)β2C

∗
hV
∗ = 0, (3.5.8)

a2(1− ψ)β2C
∗
hV
∗ − a6(1− ψ)β2C

∗
hV
∗ = 0, (3.5.9)

a2(1− ψ)β1I
∗V ∗ − a6(1− ψ)β1I

∗V ∗ = 0, (3.5.10)

a2(1− ψ)β3T
∗V ∗ − a6(1− ψ)β3T

∗V ∗ = 0, (3.5.11)

−a1β1I
∗S∗ + a2β1I

∗S∗ = 0, (3.5.12)

−a1β2C
∗
hS
∗ + a2β2C

∗
hS
∗ = 0, (3.5.13)

−a1β3T
∗S∗ + a2β3T

∗S∗ = 0, (3.5.14)

−a1ρT
∗ = 0, (3.5.15)

−a1σC
∗
h = 0. (3.5.16)
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Since a1 6= 0 ( from (3.5.15) and (3.5.16) ), let ρ = 0 and σ = 0 in all subsequent

calculations. With this assumption, the above equations have the following solution:

a1 = 1,

a2 = 1,

a6 = 1,

a3 =
ε+ µ

ε
,

a4 =
β3S

∗ + (1− ψ)β3V
∗

µ
,

a5 =

(
S∗ + (1− ψ)V ∗

)(
β2 + β3π2

µ

)
π2 + µ

.

(3.5.17)

With ρ = 0 and σ = 0, the system (3.1.2) becomes

dS

dt
= (1− b)Λ + αV − (β1I + β2Ch + β3T )S − µS,

dE

dt
= (β1I + β2Ch + β3T )S + (1− ψ)(β1I + β2Ch + β3T )V − (ε+ µ)E,

dI

dt
= εE − (κ+ µ)I,

dT

dt
= π1κI + π2Ch − µT,

dCh
dt

= (1− π1)κI − (π2 + µ)Ch,

dV

dt
= bΛ− (α+ µ)V − (1− ψ)(β1I + β2Ch + β3T )V,

(3.5.18)

and equations (3.5.1) become



(1− b)Λ + αV ∗ − (β1I
∗ + β2C

∗
h + β3T

∗)S∗ − µS∗ = 0,

(β1I
∗ + β2C

∗
h + β3T

∗)S∗ + (1− ψ)(β1I
∗ + β2C

∗
h + β3T

∗)V ∗ − (ε+ µ)E∗ = 0,

εE∗ − (κ+ µ)I∗ = 0,

π1κI
∗ + π2C

∗
h − µT ∗ = 0,

(1− π1)κI∗ − (π2 + µ)C∗h = 0,

bΛ− (α+ µ)V ∗ − (1− ψ)(β1I
∗ + β2C

∗
h + β3T

∗)V ∗ = 0.

(3.5.19)
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Substituting the values of a1, a2, a3, a4, a5 and a6 into the function G gives:

G(x1, x2, x3, x4, x5, x6) =
(

2Λ + αV ∗ + (ε+ µ)E∗ + β3

(
S∗ + (1− ψ)V ∗

)
T ∗

+
(
S∗ + (1− ψ)V ∗

)(
β2 +

β3π2

µ

)
C∗h

)
− x1

(
µS∗

)
− x6

(
µV ∗

)
− 1

x1

(
(1− b)Λ

)
− 1

x6

(
bΛ
)

−x6

x1

(
αV ∗

)
− x3

x5

((
S∗ + (1− ψ)V ∗

)(
β2 +

β3π2

µ

)
C∗h

)
− x5

x4

(β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h

)

−x3

x4

(β3

µ

(
S∗ + (1− ψ)V ∗

)
π1κI

∗
)
− x2

x3

(
(ε+ µ)E∗

)
− x3x6

x2

(
(1− ψ)β1I

∗V ∗
)

−x1x3

x2

(
β1I
∗S∗
)
− x1x5

x2

(
β2C

∗
hS
∗)− x1x4

x2

(
β3T

∗S∗
)
− x4x6

x2

(
(1− ψ)β3T

∗V ∗
)

−x5x6

x2

(
(1− ψ)β2C

∗
hV
∗).

(3.5.20)

Comparing the remaining coefficients of G and H gives:



b1 + b3 = µS∗,

b2 = µV ∗,

b2 + b3 + b8 + b9 + b10 + b11 + b12 + b13 + b14 = bΛ,

b8 = (1− ψ)β1I
∗V ∗,

b1 + b4 + b5 + b6 + b7 = (1− b)Λ,

b3 + b12 + b13 + b14 = αV ∗,

b4 + b12 = β1I
∗S∗,

b6 + b13 = β2C
∗
hS
∗,

b5 + b7 + b14 = β3T
∗S∗,

b11 = (1− ψ)β2C
∗
hV
∗,

b9 + b10 = (1− ψ)β3T
∗V ∗,

b4 + b5 + b6 + b7 + b8 + b9 + b10 + b11 + b12 + b13 + b14 = (ε+ µ)E∗,

b5 + b9 + b14 =
β3

µ

(
S∗ + (1− ψ)V ∗

)
π1κI

∗,

b6 + b7 + b10 + b11 + b13 =
(
S∗ + (1− ψ)V ∗

)(
β2 +

β3π2

µ

)
C∗h,

b7 + b10 =
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h.

(3.5.21)
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Putting values of b2, b8, and b11 in the above equations and using (3.5.19) reduces them

to:



b1 + b3 = µS∗,

b3 + b9 + b10 + b11 + b12 + b13 + b14 = bΛ− µV ∗ − (1− ψ)
(
β1I ∗+β2C

∗
h

)
V ∗,

b1 + b4 + b5 + b6 + b7 = (1− b)Λ,

b3 + b12 + b13 + b14 = αV ∗,

b4 + b12 = β1I
∗S∗,

b6 + b13 = β2C
∗
hS
∗,

b5 + b7 + b14 = β3T
∗S∗,

b9 + b10 = (1− ψ)β3T
∗V ∗,

b4 + b5 + b6 + b7 + b9 + b10 + b12 + b13 + b14 = (ε+ µ)E∗ − (1− ψ)
(
β1I ∗+β2C

∗
h

)
V ∗,

b5 + b9 + b14 =
β3

µ

(
S∗ + (1− ψ)V ∗

)
π1κI

∗,

b6 + b7 + b10 + b13 =
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h + β2C

∗
hS
∗,

b7 + b10 =
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h.

(3.5.22)

The above equations can be written equivalently as:

b1 = µS∗ − αV ∗ + b12 + b13 + b14,

b3 = αV ∗ − b12 − b13 − b14,

b4 = β1I
∗S∗ − b12,

b5 = β3T
∗S∗ − β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h + b10 − b14,

b6 = β2C
∗
hS
∗ − b13,

b7 =
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − b10,

b9 = (1− ψ)β3T
∗V ∗ − b10.

(3.5.23)

To ensure that b1, b3, b4, b5, b6, b7 and b9 are nonnegative, b10, b12, b13, b14 must satisfy the

following inequalities:
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

αV ∗ − µS∗ ≤ b12 + b13 + b14 ≤ αV ∗,

b10 ≤ min
(

(1− ψ)β3T
∗V ∗,

β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h

)
,

b14 − b10 ≤ β3T
∗S∗ − β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h,

b12 ≤ β1I
∗S∗,

b13 ≤ β2C
∗
hS
∗.

(3.5.24)

Finally, using equations (3.5.19), the equality for the constant terms betweenG(x1, x2, x3, x4, x5, x6)

and H is verified, as follows:

2b1 + 2b2 + 3b3 + 3b4 + 4b5 + 4b6 + 5b7 + 3b8 + 4b9 + 5b10 + 4b11 + 4b12 + 5b13 + 5b14

= 2
[
µS∗ − αV ∗ + b12 + b13 + b14

]
+ 2µV ∗ + 3

[
αV ∗ − b12 − b13 − b14

]
+ 3
[
β1I
∗S∗ − b12

]

+4
[
β3T

∗S∗ − β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h + b10 − b14

]
+ 4
[
β2C

∗
hS
∗ − b13

]

+5
[β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − b10

]
+ 3(1− ψ)β1I

∗V ∗ + 4
[
(1− ψ)β3T

∗V ∗ − b10

]

+5b10 + 4(1− ψ)β2C
∗
hV
∗ + 4b12 + 5b13 + 5b14

= 2µS∗ + 2µV ∗ + αV ∗ + 3β1I
∗S∗ + 4β2C

∗
hS
∗ + 4β3T

∗S∗ + 3(1− ψ)β1I
∗V ∗

+4(1− ψ)β2C
∗
hV
∗ + 4(1− ψ)β3T

∗V ∗ +
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h

= 4µS∗ + 4µV ∗ + αV ∗ + 4β1I
∗S∗ + 4β2C

∗
hS
∗ + 4β3T

∗S∗ + 4(1− ψ)β1I
∗V ∗

+4(1− ψ)β2C
∗
hV
∗ + 4(1− ψ)β3T

∗V ∗ +
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − 2µS∗

−β1I
∗S∗ − (1− ψ)β1I

∗V ∗ − 2µV ∗
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= 4(1− b)Λ + 4αV ∗ − 4(β1I
∗ + β2C

∗
h + β3T

∗)S∗ + 4µV ∗ + αV ∗ + 4β1I
∗S∗ + 4β2C

∗
hS
∗

+4β3T
∗S∗ + 4(1− ψ)β1I

∗V ∗ + 4(1− ψ)β2C
∗
hV
∗ + 4(1− ψ)β3T

∗V ∗

+
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − 2µS∗ − β1I

∗S∗ − (1− ψ)β1I
∗V ∗ − 2µV ∗

=
[
4µV ∗ − 4bΛ + 4αV ∗ + 4(1− ψ)(β1I

∗ + β2C
∗
h + β3T

∗)V ∗
]

+ αV ∗

+
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − 2µS∗ − β1I

∗S∗ − (1− ψ)β1I
∗V ∗ − 2µV ∗ + 4Λ

= αV ∗ +
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − 2µS∗ − 2µV ∗ + 4Λ − β1I

∗S∗ − (1− ψ)β1I
∗V ∗

= αV ∗ +
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − 2µS∗ − 2µV ∗ + 4Λ− (ε+ µ)E∗

+
(
β2C

∗
h + β3T

∗)(S∗ + (1− ψ)V ∗
)

= αV ∗ − 2µS∗ − 2µV ∗ + 4Λ− (ε+ µ)E∗ + β3

(
S∗ + (1− ψ)V ∗

)
T ∗ +

(
S∗ + (1− ψ)V ∗

)
(
β2 +

β3π2

µ

)
C∗h

= αV ∗ + 2Λ + (ε+ µ)E∗ + β3

(
S∗ + (1− ψ)V ∗

)
T ∗ +

(
S∗ + (1− ψ)V ∗

)(
β2 +

β3π2

µ

)
C∗h

+2
[
(Λ− µS∗)− (µV ∗)− (ε+ µ)E∗

]

= αV ∗ + 2Λ + (ε+ µ)E∗ + β3

(
S∗ + (1− ψ)V ∗

)
T ∗ +

(
S∗ + (1− ψ)V ∗

)(
β2 +

β3π2

µ

)
C∗h

+2
[(
bΛ− αV ∗ + (β1I

∗ + β2C
∗
h + β3T

∗)S∗
)
− bΛ + αV ∗ + (1− ψ)(β1I

∗ + β2C
∗
h

+β3T
∗)V ∗ − (β1I

∗ + β2C
∗
h + β3T

∗)S∗ − (1− ψ)(β1I
∗ + β2C

∗
h + β3T

∗)V ∗
]

= αV ∗ + 2Λ + (ε+ µ)E∗ + β3

(
S∗ + (1− ψ)V ∗

)
T ∗ +

(
S∗ + (1− ψ)V ∗

)(
β2 +

β3π2

µ

)
C∗h,

which is the same as the constant term of G(x1, x2, x3, x4, x5, x6).
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The constrained conditions (3.5.24) show that the available values of b10, b12, b13, and b14

are not unique. Since, b1, b3, b4, b5, b6, b7 and b9 depend on b10, b12, b13, and b14, their values

will also be non unique.
(
b2, b8, b11 have already been determined uniquely

)
. Therefore,

the form of H in (3.5.3) will be non unique as well. Using inequalities (3.5.24), different

values can be assigned to bi(i = 1, 3, ...14, i 6= 2, 8, 11), and hence H can have different

forms. Cases are discussed in the following three regions.

Case 1: µS > αV,
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h ≤ (1− ψ)β3T

∗V ∗

For case 1, using equations (3.5.23) and (3.5.24), choose b1 = µS∗ − αV ∗, b3 = αV ∗, b4 =

β1I
∗S∗, b5 = β3T

∗S∗, b6 = β2C
∗
hS
∗, b7 = 0, b9 = (1−ψ)β3T

∗V ∗− β3

µ

(
S∗+(1−ψ)V ∗

)
π2C

∗
h,

b10 =
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h, b12 = 0, b13 = 0 and b14 = 0.

Using these values, and the values of b2, b8 and b11 from (3.5.21), the functionG(x1, x2, x3, x4, x5, x6)

becomes

G(x1, x2, x3, x4, x5, x6)=

(µS∗ − αV ∗)
(

2− x1 −
1

x1

)
+ µV ∗

(
2− x6 −

1

x6

)
+ αV ∗

(
3− x1 −

1

x6
− x6

x1

)

+β1I
∗S∗
(

3− 1

x1
− x2

x3
− x1x3

x2

)
+ β3T

∗S∗
(

4− 1

x1
− x2

x3
− x1x4

x2
− x3

x4

)

+β2C
∗
hS
∗
(

4− 1

x1
− x2

x3
− x1x5

x2
− x3

x5

)
+ (1− ψ)β1I

∗V ∗
(

3− 1

x6
− x2

x3
− x3x6

x2

)

+
(

(1− ψ)β3T
∗V ∗ − β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h

)(
4− 1

x6
− x2

x3
− x4x6

x2
− x3

x4

)

+
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h

(
5− 1

x6
− x2

x3
− x4x6

x2
− x3

x5
− x5

x4

)

+(1− ψ)β2C
∗
hV
∗
(

4− 1

x6
− x2

x3
− x5x6

x2
− x3

x5

)
.

(3.5.25)

Case 2: µS = αV,
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h ≥ (1− ψ)β3T

∗V ∗
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For case 2, using equations (3.5.23) and (3.5.24), choose b1 = 0, b3 = αV ∗, b4 = β1I
∗S∗,

b5 = β3

(
S∗+(1−ψ)V ∗

)π1κI
∗

µ
, b6 = β2C

∗
hS
∗, b7 =

β3

µ

(
S∗+(1−ψ)V ∗

)
π2C

∗
h−(1−ψ)β3T

∗V ∗,

b9 = 0, b10 = (1− ψ)β3T
∗V ∗, b12 = 0, b13 = 0 and b14 = 0.

Using the above values, and the values of b2, b8 and b11 from (3.5.21), the function

G(x1, x2, x3, x4, x5, x6) becomes

G(x1, x2, x3, x4, x5, x6)=

µV ∗
(

2− x6 −
1

x6

)
+ αV ∗

(
3− x1 −

1

x6
− x6

x1

)
+ β1I

∗S∗
(

3− 1

x1
− x2

x3
− x1x3

x2

)

+β3

(
S∗ + (1− ψ)V ∗

)π1κI
∗

µ

(
4− 1

x1
− x2

x3
− x1x4

x2
− x3

x4

)
+ β2C

∗
hS
∗
(

4− 1

x1
− x2

x3
− x1x5

x2

−x3

x5

)
+
(β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − (1− ψ)β3T

∗V ∗
)(

5− 1

x1
− x2

x3
− x1x4

x2
− x3

x5
− x5

x4

)

+(1− ψ)β1I
∗V ∗

(
3− 1

x6
− x2

x3
− x3x6

x2

)
+ (1− ψ)β3T

∗V ∗
(

5− 1

x6
− x2

x3
− x4x6

x2
− x3

x5
− x5

x4

)

+(1− ψ)β2C
∗
hV
∗
(

4− 1

x6
− x2

x3
− x5x6

x2
− x3

x5

)
.

(3.5.26)

Case 3: µS < αV,
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h ≥ (1− ψ)β3T

∗V ∗

For case 3, using equations (3.5.23) and (3.5.24), it is assumed that αV ∗ ≤ β3

(
S∗ + (1−

ψ)V ∗
)π1κI

∗

µ
and choose b1 = µS∗, b3 = 0, b4 = β1I

∗S∗, b5 = β3

(
S∗ + (1−ψ)V ∗

)π1κI
∗

µ
−

αV ∗, b6 = β2C
∗
hS
∗, b7 =

β3

µ

(
S∗ + (1 − ψ)V ∗

)
π2C

∗
h − (1 − ψ)β3T

∗V ∗, b9 = 0, b10 =

(1− ψ)β3T
∗V ∗, b12 = 0, b13 = 0 and b14 = αV ∗.

Using the above values, and the values of b2, b8 and b11 from (3.5.21), the function

G(x1, x2, x3, x4, x5, x6) becomes

G(x1, x2, x3, x4, x5, x6)=
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µS∗
(

2− x1 −
1

x1

)
+ µV ∗

(
2− x6 −

1

x6

)
+ β1I

∗S∗
(

3− 1

x1
− x2

x3
− x1x3

x2

)

+
(
β3

(
S∗ + (1− ψ)V ∗

)π1κI
∗

µ
− αV ∗

)(
4− 1

x1
− x2

x3
− x1x4

x2
− x3

x4

)
+

β2C
∗
hS
∗
(

4− 1

x1
− x2

x3
− x1x5

x2
− x3

x5

)
+
β3

µ

(
S∗ + (1− ψ)V ∗

)
π2C

∗
h − (1− ψ)β3T

∗V ∗

(
5− 1

x1
− x2

x3
− x1x4

x2
− x5

x4
− x3

x5

)
+ (1− ψ)β1I

∗V ∗
(

3− 1

x6
− x2

x3
− x3x6

x2

)

+(1− ψ)β3T
∗V ∗

(
5− 1

x6
− x2

x3
− x4x6

x2
− x3

x5
− x5

x4

)
+ (1− ψ)β2C

∗
hV
∗
(

4− 1

x6
− x2

x3

−x5x6

x2
− x3

x5

)
+ αV ∗

(
5− 1

x6
− x2

x3
− x1x4

x2
− x3

x4
− x1x4

x2
− x6

x1

)
.

(3.5.27)

Since, the arithmetic mean is greater than or equal to the geometric mean, G(x1, x2, x3, x4, x5, x6)

≤ 0 in each of the above three cases. The equality holds only when x1 = 1, x6 = 1, and

x2 = x3 = x4 = x5, i.e., {(x1, x2, x3, x4, x5, x6) ∈ Ω : G(x1, x2, x3, x4, x5, x6) = 0} =

{(x1, x2, x3, x4, x5, x6) : x1 = x6 = 1, x2 = x3 = x4 = x5}. This corresponds to the set

∆ = {(S,E, I, T, Ch, V ) : S = S∗, V = V ∗, E/E∗ = I/I∗ = T/T ∗ = Ch/C
∗
h} ⊂ Ω. Hence,

the maximum invariant set of (3.1.2) on the set ∆ is the singleton {P ∗}. Therefore, by

LaSalle’s Invariance principle, the endemic equilibrium P ∗ is globally stable in Ω when

ρ = 0 and σ = 0.

Hence, the following theorem is established:

Theorem 3.5.1. The endemic equilibrium, P ∗(S∗, E∗, I∗, T ∗, C∗h, V
∗), of the system (3.1.2),

with ρ = 0 and σ = 0, is globally asymptotically stable in Ω.
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Chapter 4

Numerical Results

In this section, numerical proofs, for all the results that are obtained in the preceding

sections, are given. All numerical simulations were carried out in MATLAB. These were

performed using the MATLAB ODE solver, ode45. It is first shown that when R̄0 < 1, the

DFE is globally asymptotically stable, and hence, the HCV infection is gradually wiped

out from the population. When the endemic equilibrium is globally asymptotically stable,

the HCV infection persists in the population.

Figs. 4.1 to 4.6 are numerical simulations of system (3.3.6) when R̄0 < 1. Parameter values

are described in Table 4.1, where ψ = 1 for perfect vaccine, β1 = 0.0009, β2 = 0.0006,

β3 = 0.0001 and R̄0 = 0.654. Since, HCV is not in the breakout epidemic phase in the

world, the simulations were run until a steady state (t=100 years) was reached. It is

assumed that the acute phase is more infectious than the chronic stage which is in turn

more infectious than the treatment phase. So β1 > β2 > β3. These simulations shows that

the disease is eliminated when P0 is globally stable.

Figs. 4.7 to 4.12 are numerical simulations of system (3.5.18) when P ∗(S∗, E∗, I∗, T ∗, C∗h, V
∗)

is globally asymptotically stable. The simulations were run until a steady state (t=140

years) was reached. Parameter values used are given in Table 4.1, with ψ = 0.6, ρ = 0,

σ = 0, β1 = 0.0009, β2 = 0.0006, and β3 = 0.0001. These simulations shows that the

disease persists when P ∗ is globally stable.
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Table 4.1: Values of parameters used in the numerical simulation.

Parameter Value (range) Units Source

Λ 85 per year [26,27]

µ 0.085 per year [26,27]

βi (0,1) per year [26,27]

π1 0.26 per year [26,27]

ρ 1.992 per year [27]

ψ (0,1] per year Variable

α 0.006 per year Assumed

b 0.4 per year Assumed

κ 2.085 per year Assumed

ε 0.269 per year Assumed

π2 0.25 per year Assumed

σ 0.004 per year Assumed
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Figure 4.1: Simulation of system (3.3.6). This figure shows the total population of susceptible

individuals as a function of time (years) when P0 is globally stable.
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Figure 4.2: Simulation of system (3.3.6). This figure shows the total population of exposed

individuals as a function of time (years) when P0 is globally stable.
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Figure 4.3: Simulation of system (3.3.6). This figure shows the total population of acutely infected

individuals as a function of time (years) when P0 is globally stable.
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Figure 4.4: Simulation of system (3.3.6). This figure shows the total population of individuals

undergoing treatment as a function of time (years) when P0 is globally stable.
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Figure 4.5: Simulation of system (3.3.6). This figure shows the total population of chronically

infected individuals as a function of time (years) P0 is globally stable.
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Figure 4.6: Simulation of system (3.3.6). This figure shows the total population of vaccinated

individuals as a function of time (years) when P0 is globally stable.
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Figure 4.7: Simulation of system (3.5.18). This figure shows the total population of susceptible

individuals as a function of time (years) when P ∗ is globally stable.
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Figure 4.8: Simulation of system (3.5.18). This figure shows the total population of exposed

individuals as a function of time (years) when P ∗ is globally stable.
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Figure 4.9: Simulation of system (3.5.18). This figure shows the total population of acutely

infected individuals as a function of time (years) when P ∗ is globally stable.
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Figure 4.10: Simulation of system (3.5.18). This figure shows the total population of individuals

undergoing treatment as a function of time (years) when P ∗ is globally stable.

67



0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

Time

N
u
m

b
e
r 

o
f 
C

h
ro

n
ic

a
lly

 in
fe

ct
e
d
 in

d
iv

id
u
a
ls

Figure 4.11: Simulation of system (3.5.18). This figure shows the total population of chronically

infected individuals as a function of time (years) when P ∗ is globally stable.
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Figure 4.12: Simulation of system (3.5.18). This figure shows the total population of vaccinated

individuals as a function of time (years) when P ∗ is globally stable.
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Conclusion

This thesis presents a deterministic model, based on the transmission dynamics of HCV

infection. The formulated model, realistically, allows HCV transmission by acutely and

chronically infected individuals. Most importantly, the model includes a compartment of

vaccinated individuals, and considers the effects of a waning vaccine on the transfer of

individuals from one compartment to another. The model was rigorously analyzed to gain

insights into its qualitative dynamics.

First, the basic reproduction number, R0, is calculated by using the next generation oper-

ator method. The disease free equilibrium and the endemic equilibria are then found, and

different cases regarding the existence of one or more endemic equilibrium solutions are

discussed. It is shown that when two endemic equilibria exist, backward bifurcation may

occur, which jeopardizes the possibility of total disease eradication from the population

under consideration. It is established that the use of a perfect vaccine (that is, a vaccine

which does not wane over time) eliminates backward bifurcation completely when the as-

sociated basic reproduction number is less than one, and hence the disease free equilibrium

becomes globally asymptotically stable. This is proved by using the Liapunov stability

theory. A unique endemic equilibrium is shown to exist, which is proved to be globally

asymptotically stable under certain parameter restrictions. Finally, the global stability of

disease free and endemic equilibrium is proved numerically.

Hence, the following results are established:

1. The model has a locally stable disease free equilibrium whenever the associated

reproduction number is less than unity.

2. The model exhibits the phenomenon of backward bifurcation, suggesting a case where

a stable disease-free equilibrium co-exists with a stable endemic equilibrium, when-

ever the basic reproduction number is less than unity.

3. Using an imperfect Hepatitis C vaccine would have no positive epidemiological im-

pact to reduce the disease burden in a community.
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4. Using a perfect vaccine can result in effective elimination of HCV infection in a

community. That is, the efficacy of the vaccine should be 100% for complete removal

of the disease.
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