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  Abstract  

 

This dissertation deals with the Falkner-Skan flow of nanofluid. The analysis is performed 

through the revised model for nanofluid which requires nanoparticle volume fraction at the 

wall to be passively rather than actively controlled. Similarity transformations are used to 

convert the boundary layer equations into self-similar forms. The numerical solutions of 

the resulting non-linear ODEs are obtained by an implicit finite difference scheme 

known as Keller-box method. Graphs are drawn for the influence of various parameters 

entering in the problem. The obtained numerical results are found in excellent agreement 

with the previous studies in the limiting cases.                                 .



 

 

Preface 

 

The arrangement of the dissertation is as follows: 

Chapter 1 is introductory in nature which contains the literature review. I t  presents some 

fundamental concepts and the governing laws along with the boundary layer equations. 

Some details about Keller-box method are also part of this chapter. 

Chapter 2 is the review work of Khan and Pop, (Math. Prob. Eng. (2013)    

doi:10.1155/2013/637825). It is concerned with the boundary layer flow of an 

impermeable stretching wedge moving in a nanofluid. The developed mathematical 

problems have been solved by Keller-box method. The physics of the problem is discussed 

by presenting graphical and numerical results.  

Chapter 3 extends the work of Chapter 2 for the newly proposed condition of 

nanoparticle volume fraction at the wedge. The problems are solved by Keller-box 

approach and the underlying physics of the problem is thoroughly emphasized.
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Chapter 1 

 

Introduction 

 

In this chapter, the key terminologies pertaining to fluid flow and heat transfer are included. The 

thermophysical properties of nanofluids are highlighted and compared with those of the 

conventional base fluids. Applications of nanofluids are also emphasized. The methodology of 

solution used in the subsequent chapters is thoroughly explained. 

 

1.1 Background 

 

The boundary-layer flow over a moving continuous solid surface is important in many industrial 

processes. Falkner and Skan [1] were the first to address the steady boundary layer flow past a 

fixed wedge which enlightened the application of classical Prandtl’s boundary layer theory. 

Falkner-Skan flow problem involves a free stream velocity         where   is the distance 

measured along the wall of the wedge. A theoretical study of hydrodynamic and thermal 

boundary layers resulting from an impulsive Falkner-Skan flow is presented by Harris et al. [2]. 

In another paper, Pantokratoras [3] presented the effect of variable viscosity on the classical 

Falkner–Skan flow. The results are obtained with the direct numerical solution of the boundary 

layer equations. Kuo [4] used the differential transformation method to investigate the 

temperature field associated with the Falkner–Skan boundary layer problem. An exact analytical 

solution of the Falkner-Skan equation with mass transfer and wall stretching was derived by Fang 
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and Zhang [5]. Barania et al. [6] computed series solution of the Falkner-Skan flow problem by 

homotopy analysis method (HAM). Later, Riley and Weidman [7] and Ishak et al. [8] discussed 

the multiplicity of solutions for Falkner-Skan flow problem.  

Heat transfer has pivotal role in several engineering and biomedical problems. Heat transfer 

performance of conventional coolants is not appreciable, whereas thermal conductivity of metals 

is higher when compared with the liquids. The term nanofluid was first used by Choi [9] to refer 

to the fluids containing nanoparticles. It was observed that thermal conductivity of nanofluids is 

higher than that of the regular fluids. 

Buongiorno [10] presented a mathematical model to study the convective transport in nanofluids. 

The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium 

saturated by a nanofluid was discussed by Nield and Kuznetsov [11-12]. They used Buongiorno’s 

model to explore the effects of Brownian motion and thermophoretic diffusion of nanoparticles. 

In this study the Darcy model was employed for the momentum equation. Simulations were 

performed through the assumptions of constant wall temperature and constant wall nanoparticle 

volume fraction. The obtained solution was dependent on four parameters namely the Lewis 

number     the Brownian motion parameter   , the buoyancy-ratio parameter   , and the 

thermophoresis parameter   . 

Similarly Ahmad and Pop [13] investigated the mixed convection from a vertical flat plate 

embedded in a porous medium filled with nanofluids. In another article, the steady boundary-

layer flow of nanofluid past a moving semi-infinite flat plate in a uniform free stream was studied 

by Bachok et al. [14]. The governing differential system was solved by using the Keller-box 

approach. Results were obtained for the skin-friction coefficient, the local Nusselt number and 

the local Sherwood number as well as for the velocity, temperature and the nanoparticle volume 

fraction profiles. 
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Another important paper by Khan and Pop [15] discussed the boundary-layer flow of nanofluid 

induced by a stretching surface. Buongiorno’s model was followed in the problem formulation. 

They investigated the variation of the reduced Nusselt number and the reduced Sherwood number 

with the variation of embedded parameters. They concluded that reduced Nusselt number is a 

decreasing function of both Brownian motion and thermophoresis parameters. 

Kuznetsov and Nield [16] considered the double-diffusive natural convective boundary layer flow 

of a nanofluid past a vertical plate. They found that the reduced Nusselt number has inverse 

relationship with both the thermophoresis parameter and the Brownian motion parameter. In 

another article, Nield and Kuznetsov [17] discussed the Cheng–Minkowycz problem for the 

double-diffusive natural convective boundary layer flow in a porous medium saturated by 

nanofluid.  

The boundary layer flow of a nanofluid past a stretching sheet with a convective boundary 

condition was investigated by Makinde and Aziz [18]. They concluded that strong convective 

heating at the surface enhances the temperature and heat flux from the plate. In another important 

article Aziz and Khan [19] examined the natural convective boundary layer flow of nanofluid past 

a convectively heated vertical plate. Bachok et al. [20] examined the boundary layer flow over a 

moving surface in nanofluid with suction/injection. 

Rana and Bhargava [21] conducted a numerical study on flow and heat transfer of nanofluid 

above a nonlinearly stretching sheet by finite element method. Bachok et al. [22] studied the 

boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking 

sheet in a nanofluid. Zaimi et al. [23] explored the boundary layer flow and heat transfer past a 

permeable shrinking radiative sheet in a nanofluid. Rahman and El-Tayeb [24] described the 

radiative heat transfer in the hydro-magnetic nanofluid flow past a non-linear stretching surface 

considering convective boundary condition. 
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1.2 Boundary layer 

             

 

                                                                                                                        U(x) 

                                              

                                                                                                                                                 Free stream 

                                                                                                                                                    

 

                

                                                                                                                                                 U(x,y) 

                                                                                                     Boundary layer 

 

                                                                                           

Fig. 1: Boundary layer 

 

Boundary layer is the layer of reduced velocity in fluids, (such as air and water) which is 

immediately adjacent to the surface of a solid past which the fluid is flowing.  

Ludwig Prandtl (1874-1953) is accredited primarily to introduce the concept of boundary layer in 

fluid flow over a surface. His paper on boundary layer formed the basis for future work on skin 

friction, heat transfer and separation. The fluid velocity immediately adjacent to the surface is 

zero due to viscous effects and the fluid layer next to the surface becomes attached to the surface 

which formulates the no slip condition. The layers of fluid above the surface are moving; hence 

shearing takes place between the layers of the fluid. The shear stress acting between the wall and 

the first moving layer next to it is called the wall shear stress and it is denoted by   . The 

𝐔∞ 

𝛅(𝐱) 

𝐋 

𝐱 
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thickness of the boundary layer is a function of the ratio between inertial forces and viscous 

forces, that is, the Reynolds number. At low Reynolds number, the flow is laminar and the 

viscous forces govern the entire boundary layer, however for high Reynolds number, the inertial 

forces dominate the boundary layer and fluid becomes turbulent. 

There are two types of boundary layers: 

1. Hydrodynamic (velocity) boundary layer. 

2. Thermal boundary layer.  

The hydrodynamic boundary layer is the layer of the fluid from the wall to a point where the flow 

velocity has essentially reached the 'free stream' velocity. The layer of a liquid or gaseous heat 

transfer agent between the free stream and a heat-exchange surface is termed as thermal boundary 

layer. In this layer the temperature of the heat-transfer agent changes from that of the wall to that 

of the free stream. As the fluid velocity increases from zero at the surface to the mainstream, 

similarly the temperature changes from that at the wall to that in the free stream. The result is that 

the fluid temperature adjacent to the wall is assumed to be equal to the surface temperature of the 

wall at the boundary and is equal to the bulk fluid temperature at some point in the fluid.  

 

1.3 Falkner-Skan flow 

 

Falkner-Skan equations involve non-uniform flow which, when calculated at the wall, takes the 

form    , where x is the coordinate measured along the wedge wall and a and m are constants. 

These flows are known as Falkner-Skan flows. We assume that the wedge velocity   ( )  

     and the free stream velocity is    ( )     , where c is arbitrary constant. At the 

stretching surface, we assume that the temperature   and nanoparticle concentration   has 
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constant values    and    respectively. The ambient value of   is denoted by  ∞ and the 

ambient value of   is denoted by  ∞, as y tends to infinity.  

 

  

 

 

 

 

   

   

 

 

              Fig. 2: Schematic diagram of Falkner-Skan flow through a stretching wedge. 

Here   denotes the angle which the wedge makes with the horizontal x-axis.     corresponds to 

Blasius flow for a flat plate. 

 

1.4 Nanofluids 

 

Nanofluids are a relatively new class of fluids which consist of base fluid along with suspended 

nanometer sized particles having diameter less than 100nm. Nanoparticles used in the nanofluids 

are typically made up of metals (              ), oxide ceramics (     ,    ,     ), nitride 

ceramics (       ), carbide ceramics (       ), semiconductors, carbon nanotubes and 

composite materials such as alloyed nanoparticles. Common base fluids include water, ethylene 

glycol and oil. It is well known that, conventional heat transfer fluids, such as oil, water, and 

𝑢𝑒(𝑥) 

𝑢𝑤(𝑥) 

𝑇𝑤 

𝛽𝜋 

𝑇∞ 𝐶∞ 

𝑥 
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ethylene glycol have poor heat transfer properties compared to those of most solids. Nanofluids 

have enhanced thermophysical properties such as thermal conductivity, thermal diffusivity, 

viscosity and convective heat transfer coefficients compared with those of base fluids. 

            

 

 

 

 

 

 

 

 

 

 

   

                                                     

Fig. 3: Nanofluid synthesis 

 

1.4.1 Applications of nanofluids 

 

Nanofluids are useful in many applications in heat transfer including microelectronics, fuel cells, 

biomedicine, engine cooling, domestic refrigerator, chiller, heat exchanger and the nuclear 

reactor coolant.  

Nanofluids have the four significant features which are desired in the energy systems (fluid and 

thermal systems). These are: 

1. Increased thermal conductivity at low nanoparticle concentration  

Stable 
homogenous 
suspension

  Nanofluid  

Crystalline 
solids of 

nanometer 
dimensions

Base    
fluid 
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2. Strong temperature-dependent thermal conductivity 

3. Non-linear increase in thermal conductivity with nanoparticle concentration  

4. Increase in boiling critical heat flux. 

Nanofluids can be used in an excess of technical and biomedical applications such as nanofluid 

coolant: transformer cooling, computers cooling, electronics cooling, vehicle cooling and 

electronic devices cooling; medical applications: magnetic drug targeting, cancer therapy and 

safer surgery by cooling; process industries; materials and chemicals: detergency, food and drink, 

oil and gas, paper and printing and textiles. Application of nanofluids have various benefits 

including improved heat transfer, heat transfer system size reduction, minimal clogging, 

microchannel cooling, and reduction of systems. 

 

1.5 Boundary layer equations for two-dimensional flow of nanofluids 

Considering the following assumptions: 

1) incompressible flow, 

2) no chemical reactions, 

3) negligible external forces, 

4) dilute mixture, 

5) negligible viscous dissipation, 

6) negligible radiative heat transfer, 

7) nanoparticles and base fluid locally in thermal equilibrium, 

the equations governing the conservation of mass, momentum, thermal energy and nanoparticle 

flux are given by [12]. 
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in which   is the velocity field,    is the density of the base fluid,   is the pressure,    is the 

density of the nanoparticle material,   is the temperature,   is nanoparticle concentration,    is 

the Brownian diffusion coefficient and    is the thermophoretic diffusion coefficient. 

Using the velocity field     (   ),  (   )    for two-dimensional flow, temperature field 

   (   ) and nanoparticle volume fraction    (   ), one obtains: 
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 ∞
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1.6 Keller-box method 

 

Most of the problems arising in science and engineering are nonlinear. They are naturally 

difficult to solve. A very efficient and accurate implicit finite difference method (the Keller box 

method) can be used for solving nonlinear differential equations. Key characteristics of this 

method include second order accuracy and unconditional stability.  

Keller-box method has the following four main steps: 

i. Reduction of the equation or system of equations into a first order system. 

ii. Formation of the difference equations using central differences. 

iii. Linearization of the resulting algebraic equations (if they are non-linear) by Newton’s 

method. 

iv. Solution of the linear system by using block-tridiagonal-elimination procedure. 
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Chapter 2 

 

Mathematical modeling and analysis for Falkner-

Skan flow of nanofluids 

 

This chapter is based on the review of recently published article by Khan and Pop [25]. It deals 

with the two dimensional incompressible flow of nanofluid over a moving wedge. Section 2.1 is 

concerned with the mathematical formulation of the problem. Numerical method of solution is 

described in Section 2.2. Finally the description of results is given in Section 2.3. 

 

2.1   Mathematical formulation of the problem 

 

We consider a two-dimensional incompressible boundary layer flow of nanofluid over an 

impermeable stretching wedge. Let   ( )        be the velocity of the stretching wedge and 

  ( )       be the velocity outside the boundary layer, where   and   are constants. The 

wedge is maintained at constant temperature   . The nanoparticle concentration at the wedge is 

assumed to be constant i.e. C =   . The ambient values of   and   are denoted by  ∞ and  ∞.  
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Fig. 4: Velocity and thermal boundary layers for the Falkner-Skan wedge flow. 

The boundary layer equations governing the conservation of mass, momentum, thermal energy 

and nanoparticle concentration are expressed as below: 
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The boundary conditions are 

  =   ( )      ( ),           = 0,     T =        C =       at y = 0, 

(2.1.5) 

     ( ),      T   ∞     C   ∞    as      

[25] Introducing the following dimensionless variables: 

  (
(   )  

   
)
   

 ,        (
     

   
)

 

 
 ( ),       ( )  

    

     
 ,      ( )  

    

     
. (2.1.6) 

Eq. (2.1.1) is identically satisfied and Eqs. (2.1.2) – (2.1.5) reduce to the following: 

           (     )     (2.1.7) 

 

  
           

       
      (2.1.8) 

          
  

  
       (2.1.9) 

subject to the boundary conditions 

 ( )   ,        ( )    ,       ( )   ,        ( )     

(2.1.10) 

  ( )        ( )        ( )   .                        

Here primes denote differentiation with respect to η. The parameters appearing in Eqs.  

(2.1.7)–(2.1.10) are given below: 
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 ,              

 

 
 ,              

 

  
 ,              

(  )   (     )

(  )  
 , 

(2.1.11) 

   
(  )   (     )

(  )    
 .          

where   is the measure of pressure gradient,    is the Prandtl number,    is the Lewis number, 

   is the Brownian motion,    is the thermophoresis parameter and   is the ratio of the velocity 

of the stretching wedge to the free stream velocity. It is important to mention that   

  corresponds to shrinking wedge whereas     indicates stretching wedge. 

The quantities of practical interest are the skin friction coefficient   , local Nusselt number    

and local Sherwood number    defined as below: 

   
  

   
2
  

             
   

 (    ∞)
  

       
   

  (    ∞)
  

 

using dimensionless variables (2.1.6), one obtains: 

   ( )     
    

  , 

       
    

      ( )  

       
    

       ( )   
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where     
  ( ) 

 
 is the local Reynold’s number and      (

  

  
)
   

 is the wall heat flux. 

2.2 Numerical method 

The numerical solution for the above coupled ordinary differential Eqs.(2.1.7) - (2.1.9) are 

obtained using implicit finite difference scheme known as Keller-box method.  

 

2.2.1 Reduction of nth order differential equations to n first order equations 

 

First we introduce new dependent variables  ( ) and  ( )such that 

    ,     ,     ,        (2.2.1) 

 

so that Eqs.(2.1.7)-(2.1.9) can be written as: 

       (    )   ,   (2.2.2) 

 

  
              

       (2.2.3) 

        
  

  
    .   (2.2.4) 

where primes denote the differentiation with respect to  . 
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2.2.2 Finite difference discretization scheme 

We now consider    as space cordinate and the net points are defined as below: 

                      2            ∞, (2.2.5) 

where    is the   -spacing. Here   is the sequence of numbers that indicate the coordinate 

location, not tensor indices or exponents. 

 

 

We use the notation ( )
  

 

  

for points and quantities midway between net points and for any net 

function 

 
  

 

 

 
 

 
(       ) . (2.2.6) 

For any net function    generally we have: 

 

  

  
 

       

  
   (2.2.7) 

𝜂
𝑗 
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We start by writing the finite difference form of Eq. (2.2.1) for the midpoint ( 
  

 

 

) of the 

segment      using centered-difference derivatives. This process is called “centering about 

( 
  

 

 

). We get 

(       )  
  

2
(       )     

(2.2.8) 

(       )  
  

2
(       )     

(       )  
  

2
(       )     

(       )  
  

2
(       )     

Eqs. (2.2.2)-(2.2.4) are also approximated by centering about ( 
  

 

 

), we obtain 

(       )    (  )
  

 

 

    ( 
 )

  
 

 

        

(2.2.9) 
 

  
(       )    (  )

  
 

 

     (  )
  

 

 

     ( 
 )

  
 

 

    

(       )      (  )
  

 

 

 
  

  
(       )     

In terms of new dependent variables, the boundary conditions become: 

 ( )           ( )            ( )           ( )     

     (2.2.10) 

 ( )           ( )         ( )   . 
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Eq. (2.2.8) is imposed for     2    at given  , and the transformed boundary layer thickness, 

    is to be sufficiently large so that it is beyond the edge of the boundary layer. The boundary 

conditions yield: 

                                                    

(2.2.11) 
                     . 

 

2.2.3 Newton’s method 

Newton’s method is then used to linearize the non-linear system of Eqs.(2.2.8)-(2.2.9). To 

linearize the nonlinear system of Eqs.(2.2.8)-(2.2.9) using Newton’s method, we introduce the 

following iterate: 

  
(   )

   
( )

    
( )

          
(   )

   
( )

    
( )

          
(   )

   
( )

    
( )

  

 

  
(   )

   
( )

    
( )

          
(   )

   
( )

    
( )

  

(2.2.12) 

  
(   )

   
( )

    
( )

          
(   )

   
( )

    
( )

  

 

Substituting these expressions into Eqs. (2.2.8)-(2.2.9) and then dropping the quadratic and 

higher-order terms in    
( )

    
( )

    
( )

    
( )

    
( )

    
( )

    
( )

 yield a linear tridiagonal 

system. 
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                                           (         )  
  

 
(         )  (  ) , 

(2.2.13) 

                                           (         )  
  

 
(         )  (  ) , 

(         )  
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(         )  (  )   

(         )  
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(         )  (  )   

(  )       (  )        (  )      (  )        (  )     (  )   
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(  )       (  )        ( )      (  )        (  )      (  )       (  )     
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(2.2.16) 
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(  )  (       )       
 

 
 
,        (  )  (       )       

 

 

   

(  )  (       )       
 

 

 ,        (  )  (       )       
 

 

   

(  )   (       )  2     
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(       )       

 

 

 
  

 

 

        
 

 

 
  

 

 

      
 
  

 

 

   

(  )   (       )       
  

 

 

 
  

 

 

 
  

  
(       ). 

(2.2.17) 

We recall the boundary conditions (2.2.11) to complete the system (2.2.13), which can be 

satisfied exactly with no iteration. Therefore, for maintaining these correct values in all iterates, 

we take  

                                                       

                                          

(2.2.18) 

2.2.4 The block tridiagonal matrix 

The linearized difference Eq. (2.2.13) have a block tridiagonal structure consisting of block 

matrices. The tridiagonal matrix is defined as: 

          . (2.2.19) 

The elements of the matrices are defined as follows: 



 

23 

 

[
 
 
 
 
 
 
 
        

            

 
 
 

                  

        ]
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    ]
 
 
 
 

 

[
 
 
 
 

    
    
 

      

    ]
 
 
 
 

   (2.2.20) 

where the elements of the matrices are given as below: 

[  ] = 
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               ]
 
 
 
 
 
 

 where    
  

 
, (2.2.21) 

[  ] = 
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                ]
 
 
 
 
 
 

 where    
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[  ] = 
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            ]
 
 
 
 
 
 

 where    
  

 
    2       (2.2.23) 

[  ] = 
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            ]

 
 
 
 
 
 

 where    
  

 
             (2.2.24) 
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   2                    [  ]  
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(  ) 

(  ) 

(  ) 

(  ) 

(  ) 

(  ) 

(  ) ]
 
 
 
 
 
 
 
 

           (2.2.25) 

 (2.2.26) 

To solve Eq. (2.2.19), we assume that matrix A is non-singular and it can be factored into 

            (2.2.27) 

where  

    

[
 
 
 
 
 
 
 
    

        

 
 
 

[    ] [    ]

[  ] [  ]]
 
 
 
 
 
 
 

 and 

    

[
 
 
 
 
 
 
 
         

        

 
 
 

            

    ]
 
 
 
 
 
 
 

 , 

(2.2.28) 

where     is the identity matrix of order 7 and       and       are     matrices whose elements 

are determined by the following equations: 
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         , 

          =      and 

     [  ]  [  ][     ]      2         

          =[  ]        2          . 

Now substitute Eq. (2.2.27) into Eq. (2.2.19), to get 

             . 

Suppose             

then Eq. (2.2.33) becomes             

where 

  

[
 
 
 
 

    
    

 
      

    ]
 
 
 
 

  

(2.2.29) 

(2.2.30) 

(2.2.31) 

(2.2.32) 

(2.2.33) 

(2.2.34) 

(2.2.35) 

(2.2.36) 

and the      are     column matrices. The element  can be solved from Eq. (2.2.35). 

         =      (2.2.37) 

         =[  ]  [  ][    ]    2     . (2.2.38) 

These calculations are repeated until convergence criterion is satisfied. Calculations are stopped 

when 
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|   
( )|     (2.2.39) 

where   is small prescribed value. 

2.3 Results and discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: [1] Comparison of the values of    ( ) for different values of m when λ = 0. 

       2                2   White [29] Present results 

0 0.4696 0.4696 0.4696 0.4696001 

1/11 0.6550 0.6550 0.6550 0.6549937 

1/5 0.8021 0.8021 0.8021 0.8021257 

1/3 0.9276 0.9276 0.9277 0.9276809 

 1/2 - - 1.0389 1.0389036 

1  1.2326 1.2326 1.2325878 

 

 

 

 

Table 2.2: Computations showing the comparison of the values of    ( ) for different 

values of m when   =        0. 

                      Present results 

0 0.8673 0.8673 0.8672779 

1 1.1147 1.1152 1.1146882 
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     (a) 

 

                        

            (b) 

Fig. 2.1: Velocity profiles for the different values of   in case of (a) shrinking and (b) 

stretching wedge. 
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 (a) 

 

(b) 

Fig. 2.2: The dimensionless temperature profiles for different values of    in the case of 

(a) shrinking and (b) stretching wedge. 
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                (a) 

 

                 (b) 

Fig. 2.3: Effect of nanofluid parameters on the dimensionless temperature along shrinking 

wedge for (a) m = 1/2 and (b) m = 1. 
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         (a) 

                           

                                                                   (b) 

Fig. 2.4: Effects of wedge parameter on the dimensionless nanoparticle volume fraction 

profiles for different values of m. 
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    (a) 

 

             (b) 

Fig. 2.5: Effects of nanofluid parameters on the dimensionless nanoparticle volume 

fraction for (a) shrinking wedge and (b) stretching wedge. 
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In Table 2.1 we compare our results for    ( ) with those obtained by [27–29]. It can be seen that 

solutions are identical for all the considered values of the parameters. Table 2.2 compares the 

values of    ( ) obtained from Eqs. (2.2.8) and (2.2.9) for different values of m when   

=        0 with those of [30, 31]. The results of the two tables are proved accurate and 

correct by comparison with previous results. 

Fig. 2.1(a) displays the velocity profiles for different values of   in the case of stretching wedge. 

Fig. 2.1(b) plots the corresponding results for shrinking wedge. The effect of wedge parameter m 

on velocity is found to increase/decrease upon increasing m in the case of stretching/shrinking 

wedge. The profiles approach the free stream condition faster for bigger values of m. This 

indicates that velocity is a decreasing function of m. The effect of Prandtl number on temperature 

distribution is shown in Fig 2.2. Prandtl number is defined as the ratio of momentum diffusivity 

to thermal diffusivity. A large Prandtl number fluid has relatively lower thermal diffusivity and 

hence thinner thermal boundary layer as can be observed from the Fig. 2.2. It is also found that 

temperature is an increasing function of  . 

The effects of Brownian motion and thermophoresis parameters on temperature are given in Fig. 

2.3. An increase in the dimensionless temperature occurs with an increase in both Brownian 

motion and thermophoresis parameters. The variation of dimensionless nanoparticle volume 

fraction φ with wedge parameter m is given in Fig. 2.4(a) and 2.4(b). It is observed that an 

increase in wedge parameter decreases  . This outcome is true for both theconsidered values of 

Lewis number. Fig. 2.5(a) and 2.5(b) depict the effects of nanofluid parameters on dimensionless 

nanoparticle volume fraction. An increase in Brownian motion and thermophoresis parameters 

corresponds to a decrease in nanoparticle volume fraction   for both the values of λ. 
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Chapter 3 

 

Falkner-Skan flow of nanofluids using passive 

control of nanoparticles at the wedge 

 
This chapter extends the analysis of Chapter 2 by considering the revised model for nanofluids 

recently proposed by Kuzenstov and Nield [26]. This model requires nanoparticle volume 

fraction at the wall to be passively rather than actively controlled. Section 3.1 gives the 

mathematical formulation. The method of solution is given in Section 3.2. Finally the 

interpretation to the obtained results is given in Section 3.3. 

 

3.1   Problem formulation 

 

In the previous section, the boundary conditions for nanoparticle volume fraction analogous to 

those of the temperature were imposed. Here we revisit the problem of Chapter 2 by considering 

more meaningful boundary conditions for nanoparticle volume fraction suggested by Kuzenstov 

and Nield [26]. This condition requires that mass flux of nanoparticles at the wall is zero. The 

governing boundary layer equations with the boundary conditions are as under:  
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      (3.1.2) 
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+     (3.1.3) 

 
  

  
   

  

  
   

   

   
  

  

 ∞
(
   

   
)      (3.1.4) 

  = 0,      =   ( )       ( ),    T =            
  

  
 

  

  

  

  
     at y = 0, 

(3.1.5) 

      ( ),         T    ∞           C    ∞      as      

where the variables appearing in above Eqs. (3.1.1) - (3.1.4) are defined in the previous chapter. 

Using the similarity transformations,  

  (
(   )  

   
)
   

 ,        (
     

   
)

 

 
 ( ),       ( )  

    

     
 ,      ( )  

    

  
.   (3.1.6) 

Continuity Eq. (3.1.1) is satisfied identically and Eqs. (3.1.2) - (3.1.5) become: 

           (     )       (3.1.7) 

 

  
           

       
        (3.1.8) 

          
  

  
         (3.1.9) 
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 ( )   ,        ( )    ,        ( )   ,            
 ( )     

 ( )   , (3.1.10) 

  ( )          ( )         ( )   .  

The parameters appearing in Eqs. (3.1.7)-(3.1.9) are defined as below: 

  
  

   
,              

 

 
,             

 

  
,              

(  )   (  )

(  )  
, 

 (3.1.11) 

   
(  )   (     )

(  )    
. 

Here the quantities of practical interest are the skin friction coefficient    and local Nusselt 

number    defined as below: 

   
  

   
2
  

             
   

 (    ∞)
   

using dimensionless variables (3.1.6), one obtains: 

   ( )     
    

  , 

       
    

      ( )   

where     
  ( ) 

 
 is the local Reynold’s number and      (

  

  
)
   

 is the wall heat flux. 
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3.2 Results and discussion 

We apply Keller-box method for solving Eqs. (3.1.7) - (3.1.9) numerically. The method is briefly 

explained in the previous chapter. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Computations showing the reduced Nusselt number (   ( )) for different values of m 

and    when Le = Pr = 1.0, λ =     0.1. 

   

    (   ( )) 

    2                         

0.1 0.4857065 0.5109619 0.5250507 0.5341987 0.5406644 

0.2 0.4833909 0.5083805 0.5223170 0.5313641 0.5377574 

0.3 0.4810624 0.5057855 0.5195692 0.5285152 0.5348360 

0.4 0.4787210 0.5031769 0.5168075 0.5256521 0.5319003 

0.5 0.4763667 0.5005547 0.5140318 0.5227749 0.5289503 

0.6 0.4739994 0.4979190 0.5112423 0.5198837 0.5259861 

0.7 0.4716193 0.4952697 0.5084390 0.5169784 0.5230079 

0.8 0.4692262 0.4926070 0.5056219 0.5140593 0.5200156 

0.9 0.4668204 0.4899309 0.5027912 0.5111263 0.5170095 

1.0 0.4644017 0.4872415 0.4999469 0.5081797 0.5139896 
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Fig. 3.1: Effect of    on the temperature profiles for stretching wedge. 

                          

                    Fig. 3.2: Effect of    on the temperature profile for stretching wedge. 
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Fig. 3.3: Effect of   on the dimensionless nanoparticle volume fraction for shrinking wedge. 

                  

Fig. 3.4: Effect of    on the dimensionless nanoparticle volume fraction for stretching wedge. 



 

39 

 

                  

Fig. 3.5: Effect of    on the dimensionless nanoparticle volume fraction for stretching wedge. 

 

                                      Fig. 3.6: Effect of    on the reduced Nusselt number. 
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                                       Fig. 3.7: Effect of    on the reduced Nusselt number 

                          

      Fig. 3.8: Effect of Le on the reduced Nusselt number. 
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Table 3.1 provides a sample of our results for the reduced Nusselt number     corresponding to 

different parametric values. This table indicates that     is a decreasing function of 

dimensionless parameter   . However, reduced Nusselt number increases when m is increased.                

Fig. 3.1 indicates the behavior of Prandtl number    on the thermal boundary layer. A higher 

Prandtal number fluid possesses weaker thermal conductivity. Therefore an increase in 

   corresponds to a decrease in conduction which gives shorter penetration depth of 

temperature  . This outcome can be visualized in Fig. 3.1 where profiles tend to their free stream 

condition much faster as    is increased. The decrease in the thermal boundary layer thickness is 

compensated with a larger magnitude of local Nusselt number. Thermophoresis parameter (  ) 

and Brownian motion parameter (  ) are used for controlling the heat transfer rates in 

nanofluids. Fig. 3.2 gives the temperature variation in the thermal boundary layer by varying   . 

As    is increased, the temperature and thermal boundary layer thickness increases. Fig. 3.3 

shows the impact of    on dimensionless nanoparticle volume fraction   in the case of  

stretching wedge (      ). It is seen that nanoparticle volume fraction decreases with the 

increase in Brownian motion. The effect of    on dimensionless nanoparticle volume fraction 

  is shown in Fig. 3.4 in the case of stretching wedge (      ). An increase in    shifts 

nanoparticles from hot stretching sheet towards cold ambient fluids. This leads to larger 

penetration depth of    as demonstrated in Fig. 3.4. Fig. 3.5 shows that Lewis number has a 

significant effect on concentration distribution. A higher Lewis number fluid has a lower 

Brownian diffusion coefficient    which results in shorter penetration depth for  . Fig. 3.6 

indicates that reduced Nusselt number is a decreasing function of thermophoresis parameter   . 

On the other hand it has a direct relationship with    Fig. 3.7 shows that the heat transfer rate 

from the wedge is bigger for larger Prandtl number nanofluid. It is clear from Fig. 3.8 that 

reduced Nusselt number is inversely proportional to the Lewis number   .  
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Chapter 4 

Conclusions 

Steady boundary layer flow past a moving wedge in a water based nanofluid is studied 

numerically using an implicit finite-difference method known as Keller-box method. The 

imposed condition requires that mass flux of nanoparticles at the wall is zero. Effect of all 

governing parameters on the dimensionless velocity, temperature, and nanoparticle volume 

fraction are investigated and presented graphically. The key points of this work are as under: 

1) Dimensionless velocity at the surface increases/decreases with stretching/shrinking 

parameters. 

2) Dimensionless temperature and thermal boundary layer thickness increase with an 

increase in thermophoresis parameter. 

3) Brownian motion has a negligible impact on the temperature profile. 

4) An increase in Prandtl number causes a decrease in temperature which results in decrease 

of thermal boundary layer thickness. 

5) An increase in thermophoresis parameter results in increase of dimensionless 

nanoparticle volume fraction. 

6) Dimensionless nanoparticle volume fraction decreases with an increase in Lewis number. 

7) An increase in Prandtl number results in reduction of boundary layer thickness, thus 

increasing the reduced Nusselt number. 

8) The reduced Nusselt number decreases resulting in increase in surface temperature by 

increasing Lewis number. 
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