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Abstract

In general, foliation of a manifold is its partitioning into submanifolds. In particular,

from relativistic point of view, it is used to split the spacetime into space and time.

Foliation is often useful to understand the clear concept of time. In this thesis, we

have first reviewed the Brill, Cavallo and Isenberg procedure to obtain the foliation by

spacelike hypersurfaces of constant mean extrinsic curvature (K-slicing) for spherically

symmetric static spacetimes. After this, we used that procedure to review the foliation

of the Reissner Nordstorm and the Schwarzschild spacetimes and then we review the

flat foliation for the Schwarzschild metric. At the end, we have discussed coordinates

(non-singular) for the Taub-Nut spacetime.
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Introduction

In general, foliation is the splitting of the space into subspaces such that the union of

all subspaces is the whole space while the intersection of every subspace with every

other subspace is empty. More precisely, a foliation of the space is its partition into

subspaces. After the unification of the space and time into spacetime one may think

why do we need foliation? Why are we reversing the procedure of unification? So

as to comprehend the appropriate answer of these questions, consider the notion of

a moment of time in Newtonian theory. Here in this theory, there is no vagueness

in the idea of a given moment of time. In Special Relativity (SR), there is some

vagueness because simultaneity is not universal, but, after specification of an inertial

frame, the concept becomes precise. Globally we don’t have inertial frames[1] in GR

unless the spacetime is flat and hence, the notion of moment of time is completely

unclear. Therefore this notion translates in GR as ‘a time slice’ or ‘a spacelike hyper-

surface’. Foliation of spacetime into space and time help us to understand that how

time evolves in space. In cosmology, we also need the clear notion of time because

we sometimes assume that the universe is same for all observers (homogeneity) in all

directions (isotropy) at a given moment of time.

York [2] defined a time parameter proportional to the Mean Extrinsic Curvature

(MEC), due to this, foliation of a metric may be expected by constant MEC, K, hy-

persurfaces (hereafter called K-surfaces). Brill, Cavallo and Isenberg (hereafter called

BCI) [3] provide a thorough discussion on foliation by K-surfaces of spherically sym-

metric static spacetimes. They show a foliation of the Schwarzschild metric but did

not provide complete foliation of it. Eardly and Smarr [4] indicated that there is a

K-slicing of the Schwarzschild metric but did not provide explicit method for its con-
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struction. A complete foliation of the Schwarzschild, Reisnner Nordstorm (RN) and

extreme Reisnner Nordstorm (eRN) metrics by means of K-surfaces is provided in

[5], [6] and [7] respectively while foliation of the RN and the Schwarzschild metrics

by flat hyprsurfaces is given in [8] and for eRN metric in [9].

The layout of the thesis is as follows:

In Chapter 1, some basic concepts of differential geometry which are useful in GR

are discussed. Then, after defining the energy-momentum tensor, Einstein Field Equa-

tions (hereafter called EFEs) are derived. Brief introductions of blackholes and Carter

Penrose (CP) diagrams are given at the end of this chapter.

In Chapter 2, we, first, explain some exact solutions of the the EFEs and then, classify

these solutions into two categories based on zero and non-zero cosmological constant

∧. In the former category, we, first, discuss the singularities, non-singular compactified

coordinates and CP diagrams of Minkowski, Schwarzschild, RN and eRN metrics.

Then, a brief introduction of Kerr metric is given. While in the later category, we,

first discuss de-Sitter and Anti de-Sitter metrics and their singularities, after this, we

derive the Schwarzschild de-Sitter (SdS) and Schwarzschild Anti de-Sitter (SAdS)

metrics.

In Chapter 3, foliation is defined in general and some examples are given. Then,

after reviewing the BCI procedure, we reviewed the K-slicing of the Schwarzschild

metric (SM) and RN metric and rederive the generalized K-surface equation. In the

end, we discuss flat hypersurfaces for the Schwarzschild metric.

In Chapter 4, we have discussed the CP diagram and non-singular coordinates for

Taub-Nut metric.
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Chapter 1

Basics of Relativity

Sir Isaac Newton compared the acceleration of different objects using gravitational

force. He observed that how the gravity varies with the distance and discovered his

universal law of gravitation, in which every object attracts every other object in the

universe, with the force which varies directly with the product of their masses and

inversely to the square of the distance between their centers. Thus in Newtonian

mechanics, every object experiences same gravitational field irrespective of its speed

and mass.

In 1905, Einstein published SR, which relies on two assumptions:

1) The laws of physics are same for all inertial observers. This means that there is no

physical difference for any two observers in an inertial frame.

2) The speed of light in vacuum is same for all inertial observers.

With these assumptions Galilean transformations of classical mechanics are replaced

by Lorentz transformations. SR is limited to the study of uniform, unaccelerated

motion. In other words it deals with the motion in straight line with constant speed.

But regardless of its restriction it made tremendous predictions e.g. the events that

happen simultaneously for one observer does not happen at the same time for another

observer that is moving relative to the first one. Which shows that the idea of absolute

time and must be discarded and in SR time and space are infact the part of the single

4-dimensional continuum known as spacetime.

In 1915, Einstein published his GR, which generalizes SR for arbitrary motion. GR
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modifies the framework of SR by allowing the manifold to be curved. The basis of GR

are:

1) The principle of equivalence which gives the equivalence of gravitational and inertial

masses in local inertial coordinate systems. It states that in a local inertial coordinate

system, all laws of physics are same as in SR.

2) Principle of general covariance which states that if the equation remains valid in SR

(absence of gravity) and it preserves its form under coordinate transformation (tensor

equation) then the equation remains true in all coordinate systems.

In this chapter we review some basics of differential geometry which are used in GR.

We start with the basic definitions of manifolds and differential operators which are

useful in GR. Further, after defining the vectors and tensors for curved spaces, we

introduce the notion of metric tensor and the classification of hypersurfaces based on

it. We discuss the mean and Gaussian curvatures and their generalizations in higher

dimensions. After that we define energy momentum tensor and then derive the EFEs.

At the end, a brief introduction of black holes and CP diagrams is given.

1.1 Manifolds

Manifolds are the spaces which are locally same as the Euclidean space so that co-

ordinate patches covered them. This framework allows differentiation to be defined,

but it does not differentiate intrinsically between charts. Therefore manifold structure

defines only those concepts which are independent of the choice of coordinates [10].

For a precise definition of manifold, we need some basic definitions.

Let <n be the Euclidean space of dimension n, i.e, the set of all n-tuples (x1, x2, ..., xn)

with usual topology. A map ψ : U ⊂ <n → U ′ ⊂ <m, where U and U ′ are open sub-

sets, is said to be of class Ck(k ≥ 1) if the coordinates {x′1, x′2, ..., x′n} of the image

point ψ(p) in U ′ are k-times continuously differentiable (kth derivative exists and is

continuous) of the coordinates {x1, x2, ..., xn} of p in U . If a map is Ck ∀ k ≥ 0 then

it is said to be C∞.

A Ck n-dimensional manifold M is a set together with a collection of subsets {Oβ}
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satisfying the following proprieties:

1) the set Oβ cover M i.e M =
⋃
Oβ.

2) For each β, there is bijective (injective and surjective) map γ : Oβ → Uβ, where

Uβ is an open subset of <n.
3) If Oα

⋃
Oβ is non-empty, then the map

γαoγ
−1
β : γβ(Oα

⋃
Oβ)→ γα(Oα

⋃
Oβ)

is a Ck map of an open subset of <n to an open subset of <n. Each γβ is called

a chart. We can define a topology on a manifold M and consider it as topological

space. The definition of manifold mentioned above is very general, we impose two

further conditions of Housdorff and second countable on the definition to make it

more precise.

A topological space (X,T ) is said to be Housdorff if for each (p, q)εX and p 6= q, we

can find open sets Op, OqεT such that pεOp, qεOq and both Op, Oq are distinct open

sets. It is second countable if it has a countable basis and is locally Euclidean if every

point p in M has a neighborhood V such that there is a homeomorphism φ from V

onto an open subset of <n. A topological manifold is a Housdorff , second countable,

locally Euclidean space [11].

1.2 Vectors and Tensors

In <n, it is assumed that space has natural structure of n-dimensional vector space

and has a point to serve as the origin. The natural rules of addition and scalar mul-

tiplication satisfy the vector space axioms. In SR, spacetime similarly has the natural

framework of 4-dimensional vector space. When we consider the curved geometries as

we do in GR, the <n framework of vector space is vanished. For example, there is no

natural way of how to add two points on a sphere and get a third point on it. Due

to the presence of curvature we lose the ability to draw the preferred curves from one

point to another, or to move them uniquely around the manifold.

We can recover the framework of vector space for curved manifolds in the limit of
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"infinitesimal displacements" about a point. For manifolds like the sphere, which natu-

rally arise as surface embedded in <n, the concept of tangent vector can be made more

precise but in many situations, especially in GR, one is given a manifold without an

embedding of it in <n. Thus it is valuable to define the tangent vector in a way that

refers only to the intrinsic structure of the manifold, not to its possible embeddings

in <n. Such a definition is provided by the idea of a tangent vector as a directional

derivative [12]. In <n, vectors and directional derivatives have bijection between them.

A vector x = (x1, x2, .., xn) defines the operator xi ∂
∂xi

(called directional derivative op-

erator) and vice versa [12]. Directional derivatives obey the Leibnitz rule and linearity

when act on the functions. Therefore on a manifold M let ℘ be the collection of C∞

functions from M into <. The tangent vector u at point pεM is defined to be the map

u : ℘ → < which obeys both linearity and Leibnitz rule. The tangent vector can be

expressed as the linear combination of its basis vectors { ∂
∂xi
} such that

u = uiXi = ui
∂

∂xi
. (1.1)

If we take { ∂
∂x′i
} be the different coordinate bases, then we can express { ∂

∂xi
} in terms

of { ∂
∂x′i
} as

∂

∂xi
=
∂x
′j

∂xi
|ψ(p)

∂

∂x′j
. (1.2)

From eqs.(1.1) and (1.2), we have

u
′i = uj

∂x
′i

∂xj
. (1.3)

Eq.(1.3) is the vector transformation law.

At each point pεM lying on the C∞ curve D(t), we can relate a tangent vector v to

the curve D by setting v(f), where fε℘, equal the function’s derivative foD : < → <
at p,

v(f) =
d

dt
(foD) =

dxi

dt

∂f

∂xi
=
dxi

dt
Xi(f). (1.4)

This shows that the components vi of the tangent vector to the curve D are

vi =
dxi

dt
. (1.5)
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Tensors are the generalization of vectors. Vector and scalar are the tensors of rank one

and zero respectively. Let V be the finite dimensional vector space and V ∗ be its dual

space. A tensor T of type (r, s) is a multilinear map

T : V ∗ x V ∗ x . . . x V ∗ x V x V x . . . x V → <.

In general, the components of a tensor T of type (r, s) transform as

T
′α1α2......αs

γ1γ2......γr
=
∂x
′α1

∂xβ1
∂x
′α2

∂xβ2
. . .

∂x
′αs

∂xβs
∂xρ1

∂x′γ1
∂xρ2

∂x′γ2
. . .

∂xρr

∂x′γr
T β1β2......βs ρ1ρ2......ρr

.

(1.6)

Einstein’s GR is the geometrical theory described in terms of tensors. The metric tensor

which plays a key role in this theory because it gives the information of coordinates of

a spacetime in terms of mass and gravity [13] . It is denoted by ‘g’ and is defined as

tensor of type (0, 2) [10] on a manifold M . It is the inner product on tangent space at

every point. g has the components with respect to basis {ei} are

gij = g(ei, ej) = g(ei, ej). (1.7)

If we use a coordinate basis
{

∂
∂xi

}
, then g in terms of line element is

ds2 = gijdx
idxj. (1.8)

The inverse of gij is gij so that

gijg
ik = δkj , (1.9)

where δkj is the Kronecker delta (named after Leopold Kronecker) defined as

δkj =

{
1 if j = k ,
0 if j 6= k .

A useful characterization of the metric is obtained by putting gij into its canonical

form [14]. In this form the metric becomes

gij = diag(−1,−1, ..,−1,+1,+1, ...,+1, 0, 0, ..., 0), (1.10)

where ‘diag’ means a diagonal matrix with the given elements. The signature of the

metric depends on the signs of eigenvalues. If any of the eigenvalues are zero, the
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metric is degenerate, and its inverse metric does not exist. In GR, we deal with the

continuous and non-degenerate metrics. If all of the signs of the eigenvalues are positive,

the metric is called Euclidean or Riemannian while if there is a single minus or plus it

is called Lorentzian or pseudo-Riemannian, and, if the metric have some positive and

some negative eigenvalues, then it is called indefinite. In GR we deal with Lorentzian

metrics.

1.3 Hypersurface

Let M be the m dimensional manifold and N be the (m− 1)− dimensional manifold.

A hypersurface may be defined as an (m− 1)− dimensional manifold N embedded in

an m−dimensional manifoldM [10]. It is therefore a surface in one higher dimension.

If g is the metric on M , then there exists a corresponding induced metric g∗ on N

given by

ds2 = g∗abn
anb. (1.11)

The metric g∗ classifies the hypersurface into three groups:

1) If g∗abnanb > 0 , the hypersurface will be Time like.

2) If g∗abnanb = 0 , the hypersurface will be Null like.

3) If g∗abnanb < 0 , the hypersurface will be Space like.

1.4 Differentiation on Manifolds

We normally study three types of differential operators on manifolds given by

1) Exterior Derivative,

2) Lie Derivative,

3) Covariant Derivative.

Exterior and Lie derivatives are purely defined by the manifold structure while covariant

derivative is defined by placing an extra structure, which we call affine connection, on

the manifold.
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1.4.1 Exterior Derivative

In order to define the exterior differentiation, first, we need to define differential forms.

A differential k-form w on an open subset U of a manifold M is a function that assigns

to each point p in U as alternating k-linear function on the tangent space TpM , i.e

wpεAk(TpM), whereAk(TpM) is the space of alternating k-tensors [11]. Mathematically

a k-form is written as

wp = bI(p)dx
I
p 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ n, (1.12)

where bI ’s are the functions coefficients and

dxIp = dxi1p ∧ dxi2p ∧ ... ∧ dxikp , (1.13)

where ‘∧’ is called wedge and dxi1 ∧ dxi2 is the wedge product.

Eq.(1.12) can simply be written as

w = bIdx
I = bi1i2...ikdx

i1 ∧ dxi2 ∧ ... ∧ dxik . (1.14)

A 0-form is just a function while a 1-form is the differential of a function. The exterior

derivative operator ‘d’ maps k-form linearly to (k + 1)-form as

dw = dbi1i2...ik ∧ dxi1 ∧ dxi2 ∧ ... ∧ dxik . (1.15)

The exterior derivative of 0-form ‘f ’ is

df =
∂f

∂xj
dxj. (1.16)

The exterior derivative of a 1-form, g = bidx
i, is a 2-form given by

dg = dbi ∧ dxi =
∂bi
∂xj

dxi ∧ dxj. (1.17)

Also, by using anti-commutativity of wedge product, we have

d(df) =
∂2f

∂xj∂xk
dxj ∧ dxk = − ∂2f

∂xj∂xk
dxj ∧ dxk, (1.18)

=⇒ d(df) = 0. (1.19)

This holds true for any k-form.
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1.4.2 Lie Differentiation

Consider any Ck (k ≥ 1) vector field U on manifold M . By fundamental theorem for

systems of ODEs [15] there is a unique maximal curve r(t) through each point p of M

such that r(0) = p and the tangent vector of that curve at the point r(t) is the vector

X|r(t). If {U τ} are local coordinates, so that the curve r(t) has the coordinates xτ (t)

and the vector U has the components U τ , then this curve is locally a solution of a set

of differential equations

dxτ

dt
= U τ

(
x1(t), x2(t), .., xn(t)

)
. (1.20)

This curve is called an integral curve of x with initial point p. For each point q

of M , there is an open neighborhood φ of q and an ε > 0 such that U defines a

family of diffeomorphisms (maps which are one-one Ck and their inverses are also Ck)

ψt : φ→M whenever |t|< ε, obtained by taking each point p in φ a parameter distance

t along the integral curves of U . This diffeomorphism maps each tensor field V at p of

type (k, l) into ψt∗V |ψt(p) .
The Lie derivative LUV (generalization of directional derivative) of a tensor field V

with respect to U is defined as

LUV |p= lim
t→0

V |p−ψt∗V |p
t

. (1.21)

If U and V are both C∞ vector fields, then

LUV = [U, V ], (1.22)

where [U, V ] is the Lie bracket defined as

[U, V ]f = U(V f)− V (Uf) = −[V , U ]f. (1.23)

=⇒ [U, V ] = −[V , U ] (1.24)

The vector fields U and V will commute if LUV = 0.
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1.4.3 Covariant Derivative and Christoffel Symbols

For flat space, the operator ∂ν is defined as

∂ν : Un
m → Un

m+1, (1.25)

where Un
m and Un

m+1 are tensor fields of rank m + n and m + n + 1 respectively. The

map in the expression (1.25) obeys the following properties:

1) It acts linearly on each of its argument.

2) It obeys the Leibnitz rule on tensor product.

The action of ∂ν depends upon the given choice of coordinate system. To define an

operator O (called covariant derivative operator) that should be independent of coor-

dinate system being used. We require that O be a map and it satisfies (1)-(2) also for

the scalar function φ, it should reduce to partial derivative i.e

Oµφ = ∂µφ. (1.26)

The derivative (covariant) of a vector Uν is given as

OµU
ν = ∂µU

ν + ΓνµβU
β. (1.27)

Covariant derivative is also denoted by ";" [10]. In this notation above equation can

be written as

Uν
;µ = ∂µU

ν + ΓνµβU
β, (1.28)

where Γνµβ are the Christoffel symbols or connection symbols, defined as

Γνµβ =
1

2
gνa (gaβ,µ − gµβ,a + gaµ,β) . (1.29)

For mixed tensor the covariant derivative is

OβT
α1α2......αm

γ1γ2......γn
= ∂βT

α1α2......αm
γ1γ2......γn

+ Γα1
βρT

ρα2......αm
γ1γ2......γn

+ Γα2
βρT

α1ρ......αm
γ1γ2......γn

+ ......+ Γαmβρ T
α1α2......ρ

γ1γ2......γn

− Γρβγ1T
α1α2......αm

ργ2......γn
− Γρβγ2T

α1α2......αm
γ1ρ......γn

− ......− ΓρβγnT
α1α2......αm

γ1γ2......ρ
.

(1.30)
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1.5 Curvature

Let β($) be a curve given by

β ($) =
(
x1 ($) , x2 ($) , x3 ($)

)
. (1.31)

We choose a rescaled parameter ‘s’ such that dβ/ds always has a unit magnitude. This

parameter is called affine parameter. With this parameter the arc length of the curve

is defined as

s =

∫ ∣∣∣∣ dβd$
∣∣∣∣ d$, (1.32)

then

ds2 =

∣∣∣∣ dβd$
∣∣∣∣2 d$2 =

(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2
. (1.33)

The unit tangent vector T ($) to the curve β($) is

T ($) =
dβ/d$∣∣dβ/d$∣∣ , (1.34)

and the unit normal N ($) is

N ($) =
T ′($)

|T ′($)|
, (1.35)

where |T ′($)| gives the measure of curvature of the curve. The binormal vector B ($)

is

B ($) = T ($) ∧N ($) . (1.36)

The quantity |B′(s)| is called the second curvature.

A surface ‘S’ can be described as

S (v,$) =
(
x1 (v,$) , x2 (v,$) , x3 (v,$)

)
. (1.37)

Inserting eq.(1.37) in eq.(1.33), we get

ds2 = Edv2 + 2Fdvd$ +Gd$2, (1.38)

where

E = Sv.Sv, (1.39)

F = Sv.S$, (1.40)

G = S$.S$. (1.41)
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This is called First Fundamental Form (FFF) of line element on the surface.

Now let P (v0, $0) be the point on the surface, and γ(v0, $0) is the position vector,

then γ
v
and γ

$
at P (v0, $0) form a basis of tangent space. Thus the vector γ

v
∧ γ

$
is

orthognal to tangent plane. The unit normal to the surface can the be defined as

N∗ =
γ
v
∧ γ

$∣∣∣γ
v
∧ γ

$

∣∣∣ . (1.42)

If

γ (s) = γ (v (s) , $ (s)) , (1.43)

is a curve on this surface then

dγ

ds
=
∂γ

∂v

dv

ds
+
∂γ

∂$

d$

ds
= γ

v
v̇ + γ

$
$̇, (1.44)

and

γ̈ (s) = γ
vv
v̇2 + γ

v
v̈ + γ

v$
v̇$̇ + γ

$v
v̇$̇ + γ

$$
$̇2 + γ

$
$̈. (1.45)

Taking dot product of eq.(1.45) with N∗, we get

γ̈.N∗ = E∗v̇2 + 2F ∗v̇$̇ +G∗$̇2, (1.46)

where

E∗ = γ
vv
.N∗, (1.47)

F ∗ = γ
v$
.N∗, (1.48)

G∗ = γ
$$
.N∗. (1.49)

The Second Fundamental Form (SFF) can be written as

II = E∗dv2 + 2F ∗dvd$ +G∗d$2. (1.50)

The normal curvature Kn is defined as

Kn =
SFF

FFF
=
E∗dv2 + 2F ∗dvd$ +G∗d$2

Edv2 + 2Fdvd$ +Gd$2
. (1.51)

The normal curvature has maximum and minimum values, denoted by k1 and k2 re-

spectively, along two perpendicular directions, called principle curvatures. The product
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k1k2 is the Gaussian Curvature and the mean (k1 + k2)/2 is called mean curvature

on the surface. Both Gaussian and mean curvatures are invariant under coordinate

transformations.

The quantities that can be expressed in terms of FFF are called intrinsic to the

surface. Gaussian curvature can purely be expressed in terms of of FFF, and there-

fore, is intrinsic property of the surface [16], while those expressed in terms of SFF

are extrinsic to the surface, and therefore, mean curvature is often referred as the

Mean Extrinsic Curvature (MEC).

The MEC in higher dimensions can be written as

K = trace(K) = Kb
b , (1.52)

where the extrinsic curvature, Kc
d, is defined as

Kc
d = −nc;d. (1.53)

Using eq.(1.53) in eq.(1.52), we get

K = −nc;c. (1.54)

To obtain the generalization of the Gaussian curvature in higher dimensions, consider

Va;b;c − Va;c;b = (Va,b − ΓuabVu);c − (Va,c − ΓuacVu);b . (1.55)

After simplification, we get

Va;b;c − Va;c;b = Ru
abcVu, (1.56)

where

Ru
abc = Γuac,b − Γuab,c + ΓvacΓ

u
vb − ΓvabΓ

u
vc, (1.57)

is called Riemann curvature tensor. In lower indices it is given by

Rabcd = gaeR
e
bcd. (1.58)

The trace of Ru
abc is called Ricci tensor, Rbc, and, is given by

Rbc = Γuuc,b − Γuub,c + ΓvucΓ
u
vb − ΓvubΓ

u
vc. (1.59)
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The trace of Ricci tensor is called Ricci scalar, R, and, is given by

R = gabRab. (1.60)

The Ricci scalar is the higher dimensional generalization of Gaussian curvature.

1.6 Parallel Transport

We can understand parallel transport as transporting a tensor along a curve on a man-

ifold while keeping it constant. On a flat space, a vector can be parallely transported

along any curve from one point to another without depending on the geometry of the

curve. This is easy to visualize if we use cartesian coordinates. Then we can parallel

transport a vector by keeping its components constant.

In a curved space, parallel transport is not simple anymore. The easiest way to under-

stand this, consider a vector on the sphere. If we move this vector along a closed curve

while letting it point in the same direction, when it comes back to the starting point,

it will not be parallel to the original vector. This means we have no well defined way

to globally say that vectors are parallel or not.

To explain parallel transport mathematically, consider the curve xα($) in the flat

space, where $ is a parameter. On this flat space, the requirement that a tensor

T a1a2...amb1b2...bn is constant along xα($) is

0 =
d

d$
T a1a2...amb1b2...bn . (1.61)

Using chain rule, we have

0 =
dxα

d$

∂

∂xα
(
T a1a2...amb1b2...bn

)
(1.62)

∀ α. To generalize this concept for curved space we need to replace partial derivative by

covariant derivative. Therefore a tensor is called parallel transported along the curve

if it satisfy
dxα

d$
T a1a2...amb1b2...bn;α = 0. (1.63)

For simplicity, we consider a case of a vector (contravariant)Xβ, then eq.(1.63) becomes
dxα

d$
Xβ

;α =
dxα

d$

(
Xβ, α + ΓβανX

ν
)

=
dXα

d$
+ Γβαν

dxα

d$
Xν = 0. (1.64)
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1.7 Geodesics

A generalization of a straight line in a curved space is called a geodesic. It is the

shortest distance between two points in a curved space. A geodesic is a curve that

parallel transport its own tangent vector.

To obtain the geodesic equation, consider a curve xα($), then the tangent vector along

this curve is dxα

d$
. The requirement that this tangent vector is parallel transported along

the curve is obtained by eq.(1.64). So if we take xα($) be a geodesic then it must satisfy

d

d$

(
dxα

d$

)
+ Γβαν

dxα

d$

dxν

d$
= 0, (1.65)

d2xα

d$2
+ Γβαν

dxα

d$

dxν

d$
= 0. (1.66)

The eq.(1.66) is the required geodesic equation.

1.8 Metric Singularities

Singularity of a metric is a place where the curvature blows up [12]. If the coefficients

of the metric become undefined at some point then the metric is called singular at that

point. There are two kinds of singularities:

1) Coordinate (removable) Singularity

2) Essential Singularity

1.8.1 Coordinate (Removable) Singularity

Coordinate singularity appears due to inappropriate selection of coordinates. It can be

removed by introducing new coordinates. For example, the metric of 2-sphere is

ds2 = b2dθ2 + b2 sin2 θdφ2, (1.67)

where b is the radius. If we introduce bsinθ = µ, then the metric becomes

ds2 =
dµ2

1− µ2
+ µ2dφ2, (1.68)

which is singular at µ = ±1. This coordinate singularity appeared because of wrong

selection of coordinates.
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1.8.2 Essential Singularity

Essential (Crushing) or curvature singularity is the singularity where curvature tensor

or equivalently the curvature invariants (mentioned in the next section) become infinite.

Crushing singularity can never be removed by introducing new coordinates as we shall

see this in the cases of the Schwarzschild and RN blackholes.

1.9 Curvature Invariants

Curvature invariants are used to determine whether the singularity is essential or coor-

dinate. In general there are 14 curvature invariants [17, 18]. For a vacuum 10 of these

automatically vanish as Rµν = 0.

I1 = R = gabRab, (1.69)

I2 = Rcd
abR

ab
cd, (1.70)

I3 = Rabcd
efghR

efgh
abcd . (1.71)

1.10 Energy-Momentum Tensor

GR comprise with the gravitational field which depends on matter distribution in space

and its temporal evolution. Thus, we need a mathematical distribution of matter in

spacetime. As SR provides a relation between mass and energy, the spacetime illustra-

tion must incorporate with the distribution of energy as well. The energy could either

be carried by matter or accumulated in the field. Specifically, it could be contained in

stresses arrangement in a medium approximate as continuum.

Before proceeding to the full relativistic description it is worthwhile to review the clas-

sical, 3-dimensional illustration of stresses."Stress" is a generalization of the concept

of pressure, which is force per unit area. since force and area are vector quantities in

3-dimension. So, generally there is no meaning of dividing two vectors. The concept of

pressure is applicable if the directions of the vector don’t make a difference and only
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the magnitudes are relevant. Isotropic medium is the medium for which this require-

ment holds true. For example the pressure of a gas, as deduced from the kinetic energy

of gases, is the same in all directions. Similarly, water is an isotropic medium. How-

ever, consider a helical spring stretched or squashed. The generalization of anisotropic

media is called stress. The stress is given by stress tensor.

σab =
dF a

dSb
(a, b = 1, 2, 3), (1.72)

The skew part of this tensor σ[a,b] gives the rotation. From this quantity the vorticity

vector can be defined by using the totally skew tensor in 3-dimensions,

Ωc =
1

2
eabcσ

ab. (1.73)

Assuming an irrotational medium, so that σc = 0 the stress tensor will be symmetric,

σab = σba. It is symmetric part of the stress tensor that is the generalization of pres-

sure. For the relativistic generalization of stress tensor we need to connect something

to σab to make it 4x4 matrix that will give the components of a 4-dimensional 2nd rank

tensor. Pressure (or stress) has units of energy density, ρc2, in a manner consistent

with the requirement of Lorentz covariance (i.e. invariance of the tensor under Lorentz

transformations) is the time-time part. In the rest frame, there can only be the rest en-

ergy and the stresses with no kinetic component. Thus, in the rest frame in Minkowski

spacetime the 4-dimensional tensor is

Tαβ = ρc2δα0 δ
β
0 + σabδαa δ

β
b . (1.74)

In GR, the presence of matter curved the spacetime. (1.74) can be generalized for any

arbitrary frame and arbitrary manifold by

Tαβ = ρuαuβ + σabδαa δ
β
b , (1.75)

where uβ is the velocity 4-vector. In the case that there are no stresses in an arbitrary

frame Tαβ provides the momentum and total energy of any fluid portion. Therefore,

it is called the energy-momentum tensor. As it generally give stresses it is also called

stress energy tensor.
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1.11 The Einstein Field Equations

To derive the Einstein Field Equations (EFEs) consider the action

P = PG + PM , (1.76)

where PM and PG are components of the action because of matter and gravity. P is

defined as

P =

∫
L
√
−gd4x, (1.77)

where

L = LG + LM , (1.78)

LG =
1

2k
R, (1.79)

and k = 8πG
c4

and R is Ricci Scalar. Let the action be varied due to a variation in gµν

and δgµν and the total action must remain invariant i.e

0 = δP = δPG + δPM . (1.80)

By using eq.(1.78) and eq.(1.79) in eq.(1.77) we obtain

P =

∫
v

1

2k
R
√
−gd4x+

∫
v

LM
√
−gd4x. (1.81)

Taking δP in eq.(1.81), we have

δP =
1

2k

∫
v

δ(R
√
−g)d4x+

∫
v

δ(LM
√
−g)d4x. (1.82)

Using eq.(1.60) in eq.(1.82), we have

δP = 1
2k

∫
v
δ(gγπRγπ

√
−g)d4x+

∫
v
δ(LM

√
−g)d4x,

δP =
1

2k

∫
v

(
Rγπδ(g

γπ
√
−g) + gγπ

√
−gδRγπ

)
d4x

+

∫
v

(
δ(LM)

√
−g + LMδ

√
−g
)
d4x,
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δP =
1

2k

∫
v

(
Rγπg

γπδ
√
−g +Rγπ

√
−gδ(gγπ) +

√
−ggγπδRγπ

)
d4x

+

∫
v

(
δ(LM)

√
−g + LMδ

√
−g
)
d4x.

(1.83)

Using δg = ggγπδgγπ = −ggγπδgγπ

δ
√
−g = − 1

2
√
−g

(−ggγπδgγπ),

δ
√
−g = −1

2

√
−ggγπδgγπ. (1.84)

Using eq.(1.84) in eq.(1.83), we get∫
v

[δ(LM)
√
−g + LMδ

√
−g]d4x = δSM . (1.85)

Using eq.(1.84) in eq.(1.85) we have,

δPM =

∫
v

(δ(LM)
√
−g)d4x+

∫
v

LM [
−1

2

√
−ggγπδgγπ]d4x, (1.86)

and

δLM =
∂LM
∂gγπ

δgγπ.

By using above equation in eq.(1.86), we have

δPM =

∫
v

[
∂LM
∂gµν

− 1

2
LMgγπ]δgγπ

√
−gd4x, (1.87)

δPM = −1

2

∫
v

[−2
∂LM
∂gγπ

+ LMgγπ]δgγπ
√
−gd4x. (1.88)

We define the stress-energy momentum tensor Tγπ as

Tγπ = −2
∂LM
∂gγπ

+ LMgγπ.

Therefore eq.(1.88) become,

δPM =

∫
v

√
−gTγπδgγπd4x. (1.89)
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Now, choosing Reimann normal coordinates, i.e. Γabc = 0 Γabc,α 6= 0, as

Rγπ = Γλγπ,λ − Γλµλ,ν ,

δRγπ = δ(Γλγπ,λ)− δ(Γλµλ,ν),

δRγπ = δ(Γλγπ),λ − δ(Γλµλ),ν ,

δRγπ = (δΓλγπ);λ − (δΓλµλ);ν .

Multiplying by gγπ, we get,

gγπδRγπ = gγπ(δΓλγπ);λ − gγπ(δΓλµλ);ν . (1.90)

By replacing λ by ν, eq.(1.90) becomes,

gγπδRγπ = (gγπδΓλγπ − gµλδΓνγπ);λ.

We define a vector Aλ as,

Aλ = (gγπδΓλγπ − gµλδΓνγπ),

gγπδRγπ = Aλ;λ. (1.91)

Multiplying eq.(1.91) by
√
−g and integrating over the 4-dimensional volume element

we get ∫
v

gγπδRγπ

√
−gd4x =

∫
v

Aλ;λ
√
−gd4x.

By using Gauss-divergence theorem, the R.H.S of above equation can be neglected and

therefore the L.H.S is also neglected.

Now

δ(gγπ
√
−g) =

√
−gδgγπ + gγπδ

√
−g,

δ(gγπ
√
−g) =

√
−gδgγπ + gγπ(−1

2

√
−ggαβδgαβ). (1.92)

By using eq.(1.89) and eq.(1.92) in eq.(1.83) we get,

δP =
1

2k

∫
v

√
−gRγπ(δgγπ − 1

2
gγπgαβδg

αβ)− 1

2

∫
v

√
−gTγπδgγπd4x, (1.93)
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δP =
1

2k

∫
v

√
−g(Rγπδg

γπ − 1

2
Rgγπδg

γπ)d4x− 1

2

∫
v

√
−gTγπδgγπd4x,

δP =
1

2k

∫
v

√
−g[Rγπ −

1

2
gγπR− kTγπ]δgγπd4x. (1.94)

Put eq.(1.94) in eq.(1.80) we get

Rγπ −
1

2
Rgγπ − kTγπ = 0,

Rγπ −
1

2
Rgγπ = kTγπ.

We can add a constant ∧ (called the cosmological constant) to the action and thereby

modify the gravitational Lagrangian density to

LG =
1

2k
(R + ∧).

By following the above procedure we get the Einstein equations with a cosmological

term

Rγπ −
1

2
Rgγπ − ∧gγπ = kTγπ. (1.95)

.

1.12 Black Holes

Stars have the ability to support themselves against gravity because of the pressure

created by thermonuclear reactions. But these are not ever lasting continuing responses.

At the point when nuclear fuel depleted, stars starts shrinking due to the pressure

reaction and loosing its balance with gravity. In case of massive stars, all the forces

acting outward get reduced by inward forces of gravity and disruption continues. As a

result density of stars continues to increase and volume decreases, therefore the escape

velocity surpasses the speed of light. At this stage, star is said to be a ‘black hole’.
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1.13 CP Diagrams

Eddington [19] was the first who discussed the two dimensional representation of space-

time for the Schwarzschild Metric (SM). After this, Finkelstein [20] and Kruskal [21]

describe the same work independently. In this regard Carter [22] and Graves and Brill

[23] represents the same techniques for RN and Kerr solutions respectively. Carter

[24] and Boyer and Lindquist [25] did the same. Martin Walker [26] took the duty

of systematizing, formalizing and generalizing the techniques of above mentioned au-

thors. Now these illustrations are known as Carter-Penrose (CP) or Penrose diagrams.

Previously, these were known as block diagrams.
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Chapter 2

Some Exact Solutions of the EFEs

Any spacetime metric can, in a sense, be considered as satisfying the EFEs [10] be-

cause, after obtaining the L.H.S. of the EFEs from the metric tensor, we can define

energy-momentum tensor Tab as the R.H.S. of the EFEs. Tab in general have unrea-

sonable physical properties, if the matter content is reasonable that the solution will

be reasonable.

A spacetime for which the EFEs are satisfied with Tab (for some reasonable matter

content) is an exact solution of the EFEs. Due to the complexity of these equations,

it is difficult to find the exact solutions except in space of rather high symmetry. In

particular we can find exact solutions for vacuum (Tab = 0). Exact solutions describe

the qualitative features that can arise in GR. In this chapter our main focus will be on

vacuum solutions of these equations.

These solutions can be divided into two categories:

1) Solutions with ∧ = 0

2) Solutions with ∧ 6= 0

2.1 Some Exact Solutions with ∧ = 0

In this section we first discuss the Minkowski metric as a solution of the EFEs, then

the Schwarzschild metric, its singularities and some appropriate coordinates to study

its geometry are discussed. After that we will do the same for RN metric. Kerr metric

is discussed briefly.
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2.1.1 The Minkowski Metric

Minkowski metric is the simplest metric in GR, and is infact the metric of Special

Relativity. The topology of this metric is R4. In terms of (x, y, z, w) coordinates on

R4, it is given as

ds2 = dw2 − dx2 − dy2 − dz2. (2.1)

If we use spherical polar coordinates (t, r, θ, φ) given by,

w = t,

x = r sin θ sinφ,

y = r sin θ cosφ,

z = r cos θ.

The metric in eq.(2.1), then becomes

ds2 = dt2 − dr2 − r2dΩ2, (2.2)

where

dΩ2 = dθ2 + sin2 θdφ2. (2.3)

r = 0 and sin θ = 0 are the singularities of this metric, but these singularities appear

due to the inappropriate choice of coordinates.

We can define new coordinates (Y,X, θ, φ), with ‘θ’ and ‘φ’ remain unchanged,

Y = tan−1 (r + t) + tan−1 (t− r) ,
X = tan−1 (r + t)− tan−1 (t− r) . (2.4)

The metric given in eq.(2.2) becomes

ds2 =
1

4
sec2

(
Y +X

2

)
sec2

(
Y −X

2

)(
dY 2 − dX2

)
− r2dΩ2. (2.5)

The CP diagram of Minkowski metric is shown in Figure. 2.1 and its maximal extension

is shown in Figure. 2.2
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Figure 2.1: CP diagram of the Minkowski metric in (Y,X, θ, φ) coordinates. Notice
that r = 0 is just a coordinate singularity.

26



−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

X→

Y→

r=0

I +

I −

I 0I 0

ℑ +

ℑ −ℑ −

ℑ +

Figure 2.2: Maximal extension of the Minkowski metric.
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2.1.2 The Schwarzschild Metric

When Einstein published his GR, it was thought that the exact solution of these equa-

tions can not be obtained due to their complexity. But soon after that, for Einstein’s

vacuum field equations, Karl Schwarzschild obtained the exact solution for exterior

gravitational field for spherically symmetric static body. To derive this solution we

consider the metric

ds2 = e2µ(r)c2dt2 − e2β(r)dr2 − e2δ(r)r2dθ2 − e2ψ(r)r2 sin2 θdφ2. (2.6)

For spherical symmetry, we must have

δ(r) = ψ(r). (2.7)

Then eq.(2.6) becomes

ds2 = e2µ(r)c2dt2 − e2β(r)dr2 − e2δ(r)r2dΩ2. (2.8)

Now let

r∗ = reδ(r),

dr∗ = dreδ(r) + eδ(r)rdδ,

= eδ
(

1 + r
dδ

dr

)
dr.

Or

dr = e−δ
dr∗(

1 + r dδ
dr

) .
Put above equation in eq.(2.8)

ds2 = e2µ(r)c2dt2 − e2β(r)−2δ(r)

(
1 + r

dδ

dr

)−2

dr∗
2 − r∗2dΩ2. (2.9)

Now define the relabeling

e2β(r)−2δ(r)
(
1 + r dδ

dr

)2 → eη(r),

e2µ(r) → eξ(r),

r∗ → r,
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then eq.(2.9) becomes

ds2 = eξ(r)c2dt2 − eη(r)dr2 − r2dΩ2. (2.10)

The metric tensor and its inverse are

gαβ =


eξ

−eη
−r2

−r2sin2θ

 ,

gαβ =


e−ξ

−e−η
−r−2

(−r2sin2θ)
−1

 .

The non vanishing components of Rab are

R00 =
1

2

[
ξ′′ +

1

2
ξ′ (ξ′ − η′) +

2

r
ξ′
]
e2ξ−2η, (2.11)

R11 =
1

2

[
−ξ′′ − 1

2
ξ′ (ξ′ − η′) +

2η′

r

]
, (2.12)

R22 = 1− e−ξ +
1

2
r(η′ − ξ′) e−ξ, (2.13)

while

R33 = R22sin2θ. (2.14)

The EFEs in vacuum are

Rαβ = 0.

Using eqs.(2.11), (2.12) and (2.13), we get

R00 = ξ′′ + ξ′ (ξ′ − η′) +
2

r
ξ′ = 0, (2.15)

R11 = ξ′′ + ξ′ (ξ′ − η′)− 2η′

r
= 0, (2.16)
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R22 = 1− eξ +
1

2
r(η′ − ξ′) eξ = 0. (2.17)

Using eqs.(2.15) and (2.16), we obtain

ξ′(r) + η′(r) = 0,

or

ξ(r) + η(r) = constt.

We can define a function “ξ(r)− constt = ξ̄(r)” and relabeling ξ̄(r)→ ξ(r), we get

ξ(r) = −η(r),

then eq.(2.17) becomes

R22 =
(
−re−η

)′
+ 1 = 0.

Integrating both sides and dividing by ‘r’

eξ(r) = e−η(r) = 1 +
α

r
, (2.18)

where α is a constant.

Using eq.(2.18) in eq.(2.10), we obtain

ds2 =
(

1 +
α

r

)
c2dt2 −

(
1 +

α

r

)−1

dr2 − r2dΩ2. (2.19)

From [27], α =
−2Gm

c2
, where G is the Newton’s gravitational constant, m is the point

mass and c is the speed of light.

Eq.(2.19) becomes

ds2 =

(
1− 2Gm

rc2

)
c2dt2 −

(
1− 2Gm

rc2

)−1

dr2 − r2dΩ2,

or taking G = c = 1 (gravitational units), the above metric becomes

ds2 =
(

1− rs
r

)
dt2 −

(
1− rs

r

)−1

dr2 − r2dΩ2, (2.20)
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where rs = 2m is the Schwarzschild radius.

Equation (2.20) represents the required Schwarzschild Metric (SM).

This metric has two singularities:

i) at r = rs,

ii) at r = 0.

The curvature invariants for SM given in eq.(2.20) [13] are

I1 = 0,

I2 =
48m2

r4
,

I3 =
64m3

r6
.

The curvature invariants remain finite at r = rs while blows up at r = 0. Thus r = rs

is a removable (coordinate) singularity while r = 0 is a crushing singularity. To remove

the coordinate singularity at r = rs, we first define the Eddington Finkelstein (EF)

coordinates (w∗, z∗), while ‘θ’ and ‘ϕ’ remain unchanged.

w∗ = t+ r∗,
z∗ = t− r∗,

where r∗ is the "Regge wheeler tortise coordinate" [12] defined by

r∗ =

∫
dr(

1− rs
r

) = r + rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ .
The inverse transformations are

t =
1

2
(w∗ + z∗) , (1a)

r∗ =
1

2
(w∗ − z∗) . (1b)

The metric in eq.(2.20) in these coordinates takes the form

ds2 =
(

1− rs
r

)
dw∗dz∗ − r2dΩ2, (2.21)

which is still singular at r = rs, since g = 0 there. We thus introduce Kruskal coordi-

nates (W,Z) given by

W = µe
w∗
λ ,

Z = −µe−z
∗
λ ,

(2.22)
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where µ and λ are the two constants which we shall fix later.

From eqs.(2.22) and (1b), we have relation

WZ = −µ2e
(w∗−z∗)

λ = −µ2e
2r∗
λ .

The metric in (W,Z) coordinates with µ = 1 and λ = 2rs becomes

ds2 = 4
rs

3

r
e
−r
rs dWdZ − r2dΩ2. (2.23)

Now there is no singularity at r = rs as cleared from the metric given in eq.(2.23).

Further, we define the Kruskal-Szekers (KS) coordinates (w, z), where ‘w’ is time like

and ‘z’ is space like coordinates given by

w =
1

2
(W + Z) =

(
r

rs
− 1

) 1
2

e
r

2rs sinh

(
t

2rs

)
, (2.24)

z =
1

2
(W − Z) =

(
r

rs
− 1

) 1
2

e
r

2rs cosh

(
t

2rs

)
. (2.25)

The (w, z) plane has the four regions shown in Figure.2.3

For region I:-

r ≥ rs, z ≥ 0

z =

(
r

rs
− 1

) 1
2

e
r

2rs cosh

(
t

2rs

)
,

w =

(
r

rs
− 1

) 1
2

e
r

2rs sinh

(
t

2rs

)
.

For region II:-

r ≤ rs, w ≥ 0

z =

(
1− r

rs

) 1
2

e
r

2rs sinh

(
t

2rs

)
,

w =

(
1− r

rs

) 1
2

e
r

2rs cosh

(
t

2rs

)
.
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For region III:-

r ≥ rs, z ≤ 0

z = −
(
r

rs
− 1

) 1
2

e
r

2rs cosh

(
t

2rs

)
,

w = −
(
r

rs
− 1

) 1
2

e
r

2rs sinh

(
t

2rs

)
.

For region IV :-

r ≤ rs, w ≥ 0

z = −
(

1− r

rs

) 1
2

e
r

2rs sinh

(
t

2rs

)
,

w = −
(

1− r

rs

) 1
2

e
r

2rs cosh

(
t

2rs

)
.

In these coordinates eq.(2.23) becomes

ds2 = 4
rs

3

r
e
−r
rs

(
dw2 − dz2

)
− r2dΩ2. (2.26)

The inverse transformations are

t =

 2rstanh−1
(
w
z

)
, for region I and III,

2rstanh−1
(
z
w

)
, for region II and IV.

and
(
r
rs
− 1
)
e
r
rs = z2 − w2 for all regions.

In KS coordinates, the crushing singularity becomes

w2 − z2 = 1,

or w = ±
√

1 + z2,

i.e. we have two singularities, w =
√

1 + z2 is a future space like singularity, while

w = −
√

1 + z2 is a past space like singularity.

Also the region r ≥ rs is actually z2 ≥ w2, which indicates that there are two regions
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Figure 2.3: The transformation of (t, r) and (w, z) coordinates for SM.
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outside the black hole i.e z ≥ |w| and z ≤ −|w|, both corresponds to r ≥ rs. Same

as for r ≤ rs, the region is w2 ≥ z2, which also show there are two interior regions of

black hole.

The KS coordinates are non-compact ranges from (−∞,+∞). These are not suitable

for calculations because of their asymptotic range. Penrose constructed a method to

analyze the asymptotic properties of space time. He introduced conformal transforma-

tion for infinity to make it finite and then the asymptotic calculations are converted

into finite calculations. By using this method KS coordinates are converted into com-

pactified KS coordinates (CKS) (Y, X, θ, ϕ) [1] defined as

Y = tan−1 (w + z) + tan−1 (w − z) ,
X = tan−1 (w + z)− tan−1 (w − z) ,

(2.27)

and the implicit relation for r and Y, X is(
r

rs
− 1

)
e
r
rs = z2 − w2 = − tan

(
Y −X

2

)
tan

(
Y +X

2

)
. (2.28)

Inserting eq.(2.27) in eq.(2.26), we get

ds2 =
rs

3

r
e
−r
rs sec2

(
Y −X

2

)
sec2

(
Y +X

2

)(
dY 2 − dX2

)
− r2dΩ2. (2.29)
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2.1.3 The Reissner Nordstorm Metric

Reissner [28] and Nordstorm [29] derive the solution of the EFEs, for outside a spher-

ically symmetric charged point with non zero energy momentum tensor which arises

from electromegnetic field, called RN metric, given as

ds2 = %(r)dt2 − %−1(r)dr2 − r2dΩ2, (2.30)

where

%(r) = 1− 2m

r
+
Q2

r2
. (2.31)

For m > Q, RN metric has two coordinate singularities,

r1 = m+
√
m2 −Q2, (2.32)

and

r2 = m−
√
m2 −Q2, (2.33)

called outer and inner horizons respectively, and one curvature singularity r = 0, as

curvature invariants become infinite there [13]. For the removal of singularities at

r = r1 and r2, we first define EF like coordinates (w∗, z∗)

w∗ = t+ r∗,
z∗ = t− r∗, (2.34)

where

r∗ =

∫
r2

(r − r2)(r − r1)
dr = r +

r2
1

r1 − r2

ln

∣∣∣∣r − r1

d1

∣∣∣∣− r2
2

r1 − r2

ln

∣∣∣∣r − r2

d2

∣∣∣∣ , (2.35)

where d1 and d2 are constants. To make the arguments of log functions dimensionless,

we choose d1 = r1 and d2 = r2. Using these values in eq.(2.35), we get

r∗ = r +
r2

1

r1 − r2

ln

∣∣∣∣ rr1

− 1

∣∣∣∣− r2
2

r1 − r2

ln

∣∣∣∣ rr2

− 1

∣∣∣∣ . (2.36)

The metric given in eq.(2.30) in (w∗, z∗) coordinates becomes

ds2 =
(

1− r1

r

)(
1− r2

r

)
dw∗dz∗ − r2dΩ2. (2.37)
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The metric in above equation remains singular because g = 0 at r = r1 and r2. We

thus introduce Kruskal coordinates (W,Z) given by

W = µe
w∗
λ ,

Z = −µe−z
∗
λ .

(2.38)

Using eq.(2.34) along with eq.(2.36) in eq.(2.38), we get

W = µe
t
λ e

r
λ

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ(r1−r2)

, (2.39)

Z = −µe
−t
λ e

r
λ

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ(r1−r2)

. (2.40)

And

WZ = −µ2e
2r∗
λ = −µ2e

2r
λ

∣∣∣∣ rr1

− 1

∣∣∣∣
2r21

λ(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−2r22

λ(r1−r2)

.

For the removal of the singularities at r = r1 and r2, we need to cancel the factors

involving
(
1− r1

r

)
and

(
1− r2

r

)
. But these cannot be canceled simultaneously. There-

fore two coordinate patches are required to cover the entire RN-geometry. Thus the

(W1, Z1) coordinates (called Kruskal like coordinates) are defined as

W1 = µ1e
t
λ1 e

r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ1(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ1(r1−r2)

, (2.41)

Z1 = −µ1e
−t
λ1 e

r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ1(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ1(r1−r2)

, (2.42)

where

λ1 =
2r2

1

r1 − r2

. (2.43)

The metric for this region is given by

ds2
1 =

λ2
1r1r2

r2µ2
+

e−2r/λ1

(
r

r2

− 1

) r21+r
2
2

r21
dW1dZ1 − r2dΩ2. (2.44)

The (W2, Z2) are defined as

W2 = µ2e
t
λ2 e

r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ2(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ2(r1−r2)

, (2.45)
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Z2 = −µ2e
−t
λ2 e

r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ2(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ2(r1−r2)

, (2.46)

where

λ2 =
−2r2

2

r1 − r2

. (2.47)

The metric for this region is

ds2
2 =

λ2
2r2r1

r2µ2
2

e−2r/λ2

(
r

r1

− 1

) r21+r
2
2

r22
dW2dZ2 − r2dΩ2. (2.48)

We now define KS coordinates (w1, z1) which covers the region r1 < r <∞

w1 =
1

2
(W1 + Z1) = µ1 sinh

(
t

λ1

)
e
r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ1(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ1(r1−r2)

, (2.49)

z1 =
1

2
(W1 − Z1) = µ1 cosh

(
t

λ1

)
e
r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ1(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ1(r1−r2)

. (2.50)

These are non-singular at r = r1 and for the region r2 < r < r1, w1, z1 are interchanged.

The metric for this region in these coordinates is given by

ds2
1 =

λ2
1r1r2

r2µ2
1

e−2r/λ1

(
r

r2

− 1

) r21+r
2
2

r21 (
dw2

1 − dz2
1

)
− r2dΩ2. (2.51)

The region 0 < r < r2 is covered by (w2, z2), where

w2 =
1

2
(W2 + Z2) = µ2 sinh

(
t

λ2

)
e
r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ2(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ2(r1−r2)

, (2.52)

z2 =
1

2
(W2 − Z2) = µ2 cosh

(
t

λ2

)
e
r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
r21

λ2(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−r22

λ2(r1−r2)

. (2.53)

These are non-singular at r = r2, and for the region r2 < r < r1, w2,z2 are interchanged.

Here the metric becomes

ds2
2 =

λ2
2r2r1

r2µ2
2

e−2r/λ2

(
r

r1

− 1

) r21+r
2
2

r22 (
dw2

2 − dz2
2

)
− r2dΩ2. (2.54)

The region r2 < r <∞ is covered by the compactified KS coordinates (Y1, X1), where

Y1 = tan−1 (w1 + z1) + tan−1 (w1 − z1) ,
X1 = tan−1 (w1 + z1)− tan−1 (w1 − z1) .

(2.55)
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Here the metric is

ds2
1 =

λ2
1r1r2

4r2µ2
1

e−2r/λ1

(
r

r2

− 1

) r21+r
2
2

r21
sec2

(
Y1 −X1

2

)
sec2

(
Y1 +X1

2

)(
dY 2

1 − dX2
1

)
−r2dΩ2.

(2.56)

The region 0 < r < r1 is covered by (Y2, X2), where

Y2 = tan−1 (w2 + z2) + tan−1 (w2 − z2) ,
X2 = tan−1 (w2 + z2)− tan−1 (w2 − z2) .

(2.57)

Here the metric is

ds2
2 =

λ2
2r2r1

4r2µ2
2

e−2r/λ2

(
r

r1

− 1

) r21+r
2
2

r22
sec2

(
Y2 −X2

2

)
sec2

(
Y2 +X2

2

)(
dY 2

2 − dX2
2

)
−r2dΩ2.

(2.58)

The implicit relations for r are

z2
1 − w2

1 = µ2
1e

2r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
2r21

λ1(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−2r22

λ1(r1−r2)

= − tan

(
Y1 −X1

2

)
tan

(
Y1 +X1

2

)
,

(2.59)

and

z2
2 − w2

2 = µ2
2e

2r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
2r21

λ2(r1−r2)
∣∣∣∣ rr2

− 1

∣∣∣∣
−2r22

λ2(r1−r2)

= − tan

(
Y2 −X2

2

)
tan

(
Y2 +X2

2

)
.

(2.60)
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Figure 2.6: CP diagram of the RN metric for m > Q.
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Figure 2.7: The Maximal extension of the RN metric for m > Q in (Y,X, θ, φ) coordi-
nates.
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Figure 2.8: CP diagram of the RN metric for m < Q.
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For m < Q, the metric is regular everywhere except at the curvature singularity

r = 0. The CP diagram for this case is shown in Figure.2.8

For m = Q, RN metric is called extreme RN (eRN), the metric in eq.(2.30) then

becomes

ds2 = k(r)dt2 − k−1(r)dr2 − r2dΩ2, (2.61)

where

k(r) =
(

1− m

r

)2

. (2.62)

This metric has coordinate singularity at r = m, and essential singularity at r = 0.

For eRN, Kruskal like coordinates does not exist [30], then we use Carter coordinates

[22] (Y,X), given by

Y = tan−1w∗ + cot−1 z∗, (2.63)

X = tan−1w∗ − cot−1 z∗, (2.64)

where

w∗ = r∗ + t,
z∗ = r∗ − t,

where r∗ is

r∗ =

∫
1(

1− m
r

)2dr = r − rm

r −m
+ 2m ln

∣∣∣∣r −mm
∣∣∣∣ (2.65)

The metric in these coordinates becomes

ds2 =

(
r −m

2r

)2

csc2

(
Y −X

2

)
sec2

(
Y +X

2

)(
dY 2 − dX2

)
− r2dΩ2. (2.66)

The CP diagram of eRN metric and its maximal extension are shown in Figures.2.9

and 2.10 respectively.

2.1.4 The Kerr Metric

Kerr [31] presented the first axisymmetric stationary asymptotically flat metric which

describes a spinning black hole. The Kerr metric in Boyer-Lindquist coordinates is

given by

ds2 =
4
ρ2

(
dt− a sin2 θdφ

)2
+

sin2 θ

ρ2

(
(r2 + a2)dφ− adt

)2
+
ρ2

4
dr2 + ρ2dθ2, (2.67)
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where

4 = r2 − 2mr + a2, (2.68)

ρ2 = r2 + a2 cos2 θ. (2.69)

In this metric ‘a’ is the angular momentum andm is the mass as measured from infinity.

When a = 0 the metric reduces to the SM given in eq.(2.20).

When a2 > m2,4 > 0, the metric in eq.(2.67) becomes singular at r = 0. This

singularity is not in fact a point but a ring.

When a2 < m2, 4(r) = 0 at

r1 = m+
√
m2 − a2, (2.70)

and

r2 = m−
√
m2 − a2. (2.71)

These are the outer and inner horizons respectively analogous to the outer and inner

horizons of RN metric. When m2 = a2, r1 and r2 coincide.

2.2 Some Exact Solutions with ∧ 6= 0

In this section we first discuss de Sitter (dS) and Anti-de Sitter (AdS) metrics, and

then the derivation of the Schwarzschild de Sitter (SdS) and Schwarzschild Anti-de

Sitter (SAdS) spacetimes.

For non-zero cosmological constant, the the EFEs for vacuum are

Rµν −
1

2
Rgµν − ∧gµν = 0, (2.72)

contracting indices and again using eq.(2.72), we obtain

Rµν = − ∧ gµν . (2.73)
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2.2.1 De Sitter Metric

De Sitter [32] first discover this solution for ∧ > 0. It has the topology R1 × S3 [10].

After the discovery of this solution, de Sitter [33] and Lanczos [34] realized that it can

be visualized as the hyperboloid

y2
0 − y2

1 − y2
2 − y2

3 − y2
4 = a2, (2.74)

where

a =

√
3

∧
, (2.75)

embedded in a five-dimensional Minkowski space

ds2 = dy2
0 − dy2

1 − dy2
2 − dy2

3 − dy2
4. (2.76)

Here, we first introduce the (τ, χ, θ, φ) coordinates to cover the entire hyperboloid,

y0 = a sinh
(τ
a

)
,

y1 = a cosh
(τ
a

)
cosχ,

y2 = a cosh
(τ
a

)
sinχ cos θ,

y3 = a cosh
(τ
a

)
sinχ cosφ sin θ,

y4 = a cosh
(τ
a

)
sinχ sinφ sin θ.

In these coordinates the metric in eq.(2.76) becomes

ds2 = dτ 2 + a2 cosh2 τ

a

(
dχ2 + sin2 χdΩ2

)
. (2.77)

The metric in eq.(2.77) has coordinate singularities at χ = 0, π and θ = 0, π, which are

due to the choice of polar coordinates. Further we can introduce spherically symmetric

coordinates (t, r, θ, φ) by

y0 =
√
a2 − r2 sinh

(
t

a

)
, (2.78)

y1 =
√
a2 − r2 cosh

(
t

a

)
, (2.79)
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y2 = r cos θ, (2.80)

y3 = r cosφ sin θ, (2.81)

y4 = r sinφ sin θ. (2.82)

Using eqs.(2.78)-(2.82) in eq.(2.76) we get

ds2 = ϑ(r)dt2 − ϑ−1(r)dr2 − r2dΩ2, (2.83)

where

ϑ(r) = 1− ∧
3
r2. (2.84)

The metric becomes singular at r =
√

3
∧ , which is the cosmological horizon.

2.2.2 Anti-de Sitter Metric

For ∧ < 0, we obtain Anti-de Sitter metric. It has the topology S1 × R3, and can be

represented as the hyperboloid

y2
0 − y2

1 − y2
2 − y2

3 + y2
4 = −a2, (2.85)

where

a =

√
−3

∧
, (2.86)

embedded in a five-dimensional Minkowski space

ds2 = dy2
0 − dy2

1 − dy2
2 − dy2

3 + dy2
4. (2.87)

Notice that AdS has two timelike dimensions y0 and y4.

This hyperboloid can be completely covered by the coordinates (τ, χ, θ, φ)

y0 = a sin
(τ
a

)
coshχ, (2.88)

y1 = a cos θ sinhχ, (2.89)

y2 = a sin θ cosφ sinhχ, (2.90)

y3 = a sin θ sinφ sinhχ, (2.91)
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y4 = a cos
(τ
a

)
coshχ. (2.92)

Using eqs.(2.88)-(2.92) in (2.87), we get

ds2 = cosh2 χdτ 2 + a2(dχ2 + sinh2 χdΩ2) (2.93)

Here, coordinate singularities are at χ = 0, and θ = 0, π.

To introduce spherically symmetric coordinates (t, r, θ, φ), define a transformation

r = a sinhχ (2.94)

Using eqs.(2.88)-(2.92), we obatin

y0 =
√
a2 + r2 sinh

(
t

a

)
, (2.95)

y1 = r cos θ, (2.96)

y2 = r cosφ sin θ, (2.97)

y3 = r sinφ sin θ, (2.98)

y4 =
√
a2 − r2 cosh

(
t

a

)
. (2.99)

Using eqs.(2.95)-(2.99) in eq.(2.87), we get

ds2 = ϑ∗(r)dt2 − ϑ∗−1(r)dr2 − r2dΩ2, (2.100)

where

ϑ∗(r) = 1 +
r2

a2
. (2.101)

Notice that there are no horizons for AdS metric because (1 + r2

a2
) > 0 everywhere.

2.2.3 SdS and SAdS Metrics

SdS and SAdS are the generalizations of dS and AdS metrics respectively in Schwarzschild

geometry. This metric was first discovered by Kottler [35], Weyl [36] and Trefftz [37].

Using eqs.(2.11), (2.12), (2.13) in eqs.(2.73), we get

R00 =
1

2

[
ξ′′ +

1

2
ξ′ (ξ′ − η′) +

2

r
ξ′
]
eξ−η = − ∧ eξ, (2.102)
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which gives

R00 =
1

2

[
ξ′′ +

1

2
ξ′ (ξ′ − η′) +

2

r
ξ′
]

= − ∧ eη, (2.103)

R11 =
1

2

[
−ξ′′ − 1

2
ξ′ (ξ′ − η′) +

2η′

r

]
= ∧eη, (2.104)

R22 = 1− eξ +
1

2
r(η′ − ξ′) eξ = ∧r2. (2.105)

Adding eq.(2.103) and eq.(2.104), we get

ξ′(r) + η′(r) = 0,

or

ξ(r) + η(r) = constt.

Again we can define a function “ξ(r) − constt = ξ̄(r)” and relabeling ξ̄(r) → ξ(r), we

get

ξ(r) = −η(r),

then R22 becomes (
re−η

)′
= 1− ∧r2. (2.106)

Now integrating both sides of eq.(2.106) and dividing by ‘r’, we get

eξ(r) = e−η(r) = 1− ∧r
2

3
+
β0

r
. (2.107)

For small r, the Newtonian approximation gives β0 = −2m, so eq.(2.107) becomes

e2ξ(r) = e−2η(r) = 1− ∧r
2

3
− 2m

r
. (2.108)

Finally, using eq.(2.108) in eq.(2.10), we get

ds2 = d(r)dt2 − d−1(r)dr2 − r2dΩ2, (2.109)
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where

d(r) = 1− ∧r
2

3
− 2m

r
. (2.110)

The metric in eq.(2.109) can be classified into two types based on the nature of ∧.
1) If ∧ < 0, then eqs.(2.109) and (2.110) takes the form

ds2 = d(r)dt2 − d−1(r)dr2 − r2dΩ2, (2.111)

where

d(r) = 1 +
r2

a2
− 2m

r
. (2.112)

Here we use the relation given in eq.(2.86). The metric in (2.111) is called Schwarzschild

Anti de Sitter (SAdS) metric. If ∧ > 0, eqs.(2.109) and (2.110) represents Schwarzschild

de Sitter (SdS) metric. This metric has three horizons, from which two of them are

positive (blackhole and cosmological horizon(s)) while the third one is negative and is

neglected being nonphysical. Here the curvature singularity is at r = 0.
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Chapter 3

Foliation

The word ‘foliation’ is derived from Latin word ‘folia’ which means leaf. The idea

of foliation starts with the origin of the theory of differential equations. Where the

solution curves taken as the foliation leaves. Poincare developed methods to study the

global and qualitative properties of solutions of dynamical systems in situations where

the implicit solution methods failed. He further discovered that the study of geometry

of the space of solution curves of a dynamical system unveil complex phenomena. He

accentuated the qualitative nature of phenomena which gives the powerful drive to the

topological methods, which led to the subject of foliation. The pioneers of foliation

theory were Reeb [38] and Ehresman [39].

The best way to understand the concept of foliation is to consider the simplest example

of 2-dimensional xy-plane, <2. It can be foliated by the straight lines, y = mx+c, with

any fixed m and varying c as shown in Figure.3.1. The xy-plane can also be foliated

by circles, x2 + y2 = b2 as shown in Figure.3.2, but in this case the origin is left out

unless we include the case of degenerate circle b = 0.

A foliation is called complete if it covers the entire space by a sequence of disjoint

subspaces. For example. a disc of radius d can be completely foliated by circles but

cannot be completely foliated by squares as there would be some part of the disc left

uncovered.

Foliation of the black hole metrics by hypersurfaces may be obtained by null, space

or timelike hypersurfaces. Foliation is not unique, a spacetime metric can be foliated
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by more than one ways, also the foliation procedure does not ensure the achievement

of the complete foliation of the metric. A local or global approach can be adopted to

foliate the metric. The former approach describes that, locally the hypersurfaces look

flat to an observer, i.e they have zero intrinsic (Reimann) curvature while the later

approach describes that hypersurfaces have constant or zero MEC.

3.1 K-Slicing

For the variational principle of K-surfaces, BCI [3] generalized an extremum property

that the spheres in Eucleadean space have constant MEC and have least surface area

for a fixed enclosed volume. Then by following the same procedure for the spacetime

they extremized the 3-dimensional area Π(Σ) of a hypersurface Σ, by keeping constant

the 4-volume, Υ(Σ,Σ1), enclosed by Σ together with any fixed surface Σ1. To include

this constraint in the variational principle, they used a Langrange multiplier and obtain

δL = 0, (3.1)

with

L = Π(Σ) + ηΥ(Σ,Σ1) =

∫
Σ

nβd3Σβ + η

∫
Υ

d4Υ. (3.2)

Here nβ represents the field of unit vectors normal to Σ and Σ1.

To show that eqs.(3.1) and (3.2) leads to the K-surface, notice that the boundary of

Υ is Σ− Σ1, so rewrite L as

L = Π(Σ) + ηΥ(Σ,Σ1) + Π(Σ)− Π(Σ1) = Π(Σ)− Π(Σ1) + ηΥ(Σ,Σ1) + Π(Σ1)

=

∫ Σ1

Σ

nβd3Σβ + η

∫
Υ

d4Υ + Π(Σ1).
(3.3)

Using divergence theorem in eq.(3.3), we get

L =

∫
Υ

nβ;βd
4Υ + η

∫
Υ

d4Υ + Π(Σ1) =

∫
Υ

(
nβ;β + η

)
d4Υ + Π(Σ1). (3.4)

The variation of this expression can vanish for arbitrary variation of Σ only if the

integrand vanishes every where on Σ. Thus

nβ;β + η = 0. (3.5)
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Using eq.(1.54) in eq.(3.5), we get

η = K. (3.6)

This shows that K is constant and its value is just the Langrange multiplier.
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(a) (b)

y

x x

y

Figure 3.1: Foliation of xy-plane by straight lines y = mx + c. Figure (a) represents
foliation of xy-plane for m = 1 and figure (b) for m = −1.
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y

Figure 3.2: Foliation of xy-plane by circles.
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y

x

Figure 3.3: Foliation of xy-plane by ellipses.
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3.1.1 K-Slicing Equation for Spherically Symmetric Static Space-
times

The variational principle given in eqs.(3.1) and (3.2) gives a convenient method for the

derivation of K-surface equation in spherically symmetric static (SSS) metric whose

metric in (t, r, θ, φ) takes the form

ds2 = B(r)dt2 − C(r)dr2 − r2dΩ2. (3.7)

Let the spacelike surface Σ be described as

t = t(r, θ, φ), (3.8)

and for Σ1, we choose

t = 0. (3.9)

To calculate the variational principle for the metric given in eq.(3.7) we need to find

the values of Π(Σ) and Υ(Σ,Σ1). Since Π(Σ) is the 3-dimensional area of Σ, and Σ is

given in eq.(3.8) so

Π(Σ) =

∫ √
|g∗|d3Π, (3.10)

where g∗ is the determinant of induced metric defined on eq.(3.7).

And Υ(Σ,Σ1) is the 4-dimensional volume given by

Υ(Σ,Σ1) =

∫ √
|g|d4Υ, (3.11)

where g is the metric determinant given in eq.(3.7). Now for induced metric, from

eq.(3.8), we have

dt = trdr + tθdθ + tφdφ. (3.12)

Inserting eq.(3.12) in eq.(3.7) and after simplification we get

ds2 =−
(
−Bt2r + C

)
dr2 −

(
−Bt2θ + r2

)
dθ2 −

(
−Bt2φ + r2 sin2 θ

)
dφ2

+ 2Btrtθdrdθ + 2Btθtφdθdφ+ 2Btφtrdφdr.
(3.13)

Then

g∗ =

∣∣∣∣∣∣
Bt2r − C Btrtθ Btφtr
Btrtθ Bt2θ − r2 Btθtφ
Btφtr Btθtφ Bt2φ − r2 sin2 θ

∣∣∣∣∣∣ , (3.14)

60



=
(
Bt2r − C

) ∣∣∣∣Bt2θ − r2 Btθtφ
Btθtφ Bt2φ − r2 sin2 θ

∣∣∣∣−Btrtθ ∣∣∣∣Btrtθ Btθtφ
Btφtr Bt2φ − r2 sin2 θ

∣∣∣∣
+Btφtr

∣∣∣∣Btrtθ Bt2θ − r2

Btφtr Btθtφ

∣∣∣∣ . (3.15)

After simplification, we get

g∗ =

(
C −Bt2r −

BC

r2

(
t2θ +

t2φ
sin2 θ

))
r4 sin2 θ. (3.16)

Then √
|g∗| = r2 sin θ

√
C −Bt2r −

BC

r2

(
t2θ +

t2φ
sin2 θ

)
. (3.17)

Using eq.(3.17) in eq.(3.10), we get

Π(Σ) =

∫
r2 sin θ

√
C −Bt2r −

BC

r2

(
t2θ +

t2φ
sin2 θ

)
drdθdφ. (3.18)

Using eq.(3.7) in eq.(3.11), we get

Υ(Σ,Σ1) =

∫ √
BCr2 sin θdtdrdθdφ. (3.19)

Using eqs.(3.18) and (3.19) in eq.(3.2), we get

L =

∫
r2 sin θ

√
C −Bt2r −

BC

r2

(
t2θ +

t2φ
sin2 θ

)
drdθdφ+ η

∫ √
BCr2 sin θdtdrdθdφ

=

∫ (
f + η

√
BCt

)
r2 sin θdrdθdφ,

(3.20)

where

f =

√
C −Bt2r −

BC

r2

(
t2θ +

t2φ
sin2 θ

)
. (3.21)

Using eq.(3.20) in eq.(3.1), we get

δ

(∫ (
f + η

√
BCt

)
r2 sin θdrdθdφ

)
= 0. (3.22)

By varying ‘t’ ∫ (
δf + η

√
BCδt

)
r2 sin θdrdθdφ = 0, (3.23)
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where

δf =
1

2f

(
−2Btrδtr −

BC

r2

(
2tθδtθ +

2tφδtφ
sin2 θ

))
,

=
1

f

(
−Btrδtr −

BC

r2

(
tθδtθ +

tφδtφ
sin2 θ

))
.

(3.24)

For continuity,

δtw = δ
∂t

∂w
=

∂

∂w
δt. (3.25)

Using eq.(3.25) in eq.(3.24), we have

δf = f−1

(
−Btr

∂

∂r
− BC

r2

(
tθ
∂

∂θ
+

tφ
sin2 θ

∂

∂φ

))
δt. (3.26)

Inserting eq.(3.26) in eq.(3.23), we get∫ (
f−1

(
−Btr

∂

∂r
− BC

r2

(
tθ
∂

∂θ
+

tφ
sin2 θ

∂

∂φ

))
+ η
√
BC

)
δtr2 sin θdrdθdφ = 0.

(3.27)

Now consider∫
Btrr

2 sin θ

f
∂

∂r
dr =

Btrr
2 sin θ

f

∫
∂

∂r
dr −

∫ (∫
∂

∂r
dr

d

dr

(
Btrr

2 sin θ

f

))
dr

=

∣∣∣∣Btrr2 sin θ

f

∣∣∣∣final
initial

−
∫ (

Btrr
2 sin θ

f

)
,r

dr.

(3.28)

Since there is no variation w.r.t ‘r’, so the term
∣∣∣Btrr2 sin θ

f

∣∣∣final
initial

in the above equation

is zero and we get, ∫
Btrr

2 sin θ

f
∂

∂r
dr = −

∫ (
Btrr

2 sin θ

f

)
,r

dr. (3.29)

Similarly, ∫
BCtθ sin θ

f
∂

∂θ
dθ = −

∫ (
BCtθ sin θ

f

)
,θ

dθ, (3.30)

and ∫
BCtφ
f sin θ

∂

∂φ
dφ = −

∫ (
BCtφ
f sin θ

)
,φ

dφ. (3.31)
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Using eqs.(3.29)-(3.31) in eq.(3.27), we get∫ [(
Btrr

2 sin θ

f

)
,r

+

(
BCtθ sin θ

f

)
,θ

+

(
BCtφ
f sin θ

)
,φ

+ ηr2
√
BC sin θ

]
δtdrdθdφ = 0.

(3.32)

Now, by variational principle, setting the integrand to be zero, we get(
Btrr

2 sin θ

f

)
,r

+

(
BCtθ sin θ

f

)
,θ

+

(
BCtφ
f sin θ

)
,φ

+ ηr2
√
BC sin θ = 0. (3.33)

Using eq.(3.6) in eq.(3.33), we get(
Btrr

2 sin θ

f

)
,r

+

(
BCtθ sin θ

f

)
,θ

+

(
BCtφ
f sin θ

)
,φ

= −Kr2
√
BC sin θ. (3.34)

For spherically symmetric hypersurface

t ≡ t(r). (3.35)

Using eq.(3.35) in eq.(3.34), we get

d

dr

(
dt
dr
Br2 sin θ

f∗

)
= −Kr2

√
BC sin θ, (3.36)

where f∗ is

f∗ =

√
C −B

(
dt

dr

)2

. (3.37)

Integrating both sides of eq.(3.36), we get

B dt
dr
r2√

C −B
(
dt
dr

)2
= −KJ +H, (3.38)

where H is a constant and

J =

∫ r√
B(u)C(u)u2du. (3.39)

Now multiplying both sides by
√
C −B

(
dt
dr

)2 to eq.(3.38) and solving for dt
dr
, we get

dt

dr
=

(
C

B

) 1
2 H −KJ(
Br4 + (H −KJ)2) 1

2

. (3.40)

Which is the required K-slicing equation for the metric given in eq.(3.7).
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3.2 K-Slicing of the Schwarzschild Metric

For Schwarzschild metric, put

B =
1

C
= 1− rs

r
, (3.41)

in eqs.(3.39) and (3.40), we get

dt

dr
=
F

G

r

(r − rs)
, (3.42)

or
dr

dt
=
F

G

(r − rs)
r

, (3.43)

where

G = H − Kr3

3
, (3.44)

and

F =
√
E2 + r3(r − rs). (3.45)

Now we convert the eq.(3.42) in KS coordinates, given by eq.(2.24). We need to

calculate dw
dz
, for this purpose we consider

dw

dz
=
wrdr + wtdt

zrdr + ztdt
. (3.46)

Using eq.(2.24), we get

wt =
1

2rs
z, zt =

1

2rs
w, (3.47)

and

wr =
1

2rs

((
r

rs
− 1

)−1

+ 1

)
w. (3.48)

Similarly

zr =
1

2rs

((
r

rs
− 1

)−1

+ 1

)
z. (3.49)

Using eqs.(3.47)-(3.49) in eq.(3.46), we get

dw

dz
=

(
1

2rs

((
r
rs
− 1
)−1

+ 1

)
w

)
dr
dt

+ 1
2rs
z(

1
2rs

((
r
rs
− 1
)−1

+ 1

)
z

)
dr
dt

+ 1
2rs
w

. (3.50)
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Inserting eq.(3.43) in eq.(3.50), we get

dw

dz
=

(
1

2rs

((
r
rs
− 1
)−1

+ 1

)
w

)(
F
G

(r−rs)
r

)
+ 1

2rs
z(

1
2rs

((
r
rs
− 1
)−1

+ 1

)
z

)(
F
G

(r−rs)
r

)
+ 1

2rs
w

, (3.51)

=

((
rs
r−rs

)
+ 1
)
wF (r − rs) +Grz((

rs
r−rs

)
+ 1
)
zF (r − rs) +Grw

, (3.52)

=
Frsw + F (r − rs)w +Grz

Frsz + F (r − rs)z +Grw
. (3.53)

Finally, we get
dw

dz
=
Fw +Gz

Fz +Gw
(3.54)

This is the K-slicing equation for Schwarzschild metric in KS coordinates, these coor-

dinates are non-compact, to compactify eq.(3.54), we convert this equation into com-

pactified KS coordinates (Y,X) given by eq.(2.27). For this purpose, using eq.(2.27),

we have

dY =
1

1 + (w + z)2 (dw + dz) +
1

1 + (w − z)2 (dw − dz) , (3.55)

and

dX =
1

1 + (w + z)2 (dw + dz)− 1

1 + (w − z)2 (dw − dz) . (3.56)

Dividing eq.(3.55) by eq.(3.56), we get

dY

dX
=

1
1+(w+z)2

(dw + dz) + 1
1+(w−z)2 (dw − dz)

1
1+(w+z)2

(dw + dz)− 1
1+(w−z)2 (dw − dz)

, (3.57)

=

(
1 + (w − z)2) (dw + dz) +

(
1 + (w + z)2) (dw − dz)(

1 + (w − z)2) (dw + dz)−
(
1 + (w + z)2) (dw − dz)

, (3.58)

=

(
1 + (w − z)2) (dw

dz
+ 1
)

+
(
1 + (w + z)2) (dw

dz
− 1
)(

1 + (w − z)2) (dw
dz

+ 1
)
−
(
1 + (w + z)2) (dw

dz
− 1
) , (3.59)

=

(
1 + (w − z)2 + 1 + (w + z)2) dw

dz
+ 1 + (w − z)2 − 1− (w + z)2(

1 + (w − z)2 − 1− (w + z)2) dw
dz

+ 1 + (w − z)2 + 1 + (w + z)2 , (3.60)
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=⇒ dY

dX
=

(1 + w2 + z2) dw
dz
− 2zw

−2zw dw
dz

+ (1 + w2 + z2)
. (3.61)

Now using eq.(3.54) in eq.(3.61), we get

dY

dX
=
Fw (1 + w2 − z2) +Gz (1 + z2 − w2)

Fz (1 + z2 − w2) +Gw (1 + w2 − z2)
. (3.62)

Now we neet to find the values of 1 +w2− z2 and 1 + z2−w2 in terms of (Y,X). From

eq.(2.27) we have

w + z = tan

(
Y +X

2

)
, (3.63)

and

w − z = tan

(
Y −X

2

)
. (3.64)

From eqs.(3.63) and (3.64), we obtain

w = 1
2

tan
(
Y+X

2

)
+ 1

2
tan
(
Y−X

2

)
,

z = 1
2

tan
(
Y+X

2

)
− 1

2
tan
(
Y−X

2

)
.

(3.65)

Multiplying eqs.(3.63) and (3.64) and adding 1 to both sides, we get

1 + w2 − z2 = 1 + tan

(
Y +X

2

)
tan

(
Y −X

2

)
. (3.66)

After simplification, we get

1 + w2 − z2 =
cosX

cos
(
Y+X

2

)
cos
(
Y−X

2

) . (3.67)

Using eq.(3.65) along with eq.(3.67), we get

w
(
1 + w2 − z2

)
=

sinY cosX

2 cos2
(
Y+X

2

)
cos2

(
Y−X

2

) . (3.68)

Similarly,

z
(
1 + z2 − w2

)
=

sinX cosY

2 cos2
(
Y+X

2

)
cos2

(
Y−X

2

) . (3.69)

Utilizing eqs.(3.68) and (3.69) in eq.(3.62), we get

dY

dX
=
F sinY cosX +G sinX cosY

F sinX cosY +G sinY cosX
, (3.70)

where G and F are given by eqs.(3.44) and (3.45) respectively. Eq.(3.70) is the required

K-slicing equation for Schwarzschild metric in compactified KS coordinates.
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BCI [3] solved the eq.(3.54) for m = 0.5 with the condition dY
dX

(X = 0) = 0, i.e,

hypersurfaces must be flat at r = 2m. They use only non-negative values of K and did

not provide the complete foliation for it. Later Qadir et.al [5] convert the eq.(3.54) into

eq.(3.70) and foliate the CP diagram by using same conditions and obtained the com-

plete foliation for both the Schwarzschild and RN metrics [6]. Further they obatined

the foliation of eRN metric [7]. We have solved eq.(3.70) for m = 0.5 numerically using

Runge-Kutta 4th order (RK4) method with the implicit relation given in eq.(2.28) and

require that
dY

dX
(X = 0) = 0. (3.71)

This gives

F = 0, (3.72)

this implies

H =
Kr3

i

3
±
√
r3
i (rs − ri). (3.73)

The K-surfaces are shown in Figure3.4 and their corresponding values are shown in

Table3.1.
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No K ri H Yi

0 0.0 1.0 0 0.0

± 1 ± 0.01 0.9827 ∓ 0.1250 ± 0.4237

± 2 ± 0.02 0.9602 ∓ 0.1817 ± 0.6235

± 3 ± 0.03 0.9243 ∓ 0.2366 ± 0.8237

± 4 ± 0.05 0.8668 ∓ 0.2837 ± 1.0255

± 5 ± 0.1 0.7897 ∓ 0.3054 ± 1.1952

± 6 ± 1.0 0.6004 ∓ 0.2219 ± 1.4130

Table 3.1: For m = 0.5, thirteen K-surfaces for various values of MEC , K, are
described by their corresponding initial values of r and Y .
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Figure 3.4: K-Slicing of the SM for m=0.5. Few spacelike hypersurfaces are shown.
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3.3 K-Slicing of the Reissner Nordstorm Metric

For RN Metric, we have

B =
1

C
=
(

1− r1

r

)(
1− r2

r

)
, (3.74)

where r1 and r2 are given in eqs.(2.32) and (2.33) respectively.

Using values of B and C in eq.(3.40) and following the procedure mentioned in the pre-

vious section, we obtain the K-slicing equation for RN metric in compactified Kruskal-

Szekers like coordinates (Y,X) given in eqs.(2.55)

dY

dX
=
F sinY cosX +G sinX cosY

F sinX cosY +G sinY cosX
, (3.75)

where

G = H − Kr3

3
, (3.76)

F =
√
G2 + r2(r − r2)(r − r1), (3.77)

and

H =
Kr3

i

3
± ri

√
(r1 − ri)(r2 − ri). (3.78)

We have solved eq.(3.75) with the implicit relation given in eq.(2.59) using RK4 method

for Q/m = 0.6, 0.8 and 0.94. K-surfaces for Q/m = 0.6, 0.8 and 0.94 are shown in

Figures. 3.5, 3.6 and 3.7 respectively.
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Figure 3.5: K-Slicing of the RN metric for Q/m = 0.6. Few spacelike hypersurfaces
are shown.
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No K ri H Yi

± 1 ± 0.01 0.8944 ∓ 0.0160 ± 0.3138

± 2 ± 0.02 0.8970 ∓ 0.3848 ± 0.7138

± 3 ± 0.06 0.8928 ∓ 0.0528 ± 1.0529

± 4 ± 0.1 0.8783 ∓ 0.0913 ± 1.5760

Table 3.2: ForQ/m = 0.6, eight K-surfaces for various values of MEC ,K, are described
by their corresponding initial values of r and Y .
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Figure 3.6: K-Slicing of the RN metric for Q/m = 0.8. Few spacelike hypersurfaces
are shown.
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No K ri H Yi

0 0.0 0.8 0 0.0

± 1 ± 0.01 0.7987 ∓ 0.0202 ± 0.4670

± 2 ± 0.02 0.7942 ∓ 0.0429 ± 0.9340

± 3 ± 0.04 0.7817 ∓ 0.0741 ± 1.4623

± 4 ± 0.07 0.7483 ∓ 0.1162 ± 1.9585

± 5 ± 0.1 0.5531 ∓ 0.1576 ± 2.5000

Table 3.3: For Q/m = 0.8, eleven K-surfaces for various values of MEC , K, are
described by their corresponding initial values of r and Y .
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Figure 3.7: K-Slicing of the RN metric for Q/m = 0.94. Few spacelike hypersurfaces
are shown.
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No K ri H Yi

± 1 ± 0.02 0.6699 ∓ 0.0082 ± 0.3450

± 2 ± 0.05 0.6670 ∓ 0.0181 ± 0.7563

± 3 ± 0.09 0.6615 ∓ 0.0275 ± 1.1294

± 4 ± 0.095 0.6493 ∓ 0.0448 ± 1.5427

± 5 ± 0.1 0.6211 ∓ 0.0666 ± 1.9560

± 6 ± 0.15 0.5521 ∓ 0.0812 ± 2.3250

Table 3.4: For Q/m = 0.94, twelve K-surfaces for various values of MEC , K, are
described by their corresponding initial values of r and Y .
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3.4 Generalized K-Surface Equation

In order to obtain generalized K-surface equation, we consider the general spacetime

metric

ds2 = Bdt2 − Cdr2 −Ddθ2 − Edφ2 + 2Fdtdr + 2Gdtdθ

+ 2Hdtdφ+ 2Idrdθ + 2Jdrdφ+ 2Ldθdφ,
(3.79)

where B, C, D, E, G, H, I, J, K, L may depend on r, θ, φ. The 4-volume of the

metric is

Υ =

∫ √
|g|dtdrdθdφ. (3.80)

Consider the foliating hypersurface be u as

u (t, r, θ, φ) = 0. (3.81)

Inserting eq.(3.81) in eq.(3.80), we get Υ (Σ,Σ1) as Σ1(t = 0) is

Υ (Σ,Σ1) =

∫ √
|g|u (t, r, θ, φ) drdθdφ. (3.82)

From eq.(3.81), we have

du = 0, (3.83)

which gives eq.(3.12). Now inserting eq.(3.12) in eq.(3.79), we obtain g∗ as

ds∗2 = −Pdr2 −Qdθ2 − Tdφ2 + 2Udrdθ + 2Wdrdφ+ 2Y dθdφ, (3.84)

where

P = C −Bt2r − 2Ftr, (3.85)

Q = D −Bt2θ − 2Gtθ, (3.86)

T = E −Bt2φ − 2Htφ, (3.87)

U = I −Btrtθ − Ftθ −Gtr, (3.88)

W = J −Btrtφ − Ftφ −Htr, (3.89)

Y = L−Btφtθ −Gtφ −Htθ. (3.90)
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The determinant of the induced metric is

g∗ =

∣∣∣∣∣∣
−C∗ I∗ J∗

I∗ −D∗ L∗

j∗ L∗ −E∗

∣∣∣∣∣∣ , (3.91)

Hence the 3-area, Π(Σ) of the hypersurface Σ, is

Π(Σ) =

∫ √
|g∗|drdθdφ. (3.92)

Using eqs.(3.92) and (3.82) in eqs.(3.1)-(3.2) along with eq.(3.6), we get

δ

(∫ (√
|g∗|+K

√
|g|t
)
drdθdφ

)
= 0, (3.93)

∫ (
δ
√
|g∗|+K

√
|g|δt

)
drdθdφ = 0. (3.94)

For simplicity, let

|g∗|= f2, (3.95)

then

δ
√
|g∗| = δf. (3.96)

Notice that

f = f (r, θ, φ, tr, tθ, tφ) , (3.97)

therefore the variations w.r.t ‘t’ gives

δf = f,trδtr + f,tθδtθ + f,tφδtφ. (3.98)

For continuity

δtr = δ
∂t

∂r
=

∂

∂r
δt. (3.99)

Inserting eq.(3.99) in eq.(3.98), we get

δf = f,tr

∂

∂r
δt+ f,tθ

∂

∂θ
δt+ f,tφ

∂

∂φ
δt,

=

(
f,tr

∂

∂r
+ f,tθ

∂

∂θ
+ f,tφ

∂

∂φ

)
δt.

(3.100)
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Using eqs.(3.100) and (3.96) in eq.(3.94), we get∫ (
f,tr

∂

∂r
+ f,tθ

∂

∂θ
+ f,tφ

∂

∂φ
+
√
|g|K

)
δtdrdθdφ = 0. (3.101)

Integrating above equation implies∫ (
− (f,tr),r − (f,tθ),θ −

(
f,tφ

)
,φ

+
√
|g|K

)
δtdrdθdφ = 0. (3.102)

The above integral vanishes, if the integrand is zero, therefore, we have

(f,tr),r + (f,tθ),θ +
(
f,tφ

)
,φ

=
√
|g|K. (3.103)

Eq.(3.103) is the required Differential equation satisfied by K-surfaces.

3.5 Flat Hypersurfaces for the Schwarzschild Metric

Flat foliation is used to study Hawking radiation [40, 41, 42]. Observers falling freely

from infinity along the spacelike hypersurfaces, starting at rest, observe Minkowski

space about them and these hypersurfaces are orthogonal to the world-lines of such

observers. Hence instead of solving 3Rabcd = 0, we need to calculate only free fall

geodesics [8].

In order to obtain the maximal slices or flat spacelike hypersurfaces of the blackhole

metric, we require that the world-lines of the observers falling freely from infinity,

starting at rest, must be orthogonal to the flat foliating hypersurfaces. This require-

ment gives the tangent vectors of the hypersurfaces and then using these vectors, we

obtain the differential equation for maximal slices. To view these hypersurfaces in CP

diagram, we, then convert this equation into CKS coordinates.

Let the unit tangent vector to the world-line of the freely falling observer be va and

the unit tangent vector to the flat hyprsurfaces be V a, our requirements gives us

vava = 1, (3.104)

V aVa = −1, (3.105)
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V ava = 0. (3.106)

The SM can be written as

ds2 = eλdt2 − e−λdr2 − r2dΩ2, (3.107)

where

eλ = 1− rs
r
. (3.108)

The SM is spherically symmetric, so without loss of generality we fixed φ and θ, we

can write down the tangent vectors to the geodesics which is in fact the path of freely

falling observers, as

va = (v0, v1, 0, 0) =

((
dt

d$

)
o

,

(
dr

d$

)
o

, 0, 0

)
, (3.109)

and for the flat hypersurfaces as

V a = (V 0, V 1, 0, 0) =

((
dt

d$

)
h

,

(
dr

d$

)
h

, 0, 0

)
, (3.110)

where the subscripts h and o represents the hypersurface and the observer respectively.

To obtain the tangent vector we solve the geodesic equation given in eq.(1.66) with

eqs.(3.104)-(3.106).

The geodesic equation for first coordinate i.e for t is(
d2t

d$2

)
0

+ Γ0
αν

(
dtα

d$

)
o

(
dtν

d$

)
o

= 0. (3.111)

The only nonzero Christoffel symbols for the above equation are

Γ0
10 = Γ0

01 =
dλ

2dr
. (3.112)

Using eq.(3.112) in eq.(3.111), we get(
d2t

d$2

)
o

+

(
dλ

dr

)
o

(
dt

d$

)
o

(
dr

d$

)
o

= 0. (3.113)

(
d2t

d$2

)
o

+

(
dλ

d$

)
o

(
dt

d$

)
o

= 0. (3.114)
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Multiplying both sides by eλ, we get

d

d$

(
eλ
(
dt

d$

)
o

)
= 0. (3.115)

Integrating both sides, we get

v0 =

(
dt

d$

)
o

= je−λ, (3.116)

where ‘j’ is constant.

In order to find
(
dr
d$

)
o
, consider

d$2 = eλdt2 − e−λdr2. (3.117)

Dividing both sides by d$2, we get

1 = eλ
(
dt

d$

)2

o

− e−λ
(
dr

d$

)2

o

. (3.118)

Using eq.(3.116) into eq.(3.118), we get

(
v1
)2

=

(
dr

d$

)2

o

= j2 − eλ. (3.119)

Thus

va =
(
je−λ,±

√
j2 − eλ, 0, 0

)
. (3.120)

From eq.(3.106), we have

V ava = gaiV
avi = g00V

0v0 + g11V
1v1 = 0. (3.121)

Inserting eq.(3.120) with eq.(3.117) in eq.(3.121), we obtain

V 0 =
e−2λV 1v1

v0
. (3.122)

From eq.(3.105), we have

eλ
(
V 0
)2 − e−λ

(
V 1
)2

= −1. (3.123)

Using eqs.(3.116), (3.119) and (3.122) in eq.(3.123), we get

V 1 = ±j. (3.124)
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Using eq.(3.124) in eq.(3.122), we get

V 0 = ±e−λ
√
j2 − eλ. (3.125)

Finally, we have

V a =
(
±e−λ

√
j2 − eλ,±j, 0, 0

)
. (3.126)

From eq.(3.110), we have
V 0

V 1
=

(
dt
d$

)
h(

dr
d$

)
h

=

(
dt

dr

)
h

. (3.127)

In order to obtain the flat hypersurfaces differential equation, we use eqs.(3.124) and

(3.125) in eq.(3.127) and get (
dt

dr

)
h

=
±e−λ

√
j2 − eλ
j

. (3.128)

Similarly, the Differential equations for the world-lines of freely falling observers, i.e,

the geodesics, are
v0

v1
=

(
dt
d$

)
o(

dr
d$

)
o

=

(
dt

dr

)
o

. (3.129)

Using eqs.(3.116) and (3.119) in eq.(3.129), we get(
dt

dr

)
o

=
±je−λ√
j2 − eλ

. (3.130)

The negative and positive signs correspond to paths of incoming and outgoing observers

respectively. The constant j corresponds to the energy of the observer at infinity.

The equation for flat hypersurfaces for decreasing values of r is given by(
dt

dr

)
h

=
−
√
j2 − eλ
jeλ

=
F ∗

G∗
, (3.131)

where

F ∗ = −
√
j2 − eλ, (3.132)

and

G∗ = jeλ. (3.133)
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In order to convert the eq.(3.131) into CKS (Y,X) coordinates, we first convert this

equation into KS, (w, z) coordinates, for this purpose, we put eq.(3.131) in eq.(3.50),

we get

dw

dz
=

(
1

2rs

((
r
rs
− 1
)−1

+ 1

)
w

)
G∗

F ∗
+ 1

2rs
z(

1
2rs

((
r
rs
− 1
)−1

+ 1

)
z

)
G∗

F ∗
+ 1

2rs
w

, (3.134)

after simplification, we get

dw

dz
=
G∗rw + F ∗ (r − rs) z
G∗rz + F ∗ (r − rs)w

. (3.135)

dw

dz
=
G∗∗w + F ∗∗z

G∗∗z + F ∗∗w
, (3.136)

where

G∗∗ = G∗r = jreλ = jr
(

1− rs
r

)
, (3.137)

and

F ∗∗ = F ∗ (r − rs) = − (r − rs)
√
j2 − eλ = − (r − rs)

√
j2 − 1 +

rs
r
. (3.138)

Eq.(3.136) in CKS coordinates takes the form

dY

dX
=
G∗∗ sinY cosX + F ∗∗ sinX cosY

G∗∗ sinX cosY + F ∗∗ sinY cosX
, (3.139)

where F ∗∗ and G∗∗ are given in eqs.(3.138) and (3.137) respectively.

To check whether the foliating hypersurfaces are flat or not, we need to determine the

curvature invariants for these flat hypersurfaces. For this purpose, we use eq.(3.128)

with eq.(3.108) in eq.(3.107) and obtain the induced metric

ds2
h =
−1

j2
dr2 − r2dΩ2. (3.140)

The curvature invariants for this metric are

I1 =
2(1− j2)

r2
, (3.141)

I2 =
2(j2 − 1)2

r4
. (3.142)
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From eqs.(3.141) and (3.142), it is clear that the hypersurfaces are flat only for j2 = 1.0,

while for j ≶ 1 they are not flat.

In order to obtain the flat hypersurfaces, we solve the eq.(3.139) by using RK4 method

for j = 0.6, 0.8, 1.0, 1.25 and 1.5 with m = 0.5, with the implicit relation given in

eq.(2.28). We move in X direction from −π/2 to π/2 and for every X, say Xi, we

get a new hypersurface. For j ≥ 1, the foliating hypersurfaces completely foliate the

spacetime. We found a barrier for the hypersurfaces for j < 1 to reach I0 because

the expression inside the square root in eq.(3.138) becomes complex. For this case,

the hypersurfaces are defined only for r ≤ rs
1−j2 . These hypersurfaces are shown in

Figures.3.8 and 3.9. The hypersurfaces in the maximal extension are obtained by

reversing the diagrams Figure.3.8-3.12 and adjoining it to the original copy [30]. The

flat hypersurfaces (j = 1) in the maximal extension are shown in Figure.3.15.
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Figure 3.8: Few Foliating hypersurfaces for j = 0.6 are shown for SM. In this case
the hypersurfaces do not reach I0 due to a barrier. However, they can be analytically
continued to reach I0.
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Figure 3.9: Few Foliating hypersurfaces for j = 0.8 are shown for SM. In this case
the hypersurfaces do not reach I0 due to a barrier. However, they can be analytically
continued to reach I0.
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Figure 3.10: Few Flat hypersurfaces for j = 1 are shown for SM.
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Figure 3.11: Few spacelike foliating hypersurfaces for j = 1.25 are shown for SM.
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Figure 3.12: Few spacelike foliating hypersurfaces for j = 1.5 are shown for SM.
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Figure 3.13: Foliating hypersurfaces for j = 0.6 in the maximal extension of SM are
shown.

90



−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x→

Y
→

r=0

r=0

r=2mr=2m

I 0
I 0

I +

barrierbarrier

I −

I −

I +

Figure 3.14: Foliating hypersurfaces for j = 0.8 in the maximal extension of SM are
shown.
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Figure 3.15: Flat hypersurfaces for j = 1 in the maximal extension of SM are shown.
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Figure 3.16: Foliating hypersurfaces for j = 1.25 in the maximal extension of SM are
shown.
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Figure 3.17: Foliating hypersurfaces for j = 1.5 in the maximal extension of SM are
shown.
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Chapter 4

Non-Singular Coordinates of the
Taub-Nut Metric

In this chapter we will discuss appropriate coordinates to study the geometry of Taub-

Nut (TN) metric. For this purpose, we first discuss its coordinate singularities and

then discuss appropriate coordinates to study its geometry.

4.1 The Taub-NUT Metric

In 1951, Taub first discovered this solution [43]. Later in 1963 this solution was subse-

quently rediscovered by Newman, Tamburino and Unti [44] as a simple generalization

of the Schwarzschild metric. The metric is

ds2 = σ(r)

(
dt+ 4l sin2 θ

2
dφ

)2

− σ−1(r)dr2 −
(
r2 + l2

) (
dθ2 + sin2 θdφ2

)
, (4.1)

where m and l are constants of which l is the NUT parameter and

σ(r) =
r2 − 2mr − l2

r2 + l2
. (4.2)

For this metric all the components of Riemann tensor are analytic functions of r [45],

no curvature singularity exists for any value of r. It is therefore natural for r to cover

the full range rε(−∞,∞). However this metric has coordinate singularities at

σ(r) = 0, (4.3)
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r1 = m+
√
m2 + l2. (4.4)

and

r2 = m−
√
m2 + l2. (4.5)

Now σ(r) can be rewritten as

σ(r) =
(r − r1)(r − r2)

r2 + l2
. (4.6)

Purely radial lines with θ and φ constant have

ds2 = σ(r)dt2 − σ−1(r)dr2. (4.7)

In order to describe the global structure of this metric, it is necessary to investigate

the continuation of the metric across horizons.

4.2 Eddington-Finklestein Like Coordinates

For the removal of the coordinate singularities at r = r1 and r2, we first define EF like

coordinates (w∗, z∗)

w∗ = t+ r∗,
z∗ = t− r∗, (4.8)

where

r∗ =

∫
dr

σ(r)
= r + r2 ln

∣∣∣∣ rr2

− 1

∣∣∣∣+ r1 ln

∣∣∣∣ rr1

− 1

∣∣∣∣ . (4.9)

The two dimensional metric given in eq.(4.7) in these coordinates takes the form

ds2 =
(r − r1)(r − r2)

r2 + l2
dw∗dz∗. (4.10)

4.3 Kruskal Like Coordinates

Kruskal like (W,Z) coordinates are defined as

W = e
w∗
λ ,

Z = −e−z
∗
λ .

(4.11)
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Inserting eq.(4.8) in eq.(4.11), we get

W = e
t
λ e

r
λ

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ
∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ

, (4.12)

Z = −e
−t
λ e

r
λ

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ
∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ

. (4.13)

And

WZ = −e
2r∗
λ = −µ2e

2r
λ

∣∣∣∣ rr1

− 1

∣∣∣∣
2r1
λ
∣∣∣∣ rr2

− 1

∣∣∣∣
2r2
λ

.

For the removal of the singularities at r = r±, we need to cancel the factors involving(
1− r1

r

)
and

(
1− r2

r

)
. But these cannot be canceled simultaneously. Therefore we

required two coordinate patches to cover the entire geometry. Thus we define (W1, Z1)

given by

W1 = e
t
λ1 e

r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ1

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ1

, (4.14)

Z1 = −e
−t
λ1 e

r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ1

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ1

, (4.15)

where

λ1 = 2r1. (4.16)

The metric for this region is given by

ds2
1 =

4r2
1r2

r2 + l2
e−r/r1

(
r − r2

r2

) r1−r2
r1

dW1dZ1. (4.17)

The (W2, Z2) are defined by

W2 = e
t
λ2 e

r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ2

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ2

, (4.18)

Z2 = −e
−t
λ2 e

r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ2

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ2

, (4.19)

where

λ2 = 2r2. (4.20)

The metric for this region is given by

ds2
2 =

4r2
2r1

r2 + l2
e−r/r2

(
r − r1

r1

) r2−r1
r2

dW2dZ2. (4.21)
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4.4 Kruskal-Szekers Like Coordinates

We now define KS like coordinates (w1, z1) for the region r1 < r <∞ (known as NUT+

region)

w1 =
1

2
(W1 + Z1) = sinh

(
t

λ1

)
e
r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ1

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ1

, (4.22)

z1 =
1

2
(W1 − Z1) = cosh

(
t

λ1

)
e
r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ1

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ1

. (4.23)

These are non-singular at r = r1 and for the region r2 < r < r1 (known as Taub region),

w1, z1 are interchanged. The metric for this region in these coordinates is given by

ds2
1 =

4r2
1r2

r2 + l2
e−r/r1

(
r − r2

r2

) r1−r2
r1 (

dw2
1 − dz2

1

)
. (4.24)

The region −∞ < r < r2 (known as NUT− region) is covered by (w2, z2), where

w2 =
1

2
(W2 + Z2) = sinh

(
t

λ2

)
e
r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ2

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ2

, (4.25)

z2 =
1

2
(W2 − Z2) = cosh

(
t

λ2

)
e
r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
r1
λ2

∣∣∣∣ rr2

− 1

∣∣∣∣
r2
λ2

. (4.26)

These are non-singular at r = r2 and for the region r2 < r < r1, w2, z2 are interchanged

The metric for this region is given by

ds2
2 =

4r2
2r1

r2 + l2
e−r/r2

(
r − r1

r1

) r2−r1
r2 (

dw2
2 − dz2

2

)
. (4.27)

4.5 Compactified Kruskal-Szekers Like Coordinates

The region r2 < r <∞ is covered by the compactified KS coordinates (Y1, X1), where

Y1 = tan−1 (w1 + z1) + tan−1 (w1 − z1) ,
X1 = tan−1 (w1 + z1)− tan−1 (w1 − z1) .

(4.28)
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Figure 4.1: The (w1, z1) coordinates covers two separate Taub and two Nut+ regions.
r = constant hypersurfaces are shown by hyperbolae.
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The metric for these coordinates is given by

ds2
1 =

r2
1r2

r2 + l2
e−r/r1

(
r − r2

r2

) r1−r2
r1

sec2

(
Y1 −X1

2

)
sec2

(
Y1 +X1

2

)(
dY 2

1 − dX2
1

)
.

(4.29)

The region −∞ < r < r1 is covered by (Y2, X2), where

Y2 = tan−1 (w2 + z2) + tan−1 (w2 − z2) ,
X2 = tan−1 (w2 + z2)− tan−1 (w2 − z2) .

(4.30)

Here the metric is

ds2
2 =

r2
2r1

r2 + l2
e−r/r2

(
r − r1

r1

) r2−r1
r2

sec2

(
Y2 −X2

2

)
sec2

(
Y2 +X2

2

)(
dY 2

2 − dX2
2

)
.

(4.31)

The implicit relations for r are

z2
1 − w2

1 = e
2r
λ1

∣∣∣∣ rr1

− 1

∣∣∣∣
2r1
λ1

∣∣∣∣ rr2

− 1

∣∣∣∣
2r2
λ1

= − tan

(
Y1 +X1

2

)
tan

(
Y1 −X1

2

)
,

(4.32)

and

z2
2 − w2

2 = e
2r
λ2

∣∣∣∣ rr1

− 1

∣∣∣∣
2r1
λ2

∣∣∣∣ rr2

− 1

∣∣∣∣
2r2
λ2

= − tan

(
Y2 +X2

2

)
tan

(
Y2 −X2

2

)
.

(4.33)
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Figure 4.2: CP diagram of the TN metric in (Y,X) coordinates. Notice that there is
no essential singularity.
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Figure 4.3: Maximal extension of the TN metric.
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Chapter 5

Summary and Conclusion

In this thesis, we have discussed the compactification of the Schwarzschild, RN and

TN metrics and discussed the K-slicing of the Schwarzschild and RN metrics. We

have also discussed the flat foliation of the Schwarzschild metric. In Chapter 1, we

have first discussed basics of differential geometry which were useful for the GR and

then derived the EFEs and gave a brief introduction of CP diagrams. In Chapter

2, we have discussed some exact solutions of the EFEs, which we have classified into

two categories based on the zero or nonzero cosmological constant ∧. In the former

category we have discussed the Minkowski metric as a solution of the EFEs, then the

Schwarzschild metric, its singularities and some appropriate coordinates to study its

geometry are discussed. After that we have done the same for RN metric. Kerr

metric is discussed briefly. While in the later category we have discussed de Sitter

and Anti-de Sitter metrics, and then the derivation of the Schwarzschild de Sitter

and Schwarzschild Anti-de Sitter spacetimes. In Chapter 3, after defining foliation

in general and explaining it with the help of some examples, we have reviewed BCI

procedure for SSS metrics and then using this procedure we have discussed the K-

slicing of the Schwarzschild and the RN metrics. We have used RK4 method with

step size of 0.001 for solving K-slicing equations given in eqs.(3.70) and (3.75). The

main difficulty for solving these equations was that they contain F and G, which are the

functions of r that is implicitly related with X and Y . So we cannot write explicitly F

and G in terms of X and Y . We had to solve implicit relations given in eqs.(2.28) and
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(2.59) for r for both the Schwarzschild and RN cases respectively. For flat foliation,

we have used the simple fact that the world− lines of the observers falling freely from

infinity, starting at rest must be orthogonal to the flat foliating hypersurfaces. We have

noticed that the foliating hypersurfaces are flat only for j = 1.0 and for j 6= 1 they

are not flat. Further we have noticed that for j < 1, these hypersurfaces do not foliate

the complete CP diagram. We found a barrier for the hypersurfaces for j < 1 to reach

I0 because the expression inside the square root in eq.(3.138) becomes complex. For

this case, the hypersurfaces are defined only for r ≤ rs
1−j2 but they can be analytically

continued to reach I0. For smaller values of j we have larger barrier. An interesting

feature of flat hypersurfaces is that they never enter into the maximal extension so for

maximal extension we reverse the diagrams Figure.3.8-3.12 and adjoined them to their

original copy. In Chapter 4, we have discussed the non-singular coordinates for the TN

metric and its CP diagram. TN metric is singularity free spacetime but this solution is

also being reconsidered in the context of higher-dimensional theories of semi-classical

quantum gravity. It would be interesting to foliate this metric and observe the behavior

of K-surfaces.
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