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ABSTRACT

Time scales calculus unifies two disparate notions, namely, difference and

differential calculus. The theory of time scales calculus is really still in its

infancy. In this dissertation we discuss the solution of differential equations

on time scales.

Chapter one of this dissertation discusses the calculus on time scales that

involves the notions and definitions of some particular type of derivatives

(delta and nabla-derivatives), some related theorems with proofs, relations

between delta and nabla derivatives, the notion of integration and related

theorems. Some examples are included in order to explain these concepts.

Chapter two introduces dynamic equations on time scales. Initial value

problems for first order dynamic equations on time scales are presented and

some examples are included. The notion of the generalized exponential func-

tion is introduced and some of its properties are discussed. The method of

solution of a second order linear differential equation is also presented.

Chapter three is concerned with the existence and uniqueness of solutions

of linear boundary value problems (BVPs).

In chapter four, we derive new results on the existence and approximation

of solutions of nonlinear BVPs. We use the method of lower and upper solu-

tions [1] to establish a comparison result and an existence theorem. Finally,

we introduce a generalized approximation technique and show that under

some conditions there exists a monotone sequence {wn} of linear problems

converging uniformly to a unique solution of the nonlinear BVP.
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1. PRELIMINARIES

1.1 Introduction

The theory of time scales was introduced by a German mathematician Stefen

Hilger [2] (student of Bernd Aulbach) in his Ph.D thesis in 1988, in order to

unify the theory of continuous and discrete calculus. He reasoned that there

should be a way to connect the classical cases of the reals and integers, and

interpret everything in between these cases. Any non-empty closed subset

(in the usual topology) of the set of real numbers, R, is called a time scale

and is denoted by T. For example:

R, the set of real numbers;

Z, the set of integers ;

N, the set of natural numbers ;

N0, the set of non-negative integers ;

[0, 1] ∪ [2, 3], [0, 1] ∪ N;

etc are time scales; while the following are not time scales:

Q, the set of rational numbers ;

Q′, the set of irrational numbers ;

(0, 1), the open interval between 0 and 1;

and C, the set of complex numbers;

because the first three are not closed in R and the fourth one is not a subset

of R.
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There are many applications of time scales, since hybrid models are very

common in reality. Many populations show population explosion in some

time periods while in others growth is stunted. This type of phenomenon

is not easily modeled by using just differential or difference equations alone.

Moreover, the theory of time scales is applicable to any field in which dy-

namic processes can be described with discrete or continuous models. Since

many economic models are dynamic models with continuous or discrete time

therefore, the results of time scales calculus are directly applicable to eco-

nomics as well. For example, money is invested and accounted at specific

(discrete) times but the growth due to the investment is continuous in time.

The time scales analysis is so useful that it allows one to create the time scale

on a fly and analyze its dynamics.

This chapter discusses some basic definitions and notions of the calculus

on time scales. In section 2 some basic concepts of the calculus on time scales

are presented. Section 3 is devoted to nabla and delta derivatives, while in

section 4 the notion of integration on time scales is discussed. Some examples

are also included. Good references to the material of this chapter include the

book [3] and papers [4, 5, 6, 7].

1.2 Basic definitions and concepts

The following definitions and concepts will be used throughout this work.

Since an arbitrary time scale will not be connected, therefore the jump oper-

ators are defined to describe moving forward and backward on a time scale.

Definition 1.2.1. Forward jump operator : Let T be a time scale. For t ∈ T,

the forward jump operator δ : T→ T is defined by δ(t) = inf{s ∈ T : s > t}.

Definition 1.2.2. Backward jump operator : For t ∈ T, the backward jump

operator ρ : T→ T is defined by ρ(t) = sup{s ∈ T : s < t}.



1. Preliminaries 5

The following four definitions describe the behavior for an arbitrary time

scale T at each point t ∈ T, using the jump operators.

Definition 1.2.3. Right, Left-scattered : A point t ∈ T is called right-

scattered, if δ(t) > t and it is called left-scattered if ρ(t) < t.

Definition 1.2.4. Isolated point : A point t ∈ T is called an isolated point if

t is right-scattered and left-scattered simultaneously.

Definition 1.2.5. Right, Left-dense: A point is called a right-dense point if

δ(t) = t and t < supT, and a left-dense point if ρ(t) = t and t > inf T.

Definition 1.2.6. Dense point : A point t ∈ T is called dense point if t is

right-dense and left-dense simultaneously.

Table 1 shows the classification of points:

Table 1. Classification of points.

t right-scattered t < δ(t) or δ(t) > t

t left-scattered t > ρ(t) or ρ(t) < t

t isolated ρ(t) < t < δ(t)

t right-dense t = δ(t)

t left-dense t = ρ(t)

t dense ρ(t) = t = δ(t).

We can also represent these points by the following diagram:

ut1 u
t1 is right-scattered and left-dense;

u ut2

t2 is left-scattered and right-dense;

u ut3 u
t3 is left-scattered and right-scattered at the same time;
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ut4

t4 is left-dense and right-dense at the same time, while, t3 is isolated point

and t4 is dense point.

A function that indicates the distance from one point to the next is defined

as

Definition 1.2.7. Graininess function: The function µ : T → [0 ∞) de-

fined by µ(t) = δ(t)− t is called the graininess function.

This function along with jump operators, plays an important role in ex-

plaining differences in behavior between the discrete and continuous parts of

a time scale.

In the following example, the forward jump operator δ(t), the back-

ward jump operator ρ(t), right-scattered points, left-scattered points, iso-

lated points, right-dense, left-dense, dense-points and the graininess function

for the sets R and Z are illustrated.

Example 1.2.8. For T = R and t ∈ R,

δ(t) = inf{s ∈ R : s > t} = inf(t,∞) = t,

ρ(t) = sup{s ∈ R : s < t} = sup(−∞, t) = t.

Clearly, δ(t) = t and t < supT = supR = ∞, therefore t is right-dense.

Also, ρ(t) = t and t > inf T = inf R = −∞, therefore t is left-dense.

Hence, t is dense. Further,

µ(t) = δ(t)− t = t− t = 0.

Thus the graininess function of R is zero.

For T = Z and t ∈ Z,

δ(t) = inf{s ∈ Z : s > t} = inf{t + 1, t + 2, t + 3, ...} = t + 1
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and for all t ∈ Z,

ρ(t) = sup{s ∈ Z : s < t} = sup{..., t− 3, t− 2, t− 1} = t− 1.

Since δ(t) = t + 1 > t, therefore t is right-scattered. Also, ρ(t) = t − 1 < t,

implies t is left-scattered. Hence t is an isolated point. Moreover,

µ(t) = δ(t)− t = t + 1− t = 1.

Hence the graininess function of Z is 1.

The above observations may be presented in Table 2:

Table2. Jump operators and graininess functions for R and Z.

time scale T R Z
backward jump operator [ρ(t)] t t− 1

forward jump operator [δ(t)] t t + 1

graininess function [µ(t)] 0 1

1.3 Calculus on time scales

The following notations and definitions are useful for our work:

(1) For the function f : T→ R, the composition f δ : T→ R is defined by

f δ(t) = (foδ)(t) = f(δ(t));

(2) The set Tk is defined by

Tk =




T \ {t1}, if T has a left-scattered maximum t1;

T, otherwise;
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(3) The set Tk is defined by

Tk =




T \ {t2}, if T has a right-scattered minimum t2;

T, otherwise;

(4) While T∗ = Tk ∩ Tk;

(5) A neighborhood N of a point t ∈ T (i.e., N = (t− δ, t + δ)∩T for some

δ > 0) is the set of points in T, indicates a small distance from t.

1.3.1 ∆-Differentiation

Definition 1.3.1. Suppose f : T → R is a function and let t ∈ Tk. Then

the delta derivative, f∆(t) of f at t is defined to be the number (if exists)

with the property that for any given ε > 0 there is a neighborhood U of t

such that

| [f(δ(t))− f(s)]− f∆(t)[δ(t)− s] |≤ ε | δ(t)− s |,

for all s ∈ U .

The function f is said to be delta (or Hilger) differentiable (or simply

differentiable) on Tk if f∆(t) exists for all t ∈ Tk.

The following simple examples illustrate the definition of delta deriva-

tives.

Example 1.3.2.

(i) If f : T→ R is defined by f(t) = α for all t ∈ T, where α ∈ R is constant,

then f∆(t) = 0. Because for any ε > 0,

|f(δ(t))− f(s)− 0(δ(t)− s)| = |α− α| = 0 ≤ ε|δ(t)− s|,

holds for all s ∈ T.
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(ii) If f : T→ R is defined by f(t) = t for all t ∈ T, then f∆(t) = 1. Again,

it is because of the relation

|f(δ(t))− f(s)− 1.(δ(t)− s)| = |δ(t)− s− (δ(t)− s)| = 0 ≤ ε|δ(t)− s|,

holds for all s ∈ T and for any ε > 0.

Some basic relationships of the delta derivative are summarized in the

following theorem.

Theorem 1.3.3. Suppose f : T→ R is a function and let t ∈ T. Then:

(1) If f is differentiable at t, then f is continuous at t.

(2) If f is continuous at t and t is right-scattered, then f is differentiable

at t and

f∆(t) =
f(δ(t))− f(t)

µ(t)
.

(3) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s
,

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(4) If f is differentiable at t, then

f(δ(t)) = f(t) + µ(t)f∆(t).

Proof.

(1) Assume that f is differentiable at t. Choose ε ∈ (0, 1) and define

ε∗ =
ε

1 + |f∆(t)|+ 2µ(t)
.
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Then ε∗ ∈ (0, 1) and by definition of delta derivative, there exists a neigh-

borhood U of t such that

|f(δ(t))− f(s)− (δ(t)− s)f∆(t)| ≤ ε∗|δ(t)− s|, (1.3.1)

for all s ∈ U . Now, for all s ∈ U ∩ (t− ε∗, t+ ε∗), using (1.3.1), it follows that

|f(t)− f(s)| = |{f(δ(t))− f(s)− f∆(t)(δ(t)− s)}−
{f(δ(t))− f(t)− µ(t)f∆(t)}+ (t− s)f∆(t)|
≤ ε∗|δ(t)− s|+ ε∗µ(t) + |t− s||f∆(t)|
≤ ε∗|δ(t)− t + t− s|+ ε∗µ(t) + |t− s||f∆(t)|
≤ ε∗[µ(t) + |t− s|+ µ(t) + |f∆(t)|]
< ε∗[1 + |f∆(t)|+ 2µ(t)] = ε,

Consequently, f is continuous at t.

(2) Assume that f is continuous at t and t is right-scattered. Then by

continuity

lim
s→t

f(δ(t))− f(s)

δ(t)− s
=

f(δ(t))− f(t)

δ(t)− t
=

f(δ(t))− f(t)

µ(t)
.

Hence for given ε > 0, there is a neighborhood U of t such that

|f(δ(t))− f(s)

δ(t)− s
− f(δ(t))− f(t)

µ(t)
| ≤ ε for all s ∈ U,

which implies that

|[f(δ(t))− f(s)]− f(δ(t))− f(t)

µ(t)
[δ(t)− s]| ≤ ε|δ(t)− s| for all s ∈ U.

Hence we get the desired result

f∆(t) =
f(δ(t))− f(t)

µ(t)
.
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(3) Assume f is differentiable at t and t is right-dense. By the definition of

differentiability, there is a neighborhood U of t such that

|[f(δ(t))− f(s)]− f∆(t)[δ(t)− s]| ≤ ε|δ(t)− s| for all s ∈ U,

which implies that

|f(t)− f(s)− f∆(t)[t− s]| ≤ ε|t− s| for all s ∈ U, as δ(t) = t.

It follows that

|f(t)− f(s)

t− s
− f∆(t)| ≤ ε for all s ∈ U, and s 6= t.

Hence,

f∆(t) = lims→t
f(t)− f(s)

t− s
,

as required.

Conversely, suppose that t is right-dense and lims→t
f(t)− f(s)

t− s
exists as

a finite number. In this case f∆(t) = lims→t
f(t)− f(s)

t− s
and for all s ∈ U

with s 6= t there exists ε > 0 such that

|f(t)− f(s)

t− s
− f∆(t)| ≤ ε,

it implies that

|f(t)− f(s)− f∆(t)(t− s)| ≤ ε|t− s|.
Since δ(t) = t, it follows that

|f(δ(t))− f(s)− f∆(t)(δ(t)− s)| ≤ ε|δ(t)− s| for all s ∈ U.

Hence f is differentiable at t.
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(4) If t is right-dense, then δ(t) = t and µ(t) = 0. Hence

f(δ(t)) = f(t) = f(t) + µ(t)f∆(t).

If t is right-scattered, that is, δ(t) > t, then by (2) we have

f(δ(t)) = f(t) + µ(t)
f(δ(t))− f(t)

µ(t)
= f(t) + µ(t)f∆(t).

The delta derivative gives the standard definitions of difference and

differentiation for T = Z and T = R as shown in the following example.

Example 1.3.4.

(i) T = Z: In this case, µ = 1 and for every t ∈ Z,

f∆(t) =
f(δ(t))− f(t)

µ(t)
=

f(t + 1)− f(t)

1
= ∆f(t) = f(t + 1)− f(t).

where ∆ is the forward difference operator.

(ii) T = R: In this case µ = 0 and for every t ∈ R,

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t),

which is the usual derivative.

Theorem 1.3.5. Suppose f, g : T→ R are differentiable at t ∈ T. Then:

(1) The sum f + g : T→ R is differentiable at t and

(f + g)∆(t) = f∆(t) + g∆(t).

(2) The product fg : T→ R is differentiable at t and

(fg)∆(t) = f∆(t)g(t) + f(δ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(δ(t)).
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(3) For any constant α, the product αf is differentiable at t and

(αf)∆(t) = α(f)∆(t).

(4) If f(t)f(δ(t)) 6= 0, then
1

f
is differentiable at t and

(
1

f
)∆(t) = − f∆(t)

f(t)f(δ(t))
.

(5) The quotient
f

g
: T→ R is differentiable, if g(t)g(δ(t)) 6= 0 and

(
f

g
)∆(t) =

f∆(t)g(t)− f(t)g∆(t)

g(t)g(δ(t))
.

Proof.

(1) Assume that f and g are ∆-differentiable at t ∈ T. Then, for given ε > 0,

there exist neighborhoods U1 and U2 of t such that

|f(δ(t))− f(s)− f∆(t)(δ(t)− s)| ≤ ε

2
|δ(t)− s| for all s ∈ U1,

and

|g(δ(t))− g(s)− g∆(t)(δ(t)− s)| ≤ ε

2
|δ(t)− s| for all s ∈ U2.

Then,

|(f + g)(δ(t))− (f + g)(s)− [f∆(t) + g∆(t)](δ(t)− s)|
= |f(δ(t))− f(s)− f∆(t)(δ(t)− s) + g(δ(t))− g(s)− g∆(t)(δ(t)− s)|
≤ |f(δ(t))− f(s)− f∆(t)(δ(t)− s)|+ |g(δ(t))− g(s)− g∆(t)(δ(t)− s)|
≤ ε

2
|δ(t)− s|+ ε

2
|δ(t)− s| = ε|δ(t)− s|,

for all s ∈ U = U1 ∩ U2. Hence, f + g is differentiable at t and

(f + g)∆ = f∆ + g∆.
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(2) Choose ε ∈ (0, 1) and define

ε∗ =
ε

1 + |f(t)|+ |g(δ(t))|+ |g∆(t)| .

Then ε∗ ∈ (0, 1) and hence there exist neighborhoods U1, U2 and U3 of t such

that

|f(δ(t))− f(s)− f∆(t)(δ(t)− s)| ≤ ε∗|δ(t)− s| for all s ∈ U1,

|g(δ(t))− g(s)− g∆(t)(δ(t)− s)| ≤ ε∗|δ(t)− s| for all s ∈ U2,

and

|f(t)− f(s)| ≤ ε∗ for all s ∈ U3.

Then,

|(fg)(δ(t))− (fg)(s)− [f∆(t)g(δ(t)) + f(t)g∆(t)](δ(t)− s)|
= |[f(δ(t))− f(s)− f∆(t)(δ(t)− s)]g(δ(t))

+ [g(δ(t))− g(s)− g∆(t)(δ(t)− s)]f(t)

+ [g(δ(t))− g(s)− g∆(t)(δ(t)− s)][f(s)− f(t)] + (δ(t)− s)g∆(t)[f(s)− f(t)]|
≤ ε∗|δ(t)− s||g(δ(t))|+ ε∗|δ(t)− s||f(t)|+ ε∗ε∗|δ(t)− s|+ ε∗|δ(t)− s||g∆(t)|
= ε∗|δ(t)− s|[|g(δ(t))|+ |f(t)|+ ε∗ + |g∆(t)|]
≤ ε∗|δ(t)− s|[1 + |f(t)|+ |g(δ(t))|+ |g∆(t)|] = ε|δ(t)− s|,

for all s ∈ U = U1 ∩ U2 ∩ U3. Thus the product fg is differentiable and

(fg)∆ = f∆gδ + fg∆ at t. The other part can be proved similarly. Notice

that

(fgh)∆ = f∆gh + f δg∆h + f δgδh∆.

(3) Define ε∗ = ε/|α|, |α| 6= 0, ε > 0, then by the definition of differentiability

of f at t, it follows that

|[f(δ(t))− f(s)]− f∆(t)(δ(t)− s)| ≤ ε∗|δ(t)− s| for any s ∈ U,
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where U is a neighborhood of t. Multiplying both sides by |α|, we have

|[αf(δ(t))− αf(s)]− αf∆(t)(δ(t)− s)| ≤ |α|ε∗|δ(t)− s| for any s ∈ U,

which implies that

|[(αf)(δ(t))− (αf)(s)]− (αf∆(t))(δ(t)− s)| ≤ ε|δ(t)− s| for any s ∈ U.

Hence (αf) is delta differentiable at t and

(αf)∆(t) = αf∆(t).

(4) For any ε > 0, define ε∗ = ε|f(δ(t))f(s)|. Since f is differentiable at t,

hence,

|[f(δ(t))− f(s)]− f∆(t)(δ(t)− s)| ≤ ε∗|δ(t)− s| for any s ∈ U.

Assume that f(t)f(δ(t)) 6= 0. Dividing both sides by f(t)f(δ(t)), we have

| 1

f(s)
− 1

f(δ(t))
+ f∆(t)

δ(t)− s

f(δ(t))f(s)
| ≤ ε∗

|f(δ(t))f(s)| |δ(t)− s|,

which implies that

| 1

f(δ(t))
− 1

f(s)
+ f∆(t)

δ(t)− s

f(δ(t))f(s)
| ≤ ε|δ(t)− s|,

for any s ∈ U . Hence the delta derivative of
1

f
exists and

(
1

f
)∆(t) = − f∆(t)

f(t)f(δ(t))
.

Proof of the quotient formula (5) can be obtained by using (2) and (4).

The following theorem gives general rule for the power formula of ∆

differentiation.

Theorem 1.3.6. Let α be constant and m ∈ N.
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(1) If f(t) = (t− α)m, then

f∆(t) =
m−1∑
n=0

(δ(t)− α)n(t− α)m−1−n. (1.3.2)

(2) If g(t) =
1

(t− α)m
, then

g∆(t) = −
m−1∑
n=0

1

(δ(t)− α)m−n(t− α)n+1
, provided (t−α)(δ(t)−α) 6= 0.

(1.3.3)

Proof.

(1) Let hn(t) = (t− α)n, by the product rule,

h∆
n (t) = [(t− α)(t− α)n−1]∆ = 1.(t− α)n−1 + (δ(t)− α)[(t− α)n−1]∆

= (t− α)n−1 + (δ(t)− α)h∆
n−1(t).

Similarly,

h∆
n−1(t) = [(t− α)(t− α)n−2]∆ = 1.(t− α)n−2 + (δ(t)− α)[(t− α)n−2]∆

= 1.(t− α)n−2 + (δ(t)− α)h∆
n−2(t).

Therefore,

h∆
n (t) = (t− α)n−1 + (δ(t)− α)[(t− α)n−2 + (δ(t)− α)h∆

n−2(t)]

= (t− α)n−1 + (δ(t)− α)(t− α)n−2 + (δ(t)− α)2h∆
n−2(t)

= (t− α)n−1 + (δ(t)− α)(t− α)n−2 + (δ(t)− α)2(t− α)n−3

+ (δ(t)− α)3(t− α)n−4 + ... + (δ(t)− α)n−1h∆
n−(n−1)(t)

= (t− α)n−1 + (δ(t)− α)(t− α)n−2 + (δ(t)− α)2(t− α)n−3

+ (δ(t)− α)3(t− α)n−4 + ... + (δ(t)− α)n−1.1,

since h∆
1 (t) = (t− α)∆ = 1. Hence

f∆(t) = h∆
m(t) =

m−1∑
n=0

(δ(t)− α)n(t− α)m−1−n.

Part (2) can be proved in a similar way.
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As a verification of the above theorem, take f(t) = t2, f(t) =
1

t
and

f(t) =
1

t2
in the following example.

Example 1.3.7. (i) For f(t) = t2, using formula (1.3.2) with m = 2 and

α = 0,

f∆(t) =
1∑

n=0

(δ(t)− 0)n(t− 0)2−1−n =
1∑

n=0

[δ(t)]nt1−n

= [δ(t)]0t1−0 + [δ(t)]1t1−1f∆(t) = t + δ(t).

(ii) For f(t) =
1

t
, using (1.3.3) with m = 1 and α = 0,

f∆(t) = −
m−1∑
n=0

1

(δ(t)− α)m−n(t− α)n+1
= − 1

(δ(t)− 0)1−0(t− 0)0+1

= − 1

δ(t)(t)
= − 1

tδ(t)
.

(iii) For f(t) =
1

t2
, we have,

f∆(t) = −
1∑

n=0

1

(δ(t)− 0)2−n(t− 0)n+1

=
1

(δ(t)− 0)2−0(t− 0)0+1
− 1

(δ(t)− 0)2−1(t− 0)1+1

= − 1

t[δ(t)]2
− 1

t2δ(t)
= −t + δ(t)

t2δ2(t)
, where t2δ2(t) 6= 0.

1.3.2 ∇-Differentiation and relation of ∇ to ∆.

Definition 1.3.8. Suppose f : T → R be a function and let t ∈ Tk. Then

the nabla derivative of f at t is defined to be the number f∇(t) (if exists) with

the property that for each ε > 0 there is a neighborhood U = (t−δ, t+δ)∩T
(for some δ > 0) of t such that

|[f(ρ(t))− f(s)]− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s| for all s ∈ U.
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Then f is said to be nabla differentiable on Tk if f∇(t) exists for all t ∈ Tk.

Notice that in the case T = R, f∇(t) = f ′(t) and for T = Z,

f∇(t) = ∇f(t) = f(t)− f(t− 1),

the usual backward operator.

Definition 1.3.9. The backward graininess function ν : Tk → [0,∞) is

defined by

ν(t) = t− ρ(t)

and the function fρ : Tk → R is defined by fρ(t) = f(ρ(t)) for all t ∈ Tk.

Definition 1.3.10. A function F : T → R is called a ∇-antiderivative of

f : T→ R if F∇(t) = f(t) holds for all t ∈ Tk.

Definition 1.3.11. A function f : T→ R is said to be left-dense continuous

(or ld-continuous) if:

(1) it is continuous at left-dense points; and

(2) its right-sided limits exist (finite) at right-dense points.

Definition 1.3.12. A function p : T → R is called ν-regressive if 1 +

ν(t)p(t) 6= 0 for all t ∈ Tk.

The following are some basic properties of the nabla derivative. The

proofs can be found in [2].

Theorem 1.3.13. (1) If f is ∇-differentiable at t, then f is continuous at

t.

(2) If f is continuous at t and t is left-scattered, then f is ∇ -differentiable

at t with

f∇(t) =
f(ρ(t))− f(t)

ρ(t)− t
.
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(3) If t is left-dense, then f is ∇-differentiable at t if and only if

lim
s→t

f(t)− f(s)

t− s
,

exists as a finite number. In this case

f∇(t) = lim
s→t

f(t)− f(s)

t− s
.

(4) If f is ∇-differentiable at t, then

f(ρ(t)) = f(t) + [ρ(t)− t]f∇(t).

Theorem 1.3.14. Suppose f, g : T → R are ∇-differentiable at t ∈ T.

Then:

(1) The sum f + g : T→ R is ∇-differentiable at t and

(f + g)∇(t) = f∇(t) + g∇(t).

(2) The product fg : T→ R is ∇-differentiable at t and

(fg)∇(t) = f∇(t)g(t) + f(ρ(t))g∇(t) = f(t)g∇(t) + f∇(t)g(ρ(t)).

(3) The quotient
f

g
: T→ R is ∇-differentiable if g(t)g(ρ(t)) 6= 0 and

(
f

g
)∇(t) =

f∇(t)g(t)− f(t)g∇(t)

g(t)g(ρ(t))
.

(4) For any constant α, αf : T→ R is ∇-differentiable at t and

(αf)∇(t) = α(f)∇(t).

(5) If f(t)f(ρ(t)) 6= 0, then
1

f
is ∇-differentiable at t and

(
1

f
)∇(t) = − f∇(t)

f(t)f(ρ(t))
.
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The following mean value result on time scales will be used in the proof

of the next theorem.

Theorem 1.3.15. Let f be a continuous function on [α, β] ⊂ T that is ∆-

differentiable on [α, β). Then there exist ξ, τ ∈ [α, β) such that

f∆(τ) ≤ f(β)− f(α)

β − α
≤ f∆(ξ). (1.3.4)

For the proof see [8, 9].

The following theorems establish the relationship between ∆ and∇ deriv-

atives of a function on an arbitrary time scale.

Theorem 1.3.16. If f : T → C is ∆-differentiable on Tk and if f∆ is

continuous on Tk, then f is 5-differentiable on Tk and f5(t) = f∆(ρ(t)) for

all t ∈ T.

Proof. Let t ∈ T be fixed. The proof is split into several cases:

Case 1, t is left scattered: Since f is ∆- differentiable, it is continuous.

Therefore, f is ∇ -differentiable at t and

f5(t) =
f(ρ(t))− f(t)

ρ(t)− t
. (1.3.5)

As ρ(t) is right-scattered, hence

f∆(ρ(t)) =
f(δ(ρ(t)))− f(ρ(t))

δ(ρ(t))− ρ(t)
=

f(t)− f(ρ(t))

t− ρ(t)
=

f(ρ(t))− f(t)

ρ(t)− t
. (1.3.6)

From (1.3.5) and (1.3.6), it follows that

f∆(ρ(t)) = f5(t).

Case 2, t is dense: Since t is left-dense, therefore f is ∇-differentiable at t

and

f5(t) = lim
s→t

f(t)− f(s)

t− s
. (1.3.7)
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Also since f is right-dense, therefore f is ∆-differentiable at t and

f∆(t) = lim
s→t

f(t)− f(s)

t− s
. (1.3.8)

From (1.3.7) and (1.3.8)

f∆(t) = f5(t).

Case 3, t is left-dense and right-scattered: Since f is a continuous function

on [s, t] ⊂ T, that is ∆-differentiable on [s, t[. Therefore by Theorem (1.3.15)

there exist ξ, τ ∈ [s, t[ such that

f∆(τ) ≤ f(t)− f(s)

t− s
≤ f∆(ξ),

where ξ, τ are between s and t, since ξ → t , τ → t as s → t and f∆ is

continuous. Hence by Theorem (1.3.3),

f∆(t) = lim
s→t

f(t)− f(s)

t− s
. (1.3.9)

On the other hand since t is left-dense, therefore

f5(t) = lim
t→s

f(t)− f(s)

t− s
. (1.3.10)

From (1.3.9) and (1.3.10)

f∆(t) = f5(t).

Theorem 1.3.17. If f : T → C is 5-differentiable on Tk and if f5 is

continuous on Tk then f is ∆-differentiable on Tk and f∆(t) = f5(δ(t)).

1.4 Integration

Definition 1.4.1. (Regulated function): A function f : T → R is called

regulated if:
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(1) its right-sided limits exist (finite) at all right-dense points; and

(2) its left-sided limits exist (finite) at all left-dense points.

Definition 1.4.2. (rd-continuous function): A function f : T → R is said

to be rd-continuous if:

(1) it is continuous at right-dense points; and

(2) its left-sided limits exist (finite) at left-dense points.

Definition 1.4.3. A function F : T → R is called an antiderivative of

f : T→ R if F∆(t) = f(t) holds for all t ∈ Tk. Let f : T→ R be a regulated

function. The indefinite integral of f is defined by
∫

f(t)∆t = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f . The

definite integral is defined by

∫ b

a

f(t)∆t = F (s)− F (a).

Note that a, b ∈ T and a ≤ b, the time scale integral

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt, if T = R,

is the ordinary integral and

∫ b

a

f(t)∆t =
b−1∑
s=a

f(s), if T = Z.

The following theorem summarizes some basic results of the delta integrals.

Let Crd = {f : T→ R : f is rd-continuous}.

Theorem 1.4.4. If a, b, c ∈ T , α ∈ R, and f, g ∈ Crd, then the delta

integrals have the following properties:
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(1)

∫ b

a

[f(t) + g(t)]∆t =

∫ b

a

f(t)∆t +

∫ b

a

g(t)∆t;

(2)

∫ b

a

(αf)(t)∆t = α

∫ b

a

f(t)∆t;

(3)

∫ b

a

f(t)∆t = −
∫ a

b

f(t)∆t;

(4)

∫ b

a

f(t)∆t =

∫ c

a

f(t)∆t +

∫ b

c

f(t)∆t;

(5)

∫ a

a

f(t)∆t = 0;

(6)

∫ b

a

f(δ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t)∆t;

(7)

∫ b

a

f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(δ(t))∆t;

(8) If f(t) ≥ 0 for all a ≤ t < b, then

∫ b

a

f(t)∆t ≥ 0;

(9) If |f(t)| ≤ g(t) on [a, b), then

|
∫ b

a

f(t)∆t| ≤
∫ b

a

g(t)∆t.

Proof. Since f and g are rd-continuous, therefore they posses anti-delta deriv-

atives and hence the definite integral properties can easily be proved by using

the properties of delta-derivatives.

Example 1.4.5. Consider two basic integrals of f(s) = 1 and f(s) = s on

an arbitrary time scale T.

(i) Let a, t ∈ T. Then, since

(s)∆ = 1,
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therefore ∫ t

a

1∆s = t− a,

for any t ∈ T.

(ii) Let a, t ∈ T. Then, since

(s2)∆ = s + δ(s),

therefore ∫ t

a

(s2)∆∆s =

∫ t

a

s∆s +

∫ t

a

δ(s)∆s,

it implies that, ∫ t

a

s∆s =

∫ t

a

(s2)∆∆s−
∫ t

a

δ(s)∆s.

Hence, ∫ t

a

s∆s = t2 − a2 −
∫ t

a

δ(s)∆s.

Example 1.4.6. To find the integral

∫ t

a

s∆s, when T = R and T = Z with

a ∈ N and t ∈ T, we have

(i) If T = R, then for any t ∈ R, δ(t) = t and from the above example

∫ t

a

s∆s = t2 − a2 −
∫ t

a

sds

= t2 − a2 − 1

2
(t2 − a2)

=
1

2
(t2 − a2).
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(ii) If T = Z, then for any t ∈ Z, δ(t) = t + 1 and from the example

∫ t

a

s∆s = t2 − a2 −
∫ t

a

(s + 1)∆s

= t2 − a2 −
t−1∑
s=a

(s + 1)

= t2 − a2 −
t−1∑
s=0

(s + 1) +
a−1∑
s=0

(s + 1)

=
1

2
(t2 − t− a2 + a).

The following theorem and lemma will be used in our work.

Theorem 1.4.7.

(

∫ t

a

f(t, s)∆s)∆ = f(δ(t), t) +

∫ t

a

f∆(t, s)∆s.

Proof. Let g(t) =
∫ t

a
f(t, s)∆s, t ∈ T k.

Case 1: If t is right-scattered, then

g∆(t) =
g(δ(t))− g(t)

δ(t)− t

=
1

δ(t)− t
[

∫ δ(t)

a

f(δ(t), s)∆s−
∫ t

a

f(t, s)∆s]

=
1

δ(t)− t
[

∫ t

a

f(δ(t), s)∆s +

∫ δ(t)

t

f(δ(t), s)∆s−
∫ t

a

f(t, s)∆s]

=

∫ t

a

f(δ(t), s)− f(t, s)

δ(t)− t
∆s +

1

δ(t)− t

∫ δ(t)

t

f(δ(t), s)∆s

=

∫ t

a

f∆(t, s)∆s +
f(δ(t), t)

δ(t)− t

∫ δ(t)

t

∆s

=

∫ t

a

f∆(t, s)∆s +
f(δ(t), t)

δ(t)− t
(δ(t)− t)

=

∫ t

a

f∆(t, s)∆s + f(δ(t), t).
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Case 2: If t is right-dense, then

g∆(t) = lim
r→t

g(t)− g(r)

t− r
= lim

r→t

1

t− r
[

∫ t

a

f(t, s)∆s−
∫ r

a

f(r, s)∆s]

= lim
r→t

1

t− r
[

∫ t

a

f(t, s)∆s−
∫ t

a

f(r, s)∆s−
∫ r

t

f(r, s)∆s]

= lim
r→t

∫ t

a

f(t, s)− f(r, s)

t− r
∆s + limr→t

1

t− r

∫ t

r

f(r, s)∆s.

(1.4.1)

Now we have to show that

lim
r→t

1

t− r

∫ t

r

f(r, s)∆s = f(t, t), (1.4.2)

lim
r→t

∫ t

a

f(t, s)− f(r, s)

t− s
∆s =

∫ t

a

f∆(t, s)∆s. (1.4.3)

To show (1.4.2) since f is continuous, it will be uniformly continuous on

any compact subset of T × T. Therefore for arbitrary ε > 0, there exists a

neighborhood U of t such that

|f(r, s)− f(t, t)| < ε for all r, s ∈ U.

Consequently,

| 1

t− r

∫ t

r

f(r, s)∆s− f(t, t)| = | 1

t− r

∫ t

r

[f(r, s)− f(t, t)]∆s|

≤ 1

|t− r|
∫ t

r

|f(r, s)− f(t, t)|∆s

≤ ε

|t− r| |
∫ t

r

∆s| = ε,

which implies that

lim
r→t

1

t− r

∫ t

r

f(r, s)∆s = f(t, t).

By the mean value theorem,

f∆(τ, s) ≤ f(t, s)− f(r, s)

t− r
≤ f∆(ξ, s),
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where τ , ξ are between r, t and ξ → t, τ → t as r → t. On the other hand,

since f∆ is uniformly continuous on any compact subset of T×T. Therefore

f∆(t, s) = lim
r→t

f(t, s)− f(r, s)

t− r
.

Hence,

g∆(t) =

∫ t

a

f∆(t, s)∆s + f(t, t).

Lemma 1.4.8. If a function f : T → R has a local maximum at a point

t0 ∈ Tk2
, then f∆∆(ρ(t0)) ≤ 0 provided that t0 is not simultaneously ld and

rs and that f∆∆(ρ(t0)) exists.

For the proof of this lemma see [10].



2. INITIAL VALUE PROBLEMS

In this chapter, the concept of dynamic equations on time scales is introduced.

In section 1 initial value problems for first order equations on time scales

and some properties of the generalized exponential function are discussed.

Some examples are also included. In section 2 solutions of homogeneous and

non-homogeneous equations of the type −[p(t)y4(t)]∇ + q(t)y(t) = 0 and

−[p(t)y4(t)]∇ + q(t)y(t) = h(t) are presented.

For much of the work in this chapter, we refer to [11, 12].

2.1 First order differential equations on time scales

Definition 2.1.1. Let f : T× R2 → R. Then the equation

y∆(t) = f(t, y(t), y(δ(t))), t ∈ Tk, (2.1.1)

is called a first order delta dynamic equation on a time scale T. A function

y : T→ R that satisfies (2.1.1) for each t ∈ Tk is called its solution. Similarly,

the equation

y∇(t) = f(t, y(t), y(ρ(t))), t ∈ Tk, (2.1.2)

is called a first order Nabla dynamic equation.

Definition 2.1.2. For given t ∈ T and y0 ∈ R, the problem

y∆(t) = f(t, y(t), y(δ(t))), y(t0) = y0, (2.1.3)

is called an initial value problem for a first order dynamic equation on a

time scale T and a function y(t) that satisfies (2.1.3) for each t ∈ Tk with
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y(t0) = y0 is called its solution. Similarly, for given t ∈ T and y0 ∈ R, the

problem

y∇(t) = f(t, y(t), y(ρ(t))), y(t0) = y0, (2.1.4)

is called an initial value problem for first order Nabla dynamic equation and

a function y(t) that satisfies (2.1.4) for each t ∈ Tk with y(t0) = y0 is called

a solution of this IVP.

In the following example we discuss solution of an initial value problem

for two special cases of T, that is, T = R and T = N0.

Example 2.1.3. Consider the IVP

y∆(t) = t2y(t), y(0) = 1, where 0 ∈ T. (2.1.5)

(i) If T = R, the IVP takes the form

y′(t) = t2y(t), y(t0) = y0,

that has a solution of the form

y = exp(
t3

3
).

(ii) For T = N0, the IVP takes the form

4y(t) = t2y(t), y(t0) = y0

or y(t+1) = (t2+1)y(t) for t = 0, 1, 2, ... with y(0) = 1. Solving this equation

we have

y(1) = (02 + 1)y(0),

y(2) = (12 + 1)y(1),

y(3) = (22 + 1)y(2),

y(4) = (32 + 1)y(3),
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.

.

.

y(t) =
t−1∏
s=1

[(s− 1)2 + 1].

Hence the type of solution of an IVP depends on the nature of the time

scale. Next, we discuss the general solutions of the initial value problems of

the type

y∆ = p(t)y, y(t0) = 1, t ∈ T. (2.1.6)

where p : T→ R.

Definition 2.1.4. (Generalized exponential function): The generalized ex-

ponential function, see [12, 13] on T is denoted by ep(t, t0) and is defined as

ep(t, s) =





exp[

∫ t

t0

1

µ(t)
ln(1 + µ(s)p(s))∆s], µ(t) > 0;

exp[

∫ t

t0

p(s)∆s], µ(t) = 0,

where ln is the principal logarithm function and t0 ∈ T.

We state the following theorems in the sequel, which establish existence

and uniqueness of solution of the IVP (2.1.6). For the proofs, see [13, 14].

Theorem 2.1.5. If p is rd-continuous and regressive, then the IVP (2.1.6)

has a unique solution.

Theorem 2.1.6. If p is regressive and t0 ∈ T, then the unique solution to

the IVP (2.1.6) is the generalized exponential function ep(t, t0) on T.

Example 2.1.7. The IVP

y∆(t) = t2y(t), y(0) = 1 with 0 ∈ T,

has a unique solution et2(t, 0). Because:
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(i) For T = R, µ(t) = 0, we have

et2(t, 0) = exp

∫ t

0

s2∆s = exp

∫ t

0

s2ds = exp[
t3

3
].

(ii) For T = N0, µ(t) = 1, therefore

et2(t, 0) = exp

∫ t

0

ln(1 + 1.s2)∆s = exp

t−1∑
s=0

ln(1 + 1.s2) =
t−1∏
s=1

((s− 1)2 + 1).

2.1.1 Properties of the generalized exponential function

The following properties of exponential function are of interest.

(1) If p and q are regressive and rd-continuous, then ep . eq = ep¯q, where

the addition ¯ is defined by p¯ q = p + q + µpq.

Proof. By the definition of ∆-derivative, it follows that

ep(δ(t), s) = ep(t, s)+µ(t)e∆
p (t, s) = ep(t, s)+µ(t)p(t)ep(t, s) = [1+µ(t)p(t)]ep(t, s),

(2.1.7)

where e∆
p (t, s) denotes the derivatives of ep(t, s) with respect to t. Let y =

ep(., t0)eq(., t0) where p and q are regressive . By (2.1.7), it follows that

y∆(t) = e∆
p (t, t0)eq(t, t0) + ep(δ(t), t0)e

∆
q (t, t0)

= p(t)ep(t, t0)eq(t, t0) + [1 + µ(t)p(t)]ep(t, t0)q(t)eq(t, t0)

= [p(t) + q(t) + µ(t)p(t)q(t)]ep(t, t0)eq(t, t0)

= [p(t) + q(t) + µ(t)p(t)q(t)]y(t) = (p¯ q)(t)y.

Hence that y solves the initial value problem

y∆ = (p¯ q)(t)y, y(t0) = 1

and consequently, by theorem (2.1.6) y = ep¯q(., t0). Thus

ep.eq = ep¯q.
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(2) p¯ q is regressive if and only if p and q are regressive.

Proof. Suppose p and q are regressive, then

1 + µ(t)p(t) 6= 0 and 1 + µ(t)q(t) 6= 0. (2.1.8)

Now in view of (2.1.8), we have

1 + µ(t)(p¯ q) = 1 + µ(p + q + µpq) = 1 + µp + µq + µ2pq

= 1(1 + µp) + µq(1 + µp) = (1 + µp)(1 + µq) 6= 0.

Hence p¯ q is regressive.

Conversely, let p¯ q is regressive, then

1 + µ(p¯ q) 6= 0, that is, (1 + µp)(1 + µq) 6= 0,

which implies that 1+µp 6= 0 and 1+µq 6= 0. Hence p and q are regressive.

(3) If p and q are regressive and rd-continuous, then
ep

eq

= ep®q, where

p® q =
p− q

1 + µq
.

Proof. Let

y =
ep(., t0)

eq(., t0)
, (2.1.9)

using (2.1.7), we have

y4(t) =
e4p (t, t0)eq(t, t0)− ep(t, t0)e

4
q (t, t0)

eq(t, t0)eq(δ(t), t0)

=
p(t)ep(t, t0)eq(t, t0)− ep(t, t0)q(t)eq(t, t0)

eq(t, t0)[1 + µ(t)q(t)]eq(t, t0)
,
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which in view of eq.(2.1.9) implies that

y4(t) =
[p(t) + q(t)]ep(t, t0)eq(t, t0)

[1 + µ(t)q(t)]eq(t, t0)eq(t, t0)

=
[p(t) + q(t)]ep(t, t0)

[1 + µ(t)q(t)]eq(t, t0)

=
p(t) + q(t)

1 + µ(t)q(t)
y(t)

= (p® q)y(t).

This implies that y solve the initial value problem

y∆ = (p® q)y, y(t0) = 1,

and consequently, y = ep®q(., t0). Hence,

ep

eq

= ep®q.

(4) p® q is regressive if and only if both p and q are regressive.

Proof. Suppose p and q are regressive. Then,

1 + µp 6= 0 and 1 + µq 6= 0. (2.1.10)

It follows that

1 + µ(p® q) = 1 +
p− q

1 + µq
µ =

1 + µq + µp− µq

1 + µq
=

1 + µp

1 + µq
6= 0.

Hence p® q is regressive.

Conversely, suppose that p ® q is regressive, then 1 + µ(p ® q) 6= 0, which

implies that

1 + µp

1 + µq
6= 0, that is, 1 + µp 6= 0 and 1 + µq 6= 0.

Hence p and q are regressive.
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For further properties of the generalized exponential function see [15, 16].

Now, we are in position to solve the initial value problem of the type

x∆ = −p(t)xδ, x(t0) = 1, (2.1.11)

where p is rd-continuous and regressive. By theorem (2.1.5), the IVP has a

unique solution x. It follows that

x∆(t) = −p(t)x(δ(t)) = −p(t)[x(t) + µ(t)x∆(t)],

which implies that

x∆(t) + p(t)µ(t)x∆(t) = −p(t)x(t), that is,

[1 + p(t)µ(t)]x∆(t) = −p(t)x(t),

x∆(t) =
−p(t)

1 + µ(t)p(t)
x(t) = (®p(t))x(t).

Hence, x is a solution of the IVP

y4(t) = (®p(t))y(t), y(t0) = 1.

Theorem 2.1.8. If p is rd-continuous and regressive then ep(., t0) and e®p(., t0)

are the unique solutions of (2.1.6) and (2.1.11) respectively.

The exponential functions can be used to find solutions of higher order

dynamic equations on time scale as shown in the following examples.

Example 2.1.9. Consider a linear third order equation of the type

y4
3 − 2y4

2 − y4 + 2y = 0. (2.1.12)

Choose y = eλ(t, t0) to be a solution of (2.1.12), we have

λ3eλ(t, t0)− 2λ2eλ(t, t0)− λeλ(t, t0) + 2eλ(t, t0) = 0, that is,

(λ3 − 2λ2 − λ + 2)eλ(t, t0) = 0, that is,

(λ + 1)(λ− 1)(λ− 2)eλ(t, t0) = 0,
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known as the auxiliary equation. Its roots are:

λ = −1, λ = 1, λ = 2.

Hence

e−1(., t0), e1(., t0), e2(., t0)

are solutions of (2.1.12). The general solution of (2.1.12) is therefore,

y(t) = C1e−1(t, t0) + C2e1(t, t0) + C3e2(t, t0).

Example 2.1.10. Consider the initial value problem

y∆2
= a2y, y(t0) = 1, y∆(t0) = 0, (2.1.13)

where a is a regressive constant. Choose y = eλ(t, t0) to be a solution of

(2.1.13), we have

λ2eλ(t, t0)− a2eλ(t, t0) = 0,

it implies that

(λ + a)(λ− a)eλ(t, t0) = 0.

Hence, λ = −a and λ = a. Therefore

e−a(t, t0) and ea(t, t0),

are the solutions of (2.1.13). Hence the general solution of (2.1.13) is

y = C1e−a(t, t0) + C2ea(t, t0). (2.1.14)

Taking the delta derivative,

y∆ = −aC1e−a(t, t0) + aC2ea(t, t0). (2.1.15)

Using the initial conditions, we have

C1 + C2 = 1, C1 − C2 = 0. (2.1.16)
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Solving (2.1.16), we obtain C1 = 1
2

and C2 = 1
2
. Hence,

y =
1

2
[e−a(t, t0) + ea(t, t0)] = cosha(t, t0),

is a particular solution.

2.2 Second order linear differential equations on time scales

In this section solutions of second ordered homogeneous differential equation

on T∗ = T k
⋂
Tk of the type

−[p(t)y4(t)]∇ + q(t)y(t) = 0, (2.2.1)

are discussed. Assume that q : T → C is continuous, p : T → C is ∇-

differentiable on Tk such that p∇ : Tk → C is continuous and p(t) 6= 0 for all

t ∈ T.

Definition 2.2.1. A function y : T→ C is said to be a solution of (2.2.1) if

and only if the following hold:

1. y is ∆-differentiable;

2. y∆ : Tk → C is ∇-differentiable on Tk;

3. (y∆)∇ : Tk → C is continuous;

4. (2.2.1) holds for all t ∈ T.

Definition 2.2.2. Quasi ∆-derivative

The quasi ∆-derivative of y at t is defined by y[∆](t) = p(t)y∆(t).

Theorem 2.2.3. Let t0 ∈ Tk be fixed and C0, C1 be given constants. Then

equation (2.2.1) has a unique solution y such that

y(t0) = C0, y[4](t0) = C1.
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Proof. Let y(t) be a solution of equation (2.2.1) and set p(t)y4(t) = u(t)

then, (2.2.1) can be written as an equivalent first-ordered system

y4(t) =
u(t)

p(t)
,

u∇(t) = q(t)y(t).

(2.2.2)

Now by theorems (1.3.13) and (1.3.16), we have

y∇(t) = y4(ρ(t))

=
u(ρ(t))

p(ρ(t))

=
1

p(ρ(t))
[u(t) + (ρ(t)− t)u∇(t)]

=
1

p(ρ(t))
[u(t) + (ρ(t)− t)q(t)y(t)],

(2.2.3)

and by using theorems (1.3.3) and (1.3.16)

u4(t) = u∇(δ(t))

= q(δ(t))y(δ(t))

= q(δ(t))[y(t) + (δ(t)− t)y4(t)]

= q(δ(t))[y(t) +
δ(t)− t

p(t)
u(t)].

(2.2.4)

Now from equations (2.2.2) and (2.2.3) we have

(
y∇(t)

u∇(t)

)
=




(ρ(t)− t)
q(t)

p(ρ(t))

1

p(ρ(t))

q(t) 0




(
y(t)

u(t)

)
,

or

x∇(t) = B1(t)x(t).
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Also from equations (2.2.2) and (2.2.4) we have

(
y4(t)

u4(t)

)
=




0
1

p(t)

q(δ(t)) (δ(t)− t)
q(δ(t))

p(t)




(
y(t)

u(t)

)
,

or

x4(t) = B2(t)x(t).

Definition 2.2.4. (Wronskian)

If y, z : T→ C are ∆-differentiable on Tk, then the Wronskian of y and

z is defined by

Wt(y, z) =




y(t) z(t)

y[4](t) z[4](t)


 = y(t)z[4](t)− y[4]z(t),

or

Wt(y, z) = p(t)[y(t)z4(t)− y4(t)z(t)].

In the following theorems, properties of the Wronskian are discussed.

Theorem 2.2.5. The Wronskian of any two solutions of the equation (2.2.1)

is independent of t.

Proof. Let y and z be two solutions of equation (2.2.1), then for t ∈ Tk

Wt(y, z) = y(t)z[4](t)− y[4](t)z(t).
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Taking the nabla-derivative,

(Wt(y, z))∇ = [y(t)z[4](t)− y[4](t)z(t)]∇

= {y(t)z[4](t)}∇ − {y[4](t)z(t)}∇
= y(t)[z[4](t)]∇ + y∇(t)z[4](ρ(t))− [y[4](t)]∇z(t)− y[4](ρ(t))z∇(t)

= y(t)[p(t)z4(t)]∇ + y∇(t)p(ρ(t))z4(ρ(t)− [p(t)y4(t)]∇z(t)− p(ρ(t))y4(t)z∇(t)

= y(t)q(t)z(t) + y∇(t)p(ρ(t))z4(ρ(t))− q(t)y(t)z(t)− p(ρ(t))y4(ρ(t))z∇(t)

= p(ρ(t))[y∇(t)z4(ρ(t))− y4(ρ(t))z∇(t)]

= p(ρ(t))[y∇(t)z∇(t)− y∇(t)z∇(t)] = 0.

Hence Wt(y, z) = constant.

Corollary 2.2.6. If y and z are both solutions of equation (2.2.1) then either

Wt(y, z) = 0 for all t ∈ T or Wt(y, z) 6= 0 for all t ∈ T.

The proofs of the following two theorems are the same as in the case of

usual differential equations.

Theorem 2.2.7. Any two solutions of equation (2.2.1) are linearly indepen-

dent if and only if their wronskian is non-zero.

Theorem 2.2.8. Equation (2.2.1) has two linearly independent solutions and

every solution of equation (2.2.1) is a linear combination of these solutions.

Let us now consider the non-homogeneous equation

−[p(t)y4(t)]∇ + q(t)y(t) = h(t), (2.2.5)

where h : T→ C is a continuous function.

Theorem 2.2.9. Suppose that y1 and y2 form the fundamental set of so-

lutions of the homogeneous equation (2.2.1) and ω = Wt(y1, y2). Then the

general solution of the non-homogeneous equation (2.2.5) is given by

y(t) = C1y1(t) + C2y2(t) +
1

ω

∫ t

ρ(t0)

[y1(t)y2(s)− y1(s)y2(t)]h(s)∇s,

where t0 is a fixed point in Tk, C1 and C2 are arbitrary constants.
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Proof. It is sufficient to show that the function

z(t) =
1

ω

∫ t

ρ(t0)

[y1(t)y2(s)− y1(s)y2(t)]h(s)∇s (2.2.6)

is a particular solution of equation (2.2.5)

z4(t) =
1

ω

∫ t

ρ(t0)

[y41 (t)y2(s)− y1(s)y
4
2 (t)]h(s)∇s,

that is,

p(t)z4(t) =
1

ω

∫ t

ρ(t0)

[p(t)y41 (t)y2(s)− y1(s)p(t)y42 (t)]h(s)∇s

=
1

ω

∫ t

ρ(t0)

[y
[4]
1 (t)y2(s)− y1(s)y

[4]
2 (t)]h(s)∇s.

(2.2.7)

Taking the ∇-derivative and using Theorem (1.4.7), it follows that

[p(t)z4(t)]∇ =
1

ω
(

∫ t

ρ(t0)

[y
[4]
1 (t)y2(s)− y1(s)y

[4]
2 (t)]h(s)∇s)∇

=
1

ω
[y

[4]
1 (ρ(t))y2(t)− y1(t)y

[4]
2 (ρ(t))]h(t)

+
1

ω

∫ t

ρ(t0)

([y
[4]
1 (t)]∇y2(s)− y1(s)[y

[4]
2 (t)]∇)h(s)∇s

=
1

ω
[y

[4]
1 (ρ(t))y2(t)− y1(t)y

[4]
2 (ρ(t))]h(t)

+
1

ω

∫ t

ρ(t0)

([p(t)y41 (t)]∇y2(s)− y1(s)[p(t)y42 (t)]∇)h(s)∇s.

(2.2.8)

Now

y
[∆]
1 (ρ(t))y2(t)− y1(t)y

[4]
2 (ρ(t)) = −Wt(y1, y2) = −ω. (2.2.9)

As, if ρ(t) = t then (2.2.9) is obvious. If ρ(t) < t, then in view of the formula

yi(t) = yi(ρ(t)) + (t− ρ(t))y4i (ρ(t)), i = 1, 2,
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it follows that

y
[4]
1 (ρ(t))y2(t)− y1(t)y

[4]
2 (ρ(t)) = p(ρ(t))[y41 (ρ(t))y2(t)− y1(t)y

4
2 (ρ(t))]

= p(ρ(t))[y∆
1 (ρ(t))y2(ρ(t)) + (t− ρ(t))y∆

2 (ρ(t))y∆
1 (ρ(t))

− y1(ρ(t))y∆
2 (ρ(t))− (t− ρ(t))y∆

1 (ρ(t))y∆
2 (ρ(t))]

= p(ρ(t))[y∆
1 (ρ(t))y2(ρ(t))− y1(ρ(t))y∆

2 (ρ(t))]

= −Wρ(t)(y1, y2) = −ω.

(2.2.10)

Now

[p(t)y∆
i (t)]∇ = q(t)yi(t), i = 1, 2. (2.2.11)

Since the Wronskian of any two solutions of equation (2.2.1) is constant,

therefore using eq.(2.2.9) and eq.(2.2.11) in eq.(2.2.8) , we get

[p(t)z4(t)]∇ =
1

ω
(−ω)h(t) +

1

ω

∫ t

ρ(t0)

[q(t)y1(t)y2(s)− y1(s)q(t)y2(t)]h(s)∇s

= −h(t) + q(t)
1

ω

∫ t

ρ(t0)

[y1(t)y2(s)− y1(s)y2(t)]h(s)∇s.

Hence by using (2.2.6).

−[p(t)z4(t)]∇ + q(t)z(t) = h(t),

which implies that z(t) satisfies equation (2.2.5), so z(t) is a particular solu-

tion of (2.2.5).



3. LINEAR BOUNDARY VALUE PROBLEMS AND THE

GREEN’S FUNCTION

In this chapter the existence and uniqueness of solutions of linear boundary

value problems (BVPs) of the type

−[p(t)y4(t)]∇ + q(t)y(t) = h(t), t ∈ [a, b]T,

αy(ρ(a))− βy[∆](ρ(a)) = 0, γy(b) + δy[∆](b) = 0,
(3.0.1)

are discussed, where α, β, γ, δ ∈ C and |α|+ |β| 6= 0, |γ|+ |δ| 6= 0, a ≤ b are

fixed in T and a ∈ Tk, b ∈ Tk. In section 1, the solution of the homogeneous

linear boundary value problem is presented, while in section 2, uniqueness of

the solution and the Green’s function corresponding to (3.0.1) is investigated.

Almost all of the materials of this chapter are taken from [9].

Note that, if β = 0 and δp(b) = γ[δ(b)− b], then the boundary conditions

in (3.0.1) in view of the relation

γ[y(δ(b))− (δ(b)− b)y∆(b)] + δy[∆](b) = 0,

take the form

y(ρ(a)) = 0, y(δ(b)) = 0,

known as the conjugate (or Dirichlet) boundary conditions. This means that

the boundary conditions in (3.0.1) include the Dirichlet boundary conditions

as a special case.
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3.1 Homogeneous linear boundary value problem

Let φ(t) and ψ(t) be two solutions of the homogeneous equation

−[p(t)y∆(t)]∇ + q(t)y(t) = 0, t ∈ [a, b]T, (3.1.1)

such that

φ(ρ(a)) = β, φ[∆](ρ(a)) = α, (3.1.2)

ψ(b) = δ, ψ[∆](b) = −γ. (3.1.3)

The Wronskian is given by

D = −Wt(φ, ψ) = φ[∆](t)ψ(t)− φ(t)ψ[∆](t). (3.1.4)

We know that the Wronskian of any solution of (3.0.1) is independent of

t ∈ [ρ(a), b]T, take t = ρ(a) in (3.1.4) and using (3.1.2), it follows that

D = φ[∆](ρ(a))ψ(ρ(a))−φ(ρ(a))ψ[∆](ρ(a)) = αψ(ρ(a))−βψ[∆](ρ(a)). (3.1.5)

Similarly for t = b and in view of (3.1.3), it follows that

D = φ[∆](b)ψ(b)− φ(b)ψ[∆](b) = δφ[∆](b) + γφ(b). (3.1.6)

From (3.1.5) and (3.1.6),

D = αψ(ρ(a))− βψ[∆](ρ(a)) = δφ[∆](b) + γφ(b).

Theorem (2.2.7), demonstrates that D 6= 0 if and only if φ and ψ are linearly

independent.

Theorem 3.1.1. D 6= 0 if and only if the homogeneous equation (3.1.1)

has only the trivial solution, satisfying the boundary conditions presented in

(3.1.1).
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Proof. If D 6= 0, then by theorem (2.2.7), φ and ψ form a fundamental set

of solutions. Hence, the general solution of the BVP (3.1.1) is given by

y(t) = C1φ(t) + C2ψ(t), (3.1.7)

where C1 and C2 are constants. The boundary condition in (3.0.1) implies

that

α[C1φ(ρ(a)) + C2ψ(ρ(a))]− β[C1φ
[∆](ρ(a)) + C2ψ

[∆](ρ(a))] = 0,

which in view of (3.1.2) gives

α[C1β + C2ψ(ρ(a))]− β[C1α + C2ψ
[∆](ρ(a))] = 0.

Consequently,

C2[αψ(ρ(a))− βψ[∆](ρ(a))] = 0,

which yields C2 = 0 as αψ(ρ(a))−βψ[∆](ρ(a)) = D 6= 0. On the other hand,

using (3.1.3), the boundary condition in (3.0.1) implies that

γ[C1φ(b) + C2ψ(b)] + δ[C1φ
[∆](b) + C2ψ

[∆](b)] = 0,

that is,

γ[C1φ(b) + C2δ] + δ[C1φ
[∆](b) + C2(−γ)] = C1[γφ(b) + δφ[∆](b)] = 0,

which implies that C1 = 0. Hence y = 0.

3.2 Non-homogeneous linear boundary value problem

Theorem 3.2.1. If D 6= 0, then the non-homogeneous BVP (3.0.1) has a

unique solution y(t) given by

y(t) =

∫ b

ρ(a)

G(t, s)h(s)∇s,
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where

G(t, s) =
1

D





φ(t)ψ(s), ρ(a) ≤ t ≤ s ≤ δ(b),

φ(s)ψ(t), ρ(a) ≤ s ≤ t ≤ δ(b),

called green function of BVP (3.0.1).

Proof. If D 6= 0, then by theorem (2.2.9), the general solution of the non-

homogeneous problem (3.0.1) is given by

y(t) = C1φ(t) + C2ψ(t) +
1

D

∫ t

ρ(a)

[φ(s)ψ(t)− φ(t)ψ(s)]h(s)∇s, (3.2.1)

where C1 and C2 are constants. Taking the ∆- derivative,

y[4](t) = C1φ
[∆](t) + C2ψ

[∆](t) +
1

D

∫ t

ρ(a)

[φ(s)ψ[∆](t)− φ[∆](t)ψ(s)]h(s)∇s.

(3.2.2)

Now, at t = ρ(a),

y(ρ(a)) = C1φ(ρ(t)) + C2ψ(ρ(a)) = C1β + C2ψ(ρ(a)),

y[∆](ρ(a)) = C1φ
[∆](ρ(a)) + C2ψ

[∆](ρ(a)) = C1α + C2ψ
[∆](ρ(a)).

Using the values y(ρ(a)) and y[∆](ρ(a)) in the boundary conditions, we have

α[C1β + C2ψ(ρ(a))]− β[C1α + C2ψ
[∆](ρ(a))] = 0,

which leads to

C2[αψ(ρ(a))− βψ[∆](ρ(a))] = 0.

Hence C2 = 0 as αψ(ρ(a))− βψ[∆](ρ(a)) = D 6= 0. Thus, (3.2.1) and (3.2.2)

take the forms

y(t) = C1φ(t) +
1

D

∫ t

ρ(a)

[φ(s)ψ(t)− φ(t)ψ(s)]h(s)∇s, (3.2.3)

y[4](t) = C1φ
[∆](t) +

1

D

∫ t

ρ(a)

[φ(s)ψ[∆](t)− φ[∆](t)ψ(s)]h(s)∇s. (3.2.4)
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In view of (3.1.3), at t = b,

y(b) = C1φ(b) +
1

D

∫ b

ρ(a)

[φ(s)ψ(b)− φ(b)ψ(s)]h(s)∇s

= C1φ(b) +
1

D

∫ b

ρ(a)

[δφ(s)− φ(b)ψ(s)]h(s)∇s,

(3.2.5)

y[4](b) = C1φ
[∆](b) +

1

D

∫ b

ρ(a)

[φ(s)ψ[∆](b)− φ[∆](b)ψ(s)]h(s)∇s

= C1φ
[∆](b) +

1

D

∫ b

ρ(a)

[−γφ(s)− φ[∆](b)ψ(s)]h(s)∇s.

(3.2.6)

Substituting (3.2.5) and (3.2.6) in the boundary condition, implies that

γ[C1φ(b) +
1

D

∫ b

ρ(a)

[δφ(s)− φ(b)ψ(s)]h(s)∇s]

+ δ[C1φ
[∆](b) +

1

D

∫ b

ρ(a)

[−γφ(s)− φ[∆](b)ψ(s)]h(s)∇s] = 0,

C1[γφ(b) + δφ[∆](b)]− γφ(b) + δφ[∆](b)

D

∫ b

ρ(a)

ψ(s)h(s)∇s = 0.

(3.2.7)

Solving for C1, we have

C1 =
1

D

∫ b

ρ(a)

ψ(s)h(s)∇s.

Using C1 in (3.2.3) we have

y(t) =
1

D

∫ b

ρ(a)

φ(t)ψ(s)h(s)∇s +
1

D

∫ t

ρ(a)

[φ(s)ψ(t)− φ(t)ψ(s)]h(s)∇s,

which implies that

y(t) =
1

D

∫ t

ρ(a)

φ(s)ψ(t)h(s)∇s+
1

D

∫ b

t

φ(t)ψ(s)h(s)∇s =

∫ b

ρ(a)

G(t, s)h(s)∇s,

where

G(t, s) =
1

D

{
φ(s)ψ(t), ρ(a) ≤ s ≤ t ≤ δ(b);

φ(t)ψ(s), ρ(a) ≤ t ≤ s ≤ δ(b).



4. EXISTENCE AND APPROXIMATION OF

SOLUTIONS OF NON-LINEAR BOUNDARY

VALUE PROBLEMS

In this chapter, we derive new results dealing with the existence and approx-

imations of solutions of the BVPs of the form

− [p(t)y∆(t)]∇ + q(t)y(t) = f(t, y(t)), t ∈ [a, b]T,

c1y(ρ(a))− c2y
[∆](ρ(a)) = 0, d1y(b) + d2y

[∆](b) = 0,
(4.0.1)

where c1, c2, d1, d2 ∈ C and |c1|+ |c2| 6= 0, |d1|+ |d2| 6= 0, p(t) > 0, a ≤ b are

fixed in T and a ∈ Tk, b ∈ Tk.

We introduce the concept of lower and upper solutions for the BVP (4.0.1)

and develop a comparison result. Then we investigate the existence of solu-

tion in the presence of well ordered lower and upper solutions [1] for the BVP

(4.0.1). Finally, we develop a generalized approximation technique and prove

that there exists a monotone sequence {wn} of solutions of linear problems

converging uniformly to a unique solution of the BVP (4.0.1).

Definition 4.0.2. Let Crd([a, b]T,R) to be the set of all functions f(t, y) such

that f(., y) is rd-continuous for each y ∈ R and f(t, .) is continuous for each

t ∈ [a, b]T.

Definition 4.0.3. Let C2
rd([a, b]T) to be the set of all functions y : T → R

such that

C2
rd([a, b]T) = {y : y, y∆ ∈ C([a, b]T) and y∆∇ ∈ Crd([a, b]T)}.
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We recall the concept of lower and upper solutions [1].

Definition 4.0.4. : A function α ∈ C2
rd([ρ(a), δ(b)]T) is called a lower solu-

tion of (4.0.1) if

−[p(t)α∆(t)]∇ + q(t)α(t) ≤ f(t, α(t)), t ∈ [a, b]T,

c1α(ρ(t))− c2α
[∆](ρ(t)) ≤ 0, d1α(b) + d2α

[∆](b) ≤ 0.

Definition 4.0.5. : A function β ∈ C2
rd([ρ(a), δ(b)]T) is called an upper

solution of (4.0.1) if

−[p(t)β∆(t)]∇ + q(t)β(t) ≥ f(t, β(t)), t ∈ [a, b]T,

c1β(ρ(a))− c2β
[∆](ρ(a)) ≥ 0, d1β(b) + d2β

[∆](b) ≥ 0.

Example 4.0.6. Consider the two point boundary value problem,

y∆∆(t) = y2 − t, t ∈ [0, 1]T, y(0) = 0, y(1) = 0.

Take α = 0 on [0, 1]T, then α∆ = 0 and α∆∆ = 0,

α∆∆ − α2 = 0 ≥ −t = f(t, α), t ∈ [0, 1]T.

Moreover,

α(0) = 0 = α(1).

Hence α(t) = 0 is a lower solution. Take β(t) = t + 1 on [0, 1]T, then

β∆(t) = 1, β∆∆(t) = 0 on [0, 1]T.

Hence β satisfies β(0) = 1 > 0, β(1) = 2 > 0 and

β∆∆(t)− f(t, β) = 0− (t + 1)2 + t = −(t2 + t + 1) ≤ 0.

Thus β is an upper solution.
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4.1 Comparison result

Theorem 4.1.1. Assume α and β are lower and upper solutions of the BVP

(4.0.1) respectively. If f(t, y) ∈ Crd[[ρ(a), δ(b)]T × R] is decreasing in y for

each t ∈ [ρ(a), δ(b)]T. Then α(t) ≤ β(t) on [ρ(a), δ(b)]T.

Proof. Let v(t) = α(t) − β(t). Then v ∈ C2
rd([ρ(a), δ(b)]T) and using the

definitions of upper and lower solutions, we have

−[p(t)v∆(t)]∇ + q(t)v(t) = −[p(t)(α(t)− β(t))∆]∇ + q(t)(α(t)− β(t))

= −[p(t)α∆(t)]∇ + [p(t)β∆(t)]∇ + q(t)α(t)− q(t)β(t)

= {−[p(t)α∆(t)]∇ + q(t)α(t)} − {−[p(t)β∆(t)]∇ + q(t)β(t)}
≤ f(t, α(t))− f(t, β(t)), t ∈ [a, b]T.

The boundary conditions imply that

c1v(ρ(a))− c2v
[∆](ρ(a)) = c1[α(ρ(a))− β(ρ(a))]− c2[α(ρ(a))− β(ρ(a))][∆]

= [c1α(ρ(a))− c2α
[∆](ρ(a))]− [c1β(ρ(a))− c2β

[∆](ρ(a))]

≤ 0

and

d1v(b) + d2v
[∆](b) = d1[α(b)− β(b)] + d2[α

[∆](b)− β[∆](b)]

= [d1α(b) + α[∆](b)]− [d1β(b) + d2β
[∆](b)]

≤ 0.

Thus, we have

− [p(t)v∆(t)]∇ + q(t)v(t) ≤ f(t, α(t))− f(t, β(t)), t ∈ [a, b]T

C1v(ρ(a))− C2v
[∆](ρ(a)) ≤ 0, d1v(b) + d2v

[∆](b) ≤ 0.
(4.1.1)

Suppose that the conclusion of the theorem is not true, then, v(t) has a

positive maximum say M at some t0 ∈ [ρ(a), δ(b)]T. If t0 = ρ(a), then

v(ρ(a)) > 0 and v∆(ρ(a)) ≤ 0. (4.1.2)
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The boundary condition

c1v(ρ(a))− c2v
[∆](ρ(a)) ≤ 0,

implies that

c1v(ρ(a)) ≤ c2v
[∆](ρ(a)) = c2p(ρ(a))v∆(ρ(a)) < 0,

which leads to v(ρ(a)) < 0, a contradiction.

If t0 = δ(b), then

v(δ(b)) > 0 and v∆(b) ≥ 0. (4.1.3)

The boundary condition

d1v(b) + d2v
[∆](b) ≤ 0,

implies that

d1v(b) ≤ −d2v
[∆](b) = −d2p(b)v∆(b) < 0,

which contradict (4.1.3). Hence t0 6= δ(b). Therefore, t0 ∈ (ρ(a), δ(b)). Now,

choose

t0 = max{e ∈ (ρ(a), δ(b)) : v(e) = M}, then v(t) < v(t0) for each t ∈ (ρ(a), δ(b)).

Firstly, we show that t0 can not be ld and rs simultaneously. Suppose that

t0 is ld and rs, i.e. ρ(t0) = t0 < δ(t0). Since,

v(δ(t0)) < v(t0),

follows that

v∆(t0) < 0.

Also,

v∆(t0) = lim
t→t0−

v∆(t),
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therefore,

lim
t→t0−

v∆(t) < 0,

which implies that, there exists a neighbourhood Nε(t0) such that

v∆(t) < 0 for each t ∈ Nε(t0),

that is,

v(t) ≥ v(t0) for each t ∈ Nε(t0),

a contradiction. Hence, t0 is not simultaneously left-dense and right-scattered.

Therefore, by lemma (1.3.25), we have

v∆∆(ρ(t0)) ≤ 0. (4.1.4)

Let v∆ = f, then from (4.1.4), (f∆)(ρ(t0)) ≤ 0. Using the relation f∇(t0) =

f∆(ρ(t0)), it follows that

f∇(t0) ≤ 0.

Hence,

v∆∇(t0) ≤ 0,

which implies that

α4∇(t0) ≤ β4∇(t0). (4.1.5)

The relation

−α[∆]∇(t0) ≤ −q(t0)α(t0) + f(t0, α(t0)),

and the decreasing property of f(t, y) in y, leads to

α[∆]∇(t0) ≥ q(t0)α(t0)− f(t0, α(t0))

≥ q(t0)β(t0)− f(t0, α(t0))

> q(t0)β(t0)− f(t0, β(t0)) ≥ β[∆]∇(t0),

a contradiction. Hence there does not exist t0 ∈ [ρ(a), δ(b)]T, such that

v(t0) > 0. Consequently, v(t) ≤ 0, for every t0 ∈ [ρ(a), δ(b)]T.
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Corollary 4.1.2. Under the hypothesis of the Theorem (4.1.1), the BVP

(4.0.1) has a unique solution.

Proof. Suppose that y1 and y2 are two solutions of the BVP (4.0.1). Then

−[p(t)y∆
1 (t)]∇ + q(t)y1(t) = f(t, y1(t)) ≤ f(t, y1(t)), t ∈ [a, b]T,

c1y1(ρ(a))− c2y
[∆]
1 (ρ(a)) = 0, d1y1(b) + d2y

[∆]
1 (b) = 0,

which implies that y1 is a lower solution of (4.0.1). Also,

−[p(t)y∆
2 (t)]∇ + q(t)y2(t) = f(t, y2(t)) ≥ f(t, y2(t)), t ∈ [a, b]T,

c1y2(ρ(a))− c2y
[∆]
2 (ρ(a)) = 0, d1y2(b) + d2y

[∆]
2 (b) = 0,

which implies that y2 is an upper solution of (4.0.1). Hence, by Theorem

(4.1.1), it follows that

y1(t) ≤ y2(t), t ∈ [ρ(a), δ(b)]. (4.1.6)

Now,

−[p(t)y∆
1 (t)]∇ + q(t)y1(t) = f(t, y1(t)) ≥ f(t, y1(t)), t ∈ [a, b]T,

c1y1(ρ(a))− c2y
[∆]
1 (ρ(a)) = 0, d1y1(b) + d2y

[∆]
1 (b) = 0,

which implies that y1 is an upper solution of (4.0.1). Moreover,

−[p(t)y∆
2 (t)]∇ + q(t)y2(t) = f(t, y2(t)) ≤ f(t, y2(t)), t ∈ [a, b]T,

c1y2(ρ(a))− c2y
[∆]
2 (ρ(a)) = 0, d1y2(b) + d2y

[∆]
2 (b) = 0,

which implies that y2 is a lower solution of (4.0.1). Hence, by Theorem

(4.1.1), it follows that

y2(t) ≤ y1(t), t ∈ [ρ(a), δ(b)]. (4.1.7)

From (4.1.6) and (4.1.7), we have y1(t) = y2(t), t ∈ [ρ(a), δ(b)].

The following result is known. For the proof see [17].

Lemma 4.1.3. If f(t, y) ∈ Crd[[ρ(a), δ(b)]T × R] and is bounded uniformly

on [ρ(a), δ(b)]T × R, then the BVP (4.0.1) has a solution.
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4.2 Existence theorem (method of lower and upper solutions)

Theorem 4.2.1. Assume that α, β are lower and upper solutions of the

boundary value problem (4.0.1) such that α ≤ β on [ρ(a), δ(b)]T. If f(t, y) ∈
Crd[[ρ(a), δ(b)]T×R], then the boundary value problem (4.0.1) has a solution

y such that α ≤ y ≤ β on [ρ(a), δ(b)]T.

Proof. Define the following modification F of f

F (t, y(t)) =





f(t, β(t)) +
y(t)− β(t)

1 + |y(t)− β(t)| , y(t) ≥ β(t);

f(t, y(t)), α(t) ≤ y(t) ≤ β(t);

f(t, α(t)) +
α(t)− y(t)

1 + |α(t)− y(t)| , y(t) ≤ α(t).

(4.2.1)

Clearly, F ∈ Crd[[ρ(a), δ(b)]T×R] and is bounded on [ρ(a), δ(b)]T×R. Hence

by Lemma (4.1.3) the modified problem,

− y[4]5(t) + q(t)y(t) = F (t, y(t)), t ∈ [a, b]T

c1y(ρ(a))− c2y
[∆](ρ(a)) = 0, d1y(b) + d2y

[∆](b) = 0
(4.2.2)

has a solution. By definition of F, we have

F (t, α(t)) = f(t, α(t)) ≥ −α[∆]∇(t) + q(t)α(t), t ∈ [a, b]T

and

F (t, β(t)) = f(t, β(t)) ≤ −β[∆]∇(t) + q(t)β(t), t ∈ [a, b]T

which implies that α and β are lower and upper solutions of (4.2.2). More-

over, we note that any solution y of (4.2.2) such that

α(t) ≤ y(t) ≤ β(t), t ∈ [ρ(a), δ(b)]T (4.2.3)

is a solution of (4.0.1). We only need to show that any solution y of (4.2.2)

in fact does satisfy (4.2.3). Set

u(t) = α(t)− y(t), t ∈ [ρ(a), δ(b)]T
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where y is a solution of (4.0.1), then u ∈ C2
rd[ρ(a), δ(b)]T and the boundary

conditions imply that

c1u(ρ(a))− c2u
[∆](ρ(a)) ≤ 0, d1u(b) + d2u

[∆](b) ≤ 0.

Assume that

max{u(t) : t ∈ [ρ(a), δ(b)]T} = u(t0) > 0.

We can show as in the previous Theorem that t0 6= ρ(a), δ(b). Moreover, t0

is not simultaneously ld and rs. Consequently,

u4∇(t0) ≤ 0. (4.2.4)

On the other hand, using the definition of the lower solution and that of the

modified function, we have

−u[4]∇(t0) = −α[4]∇(t0) + y[4]∇(t0)

≤ f(t0, α(t0))− q(t0)α(t0) + y[4]∇(t0)

= f(t0, α(t0))− q(t0)α(t0)− F (t0, y(t0)) + q(t0)y(t0)

= f(t0, α(t0))− q(t0)α(t0)− f(t0, α(t0))− α(t0)− y(t0)

1 + |α(t0)− y(t0)| + q(t0)y(t0)

= −q(t0)u(t0)− u(t0)

1 + u(t0)

= −[q(t0)u(t0) +
u(t0)

1 + u(t0)
] < 0,

a contradiction. Hence

u(t) ≤ 0, on [ρ(a), δ(b)]T.

Now, set

u(t) = y(t)− β(t), t ∈ [ρ(a), δ(b)]T,

where y is a solution of (4.0.1), then u ∈ C2
rd[ρ(a), δ(b)]T and the boundary

conditions imply that

c1u(ρ(a))− c2u
[∆](ρ(a)) ≤ 0, d1u(b) + d2u

[∆](b) ≤ 0.
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Assume that

max{u(t) : t ∈ [ρ(a), δ(b)]T} = u(t0) > 0.

We can show as in the previous Theorem that t0 6= ρ(a), δ(b). Moreover, t0

is not simultaneously ld and rs. Consequently,

u4∇(t0) ≤ 0. (4.2.5)

On the other hand, using the definition of the upper solution and that of the

modified function, we have

u[4]∇(t0) = y[4]∇(t0)− β[4]∇(t0)

≥ y[4]∇(t0) + f(t0, β(t0))− q(t0)β(t0)

= q(t0)y(t0)− F (t0, y(t0)) + f(t0, β(t0))− q(t0)β(t0)

= q(t0)y(t0)− q(t0)β(t0)− f(t0, β(t0))− y(t0)− β(t0)

1 + |y(t0)− β(t0)| + f(t0, β(t0))

= q(t0)(y(t0)− β(t0))− y(t0)− β(t0)

1 + |y(t0)− β(t0)|
= q(t0)u(t0)− u(t0)

1 + u(t0)
> 0,

a contradiction. Hence

u(t) ≤ 0, t ∈ [ρ(a), δ(b)]T.

4.3 Generalized approximation technique

We develop the approximations scheme and show that under suitable condi-

tions on f , there exists a bounded monotone sequence of solutions of linear

problems that converges uniformly to a solution of the original problem. Let

Ω = {y ∈ C2
rd[ρ(a), δ(b)]T : α(t) ≤ y(t) ≤ β(t), t ∈ [ρ(a), δ(b)]T}.
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If
∂2f(t, y)

∂y2
is continuous and bounded on [ρ(a), δ(b)]T × Ω, there exists a

function φ such that

∂2

∂y2
[f(t, y) + φ(t, y)] ≥ 0 on [ρ(a), δ(b)]T × Ω,

where φ ∈ C2([ρ(a), δ(b)]T×Ω) and is such that
∂2

∂y2
φ(t, y) ≥ 0 on [ρ(a), δ(b)]T×

Ω.

For example, let M = max{|fyy(t, y)| : (t, y) ∈ [ρ(a), δ(b)]T × Ω}, then we

can choose φ =
M

2
y2. Clearly

∂2

∂y2
[f(t, y) + φ(t, y)] ≥ 0 on [ρ(a), δ(b)]T × Ω.

Define F : [ρ(a), δ(b)]T×C[ρ(a), δ(b)]T → C[ρ(a), δ(b)]T by F (t, y) = f(t, y)+

φ(t, y), then F ∈ C2([ρ(a), δ(b)]T × R and

∂2

∂y2
F (t, y) ≥ 0 on [ρ(a), δ(b)]T × Ω. (4.3.1)

Theorem 4.3.1. Assume that

(1) α, β are lower and upper solutions of the BVP (4.0.1) such that α ≤ β

on [ρ(a), δ(b)]T.

(2) f ∈ C2([ρ(a), δ(b)]T×R) and f is decreasing in y for each t ∈ [ρ(a), δ(b)]T.

Then there exists a monotone sequence {wn} of linear solutions con-

verging uniformly to a unique solution of the BVP (4.0.1).

Proof. By the comparison and existence theorems (4.1.1) and (4.2.1), the

conditions (1) and (2) ensure the existence of a unique solution y of the BVP

(4.0.1) such that

α(t) ≤ y(t) ≤ β(t), t ∈ [ρ(a), δ(b)]T.

In view of (4.3.1), we obtain

F (t, y) ≥ F (t, z) + Fy(t, z)(y − z) on [ρ(a), δ(b)]T × Ω,
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which implies that

f(t, y) ≥ f(t, z) + (y − z)Fy(t, z)− [φ(t, y)− φ(t, z)]. (4.3.2)

The mean value theorem and the fact that φy is increasing in y on [ρ(a), δ(b)]T×
Ω, yield

φ(t, y)− φ(t, z) = φy(t, c)(y − z) ≤ φy(t, β(t))(y − z), (4.3.3)

where z ≤ c ≤ y. Using (4.3.3) in (4.3.2), we have

f(t, y) ≥ f(t, z) + [Fy(t, z)− φy(t, β(t))](y − z).

Define

g(t, y, z) = f(t, z) + (y − z)Fy(t, z)− [φ(t, y)− φ(t, z)].

We note that g(., y, z) is rd-continuous on [ρ(a), δ(b)]T for each (y, z) ∈ R×R
and g(t, ., .) is continuous for each t ∈ [ρ(a), δ(b)]T. Moreover, g satisfies:

gy(t, y, z) = Fy(t, z)− φy(t, β(t)) ≤ Fy(t, z)− φy(t, z) = fy(t, z) ≤ 0

and {
f(t, y) ≥ g(t, y, z), y ≥ z;

f(t, y) = g(t, y, y),
(4.3.4)

on [ρ(a), δ(b)]T × Ω.

Now, we develop the iterative scheme to approximate the solution. As an

initial approximation, we choose w0 = α and consider the linear BVP




−y[4]∇(t) + q(t)y(t) = g(t, y(t), w0(t)), t ∈ [a, b]T;

c1y(ρ(a))− c2y
[∆](ρ(a)) = 0,

d1y(b) + d2y
[∆](b) = 0.

(4.3.5)

Using (4.3.4) and the definitions of lower and upper solutions, we get

g(t, w0(t), w0(t)) = f(t, w0(t)) ≥ −w
[4]∇
0 (t) + q(t)w0(t), t ∈ [a, b]T,
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g(t, β(t), w0(t)) ≤ f(t, β(t)) ≤ −β[4]∇(t) + q(t)β(t), t ∈ [a, b]T,

which imply that w0 and β are lower and upper solutions of (4.3.4) respec-

tively. Hence by Theorems (4.1.1) and (4.2.1), there exists a unique solution

w1 ∈ C2
rd[ρ(a), δ(b)]T of (4.3.4) such that

w0(t) ≤ w1(t) ≤ β(t), t ∈ [ρ(a), δ(b)]T.

Using (4.3.4) and the fact that w1 is a solution of (4.3.4), we obtain




−w
[4]∇
1 (t) + q(t)w1(t) = g(t, w1(t), w0(t)) ≤ f(t, w1(t)), t ∈ [a, b]T;

c1w1(ρ(a))− c2w
[∆]
1 (ρ(a)) = 0,

d1w1(b) + d2w
[∆]
1 (b) = 0,

(4.3.6)

which implies that w1 is a lower solution of (4.0.1). Using (4.3.4),(4.3.6) and

the definition of upper solution, we have

g(t, w1(t), w1(t)) = f(t, w1(t)) ≥ −w
[∆]∇
1 (t) + q(t)w1(t), t ∈ [a, b]T

and

g(t, β(t), w1(t)) ≤ f(t, β(t)) ≤ −β[∆]∇(t) + q(t)β(t), t ∈ [a, b]T,

which implies that w1 and β are lower and upper solutions of




−y[4]∇(t) + q(t)y(t) = g(t, y(t), w1(t)), t ∈ [a, b]T;

c1y(ρ(a))− c2y
[∆](ρ(a)) = 0,

d1y(b) + d2y
[∆](b) = 0.

(4.3.7)

Hence by Theorems (4.1.1) and (4.2.1), there exists a unique solution w2 ∈
C2

rd[ρ(a), δ(b)]T of (4.3.7) such that

w1(t) ≤ w2(t) ≤ β(t) on [ρ(a), δ(b)]T.

Continuing in the above fashion, we obtain a bounded monotone sequence

{wn} of solutions of linear problems satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ w3(t) ≤ ... ≤ wn(t) ≤ β(t), t ∈ [ρ(a), δ(b)]T,
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where the element wn of the sequence {wn(t)}, is a solution of the linear

problem





−y[4]∇(t) + q(t)y(t) = g(t, y(t), wn−1(t)), t ∈ [a, b]T;

c1y(ρ(a))− c2y
[∆](ρ(a)) = 0,

d1y(b) + d2y
[∆](b) = 0

and is given by

wn(t) =

∫ b

ρ(a)

G(t, s)g(s, wn(s), wn−1(s))∆s.

Since [ρ(a), δ(b)]T is compact and the convergence is monotone and bounded,

{wn(t)} converges uniformly to some function y, see [1,18]. Note that

g(t, wn(t), wn−1(t)) → g(t, y(t), y(t)) = f(t, y(t)) as n →∞.

Passing to the limit, we obtain

y(t) =

∫ b

ρ(a)

G(t, s)f(s, y(s))∆s,

that is, y is a solution of (4.0.1).
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