
Agile-Based Approach for Efficient and
Quality-Oriented Development of DApps.

MCS

Author

Muhammad Haroon Alam

Registration Number

00000362161

Supervisor

Assoc Prof Dr. Fahim Arif

A thesis submitted to the faculty of the Department of Computer Software Engineering,

Military College of Signals, National University of Sciences and Technology (NUST),

Rawalpindi in partial fulfillment of the requirements for the degree of MS in Software

Engineering.

(January, 2024)

i

Declaration

I, Muhammad Haroon Alam, declare that this thesis titled "Agile-based Approach for Effi-

cient and Quality-oriented Development of DApps" and the work presented is my own and has

been generated by me as a result of my own original research.

I confirm that:-

1. This work was done wholly or mainly while in candidature for a Master of Science degree at

NUST.

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at NUST or any other institution, this has been clearly stated.

3. Where I have quoted from the work of others, this is always clearly attributed.

4. Where I have quoted from the work of others, the source is always given. Except for such

quotations, this thesis is entirely my work.

5. I have acknowledged all main sources of help.

6. Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Author Name: Muhammad Haroon Alam

Signature:

ii

Dedication

This research work is dedicated to my father (late) who continues to be my source of strength,

and to my brave mother, siblings, friends, and fellows, who have all been my endless source of

love, encouragement, and strength. Your unwavering belief in my abilities, countless sacrifices,

and relentless support have been the foundation upon which I built my academic pursuits. This

research work would not have been possible without their love and support.

iii

Acknowledgments

All worship and glory be to the All-Magnificent and All-Merciful Allah Almighty. I am deeply

grateful to Allah Almighty for granting me the capability and determination to pursue and

complete this research. Allah Almighty’s divine blessings and guidance have been instrumental

in overcoming obstacles and achieving success. I humbly acknowledge that no words can fully

express my gratitude for the countless blessings bestowed upon me. I dedicate this thesis as

a humble tribute to Allah Almighty, recognizing His infinite wisdom and benevolence. I pray

that my work may benefit others and be pleasing to Allah Almighty.

I would also like to express my heartfelt appreciation to my thesis supervisor, Assoc Prof Dr.

Fahim Arif, for his unwavering support and guidance throughout my thesis. His knowledge,

expertise, and dedication to his field have been a source of inspiration to me, and I am grateful

for the time and effort he invested in my success. From the beginning of my journey until the

end, he has been an embodiment of kindness, motivation, and inspiration towards me.

In addition, I extend my gratitude to my GEC committee members, Assoc Prof Dr. Tauseef

Ahmad Rana and Asst. Prof. Dr. Muhammad Sohail, for their continuous availability

for assistance and support throughout my degree, both in coursework and thesis. Their expertise

and knowledge have been invaluable to me, and I am grateful for their unwavering support and

guidance.

iv

Abstract

Blockchain Oriented Software Engineering (BOSE) introduces new research directions for the

systematic, disciplined, and quantifiable approaches to the development of blockchain-based

software systems i.e., Decentralized Applications (DApps). The development lifecycle of DApps

is different and complex as compared to traditional software systems. BOSE develops new

software engineering approaches to manage the development of DApps, these approaches are

hybrid and based on standards that are being followed in software engineering to manage the

development of traditional software systems with collaborations new trends, and architecture

of DApps. This thesis contributes to this area of research by introducing software engineering

approaches such as agile software development and project management methods to provide

efficient and quality-oriented development of blockchain-enabled smart contracts-based DApps

systems. This thesis proposes a hybrid framework to ensure specified, simple, and standardized

agile-based management of efficient and quality-oriented development of DApps. The proposed

framework facilitates efficiency and quality through specified project goals, management of

resource consumption of DApps systems, agile testing, simplicity in software requirements, and

design process. SMART (Specific, Measurable, Achievable, Realistic, Time-bound, or Traceable)

objectives, Class Responsibility Collaborator modeling, Pair Programming, Acceptance Test

Driven Development, Prioritization of Requirements, and Project Velocity are practices and

methods introduced in the proposed framework. A questionnaire survey in the community of

software industry professionals and a case study is also conducted to implement the proposed

framework in a real-time industry environment. Responses and results of the survey and case

study establish the effectiveness and usability of all the practices and methods of the proposed

framework for efficient and quality-oriented development of DApps systems.

Keywords – blockchain-oriented software engineering, agile software development, SMART

analysis, decentralized applications, smart contracts

v

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 5

1.3 Problem Statement . 5

1.4 Research Objectives . 6

1.5 Contribution of Research . 6

1.6 Thesis Outline . 8

2 Literature Review 10

2.1 Introduction . 10

2.2 Agile based Software Engineering . 10

2.3 Blockchain and DLT . 12

2.4 Blockchain based Smart Contracts . 14

2.5 Smart Contracts based DApps . 18

2.6 Quality Attributes of Development of DApps . 19

2.6.1 Simplicity in Development of DApps . 19

2.6.2 Agile Testing in Development of DApps 23

2.6.3 Efficient Development of DApps . 25

2.6.4 Quality-oriented Sustainable Development of DApps 27

2.7 Blockchain Oriented Software Engineering (BOSE) 29

2.8 Agile based Approaches for Development of DApps 33

vi

Table of Contents

2.8.1 Test Driven Development (TDD) . 33

2.8.2 Acceptance Testing . 34

2.8.3 Planning for new Release and Iteration 35

2.8.4 Pair Programming . 35

2.8.5 Small Incremental Releases with Review Meetings and Project Velocity . 36

2.8.6 Class Responsibility Collaborator (CRC) Modeling 36

2.9 SMART Analysis of Project Goals . 37

2.10 Summary . 37

3 Proposed Methodology 38

3.1 Introduction . 38

3.2 Rationale and Motivation . 38

3.3 Proposed Framework . 40

3.4 Vision (Define Vision) . 40

3.5 Design and Implementation . 43

3.6 Maintenance . 46

3.7 Key Attributes of the Proposed Framework . 47

3.7.1 Simplicity of the Proposed Framework for the Development of DApps . . 47

3.7.2 Quality Oriented Development of DApps using the Proposed Framework . 48

3.7.3 Agile Testing in the Proposed Framework for the Development of DApps 49

3.7.4 Efficient Development of DApps in the Proposed Framework 49

3.8 Summary . 50

4 Validation of Proposed Framework 51

4.1 Introduction . 51

4.2 Questionnaire Survey . 51

4.3 Implementation Example - Development of DApp 53

4.4 Summary . 54

vii

Table of Contents

5 Case Study Implementation of Proposed Framework 55

5.1 Introduction . 55

5.2 Case Study for Implementation . 55

5.2.1 Objective . 55

5.2.2 Scope and Criteria . 56

5.2.3 Level of Assurance . 56

5.2.4 Description of the Project . 56

5.3 Implementation and Analysis . 56

5.4 Vision (Define Vision) . 57

5.5 SMART Analysis . 58

5.6 Split the System . 59

5.7 Design and Implementation . 59

5.7.1 Smart contracts Development . 59

5.7.2 App System Development . 65

5.8 Maintenance . 67

5.9 Case Study Concluding Remarks . 67

5.10 Summary . 68

6 Results and Analysis 69

6.1 Introduction . 69

6.2 Analysis of Questionnaire Survey . 69

6.2.1 Challenges in Agile SDLC of DApps . 70

6.2.2 In practice Agile Methodologies for the Development of DApps 70

6.2.3 Requirements Prioritization in the Development of DApps 71

6.2.4 Define Project goals using SMART Analysis 73

6.2.5 Use of CRC Cards in the Design Phase of Agile DApp Development . . . 73

6.2.6 Influence of Pair Programming in Code Quality DApp Systems 74

6.2.7 ATDD to Validate and Acceptance Phase in Agile Development of DApps 75

viii

Table of Contents

6.2.8 Simple Design Leads to Efficient Design and Requirements Elicitation in

Agile Development of DApps . 76

6.2.9 Agile Practices for Quality-oriented Development of DApps 77

6.3 Central Tendencies of Survey Responses on Statements of Questions 78

6.4 Comparison of Proposed Framework with Related Studies 79

6.5 Summary . 80

7 Conclusion and Future Work 81

7.1 Conclusion . 81

7.2 Future Work . 82

References 83

Annex A 89

ix

List of Tables

2.1 A structured comparison of financial and non-financial applications of blockchain

technology [23] . 14

2.2 Applications of smart contracts with their benefits and use cases [27] 17

2.3 Comparison of traditional web applications and DApps [7] 18

2.4 Practical advantages of different types of DApps [29] 19

2.5 Factors lead to simplicity with their benefits in ASD [31] 22

2.6 Advantages and disadvantages of Agile testing [34] 24

2.7 Solutions of Scalability problems and trilemma trade-offs of these solutions in

blockchain system [40] . 27

6.1 Central tendencies of survey responses on statements of questions 79

6.2 Comparison of the proposed framework with related studies in this area of research 80

x

List of Figures

1.1 A typical architecture of DApps. Ethereum blockchain on the left, DApps UI on

the bottom right, and Backend server (centric server or distributed file system

i.e., IPFS) on top right [4]. 3

1.2 Contributions of the proposed framework for the development of DApps 7

1.3 Thesis Chapter wise Outline . 9

2.1 Agile Software Development Lifecycle [22] . 11

2.2 A process of functioning from a new transaction request to the completion and

execution of the transaction [25] . 13

2.3 Phases of smart contracts life cycle, from creation to completion [27] 16

3.1 A framework for efficient and quality-oriented development of DApps 41

3.2 Key Attributes of the Proposed Framework . 47

5.1 UML Use case diagram based on user stories. 58

5.2 CRC Modeling, arranged with respect to collaborators 59

5.3 The Standard UML Class Diagram of Supply Chain Management DApp System

of Grapes Juice . 60

5.4 UML Class diagram, based on .sol files of smart contracts of Supply Chain Man-

agement DApp System of Grapes Juice . 61

5.5 Sequence Diagram of the grapes fruit juice supply chain management DApp system 61

5.6 User Interface of Grapes Fruit Supply chain DApp System - Register New User

with Order Details . 66

xi

List of Figures

5.7 User Interface of Grapes Fruit Supply chain DApp System – Farm and Product

Details . 66

6.1 Identified Challenges in Agile SDLC of DApps 70

6.2 In practice Agile Methodologies for the Development of DApps and Software . . 71

6.3 Results of how much essential prioritization of requirements in SDLC of DApps . 72

6.4 Graphical representation of survey results to show the effectiveness of prioritiza-

tion of requirements for efficient agile development of DApps 72

6.5 Results to validate the effectiveness of defining and specifying goals of the project

using SMART analysis . 73

6.6 Analytical graph of survey responses to verify the effectiveness of CRC cards in

the comprehension of UML diagrams in the agile development of DApps 74

6.7 Analytical graph to validate the influence of pair programming in code quality

of agile development of DApps. 75

6.8 Analytical graph to verify that ATDD enhances the validation and acceptance

in agile development of DApps. 76

6.9 Graphical representation of responses validate that simple design leads to efficient

design and requirements elicitation. 77

6.10 Identified and validated through survey crucial agile practices for quality-oriented

development of DApps. 78

xii

List of Abbreviations

SMART ——- Smart Measurable Achievable Realistic Traceable/Time bound.

BOSE —— Blockchain Oriented Software Engineering

BBS —— Blockchain Based Software

DApps —— Decentralized Applications

ATDD —— Acceptance Test Driven Development

TDD —— Test Driven Development

CRC ——- Class Responsibility Collaborator

DLT —— Distributed Ledger Technology

SCs ——- Smart Contracts

XP ——- Extreme Programming

UML ——- Unified Modeling Language

IPFS ——- Inter Planetary File System

SDLC ——- Software Development Life Cycle

ABCDE —— Agile Blockchain DApp Engineering

DeFi —— Decentralized Finance

AI ——- Artificial Intelligence

EVM —— Ethereum Virtual Machine

UI —— User Interface

P2P —— Peer to Peer

ASD —– Agile Software Development

xiii

Chapter 1

Introduction

1.1 Overview

The Fourth Industrial Revolution (4IR) introduced modern and state-of-the-art technologies i.e.,

Artificial Intelligence (AI), Blockchain, Cloud Computing, Big Data and Analytics, Augmented

Reality (AR). Blockchain is one of the pillars of 4IR. It is called the new internet i.e., Web

3.0. It has a key role in the digitalization of the global economy. It is an old technology,

however, after the introduction of Bitcoin in 2008, it is considered a suitable environment

for decentralized computing [1]. Now blockchain is the primary technology for most of the

cryptocurrency platforms i.e., Bitcoin, Ethereum, and Litecoin, these platforms are commonly

in use for transactional purposes [2]. Blockchain is based on the peer-to-peer network, which

is transparent, immutable, and auditable. Blockchain is an append-only “Distributed Ledger

Technology” (DLT). All the processes carried out in it are through using proper consensus

mechanisms, though not all the DLTs are based on consensus mechanisms [4].

The introduction of Bitcoin initiated a new domain for the cryptocurrency market and acquired

the attention of research and development enthusiasts to introduce the Ethereum blockchain.

Ethereum blockchain reinstituted the concept of “Smart Contracts” (SCs), which are computer

programs, where an event occurs when some specific conditions meet, related to that event [1][3].

SCs of Ethereum and other cryptocurrency platforms use blockchain technology to perform

transactional events. As blockchain is a decentralized network of nodes, there is no need for any

central trust authority for transactions using blockchain-based cryptocurrency platforms using

SCs [4][3].

1

Chapter 1: Introduction

Blockchain is a core technology of “Decentralized Applications” (DApps) as well, which is a

trending area of research in software engineering. DApps are significantly in use for transactional

purposes, using blockchain-based SCs. DApps is a complete software system typically based

on blockchain. Blockchain-based SCs are used to manage transactional and other information

of DApps. Typically, DApps are not life-critical applications, however, they can be used as

mission-critical apps [4].

Several platforms to develop SCs in the market are used in DApps, Ethereum is presently the

most in-use platform to develop SCs on the public blockchain. It is difficult to manage the

data of DApps based on permissioned (private) blockchains, however, Ethereum is also suitable

for DApps running on permissioned blockchains [5]. All these technologies i.e., blockchain,

Ethereum, and SCs are the building blocks of the architecture of DApps as shown in Figure

1.1 [4]. In Figure 1.1, a typical architecture is illustrated, where on the bottom left is the inner

structure of the Ethereum blockchain, where a node is composed of storage, “Ethereum Virtual

Machine” (EVM), and SCs byte code. DApps have a “User Interface” (UI) as shown in Figure

1.1, an end user can interact with DApps through the UI of DApps. It is designed on Web3.js and

uses an “Operating System” (OS) based web browser. A third part of DApps architecture is the

backend server. The backend server stores and manages data, because blockchain nodes have

storage capacity only for SCs bytecode, this server performs business computations. Hashes

of blockchain-based SCs store large files of a specific size that can affect the performance of

blockchain-based SCs and this data is secured with the hash facility at the “InterPlanetary File

System” (IPFS) [7][4].

DApps architecture, in Figure 1.1 illustrates, has three main components i.e., blockchain plat-

form (Ethereum), DApps UI, and DApps backend server, The blockchain part is an addition if

it is compared with traditional software (applications) architecture.

Subsequently, the development process of DApps needs simple, responding to change approaches

that can provide the facility to handle the complex structure of blockchain-based SCs with sim-

plicity and manage the change in requirements and design. The most effective and frequently

adopted approaches for such systems are Agile-based approaches. Responding to change is

always a priority and the simplicity of these approaches can facilitate the development of

blockchain-based SCs along with the other two architectural components of DApps [4][6].

2

Chapter 1: Introduction

A typical Architecture of DApps

DApps Backend Server

Data
(Centric Database)

Distributed data storage

Blockchain
(Public or Private Ethereum)

DApps User Interface (UI) It enables users to
interact with DApps.

UI

Web3.js

Web Browser

Operating System
(OS)

Business Logic

Web3.js ORM

JavaScript
engine

DBMS
engine

Operating System (OS)

Smart Contract (SC)
bytecode

Storage

EVM

Node

Figure 1.1: A typical architecture of DApps. Ethereum blockchain on the left, DApps UI on

the bottom right, and Backend server (centric server or distributed file system i.e., IPFS) on

top right [4].

Different quality attributes of the development of DApps, i.e., simplicity of development, effi-

ciency in development, agile testing, and quality-oriented development; such quality attributes

are important for the productive development of software. Agile-based approaches can be

adopted to achieve these quality attributes as follows:

• Simplicity of Development Agile-based approaches provide simplicity in design and

development. Extreme Programming (XP) is one of the agile methodologies where designs

are simple and small, and development is carried out with high-priority features. XP

follows a simple approach where all the high-priority tasks are designed and performed

at first. This simplicity brings down the need for documentation, and developers focus

on high-priority features. In the Agile Manifesto, the agile-based approaches focus on

simplicity stating that “Simplicity, the art of maximizing the amount of work not done, is

essential”. Agile-based approaches are a proven set of methods for promoting simplicity

[8][9].

3

Chapter 1: Introduction

• Efficiency in Development Efficiency in development i.e., resource consumption, is

considered a real challenge in the large-scale and complex development of DApps. Con-

siderable practices to mitigate development challenges in the development process are as

follows:

– Adapt the agile-based requirements engineering practices i.e., XP practices can be

tailored for large scale and complex projects. In XP, designing can be upfront and

customer appearance can be surrogate [10].

– Use of appropriate technology following the requirements of projects i.e., for large-

scale and mission-critical systems IPFS are recommended as database or file storage

systems.

• Agile Testing Testing is an important phase of every software development process, it

does not matter if it is a traditional development approach i.e., Waterfall, or under the

umbrella of modern agile methodologies i.e., Scrum, XP, Kanban. A verified and validated

product delivery and deployment is the foremost task of every software development ap-

proach. However, agile-based approaches emphasize quick and on-demand delivery and

deployment of products. This is only possible with continuous customer involvement in

the development and testing process. For quality-oriented and efficient products, testing

is mandatory. XP, an agile methodology, proposes a practice of Test Driven Develop-

ment (TDD), where software testing is performed based on prioritized user stories before

moving to development and acceptance testing [11][12][13].

• Quality After practicing all the above agile-based approaches for simplicity, efficiency,

and agile testing, a quality-oriented, efficient, and high-performance product is delivered.

Agile-based approaches are adaptable, they can be adjusted as per the requirements of

the projects, if a project is mission-critical and high risk then we can perform scalability

prioritizing, by prioritizing the user stories with efficiency [14]. Scalability can be achieved

by using appropriate technology i.e., IPFS with blockchain [7]. Agile-based approaches

also emphasize the simplicity of the design and development phases. “Simplicity, the art of

maximizing the amount of work not done, is essential”, a principle from the Agile manifesto

[8][15]. Testing is an integral part of the software development process, whereas agile

testing follows the agile-based continuous, incremental, and iterative approaches to verify

a product that is in development [16]. Unit tests are performed to test a developing system

at granularity [17]. Agile-based approaches deal with change throughout the process, so

4

Chapter 1: Introduction

agile testing at every change in requirements i.e., user stories, provides quality-oriented and

efficient products [18]. From small to medium and then large-scale projects agile testing

practices are different and adaptable [19]. Simplicity, efficiency, and agile testing play an

important role in the development of DApps. These quality attributes are performance

metrics to measure the development of DApps.

1.2 Motivation

In the development lifecycle of DApps systems efficient and quality-oriented approaches are

deficient. BOSE can mitigate the challenges for efficient and quality-oriented development of

blockchain-based systems. Agile-based approaches in BOSE are suitable for the development of

BBS (Blockchain Based Software) or DApps because in DApps the requirements are not com-

pletely understood and there is always a possibility of change in the requirements throughout

the development lifecycle [4]. Change is constant and inevitable, a concept that is frequently

practiced in the software engineering community, so whenever a new framework or concept

is devised for the development of modern software systems this concept of change is always

under consideration. The proposed framework for efficient and quality-oriented development

of blockchain-enabled smart contracts-based DApps considers the software engineering concept

of change. A hybrid framework based on XP and Scrum methodologies of agile software en-

gineering is proposed, which adopts practices like simplicity, TDD, pair-programming, release

planning, and prioritizing the user stories with iterative and incremental development for effi-

cient and quality-oriented DApps. For simplicity in the design phase, we found CRC modeling a

useful practice that can lead to a mature Unified Modeling Language (UML) diagram from sim-

ple to detailed architecture. We found agile testing i.e., acceptance testing with collaboration

with stakeholders and TDD, an effective practice for quality, efficiency, and rapid development

of a product.

1.3 Problem Statement

DApp systems are complex as compared to traditional software systems. Blockchain technology

is the reason for its complexity because of its immutable nature and working with sensitive data

i.e., transactions, it is a critical task to manage such systems. The architecture and nature

of blockchain disturb resource management which leads to disruption in efficiency and quality

5

Chapter 1: Introduction

of the development lifecycle of DApps. Other problems also exist in the development lifecycle

of DApps i.e., Changing requirements from stakeholders. A well-organized and standardized

framework of the software development life cycle is required to deal with the immutable and

complex nature of blockchain technology in the DApps system. Software engineering owns such

approaches and practices that can mitigate the risks associated with the efficient and quality-

oriented development of DApps.

BOSE is a concept that promotes software engineering practices for the development of blockchain-

enabled smart contracts based on DApps. Agile methodologies i.e., Scrum, and XP, are suitable

for the continuously changing and immutable nature of blockchain-enabled smart contracts-

based DApps.

1.4 Research Objectives

The following research goals are intended to be accomplished.

• RO1: To evaluate the current state of DApps development and identify key challenges

and inefficiencies in the development process.

• RO2: To analyze the principles and best agile practices and identify how they can be

applied to DApps development to improve efficiency and quality.

• RO3: To propose an agile-based framework for DApps development that incorporates

efficient and quality-oriented products.

• RO4: To conduct a case study to examine the proposed agile-based process for the

development of DApps.

• RO5: To identify key factors from the case study that affect the performance or outcome

of the proposed agile-based process for the development of DApps.

1.5 Contribution of Research

This research thesis proposes a framework for the efficient and quality-oriented development of

DApps. The proposed framework is based on agile approaches where development is carried

out in continuous iterations and increments. Efficient and quality-oriented development are two

core factors that are considered as priorities for the development of DApps. Other factors that

6

Chapter 1: Introduction

are associated with the development of DApps for efficiency and quality in development are

illustrated in Figure 1.2:

Efficiency of the
Development of DApps.

Contributions of proposed Agile
based Methodology for the

development of DApps.

Quality Attributes of DApps
Development.

Simplicity of the
Development of DApps.

Agile testing of
Development of

DApps.

Figure 1.2: Contributions of the proposed framework for the development of DApps

• Simplicity of the Development of DApps - The architecture of DApps systems

is complex as compared to traditional software systems and the immutable nature of

blockchain technology increases this complexity. In the proposed framework simple and

specified agile-based approaches are adopted for the development of complex DApps sys-

tems.

• Efficiency of the Development of DApps - The immutable nature of blockchain

technology in DApps reduces efficient development and resource management. In the

proposed framework appropriate and user-centric agile-based approaches are adopted for

efficient development of DApps systems.

• Agile Testing of the Development of DApps - For efficient and quality-oriented

development of DApps an organized and efficient way of testing and agile testing is the

most suitable approach for this purpose.

7

Chapter 1: Introduction

1.6 Thesis Outline

The research work has been structured and distributed as follows:

• Chapter 1 - Introduction An overview of the whole research work is explained, and the

motivation to work on this topic is briefly described, followed by the problem statement

and research objectives of this study. Furthermore, the contributions of this research work

are highlighted.

• Chapter 2 - Literature Review Study the related literature and organize it in a

structured form to understand the need of the proposed framework, from start to end and

from basic to advanced every aspect of literature is strived to cover.

• Chapter 3 - Proposed Methodology The Rationale and motivation for the research

work are explained, followed by the proposed framework illustrated with proper descrip-

tion. Key attributes of the proposed framework are also highlighted to strengthen the

point of rationale and motivation.

• Chapter 4 - Validation of Proposed Framework A questionnaire survey is designed

to get the comments and reviews of industry experts on the proposed framework. A

practical validation is also performed to validate the different phases of the proposed

framework.

• Chapter 5 - Results and Analysis Discussion and analysis of the results of the

questionnaire-based survey and practical validation of the proposed framework.

• Chapter 6 - Conclusion and Future Work A brief conclusion is drawn with some

research gaps for future research work.

8

Chapter 1: Introduction

Introduction

Literature Review

Proposed Methodology

Validation of Proposed Framework

Results and Analysis

Conclusion and Future Work

1

2

3

4

5

6

Figure 1.3: Thesis Chapter wise Outline

9

Chapter 2

Literature Review

2.1 Introduction

Chapter 2 provides the related research and development work that has already been carried

out on Agile-based approaches for efficient and quality-oriented development of DApps. In this

chapter, firstly a brief description of agile software development lifecycle with different features

of agile software development is described. After that, different concepts, and terminologies i.e.,

Smart contracts, DApps, BOSE, Pair Programming, and others, are discussed one by one with

the help of relevant literature. Moreover, a brief analysis of how quality concerns like simplicity,

efficiency in development, and testing can contribute to the quality-oriented development of

DApps. All these topics are covered with the help of appropriate references from the research

and development that has already been carried out.

2.2 Agile based Software Engineering

“Agile Movement” was first introduced, from a research phase to industry and development,

after the publication of the Agile Software Development Manifesto in 2001, by Beck et al. (2001).

The agile manifesto is established on the core belief that “We are uncovering better ways to

develop software by doing it and helping others do it” [20][21]. Individuals and interactions,

Customer collaboration, working software, and responding to change are valued over Process

and tools, contact negotiation, comprehensive documentation, and following a plan respectively.

These are core beliefs that are always considered while adopting agile-based approaches for

software development [20][21]. The recognition of people as a core contributor to project success,

10

Chapter 2: Literature Review

with an intense focus on effectiveness and flexibility, is the principal practice of agile-based

software development practices. Cockburn et al. (2002a), defined the use of light and sufficient

rules of project behavior with the use of human-centric communication-oriented rules which are

basic units of agile software development practices [21]. Typically, there are six core phases

of development in the agile software development lifecycle. It is an iterative and incremental

development process, where at each release phase, the system is updated with a new increment

as a typical agile software development is shown in Figure 2.1 [22].

1. Planning 2. Analysis

3. Design

4. Development5. Testing

6. Release Agile Software Development Lifecycle

Figure 2.1: Agile Software Development Lifecycle [22]

Several agile development approaches lie under the umbrella of agile software development

manifesto i.e., Scrum, XP, Kanban, Lean development, Crystal, etc. Key features of agile-based

software engineering practices are as follows [20] [21]:

• Fast development with quality, with rapid feedback, to win the confidence of all the

stakeholders. Maximum delivery time is 3 weeks in agile-based practices.

• Always try to avoid complexity, and go to simplicity, this will bring ease in change and

fewer requirements will be in the change process at a time.

11

Chapter 2: Literature Review

• Simplicity in the design process, improve the design quality with time to make the next

user story cost-effective.

• Agile testing after regular intervals will help early and cost-effective detection of defects,

without any extra effort at the maintenance or deployment phase.

• Always prefer the people over process and tools, involve human efforts in the development

process as much as possible.

• Agile practices are preferred for no or less documentation during development, ready to

use software, is preferable as compared to lengthy documentation and software deployment

at once.

• The most critical part of agile-based software development approaches is the communica-

tion among stakeholders.

In this research thesis, we will propose a customized hybrid approach based on Scrum and

Extreme Programming (XP). These two agile approaches are the most adopted methodologies,

according to VersionOne’s 2009 Agile Methodology Survey, Scrum is adopted by 50% of the

software development, whereas XP is 24%. Both can be applied as customized hybrid software

development processes [20].

2.3 Blockchain and DLT

DLT is based on several peer-to-peer (P2P) technologies that are enabled by the internet.

Transactions and transfers through the internet are considered elusive because everything on

the internet is at risk and the same in the case of transactions and transfers i.e., document, and

media files transfer [24]. In 2008, a novel approach was proposed in a P2P manner, for funds

transfer, in a research paper written by an as-yet unidentified person, who used the pseudonym

Satoshi Nakamoto. The approach was based on blockchain technology, which is a particular

type of immutable data structure. Cryptographic and algorithmic methods are employed in

it to record and synchronize data across a network [24]. Blockchain and DLT are considered

similar technologies, both technologies are famous in different projects of industry. Note that,

not all distributed ledgers are based on blockchain technology [24].

Blockchain stores identical information across different physical addresses i.e., nodes, peers, or

computers. Immutability, data integrity, transparency, and tokenization are the unique features

12

Chapter 2: Literature Review

of blockchain technology that make it secure, traceable, and trustworthy [25]. Blockchain follows

a well-structured process of functioning, from a transaction request to the completion and

execution of the transaction as follows in Figure 2.2 [25]:

Figure 2.2: A process of functioning from a new transaction request to the completion and

execution of the transaction [25]

Michael Nofer et al. (2017) discuss blockchain and its potential in finance and other projects

of industry. Applications of blockchain technology in finance and other sectors of industry are

elaborated in the research, however, the finance industry is the primary application of it [23].

The Michael Nofer et al. (2017) research provides a structured comparison of financial and

non-financial applications of blockchain, as follows in Table 2.1 [23]:

13

Chapter 2: Literature Review

Business Domain Area of Application of

Blockchain

Examples

Applications of

Financial Domain

Cryptocurrencies Bitcoin, Litecoin, Ripple,

Monero

Insurance, Security, Trad-

ing, and settlement

Everledger, NASDAQ pri-

vate equity, Medici, Coin

setter

Applications of

Non-Financial

Domain

Notary Public Stampery, Viacoin, As-

cribe

Music Industry Imogen heap

Decentralized storage proof

of documents

POEX.io

Decentralized Storage Storj

Decentralized Internet of

Things (IoT)

Filament ADEPT (Devel-

oped by IBM and Sam-

sung)

Anti-counterfeit solutions Blockverify

Websites and Apps Namecoin

Table 2.1: A structured comparison of financial and non-financial applications of blockchain

technology [23]

2.4 Blockchain based Smart Contracts

Blockchain is a revolutionary technology, the key aspect of this technology is smart contracts.

Smart contracts are computer programs, and the correctness of their execution is guaranteed

by the security of the blockchain technology to make them tamper-proof. Smart contracts are

secure, decentralized, economically beneficial, and legal, however, all these properties are not

straightforward to achieve [26]. Capocasale V. et al. (2022) discuss misconceptions and also

provide guidelines. The key guidelines on misconceptions about smart contracts are discussed

in [26] as follows:

14

Chapter 2: Literature Review

• Smart contracts use two types of data internal or ledger data and external or transaction

data, The first one is reliable and the second one must be verified, so smart contracts

move the system from one state to the other and are state transition functions.

• Must be a possibility to verify output generated by smart contracts at every node in the

future.

• The output generated by smart contracts must be the same on all the nodes executing it

which makes smart contracts deterministic.

• Smart contracts must be deterministic and equivalence classes, the same input state and

same input symbol must generate the same output state.

• No need to store smart contracts on-chain. However, it can vary in some contexts.

• Smart contracts are not immutable, however updating smart contracts is not an easy task.

• Smart contracts are not just legal contracts, but they have a good range of possible

applications.

• Independent coding, testing, and execution of smart contracts should be preferred.

The concept of smart contracts gained popularity after the invention of blockchain technology

because this technology makes smart contracts immutable or difficult to modify. Both tech-

nologies can exist independently, however, they are considered a combination of technologies as

both can broaden the scope of one another [25].

Smart contracts have a complete lifecycle, from creation to completion there are four major

phases: Creation, Deployment, Execution, and Completion phase. Every phase has certain

steps to complete [27]. Zheng, Z. et al. (2020) illustrate the four phases of the smart contracts

life cycle with different challenges and proposed advances to mitigate each of the challenges in

every lifecycle phase, the complete lifecycle of smart contracts, with four phases, is illustrated

in Figure 2.3:

15

Chapter 2: Literature Review

Figure 2.3: Phases of smart contracts life cycle, from creation to completion [27]

Zheng, Z. et al. (2020) also discuss the applications of smart contracts with the help of use

cases for better understanding. These applications are categorized into six types; Internet of

Things (IoT), Security Distributed Systems, Finance, Data Provenance, Sharing Economy, and

Public Sector, details of these types are described in Table 2.2, with benefits and use cases [27]:

16

Chapter 2: Literature Review

Application Categories Benefits of Smart Con-

tracts

Use Cases of Smart

Contracts

1.Internet of Things • Reduce maintenance

cost of the central server.

• Automation of P2P

business trading

• Cost reduction for

trusted third parties

1) Auto-update of IoT

device firmware

2) Speed up the supply

chain

2.Security of Dis-

tributed Systems

• Quick and reliable listing

of share attack

• Verification of cloud ser-

vice providers

• Avoidance of brokers

1) Mitigation of DDoS

in computer networks

2) Cloud computing

3.Finance • Reduce financial risks.

• Administration and ser-

vice cost reduction.

• Improvement in effi-

ciency of financial services.

1) Investment banking

and Capital Markets

2) Retail and commer-

cial banking

3) Insurance

4.Data Provenance • Capture malicious data

falsification.

• Improve data reliability.

• Protection of privacy

1) Scientific research

2) Public health

3) Provenance of cloud

data

5.Sharing Economy • Customer cost reduction

• Trusted third parties’

cost reduction.

• Protection of privacy

1) Item sharing

2) P2P automatic pay-

ment systems

3) Platforms of currency

exchange

6.Public Sector • Protection from data

fraudulence

• Transparency of data of

public information

• Protection of privacy.

1) E-voting systems

2) Personal reputation

systems

3) Platforms of mart

property exchange

Table 2.2: Applications of smart contracts with their benefits and use cases [27]

17

Chapter 2: Literature Review

2.5 Smart Contracts based DApps

“Decentralized Applications” or “DApps” use smart contracts as backend and standard web

technologies i.e., JavaScript and React JS, for frontend or web user interface. Smart contracts

are not suitable to store and process large amounts of data, so off-chain data storage services

i.e., IPFS and Swarm, are used to store bulky data. In DApps, all possible aspects i.e., back-

end software or application logic, frontend software, data storage, message communication, and

name resolution are mostly or entirely decentralized [28]. Resilience with no downtime, Trans-

parency, and Censorship resistance are unique features that distinguish DApps from traditional

web applications. A comparison of traditional web applications and DApps is briefly described

in Table 2.3 [7]:

Features for

Comparison

Traditional web

Apps

DApps

1.Architecture Client-server architec-

ture

Blockchain-based P2P archi-

tecture using smart contracts

2.Authority Central authority for

roles and permissions

setup

Decentralization with no cen-

tral authority

3.Privacy No or low-level privacy Less privacy issues

4.Transparency Lack of transparency Transparency guaranteed

5.Down Time Mostly face downtime Resilience with no downtime

6.Secure Security issues More secure and autonomous

7.Immutability No immutability Immutable

Table 2.3: Comparison of traditional web applications and DApps [7]

Different architectures of smart contracts blockchain or smart contracts based DApps are

present, i.e., Native Client as a DApp, Smart Contract as a DApp, Web and Contract as a

DApp, and Fully decentralized DApp. A typical architecture of DApps is illustrated in Figure

1.1. Every architecture is used for a specific type of DApps, and different types of DApps are

present in the industry, where unique features of DApps are in practice. These types of DApps

are described with their practical advantages in Table 2.4 [29]:

18

Chapter 2: Literature Review

Types of DApps Practical Advantages of DApps

1.Financial Sector i.e., DeFi • Improve efficiency

• Time cost reduction

• Automatic execution of transactions

2.Online Gaming Platforms i.e., Game-Fi • Permanent game assets

• Improve asset mobility

• Uniqueness of roles is ensured

3.Provence and Data Storage i.e., Non-

Fungible Tokens (NFT)

• Permanent and immutable storage

• Privacy is preserved

• Reliability is improved

4.Privacy Protection • Privacy is preserved

• Improvement in user ownership of data

5.Sharing Platforms i.e., P2P • Improvement in platform efficiency

• Sharing without trusting a third party

• Promotion of resource sharing

6.Gambling and Prediction Platforms • No need for trusted third-party

• Low costs with less fees

• Automatic execution of transactions

Table 2.4: Practical advantages of different types of DApps [29]

2.6 Quality Attributes of Development of DApps

Development of DApps is different and complex, as compared to traditional web applications

development, because of blockchain-based smart contracts. Quality aspects must be consid-

ered in the development process of DApps. Simplicity, Testing, efficiency, and quality-oriented

development are key attributes that must be considered in the development of DApps. Such

attributes with related research are discussed here.

2.6.1 Simplicity in Development of DApps

The emerging challenges and opportunities in software development have driven the project

management approaches to be flexible. Agile software development methodologies promote

19

Chapter 2: Literature Review

simplicity through collaboration and flexibility. Agile values are based on some principles that

are described in the Agile Manifesto. Simplicity is one of the principles that emphasizes quick

and continuous feedback and collaboration with customers [15]. XP is an agile method of

software development, XP practices focus on five XP values i.e., simplicity, respect, commu-

nication, courage, and feedback. XP practices are kept simple, from planning to design and

implementation simple solutions are preferred [30].

Santos, W.B. (2018) illustrates the factors in Agile Software Development (ASD) that lead to

simplicity in the software development process. The factors are found after conducting primary

studies, as follows [31]:

• Reduction of Time – The Development process is divided into different phases, de-

pending on time and cost reduction.

• Development of the Team – Teams are developed to work on different phases of the

development process.

• Simple Design – Design is always simple and unambiguous for every phase of develop-

ment.

• Innovation and Creativity – Simple Designing produces creative and innovative de-

velopment processes.

• Lightweight Management Tools - Simple designing, innovation, and creativity are

achieved by using lightweight management tools.

• Less or Necessary Documentation – Agile methodologies promote less documentation

and focus on working products with less or necessary documentation.

• Adaptation of Methodology – Methodologies that lie under the umbrella of Agile

software development are adapted.

• Model Driven Development – Different modules are designed to develop software.

• Refactoring – Iterative and incremental development is achieved by refactoring at every

iteration or increment.

• Reuse of Code – Code is reused by different modules and iterations.

• Test Driven Development – Test cases are generated based on user stories and before

implementation.

20

Chapter 2: Literature Review

Simplicity is considered a best practice in defensive programming because complexity creates

security issues. Other best practices of defensive programming for the secure development of

smart contract-based DApps are emphasized as follows [28]:

• Simplicity – Complex code and practices can create security issues in smart contracts-

based DApps development.

• Code Reusability – Reusability is always encouraged to adopt traditional and agile

methodologies [27] [30].

• Quality of Code – Rigorous quality-oriented software development methodologies should

be in practice to develop smart contracts based on DApps.

• Auditability or Readability of Code – Code should be simple, clear, and easy to

understand. This will lead to an auditable code of smart contracts.

• Test Coverage – Every module of smart contracts-based DApps should be tested, agile

testing would be an ideal testing methodology for this purpose.

Santos, W.B (2018) also discussed the benefits of the factors that lead to simplicity in ASD. All

the previously discussed factors are illustrated in Table 2.5, with their benefits of simplicity in

ASD [31].

21

Chapter 2: Literature Review

Sr.

No.

Benefits of simplicity

in ASD

Factors lead to simplicity in ASD

1. Avoid over-development Development of the team, Adaptation of methodology,

Refactoring.

2. Minimize the develop-

ment time

Reduction of time, Innovation and Creativity,

Lightweight management tools, Less or necessary doc-

umentation, and Adaptation of methodology.

3. Maintenance Development of the team, Adaptation of methodology,

Refactoring, Simple design, Reuse of code.

4. Quality of Code Development of the team, Adaptation of methodol-

ogy, Refactoring, Reduction of time, Simple design,

Lightweight management tools, Less or necessary doc-

umentation, Model-driven development, Test-driven

development, and Reuse of code.

5. Lightweight Process Reduction of time, Simple design, Lightweight man-

agement tools, Less or necessary documentation,

Adaptation of methodology, Model driven develop-

ment, Test-driven development, Innovation and Cre-

ativity.

6. Product with value Adaptation of Methodology, Development of the team,

Refactoring, Simple design, Innovation and Creativity,

Lightweight management tools, and Less or necessary

documentation.

7. Simplification of the se-

lection of Methodology

Adaptation of methodology, Simple design,

Lightweight management tools, Less or neces-

sary documentation, Innovation and Creativity.

8. Reusability and Sim-

plicity of the Design

Simple design, Adaptation of methodology, Refactor-

ing, Lightweight management tools, Fewer or neces-

sary documents, Innovation, and Creativity.

Table 2.5: Factors lead to simplicity with their benefits in ASD [31]

22

Chapter 2: Literature Review

2.6.2 Agile Testing in Development of DApps

When a testing or quality assurance team performs different agile-based approaches i.e., TDD,

to test the product and maintain quality in a software development process, such activities are

called “Agile Testing”. Agile testing methodology is different from traditional development and

testing methodologies. In traditional development methodologies i.e., waterfall method, testing

is carried out at the end, right before release. Agile is an iterative and incremental approach, so

each increment of coding is tested as it is finished [32] [34]. Agile testers follow core principles

which include [32]:

• Continuous feedback.

• Valuable output to customers.

• Encourage face-to-face communication.

• Can perform refactoring.

• Keep the testing procedure simple.

• Practice for continuous improvement.

• Ready to respond to change.

• Maintain yourself and be self-organized.

• Focus on people, not process.

• Enjoy your work.

Puleio, M (2006) discusses challenges in several areas i.e., communication, estimation, and

automation, that a testing team faces during the agile testing process. In agile testing, all agile

principles are followed so these challenges are also related to agile methodologies [33]. Mohanty,

H. et al. (2017) discuss trends in software testing with the advantages and disadvantages of

agile testing. A summary with a comparison of these advantages and disadvantages of agile

testing is in Table 2.6 as follows [34]:

23

Chapter 2: Literature Review

Sr.

No.

Advantages of agile testing Disadvantages of agile testing

1. Knowledge transfer between devel-

opers, testers, and junior team

members.

Increase in intra-team communication

over inter-team communication.

2. Less documentation and excellent

communication with small teams.

Personality clashes of the team mem-

bers.

3. Requirements volatility is reduced

because of continuous customer

feedback.

Challenges in scaling agile methods to

large groups or organizations.

4. Small manageable tasks with con-

tinuous integration for process con-

trol and transparency.

Generation and maintenance of a pri-

ority list of all the projects and small

stories and teams.

5. Early detection of bugs. Inside dependencies management of

implementation.

6. Improvement in quality of work life. Less time spent leads to poor design,

architecture, and rework.

Table 2.6: Advantages and disadvantages of Agile testing [34]

Testing of smart contracts is a costly phase in the development of DApps because of the im-

mutability concept, if a bug is found after deployment, then there has to be developed a new

smart contract. Ethereum transaction requires a payment of a fee, depending on the size of

the smart contract, whenever a deployment of smart contracts is performed [35]. The factor

of payment of fees for Ethereum transactions increases the importance of the test phase before

the deployment of smart contracts. So, it should be managed through the adoption of the best

approaches i.e., agile methodologies and specific tools of testing [35]. Agile testing is based on

iterative and incremental approaches and is suited to testing quickly with quality in small to

medium self-organizing teams, working together with continuous communication and customer

collaboration [35].

24

Chapter 2: Literature Review

2.6.3 Efficient Development of DApps

In any software development methodology, requirement engineering is a critical phase. Several

requirements engineering techniques are in practice for efficient requirements gathering in an

agile software development process. Traditional requirements engineering techniques are well

adapted to flexible agile software development methodologies [36]. Malik, M.U. (2013) discusses

requirements engineering techniques for agile methodologies of software development such as

Direct discussion and interviews, JAD (Joint Application Development Sessions), Collective as

well as individual brainstorming, User stories, and use case scenarios as requirements elicita-

tion and Onsite or online surveys questionnaires are some efficient requirements engineering

techniques that are well suited for flexible agile methodologies [36]. Malik, M.U. (2013) also

discusses six evaluation criteria, to evaluate these requirement engineering techniques, based on

cost, time, and resource effectiveness along with final impact, audience reach, and feasibility for

agile development methodologies [36].

The main objective of agile software development methodologies is to remove the obstacles to

efficient software development by following the principles of agile manifest [37]. Lee, G. et

al. (2010) analyze the quantitative and qualitative field data on software development agility

and discuss several issues related to the relationship between software development agility,

performance, efficiency, agility, and autonomy agility. The research also illustrates some findings

relevant to these issues as follows [38]:

• Research findings for relationships between agility of software development

and performance [38]

– Requirements change is evaluated by its impact on business, time, cost, scope, and

technical difficulty.

– Highly impactful business changes are prioritized regardless of constraints.

– Responses should not be interrupted but responding extensively in the early stage

can be time and cost-efficient.

• Research findings for relationships between efficiency and extensiveness of

response [38]

– Extensiveness of response is in direct relation with lower response efficiency.

– Extensive responses to changes result in work overload and lack of focus.

25

Chapter 2: Literature Review

– Agility in efficiency and extensiveness of response can be increased by effective man-

agement of time and cost.

• Research findings for autonomy and diversity on agility [38]

– Autonomy on agility increases response efficiency whereas diversity on agility is help-

ful in effective solutions of complex problems.

– Autonomy on agility limits the responses to change to control the speed of completion

of overall project goals whereas diversity on agility provides quick solutions by better

translation and understanding of complex changes in requirements.

Liu, Y. (2021) proposes efficient and effective scaling-up solutions for blockchain, where general

subcategories in blockchain scaling are offloading of workloads, enabling the interoperability of

chain for free token transfers, Accelerate the time-consuming executions, partitioning of net-

works i.e., Sharding, and Lighten the resource-intensive mechanism, these general subcategories

have related solutions to scale up the blockchain-based systems [40].

Decentralized Finance (DeFi) is primarily based on blockchain technology. DeFi has charac-

teristics of blockchain i.e., Transparency, Permissionless, and Trustless because of decentralized

and distributed ledger technology, Interconnectivity, Governance is decentralized and estab-

lishing self-sovereignty in the system. The purpose of DeFi is to provide all the advantages

of blockchain technology in the financial sector [39]. Amler, H. et al. (2021) discuss several

major challenges that users and developers face in the development of DApps for the DeFi

sector such as Security, Limited Scalability, Oracles, and Geographical or international rules

and regulations i.e., GDPR [39]. Pierro, G.A. (2022) describes scalability problems and their

solutions along with a trilemma view of blockchain which says three important attributes of

blockchain technology i.e., decentralization, security, and scalability cannot perfectly co-exist,

a brief overview of this trilemma is illustrated in Table 2.7 as follows [40]:

26

Chapter 2: Literature Review

Sr.

No.

Solutions of Scalability Prob-

lems of Blockchain System

Trilemma trade-off of Solutions

1. Blockchain interval shortening of a

blockchain to increase the through-

put.

Transactions’ throughput increases

however it creates security concerns

for the whole system.

2. Increase the block size in

blockchain, by maintaining the

original block time.

Transfer of Large blocks is not easy be-

cause of the limited bandwidth of the

intra-blockchain.

3. Perform the compression of transac-

tions in each block to save the net-

work bandwidth.

Security concerns due to the hash col-

lisions in short hashes.

4. Sharding increases the transaction

process of blockchain per second.

Decentralization is disturbed by the

blockchain system.

5. Use of Proof of Stake (PoS) consen-

sus as an alternative mechanism to

avoid the computational overhead

produced by Proof of Work (PoW)

consensus.

Security and decentralization concerns

of blockchain arise.

Table 2.7: Solutions of Scalability problems and trilemma trade-offs of these solutions in

blockchain system [40]

2.6.4 Quality-oriented Sustainable Development of DApps

A smart contract is executed when a consensus of the whole network and multiple other contracts

of the same block are executed in series, this results in some overheads i.e., excessive time and

poor performance of execution. In Ethereum, the miner collects a fee on every transaction

emission as an incentive to include new transactions in blocks. The transaction fee can be

calculated as follows [41]:

Transaction Fee = Gas Cost x Gas Price

Where:

Gas Cost is the sum of the cost of the gas of each instruction of Ethereum Virtual Machine

27

Chapter 2: Literature Review

(EVM). Gas Price is the price defined by the caller of the function of the smart contract.

It is not possible to know what function of the smart contract is being called, only with the cost

of the gas. For this purpose, smart contract interfaces are required that are provided in DApps.

Blockchain testing and smart contracts testing are two categories where extensive research is

being conducted [41]. The execution of smart contracts is sequential in blockchain systems e.g.,

execution of one contract at a time. Sequential execution would affect the blockchain-based

systems by limiting the execution of the smart contracts per second, and with the growth in

the number of smart contracts, this can also affect the scalability of blockchain-based systems.

Parallel execution of smart contracts is a proposed solution and an alternative in [42].

Scherer, M. (2017) provides comprehensive results on techniques to improve the performance

and scalability of blockchain systems or networks i.e., Bitcoin, Ethereum, and Hyperledger [43].

Some effective techniques that are described to improve performance and scalability are as

follows [43]:

• Raise the limit of block size cap in Bitcoin using the blockchain forks technique i.e., hard

fork or soft fork.

• Segregated Witness, or Seg Wit, in which data from Bitcoin transactions related to sig-

natures is removed to reduce the block size.

• Sharding is a technique in which the global state of accounts/nodes in Ethereum are

divided into smaller segments or chunks also known as shard, where each shard possesses

its history of transactions.

• Creating channels is a technique adopted in Hyperledger blockchain networks, in which

a big blockchain is split into many private blockchains, to make data isolation and confi-

dentiality possible.

All these techniques are practiced for sustainable quality-oriented development of blockchain-

based systems. The main aspects that are considered for the sustainable development of

blockchain-based systems are social which is about customers and other stakeholders’ encour-

agement, economic factors are about financial aspects and environmental factors are related to

efficient and effective use of resources [44].

28

Chapter 2: Literature Review

2.7 Blockchain Oriented Software Engineering (BOSE)

Implementation of blockchain technology in the development of software is defined as Blockchain

Based Software (BBS), blockchain is an integral part of such software systems. Blockchain tech-

nology in BBS is considered of distinctive importance, the development of BBS can be efficient

and quality-oriented by following the software engineering practices. Practice the standard

software engineering methodologies and approaches for the development of BBS is defined as

Blockchain Oriented Software Engineering (BOSE). From requirement elicitation and analysis

to design, development, and deployment of BBS is practiced by adopting the standard soft-

ware engineering methodologies [45][46]. BOSE leads to improved development processes and

techniques by following the standard software engineering approaches.

Blockchain technology is influential with its continuous evaluation and research, in its early

days, it was considered the backbone of currency i.e., digital currency, all cryptocurrencies fall

into the domain of blockchain (Blockchain 1.0). After the introduction of Ethereum and smart

contracts, it has become a new computing paradigm after mainframes, Personal computers,

the internet, and social networks. Now it has been adopted in the financial sector for security

and verification purposes (Blockchain 2.0). Now other public sectors like health, science, art

and culture, literacy, and government are also adopting this computing paradigm (Blockchain

3.0) [47]. Reddivari, S. et al. (2022) provide a generic detail of all the available and future

variants of blockchain technology i.e., Distributed Frameworks like public, private or consortium,

Consensus algorithms like PoW and PoS, and Transaction Payloads like simple, stateful, or

private transactions. These variants are affected by different non-functional requirements, as

listed below, that must be in consideration while working on variants of blockchain, under

practices of blockchain oriented requirement engineering from BOSE [47].

1. Decentralized Governance – A social contract of the predefined and codified process

of decision-making on known vetted participants.

2. Integrity – Hash and signature-protected linked blocks.

3. Transparency – Data and transactional records are open for all nodes of the private

blockchain.

4. Security – Integrity and transparency combine to provide security from anonymous ac-

tors.

29

Chapter 2: Literature Review

5. Privacy – Reduce the transparency to make a blockchain system more privacy-oriented

by eradicating the flow of information in blocks.

6. Scalability – Increase the size of blocks to increase throughput and other attributes of

scalability.

7. Performance – Manage different attributes i.e., throughput, size, and creation time of

blocks for a targeted performance of blockchain systems.

8. Availability/Reliability – Resilience against cyber-attacks.

9. Speed – Control the creation and transaction speed of blocks.

10. Customizability/Extensibility – Adaptability of core protocol or algorithm to a certain

situation or requirement.

11. Testability - Test and verify code before deployment.

12. Reversibility – Reverse the transactional records on blockchain systems, on desire, or

because of human or software errors.

13. Regulatory Compliance – Follow all the rules and regulations set by regulatory bodies

at international and geographical levels.

All the above-discussed non-functional requirements of blockchain variants need proper soft-

ware requirement engineering approaches for different aspects of blockchain-oriented software

engineering life cycle. In blockchain-oriented software requirements, the development aspect is

two types of development first one is classic requirement engineering practices, approaches, or

frameworks i.e., the waterfall model. The second one is modern software requirement engineer-

ing practices i.e., agile development or model-driven development [48]. Infrastructure aspects of

blockchain-oriented requirement engineering, consider generic frameworks and architectures for

user engagement [48]. Whereas the quality aspect is achieved by requirement validation through

requirements traceability and requirements negotiation under user scenarios and guidelines [48].

Integration of software engineering with other technologies is always appreciated, specifically,

integration of agile software engineering methodologies with other software engineering practices

and approaches is a common practice. The integration is appreciated because of established soft-

ware engineering concepts present in agile methodologies for usability, requirements engineering,

security and safety of critical systems, global software engineering, design, and deployment of

30

Chapter 2: Literature Review

software systems. The same practice is also adopted in the BOSE paradigm, and it is considered

the future of agile methodologies [49].

This consideration is because many technological misconceptions need to be clarified under

proper management and guidelines [26]. In BOSE, classical and modern software engineering

approaches can be adopted, depending on the requirements of the project under development

as follows [46][50]:

• Ontology-driven development – facilitates the understanding of BOSE domain con-

cepts and enables the identification, representation, discoverability, and actor identifica-

tion of smart contracts.

• Architecture based development – facilitates development and management of com-

plexity in team.

• Model Driven Development – enables model traceability for legal and smart contracts

and automates the consistency checking between models of requirements, legal and smart

contracts. It also reduces vendor lock-in and enables the automation of the generation of

models and testing of smart contracts.

• Pattern-based development – helps to improve design, interoperability, security, mi-

gration of data, and proof of integrity. And is classified as emerging and common software

patterns.

• Agile base Development – deals with the challenges of change in smart contracts,

provides a prototype of a system based on user stories and requirements, and separates

the development process into two processes development of smart contract and non-smart

contract components with early identification and validation of smart contract.

These software engineering approaches, that can be adopted in BOSE, have several processes

and tasks to deal with changing circumstances of Blockchain Based Software (BBS) development

lifecycle as follows [50]:

• The process of designing BBS – influences the factors related to quality i.e., security,

privacy, interoperability, and adoption to change. It concerns design and architecture

related to on-chain or off-chain components of blockchain, permissioned and permission-

less blockchain, size and type of blockchain transactions to response time, and storage

31

Chapter 2: Literature Review

of data. Designing is related to several tasks such as state management, authentication

and authorization, replication and synchronization, iteration, consensus, and incentive

mechanism.

• Process of implementation and testing of BBS – includes tasks to test the smart

contract code and review using conventional and modern testing techniques i.e., automa-

tion testing. For the implementation of BBS, the selection of development platforms and

tools is based on maturity, ease of development, confirmation of time, security, and API

support between nodes of the development environment.

• Process of maintenance and analysis of BBS – maintenance imposes issues of diffi-

culty of continuous maintenance and integration e.g., update smart contracts and DevOps.

Whereas analysis of BBS consists of several tasks of analysis such as requirements analysis

based on user stories, feasibility analysis is performed through common software engineer-

ing techniques such as workshops and questionnaires as well as through core characteristics

of blockchain such as immutability, transparency, data provenance, etc.

Several software modeling notations and approaches are adaptable in the BBS life cycle which

includes models like requirement model, 4+1 architecture, data flow diagram, consensus, and

smart contract models along with different modeling languages like Unified Modeling Language

(UML). The People, for which the software systems have been developed, play an integral role

in the BBS development lifecycle [50].

Agile software development methodologies are considered the most effective and adopted ap-

proaches for the software development lifecycle. Agile software development methodologies

have several activities, listed below, that are directly related to core features of blockchain sys-

tems such as Trust, Decentralization, Traceability, Consensus and faster settlement, Security

and privacy, Cost reduction, Individual control, innovation, and confidence, Immutability and

Anonymity [51].

• Software projects depend on user stories, so the creation, refinement, and definition of

these stories and acceptance by the domain expert or product owner are performed in the

Agile software development lifecycle.

• Creation of incremental and iterative deliverables and milestones accepted by all the

stakeholders’ objectives and goals.

32

Chapter 2: Literature Review

• Calculation of the complexity and incremental deliverable size with collaboration and

pairing of frequent reviews.

• Participate and explore the designing of the technical and domain-oriented prototype and

architecture activities.

• Keep track and perform testing techniques of incremental changes and generation of test

reports before delivery.

• Deploy the product and perform inspections and business support.

These activities to develop BBS with all its capabilities and attributes, BOSE has some chal-

lenges that are encountered during the development life cycle of BBS like Need for new profes-

sional roles with specialized skill development education, Guidelines for security and reliability

for every phase of software development lifecycle by performing testing activities for smart con-

tracts and blockchain, Introduce new software design notations, modeling languages and metrics

or update the classic ones [45].

2.8 Agile based Approaches for Development of DApps

In Agile based software development lifecycle, there are various approaches to contribute to every

development phase of the agile software development lifecycle. Some most adopted approaches

that would be efficient and quality-oriented development of blockchain and smart contracts-

based DApps are as follows:

2.8.1 Test Driven Development (TDD)

Test Driven Development, or TDD is a process to write automated tests well before the devel-

opment of functional code, these tests are executed in small and rapid iterations. If we analyze

the concept of TDD, we can divide it into three main aspects that are the core of this process

namely the test aspect, the driven aspect, and the development aspect. Firstly, the testing

aspect involves the writing of automated tests for individual units of the functional program.

These automated tests are small in size and manageable for every iteration. Secondly, the driven

aspect of TDD ensures how this process is carried out to make decisions related to analysis,

design, and implementation. TDD is useful to analyze the implementation with incomplete

or inconsistent and open to change requirements. Lastly, the development aspect of TDD is

33

Chapter 2: Literature Review

to make sure that the testing phase is a vital component of the development process. If an

automated test fails, the development team knows the new change and logic of change now

development team has to update the production code and automated test suites [52].

TDD process is beneficial in different aspects of the software development lifecycle such as

Comprehension of the programming which helps to understand the code during the maintenance

phase of the lifecycle of a project. Efficiency in debugging and defect removal of code is increased

with TDD because more time is spent on writing and executing test cases. Test assets are

generated, and a testable environment is established where programmers write code that is

automatically testable. TDD is favorable in reducing defect injection because fixes during

maintenance and small code changes may cause 40 times more error-prone, and there are good

chances of injecting new faults during maintenance [53][54].

Changes in requirements or any other phase of the software development lifecycle should be

understandable for the development team. Refactoring in TDD makes the change in the internal

structure of software easier to understand and cheaper to modify. In refactoring change is

modified without any external or observable change of behavior [54]. Refactoring helps the

developer to add new code, with improved design, and better methods of code cleanup of existing

code [54]. TDD team faces several challenges in the process such as difficulty in writing a test,

complex applications like complicated algorithms, numeral and parallel computing, difficulty in

100% code coverage, and lack of software engineering methodologies, tools, and standards for

TDD [54].

2.8.2 Acceptance Testing

After the development phase in the software development lifecycle acceptance testing is per-

formed before the deployment of the system. Acceptance testing is performed in different

scenarios with distinct characteristics i.e., Operational Acceptance Testing (OAT), User Ac-

ceptance Testing (UAT), and alpha and beta testing. User Acceptance Testing is considered

most suitable for a testing approach where the system is evaluated with the requirements of

the end-user or other stakeholders, to perform confirmation that the developed software meets

the requirements of end users. Acceptance testing is a type of black-box testing, where only

external behavior is tested following the acceptance criteria [55]. UAT prevents software devel-

opment from failing, three targets are achieved in this process of testing, namely: UAT focuses

on functionality and business logic instead of the internal structure of the software. It verifies

34

Chapter 2: Literature Review

the developed software following the end-user requirements. It also checks the level of quality

in functionality and how the software system has been completed [56].

2.8.3 Planning for new Release and Iteration

Planning is an initial and important phase in the XP development process. Two fundamental

points are in consideration while working on the planning phase. First, is under consideration

that “Which business value-oriented modules can be developed within time constraints?” The

second point under consideration is “What strategy would be adopted for the upcoming iter-

ation?” The planning phase is carried out in two sections i.e., Iteration planning and Release

planning, while the whole planning phase takes merely one to two days to complete [20] [30].

In the first section of release planning the main objective is to discover the key points that need

to be completed and a delivery plan is also prepared to achieve these discovered points of this

section. In the second section of release planning the developers devised a plan of the tasks to

implement the targeted points. The developers plan the activities to carry out and evaluate the

development process within the time, cost, and resource constraints [30].

2.8.4 Pair Programming

As the name indicates Pair Programming consists of a pair of two software engineers who code for

the development of the same system, at one computer, which leads to the best quality software

at a cheaper cost. Pair Programming is time and cost-effective because the time duration is

short for identification and rectification of defects [30]. Pair Programming consists of several

factors that contribute to the successful implementation of this technique as follows [57]:

• The quality of the software is improved by following the pair programming technique in

the software development lifecycle.

• Team spirit is practiced by building and training team and pair management.

• The personality of a pair of software engineers should be mature and strong enough to

deal with the conflicts of understanding on the same problem.

• The working environment should be supportive of the limitations and capabilities of any

individual of the pair of software engineers.

• Proper project management to deal with the challenges related to planning and estimation.

35

Chapter 2: Literature Review

• Pair programming results in improved design and problem-solving through the exchange

of ideas.

2.8.5 Small Incremental Releases with Review Meetings and Project Veloc-

ity

The development team in XP methodology releases versions of the software system in iteration.

At the end of every iteration, there is an increment of the DApp system which is under devel-

opment, and a review meeting to evaluate the performance of the latest release and this circle

continues [58]. Project velocity measures the progress of the project at the current iteration by

calculating the estimation for the completed user stories-based tasks during the current itera-

tion. Project velocity is defined during planning for the new iteration [59]. Estimation at the

early stage of the software lifecycle is difficult so project velocity is helpful in the estimation of

software cost and completion time [59].

2.8.6 Class Responsibility Collaborator (CRC) Modeling

Class Responsibility Collaborator or CRC card modeling is an object-oriented technique to de-

sign and analyze the development of software systems. It is a low-cost, low-technology technique,

and easily adaptable technique that people without experience in object-oriented programming

concepts can also use. It is based on a simple index card method, where a card is a representa-

tion of a single class in the design and analysis session of object-oriented development [60]. It

is a useful technique to define objects and the roles of classes in object-oriented development.

Each CRC card has three sections that represent related information, i.e., Name represents an

appropriate and suitable name for the class. Responsibilities represent the doable tasks of the

objects of the relevant class. Whereas Collaborators are other classes carrying out the same

responsibility. In every CRC card, a description in the form of notes about the implementation

of the class like data types of the data elements, is written on the back side of the card. CRC

cards also support working in groups, ancestry details of parent and derived classes are also

written in the collaborators section [60][61].

36

Chapter 2: Literature Review

2.9 SMART Analysis of Project Goals

Software engineering projects are solutions to some specific problems that need to be addressed

for different aspects i.e., financial or service oriented. Every software engineering project has

specific objectives and goals, proper management and understanding of these objectives are

crucial for project success. SMART is a method to assist people in setting project goals and

objectives, these SMART objectives are as [62][63]:

S – Specific, the goal should be specific to what stakeholders want to achieve from the project.

M – Measurable, the goal should be measurable so that the progress of the project can be

trackable.

A – Achievable, the goal should be achievable and challenging in available resources.

R – Realistic, the goal should be realistic to achieve with available resources and time frame.

T – Time bounded, a specific time frame within available resources.

“T” in SMART setting of goal Time-bound is replaced with Traceable with to use SMART

objects concept for requirements traceability in software development life cycle [66].

2.10 Summary

In this chapter, a detailed literature review is provided with proper references. Literature is

related to agile-based software engineering, Blockchain and DLT, Smart contracts, DApps, and

their interrelationships in the field of software development. Applications, advantages, and

shortcomings of these software engineering and technological terms are also discussed in this

chapter. Literature related to efficient and quality-oriented DApp development using software

engineering methodologies and different agile-based approaches with SMART objectives is also

reviewed and discussed in this chapter.

37

Chapter 3

Proposed Methodology

3.1 Introduction

In Chapter 3, the rationale, motivation, and proposed framework for efficient and quality-

oriented development of DApps are described. Rationale and motivation are illustrated with

appropriate and logical points of this research work. The proposed framework for efficient

and quality-oriented development of DApps is also illustrated in pictorial representation with

a complete description of each phase of the proposed framework. In the last section of this

chapter, key attributes of the proposed framework are described.

3.2 Rationale and Motivation

Since the inception of software engineering in the 1960s, it has been an evolving discipline with

continuous research and development in this area. The history of software engineering is not

older than other engineering disciplines; however, the growth and adoption of this discipline is

continuous, rapid, and future prosper. Blockchain technology gained popularity after the intro-

duction of Bitcoin in 2008 by Satoshi Nakamoto because it is the premier technology of Bitcoin.

When these two technologies, i.e., software engineering and blockchain, are implemented with

each other they introduce a new term Blockchain Oriented Software Engineering or, BOSE. This

term is devised to explain and provide solutions to the problems that are associated with the

software systems where blockchain technology is implemented as a part of the software systems

i.e., DApps.

38

Chapter 3: Proposed Methodology

The Institute of Electrical and Electronics Engineers (IEEE) defines software engineering as

a set of approaches for systematic, disciplined, and quantifiable development, operation, and

maintenance of software systems. Several software engineering approaches are in practice for

a disciplined, systematic, and quantifiable software development lifecycle i.e., Waterfall model,

Spiral model, Agile methodologies. These approaches can also be used for the development

of complex BBS which are relatively new in the software industry and demand as they are

immutable, transparent, and secure solutions [4]. However, many technological misconceptions

are present in the market about blockchain technology and its use in software systems which

requires some standards for the proper management of BBS systems. Such technological and

management problems and misconceptions lead to the concept of BOSE, in which disciplined,

and quantifiable approaches are used to develop, operate, and maintain the BBS [4][26].

In the development lifecycle of BBS systems efficient and quality-oriented approaches are de-

ficient. BOSE can mitigate the challenges for efficient and quality-oriented development of

blockchain based systems. Agile-based approaches in BOSE are suitable for the development

of BBS or DApps, because in DApps requirements are not completely understood and there

is always a possibility of change in the requirements throughout the development lifecycle [4].

Change is constant and inevitable, a concept that is frequently used in the software engineer-

ing community, so whenever a new methodology or concept is devised for the development of

modern software systems this concept of change is always under consideration.

The proposed framework for efficient and quality-oriented development of blockchain-enabled

smart contracts-based DApps considers the software engineering concept of change. A hybrid

framework based on XP and Scrum methodologies of Agile is proposed, which adopts practices

like simplicity, TDD, pair-programming, and release planning while prioritizing the user stories

with iterative and incremental development for efficient and quality-oriented DApps. For sim-

plicity in the design phase, we found CRC modeling a useful practice that can lead to a mature

UML diagram from simple to detailed architecture. We found agile testing i.e., acceptance test-

ing with collaboration with stakeholders and TDD, an effective practice for quality, efficiency,

and rapid development of a testable product.

We found from related research that pair programming can reduce the defects and the chances

of failure, moreover, it can also improve the debugging speed. The requirements or planning

phase is the core of software development where the percentage of uncertainties about the actual

requirements is relatively the highest as compared to other phases of the DApps development.

39

Chapter 3: Proposed Methodology

These are some practices from agile methodologies that can be effective and suitable for the

efficient and quality-oriented development of DApps. Sections 3.3. and 3.4 describes the details

of the proposed framework for efficient and quality-oriented development of DApps.

3.3 Proposed Framework

The proposed framework is primarily based on Agile approaches, it is a hybrid framework

comprised of different practices of mainly two agile methodologies Scrum and XP. The frame-

work is partitioned into three main sections and their relevant steps of different phases of

the DApps development lifecycle. The main sections are Vision, Design and Implementation,

and Maintenance. The “design and implementation” section is further partitioned into three

phases of the DApps development lifecycle namely the Release Planning and Informal Design

Phase, the Formal Design Phase, and the Testing and Implementation Phase. All the sections,

sub-sections, and phases of development have an identity or tracking number for a better un-

derstanding of the proposed framework. The “design and implementation” section is split into

two development-based sub-systems namely SCs Development and App System Development,

these two sub-systems are designated to the development phases of smart contract and appli-

cation development respectively, this division of the system is a convenient way to manage the

development activities of the complex architecture of DApps. These partitions will provide con-

venience to practitioners and software engineers who will implement this proposed framework

in the practical development of DApps for efficient and quality-oriented products.

3.4 Vision (Define Vision)

The section is comprised of three steps, that define a vision and goal of the project and the

stakeholders. The objectives of the project for which the different development lifecycle phases

will be implemented are explained and documented in this section by defining the user stories-

based UML use cases. The three phases of defining a vision of the project are as follows:

40

Chapter 3: Proposed Methodology

Note
Note1. Define Goals of

the Project

2. Identify the Actors

3. User Stories (US) and UML
Use case

5.
 S

p
lit

 t
h

e
S

ys
te

m

5.a.a. Release Planning

5.a.b. CRC Modeling

5.b.a. Release Planning

5.b.b. CRC Modeling

5.a.c. UML Modeling

5.a.d. Define Messages
5.a.e. Define Data Structure

5.a.f. Define Internal Functions and Modifiers
5.a.g. Security Assessment

5.b.c. UML Modeling

5.b.d. UI Design
5.b.e. Design Modules, Messages, DB

5.b.f. Security Assessment

5.a.h. Write Series of Tests
5.a.i. Implementation and Evaluation

5.a.j. ATDD
5.a.k. Security Assessment

5.b.g. Write Series of Tests
5.b.h. Implementation and Evaluation

5.b.i. ATDD
5.b.j. Security Assessment

6. S
ystem

 In
teg

ratio
n

7. Small Releases
and Acceptance Activity

8. Update on DApp
System

9. Maintenance and Final
System Deployment

Prioritize user
stories Project Velocity

Project Velocity

Inner Iterations in the development of App system

Inner Iterations in the development of SC

b
. A

p
p

 S
ys

te
m

 D
ev

el
o

p
m

en
t

a.
 S

m
ar

t
C

o
n

tr
ac

t
(S

C
)

D
ev

el
o

p
m

en
t B.X. Release Planning and

Informal Design Phase
B.Y. Formal Design Phase B.Z. Testing and Implementation Phase

B. Design and Implementation

A. Vision

C
u

sto
m

er A
p

p
ro

val

C. Maintenance

Outer Iterations after 2 or 3 inner incremental updates.

Review Meeting

Review Meeting

Review Meeting

4. SMART Analysis
Prioritize user

stories

SMART ABCDE - Framework for Efficient and Quality Oriented Development of DApps

Figure 3.1: A framework for efficient and quality-oriented development of DApps

A complete flow of the proposed framework is illustrated in Figure 3.1, and section-wise complete

descriptions of the proposed framework are described in sections 3.4 to 3.6.

1. Define Goal of the Project Confirm that a problem exists, for this purpose carry out

related research and determine that a system i.e., DApps, is required to solve the problem,

and after that produce a feasibility report. Summarize the feasibility report in 20 to 30

words that will sum up the goal of the project to develop a system as a solution to the

problem. Display this 20 to 30-word summary of the feasibility report in a place that is

visible to all the stakeholders of the project. This is a recognized SCRUM practice to

define the goal of the project i.e., the DApp system, and communicate it to the whole

team [4].

2. Identify the Actors Perform related research to identify the actors that will directly

or indirectly associate with the DApp system. The list of the actors could be long as

it includes human roles i.e., user, product owner, project manager, programmers, and

external systems or physical devices to exchange information with the DApp system [4].

41

Chapter 3: Proposed Methodology

3. User Stories and UML Use Cases User stories are a technique to explain the require-

ments of the system. These user stories are used to design UML use case diagram, users

and their actions are under consideration at a high level. The DApp system is consid-

ered full of all possible functionalities without the architecture of the DApp system will

be considered in the UML use case diagram. The diagram represents the relationships

graphically among the actors and user stories, this graphical representation will help to

understand the functionalities of the actors and the relationships among the actors with

their user stories [4].

4. SMART Analysis The Goal of the project at a high level has been defined in step

1 of section 3.4, in a summary of 20 to 30 words, however, there is a need to define

specified goals for every increment. Use the SMART method to define specific, measurable,

achievable, realistic, and time goals for every increment with 2 to 3 inner iterations, so that

in the next phases of the agile software development lifecycle the SMART analysis can

help to maintain a relation of development practices with the goal of the project. It is not

mandatory to achieve these specified parameters, however, it can be helpful to maintain a

record of iterations and analyze them with the progress in development. Analysis will be

conducted after 2 to 3 inner iterations and SMART will be updated after every increment.

5. Split the System Split the DApp system for development purposes into two sub-systems

[4]:

• a. Smart Contracts (SCs) Development to carry out the agile-based software

engineering practices specifically for the development of SCs of DApp system on

blockchain technology.

• b. App System Development to carry out the agile-based software engineering

practices focused on the development of Applications i.e., frontend and backend, of

DApp system.

At this point, an analysis of the architecture of the whole system should be conducted and

specify the on-chain or off-chain. Normally the data and processing related to transactions

and need to be transparent and immutable is managed on-chain [4].

42

Chapter 3: Proposed Methodology

3.5 Design and Implementation

a. Smart Contracts (SCs) Development

5.a.a. Release Planning Release planning for the new iterations and increment of SCs

has some steps as follows:

• Domain experts read the user stories related to the on-chain development of SCs

and conduct elicitation sessions with stakeholders to understand the requirements

written in the form of user stories earlier in step 3.

• Stakeholders assign a certain priority value and prioritize the user stories. Project

team members examine the user stories and assign a cost, and weeks of develop-

ment to each user story, user stories with high costs i.e., long development time, are

discussed again with the stakeholders and split into smaller stories.

• After this discussion, stakeholders reassign priority values, whereas project team

members assign new costs to these smaller user stories.

• Stakeholders and project team members finalize the tasks for the next release.

5.a.b. CRC Modeling Design CRC cards compliant with the prioritized user stories

for modeling the requirements for the development of SCs, step 5.a.a. These cards will

assist in UML modeling in the design phase, step 5.a.c., of SCs.

5.a.c. UML Modeling Design the SCs sub-system following the prioritized user stories

requirements, with the help of UML modeling. Marchesi, L. et al. (2020) provide a list of

stereotypes for UML modeling i.e., class diagrams and sequence diagrams of SCs [4]. Use

these proposed stereotypes while designing UML diagrams for SCs.

5.a.d. Define Messages Define and establish a flow of Ether transfers for transactions

among on-chain SCs, external SCs, and the Application system. Marchesi, L. et al. (2020)

provide UML state charts to document these messages and transactional flows for SCs.

Use these state charts to design a UML state sequence diagram and document these

interactions.

5.a.e. Define Data Structure Define the data structure of on-chain SCs, the external

interface, and events that will directly and indirectly interact with SCs [4].

43

Chapter 3: Proposed Methodology

5.a.f. Define Internal Functions and Modifiers Define the modifiers, a special feature

of SCs, special functions with preconditions to test a function before its safe execution,

and also define internal and private functions of SCs [4].

5.a.g. Security Assessment Perform security assessments to maintain the special secu-

rity aspect of SCs. Follow the instructions described in Marchesi, L. et al. (2020) research

for security assessment of SCs.

5.a.h. Write Series of Tests Write a series of test cases for the implementation and

evaluation stage at 5.a.i. and acceptance scenarios for acceptance test-driven development,

following the prioritized user stories of step 5.a.a., that are defined, examined, and related

to requirements in the form of user stories with a defined goal of the project, step 1 to

step 4. The security aspect of SCs is critical, in these test cases based on user stories and

implementation of the architecture of the DApp System.

5.a.i. Implementation and Evaluation Implement the code for the development of

SCs and perform automation unit testing using specific testing environments for SCs i.e.,

Truffle. It is recommended that perform this implementation process in pairs, where one

individual will implement the code for SCs and the second one will monitor the implemen-

tation, because SCs development involves blockchain which is a separate entity, and using

it for testing purposes will require extra resources which will increase cost of development,

monitoring the implementation is considered an efficient de-bugging technique at the time

of development. This practice will also help in the development of critical software, a

better understanding of the DApp system, and the learning of junior-level developers.

5.a.j. Acceptance Test Driven Development (ATDD) Involve a resourceful and

reliable domain expert to validate the implementation following the acceptance scenarios

defined at 5.a.h.

5.a.k. Security Assessment Perform security assessments to maintain the special secu-

rity aspect of SCs. Follow the instructions described in Marchesi, L. et al. (2020) research

for security assessment of SCs.

Note: After security assessment of SCs, at step 5.a.k, arrange review meetings with

stakeholders to discuss the goals of the iteration to improve or maintain the development

standards or practices in the next iteration. Moreover, after security assessment send a

message of time velocity as a reminder to maintain check and balance in the development

life cycle of DApp.

44

Chapter 3: Proposed Methodology

b. App System Development

5.b.a. Release Planning Perform release planning as described at 5.a.a. and update

the user stories that are related to App System and users interacting with SCs.

5.b.b. CRC Modeling Design CRC cards, compliant with the prioritized user stories

for modeling the requirements for the development of the App System. These cards will

assist in designing UML models in the design phase, step 5.b.c., of the App System.

5.b.c. UML Modeling Design the requirements from prioritized user stories, with the

help of UML diagrams i.e., class diagrams and sequence diagrams. In UML modeling of

the App System includes the interaction of the App System with blockchain and other

off-chain storage elements.

5.b.d. UI Design the User Interface (UI) of the App System with related research on

market demand choose the best or in budget available resources for design and develop-

ment. End users prefer a system with a simple and interactive interface that is easy to

use and control [4].

5.b.e. Design Modules, Messages, DB Decompose the App System in modules, a

modular approach of development is encouraged to adopt. It is recommended to design

state and data flow diagrams to represent how messages and data flow occur in different

modules of App Systems and how SC transactions are carried out in DApp systems [4].

5.b.f. Security Assessment Perform security assessments to maintain the special se-

curity aspect of DApp. Follow the instructions described in Marchesi, L. et al. (2020)

research for the security assessment of SCs and their interactions with the App System in

the architecture of DApp.

5.b.g. Write Series of Tests Write a series of test cases for the implementation and

evaluation stage at 5.b.h. and acceptance scenarios for acceptance test-driven develop-

ment, following the prioritized user stories of step 5.b.a., that are defined, examined, and

related to requirements in the form of user stories with a defined goal of the project, step

1 to step 4. The security aspect of SCs is critical, in these test cases based on user stories

and implementation of the architecture of DApp System.

5.b.h. Implementation and Evaluation Implement the code for the development of

the App System and perform automation unit testing using testing tools i.e., JUnit. It

is recommended that perform this implementation process in pairs, where one individual

will implement the code for App System and the second one will monitor the implementa-

45

Chapter 3: Proposed Methodology

tion, because App System development involves blockchain which is a separate entity, and

using it in testing purposes will require extra resources which will increase the cost of de-

velopment, monitoring the implementation is considered an efficient de-bugging technique

at the time of development. This practice will also help in the development of critical

software, a better understanding of the DApp system, and the learning of junior-level

developers.

5.b.i. Acceptance Test Driven Development (ATDD) Involve a resourceful and

reliable domain expert to validate the implementation following the acceptance scenarios

defined at 5.b.g.

5.b.j. Security Assessment Perform security assessments to maintain the special se-

curity aspect of DApp. Follow the instructions described in Marchesi, L. et al. (2020)

research for the security assessment of SCs and their interactions with the App System in

the architecture of DApp.

Note: After security assessment of the App System, at step 5.b.j, arrange review meet-

ings with stakeholders to discuss the goals of the iteration to improve or maintain the

development standards or practices in the next iteration. Moreover, after security assess-

ment send a message of time velocity as a reminder to maintain check and balance in the

development life cycle of DApp.

6. System Integration Perform DApp system integration in a local environment to test

and validate that the integration process is carried out as expected [4].

3.6 Maintenance

7. Small Releases and Acceptance Activity After DApp system integration this point is

a release point for new updates based on the defined goals, SMART analysis, and release

planning performed at earlier stages of the DApp development lifecycle. Now conduct

acceptance meetings with all the stakeholders for the approval of the new release.

8. Update on DApp System Update the system with new release after acceptance meet-

ings and approval of stakeholders and conduct a final review meeting to demonstrate the

new update of the DApp system. After the review meeting, go to step 4 SMART analysis,

and redefined the goals for the next increment.

46

Chapter 3: Proposed Methodology

9. Maintenance and Final System Deployment If the problem that was defined in the

vision section has been resolved or the DApp system has been obsolete then perform final

system deployment, otherwise keep working on the maintenance of the deployed DApp

system.

3.7 Key Attributes of the Proposed Framework

The proposed framework is based on the agile approaches i.e., Scrum and XP, that are best suited

to the efficient and quality-oriented development lifecycle of DApps. The proposed framework

possesses key attributes that are helpful for the efficiency and quality of the development of

DApps. The four key attributes are illustrated in Figure 3.2 and the description of each attribute

is described in sections 3.7.1 to 3.7.4, as follows:

Key Attributes of proposed
 Agile based Framework

Simplicity in the
Development of

DApps

Efficient Development
of DApps

Agile Testing of
Development of DApps

Quality Oriented
Development of DApps

Figure 3.2: Key Attributes of the Proposed Framework

3.7.1 Simplicity of the Proposed Framework for the Development of DApps

The proposed framework provides simplicity in the lifecycle of the development of DApps, the

practices that are introduced for simplicity of the development of DApps lifecycle are as follows:

47

Chapter 3: Proposed Methodology

• Prioritize the DApp system requirements from user stories to facilitate the focus of

the development team on the critical and cost-effective requirements i.e., Prioritize user

stories in step 5.a.a. Release Planning.

• Analyze the project goal defined in step 1, Define Goals of the Project, at step 4,

SMART Analysis, which provides a focused and simplified representation of the project

goal.

• Partitions of the complex DApp system into sub-systems i.e., SCs Development

and App System Development of step 5, Split the System, Sections i.e., Vision, Design

and Maintenance and Maintenance, to make the development easy and simple for the

development team.

• CRC Modeling provides a simple and easy way to design user stories-based requirements

of the DApp system, as compared to complex UML diagrams i.e., class diagrams, for the

non-technical individuals in the project team.

• Continuous improvement through small and to-the-point incremental iterations

and releases with review meetings.

3.7.2 Quality Oriented Development of DApps using the Proposed Frame-

work

The proposed framework provides quality in the lifecycle of the development of DApps, the

practices that are introduced for quality of the development of DApps lifecycle are as follows:

• Testing practices i.e., TDD and ATDD to carry out testing and development activi-

ties simultaneously can mitigate the debugging challenges for quality-oriented development

of DApps.

• CRC Modeling can provide an easy and simple way to design and brainstorm the re-

quirements of the DApp system with stakeholders and design the in-detail UML diagrams

i.e., class diagram, with improved quality and ease.

• Prioritizing the user stories can improve the requirements elicitation capabilities which

leads to quality-oriented development through focused development, enhanced customer

satisfaction, and efficient resource allocation.

48

Chapter 3: Proposed Methodology

• Small and Incremental releases provide quality through continuous improvement and

adaptation, increased user satisfaction and engagement, manageable resources, reduced

complexity, improved focus, and testing.

3.7.3 Agile Testing in the Proposed Framework for the Development of

DApps

The proposed framework supports agile testing in the lifecycle of the development of DApps,

the practices that are introduced as agile testing for the development of DApps lifecycle are as

follows:

• TDD approach reduces the bugs, increases confidence in code, and improves commu-

nication between the developers leading to efficiency and quality in the development of

DApps.

• Pair Programming improves the code quality, reduces errors, or bugs, increases knowl-

edge sharing, supports improved communication between programmers, and increases

productivity that leads to efficient and quality-oriented development of DApps.

• ATDD facilitates the development of the DApp system with improved communication,

early feedback, increased confidence in the software, improved alignment with user needs,

and reduced risk of scope creep which leads to efficient and quality-oriented development

of DApps.

3.7.4 Efficient Development of DApps in the Proposed Framework

The proposed framework contributes to the efficiency in the lifecycle of the development of

DApps, the practices that are introduced for efficiency of the development of DApps lifecycle

are as follows:

• Prioritizing the user stories provides efficiency in the development of DApps through

focused development efforts, early validation and feedback on the high-priority require-

ments, reduced risk, improved user experience, and efficient resource allocation.

49

Chapter 3: Proposed Methodology

• SMART analysis can contribute to the efficient development of DApps through clarity

and focus on the goal of the project, measurable progress, realistic expectations about

project goal, Relevance to DApps system, and time-bound (in the proposed framework it

can be flexible) completion.

• CRC modeling can provide efficiency in the development of DApps through improved

class design and modules, enhanced communication and collaboration, simplified devel-

opment, and making it readable, and understandable.

• Small and incremental iterations and releases contribute to efficiency in the develop-

ment of DApps through early feedback and course corrections, continuous improvement,

adaptation, reduced scope creep and maintaining focus, enhanced user experience and

feedback, validated learning with knowledge sharing, reduced maintenance burden and

improved agility, early market validation, and adaptation.

3.8 Summary

In this chapter rationale and motivation for the proposed framework are described in detail

in support of the logic to propose this framework. After rationale in support of the proposed

framework, the actual framework is illustrated with the proper diagrammatic flow. At the end

of the chapter, the key attributes of the proposed framework are also discussed.

50

Chapter 4

Validation of Proposed Framework

4.1 Introduction

This chapter describes how the proposed framework is validated for efficient and quality-oriented

development of DApps, there are two methods of validation introduced. One is theoretical and

a questionnaire survey and the other is a case study to examine the proposed framework in a

real time environment with the help of a software development team. A brief introduction of

both types of validation methods, and how they are prepared, initiated, and completed, are

described in this chapter.

4.2 Questionnaire Survey

A questionnaire survey is a method of collection of data to validate and analyze a theoretical

concept, comparative study, or review of the public or community of users of a new product

or a proposed framework. This research questionnaire survey is to validate and analyze a pro-

posed SMART agile-based framework for efficient and quality-oriented development of DApps.

The proposed framework claims that it provides simplicity, and agile testing with efficient and

quality-oriented development of DApps. The questionnaire survey validates and assures these

claims through diverse but simple multiple-choice questions that are based on the professional

life of the respondents.

Google Forms is a platform that is used for conducting this survey and collecting relevant data

from respondents to analyze their responses. It proved a valuable tool because of its auto-

charts generation feature from the collection of data, however, several factors are considered

51

Chapter 4: Validation of Proposed Framework

while using Google Forms for questionnaire survey for validation purposes, some of the key

factors are as follows:

• Target Audience: The Audience for this questionnaire survey is professionals in the

software industry, who have at least 1 year to 5+ years of experience in the software

industry. The expected size of the audience was 80 individuals and the received responses

were 83 which is above the estimated target.

• Survey Design: Questions are clear, logical, and flow, most of the questions are multiple-

choice however there is always a part or text field for open-ended questions.

• Survey Distribution: The survey is shared with only professionals in the software

industry who have good knowledge of blockchain technology and its contributions to the

modern information technology world.

• Data Analysis: Data is collected through Google Forms and there is a feature to generate

charts and analyze the collected data using formulas in Excel or Google Sheets linked with

Google Forms.

The questionnaire survey has a sequence from start to end every question followed by the

previous one. The survey consists of five sections, each section has relevant questions to get

appropriate information from experienced professionals in the software industry, five sections of

the survey are as follows:

1. Purpose of Survey – This section describes the introduction and objectives of the

questionnaire survey to respondents, with a clear statement of privacy protection. A clear

figure of the proposed framework is also attached in this section.

2. Respondent Information and Demographics – In this section, introductory infor-

mation has been collected from respondents to get an idea about the background and

demographics of the respondents.

3. In practice Agile Development Methodologies and analysis of the project goal

– In this section questions are related to the current practice of agile methodologies in re-

spondents’ organization and to check the familiarity of respondents with agile development

methodologies in their organization.

52

Chapter 4: Validation of Proposed Framework

4. Evaluation of proposed framework – This section has four sub-sections that possess

the questions related to the claims of the proposed framework such as simplicity, agile

testing, and efficient and quality-oriented development of DApps.

5. Conclusion and Feedback – In this section any additional feedback is recommended

to share, however, this section is not mandatory to fill.

Analysis of the collected data in the questionnaire survey is available in Chapter 5 and a complete

form that is used for validation purposes is attached as Annex ‘A’.

4.3 Implementation Example - Development of DApp

The method to validate the proposed framework is a case study implementation of the proposed

framework, to develop a DApp, following the proposed SMART analysis of project goals or

objectives and agile-based efficient and quality-oriented development of DApps. The case study

is a supply chain management system for grapes juice production, an example development

of DApp. The complete software and supply chain lifecycle process is carried out in this case

study by following the proposed agile and SMART objectives based on efficient and quality-

oriented development of DApps. This case study under the proposed framework is practiced

in a completely independent and unbiased environment, with the collaboration of a software

house V3Solutions, where all practitioners are trained and well-equipped with relevant tools to

perform the implementation tasks related to the SMART agile-based framework. It is an effort

to develop a connection between academia and industry and promote the culture of Research

and Development (R&D). The complete process of implementation of the case study is available

in Chapter 5.

53

Chapter 4: Validation of Proposed Framework

4.4 Summary

In this chapter two validation methods are discussed that are carried out to ensure the validity

of the proposed framework for efficient and quality-oriented development of DApps. The factors

that were in the focus questionnaire survey, all five sections of the survey, and the tool used

for this survey generation are discussed in detail in this chapter. A case study also discussed

briefly, which was conducted with industry collaboration is introduced in this chapter and a

detailed analysis of both validation methods is available in chapter 5.

54

Chapter 5

Case Study Implementation of

Proposed Framework

5.1 Introduction

The proposed framework implemented in a real development environment as a case study is

discussed in detail in this chapter. A practical description of every section, subsection, step,

and phase of the development of DApps is discussed in this chapter. Formal and Informal

modeling, testing practices, and other proposed approaches are discussed in this chapter.

5.2 Case Study for Implementation

5.2.1 Objective

The purpose of this case study is the development of an efficient and quality-oriented blockchain-

enabled smart contracts Decentralized Application (DApp) by following the proposed SMART

Agile framework for efficient and quality-oriented development of DApps. This case study

implementation is an effort to develop a connection between academia and industry and promote

the culture of Research and Development (R&D).

55

Chapter 5: Case Study Implementation of Proposed Framework

5.2.2 Scope and Criteria

The proposed framework for efficient and quality-oriented development of DApps is hybrid and

has a wide scope in the blockchain-based software development industry. The criteria that are

adopted to implement the framework are solely practical and result-oriented.

5.2.3 Level of Assurance

All practitioners are trained and well-equipped with relevant tools to perform the implementa-

tion tasks related to the SMART agile-based framework.

5.2.4 Description of the Project

A Supply chain management system is the process of managing different phases of the flow of

items or services that can help businesses reduce costs with customers’ or stakeholders’ satis-

faction. The use of modern technology like blockchain, in supply chain management provides

transparency, security, and improved efficiency. This project is a DApp authenticity manage-

ment system backed by Ethereum smart contracts platforms. A DApp supply chain solution

to verify the authenticity of an Agri product from plantation to sales to customer. The de-

velopment of DApps is complex as compared to traditional software development projects, so

there is a need for a systematic, disciplined, and quantifiable approach that is primarily based

on customer collaboration and change management in the development of the DApp project.

This complexity of DApps increases when a project like supply chain management demands

efficiency and quality-oriented development with security. The proposed framework provides

a full package, from project goal definition to deployment. In this project, our project team

follows this framework for the secure, transparent, efficient, and quality-oriented development

of DApps.

5.3 Implementation and Analysis

This section discusses the implementation details of the proposed framework from project goal

definition to deployment with results and analysis. Every section and phase in the development

of DApps is discussed with practical illustrations.

56

Chapter 5: Case Study Implementation of Proposed Framework

5.4 Vision (Define Vision)

5.4.0.1 Define Goal of the Project

To provide authenticity and transparency in the supply chain management process from pro-

duction level to sales and distribution, through Ethereum smart contracts enabled DApps.

5.4.0.2 Identify the Actors

From production to sale and distribution there are different roles and actors involved in a grapes

juice supply chain management DApp system, prominent actors in this system are Farmer,

Food Inspector, Grapes Fruit Juice Producer, Distributor, and Customer.

5.4.0.3 User Stories and UML Use Case

DApp system requirements are collected by way of user stories, which leads us to a generic

UML use case diagram for a better understanding of every user story and its relationship to

the actors of the system. Some user stories are as follows:

• Farmer plants grapes on a farm and harvests them.

• The Food Inspector audits the quality of grapes, and the farmer then processes the grapes.

• The Grapes juice producer blends the juice of grapes with other ingredients and produces

juice.

• The Food Inspector verifies and validates the quality of juice and issues a certificate.

• The Grapes juice producer sends juice products to distributors and sells them after pack-

aging.

• The distributors sell the different juice products i.e., grapes juice.

• Customers buy grapes juice from distributors. Based on the above-mentioned use stories

our design team developed a UML use case diagram as in Figure 5.1.

57

Chapter 5: Case Study Implementation of Proposed Framework

Records the Plantation of
Grapess

Records the Harvest of
Grapes

Records Processed Grapes

Buy Grapes Juice

Certifies Grapes
Juice

Records the Results of
Quality Check of Grapes

Records the Inventory of
Juice Ingredients

Records the Production of
Grapes Juice

Records the Sales of
Grapes Juice

Farmer

Customer

Food Inspector

Grapes Juice Producer

Distributer

Grapes Juice Supply Chain DApp System

Figure 5.1: UML Use case diagram based on user stories.

5.5 SMART Analysis

SMART Analysis has been performed after every increment in the development phase to make

the development process and goals more specified and achievable. Some instances of SMART

statements that are used in the development process of grapes fruit juice supply chain manage-

ment DApp system, to specify the goals are as follows:

• Design and develop the front end of the farmer module, using grapes and green color

palate, in 2 to 3 weeks.

• Create a smart contract for farmer records and integrate it with the App system of DApp,

in 2 to 3 weeks.

• Integrate the smart contracts of all roles in the DApp system, in 1 to 2 weeks.

58

Chapter 5: Case Study Implementation of Proposed Framework

5.6 Split the System

After SMART analysis of project goals, we split the system into two separate sub-systems for

development purposes, one is for smart contracts development and the other is for front-end

development of the DApp system.

5.7 Design and Implementation

5.7.1 Smart contracts Development

5.7.1.1 Release Planning

Planning for the next release of smart contracts in increments after 2 to 3 iterations has been

carried out at this stage, user story-based requirements are prioritized, using priority values,

with collaboration and discussion with stakeholders.

5.7.1.2 CRC Modeling

Based on prioritized user stories-based requirements, informal modeling is performed where

CRC cards are designed to illustrate the user stories in the form of classes at a high level. A

complete CRC card design, arranged concerning collaborators, is shown in Figure 5.2.

Figure 5.2: CRC Modeling, arranged with respect to collaborators

59

Chapter 5: Case Study Implementation of Proposed Framework

5.7.1.3 UML Modeling

UML diagrams i.e., class diagrams and sequence diagrams, are designed after CRC modeling,

to help the programming team understand the relationship between different classes and their

functions, messages, modifiers, and attributes. A class diagram is shown in Figure 5.3, which

is a standard UML class diagram of the grapes juice supply chain management DApp system

to illustrate the synchronous or asynchronous relation of all the available classes of the DApp

system.

Ownership

+ newContractAddress: address
+ owner: address

+ upgrade(newContractAddress): address
+ owner(): address
......

SupplyChainBase

+ grapes: struct
+ juice: struct

+ plantgrapes()
+ processgrapes()
+ buyitem()
+ harvest()
+ certify()
+ audit()
+ producegrapes()
.....

Farmer

+ FarmerAddress: address

FoodInspector

+ FoodInspectorAddress: address

AccessControl

+ add(role, address)
+ remove(role, address)
+ has(role, address):bool

Distributor

+ DistributorAddress: address

GrapesJuiceProducer

+ GrapesJuiceProducerAddress: address

Customer

+ CustomerAddress: address

Figure 5.3: The Standard UML Class Diagram of Supply Chain Management DApp System of

Grapes Juice

Every class shown in Figure 5.4, has smart contract files with the extension .sol (solidity-based),

all these .sol files perform different functionalities. Classes of roles or actors i.e., farmer, food

inspector, distributor, grapes juice producer, and customer have public-type account addresses

and private roles. The supply chain base class controls all the records and states of grapes and

grapes juice. Ownership class is assigned and reassigned by the owner of the product as shown

in Figure 5.4.

The sequence diagram in Figure 5.5 illustrates the flow of the whole process from start to end

of the process of grapes fruit supply chain management DApp system. Every factor involved in

the supply chain process is associated with the supply chain base contract and the flow of this

grapes fruit supply chain DApp system continues with the internal response from the supply

chain base contract. The supply chain base class as shown in Figure 5.4 is in a relationship

directly or indirectly with all the other classes the same aspect is shown in Figure 5.5 as well.

60

Chapter 5: Case Study Implementation of Proposed Framework

<<struct>>
Role

bearer:mapping(address=>bool)

<<library>>
AccessControl

Internal:
 add(role:Role, account:address)
 remove(role: Role, account:address)
 has(role:Role, account: address) :bool

DistributorRole

- _Distributors: Roles.Role
...

FarmerRole

- _Farmers: Roles.Role
...

FoodInpectorRole

- _FoodInspector: Roles.Role
...

GrapeJuiceProducerRole

- _GJuiceProducer: Roles.Role
...

DistributorRole

- _Distributors: Roles.Role
...

Ownership

- origOwner: address

Internal:
 _transferOwnership(newOwner:address)
External:
 renounceOwnership() <<onlyOwner>>
 transferOwnership(newOwner: address)
<<onlyOwner>>
...

<<enum>>
GrapesState

 Planted: 0
 Harvested: 1
 Audited: 2
 Processed: 3

<<enum>>
GrapesJuiceState

 Created: 0
 Blended: 1
 Produced: 2
 Certified: 3
 Packed: 4
 ForSale: 5
 Purchased: 6

<<struct>>
GrapesItem

 sku: uint256
 upc: uint256
 ownerID: address
 originFarmerID: address
 originFarmName: string
 originFarmInfo: string

<<struct>>
GrapesJuiceItem

 sku: uint256
 upc: uint256
 ownerID: address
 productID: uint256
 productNotes: string
 productPrice: uint256
 GrapesJuiceProducerID: address
 distributorID: address
 consumerID: address
 certifyNotes: string
 itemState: GrapesJuiceState

SupplyChainBase

+ sku_cnt: uint256
+ GrapesItems: mapping(uint256=>GrapeItem)
+ grapeJuiceItems: mapping(uint256=>JuiceItem)
+ juiceGrape: mapping(uint256=>256 [])
+ defaultGrapeState: GrapeState
+ defaultJuiceState: JuiceState

External:
+ fetchJuiceItemBufferOne(Type, Type): (sku:uint256 ... itemState:uint256)
Internal:
<<payable>> juiceBuyItem(_juiceUpc:uint256) <<onlyCustomer, isForSale, paidEnough, checkValue>>
<<event>> GrapePlanted(grapeUpc: uint256)
<<event>> JuiceCreated(juiceUpc: uint256)
.
.
.
<<mofifier>> verifyCaller(_address:address)
<<modifier>> paidEnough(_price:uint256)
.
.
.
constructor()
kill() <<onlyOwner)
.
.
.

Figure 5.4: UML Class diagram, based on .sol files of smart contracts of Supply Chain Man-

agement DApp System of Grapes Juice

«person»
FarmerRole

«person»
FarmerRole

«person»
FoodInspectorRole

«person»
FoodInspectorRole

«person»
GrapesJuiceProducerRole

«person»
GrapesJuiceProducerRole

«person»
DistributorRole

«person»
DistributorRole

«person»
CustomerRole

«person»
CustomerRole

«contract»
SupplyChainBase

«contract»
SupplyChainBase

grapePlantItem()

GrapePlanted event «internal-msg»

grapeHarvestItem()

GrapeHarvested event «internal-msg»

grapeAuditItem()

GrapeAudited event «internal-msg»

grapeProcessItem()

GrapeProcessed event «internal-msg»

juiceCreateItem()

JuiceCreated event «internal-msg»

juiceBlendItem()

JuiceBlended event «internal-msg»

juiceProduceItem()

JuiceProduced event «internal-msg»

juiceCertifyItem()

JuiceCertified event «internal-msg»

juicePackItem()

JuicePacked event «internal-msg»

juiceSellItem()

JuiceForSale event «internal-msg»

juiceBuyItem()

Transfer money to producer «trans-msg»

JuicePurchased event «internal-msg»

Figure 5.5: Sequence Diagram of the grapes fruit juice supply chain management DApp system

61

Chapter 5: Case Study Implementation of Proposed Framework

5.7.1.4 Write Series of Acceptance Test Cases

After the generation of test cases a complete implementation process was performed, this process

was carried out using the pair programming method. Different JavaScript and solidity files are

created .JS and .sol extensions.

it(’can the Farmer harvest a Grape’, async function () {

this.timeout(20000);

let upc = 1;

let ownerID = acc_farm_0;

let originFarmerID = acc_farm_0;

let harvestNotes = "bordo wine";

let itemState = 1;

let harvest = await instance.grapeHarvestItem(upc, harvestNotes, { from:

acc_farm_0 });

let res1 = await instance.fetchGrapeItemBufferOne.call(upc);

let res2 = await instance.fetchGrapeItemBufferTwo.call(upc);

assert.equal(res1.upc, upc, ’Error: Invalid item UPC’);

assert.equal(res1.ownerID, ownerID, ’Error: Missing or Invalid ownerID’);

assert.equal(res1.originFarmerID, originFarmerID, ’Error: Missing or Invalid

originFarmerID’);

assert.equal(res2.harvestNotes, harvestNotes, ’Error: Missing or Invalid

harvestNotes’);

assert.equal(res2.itemState, itemState, ’Error: Invalid item State’);

truffleAssert.eventEmitted(harvest, ’GrapeHarvested’);

});

it(’can the Inspector audit a Grape’, async function () {

this.timeout(20000);

let upc = 1;

let ownerID = acc_farm_0;

let originFarmerID = acc_farm_0;

let auditNotes = "ISO9002 audit passed";

let itemState = 2;

let audited = await instance.grapeAuditItem(upc, auditNotes, { from: acc_insp_0 });

let res1 = await instance.fetchGrapeItemBufferOne.call(upc);

let res2 = await instance.fetchGrapeItemBufferTwo.call(upc);

assert.equal(res1.upc, upc, ’Error: Invalid item UPC’);

assert.equal(res1.ownerID, ownerID, ’Error: Missing or Invalid ownerID’);

62

Chapter 5: Case Study Implementation of Proposed Framework

assert.equal(res1.originFarmerID, originFarmerID, ’Error: Missing or Invalid

originFarmerID’);

assert.equal(res2.auditNotes, auditNotes, ’Error: Missing or Invalid

auditNotes’);

assert.equal(res2.itemState, itemState, ’Error: Invalid item State’);

truffleAssert.eventEmitted(audited, ’GrapeAudited’);

});

it(’can the Inspector certify a Juice’, async function () {

this.timeout(20000);

let juiceUpc = 1;

let certifyNotes = "ISO9002 Certified";

let ownerID = acc_prod_0;

let itemState = 3;

let certified = await instance.juiceCertifyItem(juiceUpc, certifyNotes, { from:

acc_insp_0 });

let res1 = await instance.fetchJuiceItemBufferOne.call(juiceUpc);

assert.equal(res1.upc, juiceUpc, ’Error: Invalid item UPC’);

assert.equal(res1.ownerID, ownerID, ’Error: Missing or Invalid ownerID’);

assert.equal(res1.certifyNotes, certifyNotes, ’Error: Missing or Invalid

certifyNotes’);

assert.equal(res1.itemState, itemState, ’Error: Invalid item State’);

truffleAssert.eventEmitted(certified, ’JuiceCertified’);

});

5.7.1.5 Implementation and Evaluation

After the generation of test cases a complete implementation process was performed, this process

was carried out using the pair programming method. Different JavaScript and solidity files are

created with .JS and .sol extensions.

pragma solidity >=0.6.00;

/// Provides basic authorization control

/// Contains required functions that establish owner and the transfer of ownership.

contract Ownable {

address private origOwner;

// Define an Event

event TransferOwnership(address indexed oldOwner, address indexed newOwner);

63

Chapter 5: Case Study Implementation of Proposed Framework

/// Assign the contract to an owner

constructor() public {

origOwner = msg.sender;

emit TransferOwnership(address(0), origOwner); }

/// Look up the address of the owner

function owner() public view returns (address) {

return origOwner; }

/// Check if the calling address is the owner of the contract

function isOwner() public view returns (bool) {

return msg.sender == origOwner; }

/// Define a function modifier ’onlyOwner’

modifier onlyOwner() {

require(isOwner());

_; }

/// Define a function to renounce ownerhip

function renounceOwnership() external onlyOwner {

emit TransferOwnership(origOwner, address(0));

origOwner = address(0);}

/// Define a public function to transfer ownership

function transferOwnership(address newOwner) external onlyOwner {

_transferOwnership(newOwner);}

/// Define an internal function to transfer ownership

function _transferOwnership(address newOwner) internal {

require(newOwner != address(0));

emit TransferOwnership(origOwner, newOwner);

origOwner = newOwner; }}

pragma solidity >=0.6.00;

// Based on openzeppelin-solidity@2.5.0:

openzeppelin-solidity\contracts\access\Roles.sol

/**

* @title Roles

* @dev Library for managing addresses assigned to a Role.

*/

library Roles {

struct Role {

mapping(address => bool) bearer;}

/**

64

Chapter 5: Case Study Implementation of Proposed Framework

* @dev Give an account access to this role.

*/

function add(Role storage role, address account) internal {

require(!has(role, account), "Roles: account already has role");

role.bearer[account] = true;}

/**

* @dev Remove an account’s access to this role.

*/

function remove(Role storage role, address account) internal {

require(has(role, account), "Roles: account does not have role");

role.bearer[account] = false;}

/**

* @dev Check if an account has this role.

* @return bool

*/

function has(Role storage role, address account)

internal

view

returns (bool)

{

require(account != address(0), "Roles: account is the zero address");

return role.bearer[account];

}}

5.7.1.6 ATDD

For Acceptance Test Driven Development (ATDD) a review meeting was arranged of the de-

velopment team with project representatives who can verify and validate the developed code,

under the prioritized user stories and the results of test cases performed earlier. A signal or

reminder was sent with the acceptance test-driven development meeting to the planning team

for a check on the time taken and estimated time of project iterations.

5.7.2 App System Development

Release Planning, CRC modeling, UML modeling, writing a series of Test cases, Implementa-

tion, and Evaluation with ATDD are the same steps in App system development that have been

65

Chapter 5: Case Study Implementation of Proposed Framework

followed and carried out in the Smart Contract Development sub-system. The steps that are

different from the smart contract development sub-system phase are discussed as follows:

5.7.2.1 UI, Design Modules and Messages

For user Interface design front end JavaScript based technology i.e., Vue.JS with HTML, CSS,

and JavaScript. Screenshots of the front end through which the end user will interact with the

grapes juice supply chain DApp system are shown in Figure 5.6 and 5.7:

Figure 5.6: User Interface of Grapes Fruit Supply chain DApp System - Register New User with

Order Details

Figure 5.7: User Interface of Grapes Fruit Supply chain DApp System – Farm and Product

Details

66

Chapter 5: Case Study Implementation of Proposed Framework

5.7.2.2 System Integration

System integration is performed by keeping in mind the complexity of smart contracts with

front-end modules of the DApp system. The connection of the right module with the right

smart contracts is considered a priority.

5.7.2.3 Security Assessment

At several stages in the development phases and sections of the DApp system, different security

assessment practices are followed to maintain security aspects in the development process such

as OWASP proactive controls.

5.7.2.4 Gas Optimization

For careful and efficient use of ETH, in smart contracts writing, different recommended patterns

such as limited modifiers, limit external calls, and event logs, etc., are followed for efficient use

of ETH as gas in transactions of the DApp system.

5.8 Maintenance

After system integration small release is initiated and the DApp system is updated with a new

release after customer approval in an acceptance testing meeting, after 2 to 3 iterations another

SMART analysis is performed to results and compare them with the estimated objectives.

5.9 Case Study Concluding Remarks

In this validation report a supply chain DApp system for grapes juice life cycle from production

to sales and distribution is developed, using Ethereum-based smart contracts. In this whole

process a proposed SMART agile-based framework is followed, every phase of development is

carried out using the proposed framework and the result of using the proposed framework is

satisfactory for efficient and quality-oriented development of DApps, some of the noticeable

recommendations that are quite helpful in the development lifecycle of DApps for efficiency and

quality are as follows:

67

Chapter 5: Case Study Implementation of Proposed Framework

• The recommended SMART analysis of project goals is specific which prevents the misun-

derstandings created by the short goals statements.

• Prioritizing the user stories is used in informal and formal UML modeling and the creation

of test cases.

• Informal or CRC modeling before formal UML modeling is effective in eliminating the

complexity of formal UML class, sequence, or other types of UML diagrams.

• Recommended Pair programming reduces the cost of debugging at the time of deployment

and improves the quality of code with continuous reviews.

• Notify project velocity to the planning team after every iteration to support the time

estimation for the next iterations.

5.10 Summary

Complete implementation details of the proposed framework are described in this chapter.

Vision, Design and implementation, and Deployment sections and their relevant phases and

development of sub-systems are discussed in this chapter on practical experience.

68

Chapter 6

Results and Analysis

6.1 Introduction

The results and Analysis chapter of this thesis document is an integral part because it consists

of two important and decisive elements of the thesis “Results” and “Analysis”. The results are

all about the findings of the experimental implementation and validation process. Whereas

analysis is the observations on the findings of the validation process represented through visual

presentations like charts. This chapter possesses results and analysis parts based on the findings

of the questionnaire survey validation process in which analysis is carried out using charts or

graphs generated based on the collected data in the survey and the second one is a complete

validation report generated by software house based on a case study. A comparison of the

previous studies with the results and analysis of the proposed framework is also drawn in this

section.

6.2 Analysis of Questionnaire Survey

A questionnaire survey is conducted to validate the claims of the proposed framework for effi-

cient and quality-oriented development of DApps. In this survey, different types of questions

are shared with professionals of the software industry, who have sound knowledge of blockchain

and its related technologies such as smart contracts-based DApps and its applications in sev-

eral business domains i.e., finance, gaming industry, and supply chain, front and backend de-

velopment. Industry professionals shared responses are valuable insights to analyze how the

proposed framework can be effective in providing simplicity, agile testing, and efficient and

69

Chapter 6: Results and Analysis

quality-oriented development of DApps.

In this analysis chapter, insights from responses of software industry professionals are analyzed

to draw valuable conclusions as follows:

6.2.1 Challenges in Agile SDLC of DApps

The main challenges identified by software industry professionals in response to the survey

are Unspecified goals, Delays in feedback to iterations, Simplicity in design, requirements, and

other phases of SDLC, Delay in response to bug detection, Inefficient consumption of resources,

Lack of practices for quality-oriented development, and continuously changing and evolving

requirements. These challenges ignite the need for software development standards to mitigate

these identified challenges, graphically illustrated in Figure 6.1.

Evolving requirements
0.7%
Resource consumption.
15.2%

Delay in bug detection.
15.9%

Quality-oriented dev.
18.1%

Goals are not specified.
19.6%

Feedback delays.
19.6%

Simplicity in SDLC
10.1%

Figure 6.1: Identified Challenges in Agile SDLC of DApps

6.2.2 In practice Agile Methodologies for the Development of DApps

The most in-practice agile methodologies and practices for the development of DApps and other

traditional DApps are Scrum, XP, Kanban, Feature Driven Development (FDD), Lean Software

Development (LSD), and Crystal, as shown in Figure 6.2. It is clear in Figure 6.2 that most of

the agile methodologies are not single but in groups of 2 or 3 and have a hybrid approach to

practice agile methodologies in SDLC.

70

Chapter 6: Results and Analysis

Figure 6.2: In practice Agile Methodologies for the Development of DApps and Software

6.2.3 Requirements Prioritization in the Development of DApps

Software industry professionals’ response indicates that the practice of requirements prioriti-

zation in the development of DApps is essential to comprehend them. The average value of

survey responses is 3.93* out of 5.0, with a Standard Deviation (SD) value of 0.84. These val-

ues support the practice of requirements prioritization in SDLC of DApps, the complete graph

is shown in Figure 6.3.

Moreover, requirements prioritization is an effective approach for efficient agile-based develop-

ment of DApps, this statement is also validated through the survey with an average value of

4.28* out of 5.0, with an SD value of 0.83, a complete graphical representation of these responses

is in figure 6.4.

*Value 1 (strongly disagree/not effective/not essential/not crucial) -to- Value 5 (strongly agree/highly

effective/highly essential/highly crucial).

71

Chapter 6: Results and Analysis

Figure 6.3: Results of how much essential prioritization of requirements in SDLC of DApps

Figure 6.4: Graphical representation of survey results to show the effectiveness of prioritization

of requirements for efficient agile development of DApps

72

Chapter 6: Results and Analysis

6.2.4 Define Project goals using SMART Analysis

Using SMART analysis and objectives to define and specify the goals of the project is an effective

approach in the agile development of DApps, identified through survey responses of software

industry professionals. The average value of responses to this statement of the question is 4.01*

out of 5.0, with an SD value of 0.79. These responses and values are motivation to define

and specify project goals using the practice of SMART analysis, a complete analytical graph is

shown in Figure 6.5.

Figure 6.5: Results to validate the effectiveness of defining and specifying goals of the project

using SMART analysis

6.2.5 Use of CRC Cards in the Design Phase of Agile DApp Development

The use of the CRC cards modeling approach for better comprehension of the use of stories-based

requirements to design complex UML diagrams such as class diagrams in agile development of

DApps, is identified as an effective approach with the support of results and analysis of survey

responses. The average value of these responses is 3.92* out of 5.0, with an SD value of 0.81, a

complete graphical analysis of survey responses is shown in Figure 6.6.

73

Chapter 6: Results and Analysis

Figure 6.6: Analytical graph of survey responses to verify the effectiveness of CRC cards in the

comprehension of UML diagrams in the agile development of DApps

6.2.6 Influence of Pair Programming in Code Quality DApp Systems

Responses of software industry professionals validate that code quality can be influenced by pair

programming practice of XP methodology in the agile development of DApps. An analytical

graph of responses is shown in Figure 6.7, to assure the validity of this question statement.

74

Chapter 6: Results and Analysis

Figure 6.7: Analytical graph to validate the influence of pair programming in code quality of

agile development of DApps.

6.2.7 ATDD to Validate and Acceptance Phase in Agile Development of

DApps

The practice of ATDD to enhance the validation and acceptance criteria is a recognized approach

in the agile development of DApps, validated through the results and analysis of responses to

surveys shared with software industry professionals. The average values of responses are 4.08*

out of 5.0, with an SD value of 0.72, a complete analysis of this question statement in graphical

representation is shown in Figure 6.8.

75

Chapter 6: Results and Analysis

Figure 6.8: Analytical graph to verify that ATDD enhances the validation and acceptance in

agile development of DApps.

6.2.8 Simple Design Leads to Efficient Design and Requirements Elicitation

in Agile Development of DApps

Survey responses and insights from software industry professionals agree and encourage the

use of a simple design that leads to efficient design and requirements elicitation. The average

response rate or value on this statement is 4.02* out of 5.0, with an SD value of 0.87, a complete

graphical representation of survey responses is shown in Figure 6.9.

76

Chapter 6: Results and Analysis

Figure 6.9: Graphical representation of responses validate that simple design leads to efficient

design and requirements elicitation.

6.2.9 Agile Practices for Quality-oriented Development of DApps

Survey response results identify that Testing practices i.e., TDD and ATDD, CRC modeling,

Prioritization of requirements, and small and incremental releases are crucial agile practices for

quality-oriented development of DApps. A graphical representation of the survey responses is

shown in Figure 6.10, to analyze the survey responses on the agile practices for quality-oriented

development of DApps.

77

Chapter 6: Results and Analysis

Figure 6.10: Identified and validated through survey crucial agile practices for quality-oriented

development of DApps.

6.3 Central Tendencies of Survey Responses on Statements of

Questions

Different questions are shared in questionnaire survey form to validate the proposed framework,

each question received different responses after statistical analysis, and values are collected of

respective question statements and shown in table 6.1.

78

Chapter 6: Results and Analysis

Central tendencies

Questionnaire Statements

A
ve

ra
ge

St
an

da
rd

D
ev

ia
ti

on
(S

D
)

M
in

M
ax

M
od

e

1. Define project goals using SMART analysis

are efficient.
4.01 0.79 1 5 4

2. Prioritization of DApp system requirements

is essential for comprehension.
3.93 0.84 2 5 4

3. CRC cards in the comprehension of UML

diagrams are efficient.
3.92 0.81 1 5 4

4. Review meetings conducted at the end of each

iteration in the Agile are crucial.
3.94 1.11 1 5 4

5. Acceptance Test Driven Development

(ATDD) enhances the validation and acceptance

criteria.

4.08 0.72 2 5 4

6. Prioritizing user story-based requirements

provides efficient development of DApps.
4.28 0.72 2 5 4

7. SMART objectives for efficient project goals

specification are comprehensive.
3.11 0.56 1 4 3

8. A simple design method can result in the ef-

ficient design and requirements elicitation phase

of the development of DApps.

4.02 0.87 1 5 4

Table 6.1: Central tendencies of survey responses on statements of questions

6.4 Comparison of Proposed Framework with Related Studies

Several research studies and proposed frameworks on BOSE and agile methodologies for the

development of DApps are analyzed and a comparison is drawn with the proposed framework to

79

Chapter 6: Results and Analysis

ensure the validity. Results of this comparative analysis are shown in Table 6.2, where proposed

BOSE approaches and attributes of the proposed framework are compared with related studies

already carried out in this area of research.

BOSE Approaches and Attributes

BOSE Framework

C
R

C
M

od
el

in
g

P
ri

or
it

iz
e

U
se

r
St

or
ie

s

P
ai

r
P

ro
gr

am
m

in
g

R
ev

ie
w

M
ee

ti
ng

s

SM
A

R
T

A
na

ly
si

s

P
ro

je
ct

V
el

oc
it

y

R
es

ou
rc

e
C

on
su

m
pt

io
n

A
T

D
D

Se
cu

ri
ty

A
ss

es
sm

en
t

AgilePlus [22] X ✓ X ✓ X X ✓ X ✓

ABCDE [4] [48] X X ✓ ✓ X X ✓ X ✓

Test Oriented Enticement (TOE) [64] [48] X ✓ X X X X X X X

XP and Spike Solution (SS) [65] [48] X X ✓ X X X X X ✓

The Proposed Framework ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6.2: Comparison of the proposed framework with related studies in this area of research

6.5 Summary

In this chapter, the proposed framework is analyzed with the help of results obtained from a

questionnaire survey and case study conducted in collaboration with partners in the software

industry. All results of the questionnaire survey are represented graphically and analyzed sta-

tistically, whereas a detailed report generated with the help of a partner software house is also

included in this chapter. In the end, a comparison of the proposed framework is also drawn

with related studies in this area of research.

80

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Quality and efficient use of resources is always crucial in the traditional software development

life cycle, in blockchain-enabled smart contracts-based DApps systems both concerns have be-

come top priorities. BOSE provides solutions to these challenges, in BOSE software engineering

approaches are proposed and practiced for efficient and quality-oriented development of DApps.

In this research, an agile-based hybrid framework, with SMART analysis of project goals, has

been introduced. In this framework, appropriate and effective agile-based approaches are used

for simplicity and agile testing that leads to efficient resource consumption with quality-oriented

development of DApps. The proposed framework is also introduced to software industry pro-

fessionals in two ways i.e., questionnaire survey and case study implementation, to validate

the approaches that have been proposed in this research. The analysis of the results of the

questionnaire survey identified that all proposed approaches are effective in the efficient and

quality-oriented development of DApps. All responses are statistically analyzed and a good

average of responses from software industry professionals identified that the proposed frame-

work follows agile-based approaches for efficient resource consumption and management with

quality. Besides this questionnaire survey, a case study for the development of a supply chain

management DApps also validates the practical implementations of the proposed framework. A

comparison of the proposed framework with practice frameworks from related literature verifies

the exclusiveness of this research.

81

Chapter 7: Conclusion and Future Work

7.2 Future Work

A hybrid agile framework with SMART analysis of project goals will help to mitigate the

challenges of efficient resource consumption and management with quality-oriented development

of DApps. Development of AI-enabled tools for integration of smart contracts with App system

in DApps and for SMART analysis and comparison of project goals to streamline the changing

and evolving requirements with project goal statements can improve the efficiency of DApps

development with quality. In this global environment, where project teams are located in

different geological locations risks of improper requirements elicitation, on-time feedback, and

customer collaborations with delays in bug detection and response these factors can lead to

inefficient resource consumption, especially in blockchain-enabled smart contracts-based DApps

where resources are costly, are open areas of research. Furthermore, the practice of the proposed

framework in this research in collaboration with industry will refine the framework.

82

References

[1] Kimani, D., Adams, K., Attah-Boakye, R., Ullah, S., Frecknall-Hughes, J., & Kim, J. (2020).

Blockchain, business and the fourth industrial revolution: Whence, whither, wherefore and how?

Technological Forecasting and Social Change, 161, 120254.

[2] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

[3]Wood, D.D. (2014). ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANS-

ACTION LEDGER.

[4] Marchesi, L., Marchesi, M., & Tonelli, R. (2019). ABCDE - Agile Block Chain Dapp

Engineering. ArXiv, abs/1912.09074.

[5] Tikhomirov, S. (2017). Ethereum: State of Knowledge and Research Perspectives. Founda-

tions and Practice of Security.

[6] Fenu, G., Marchesi, L., Marchesi, M., & Tonelli, R. (2018). The ICO phenomenon and

its relationships with ethereum smart contract environment. 2018 International Workshop on

Blockchain Oriented Software Engineering (IWBOSE), 26-32.

[7] Mahmoud, N., Aly, A.A., & Abdelkader, H. (2022). Enhancing Blockchain-based Ride-

Sharing Services using IPFS. Intell. Syst. Appl., 16, 200135.

[8] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., ...

& Thomas, D. (2001). Manifesto for agile software development.

[9] Santos, W. (2016, June). Towards a better understanding of simplicity in agile software

development projects. In Proceedings of the 20th International Conference on Evaluation and

Assessment in Software Engineering (pp. 1-4).

[10] Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2004, January). How extreme does extreme

programming have to be? Adapting XP practices to large-scale projects. In 37th Annual Hawaii

International Conference on System Sciences, 2004. Proceedings of the (pp. 10-pp). IEEE.

83

REFERENCES

[11] Cauevic, A., Punnekkat, S., & Sundmark, D. (2012, September). Quality of testing in test

driven development. In 2012 Eighth International Conference on the Quality of Information

and Communications Technology (pp. 266-271). IEEE.

[12] Burris, J. W. (2017, April). Test-Driven Development for Parallel Applications. In 2017

Second International Conference on Information Systems Engineering (ICISE) (pp. 27-31).

IEEE.

[13] Guerra, E. (2012, October). Fundamental test driven development step patterns. In Pro-

ceedings of the 19th Conference on Pattern Languages of Programs (pp. 1-15).

[14] Brataas, G., Hanssen, G. K., & Ræder, G. (2018). Towards agile scalability engineering.

In Agile Processes in Software Engineering and Extreme Programming: 19th International

Conference, XP 2018, Porto, Portugal, May 21–25, 2018, Proceedings 19 (pp. 248-255). Springer

International Publishing.

[15] Santos, W. B., Cunha, J. A. O., Moura, H., & Margaria, T. (2017, August). Towards a

theory of simplicity in agile software development: A qualitative study. In 2017 43rd Euromicro

Conference on Software Engineering and Advanced Applications (SEAA) (pp. 40-43). IEEE.

[16] Khan, R., Srivastava, A. K., & Pandey, D. (2016, November). Agile approach for Software

Testing process. In 2016 International Conference System Modeling & Advancement in Research

Trends (SMART) (pp. 3-6). IEEE.

[17] Guşeilă, L. G., Bratu, D. V., & Moraru, S. A. (2019, August). Continuous testing in the de-

velopment of iot applications. In 2019 International Conference on Sensing and Instrumentation

in IoT Era (ISSI) (pp. 1-6). IEEE.

[18] Hamsini, R., & Smitha, G. R. Agile Development Methodology and Testing for Mobile

Applications-A Survey. International Journal of New Technology and Research, 2(9), 263424.

[19] Talby, D., Keren, A., Hazzan, O., & Dubinsky, Y. (2006). Agile software testing in a

large-scale project. IEEE software, 23(4), 30-37.

[20] Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley Professional.

[21] Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development

methods: Review and analysis. arXiv preprint arXiv:1709.08439.

[22] Farooq, M. S., Kalim, Z., Qureshi, J. N., Rasheed, S., & Abid, A. (2022). A blockchain-

based framework for distributed agile software development. IEEE Access, 10, 17977-17995.

84

REFERENCES

[23] Nofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017). Blockchain. Business & Informa-

tion Systems Engineering, 59, 183-187.

[24] Natarajan, H., Krause, S., & Gradstein, H. (2017). Distributed ledger technology and

blockchain.

[25] Wang, W., Lumineau, F., & Schilke, O. (2022). Blockchains: Strategic implications for

contracting, trust, and organizational design. Cambridge University Press.

[26] Capocasale, V., & Perboli, G. (2022). Standardizing smart contracts. IEEE Access, 10,

91203-91212.

[27] Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. (2020). An

overview on smart contracts: Challenges, advances and platforms. Future Generation Computer

Systems, 105, 475-491.

[28] Antonopoulos, A. M., & Wood, G. Mastering Ethereum: Building Smart Contracts and

Dapps.

[29] Zheng, P., Jiang, Z., Wu, J., & Zheng, Z. (2023). Blockchain-based Decentralized Applica-

tion: A Survey. IEEE Open Journal of the Computer Society.

[30] Akhtar, A., Bakhtawar, B., & Akhtar, S. (2022). Extreme Programming Vs Scrum: A

Comparison Of Agile Models. International Journal of Technology, Innovation and Management

(IJTIM), 2(2), 80-96.

[31] Santos, W. B. (2018). Simplicity in agile software development.

[32] Crispin, L., & Gregory, J. (2009). Agile testing: A practical guide for testers and agile

teams. Pearson Education.

[33] Puleio, M. (2006, July). How not to do agile testing. In AGILE 2006 (AGILE’06) (pp.

7-pp). IEEE.

[34] Mohanty, H., Mohanty, J. R., & Balakrishnan, A. (Eds.). (2017). Trends in software

testing. Springer Singapore.

[35] Ibba, S. (2019). Agile methodologies and blockchain development.

[36] Malik, M. U., Chaudhry, N. M., & Malik, K. S. (2013). Evaluation of efficient require-

ment engineering techniques in agile software development. International Journal of Computer

Applications, 83(3).

85

REFERENCES

[37] Butt, S. A., Misra, S., Anjum, M. W., & Hassan, S. A. (2021). Agile project develop-

ment issues during COVID-19. In Lean and Agile Software Development: 5th International

Conference, LASD 2021, Virtual Event, January 23, 2021, Proceedings 5 (pp. 59-70). Springer

International Publishing.

[38] Lee, G., & Xia, W. (2010). Toward agile: an integrated analysis of quantitative and

qualitative field data on software development agility. MIS quarterly, 34(1), 87-114.

[39] Amler, H., Eckey, L., Faust, S., Kaiser, M., Sandner, P., & Schlosser, B. (2021, September).

Defi-ning defi: Challenges & pathway. In 2021 3rd Conference on Blockchain Research &

Applications for Innovative Networks and Services (BRAINS) (pp. 181-184). IEEE.

[40] Pierro, G. A., & Tonelli, R. (2022, March). Can solana be the solution to the blockchain

scalability problem?. In 2022 IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER) (pp. 1219-1226). IEEE.

[41] Saingre, D., Ledoux, T., & Menaud, J. M. (2022). Measuring performances and footprint

of blockchains with BCTMark: a case study on Ethereum smart contracts energy consumption.

Cluster Computing, 25(4), 2819-2837.

[42] Alharby, M., & Van Moorsel, A. (2017). Blockchain-based smart contracts: A systematic

mapping study. arXiv preprint arXiv:1710.06372.

[43] Scherer, M. (2017). Performance and scalability of blockchain networks and smart contracts.

[44] Cheng, M., Chong, H. Y., & Xu, Y. (2023). Blockchain-smart contracts for sustainable

project performance: bibliometric and content analyses. Environment, Development and Sus-

tainability, 1-24.

[45] Porru, S., Pinna, A., Marchesi, M., & Tonelli, R. (2017, May). Blockchain-oriented software

engineering: challenges and new directions. In 2017 IEEE/ACM 39th International Conference

on Software Engineering Companion (ICSE-C) (pp. 169-171). IEEE.

[46] Faruk, M. J. H., Subramanian, S., Shahriar, H., Valero, M., Li, X., & Tasnim, M. (2022,

May). Software engineering process and methodology in blockchain-oriented software devel-

opment: A systematic study. In 2022 IEEE/ACIS 20th International Conference on Software

Engineering Research, Management and Applications (SERA) (pp. 120-127). IEEE.

[47] Reddivari, S., & Wilson, A. (2022, August). Blockchain-Oriented Requirements Engineer-

ing: New Directions. In 2022 IEEE 23rd International Conference on Information Reuse and

Integration for Data Science (IRI) (pp. 118-123). IEEE.

86

REFERENCES

[48] Farooq, M. S., Ahmed, M., & Emran, M. (2022). A survey on blockchain acquainted soft-

ware requirements engineering: model, opportunities, challenges, and future directions. IEEE

Access, 10, 48193-48228.

[49] Hoda, R., Salleh, N., & Grundy, J. (2018). The rise and evolution of agile software devel-

opment. IEEE software, 35(5), 58-63.

[50] Fahmideh, M., Grundy, J., Ahmad, A., Shen, J., Yan, J., Mougouei, D., ... & Abedin,

B. (2022). Engineering Blockchain-based Software Systems: Foundations, Survey, and Future

Directions. ACM Computing Surveys, 55(6), 1-44.

[51] SK, P. N. (2022, March). Secure Metadata Curating the Agile Software Development

Process and its Need for Blockchain Storage. In 2022 International Conference on Electronics

and Renewable Systems (ICEARS) (pp. 958-963). IEEE.

[52] Janzen, D., & Saiedian, H. (2005). Test-driven development concepts, taxonomy, and future

direction. Computer, 38(9), 43-50.

[53] George, B., & Williams, L. (2004). A structured experiment of test-driven development.

Information and software Technology, 46(5), 337-342.

[54] Nanthaamornphong, A., & Carver, J. C. (2017). Test-Driven Development in scientific

software: a survey. Software Quality Journal, 25, 343-372.

[55] Spendier, T. (2023). Integration of Web Front-End Testing in an Acceptance Test Automa-

tion Framework for Distributed Systems within an Emergency Center Environment (Doctoral

dissertation, Wien).

[56] Afrianto, I., Heryandi, A., Finandhita, A., & Atin, S. (2021). User acceptance test for digital

signature application in academic domain to support the covid-19 work from home program.

IJISTECH (International Journal of Information System and Technology), 5(3), 270-280.

[57] Marchesi, M., & Succi, G. (2003). Extreme programming and agile processes in software

engineering. Proceedings of XP.

[58] Extreme Programming. (2023). Frequent small releases.

Retrieved from http://www.extremeprogramming.org/rules/releaseoften.html

[59] Wells, D. (1999). Project Velocity - Extreme Programming [SNIPPET]. ExtremeProgram-

ming.org. Retrieved from http://www.extremeprogramming.org/velocity.html

87

REFERENCES

[60] Churcher, N., & Cerecke, C. (1996, November). groupCRC: Exploring CSCW support

for software engineering. In Proceedings Sixth Australian Conference on Computer-Human

Interaction (pp. 62-68). IEEE.

[61] Reenskaug, T., Wold, P., & Lehne, O. A. (1996). Working with objects: the OOram

software engineering method (pp. I-XXI). Greenwich: Manning.

[62] Ogbeiwi, O. (2017). Why written objectives need to be really SMART. British Journal of

Healthcare Management, 23(7), 324-336.

[63] Bjerke, M. B., & Renger, R. (2017). Being smart about writing SMART objectives. Eval-

uation and program planning, 61, 125-127.

[64] Yilmaz, M., Tasel, S., Tuzun, E., Gulec, U., O’Connor, R. V., & Clarke, P. M. (2019).

Applying blockchain to improve the integrity of the software development process. In Systems,

Software and Services Process Improvement: 26th European Conference, EuroSPI 2019, Ed-

inburgh, UK, September 18–20, 2019, Proceedings 26 (pp. 260-271). Springer International

Publishing.

[65] Marchesi, M., Marchesi, L., & Tonelli, R. (2018, October). An agile software engineering

method to design blockchain applications. In Proceedings of the 14th Central and Eastern

European Software Engineering Conference Russia (pp. 1-8).

[66] Mannion, M., & Keepence, B. (1995). SMART requirements. ACM SIGSOFT Software

Engineering Notes, 20(2), 42-47.

88

Annex A

Military College of Signals, NUST

Department of Computer Software Engineering

MSSE Thesis | Proposed Framework Validation

Questionnaire Survey

"Agile-based Approach for Efficient and Quality-oriented Development of DApps."

Section 1 - Purpose of Survey

Thank you for participating in this survey to validate my research on the topic “Agile-Based

Approaches for Efficient and Quality-oriented Development of Blockchain-enabled

Smart Contracts based Decentralized Applications (DApps)”. The primary objective

of this survey is to gather insights and perspectives from industry professionals, developers,

and stakeholders involved in traditional software as well as DApp development regarding the

efficiency and quality aspects of utilizing agile methodologies. All responses will be handled

with confidentiality and used solely for academic research purposes with anonymity.

89

ANNEX A

Note
Note1. Define Goals of

the Project

2. Identify the Actors

3. User Stories (US) and UML
Use case

5.
 S

p
lit

 t
h

e
S

ys
te

m

5.a.a. Release Planning

5.a.b. CRC Modeling

5.b.a. Release Planning

5.b.b. CRC Modeling

5.a.c. UML Modeling

5.a.d. Define Messages
5.a.e. Define Data Structure

5.a.f. Define Internal Functions and Modifiers
5.a.g. Security Assessment

5.b.c. UML Modeling

5.b.d. UI Design
5.b.e. Design Modules, Messages, DB

5.b.f. Security Assessment

5.a.h. Write Series of Tests
5.a.i. Implementation and Evaluation

5.a.j. ATDD
5.a.k. Security Assessment

5.b.g. Write Series of Tests
5.b.h. Implementation and Evaluation

5.b.i. ATDD
5.b.j. Security Assessment

6. S
ystem

 In
teg

ratio
n

7. Small Releases
and Acceptance Activity

8. Update on DApp
System

9. Maintenance and Final
System Deployment

Prioritize user
stories Project Velocity

Project Velocity

Inner Iterations in the development of App system

Inner Iterations in the development of SC

b
. A

p
p

 S
ys

te
m

 D
ev

el
o

p
m

en
t

a.
 S

m
ar

t
C

o
n

tr
ac

t
(S

C
)

D
ev

el
o

p
m

en
t B.X. Release Planning and

Informal Design Phase
B.Y. Formal Design Phase B.Z. Testing and Implementation Phase

B. Design and Implementation

A. Vision

C
u

sto
m

er A
p

p
ro

val

C. Maintenance

Outer Iterations after 2 or 3 inner incremental updates.

Review Meeting

Review Meeting

Review Meeting

4. SMART Analysis
Prioritize user

stories

SMART ABCDE - Framework for Efficient and Quality Oriented Development of DApps

Section 02 - Respondent Information and Demographic

1. What is your current role in the projects of the software development industry?

• Blockchain Developer

• Node JS developer

• Full Stack Developer (MERN, MEAN Stack, etc.)

• Project Manager

• System Analyst

• Software Quality Assurance (SQA) Engineer

• Other (please specify)

2. How many years of experience do you have in the software development industry, mainly

in the development of DApps?

• Less than 1 year

• 1-3 years

• 3-5 years

90

ANNEX A

• More than 5 years

3. In which business domain does your software organization operate?

4. On a scale of 1 to 5, how familiar are you with Blockchain technology and concepts?

• 1 - Not at all familiar

• 2 - Somewhat familiar

• 3 - Moderately familiar

• 4 - Familiar

• 5 - Extremely familiar

5. Rate your level of experience with agile methodologies in software development.

• No experience

• Beginner

• Intermediate

• Advanced

• Expert

Section 03 - In practice Agile Development Methodologies and SMART anal-

ysis of the project goal

6. What agile methodology does your organization currently use in software applications

development projects?

• Scrum

• Kanban

• Extreme Programming (XP)

• Lean Software Development (LSD)

• Crystal

• Feature Driven Development (FDD)

• Other (please specify)

91

ANNEX A

7. How satisfied are you with agile methodologies at your organization for the development

of DApps?

• Not Satisfied

• Slightly Satisfied

• Neither satisfies nor dissatisfied

• Satisfied

• Highly Satisfied

8. What are the main challenges you face in the software development lifecycle even with

the practice of agile methodologies?

• Project goals are not specified for development teams.

• Feedback delays on software releases.

• Inefficient resource allocation.

• Simplicity in UML design and communication.

• Delay in software bug detection and response.

• Quality-oriented development.

• Other (Please Specify)

Section 04 - Evaluation of the Agile-Based Proposed Methodology and SMART

analysis of the goal for the efficient and quality-oriented development of DApps

Section 4.1 - Simplicity of the Proposed Methodology for the Development of

DApps.

- Prioritizing the requirements

9. In your opinion, how essential is it to comprehend and prioritize DApp system require-

ments for the success of an Agile-driven approach?

• Extremely essential

• Very essential

• Moderately essential

• Slightly essential

• Not essential at all

92

ANNEX A

- Analyze the project goal using SMART analysis

10. How effective, do you think of defining project goals using SMART analysis to simplify

the agile development of DApps?

• Extremely effective

• Very effective

• Somewhat effective

• No very effective

• Not at all effective

- CRC Modeling

11. What do you think, how effective are CRC cards in the comprehension of UML diagrams

in agile DApp development?

• Extremely effective

• Effective

• Somewhat effective

• Slightly effective

• Not effective at all

- Small and to-the-point incremental iterations and releases with review meet-

ing

12. In your experience, how crucial are review meetings conducted at the end of each iteration

in the agile development process of DApps?

• Extremely Crucial

• Crucial

• Somewhat crucial

• Not very crucial

• Not at all crucial

93

ANNEX A

Section 4.2 - Agile Testing in the Proposed Methodology for the Development

of DApps

- Test Driven Development

13. Do you believe that Test-Driven Development (TDD) affects the efficiency and quality of

the development of DApps?

• Yes

• No

- Pair Programming

14. Do you think that software testing using pair programming influences code quality and

the ease of refactoring in the agile development of DApps?

• Yes

• No

- Acceptance Test Driven Development

15. Do you agree that Acceptance Test Driven Development (ATDD) enhances the validation

and acceptance criteria in the development of DApps?

• Strongly agree.

• Agree.

• Neutral.

• Disagree.

• Strongly disagree.

Section 4.3 - Efficient Development of DApps in the Proposed Methodology

- Prioritizing the user stories-based requirements

16. How effective is prioritizing user story-based requirements for efficient Agile development

of DApps?

• Extremely effective

• Very effective

• Moderately effective

94

ANNEX A

• Slightly effective

• Not effective at all

- SMART analysis

17. How comprehensive are SMART objectives for efficient project goals specification in an

agile framework?

• Extremely comprehensive

• Very comprehensive

• Moderately comprehensive

• Slightly comprehensive

• Not comprehensive at all

- Small and to-the-point incremental iterations and releases with a review

meeting

18. Do you think Small and to-the-point incremental iterations and releases with review meet-

ings can develop efficient software applications?

• Yes

• No

- CRC Modeling

19. Do you agree that a simple design method can result in the efficient design and require-

ments elicitation phase of the development of DApps?

• Strongly agree.

• Agree.

• Neutral.

• Disagree.

• Strongly disagree.

95

ANNEX A

Section 4.4 - Quality Oriented Development of DApps using the Proposed

Methodology

20. Which of the following agile practices do you find most crucial for the quality-oriented

development of DApps?

• Testing practices i.e., TDD and ATDD

• CRC Modeling

• Prioritizing the user stories

• Small and Incremental releases.

• Other (please specify)

21. Do you believe that adopting the proposed agile practices could lead to efficient and

quality-oriented development of DApps?

• Yes

• No

22. How well do you think the proposed agile framework aligns with the unique architecture

(blockchain-based) of DApps?

• Poor

• Moderate

• Good

• Very Good

• Excellent

Section 5 - Conclusion and Feedback

23. Your additional feedback or comments would be appreciated regarding the proposed frame-

work.

	Introduction
	Overview
	Motivation
	Problem Statement
	Research Objectives
	Contribution of Research
	Thesis Outline

	Literature Review
	Introduction
	Agile based Software Engineering
	Blockchain and DLT
	Blockchain based Smart Contracts
	Smart Contracts based DApps
	Quality Attributes of Development of DApps
	Simplicity in Development of DApps
	Agile Testing in Development of DApps
	Efficient Development of DApps
	Quality-oriented Sustainable Development of DApps

	Blockchain Oriented Software Engineering (BOSE)
	Agile based Approaches for Development of DApps
	Test Driven Development (TDD)
	Acceptance Testing
	Planning for new Release and Iteration
	Pair Programming
	Small Incremental Releases with Review Meetings and Project Velocity
	Class Responsibility Collaborator (CRC) Modeling

	SMART Analysis of Project Goals
	Summary

	Proposed Methodology
	Introduction
	Rationale and Motivation
	Proposed Framework
	Vision (Define Vision)
	Design and Implementation
	Maintenance
	Key Attributes of the Proposed Framework
	Simplicity of the Proposed Framework for the Development of DApps
	Quality Oriented Development of DApps using the Proposed Framework
	Agile Testing in the Proposed Framework for the Development of DApps
	 Efficient Development of DApps in the Proposed Framework

	Summary

	Validation of Proposed Framework
	Introduction
	Questionnaire Survey
	Implementation Example - Development of DApp
	Summary

	Case Study Implementation of Proposed Framework
	Introduction
	Case Study for Implementation
	Objective
	Scope and Criteria
	Level of Assurance
	Description of the Project

	Implementation and Analysis
	Vision (Define Vision)
	SMART Analysis
	Split the System
	Design and Implementation
	Smart contracts Development
	App System Development

	Maintenance
	Case Study Concluding Remarks
	Summary

	Results and Analysis
	Introduction
	Analysis of Questionnaire Survey
	Challenges in Agile SDLC of DApps
	In practice Agile Methodologies for the Development of DApps
	 Requirements Prioritization in the Development of DApps
	Define Project goals using SMART Analysis
	Use of CRC Cards in the Design Phase of Agile DApp Development
	Influence of Pair Programming in Code Quality DApp Systems
	ATDD to Validate and Acceptance Phase in Agile Development of DApps
	Simple Design Leads to Efficient Design and Requirements Elicitation in Agile Development of DApps
	Agile Practices for Quality-oriented Development of DApps

	Central Tendencies of Survey Responses on Statements of Questions
	Comparison of Proposed Framework with Related Studies
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Annex A

