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Abstract

We consider a nonlinear partial differential equation for complex-valued func-
tions which is related to the two-dimensional stationary Schrödinger equation and
enjoys many properties similar to those of the Riccati equation such as the famous
Euler theorems, the Picard theorem and others. Besides these generalizations of
the classical “one-dimensional” results, we discuss new features of the considered
equation including an analogue of the Cauchy integral theorem.
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Chapter 1

Introduction

In this dissertation, we review and present complete proofs appearing in some
recent papers [1], [2] and [3] on the relationship of the Riccati equation and the
stationary Schrödinger equation.

The ordinary Riccati equation

u′(x) = f2(x)u2(x) + f1(x)u(x) + f0(x), (1.0.1)

can be reduced to the canonical form

y′(x) + y2(x) = v(x), (1.0.2)

by using an appropriate transformation.

This reduced form is related to the one-dimensional stationary Schrödinger
equation

−d
2u(x)

dx2
+ v(x)u(x) = 0, (1.0.3)

in the sense that the solutions of these two equations are related. The study also
allows for the factorization of the Schrödinger operator in terms of any solution
of the Riccati equation.

Chapter 2 of this dissertation is devoted to this relationship. We first give an
extensive treatment of the Riccati equation deriving its important properties and
then discuss the relationship with the one-dimensional stationary Schrödinger
equation exhibiting also the factorization of the Schrödinger operator.

The nonlinear complex Riccati equation is

∂zQ+ |Q|2 =
ν

4
, (1.0.4)
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where z is conjugate of a complex variable z = x+ ιy and

∂z =
1

2
(∂x + ι∂y).

Here for convenience the factor 1
4
was included. Q is a complex-valued analytic

function of z and ν is a real-valued function. Note that this equation is different
from the complex Riccati equation studied in various works (see, e.g. [4]) where
it is supposed to have the form of Eq. (1.0.1) with complex analytic coefficients
f0(x), f1(x) and f2(x) and a complex analytic solution u, as |Q|2 is not an ana-
lytic function.

The stationary two-dimensional zero energy Schrödinger equation is

(−∆ + ν)u = 0, (1.0.5)

where, ∆ = ∂
∂x2 + ∂

∂y2
. u and ν are real valued functions.

The appearance of ∂z results in the development of pseudoanalytic function
theory by Bers’ which is one of the many generalizations of analytical function
theory. A summary of Bers’ theory of pseudoanalytic functions as a generaliza-
tion of analytic functions appears in Chapter 3.

In the first section of Chapter 4, some preliminary results on the stationary
two-dimensional Schrödinger equation and a class of pseudoanalytic functions
are discussed. In fact the solution of the Vekua equation [3] and two-dimensional
Schrödinger Eq. (1.0.5) are closely related to each other. Given a solution of the
Schrödinger equation we can reconstruct a solution of the Vekua equation which
is a pseudoanalytical function. Conversely given a pseudoanalytic function we
can construct a solution of a related Schrödinger equation. In the second section
we continue the discussion to obtain the relationship between the Riccati equa-
tion and the two-dimensional stationary Schrödinger equation. In fact given a
solution of the Schrödinger equation in two-dimension, its logarithmic derivative
is a solution of the complex Riccati equation. This result appears in Theorem 16.
This leads also to the factorization of the Schrödinger operator in two-dimensions.

In the first section of Chapter 5, we discuss generalizations of both Euler’s
and Picard’s theorems as related to the two-dimensional Riccati equation. These
are also related to the two-dimensional Schrödinger equation and in the second
section we discuss the generalizations of the Cauchy’s integral formula for the
complex Riccati equation.



Chapter 2

The Riccati equation and its
relationship with the
one-dimensional Schrödinger
equation

2.1 The Riccati equation
The usual Riccati Eq. (1.0.1) has received a great deal of attention since a par-
ticular version was first studied by Count Riccati in 1724, because of both its
specific properties and the wide range of applications in which it appears. For a
survey of the history and classical results on this equation, see for example [5]
and [6].

The Riccati Eq. (1.0.1), can always be reduced to its canonical form (1.0.2)
by some suitable transformation. To see this, take

y(x) = −f2(x)u(x) + α(x), (2.1.1)

where α(x) will be determined in terms of the functions f0(x), f1(x), f2(x) ap-
pearing in Eq. (1.0.1) to obtain the desired form. Differentiate Eq. (2.1.1) w.r.t.
“x”

y′(x) = −f2(x)u′(x)− f ′2(x)u(x) + α′(x),

= −f2(x)
{
f2(x)u2(x) + f1(x)u(x) + f0(x)

}
− f ′2(x)u(x) + α′(x),

= −{−f2(x)u(x) + α(x)}2 − 2α(x)f2(x)u(x) + α2(x)− f2(x)f1(x)u(x)

−f2(x)f0(x)− f ′2(x)u(x) + α′(x),

= −{−f2(x)u(x) + α(x)}2 + u(x) {−2α(x)f2(x)− f2(x)f1(x)− f ′2(x)}
+α2(x)− f2(x)f0(x) + α′(x). (2.1.2)

4



5

To convert Eq. (2.1.2) into the canonical form (1.0.2) we determine α(x) such
that

−2α(x)f2(x)− f2(x)f1(x)− f ′2(x) = 0,

i.e.
α(x) = −1

2
f1(x)− 1

2

f ′2(x)

f2(x)
, (2.1.3)

after substituting Eq. (2.1.3) in Eq. (2.1.2) we get

y′(x) = −y2(x) +

{
−1

2
f1(x)− 1

2

f ′2(x)

f2(x)

}2

− f2(x)f0(x) + α′(x). (2.1.4)

If we choose

v(x) =
1

4

{
f1(x) +

f ′2(x)

f2(x)

}2

− f2(x)f0(x) + α′(x),

=
1

4

{
f1(x) +

f ′2(x)

f2(x)

}2

− f2(x)f0(x)− 1

2
f ′1(x)

−1

2

d

dx

{
f ′2(x)

f2(x)

}
, (2.1.5)

then we have the desired canonical form (1.0.2).

There is a procedure to find the general solution of the Riccati equation if
we know a particular solution of it. The procedure converts the Riccati equation
to a Bernoulli equation and then uses the standard procedure to solve it. Let
y = y0 + z be a general solution of Riccati Eq. (1.0.2) where y0 is a particular
solution. Then,

y′0 + z′ + (y0 + z)2 = v(x), (2.1.6)

which, on expansion, gives

y′0 + z′ + y2
0 + z2 + 2y0z = v(x). (2.1.7)

Now
y′0 + y2

0 = v(x). (2.1.8)

Substituting Eq. (2.1.8) in Eq. (2.1.7) we arrive at

z′ + 2y0z + z2 = 0, (2.1.9)

which is a homogeneous nonlinear ordinary differential equation.

Now using the standard Bernoulli procedure we put z = 1
u
. Differentiating
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gives z′ = − u′

u2 then Eq. (2.1.9) becomes

− u
′

u2
+ 2y0

1

u
+

1

u2
= 0,

or
u′ − 2y0u− 1 = 0. (2.1.10)

Now use the integrating factor to obtain the general solution

u(x) = exp

(∫
2y0dx

)[∫
exp

(
−
∫

2y0dx

)
dx+ c

]
. (2.1.11)

Thus,

y(x) = y0(x) + z

= y0(x) +
1

u
,

= y0(x) +
exp

(
−
∫

2y0dx
)∫

exp
(
−
∫

2y0dx
)
dx+ c

. (2.1.12)

Notice that this does not give a linear superposition of the particular solution
y0 with the complementary function but uses a nonlinear superposition. Thus,
instead of obtaining y(x)→ y0(x) for c→ 0, we get it for c→∞.

The second of these theorems states that for the given two linearly independent
particular solutions y0 and y1 of the Riccati Eq. (1.0.2), the general solution can
be written as

y =
cy0 exp

(∫
(y0 − y1)dx

)
− y1

c exp
(∫

(y0 − y1)dx
)
− 1

, (2.1.13)

where c is an arbitrary constant. Now we will show that Eq. (2.1.13) is a solution
of Eq. (1.0.2). Eq. (2.1.13) implies

y = y0 +
y0 − y1

c exp(
∫

(y0 − y1)dx)− 1
.

Therefore,

y′ = y′0 +
y′0 − y′1

c exp
(∫

(y0 − y1)dx
)
− 1
−

(y0 − y1)2c exp
(∫

(y0 − y1)dx
)(

c exp
(∫

(y0 − y1)dx
)
− 1
)2 , (2.1.14)

and

y2 = y2
0 +

(y0 − y1)2(
c exp

(∫
(y0 − y1)dx

)
− 1
)2 +

2y0(y0 − y1)

c exp
(∫

(y0 − y1)dx
)
− 1

. (2.1.15)
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Adding Eq. (2.1.14) and Eq. (2.1.15) we have

y′ + y2 = y2
0 + y′0 +

y′0 − y′1
c exp

(∫
(y0 − y1)dx

)
− 1

+
2y0(y0 − y1)

c exp
(∫

(y0 − y1)dx
)
− 1

+
(y0 − y1)2

[
1− c exp

(∫
(y0 − y1)dx

)](
c exp

(∫
(y0 − y1)dx

)
− 1
)2 . (2.1.16)

But
y′0 + y2

0 = v(x) = y′1 + y2
1,

y′0 − y′1 + y2
0 − y2

1 = 0,

or
y′0 − y′1 = −(y2

0 − y2
1). (2.1.17)

Substitute Eq. (2.1.17) in Eq. (2.1.16)

y′ + y2 = v(x) +
− (y2

0 − y2
1)

c exp
(∫

(y0 − y1)dx
)
− 1

+
2y0(y0 − y1)

c exp
(∫

(y0 − y1)dx
)
− 1

− (y0 − y1)2

c exp
(∫

(y0 − y1)dx
)
− 1

,

= v(x) +
−(y2

0 − y2
1) + 2y0 (y0 − y1)− (y0 − y1)2

c exp
(∫

(y0 − y1)dx
)
− 1

,

= v(x).

Thus, Eq. (2.1.13) is a general solution of the Riccati Eq. (1.0.2). In Eq. (2.1.13)
when c → ∞ we see that y(x) → y0(x) and when c → 0 we see that
y(x)→ y1(x).

Other interesting properties are those discovered by Weyl and Picard [5, 7].
The first is that given four particular solutions y1, y2, y3, y4 the cross ratio is

(y1 − y2)(y3 − y4)

(y1 − y4)(y3 − y2)
= c, (2.1.18)

where c is an arbitrary constant. Since the above ratio is equal to a constant, so
the particular solutions can never be linearly independent. Therefore, using the
Wronskian defined by

W (y1, y2, y3, y4) =

∣∣∣∣∣∣∣∣∣∣
y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣
,
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if the four solutions are linearly dependent then W (y1, y2, y3, y4) = 0 and if
W (y1, y2, y3, y4) 6= 0 then the four solutions are linearly independent. Given four
solutions of Riccati Eq. (1.0.2) are y1, y2, y3, y4. Then, y′1 +y2

1 = v(x), y′2 +y2
2 =

v(x), y′3 + y2
3 = v(x), and y′4 + y2

4 = v(x). To prove this consider

y′1 − y′2 = −(y2
1 − y2

2),

or
y′1 − y′2
y1 − y2

= −(y1 + y2). (2.1.19)

Similarly,
y′3 − y′4
y3 − y4

= −(y3 + y4), (2.1.20)

y′1 − y′4
y1 − y4

= −(y1 + y4), (2.1.21)

y′2 − y′3
y2 − y3

= −(y2 + y3). (2.1.22)

Adding Eq. (2.1.19) to Eq. (2.1.20) we have

y′1 − y′2
y1 − y2

+
y′3 − y′4
y3 − y4

= −(y1 + y2 + y3 + y4),

= −(y1 + y4)− (y2 + y3),

using Eq. (2.1.21) and Eq. (2.1.22) we have

y′1 − y′2
y1 − y2

+
y′3 − y′4
y3 − y4

=
y′1 − y′4
y1 − y4

+
y′2 − y′3
y2 − y3

. (2.1.23)

Integrating both sides of Eq. (2.1.23) we get

ln |(y1 − y2)(y3 − y4)| = ln |(y1 − y4)(y2 − y3)|+ ln |c|,

ln

∣∣∣∣(y1 − y2)(y3 − y4)

(y1 − y4)(y2 − y3)

∣∣∣∣ = ln |c|,

i.e. Eq. (2.1.18). From here we obtain another important result that given three
solutions then the fourth solution is obtained by a nonlinear superposition law.
Thus given three solutions y1, y2, y3, we may evaluate the general solution y4 in
terms of y1, y2, and y3 with one constant involved as expected. From Eq. (2.1.18)
we arrive at

y4 =
y2(cy1 + y3)− (1 + c)y1y3

y2(1− c)− y1 − cy3

. (2.1.24)
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Taking derivative on both sides of above cross ratio (2.1.18), then we have

(y1 − y2)′(y3 − y4)

(y1 − y4)(y3 − y2)
+

(y1 − y2)(y3 − y4)′

(y1 − y4)(y3 − y2)
− (y1 − y2)(y3 − y4)(y1 − y4)′

(y1 − y4)2(y3 − y2)

−(y1 − y2)(y3 − y4)(y3 − y2)′

(y1 − y4)(y3 − y2)2
= 0. (2.1.25)

Multiplying Eq. (2.1.25) by (y1 − y4)(y3 − y2) we have

(y1 − y2)′(y3 − y4) + (y1 − y2)(y3 − y4)′ − (y1 − y2)(y3 − y4)(y1 − y4)′

y1 − y4

−(y1 − y2)(y3 − y4)(y3 − y2)′

y3 − y2

= 0. (2.1.26)

Divide Eq. (2.1.26) by (y3 − y4)(y1 − y2), we see that the Picard’s theorem is
equivalent to the statement

(y1 − y2)′

y1 − y2

+
(y3 − y4)′

y3 − y4

− (y1 − y4)′

y1 − y4

− (y3 − y2)′

y3 − y2

= 0. (2.1.27)

2.2 Relation between the Riccati equation and the
one-dimensional Schrödinger equation

One of the reasons why the Riccati equation has so many applications is
that it is related to the general second order homogeneous differential equation.
In particular, the one-dimensional zero energy Schrödinger Eq. (1.0.5) can be
converted to the Riccati Eq. (1.0.2) with the help of the transformation

y =
u′

u
. (2.2.1)

Differentiating Eq. (2.2.1) and using Eq. (1.0.5) we have

y′ =
u′′

u
− u′2

u2
,

=
vu

u
− y2,

which is same as Eq. (1.0.2). This substitution has a most spectacular applica-
tion, it reduces Burger’s equation to the standard one-dimensional heat equation.
From [8] Burger’s equation is

∂tu(x, t) + u(x, t)∂xu(x, t)− k∂xxu(x, t) = 0. (2.2.2)
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Taking u(x, t) = −2k ∂xv(x,t)
v(x,t)

and its derivatives w.r.t. “t” and “x”

∂tu(x, t) = −2k
∂xtv

v
+ 2k

∂xv∂tv

v2
, (2.2.3)

∂xu(x, t) = −2k
∂xxv

v
+ 2k

(∂xv)2

v2
, (2.2.4)

∂xxu(x, t) = −2k
∂xxxv

v
− 2k

(
− 1

v2
∂xv

)
∂xxv + 4k

∂xv∂xxv

v2

+2k

(
− 2

v3
∂xv

)
(∂xv)2 ,

= −2k
∂xxxv

v
+ 6k

∂xv∂xxv

v2
− 4k

(∂xv)3

v3
. (2.2.5)

Substituting Eq.’s (2.2.3), (2.2.4) and (2.2.5) in Eq. (2.2.2) we have

∂tu(x, t) + u(x, t)∂xu(x, t)− k∂xxu(x, t)

=

(
−2k

∂xtv

v
+ 2k

∂xv∂tv

v2

)
+

(
−2k

∂xv(x, t)

v(x, t)

)[
−2k

∂xxv

v
+ 2k

(∂xv)2

v2

]
−k
[
−2k

∂xxxv

v
+ 6k

∂xv∂xxv

v2
− 4k

(∂xv)3

v3

]
= −2k

∂xtv

v
+ 2k

∂xv∂tv

v2
− 2k2vxvxx

v2
+ 2k2vxxx

v

= −2k

v2
vx (kvxx − vt) +

2k

v
∂x (kvxx − vt) .

This is zero if and only if
kvxx − vt = vg(t),

which has a special case as heat equation.

This is the basis of the well developed theory of logarithmic derivatives for the
integration of nonlinear differential equations [8]. A generalization of this substi-
tution will be used in this work.

A second relation between the one-dimensional Schrödinger equation and the
Riccati equation is as follows. The one-dimensional Schrödinger operator can be
factorized in the form

− d2

dx2
+ v(x) = −

(
d

dx
+ y(x)

)(
d

dx
− y(x)

)
. (2.2.6)
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This requires(
− d2

dx2
+ v(x)

)
u(x) = −

(
d

dx
+ y(x)

)(
d

dx
− y(x)

)
u(x),

= −d
2u

dx2
− y(x)

du

dx
+

d

dx
(y(x)u(x)) + y2u(x),

=

(
− d2

dx2
+
dy

dx
+ y2

)
u(x),

or
v(x) =

dy

dx
+ y2 = y′ + y2.

Thus the operator in the L.H.S. of Eq. (1.0.3) factorizes in the form given in Eq.
(2.2.6) if and only if the Riccati Eq. (1.0.2) holds.

This observation is a key to a vast area of research related to the factorization
method [9] and [10]. In the present work, we consider a result similar to Eq.
(2.2.6) which is in a two-dimensional setting.



Chapter 3

Bers’ theory

3.1 Some definitions and results from Bers’ theory
Bers’ theory of pseudoanalytic functions is a generalization of analytic

function theory. It was essentially developed in [11] (see also [12]) and is based
on the so-called generating pair: a pair of complex functions F and G satisfying
the inequality

Im
(
FG
)
> 0. (3.1.1)

If F = F1 + ιF2 and G = G1 + ιG2, then

FG = (F1G1 + F2G2) + ι (F1G2 − F2G1) ,

where
Im
(
FG
)

= F1G2 − F2G1 > 0,

in some domain of interest Ω which may coincide with the whole complex plane.
F and G are assumed to possess partial derivatives with respect to the real vari-
ables x and y. In this case the operators ∂z =

(
∂
∂x

+ ι ∂
∂y

)
and ∂z =

(
∂
∂x
− ι ∂

∂y

)
can be applied (usually these operators are introduced with the factor 1

2
, never-

theless, here it is somewhat more convenient to consider them without it) and
the following characteristic coefficients of the pair (F,G) can be defined,

a(F,G) = −FGz − FzG
FG− FG

, b(F,G) =
FGz − FzG
FG− FG

, (3.1.2)

A(F,G) = −FGz − FzG
FG− FG

, B(F,G) =
FGz − FzG
FG− FG

, (3.1.3)

where the subindex z or z means the application of ∂z or ∂z respectively.

Every complex function w defined in a subdomain of Ω admits the unique
representation w = φF +ψG where the functions φ and ψ are real valued. Some-
times it is convenient to associate with the function w the function ω = φ + ιψ

12
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where F = 1 and G = ι.

Bers’ introduces the notion of the (F,G) derivative of a function w which
exists and has the form

ẇ = φzF + ψzG = wz − A(F,G)w −B(F,G)w, (3.1.4)

if and only if
φzF + ψzG = 0. (3.1.5)

This last equation can be rewritten in the following form

wz = a(F,G)w + b(F,G)w, (3.1.6)

which we call the Vekua equation. Solutions of this equation are called (F,G)-
pseudoanalytic functions. If w is (F,G)-pseudoanalytic, the associated function
ω is called (F,G)-pseudoanalytic of second kind.

Connection with the usual analytic function theory.

Taking F = −ι and G = 1,

Im(FG) = Im(ι) = 1 > 0.

Now we calculate a(F,G), b(F,G), A(F,G) and B(F,G)

a(F,G) = −FGz − FzG
FG− FG

,

= − (ι)(0)− (0)(1)

(−ι)(1)− (ι)(1)
,

= 0.

b(F,G) =
FGz − FzG
FG− FG

,

=
(−ι)(0)− (0)(1)

(−ι)(1)− (ι)(1)
,

= 0.

A(F,G) = −FGz − FzG
FG− FG

,

= − (ι)(0)− (0)(1)

(−ι)(1)− (ι)(1)
,

= 0.



14

B(F,G) =
FGz − FzG
FG− FG

,

=
(−ι)(0)− (0)(1)

(−ι)(1)− (ι)(1)
,

= 0.

Remark 1: [1]
The functions F and G are (F,G)-pseudoanalytic, and Ḟ ≡ Ġ ≡ 0.
Proof:
When

w = φF + ψG = F, iff φ = 1, ψ = 0,

φzF + ψzG = 0,

it implies F is pseudoanalytic.
Similarly,

w = G, iff φ = 0, ψ = 1,

φzF + ψzG = 0,

implies G is pseudoanalytic.
Therefore, F and G are both pseudoanalytic.
Again with w = F, φ = 1, ψ = 0

Ḟ = φzF + ψzG = 0.

Similarly with w = G, φ = 0, ψ = 1

Ġ = φzF + ψzG = 0.

Hence, F and G are pseudoanalytic with Ḟ = Ġ = 0.

2

Definition 1: [1]
Let (F,G) and (F1, G1) be two generating pairs in Ω. (F1, G1) is called successor
of (F,G) and (F,G) is called predecessor of (F1, G1) if

a(F1,G1) = a(F,G) and b(F1,G1) = −B(F,G).

Theorem 1: [1]
Let w be an (F,G)-pseudoanalytic function and let (F1, G1) be a successor of
(F,G). Then ẇ is an (F1, G1)-pseudoanalytic function.

2

Definition 2: [1]
Let (F,G) be a generating pair. Its adjoint generating pair (F,G)∗ = (F ∗, G∗) is
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defined by the formulae

F ∗ = − 2F

FG− FG
, G∗ =

2G

FG− FG
.

Theorem 2: [1]

(F,G)∗∗ = (F,G),

a(F ∗,G∗) = −a(F,G), A(F ∗,G∗) = −A(F,G),

b(F ∗,G∗) = −B(F,G), B(F ∗,G∗) = −b(F,G).

Proof:
Since,

(F,G)∗ = (F ∗, G∗),

where,

F ∗ = − 2F

FG− FG
, G∗ =

2G

FG− FG
,

we have to show that

(F,G)∗∗ = (F ∗∗, G∗∗) = (F,G).

Indeed,

F ∗∗ = − 2F ∗

F ∗G∗ − F ∗G∗
,

=

4F
FG−FG

− 4FG
(FG−FG)(FG−FG)

+ 4FG
(FG−FG)(FG−FG)

,

=
4F

FG− FG
× (FG− FG)(FG− FG)

4(−FG+ FG)
,

= F.

G∗∗ =
2G∗

F ∗G∗ − F ∗G∗
,

=

4G
FG−FG

− 4FG
(FG−FG)(FG−FG)

+ 4FG
(FG−FG)(FG−FG)

,

=
4G

FG− FG
× (FG− FG)(FG− FG)

4(FG− FG)
,

= G.
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A(F ∗,G∗) = −F
∗G∗z − F ∗zG∗

F ∗G∗ − F ∗G∗
,

=

[
(

2F

FG− FG
)
(FG− FG)(2Gz)− 2G(FzG+ FGz − F zG− FGz)

(FG− FG)2

−(FG− FG)(2F z)− 2F (FzG+ FGz − F zG− FGz)

(FG− FG)2
(

2G

FG− FG
)

]
[
− 4FG

(FG− FG)(FG− FG)
+

4FG

(FG− FG)(FG− FG)

]−1

,

=
4

(FG− FG)(FG− FG)2

[
−FFGGz − FFzGG+ FF zGG+ FFGGz

−FF zGG+ FFzGG+ FFGGz − FFGGz

] [(FG− FG)(FG− FG)

4(FG− FG)

]
,

=
1

(FG− FG)2

[
−FzG(FG− FG) + FGz(FG− FG)

]
,

=
FGz − FzG
FG− FG

,

= −A(F,G).

a(F ∗,G∗) = −F
∗G∗z − F ∗zG∗

F ∗G∗ − F ∗G∗
,

=

[
(

2F

FG− FG
)
(FG− FG)(2Gz)− 2G(FzG+ FGz − F zG− FGz)

(FG− FG)2

−(FG− FG)(2F z)− 2F (FzG+ FGz − F zG− FGz)

(FG− FG)2
(

2G

FG− FG
)

]
[
− 4FG

(FG− FG)(FG− FG)
+

4FG

(FG− FG)(FG− FG)

]−1

,

=
4

(FG− FG)(FG− FG)2

[
FFGGz − FFzGG+ FF zGG+ FFGGz

−FF zGG+ FFzGG+ FFGGz − FFGGz

] [(FG− FG)(FG− FG)

4(FG− FG)

]
,

=
1

(FG− FG)2

[
−FzG(FG− FG) + FGz(FG− FG)

]
,

=
FGz − FzG
FG− FG

,

= −a(F,G).
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b(F ∗,G∗) =
F ∗G∗z − F ∗zG∗

F ∗G∗ − F ∗G∗
,

=

[
(
−2F

FG− FG
)
(FG− FG)(2Gz)− 2G(FzG+ FGz − F zG− FGz)

(FG− FG)2

+
(FG− FG)(2F z)− 2F (FzG+ FGz − F zG− FGz)

(FG− FG)2
(

2G

FG− FG
)

]
[
− 4FG

(FG− FG)(FG− FG)
+

4FG

(FG− FG)(FG− FG)

]−1

,

=
4

(FG− FG)3

[
FFGGz + FFzGG− FF zGG− FFGGz

+FF zGG− FFzGG− FFGGz + FFGGz

] [(FG− FG)(FG− FG)

4(FG− FG)

]
,

=
−1

(FG− FG)2

[
−FzG(FG− FG) + FGz(FG− FG)

]
,

=
−1

(FG− FG)

(
−FGz + F zG

)
,

=
FGz − F zG

(FG− FG)
,

= −
(
FGz − FzG
FG− FG

)
,

= −B(F,G).

B(F ∗,G∗) =
F ∗G∗z − F ∗zG∗

F ∗G∗ − F ∗G∗
,

=

[
(
−2F

FG− FG
)
(FG− FG)(2Gz)− 2G(FzG+ FGz − F zG− FGz)

(FG− FG)2

+
(FG− FG)(2F z)− 2F (FzG+ FGz − F zG− FGz)

(FG− FG)2
(

2G

FG− FG
)

]
[
− 4FG

(FG− FG)(FG− FG)
+

4FG

(FG− FG)(FG− FG)

]−1

,

=
4

(FG− FG)3

[
FFGGz + FFzGG− FF zGG− FFGGz

+FF zGG− FFzGG− FFGzG+ FFGGz

] [(FG− FG)(FG− FG)

4(FG− FG)

]
,

=
−1

(FG− FG)2

[
F zG(FG− FG)− FGz(FG− FG)

]
,

= −F zG− FGz

FG− FG
,
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B(F ∗,G∗) =
F zG− FGz

FG− FG
,

= −
(
FGz − FzG
FG− FG

)
,

= −b(F,G).

2

Lemma 3: [1]
If (F1, G1) is a successor of (F,G) then (F,G)∗ is a successor of (F1, G1)∗.

2

The (F,G)-integral of W on a rectifiable curve Γ is, by definition,∫
Γ

Wd(F,G)z = Re

∫
Γ

F ∗Wdz − ιRe
∫

Γ

G∗Wdz.

Another important integral is also needed∫
Γ

Wd(F,G)z = Re

∫
Γ

G∗Wdz + ιRe

∫
Γ

F ∗Wdz,

(we follow the notation of Bers’).
A continuous function w defined in a domain Ω is called (F,G)-integrable if for
every closed curve Γ situated in a simply connected subdomain of Ω,∫

Γ

Wd(F,G)z = 0.

THEOREM 4: [1]
An (F,G) derivative ẇ of an (F,G)-pseudoanalytic function w is (F,G)-integrable
and ∫ z1

z0

ẇd(F,G)z = ω(z1)− ω(z0).

The integral
∫ z1
z0
ẇd(F,G)z is called (F,G)-antiderivative of ẇ.

2

THEOREM 5: [1]
Let (F,G) be a predecessor of (F1, G1).A continuous function is (F1, G1)-pseudoanalytic
if and only if it is (F,G)-integrable.

2
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3.2 Applications of Bers’ theory to the stationary
Schrödinger equation

Let us start from
wz = bw, (3.2.1)

vz = bv, (3.2.2)

where z = x+ ιy, b = −∂zf0
f0
. Then,

F =
1

f0

and G = ιf0, (3.2.3)

are two solutions of Eq. (3.2.1). Now by taking

w =
1

f0

(w = ιf0),

wz = − 1

f 2
0

∂zf0 (wz = ι∂zf0),

wz = −∂zf0

f0

1

f0

(wz = −ιf0(−∂zf0

f0

)),

wz = bw (wz = bw),

which obviously satisfy Eq. (3.1.1). Since,

Im
(
FG
)

= Im

(
1

f0

ιf0

)
= Im (ι) = 1 > 0.

Thus, (F,G) is a generating pair corresponding to Eq. (3.2.1). With the gener-
ating functions, we have

a(F,G) = −FGz − FzG
FG− FG

,

= −
( 1
f0

)∂z(ιf0)− (− 1
f2
0
∂zf0)(−ιf0)

( 1
f0

)(−ιf0)− 1
f0

(ιf0)
,

= −
ι∂zf0
f0
− ι∂zf0

f0

−ι− ι
,

= 0. (3.2.4)
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b(F,G) =
FGz − FzG
FG− FG

,

=
( 1
f0

)∂z(ιf0)− (− 1
f2
0
∂zf0)(ιf0)

( 1
f0

)(−ιf0)− 1
f0

(ιf0)
,

=

ι∂zf0
f0

+ ι∂zf0
f0

−ι− ι
,

=

(
2ι∂zf0

f0

)(
−1

2ι

)
,

= −∂zf0

f0

,

= b. (3.2.5)

A(F,G) = −FGz − FzG
FG− FG

,

= −
( 1
f0

)∂z(ιf0)− (− 1
f2
0
∂zf0)(−ιf0)

( 1
f0

)(−ιf0)− 1
f0

(ιf0)
,

= −
ι∂zf0
f0
− ι∂zf0

f0

−ι− ι
,

= 0. (3.2.6)

B(F,G) =
FGz − FzG
FG− FG

,

=
( 1
f0

)∂z(ιf0)− (− 1
f2
0
∂zf0)(ιf0)

( 1
f0

)(−ιf0)− 1
f0

(ιf0)
,

=

ι∂zf0
f0

+ ι∂zf0
f0

−ι− ι
,

= −∂zf0

f0

,

= b. (3.2.7)

According to Definition 1, the characteristic coefficients for a successor of (F,G)
have the form

a(F1,G1) = a(F,G) = 0 and b(F1,G1) = −B(F,G) =
∂zf0

f0

= −b.

If w is a solution of Eq. (3.2.1) then its (F,G) derivative ẇ is a solution of the
equation

Wz = −bW, (3.2.8)
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we know that w = 1
f0

is a solution of Eq. (3.2.1). Now we show that ẇ is a
solution of Eq. (3.2.8).

ẇ = wz − A(F,G)w −B(F,G)w,

= wz − (0)w − bw,
= wz − bw.

We have to show that W = ẇ = wz − bw is a solution of Eq. (3.2.8).

Wz = wzz − bwz − bzw,

= wzz +
∂zf0

f0

wz + ∂z

(
∂zf0

f0

)
w,

= wzz +
∂zf0

f0

wz −
1

f 2
0

(∂zf0) (∂zf0)w +
1

f0

(∂zzf0)w,

= ∂z

(
− 1

f 2
0

∂zf0

)
+
∂zf0

f0

(
− 1

f 2
0

∂zf0

)
− 1

f 2
0

(∂zf0) (∂zf0)
1

f0

+
1

f0

(∂zzf0)
1

f0

,

= − 1

f 2
0

∂zzf0 +
2

f 3
0

∂zf0 · ∂zf0 −
1

f 3
0

∂zf0 · ∂zf0 −
1

f 3
0

∂zf0 · ∂zf0 +
1

f 2
0

∂zzf0,

= 0.

−bW = −
(
−∂zf0

f0

)(
wz − bw

)
,

=

(
∂zf0

f0

)(
wz +

∂zf0

f0

w

)
,

=

(
∂zf0

f0

)(
wz +

∂zf0

f0

w

)
,

=
∂zf0

f0

(
− 1

f 2
0

∂zf0 +
∂zf0

f0

1

f0

)
,

= 0.

Hence ẇ is a solution of Eq. (3.2.8). But solutions of Eq. (3.2.8) multiplied by ι
become solutions of Eq. (3.2.2). Thus we obtain the following statement.

THEOREM 6: [1]
Let w be a solution of Eq. (3.2.1). Then the function

v = ιẇ = ι

(
wz +

∂zf0

f0

w

)
, (3.2.9)

is a solution of Eq. (3.2.2).
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Proof:
To prove that v is a solution of Eq. (3.2.2) we start from its R.H.S.

bv =

(
−∂zf0

f0

)[
ι

(
wz +

∂zf0

f0

w

)]
,

=

(
−∂zf0

f0

)[
−ι(wz +

∂zf0

f0

w)

]
,

= ι
∂zf0

f0

(
wz +

∂zf0

f0

w

)
,

= ι
∂zf0

f0

(
− 1

f 2
0

∂zf0 +
∂zf0

f0

1

f0

)
,

= 0.

Now we take L.H.S. of (3.2.2)

vz = ι

[
wzz −

1

f 2
0

∂zf0∂zf0w +
∂zzf0

f0

w +
∂zf0

f0

wz

]
,

= ι

[
∂z

(
− 1

f 2
0

∂zf0

)
− 1

f 2
0

∂zf0 · ∂zf0
1

f0

+
∂zzf0

f0

1

f0

+
∂zf0

f0

(
− 1

f 2
0

∂zf0

)]
,

= ι

[
− 1

f 2
0

∂zzf0 +
2

f 3
0

∂zf0 · ∂zf0 −
1

f 3
0

∂zf0 · ∂zf0 +
1

f 2
0

∂zzf0 −
1

f 3
0

∂zf0 · ∂zf0

]
,

= 0.

Hence v is a solution of (3.2.2).

2

By using Eq. (3.2.3) in F ∗ and G∗ we have

F ∗ = − 2F

FG− FG
,

= −
1
f0

1
f0

(−ιf0)− 1
f0

(ιf0)
,

= − ι

f0

.

G∗ =
2G

FG− FG
,

=
2(−ιf0)

1
f0

(−ιf0)− 1
f0

(ιf0)
,

=
−2ιf0

−2ι
,

= f0.
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From Theorem 2, we have b(F ∗,G∗) = −B(F,G) and from Eq. (3.2.7) we have
B(F,G) = b. Therefore,

b(F ∗,G∗) = −B(F,G) = −b.

Thus the (F,G)-integral of a function W is defined as follows∫
Γ

Wd(F,G)z = Re

∫
Γ

F ∗Wdz − ιRe
∫

Γ

G∗Wdz,

= −Re
∫

Γ

ι

f0

Wdz − ιRe
∫

Γ

f0Wdz,

= Im

∫
Γ

W

f0

dz − ιRe
∫

Γ

f0Wdz. (3.2.10)

Where we have used the relation

Re (ιW ) = Re (ιw1 − w2) = −w2 = −ImW.

From Theorems 4 and 5, we obtain the following results.

Theorem 7: [1]
Let v be a solution of Eq. (3.2.2) in a domain Ω. Then for every closed curve Γ
situated in a simply connected subdomain of Ω,

Re

∫
Γ

v

f0

dz + ιIm

∫
Γ

f0vdz = 0. (3.2.11)

Proof:
For any solution v of Eq. (3.2.2), the function W = ιv is a solution of Eq.
(3.2.8). Since v = ιẇ is a solution of Eq. (3.2.2) ιv = −ẇ is a solution of Eq.
(3.2.8). As Eq. (3.2.8) corresponds to a successor of (F,G), by Theorem 4, W is
(F,G)-integrable, i.e.,

Im

∫
Γ

W

f0

dz − ιRe
∫

Γ

f0Wdz = 0.

Replacing W by ιv, we obtain

Im

∫
Γ

ιv

f0

dz − ιRe
∫

Γ

f0(ιv)dz = 0,

or
Re

∫
Γ

v

f0

dz + ιIm

∫
Γ

f0vdz = 0. (3.2.12)

In Eq. (3.2.12) we have used

Re(ιw) = −w2 = −ImW, and Im(ιw) = w1 = ReW.
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2

In order to understand this result for solutions of the Schrödinger equation,
let us rewrite some statements in our “two-dimensional” notation. Consider the
stationary two dimensional Schrödinger Eq. (1.0.5) where u and ν depend on x
and y. For simplicity we consider u and ν to be real-valued functions.

Proposition 8: [1]
Let f1 be another nonvanishing solution of the Schrödinger Eq. (1.0.5). Then the
ratio Ψ = f1

f0
is a solution of the equation

div
(
f 2

0 gradΨ
)

= 0.

2

Proposition 9: [1]
Let f1 be another solution of Eq. (1.0.5). Then the function

v = f0∂z

(
f1

f0

)
, (3.2.13)

is a solution of Eq. (3.2.2), where b = −∂zf0
f0
.

Proof:
It is given that v is a solution of Eq. (3.2.2). To prove this take L.H.S. of Eq.
(3.2.2)

vz = ∂zf0 · ∂z
(
f1

f0

)
+ f0∂zz

(
f1

f0

)
.

Now,

R.H.S. of (3.2.2) = bv =

(
−∂zf0

f0

)(
f0∂z

(
f1

f0

))
,

= −∂zf0

f0

· f0∂z(
f1

f0

),

= −∂zf0 · ∂z(
f1

f0

).

To see that v satisfies Eq. (3.2.2) we require

∂zf0 · ∂z
(
f1

f0

)
+ f0∂zz

(
f1

f0

)
= −∂zf0 · ∂z

(
f1

f0

)
,

or
∂zf0 · ∂z

(
f1

f0

)
+ f0∇2

(
f1

f0

)
+ ∂zf0 · ∂z

(
f1

f0

)
= 0. (3.2.14)
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By using Proposition 8,

div
(
f 2

0 gradΨ
)

= 0 where Ψ =
f1

f0

,

we have
div (φ∇ψ) = φ (∇ · ∇)ψ +∇φ · ∇ψ,

f 2
0div (∇Ψ) +∇

(
f 2

0

)
· ∇Ψ = 0,

f 2
0∇2Ψ + 2f0∇f0 · ∇Ψ = 0,

or
f0

[
f0∇2Ψ + 2∇f0 · ∇Ψ

]
= 0.

Since f0 6= 0 we have
f0∇2Ψ + 2∇f0 · ∇Ψ = 0. (3.2.15)

Now we show that Eq. (3.2.14) follows from Eq. (3.2.15). Indeed,

∂zf0 · ∂z
(
f1

f0

)
+ f0∇2

(
f1

f0

)
+ ∂zf0 · ∂z

(
f1

f0

)
=

(
∂

∂x
+ ι

∂

∂y

)
f0 ·

(
∂

∂x
− ι ∂

∂y

)(
f1

f0

)
+

(
∂

∂x
− ι ∂

∂y

)
f0 ·

(
∂

∂x
+ ι

∂

∂y

)(
f1

f0

)
+f0∇2

(
f1

f0

)
,

=

(
∂f0

∂x
+ ι

∂f0

∂y

)(
∂

∂x
(
f1

f0

)− ι ∂
∂y

(
f1

f0

)

)
+

(
∂f0

∂x
− ι∂f0

∂y

)(
∂

∂x
(
f1

f0

) + ι
∂

∂y
(
f1

f0

)

)
+f0∇2

(
f1

f0

)
,

= 2

[
∂f0

∂x
· ∂
∂x

(
f1

f0

)
+
∂f0

∂y
· ∂
∂y

(
f1

f0

)]
+ f0∇2

(
f1

f0

)
,

= 2∇f0 · ∇Ψ + f0∇2

(
f1

f0

)
,

= 0. by using Eq. (3.2.15)

2

From this Proposition we have, if we have two solutions of stationary Schrödinger
Eq. (1.0.5) then v in terms of f0 and f1 becomes the solution of Eq. (3.2.2). This
Proposition will be used in proof of Cauchy’s integral theorem for the Schrödinger
equatöion.



Chapter 4

Stationary Schrödinger equation,
class of pseudoanalytic functions,
two-dimensional stationary
Schrödinger equation and the
complex Riccati equation

4.1 Some preliminary results on the stationary
Schrödinger equation and a class of pseudo-
analytic functions

The theory of pseudoanalytic functions is a generalization of the theory of
analytic functions. Consider the equation ∂zϕ = Φ in the whole complex plane,
where ϕ is a real valued function and Φ = Φ1 + ιΦ2 is a given complex-valued
function.

4.1.1 Cauchy-Riemann equations
∂zϕ = Φ = Φ1 + ιΦ2,

i.e.
1

2

(
∂ϕ

∂x
+ ι

∂ϕ

∂y

)
= Φ1 + ιΦ2.

Comparing real and imaginary parts, we have

1

2

∂ϕ

∂x
= Φ1,

1

2

∂ϕ

∂y
= Φ2. (4.1.1)

26
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From there
∂yΦ1 =

1

2

∂2ϕ

∂x∂y
= ∂xΦ2,

or
∂yΦ1 − ∂xΦ2 = 0. (4.1.2)

This is the corresponding Cauchy-Riemann equation. This equation can be used
to construct ϕ(x, y) as,

ϕ(x, y) = 2

[∫ x

x0

Φ1(η, y)dη +

∫ y

y0

Φ2(x0, ξ)dξ

]
+ c, (4.1.3)

which satisfies Eq. (4.1.1) as can be easily seen. Where (x0, y0) is an arbitrary
fixed point in the domain of interest. By A we denote the integral operator in Eq.
(4.1.3)

A[Φ](x, y) = 2

[∫ x

x0

Φ1(η, y)dη +

∫ y

y0

Φ2(x0, ξ)dξ

]
+ c.

Note that formula (4.1.3) can be easily extended to any simply connected
domain by considering the integral along an arbitrary rectifiable curve Γ leading
from (x0, y0) to (x, y)

ϕ(x, y) = 2

(∫
Γ

Φ1dx+ Φ2dy

)
+ c.

Thus if Φ satisfies Eq. (4.1.2), there exists a family of real-valued functions ϕ
such that ∂zϕ = Φ given by the formula ϕ = A[Φ].

In a similar way, we introduce the operator

A[Φ](x, y) = 2

(∫
Γ

Φ1dx− Φ2dy

)
+ c,

which is applicable to complex functions satisfying the condition

∂yΦ1 + ∂xΦ2 = 0, (4.1.4)

and corresponds to the operator ∂z.

4.1.2 Vekua equation and its relationship with Schrödinger
equation

Let f denote a positive twice continuously differentiable function defined in a
domain Ω ⊂ C. Consider the following Vekua equation:

Wz =
fz
f
W in Ω, (4.1.5)
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where f is a real valued function. W is a complex-valued function andW = C[W ]
is its complex conjugate function. As was shown in [2], Eq. (4.1.5) is closely re-
lated to the second-order equation of the form (1.0.5), where ν = ∆f

f
and u are

real-valued functions. In particular, the following statements are valid which we
show below.

THEOREM 10: [3]
Let W be a solution of Eq. (4.1.5). Then u = ReW is a solution of Eq. (1.0.5)
and v = ImW is a solution of the equation

(−∆ + η) v = 0, (4.1.6)

where

η = 2

(
|∇f |2

f

)2

− ν.

Proof:
We have

Wz =
fz
f
W,

where f is a real function. This becomes on multiplying by f

fWz = fzW,

or
f(x, y)

1

2

(
∂

∂x
+ ι

∂

∂y

)
(u+ ιv) =

1

2

(
∂f

∂x
+ ι

∂f

∂y

)
(u− ιv) ,

or
f (ux + ιvx + ιuy − vy) = fxu− ιfxv + ιfyu+ fyv.

Comparing real and imaginary parts we have,

f (ux − vy) = fxu+ fyv, (4.1.7)

f (vx + uy) = fyu− fxv. (4.1.8)

Differentiating Eq. (4.1.7) w.r.t. x

−fxvy + f (uxx − vxy) = fxxu+ fxyv + fyvx. (4.1.9)

Again differentiating Eq. (4.1.8) w.r.t. y

fyvx + f (vxy + uyy) = fyyu− fxyv − fxvy. (4.1.10)

From Eq. (4.1.9), we have

−fxvy = fxxu+ fxyv + fyvx − f (uxx − vxy) .
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This we substitute in the above Eq. (4.1.10) to arrive at

fyvx + f (vxy + uyy) = fyyu− fxyv + fxxu+ fxyv + fyvx − f (uxx − vxy) ,

or
f (uxx + uyy) = (fxx + fyy)u,

or
f (∆u) = (∆f)u,

or
∆u =

∆f

f
u,

or (
∆− ∆f

f

)
u = 0,

which is Eq. (1.0.5).
Next we differentiate Eq. (4.1.7) and Eq. (4.1.8) w.r.t. y and x respectively to
find,

fy (ux − vy) + f (uxy − vyy) = fxyu+ fxuy + fyyv + fyvy, (4.1.11)

fx (vx + uy) + f (vxx + uxy) = fxyu+ fyux − fxxv − fxvx. (4.1.12)

From the above two equations, on subtraction we find

fx (vx + uy) + f (vxx + uxy)− fy (ux − vy)− f (uxy − vyy) = fxyu+ fyux

−fxxv − fxvx − fxyu− fxuy − fyyv − fyvy,

or
f (vxx + vyy) + (fxx + fyy) v = 2 [fy (ux − vy)− fx (vx + uy)] ,

or
f (∆v) + (∆f) v = 2 [fy (ux − vy)− fx (vx + uy)] . (4.1.13)

From Eq. (4.1.7)

ux − vy =
fx
f
u+

fy
f
v

and from Eq. (4.1.8)

vx + uy =
fy
f
u− fx

f
v
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Thus from Eq. (4.1.13) we have

f (∆v) + (∆f) v = 2

[
fy

(
fx
f
u+

fy
f
v

)
− fx

(
fy
f
u− fx

f
v

)]
,

= 2

[
1

f

(
fxfyu+ f 2

y v − fxfyu+ f 2
xv
)]
,

= 2

[
f 2
x + f 2

y

f

]
v,

or

f (∆v) + (∆f) v = 2
(∇f)2

f
v,

or (
−∆ + 2

(∇f)2

f 2
− ∆f

f

)
v = 0,

which gives Eq. (4.1.6) for

η = 2
(∇f)2

f 2
− ∆f

f
.

2

Proposition-11: [2]
Let b be a complex function such that bz is real valued, and let W = u+ ιv be a
solution of the equation

Wz = bW. (4.1.14)

Then u is a solution of the equation

∂z∂zu−
(
bb+ bz

)
u = 0, (4.1.15)

and v is a solution of the equation

∂z∂zv −
(
bb− bz

)
v = 0. (4.1.16)

Proof:
Eq. (4.1.14) yields

∂z (Wz) = ∂z
(
bW
)
,

or
Wzz = bzW + bW z. (4.1.17)

Eq. (4.1.14) also gives(
∂

∂x
+ ι

∂

∂y

)
(u+ ιv) = b (u− ιv) .
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Taking complex conjugate of both sides(
∂

∂x
− ι ∂

∂y

)
(u− ιv) = b (u+ ιv) ,

i.e.
W z = bW. (4.1.18)

After substituting Eq. (4.1.18) in Eq. (4.1.17) we get

Wzz = bzW + bbW,

or
∂z∂z (u+ ιv) = bz (u− ιv) + bb (u+ ιv) ,

or
∂z∂zu+ ι∂z∂zv =

(
bz + bb

)
u+ ι

(
bb− bz

)
v.

Comparing real and imaginary parts we get,

∂z∂zu =
(
bz + bb

)
u,

∂z∂zv =
(
bb− bz

)
v.

2

Proposition 12: [2]
Let W be a solution of (

∂z −
∂zf0

f0

C

)
W = 0. (4.1.19)

Then u = ReW is a solution of Eq. (1.0.5) and v = ImW is a solution of the
equation (

∆ + ν − 2

(
|∇f0|
f0

)2
)
v = 0. (4.1.20)

Proof:
Observe that the coefficient b = ∂zf0

f0
in Eq. (4.1.19) satisfies the condition of

Proposition 11

bz = ∂z

(
∂zf0

f0

)
,

=
∂z∂zf0

f0

− 1

f 2
0

(∂zf0) (∂zf0) ,

=
∆f0

f0

− |∂zf0|2

f 2
0

,

= ν −
(∂zf0)

(
∂zf0

)
f 2

0

,
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bz = ν −
(
∂zf0

f0

)(
∂zf0

f0

)
,

= ν − bb.

Substitute bb + bz = ν in Eq. (1.0.5) which is the same as Eq. (4.1.15) and by
Proposition 11 u is solution of Eq. (4.1.15).
Similarly,

bz = ∂z

(
∂zf0

f0

)
,

=
∂z∂zf0

f0

− 1

f 2
0

(∂zf0) (∂zf0) ,

=
∆f0

f0

− |∂zf0|2

f 2
0

,

= ν − 2

(
|∂zf0|
f0

)2

+

(
|∂zf0|
f0

)2

,

= ν − 2

(
|∇f0|
f0

)2

+

(
∂zf0

f0

)(
∂zf0

f0

)
,

= ν − 2

(
|∇f0|
f0

)2

+ bb.

Substitute bb − bz = 2
(
|∇f0|
f0

)2

− ν in Eq. (4.1.20) which is the same as Eq.
(4.1.16) and from Proposition 11 v is solution of Eq. (4.1.16).

2

THEOREM 13: [2]
Let u be a solution of Eq. (1.0.5) in a simply connected domain Ω. Then the
function

v ∈ ker

(
∆ + ν − 2

(
|∇f |
f

)2
)
, (4.1.21)

such that W = u+ ιv be a solution of Eq. (4.1.5) is constructed according to the
formula

v = f−1A
(
ιf 2∂z

(
f−1u

))
. (4.1.22)

It is unique up to an additive term cf−1, where c is an arbitrary real constant.

Given v ∈ ker
(

∆ + ν − 2
(
|∇f |
f

)2
)
, the corresponding u ∈ ker (∆− ν) can be

constructed as follows:
u = −fA

(
ιf−2∂z (fv)

)
, (4.1.23)

up to an additive term cf.
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Proof:
Consider equation, (

∂z −
∂zf0

f0

C

)
W = 0.

Let W = φf0 + ι ψ
f0

be its solution then it becomes,(
∂z −

∂zf0

f0

C

)(
φf0 + ι

ψ

f0

)
= 0,

(∂zφ) f0 + φ (∂zf0) + ι
∂zψ

f0

− ι ψ
f 2

0

(∂zf0)− ∂zf0

f0

(φf0)− ∂zf0

f0

(
−ι ψ
f0

)
= 0,

(∂zφ) f0 + φ (∂zf0) + ι
∂zψ

f0

− ιψ∂zf0

f 2
0

− φ (∂zf0) + ι
ψ∂zf0

f 2
0

= 0,

or
(∂zφ) f0 + ι

∂zψ

f0

= 0,

or
ψz − ιf 2

0φz = 0.

Since u = ReW = φf0, so φ = u
f0

ψz = ιf 2
0φz,

or
ψ = A

(
ιf 2

0φz
)
.

By using this result[
∂yΦ1 − ∂xΦ2 = 0, since ∂zϕ = Φ, implies ϕ(x, y) = A[Φ]

]
,

it can be verified that the expression A (ιf 2
0φz) makes sense i.e.,

∂y
(
−f 2

0φy
)
− ∂x

(
f 2

0φx
)

= 0,

∂y
(
f 2

0φy
)

+ ∂x
(
f 2

0φx
)

= 0.

By Proposition 12, v = f−1
0 ψ is a solution of(

∆ + ν − 2

(
|∇f |
f

)2
)
v = 0,

v = f−1
0 A

(
ιf 2

0φz
)
,

= f−1
0 A

(
ιf 2

0∂z
(
f−1

0 u
))

as φ =
u

f0

.
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Let us notice that as the operator A reconstructs the scalar function up to an
arbitrary real constant, the function v in the formula

v = f−1A
(
ιf 2∂z

(
f−1u

))
,

is uniquely determined up to an additive term cf−1
0 where c is an arbitrary real

constant.
Similarly, v = ImW, v = f−1

0 ψ or ψ = vf0

ιf 2
0φz = ψz,

φz =
ψz
ιf 2

0

= −ιf−2
0 ψz,

φ = A
[
−ιf−2

0 ψz
]
,

∂y(f
−2
0 ψy)− ∂x(−f−2

0 ψx) = 0,

or
∂y(f

−2
0 ψy) + ∂x(f

−2
0 ψx) = 0.

But u = f0φ is a solution of (−∆ + ν)u = 0 where

u = f0A
[
−ιf−2

0 ψz
]
,

= −f0A
[
ιf−2

0 ∂z(vf0)
]
.

2

Thus the relation between Eq. (4.1.5) and Eq. (1.0.5) is similar to that of
Cauchy-Riemann system and the Laplace equation. For a Vekua equation of the
form

Wz = aW + bW,

where a and b are arbitrary complex-valued functions from an appropriate func-
tion space [13]. A well-developed theory of Taylor and Laurent series in formal
powers has been created (see [11]). We recall that a formal power Z(n) (a, z0; z)
corresponding to a coefficient a and a centre z0 is a solution of the Vekua equation
satisfying the asymptotic formula

Z(n) (a, z0; z) ∼ a (z − z0)n z → z0. (4.1.24)

In Chapter 5, we show how this theory is applied for generalizing the second Euler
theorem. For this we need the expansion theorem. For the Vekua equation of the
form (4.1.5), this expansion theorem reads as follows (for more details, we refer
the reader to [14]).

THEOREM 14: [3]
LetW be a regular solution of Eq. (4.1.5) defined for |z−z0| < R. Then it admits
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a unique expansion of the form

W (z) =
∞∑
n=0

Zn(an, z0, z), (4.1.25)

which converges normally for |z − z0| < R.

2

THEOREM 15: [3] (Cauchy’s integral theorem for the Schrödinger
equation).
Let f be a nonvanishing solution of the Schrödinger Eq. (1.0.5) in a domain Ω
and u be another arbitrary solution of the same equation in Ω. Then for every
closed curve Γ situated in a simply connected subdomain of Ω,

Re

∫
Γ

∂z

(
u

f

)
dz + ιIm

∫
Γ

f 2∂z

(
u

f

)
dz = 0, (4.1.26)

or equivalently

Re

∫
Γ

∂z

(
u

f

)
dz = 0 and Im

∫
Γ

f 2∂z

(
u

f

)
dz = 0.

Proof:
Eq. (3.2.13) is

v = f∂z

(
u

f

)
,

and Eq. (3.2.11) is

Re

∫
Γ

v

f
dz + ιIm

∫
Γ

fvdz = 0.

From these two results

Re

∫
Γ

f∂z

(
u
f

)
f

dz + ιIm

∫
Γ

f · f∂z
(
u

f

)
dz = 0,

or
Re

∫
Γ

∂z

(
u

f

)
dz + ιIm

∫
Γ

f 2∂z

(
u

f

)
dz = 0.

2

Another result which will be used in the present work (Section 5.2) is a Cauchy-
type integral theorem for the stationary Schrödinger equation. It was obtained in
[1] with the aid of the pseudoanalytic function theory.
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4.2 The two-dimensional stationary Schrödinger
equation and the complex Riccati equation

Consider the complex differential Riccati Eq. (1.0.4) and stationary Schrödinger
Eq. (1.0.5), where u and ν are real valued. Both equations are studied in a do-
main Ω ⊂ C.

THEOREM 16: [3]
Let u be a solution of Eq. (1.0.5). Then its logarithmic derivative

Q =
d

dz
(log u) =

uz
u
, (4.2.1)

is a solution of Eq. (1.0.4).
Proof:
Let u is a solution of Eq. (1.0.5), then we have to show that Q = uz

u
is a solution

of Eq. (1.0.4).
If it is solution of Eq. (1.0.4) then it must satisfy Eq. (1.0.4).
Now

∂zQ =
1

2

(
∂

∂x
+ ι

∂

∂y

)(uz
u

)
,

=
1

2

∂

∂x

(uz
u

)
+ ι

1

2

∂

∂y

(uz
u

)
,

=
1

2

∂

∂x

[
1

2u

(
∂u

∂x
− ι∂u

∂y

)]
+ ι

1

2

∂

∂y

[
1

2u

(
∂u

∂x
− ι∂u

∂y

)]
,

=
1

4

[
− 1

u2

∂u

∂x

(
∂u

∂x
− ι∂u

∂y

)
+

1

u

(
∂2u

∂x2
− ι ∂

2u

∂x∂y

)]
+ι

1

4

[
− 1

u2

∂u

∂y

(
∂u

∂x
− ι∂u

∂y

)
+

1

u

(
∂2u

∂x∂y
− ι∂

2u

∂y2

)]
,

=
1

4

[
− 1

u2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)

+
1

u

(
∂2u

∂x2
+
∂2u

∂y2

)]
.

The L.H.S. of Eq. (1.0.4) becomes

∂zQ+ |Q|2 =
1

4

[
− 1

u2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)

+
1

u

(
∂2u

∂x2
+
∂2u

∂y2

)]
+
∣∣∣uz
u

∣∣∣2 ,
=

1

4

[
− 1

u2

(
∂u

∂x

)2

− 1

u2

(
∂u

∂y

)2

+
1

u

∂2u

∂x2
+

1

u

∂2u

∂y2

]

+

∣∣∣∣ 1

2u

(
∂u

∂x
− ι∂u

∂y

)∣∣∣∣2 ,
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∂zQ+ |Q|2 =
1

4

[
− 1

u2

(
∂u

∂x

)2

− 1

u2

(
∂u

∂y

)2

+
1

u

∂2u

∂x2
+

1

u

∂2u

∂y2
+

1

u2

(
∂u

∂x

)2

+
1

u2

(
∂u

∂y

)2
]
,

=
1

4u

(
∂2u

∂x2
+
∂2u

∂y2

)
,

=
1

4u
(∆u) ,

=
ν

4
. using Eq. (1.0.5)

which proves the result that Eq. (4.2.1) is a solution of Eq. (1.0.4).

2

Remark-2: [3]
Any solution of Eq. (1.0.4) satisfies Eq. (4.1.4) where Q = Q1 + ιQ2. Indeed, the
Eq. (1.0.4) yields

1

2

(
∂

∂x
+ ι

∂

∂y

)
(Q1 + ιQ2) + |Q1 + ιQ2|2 =

ν

4
,

(
∂Q1

∂x
− ∂Q2

∂y

)
+ ι

(
∂Q2

∂x
+
∂Q1

∂y

)
+ 2Q2

1 + 2Q2
2 =

ν

2
.

Comparing the imaginary part, we find

∂Q2

∂x
+
∂Q1

∂y
= 0,

∂xQ2 + ∂yQ1 = 0.

2

THEOREM 17: [3]
Let Q be a solution of Eq. (1.0.4). Then the function

u = exp (A[Q]) , (4.2.2)

is a solution of Eq. (1.0.5).
Proof:
Let Q be a solution of Eq. (1.0.4). Then Eq. (1.0.5) yields(

∂2

∂x2
+

∂2

∂y2

)
u− νu = 0,

or (
∂

∂x
+ ι

∂

∂y

)(
∂

∂x
− ι ∂

∂y

)
u− νu = 0,
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or
4∂z∂zu− νu = 0. (4.2.3)

Substitute Eq. (4.2.2) in Eq. (4.2.3)

∂z∂zu = ∂z∂z (exp (A[Q])) ,

= ∂z [∂z (A[Q]) exp (A[Q])] ,

∂z (A[Q]) = ∂z (A[Q]) = Q,

[
since ∂zϕ = Φ and ϕ = A[Φ] then ∂zϕ = ∂z

(
A[Φ]

)
implies

Φ = ∂z (A[Φ])] . (4.2.4)

∂z∂zu = ∂z [Q exp (A[Q])] ,

= (∂zQ) exp (A[Q]) +Q [∂z (A[Q]) exp (A[Q])] ,

= (∂zQ) exp (A[Q]) +QQ exp (A[Q]) ,

= exp (A[Q])
(
∂zQ+ |Q|2

)
,

= u
ν

4
. using Eq. (1.0.4) and Eq. (4.2.2)

Therefore,
(4∂z∂z − ν)u = 0.

2

Theorem 17 shows that if Q is a solution of Eq. (1.0.4) then there exists a solution
u of Eq. (1.0.5) such that Eq. (4.2.1) is valid.

THEOREM 18: [3]
Given a complex function Q, then for any real-valued twice continuously differ-
entiable function ϕ, the following equality is valid:

1

4
(∆− ν)ϕ = (∂z +QC) (∂z −QC)ϕ, (4.2.5)

=
(
∂z +QC

) (
∂z −QC

)
ϕ, (4.2.6)

if and only if Q is a solution of the Riccati Eq. (1.0.4).
Proof:
First we calculate the term ∂z∂zϕ, i.e.,

∂z∂zϕ =
1

2

(
∂

∂x
+ ι

∂

∂y

)
1

2

(
∂

∂x
− ι ∂

∂y

)
ϕ,

=
1

4
∆ϕ. (4.2.7)
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Taking R.H.S. of Eq. (4.2.5)

(∂z +QC) (∂z −QC)ϕ = (∂z +QC) (∂zϕ−Qϕ) ,

= ∂z∂zϕ− ∂z(Qϕ) +Q∂zϕ−QQϕ,
= ∂z∂zϕ− (∂zQ)ϕ−Q (∂zϕ) +Q (∂zϕ)−QQϕ,

=
∆ϕ

4
−
(
∂zQ− |Q|2

)
ϕ, using Eq. (4.2.7)

using the Riccati Eq. (1.0.4) we have

(∂z +QC) (∂z −QC)ϕ =
1

4
(∆− ν)ϕ.

Taking R.H.S. of Eq. (4.2.6)(
∂z +QC

) (
∂z −QC

)
ϕ =

(
∂z +QC

) (
∂zϕ−Qϕ

)
,

= ∂z∂zϕ− ∂z
(
Qϕ
)

+Q
(
∂zϕ
)
−Q

(
Qϕ
)
,

= ∂z∂zϕ−
(
∂zQ

)
ϕ−Q (∂zϕ) +Q (∂zϕ)−QQϕ,

= ∂z∂zϕ−
(
∂zQ

)
ϕ− |Q|2ϕ,

=
1

4
∆ϕ−

(
∂zQ− |Q|2

)
ϕ, using Eq. (4.2.7)

using the Riccati Eq. (1.0.4) we have(
∂z +QC

) (
∂z −QC

)
ϕ =

1

4
(∆− ν)ϕ.

2

In Theorem 18 we have discussed the factorization of two-dimensional Schrödinger
equation.



Chapter 5

Generalizations of classical
theorems and Cauchy’s integral
theorem

5.1 Generalizations of classical theorems
In this section, we give generalizations of both the Euler’s theorem and the Pi-
card’s theorem.

5.1.1 Generalization of the first and second Euler theorems
In this section we will give generalization of first Euler’s theorem and second Eu-
ler’s theorem using the Riccati Eq. (1.0.4).

THEOREM 19: [3] (First Euler’s theorem)
Let Q0 be a bounded particular solution of the Riccati Eq. (1.0.4). Then this
equation reduces to the following first order (real-linear) equation:

Wz = Q0W, (5.1.1)

in the following sense. Any solution of Eq. (1.0.4) has the form

Q =
∂zReW

ReW
, (5.1.2)

and conversely, any solution of Eq. (5.1.1) can be expressed as a corresponding
solution Q of Eq. (1.0.4) in the form

W = eA[Q] + ιe−A[Q0]A
[
ιezA[Q0]∂ze

A[Q−Q0]
]
. (5.1.3)

Proof:
Let Q0 be a bounded solution of Eq. (1.0.4). Then by Theorem 16, there exists a
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non-vanishing real-valued solution f of Eq. (1.0.5) such that, Q0 = fz

f
. In other

words, Eq. (5.1.1) can be written as

Wz =
fz
f
W,

=
fz
f
W.

Now, let Q be any solution of Eq. (1.0.4). Then Q = uz

u
where u is a solution of

Eq. (1.0.5). According to Theorem 13, u = ReW andW is solution of Eq. (4.1.5)
which also can be written in the form of Eq. (5.1.1). Thus we have proved, the
first part of the theorem.

From Theorem 13, we have W = u + ιv, where v is solution of Eq. (4.1.21)
which can be written in the form of Eq. (4.1.22) and from Theorem 17, we have
u is solution of Eq. (1.0.5) which can be written in the form of Eq. (4.2.2).

W = eA[Q] + ιf−1A
[
ιf 2∂z

(
f−1u

)]
,

= eA[Q] + ιe−A[Q0]A
[
ιe2A[Q0]∂z

(
e−A[Q0]eA[Q]

)]
,

= eA[Q] + ιe−A[Q0]A
[
ιe2A[Q0]∂z

(
eA[Q−Q0]

)]
.

2

Thus, the Riccati Eq. (1.0.4) is equivalent to the Vekua equation of the form
(4.1.5). This follows that in the domain of interest Ω, there exists a bounded
solution of Eq. (1.0.4).

THEOREM 20: [3] (Second Euler’s theorem)
Any solution Q of Eq. (1.0.4) defined for |z − z0| < R can be represented in the
form

Q =

∑∞
n=0 Qne

A[Qn]∑∞
n=0 e

A[Qn]
, (5.1.4)

where {Qn}∞n=0 is the set of particular solutions of the Riccati Eq. (1.0.4) obtained
as follows:

Qn(z) =
∂zReZ

(n)(an, z0, z)

ReZ(n)(an, z0, z)
,

and Z(n)(an, z0, z) are formal powers corresponding to Eq. (5.1.1) and both series
in Eq. (5.1.4) converge normally for |z − z0| < R.
Proof:
From Theorem 19, we have Eq. (5.1.2) where W is a solution of Eq. (5.1.1).
From Theorem 14, we have Eq. (4.1.25). After substituting Eq. (4.1.25) in Eq.
(5.1.2) we have

Q(z) =
∂z
∑∞

n=0ReZ
(n)(an, z0, z)∑∞

n=0ReZ
(n)(an, z0, z)

.



42

Every formal power Z(n)(an, z0, z) corresponds to a solution of Eq. (1.0.4), i.e.

Qn(z) =
∂zReZ

(n)(an, z0, z)

ReZ(n)(an, z0, z)
.

From Theorem 17, we have u = ReW can be written in the form of Eq. (4.2.2)
implies

Re Z(n)(an, z0, z) = eA[Qn](z),

Q(z) =
∂z
∑∞

n=0 e
A[Qn](z)∑∞

n=0 e
A[Qn](z)

,

Q =
∂z
∑∞

n=0 e
A[Qn]∑∞

n=0 e
A[Qn]

,

Q =

∑∞
n=0 e

A[Qn]∂z (A[Qn])∑∞
n=0 e

A[Qn]
.

By using Eq. (4.2.4) we have

Q =

∑∞
n=0Qne

A[Qn]∑∞
n=0 e

A[Qn]
.

2

5.1.2 Generalization of Picard’s theorem
In this section we give a generalization of Picard’s theorem written in the form
of Eq. (2.1.27) using Riccati Eq. (1.0.4).

THEOREM 21: [3] (Picard’s theorem)
Let Qk, k = 1, 2, 3, 4 be four solutions of Eq. (1.0.4). Then

∂z (Q1 −Q2) + 2ιIm
(
Q1Q2

)
Q1 −Q2

+
∂z (Q3 −Q4) + 2ιIm

(
Q3Q4

)
Q3 −Q4

−
∂z (Q1 −Q4) + 2ιIm

(
Q1Q4

)
Q1 −Q4

−
∂z (Q3 −Q2) + 2ιIm

(
Q3Q2

)
Q3 −Q2

= 0.

Proof:(
Q1 +Q4

)
(Q1 −Q4) = Q1Q1 −Q1Q4 +Q4Q1 −Q4Q4,

= |Q1|2 −Q1Q4 +Q4Q1 − |Q4|2,

=
(ν

4
− ∂zQ1

)
−Q1Q4 +Q4Q1 −

(ν
4
− ∂zQ4

)
,
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since ∂zQk + |Qk|2 = ν
4
, for k = 1, 2, 3, 4. Thus,(

Q1 +Q4

)
(Q1 −Q4) = −∂zQ1 + ∂zQ4 −

(
Q1Q4 −Q4Q1

)
,

= −∂z (Q1 −Q4)− 2ιIm
(
Q1Q4

)
.

Similarly, (
Q2 +Q3

)
(Q3 −Q2) = −∂z (Q3 −Q2)− 2ιIm

(
Q3Q2

)
,(

Q1 +Q2

)
(Q1 −Q2) = −∂z (Q1 −Q2)− 2ιIm

(
Q1Q2

)
,(

Q3 +Q4

)
(Q3 −Q4) = −∂z (Q3 −Q4)− 2ιIm

(
Q3Q4

)
.

From these equations we get,

(
Q1 +Q4

)
=
−∂z (Q1 −Q4)− 2ιIm

(
Q1Q4

)
(Q1 −Q4)

,

(
Q2 +Q3

)
=
−∂z (Q3 −Q2)− 2ιIm

(
Q3Q2

)
(Q3 −Q2)

,

(
Q1 +Q2

)
=
−∂z (Q1 −Q2)− 2ιIm

(
Q1Q2

)
(Q1 −Q2)

,

(
Q3 +Q4

)
=
−∂z (Q3 −Q4)− 2ιIm

(
Q3Q4

)
(Q3 −Q4)

,

or

−∂z (Q1 −Q4)− 2ιIm
(
Q1Q4

)
Q1 −Q4

+
−∂z (Q3 −Q2)− 2ιIm

(
Q3Q2

)
Q3 −Q2

−
−∂z (Q1 −Q2)− 2ιIm

(
Q1Q2

)
Q1 −Q2

−
−∂z (Q3 −Q4)− 2ιIm

(
Q3Q4

)
Q3 −Q4

=
(
Q1 +Q4

)
+
(
Q2 +Q3

)
−
(
Q1 +Q2

)
−
(
Q3 +Q4

)
= 0,

or

∂z (Q1 −Q2) + 2ιIm
(
Q1Q2

)
Q1 −Q2

+
∂z (Q3 −Q4) + 2ιIm

(
Q3Q4

)
Q3 −Q4

−
∂z (Q1 −Q4) + 2ιIm

(
Q1Q4

)
Q1 −Q4

−
∂z (Q3 −Q2) + 2ιIm

(
Q3Q2

)
Q3 −Q2

= 0.

2

5.2 Cauchy’s integral theorem
In this section we give generalization of Cauchy’s integral theorem.
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THEOREM 22: [3] (Cauchy’s integral theorem for the complex Riccati
equation)
Let Q0 and Q1 be bounded solutions of Eq. (1.0.4) in Ω. Then for every closed
curve Γ lying in a simply connected subdomain of Ω,

Re

∫
Γ

(Q1 −Q0) eA[Q1−Q0]dz + ιIm

∫
Γ

(Q1 −Q0) eA[Q1+Q0]dz = 0, (5.2.1)

or equivalently

Re

∫
Γ

(Q1 −Q0) eA[Q1−Q0]dz = 0, and Im

∫
Γ

(Q1 −Q0) eA[Q1+Q0]dz = 0,

Proof:
From Theorem 17, we have that f = eA[Q0] and u = eA[Q1] are solutions of Eq.
(1.0.5). Now, applying Theorem 15, we have

Re

∫
Γ

∂z

(
u

f

)
dz + ιIm

∫
Γ

f 2∂z

(
u

f

)
dz = 0,

for every closed curve Γ situated in a simply connected subdomain of Ω, which
gives us the equality

Re

∫
Γ

∂z

(
eA[Q1]

eA[Q0]

)
dz + ιIm

∫
Γ

e2A[Q0]∂z

(
eA[Q1]

eA[Q0]

)
dz = 0,

or
Re

∫
Γ

∂z
(
eA[Q1−Q0]

)
dz + ιIm

∫
Γ

e2A[Q0]∂z
(
eA[Q1−Q0]

)
dz = 0,

or

Re

∫
Γ

(Q1 −Q0) eA[Q1−Q0]dz + ιIm

∫
Γ

e2A[Q0] (Q1 −Q0) eA[Q1−Q0]dz = 0,

where we have used Eq. (4.2.4). Thus,

Re

∫
Γ

(Q1 −Q0) eA[Q1−Q0]dz + ιIm

∫
Γ

(Q1 −Q0) eA[Q1+Q0]dz = 0.

2

As a particular case, let us analyze the Riccati Eq. (1.0.4) with v ≡ 0 which
is related to the Laplace equation. If in Eq. (5.2.1) we assume that Q0 ≡ 0, then
Eq. (5.2.1) takes the form

Re

∫
Γ

Q1e
A[Q1]dz + ιIm

∫
Γ

Q1e
A[Q1]dz = 0,
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which can be represented as, ∫
Γ

Q1e
A[Q1]dz = 0.

This is obviously valid because if Q1 is a bounded solution of the Riccati
equation with ν ≡ 0, then according to Theorem 17, we have that u = eA[Q1] is a
function and this equation becomes,∫

Γ

uzdz = 0, (5.2.2)

which represents the analyticity of uz.
Now, if in Eq. (5.2.1) we assume that Q1 ≡ 0, then Eq. (5.2.1) takes the form

Re

∫
Γ

Q0e
−A[Q0]dz + ιIm

∫
Γ

Q0e
A[Q0]dz = 0.

Rewriting this equality in terms of function f = eA[Q0]

fz = ∂z (A[Q0]) eA[Q0] = Q0e
A[Q0],

we obtain
Re

∫
Γ

fz
f 2
dz + ιIm

∫
Γ

fzdz = 0,

which, on using Eq. (5.2.2) gives

Re

∫
Γ

fz
f 2
dz = 0,

or
Re

∫
Γ

∂z

(
1

f

)
dz = 0. (5.2.3)

This equality is a simple corollary of a complex version of the Green-Gauss
theorem, [15], according to which we have

1

2ι

∫
Γ

∂z

(
1

f

)
dz =

∫
Ω

∂z∂z

(
1

f

)
dxdy.

For f to be real the R.H.S. of above equation is real-valued and we obtain Eq.
(5.2.3).
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Conclusions

We have shown that the stationary Schrödinger equation in a two-dimensional
case is related to a complex differential Riccati equation which possesses many
interesting properties similar to its one-dimensional prototype. Besides the gen-
eralizations of the famous Euler theorems, we have obtained the generalization of
Picard’s theorem and the Cauchy integral theorem for solutions of the complex
Riccati equation. The theory of pseudoanalytic functions has been intensively
used.

Chapter 2 of this dissertation is devoted to the relationship between Riccati
Eq. (1.0.2) and the one-dimensional Schrödinger Eq. (1.0.3). We first give an
extensive treatment of the Riccati equation deriving its important properties and
then discuss the relationship with the one-dimensional stationary Schrödinger
equation exhibiting also the factorization of the Schrödinger operator.

The appearance of ∂z results in the development of pseudoanalytic function
theory by Bers’ which is one of the many generalizations of analytical function
theory. A summary of Bers’ theory of pseudoanalytic functions as a general-
ization of analytic functions appears in Chapter 3. In the first section, we dis-
cuss the pseudoanalytic functions, generating pair (F,G), (F,G)-derivative, char-
acteristic coefficients a(F,G), b(F,G), A(F,G), B(F,G) and adjoint generating pair
(F,G)∗ = (F ∗, G∗) and in the second section we discuss the applications of Bers’
theory to the stationary Schrödinger equation.

In the first section of Chapter 4, some preliminary results on the stationary
two-dimensional Schrödinger equation and a class of pseudoanalytic functions are
discussed. In fact the solutions of the Vekua Eq. (4.1.5) and the two-dimensional
Schrödinger Eq. (1.0.5) are closely related to each other. Given a solution of the
Schrödinger equation we can reconstruct a solution of the Vekua equation which
is a pseudoanalytical function. Conversely given a pseudoanalytic function we
can construct a solution of a related Schrödinger equation. In the second section
we continue the discussion to obtain the relationship between the Riccati equa-
tion and the two-dimensional stationary Schrödinger equation. In fact given a

46



47

solution of the Schrödinger equation in two dimension, its logarithmic derivative
is a solution of the complex Riccati equation. This leads also to the factorization
of the Schrödinger operator in two-dimensions.

Chapter 5 is devoted to some famous theorems from analytic function the-
ory to the corresponding pseudoanalytic function theory. In first section we
discuss generalizations of both Euler’s and Picard’s theorems as related to the
two-dimensional Riccati equation. These are also related to the two-dimensional
Schrödinger equation. In the second section we discussed the generalization of
the Cauchy integral formula for the complex Riccati equation.
Chapter 6 is devoted to the conclusion.

We have discussed Schrödinger equation upto two dimensions. Further, if
we extend the work to higher dimensions, then it leads to the introduction of
quaternions. Which form a non-commutative field.
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