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Abstract

Let G be a connected graph having n vertices and m edges. Let x1, y1 ∈ V (G) and the

distance between x1, y1 in a graph G is the number of edges on a shortest path from x1

to y1 in G. In a graph G, a set of vertices connected to a vertex v is called neighborhood

of v. A vertex y ∈ V (G) resolves two vertices v1, v2 ∈ V (G) if d(y, v1) 6= d(y, v2). An

ordered subset S of vertices of G is called a resolving set for G if every pair of distinct

vertices of G are resolved by some vertex of S. A resolving set of least cardinality is

called metric dimension of a graph G. A vertex y ∈ V (G) strongly resolves two distinct

vertices u1, u2 ∈ V (G) if u1 lies on a shortest u2 − y path or u2 lies on a shortest u1 − y

path. An ordered set S = {s1, . . . , st} ⊆ V (G) is a strong resolving set for G if every

two distinct vertices u, v ∈ V (G) are strongly resolved by some vertex of S. A strong

metric basis of G is a strong resolving set of least cardinality. The cardinality of a strong

metric basis is known as strong metric dimension of G. In this dissertation, we give

some results related to metric dimension and strong metric dimension of graphs. We

also compute strong metric dimension of generalized Petersen graph GP (2m,m− 1). We

first compute the MMD vertices of GP (2m,m− 1) and using them, we construct strong

resolving graph GPSR(2m,m − 1) of GP (2m,m − 1). Then we find the vertex covering

number of GPSR(2m,m− 1), which is equal to sdim(GP (2m,m− 1)).
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Chapter 1

Fundamentals of graph theory

In this section we discuss some essential definitions and primary concepts that will be

used in this dissertation. In order to illuminate any uncertainty, supporting examples

have also been discussed. The main idea is to discuss the properties of graphs, common

classes of graphs and distances in graphs.

1.1 Introduction to graph

In our daily life we face many problems which can be modeled by means of a graph.

Assume a popular publishing company has ten editors named as {1, 2 . . . , 10} in scientific,

humanities and computing areas. These ten editors classify themselves into seven panels

and decided to held a meeting on first Friday of each month to discuss topics of interest

to company and to look for the solution of those problems which create troubles in their

respective areas. This scenario leads us to our first example.

Example 1.1. Let s1 = {1, 2, 3}, s2 = {1, 3, 4, 5}, s3 = {2, 5, 6, 7}, s4 = {4, 7, 8, 9},

s5 = {2, 6, 7}, s6 = {8, 9, 10} and s7 = {1, 3, 9, 10} are the seven panels of ten editors.

They have fixed aside three time period for seven panels of editors to get together on

those Friday when all ten editors are available. Notice that one or two editors are part

of two or more panels. So these pair of panels can not meet at same time. This situation
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can be more understandable from the Figure 1.1.

S1

S6S1S1S1S1S1

S5

S4

S3

S2

S7

Figure 1.1: A graph G

Above figure contains the small dots and arcs. The small dots shows the seven panels

and the arcs between two dots show that there is at least one common member in both

panels. In fact the arcs between two dots say si, sj show that these two panels of edi-

tors can not scheduled their meeting at same time. Above figure gives us the pictorial

representation of seven panels and sharing of their members.

What we have constructed in Figure 1.1 is called a graph. A graph G is a mathematical

structure consisting of non empty finite set V (G) of small circles called vertices and set

E(G) (possibly empty) of some arcs connecting unordered pair of well defined small circles

called edges. For a graph G of Figure 1.1 the vertex set of G is V (G) = {s1, s2, . . . , s7} and

the edge set E(G) = {s1s2, s1s3, s1s5, s1s7, s2s3, s2s4, s2s7, s3s4, s3s5, s4s5, s4s6, s4s7, s6s7}.

Let us consider an other situation. Suppose we have a list 2, 3, 5, 7, 11, 13, . . . of inte-

gers. Every integer in the list is only divisible by 1 or itself. These numbers are building

blocks of integers called prime numbers. Our next example relates to these numbers.

Example 1.2. Consider the set P = {2, 3, 5, 7, 11, 13} of first six positive prime numbers.

There are few pair of distinct integers contained in P whose sum or difference also con-

tained in P , namely, {{2, 3}, {2, 5}, {3, 5}, {2, 7}, {2, 13}, {2, 11}, {5, 7}}. This situation

can be transformed to a graph to identify these pairs, namely, by graph H as shown in Fig-

ure 1.2. In this instance V (H) = {2, 3, 5, 7, 11, 13} and E(H) = {{2, 3}, {2, 5}, {3, 5}, {2, 7}, {2, 13},

{2, 11}, {5, 7}}.
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3

5

7

11 13

2

Figure 1.2: A graph G1

Definition 1.3. The cardinality of vertex set |V (G1)| is known as order of a graph G1,

whereas the cardinality of edge set |E(G1)| is referred as size of G1. The order and size

of a graph are represented by n and m, respectively.

If two vertices v1 and v2 in a graph G are linked by an edge e, then v1 and v2 are called

adjacent vertices otherwise non adjacent vertices. Let a vertex w is an end point of an

edge e, then e is said to be incident on vertex w in the graph G. A graph is referred as

trivial graph if the cardinality of its vertex set is one. The graph of Figure 1.2 has order

n = 6 and size m = 7. If two or more edges are incident on common vertex v, then these

edges are known as adjacent edges.

Definition 1.4. Let G1 and H1 be two graphs. If V (H1) ⊆ V (G1) and E(H1) ⊆ E(G1),

then the graph H1 is recognized as subgraph of G1, symbolized as H1 ⊆ G1. If H1 ⊆ G1

and |V (H1)| = |V (G1)|, then H1 is referred as a spanning subgraph of G1. A graph F is

said to be induced subgraph of a graph H whenever x, y ∈ V (F ) and x, y are adjacent in

H then, x, y are also adjacent in F as well.

Examine the graph H in Figure 1.3. The graphs H1, H2 and H3 shown in Figure 1.3

are subgraph, induced subgraph and spanning subgraph of H, respectively.

Definition 1.5. A pattern of vertices in G starting from u1 and terminating at v1 such

3



u1

u5

u2

u3
u4

u4

u5

u3

u2

u4 u3

u2

u1

u4

u5

u3

u2

H H3H2H1

Figure 1.3: A graph H and some of its subgraphs

that consecutive vertices in the pattern are adjacent is called a u1−v1 walk inG symbolized

by W . If u1 = v1, then W is a closed walk. The total number of edges in a walk W is

called length of W . If no edge is repeated in a walk W , then W is called a u1 − v1 trail.

Similarly if there is no repetition of vertices in W , then W is called a u1 − v1 path and

a path on n vertices is symbolized as Pn. Consequently, every path is a trail and every

trail is a walk. A closed trail containing 3 or more edges is called a circuit in G. If there

is no repetition of vertices except for the first and last in a circuit, then it is referred a

cycle. A cycle of length l is called l-cycle, if l is odd, then we have odd cycle otherwise,

even cycle. A cycle of order n is represented by Cn.

Definition 1.6. A graph G is said to be connected if there is a path between every pair

of distinct vertices of G otherwise, disconnected graph. A connected subgraph of G that

is not a proper subgraph of any other connected subgraph of G is called a component of

G. In addition, a graph H is connected if and only if it has only one component. Let

w ∈ V (G). If deletion of a vertex w increases the cardinality of components of G, then w

is referred as cut vertex. Likewise, if deletion of an edge e from G increases the cardinality

of components of G, then e is said to be a cut edge. A graph F shown in Figure 1.4 is a

connected graph containing cut vertex v and cut edge e.
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ev

Figure 1.4: A connected graph F having cut vertex v and cut edge e.

1.2 Distance in graphs

In this portion, we study the basic concepts about the distance between vertices in a

graph. Moreover, we state few results related to radius, diameter and eccentricity.

Definition 1.7. Let G1 be a connected graph and w1, w2 ∈ V (G1). The distance between

w1 and w2, symbolized by d(w1, w2), is the number of edges of a shortest path from w1 to

w2 in G1.

Definition 1.8. Let F be a connected graph. The eccentricity e(w) of a vertex w in F

is expound by:

e(w) = max{d(w, x) | x ∈ V (F )}.

Definition 1.9. The radius rad(H) of a connected graph H is explicated as:

rad(H) = min{e(w) | w ∈ V (H)}.

Definition 1.10. The diameter diam(K) of a connected graph K is elucidated as:

diam(K) = max{e(w) | w ∈ V (K)}.

Definition 1.11. Let w ∈ V (K) of a connected graph K. If e(w) = rad(K), then w is

called a central vertex. A graph generated by central vertices of K is referred as center

cen(K) of K.

Example 1.12. Observe the graph G1 shown in Figure 1.5. Here e(v1) = e(v6) = 4,

e(v2) = 3 = e(v4) and e(v3) = 2 = e(v5) . So 2rad(G1) = diam(G1).

5



v1 v6v4

v5

v3

v2

Figure 1.5: A graph G1 of rad(G1) = 2 and diam(G1) = 4.

The next theorem tells us the correspondence between diameter and radius of a con-

nected graph.

Theorem 1.13 (Chartrand and Zhang [9]). For any non trivial connected graph H,

rad(H) ≤ diam(H) ≤ 2rad(H).

1.3 Degrees

In this section, we define a parameter of a grpah G which is associated with each vertex

of G. Moreover, we give some results related to these parameters.

Definition 1.14. Let H be a graph and uv ∈ E(H), then u and v are said to be neighbors.

A set of vertices connected to vertex w in a graph H is called neighborhood of w and is

denoted by N(w).

Definition 1.15. For a vertex w of a graph H, the cardinality of |N(w)| in H is called

degree of w signified by, deg(w) = |N(w)|.

If deg(w) = 0, then vertex w is referred as an isolated vertex, whereas if deg(w) = 1,

then w is said to be leaf or a pendent vertex. A vertex w is an even vertex if |N(w)| is

even otherwise odd.

Definition 1.16. The minimum degree δ(H1) of graph H1 is defined as:

δ(H1) = min{deg(r) | r ∈ V (H1)}.

6



That is, δ(H1) is the least degree among the vertices of H1.

Definition 1.17. The maximum degree ∆(H1) of graph H1 is defined as:

∆(H1) = max{deg(r) | r ∈ V (H1)}.

That is, ∆(H1) is the greatest degree among the vertices of H1.

The next inequality gives us the connection between maximum and minimum degrees

of a graph F . If F is a simple graph having n vertices and w ∈ V (F ), then

0 ≤ δ(F ) ≤ deg(w) ≤ ∆(F ) ≤ n− 1.

Example 1.18. A graph F shown in Figure 1.5 has order n = 9 and size m = 11. Also,

G has minimum degree δ(F ) = 2 and ∆(F ) = 4 = deg(w). Following is the first theorem

of graph theory.

s

t

u

v

w
x

yzr

2

2

2

2

2

2

3

4

3

Figure 1.6: A graph F with δ(F ) = 2 and ∆(F ) = 4.

Theorem 1.19 (Chartrand and Zhang [9]). If H is a graph of size m, then

∑
v∈V (H)

deg(v) = 2m

Corollary 1.20 (Chartrand and Zhang [9]). Every graph has an even number of odd

vertices.
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Definition 1.21. Let G be a graph of order n and if deg(u) = r for each u ∈ V (G), then

G is recognized as r-regular graph, otherwise, irregular graph.

By Corollary 1.3, if n and r both are odd, then it is impossible to create a regular

graph on n vertices. The next theorem provides us the essential condition for the actuality

of regular graph of on n vertices.

Theorem 1.22 (Chartrand and Zhang [9]). Let r and n be integers, where 0 ≤ r ≤ n−1.

Then there exits an r-regular graph of order n if and only if at least one of r and n is

even.

Definition 1.23. If V (G) = {z1, z2, . . . , zn}, then the sequence {d(z1), d(z2), . . . , d(zn)} is

called the degree sequence of G. We often represent this sequence of non negative integers

in ascending or descending order. If finite sequence s of non negative integers is a degree

sequence of some graph, then it is called graphical.

1.4 Common classes of graphs

We continue to discuss primary concepts about graphs. In this portion we will see some

common classes of graphs and the special notions reserved for these graphs.

Definition 1.24. If the cardinalities of a vertex set V (H) and edge set E(H) of a graph

H are finite, then H is finite graph otherwise, infinite. If E(H) = φ, then H is a null

graph.

We have already discussed that paths and cycles are specific kind of walks in a graph.

Paths and cycles are certain graphs that will be used throughout this dissertation.

Definition 1.25. A simple connected n vertex graph G is called complete if G is n − 1

regular. That is, deg(t) = n − 1 for all t ∈ V (G). An n vertex complete graph is

symbolized by Kn having size n(n−1)
2

.

8



K2 K5K3

Figure 1.7: Complete graphs of order 2, 3 and 5.

The graphs shown in Figure 1.7 are the complete graphs of order 2, 3 and 5, respec-

tively.

Definition 1.26. The complement H of a graph H is a graph with vertex set V (H) and

z1z2 ∈ E(H) if and only if z1z2 /∈ E(H). If H is n vertex graph and having m edges, then

|V (H)| = n and |E(H)| = n(n−1)
2
− m. The complement of a complete graph is a null

graph.

G G

Figure 1.8: A graph G and its complement.

Noticed that if a graph H is connected, then H need not to be connected. But if

H itself is disconnected, then its complement must be connected. The next theorem

illustrates it more precisely.

Theorem 1.27 (Chartrand and Zhang [9]). If H is a disconnected graph, then H is a

connected graph.

9



In next definition, we discuss a special class of graphs whose vertex set can be parti-

tioned in a particular ways.

1.4.1 Bipartite graphs

Definition 1.28. A graph H is known as a bipartite graph if its vertex set can be divided

into two nonempty disjoint sets P1 and P2 called partite sets in such a way if z1z2 ∈ E(H),

then its end points z1, z2 does not belong to same partite sets.

Often it is not easy to claim whether the given graph is bipartite or not. The next

theorem will be very helpful to identify the bipartite nature of a graph.

Theorem 1.29 (Chartrand and Zhang [9]). A graph H is bipartite graph if and only if

H possesses no odd cycles.

Definition 1.30. Let H be a bipartite graph having partite sets P1 and P2. If each vertex

of P1 is connected to each vertex of P2, then H is a complete bipartite graph denoted as

Ks,t, where s, t are the number of vertices in partite sets P1 and P2, respectively. If, in

addition, any of s or t is 1, then Ks,t is called a star.

Definition 1.31. Let H be a graph whose vertex set can be divided into k non empty

disjoint subsets P1, P2, P3, . . . , Pk such that every e ∈ E(H) have both ends in different

partite sets then H is called k-partite graph. Furthermore, if every pair of vertices be-

longing to different partite sets are adjacent, then H is called a complete k-partite graph.

If |Pi| = si, then we denote complete k-partite graph as Ks1,s2,...,sk .

1.4.2 Multigraphs

Definition 1.32. If the end points of two or more edges are same, then these edges are

called multiple edges. Let H1 be a graph and an edge l connects a vertex u to itself, then

l is called a loop at vertex u. An n vertex graph G having size m, is a multigraph if it

contains multiple edges.

10



K1,2,3K2,2

Figure 1.9: Bipartite graphs.

1.4.3 Eulerian Graphs

Definition 1.33. A circuit C in a finite graph G1 is an Eulerian if it holds every edge of

G1. Furthermore, if a finite connected graph G1 possesses an Eulerian circuit, then G1 is

called an Eulerian graph.

Example 1.34. The graph shown in Figure 1.10 is Eulerian graph containig Eulerian

circuit C = u1u2u3u4u5u6u7u2u4u7u8u6u9u8u11u9u10u11u1.

u8u7

u6u5

u4

u3
u2

u1

u9

u11

u10

Figure 1.10: An Eulerian graph

By observing a graph, it is not possible to identify whether the graph is Eulerian

or not. Next theorem gives the necessary condition for a connected graph H to be an

Eulerian.

Theorem 1.35 (Chartrand and Zhang [9]). A non-trivial connected graph H is Eulerian

if and only if every vertex of H is even.

11



1.4.4 Hamiltonian graphs

Definition 1.36. A cycle C in a graph H is Hamiltonian if contains each vertex of H.

In addition, if a finite connected graph H possesses a Hamiltonian cycle, then H is said

to be a Hamiltonian graph. Obviously, an n-cycle and a complete graph on n vertices are

Hamiltonian graphs.

The sufficient condition for a graph H to be Hamiltonian is presented in next theorem.

Theorem 1.37 (Chartrand and Zhang [9]). Let H be a graph of order n ≥ 3. If

deg(z1) + deg(z2) ≥ n

for every pair z1, z2 of nonadjacent vertices of H, then H is Hamiltonian.

1.4.5 Planar graphs

Definition 1.38. A graph G is a planar graph if G can be drawn in the plane without

edge crossing. A graph that is not planar is called non-planar graph.

A planar graph partitions the plane into connected pieces called regions, denoted by

r. The graph shown in Figure 1.11 has 6 vertices, 12 edges and 8 regions. Therefore in

this case, n−m+ r = 2. This always holds, which leads us to present Euler identity.

u6 u5

u4

u3u2

u1

u1

u2 u3

u4

u5 u6

Figure 1.11: A graph G and its plane drawing.

Theorem 1.39 (Chartrand and Zhang [9]). If G is an n vertex connected planar graph

having m edges and r regions, then n−m+ r = 2.

12



1.4.6 Trees

Definition 1.40. A graph having no cycle is said to be acyclic graph. A tree is an acyclic

connected graph. A tree T of order greater than 3 is called a caterpillar if the removal of

pendent vertices of T creates a path, called spine of T .

The next theorem provide us a necessary condition for a graph G to ba a tree.

Theorem 1.41 (Chartrand and Zhang [9]). A graph H is a tree if and only if each pair

of vertices of H are connected by a unique path.

1.5 Isomorphism

Definition 1.42. Two simple graphs A and B are said to be isomorphic if there exist

a one to one correspondence ϕ : V (A) → V (B) such that xy ∈ E(A) if and only if

ϕ(x)ϕ(y) ∈ E(B). We write A ∼= B if A and B are isomorphic.

Definition 1.43. Let G be a connected graph with vertex set V (G) = {u1, u2, . . . , un}.

The adjacency matrix A(G) = [aij]n×n of G is an n× n matrix defined as aij = 1, if and

only if ui and uj are adjacent; otherwise aij = 0.

Definition 1.44. Let G be a connected graph with vertex set V (G) = {u1, u2, . . . , un}

and edges set E(G) = {e1, e2, . . . , em}. The incidence matrix B(G) = [bij]m×n of G is an

m × n matrix described as bij = 1, if and only if vi is incidence on ej; otherwise bij = 0.

The adjacency matrix A(G) and incidence matrix B(G) of graph G shown in Figure 1.12

is given by

13



A(G) =



0 1 0 0 0 1 1 0

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 0 1

1 0 0 0 1 0 1 0

1 1 0 0 0 1 0 0

0 0 1 1 1 0 0 0



,

B(G) =



1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 1 0

0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 1 1 1 0 0

0 0 1 0 1 0 0 0 1 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1



.

u6 u5

u4

u3u2

u1

e6

u8u7

e5

e4
e2

e1

e3

e9

e8

e7

e12

e10

e11

Figure 1.12: A graph of order 8 and size 12.
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1.6 Overview

The plan of dissertation is given as:

In Chapter 2, we review some elementary results associated with metric dimension and

strong metric dimension of a graph.

In Chapter 3, we find strong metric dimension of the Petersen graph GP (2m,m− 1)

for m ≥ 6. First, we compute the mutually maximally distant vertices of the Petersen

graph and then using them, we construct strong resolving graph of GP (2m,m− 1). Next

we find the independence number of strong resolving graph GP (2m,m − 1). Then, by

using Theorem 3.1, we determine its vertex covering number which is equal to the strong

metric dimension of GP (2m,m− 1).
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Chapter 2

Resolvability in graphs

In this chapter, we study the notion of resolving sets, metric basis and strong metric

basis of graphs. We also review some well known results related to these resolvability

parameters and association between them.

2.1 Introduction to resolvability

Let w1 and w2 be any two vertices of a simple connected graph G. The distance d(w1, w2)

between w1 and w2 is the length of a shortest path from w1 to w2 in G. A vertex v of G

resolves two vertices u1 and u2 if the distance between u1 and v is not same as the distance

between u2 and v, that is, d(v, u1) 6= d(v, u2). For an ordered subset S = {s1, s2, . . . , sk}

of vertices of G and a vertex w ∈ V (G), we represent the ordered k-tuple rS(w) as the

representation w with respect to S, where

rS(w) = (d(w, s1), d(w, s2), . . . , d(w, sk)).

If all vertices of G have distinct representation with respect to S, then set S is referred

as a resolving set for G. We have another equivalent definition of resolving set. A set

S ⊆ V (G) is said to be a resolving set (or metric generator) for G, if any two distinct

vertices of G are resolved by some vertex of S. A resolving set containing least number of
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vertices is called metric basis for G. The cardinality of metric basis of G is called metric

dimension of a graph G and is denoted by dim(G). In addition, the metric dimension of

G is also called location number of G denoted by loc(G). In 1970, the idea of metric basis

of graphs was proposed by Harary et al. [6]. We present an example to demonstrate this

concept.

w1

w5w4

w3w2

Figure 2.1: A graph H = (V (H), E(H)).

Example 2.1. For a graph H of Figure 2.1, take ordered set Z1 = {w2, w3, w4}. The

representations of vertices of H with respect to Z1 are given by:

r(w1|Z1) = {1, 1, 1}, r(w2|Z1) = {0, 1, 1},

r(w3|Z1) = {1, 0, 2} , r(w4|Z1) = {1, 2, 0},

r(w5|Z1) = {2, 1, 1}.

The vertices of H have distinct representations with respect to Z1. Thus, Z1 is a

resolving set. Now take Z2 = {w2, w3}. Then the representations of vertices of H with

respect to Z2 are given by:

r(w1|Z2) = {1, 1}, r(w2|Z2) = {0, 1},

r(w3|Z2) = {1, 0}, r(w4|Z2) = {1, 2},

r(w5|Z2) = {2, 1},

where all these 5 representations are distinct. Therefore, Z2 is the resolving set. It can

be easily seen that there is no metric basis of cardinality 1. Hence dim(G) = 2.
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In graph theory, the metric dimension is a configuration that has been proved very

useful in different fields of applied sciences. For instance, a model application of these

distance associated parameters to robot navigation in networks is studied in [20]. The

creativity of these concepts like metric basis comes from the chemistry. In such a situation,

the chemical compounds are transformed through mathematical tools and these chemical

compounds are analyzed by mathematical objects. The chemical structures are mostly

represented by graphs. In a graph of chemical compound, the vertices indicate the atoms

of a molecule while the edges of a graph indicate valence bond between pairs of atoms.

For example, a propane molecule has the chemical formula C3H8, where C3 represents

the three atoms of carbon and H8 represents the eight atoms of hydrogen. A propane

molecule can be constituted by a graph manifested in Figure 2.2.

c ccH

HHH

H

HHH

Figure 2.2: A Propane molecule.

In chemistry, an isomer is a molecule having distinct structural arrangements but

identical number of atoms. Let us consider an example. The atomic formula of both bu-

tane and isobutane is identical, that is, C4H10 but both have distinct chemical properties.

These chemical compound are exhibited in Figure 2.3.

In order to examine whether the given ordered subset W ⊆ V (H) is a resolving set

for a graph H, we only have to authenticate the vertices of H which are not contained in

W , as the vertices of H contained in W have distinct codes with respect to W . A helpful

characteristic for calculating the metric basis of a graph H is presented in next lemma.

Lemma 2.2 (Ahmad et al. [33]). Let H be a connected graph and W be a resolving set
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c ccH

HHH

H

H

H

H HH
c

H

HHH

H

H

H

HH

Hc c c c

Figure 2.3: Butane and Isobutane molucule.

for H. Suppose x, y ∈ V (H) if d(x,w1) = d(y, w1) for all w1 ∈ V (H)\{x, y}, then x ∈ W

or y ∈ W .

2.2 Some known results on metric basis of graphs

The following two theorems characterize the metric dimension of path Pn and complete

graph Kn of order n.

Theorem 2.3 (Chartrand et al. [7]). A connected n vertex graph H has metric dimension

1 if and only if H ∼= Pn.

Theorem 2.4 (Chartrand et al. [7]). A connected graph H containing n vertices has

metric dimension n− 1 if and only if H ∼= Kn.

Let H be a non trivial connected graph and also let a vertex u ∈ V (H). Then it is

common observation that V (H) and V (H)−{u} are resolving sets for G. This shows that

if H is non-trivial connected graph containing n vertices, then 1 ≤ dim(H) ≤ n− 1. On

the other hand, if H is an n vertex graph having diameter d, then we attain an improved

extremal bounds for metric basis of H. For positive integer d, we define g(n, d) to the

smallest natural number l for which l + dl ≥ n.

Theorem 2.5 (Chartrand et al. [7]). If H is a non-trivial connected graph containing n

and having diameter d, then
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f(n, d) ≤ dim(H) ≤ n− d.

Theorem 2.6 (Sudhakara and Kumar [12]). Let H be a simple connected graph having

metric dimension 2 and let W = {u1, u2} ⊆ V (H) is a metric basis for H, then the degree

of each u1 and u2 is at most 3 and there exists a unique path connecting u1 and u2.

Theorem 2.7 (Sudhakara and Kumar [12]). A simple connected graph H having metric

dimension 2 can not possess the following:

(a). K5 as a subgraph.

(b). K5 − f as a subgraph, where f ∈ E(H).

(c). K3,3 as a subgraph.

(d). The Petersen graph as a subgraph.

Furthermore, the least bound in Theorem 2.2, is achievable only for the graphs having

diameter 2 or 3. Next theorem gives the sharp least bound for metric basis of a connected

graph H in terms of ∆(H), and this bound can be improved.

Theorem 2.8 (Chartrand et al. [10]). Let H be a connected graph containing n vertices,

where n ≥ 2, then

dlog3(∆(H) + 1)e ≤ dim(H) ≤ n− diam(H).

2.3 Strong metric dimension of graphs

In this portion, we discuss some fundamental concepts of strong metric basis of graphs

and give few results about strong metric basis of few familiar families of graphs.

Sebö and Tannier [1] inaugurated the problem of strong metric dimension of graphs.

The strong metric dimension problem can be interpreted as: a vertex w of graph H
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strongly resolves two vertices x and y if x lies on a shortest y − w path or y lies on a

shortest x − w path in H. A set S = {s1, s2, . . . , sk} ⊂ V (H), is a strong resolving set

for H if any two distinct vertices of H are strongly resolved by some vertex of S. If S

contains minimum number of vertices of H, then S is referred as strong metric basis for

H and cardinality of strong metric basis for H is said to be strong metric dimension of H

represented by sdim(H). Observe that if a vertex s1 ∈ S strongly resolves two vertices

u1 and v1, then s1 also resovles these vertices. For instance, if u1 lies on a v1 − s1 path

of smallest length, then d(u1, s1) < d(v1, s1) and thus d(u1, s1) 6= d(v1, s1). This shows

that each strong resolving set is also resolving set, therefore, dim(H) ≤ sdim(H). In

the sequel, we propose several definitions which will be helpful in computing the strong

metric dimension of graphs. In any graph H, the set of vertices connected with a vertex

w by an edge e is called neighborhood of w and is denoted by N(w).

Definition 2.9. In a connected graph H, a pair of vertices u1, u2 ∈ V (H) are said to be

maximally distant if d(u1, v) ≤ d(u1, u2) for each v ∈ N(u1) written as, u1MDu2.

A pair of vertices u1 and u2 of a graph H are mutually maximally distant if and only

if u1 is maximally distant from u2 and vice versa, written as u1MMDu2.

Lemma 2.10 (Kratica et al. [19]). If W ⊂ V (H) is a strong resolving set for a graph

H, then for each pair of MMD vertices u1, v1 ∈ V (H), then essentially either u1 ∈ W or

v1 ∈ W .

Lemma 2.11 (Kratica et al. [19]). If W ⊂ V (H) is a strong resolving set for a graph

H, then for each pair of vertices u1, v1 ∈ V (H) such that d(u1, v1) = diam(H), then it is

essential that either u1 ∈ W or v1 ∈ W .

2.4 Strong resolving graph

Graphs are fundamental combinatorial shapes and modification of these shapes plays an

important role in the enlargement of mathematics. Remarkably, in graph theory, some
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primary amendments originate a new graph from initial, such as insertion or removal of a

vertex or an edge, amalgamating and splitting of vertices, edge contraction, etc. Further

advanced amendments produces a new graph from the actual one by composite changes,

such as subdivision of a graph, cartesian product of graphs, graceful graph, complement

of a graph, strong resolving graph, weighted graphs, etc. Infrequently, these modification

of graphs appeared as a natural mechanism to resolve experimental complication. On

contrary, the problem of computing a particular property of a graph has been transformed

into the problem of computing another property of another graph acquired from the actual

one. This is the case of the strong resolving graph GSR of a connected graph G which was

initiated by Oellermann and Peters-Fransen [28], as a mechanism to interpret the strong

metric dimension of G. Predominantly, it was manifested that the problem of computing

the strong metric dimension of G can be transmuted to the problem of computing the

vertex covering number of GSR.

Definition 2.12. A subset W = {u1, u2, . . . , uk} ⊆ V (H) is called a vertex cover of graph

H if each edge of H is incident to at least one vertex of W . A vertex cover of H with

minimum cardinality over all vertex covers of H is called the vertex covering number of

H and is represented by α(G).

A subset Q ⊆ V (H) is called an independent set of a graph H such that whenever

u, v ∈ Q then uv /∈ E(H). The maximum cardinality of an independent set over all the

independent sets of a graph H is called the independence number of H and is represented

β(H).

Definition 2.13. Let H be a connected graph. Then the strong resolving graph HSR

of H is a graph with vertex set V (HSR) = V (H) and u1u2 ∈ E(HSR) if and only if

u1MMDu2.

The following theorem tells us that the problem of finding the strong metric dimension

of a graph G is equivalent to determining the α(GSR).

Theorem 2.14 (Oellermann et al. [28]). Let H be a connected graph, then
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sdim(H) = α(HSR).

The sdim of few well known families of graphs have been determined. We state them

in next section.

2.5 Strong metric dimension of few well known fam-

ilies of graphs

Theorem 2.15 (Sebö et al. [1]). Let H be a non-trivial connected graph of order n, then

sdim(H) = 1 if and only if H ∼= Pn.

Theorem 2.16 (Sebö et al. [1]). Let H be an n vertex connected graph, then sdim(H) =

n− 1 if and only if H ∼= Kn.

Theorem 2.17 (Sebö et al. [1]). Let C be a cycle containing n vertices, then sdim(C) =

dn
2
e.

Theorem 2.18 (Sebö et al. [1]). Let T be a tree having n vertices and l leaves, then

sdim(T ) = l − 1.
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Chapter 3

Strong metric dimension of

generalized Petersen graph

GP (2m,m− 1)

In this chapter we compute the strong metric dimension of special class of graph so called

generalized Petersen graph.

3.1 Introduction

In chapter 2 we discussed the vertex covering number and vertex independence number

of graph G. In the next theorem we present the famous identity named as Gallai identity

that gives us the relation between vertex covering number, vertex independence number

and order of a graph H.

Theorem 3.1 (Chartrand and Zhang [9]). For every graph H of order n containing no

isolated vertices,

α(H) + β(H) = n.
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The generalized Petersen graph represented as GP (r, s), where r ≥ 3 and 1 ≤ s ≤

b r−1
2
c, is a 3-regular graph having vertex set {u1, u2, . . . , ur, v1, v2, . . . , vr} and edge set

{uiui+1, uivi, vivi+s, 1 ≤ i ≤ r}, where the indices larger than r will be taken as modulo

r. The generalized Petersen graph was first defined by Watkins [22].

We find the strong metric dimension of generalized Petersen graph GP (2m,m −

1) having vertex set V (GP (2m,m − 1)) = {u1, v1, u2, v2, . . . , u2m, v2m} and edge set

{uiui+1, uivi, vivi+m−1, 1 ≤ i ≤ 2m}, where the indices greater than 2m will be taken

as modulo 2m. For our convenience, we call {u1, u2, . . . , u2m} as outer vertices and

{v1, v2, . . . , v2m} as inner vertices of GP (2m,m− 1).

3.2 Strong metric dimension of GP (2m,m − 1) when

m is odd.

In this constituent, we calculate the strong metric dimension of GP (2m,m − 1) for all

m ≥ 7 and m ≡ 1 (mod 2). Let i, j ∈ {1, 2, . . . , 2m}. We define F1 and F2 as follows:

F1 =

{
k(m− 1), k(m+ 1) | 0 ≤ k ≤ m− 1

2

}
, (3.1)

F2 =

{
k(m− 1)− 1, k(m+ 1) + 1 | 0 ≤ k ≤ m− 1

2
− 1

}
, (3.2)

in such a way that if l ∈ F1 ∪ F2, then 1 ≤ l ≤ 2m, or l is modulo 2m. By varying k

from 0 to m−1
2

, the set F1 contains all even integers from 1, . . . , 2m. Similarly, by varying

k from 0 to m−1
2
− 1, the set F2 contains all odd integers from 1, . . . , 2m except m. This

shows that |j − i| ∈ F1 ∪ F2 ∪ {m}.

Firstly, we compute the mutually maximally distant (hereafter, MMD) vertices in the

generalized Petersen graph GP (2m,m − 1). By using MMD vertices, we construct the

strong resolving graph GPSR(2m,m − 1) of GP (2m,m − 1) and then we find its vertex

covering number. By Theorem 2.4, the problem of calculating strong metric dimension
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of a graph is converted into determining the vertex covering number of a strong resolving

graph.

Using structure of GP (2m,m− 1), the distances between vertices of GP (2m,m− 1)

are given by:

(a). When |j − i| ∈ F1:

d(vi, vj) = k, (3.3)

d(vi, uj) = k + 1. (3.4)

If m−1
2
≡ 0 (mod 2) or [m−1

2
≡ 1 (mod 2) and k 6= m−1

2
], then

d(ui, uj) =

 k k ≡ 0(mod 2),

k + 2 k ≡ 1(mod 2).
(3.5)

If m−1
2
≡ 1(mod 2) and k = m−1

2
, then

d(ui, uj) = k + 1. (3.6)

(b). When |j − i| ∈ F2:

d(vi, vj) = k + 3, (3.7)

d(vi, uj) = k + 2. (3.8)

If m−1
2
≡ 1 (mod 2) or [m−1

2
≡ 0 (mod 2) and k 6= m−1

2
− 1], then

d(ui, uj) =

 k + 1 k ≡ 0(mod 2),

k + 3 k ≡ 1(mod 2).
(3.9)

If m−1
2
≡ 0 (mod 2) and k = m−1

2
− 1, then

d(ui, uj) = k + 2. (3.10)
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(c). When |j − i| = m:

d(vi, vi+m) = d(ui, ui+m) = 4, d(vi, ui+m) = 3. (3.11)

We have the following equivalence classes to modulo 2m which will be used in com-

puting the sdim(GP (2m,m− 1)):

1 ≡ (0)(m+ 1) + 1 ∈ F2, (3.12)

−1 ≡ (0)(m− 1)− 1 ∈ F2, (3.13)

If m−1
2
≡ 0 (mod 2), then

m+ 1

2
+ 1 ≡

(
m− 1

2
− 1

)
(m− 1) ∈ F1, (3.14)

m+
m+ 1

2
− 2 ≡

(
m− 1

2
− 1

)
(m+ 1) ∈ F1, (3.15)

m+ 1 ≡
(
m− 1

2
− m− 3

2

)
(m+ 1) ∈ F1, (3.16)

m− 1 ≡
(
m− 1

2
− m− 3

2

)
(m− 1) ∈ F1, (3.17)

m+ 1

2
− 1 ≡

(
m− 1

2

)
(m+ 1) ∈ F1, (3.18)

m+
m+ 1

2
≡
(
m− 1

2

)
(m− 1) ∈ F1, (3.19)

−m+ 1

2
− 2 ≡

(
m− 1

2
− 1

)
(m+ 1) ∈ F1, (3.20)

−m+ 1

2
≡
(
m− 1

2

)
(m− 1) ∈ F1, (3.21)
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m+ 1

2
≡
(
m− 1

2
− 1

)
(m− 1)− 1 ∈ F2, (3.22)

m+
m+ 1

2
− 1 ≡

(
m− 1

2
− 1

)
(m+ 1) + 1 ∈ F2, (3.23)

m+ 1

2
+ 2 ≡

(
m− 1

2
− 3

)
(m− 1)− 1 ∈ F2, (3.24)

m+
m+ 1

2
− 3 ≡

(
m− 1

2
− 3

)
(m+ 1) + 1 ∈ F2, (3.25)

m+ 1

2
− 2 ≡

(
m− 1

2
− 2

)
(m+ 1) + 1 ∈ F2, (3.26)

m+
m+ 1

2
+ 1 ≡

(
m− 1

2
− 2

)
(m− 1)− 1 ∈ F2, (3.27)

−m+ 1

2
+ 1 ≡

(
m− 1

2
− 2

)
(m− 1)− 1 ∈ F2, (3.28)

−m+ 1

2
− 1 ≡

(
m− 1

2
− 1

)
(m+ 1) + 1 ∈ F2. (3.29)

If m−1
2
≡ 1 (mod 2), then

m+ 1

2
≡
(
m− 1

2

)
(m− 1) ∈ F1, (3.30)

m+
m+ 1

2
− 1 ≡

(
m+ 1

2
− 1

)
(m+ 1) ∈ F1, (3.31)

m+ 1 ≡
(
m+ 1

2
− m− 1

2

)
(m+ 1) ∈ F1, (3.32)

m− 1 ≡
(
m+ 1

2
− m− 1

2

)
(m− 1) ∈ F1, (3.33)
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m+ 1

2
+ 2 ≡

(
m− 1

2
− 2

)
(m− 1) ∈ F1, (3.34)

m+
m+ 1

2
− 3 ≡

(
m− 1

2
− 2

)
(m+ 1) ∈ F1, (3.35)

−m+ 1

2
− 1 ≡

(
m− 1

2

)
(m+ 1) ∈ F1, (3.36)

−m+ 1

2
+ 1 ≡

(
m− 1

2
− 1

)
(m− 1) ∈ F1, (3.37)

m+ 1

2
− 2 ≡

(
m− 1

2
− 1

)
(m+ 1) ∈ F1, (3.38)

m+ 1

2
+ 1 ≡

(
m− 1

2
− 2

)
(m− 1)− 1 ∈ F2, (3.39)

m+
m+ 1

2
− 2 ≡

(
m− 1

2
− 2

)
(m+ 1) + 1 ∈ F2, (3.40)

m+
m+ 1

2
≡
(
m− 1

2
− 1

)
(m− 1)− 1 ∈ F2, (3.41)

m+
m− 1

2
+ 1 ≡

(
m− 1

2
− 1

)
(m− 1)− 1 ∈ F2, (3.42)

m− 1

2
≡
(
m− 1

2
− 1

)
(m+ 1) + 1 ∈ F2, (3.43)

−m− 1

2
− 1 ≡

(
m− 1

2
− 2

)
(m+ 1) + 1 ∈ F2, (3.44)

−m− 1

2
+ 1 ≡

(
m− 1

2
− 1

)
(m− 1)− 1 ∈ F2, (3.45)

29



m+
m− 1

2
− 1 ≡

(
m− 1

2
− 2

)
(m+ 1) + 1 ∈ F2, (3.46)

m− 1

2
+ 2 ≡

(
m− 1

2
− 2

)
(m− 1)− 1 ∈ F2, (3.47)

m+ 1

2
− 1 ≡

(
m+ 1

2
− 2

)
(m+ 1) + 1 ∈ F2. (3.48)

Theorem 3.2. Let GP (2m,m− 1) be the generalized Petersen graph, where m ≥ 7 and

m ≡ 1 (mod 2). Then for each i, j ∈ {1 . . . , 2m}, the following hold:

(a). uiMMDuj if and only if |j − i| ∈ {m, m+1
2
, m+1

2
+ 1,m+ m+1

2
− 1,m+ m+1

2
− 2}.

(b). Let m−1
2

is odd. Then viMMDuj if and only if |j − i| ∈ {m+1
2
,m+ m+1

2
− 1}.

(c). Let m−1
2

is even. Then viMMDuj if and only if |j − i| ∈ {m+1
2
− 1,m+ m+1

2
}.

(d). Let m−1
2

is odd. Then viMMDvj if and only if |j − i| ∈ {m, m−1
2
,m+ m−1

2
+ 1}.

(e). Let m−1
2

is even. Then viMMDvj if and only if |j − i| ∈ {m, m+1
2
,m+ m+1

2
− 1}.

Proof. Let i, j ∈ {1, 2, . . . , 2m}. Without loss of generality, assume that i ≤ j.

(a). We will show that uiMMDuj if and only if j − i ∈ {m, m+1
2
, m+1

2
+ 1,m+ m+1

2
−

1,m+ m+1
2
−2}. On contrary, assume j− i /∈ {m, m+1

2
, m+1

2
+1,m+ m+1

2
−1,m+ m+1

2
−2}.

Case 1. When m−1
2

is odd. From equations (3.30), (3.31), (3.39) and (3.40), it holds

that

j − i ∈
{
F1 \

{
m+ 1

2
,m+

m+ 1

2
− 1

}}
∪
{
F2 \

{
m+ 1

2
+ 1,m+

m+ 1

2
− 2

}}
.

(3.49)

Subcase I. First assume that j − i ∈ F1 \
{

m+1
2
,m+ m+1

2
− 1
}

. If k is even, then

from equation (3.5) we get

d(ui, uj) = k.

Also, vi ∈ N(ui) and from equation (3.4), we have
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d(vi, uj) = k + 1 > d(ui, uj).

If k is odd, then by equation (3.5)

d(ui, uj) = k + 2.

Let j−i = k(m−1). Note that ui+1 ∈ N(ui) and we have j−(i+1) = k(m−1)−1 ∈ F2.

From equation (3.9), we obtain d(ui+1, uj) = k + 3 > d(ui, uj). This shows that ui and

uj are not MMD. If j − i = k(m + 1), then we can write j − (i − 1) = k(m + 1) + 1,

that is, j − (i − 1) ∈ F2. Note that ui−1 ∈ N(ui). From equation (3.9), we have

d(ui−1, uj) = k + 3 > d(ui, uj). This proves ui and uj are not MMD.

Subcase II. Next, assume that j − i ∈ F2 \
{

m+1
2

+ 1,m+ m+1
2
− 2
}

. If k is even,

then from equation (3.9), we obtain

d(ui, uj) = k + 1.

We know that vi ∈ N(ui). Therefore equation (3.8) yields

d(vi, uj) = k + 2 > d(ui, uj).

If k is odd, then equation (3.9) tells us that

d(ui, uj) = k + 3.

First note that ui+1, ui−1 ∈ N(ui). Let j − i = k(m − 1) − 1. Then j − (i + 1) =

k(m − 1) − 2 = k(m − 1) + 2(m − 1) = (k + 2)(m − 1) ∈ F1. From equation (3.5),

we have d(ui+1, uj) = k + 4 > d(ui, uj). If j − i = k(m + 1) + 1, then j − (i − 1) =

k(m+ 1) + 2 = k(m+ 1) + 2(m+ 1) = (k + 2)(m+ 1) ∈ F1. From equation (3.5), we get

d(ui−1, uj) = k + 4 > d(ui, uj). Thus ui and uj are not MMD.

Case 2. When m−1
2

is even. From equations (3.14), (3.15), (3.22) and (3.23), it holds

that

j − i ∈
{
F1 \

{
m+ 1

2
+ 1,m+

m+ 1

2
− 2

}}
∪
{
F2 \

{
m+ 1

2
,m+

m+ 1

2
− 1

}}
.

(3.50)
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Subcase I. First assume that j− i ∈ F1 \
{

m+1
2

+ 1,m+ m+1
2
− 2
}

. If k is even, then

from equation (3.5), it is clear that

d(ui, uj) = k.

We know that vi ∈ N(ui). Hence from equation (3.4), we obtain

d(vi, uj) = k + 1 > d(ui, uj).

If k is odd, then equation (3.5) yields

d(ui, uj) = k + 2.

Let j−i = k(m−1). Then j−(i+1) = k(m−1)−1, that is, j−(i+1) ∈ F2. We know that

ui+1 ∈ N(ui). By using equation (3.9), we get d(ui+1, uj) = k + 3 > d(ui, uj). Note that

ui−1 ∈ N(ui). Therefore if j− i = k(m+ 1), then we have j− (i−1) = k(m+ 1) + 1 ∈ F2.

Again using equation (3.9), we note that d(ui−1, uj) = k + 3 > d(ui, uj). This shows ui

and uj are not MMD.

Subcase II. Assume that j − i ∈ F2 \
{

m+1
2
,m+ m+1

2
− 1
}

. If k is even, then from

equation (3.9), we have

d(ui, uj) = k + 1.

Also vi ∈ N(ui) and from equation (3.8), we get

d(vi, uj) = k + 2 > d(ui, uj).

If k is odd, then equation (3.9) tells us that

d(ui, uj) = k + 3.

Note that ui+1, ui−1 ∈ N(ui). Let j− i = k(m−1)−1. Then we can write j−(i+1) =

k(m− 1)− 2 = (k + 2)(m− 1) ∈ F1. From equation (3.5), we have d(ui+1, uj) = k + 4 >

d(ui, uj). If j − i = k(m+ 1) + 1, then j − (i− 1) = k(m+ 1) + 2 = (k + 2)(m+ 1) ∈ F1.

Again from equation (3.5), we have d(ui−1, uj) = k + 4 > d(ui, uj). From above we

conclude that ui and uj are not MMD.
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Now we prove the converse. As GP (2m,m − 1) is 3-regular graph, so for proving

uiMMDuj we show that for each wi ∈ N(ui) the distance d(wi, uj) ≤ d(ui, uj) and vice

versa.

Case 1. When m−1
2

is odd. Let j − i = m. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m) = {vi+m, ui+m+1, ui+m−1}.

From equation (3.11), we have

d(ui, uj) = 4.

From equations (3.32), (3.33), (3.5) and (3.11), we get

d(ui−1, uj) = d(ui+1, uj) = d(vi, uj) = d(ui, uj+1) = d(ui, uj−1) = d(ui, vj) = 3.

Thus uiMMDui+m.

Now let j − i = m+1
2

. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m+1
2

) = {vi+m+1
2
, ui+m+1

2
+1, ui+m+1

2
−1}.

Equations (3.30) and (3.6) yields

d(ui, uj) = m+1
2

.

We first show uiMDuj.

(1). Note that j−(i−1) = m+1
2

+1. From equations (3.39) and (3.9), d(ui−1, uj) = m+1
2

.

(2). We have j−(i+1) = m+1
2
−1. From equations (3.48) and (3.9), d(ui+1, uj) = m−1

2
.

(3). From equations (3.30) and (3.4), d(vi, uj) = m+1
2

.

Next we show that ujMDui.

(1). We have (j+1)−i = m+1
2

+1. From equations (3.39) and (3.9), d(ui, uj+1) = m+1
2

.

(2). Also (j − 1)− i = m+1
2
− 1. From equations (3.48) and (3.9), d(ui, uj−1) = m−1

2
.

(3). From equations (3.30) and (3.4), d(ui, vj) = m+1
2

.

From above, ui and uj are MMD.

Now let j − i = m+1
2

+ 1. We know that
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N(ui) = {vi, ui+1, ui−1},

N(ui+m+1
2

+1) = {vi+m+1
2

+1, ui+m+1
2

+2, ui+m+1
2
}.

From equations (3.39) and (3.9), we obtain

d(ui, uj) = m+1
2

.

First we prove uiMDuj.

(1). Note that j − (i − 1) = m+1
2

+ 2. Using equations (3.34) and (3.5), we get

d(ui−1, j) = m−1
2

.

(2). We have j− (i+ 1) = m+1
2

. By equations (3.30) and (3.6), we obtain d(ui+1, uj) =

m+1
2

.

(3). From equations (3.39) and (3.8), d(vi, uj) = m−1
2

.

We next prove that ujMDui.

(1). Since (j + 1)− i = m+1
2

+ 2. From equations (3.34) and (3.5), d(ui, uj+1) = m−1
2

.

(2). We have (j − 1)− i = m+1
2

. From equations (3.30) and (3.6), d(ui, uj−1) = m+1
2

.

(3). By using equations (3.39) and (3.8), d(ui, vj) = m−1
2

.

Thus ui and uj are MMD.

Now assume that j − i = m+ m+1
2
− 1. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m+m+1
2
−1) = {vi+m+m+1

2
−1, ui+m+m+1

2
−2, ui+m+m+1

2
}.

Equations (3.31) and (3.6) tells us that

d(ui, uj) = m+1
2

.

We first prove that uiMDuj.

(1). We have j−(i−1) = m+ m+1
2

. From equations (3.41) and (3.9), d(ui−1, uj) = m−1
2

.

(2). Also j−(i+1) = m+ m+1
2
−2. From equations (3.40) and (3.9), d(ui+1, uj) = m+1

2
.

(3). By using equations (3.31) and (3.4), we obtain d(vi, uj) = m+1
2

.

Now we prove that ujMDui.

(1). Note that (j+1)−i = m+m+1
2

. From equations (3.41) and (3.9), d(ui, uj+1) = m−1
2

.
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(2). We have (j−1)− i = m+ m+1
2
−2. From equations (3.40) and (3.9), d(ui, uj−1) =

m+1
2

.

(3). From equations (3.31) and (3.4), d(ui, vj) = m+1
2

.

This shows ui and uj are MMD.

Suppose j − i = m+ m+1
2
− 2. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m+m+1
2
−2) = {vi+m+m+1

2
−2, ui+m+m+1

2
−3, ui+m+m+1

2
−1}.

From equations (3.40) and (3.9), we get

d(ui, uj) = m+1
2

.

We first prove that uiMDuj.

(1). We have j− (i− 1) = m+ m+1
2
− 1. From equation (3.31) and (3.6), d(ui−1, uj) =

m+1
2

.

(2). Note that j − (i+ 1) = m+ m+1
2
− 3. By using equations (3.35) and (3.5), we get

d(ui+1, uj) = m−1
2

.

(3). From equations (3.40) and (3.8), d(vi, uj) = m−1
2

.

Now we show that ujMDui.

(1). We have (j+1)− i = m+ m+1
2
−1. From equations (3.31) and (3.6), d(ui, uj+1) =

m+1
2

.

(2). Note that (j − 1) − i = m + m+1
2
− 3. By using equations (3.35) and (3.5), we

have d(ui, uj−1) = m−1
2

.

(3). From equations (3.40) and (3.8), d(ui, vj) = m−1
2

.

Thus ui and uj are MMD.

Case 2. When m−1
2

is even.

Assume j − i = m. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m) = {vi+m, ui+m+1, ui+m−1}.
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From equation (3.11), we have

d(ui, uj) = 4.

We first show that uiMDuj.

(1). Note that j − (i− 1) = m+ 1. From equations (3.16) and (3.5), d(ui−1, uj) = 3.

(2). Also j − (i+ 1) = m− 1. From equations (3.17) and (3.5), d(ui+1, uj) = 3.

(3). From equation (3.11), d(vi, uj) = 3.

Now we show that ujMDui.

(1). We have (j + 1)− i = m+ 1. From equations (3.16) and (3.5), d(ui, uj+1) = 3.

(2). Note that (j − 1)− i = m− 1. From equations (3.17) and (3.5), d(ui, uj−1) = 3.

(3). From equation (3.11), d(ui, vj) = 3.

Thus ui and ui+m are MMD.

Now assume j − i = m+1
2

. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m+1
2

) = {vi+m+1
2
, ui+m+1

2
+1, ui+m+1

2
−1}.

From equations (3.22) and (3.10), we obtain

d(ui, uj) = m+1
2

.

We first show uiMDuj.

(1). As j−(i−1) = m+1
2

+1, therefore equations (3.14) and (3.5), gives us d(ui−1, uj) =

m+1
2

.

(2). Using equations (3.18) and (3.5), we have d(ui+1, uj) = m−1
2

for j−(i+1) = m+1
2
−1.

(3). Using equations (3.22) and (3.8), we obtain d(vi, uj) = m+1
2

.

Now we show that ujMDui. We consider three cases,

(1). We have (j+1)−i = m+1
2

+1. From equations (3.14) and (3.5), d(ui, uj+1) = m+1
2

.

(2). Note that (j−1)−i = m+1
2
−1. From equations (3.18) and (3.5), d(ui, uj−1) = m−1

2
.

(3). Using equations (3.22) and (3.8), we obtain d(ui, vj) = m+1
2

.

This shows uiMMDuj.
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Suppose j − i = m+1
2

+ 1. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m+1
2

+1) = {vi+m+1
2

+1, ui+m+1
2

+2, ui+m+1
2
}.

From equations (3.39) and (3.5), we obtain

d(ui, uj) = m+1
2

.

We first prove ui is maximally distant from uj.

(1). As j − (i − 1) = m+1
2

+ 2, therefore from equations (3.34) and (3.9), we have

d(ui−1, uj) = m−1
2

.

(2). Note that j− (i+ 1) = m+1
2

. From equations (3.30) and (3.10), d(ui+1, uj) = m+1
2

.

(3). By equations (3.39) and (3.4), we get d(vi, uj) = m−1
2

.

Next we show that uj is maximally distant from ui.

(1). For (j + 1) − i = m+1
2

+ 2. We get d(ui, uj+1) = m−1
2

by using equations (3.34)

and (3.9).

(2). Since (j − 1)− i = m+1
2

, so from equations (3.30) and (3.10), d(ui, uj−1) = m+1
2

.

(3). Equations (3.39) and (3.4) yields that d(ui, vj) = (m−1
2

).

This shows ui and uj are MMD.

Let j − i = m+ m+1
2
− 1. We have

N(ui) = {vi, ui+1, ui−1},

N(ui+m+m+1
2
−1) = {vi+m+m+1

2
−1, ui+m+m+1

2
−2, ui+m+m+1

2
}.

From equations (3.23) and (3.10), we get

d(ui, uj) = m+1
2

.

We first prove that uiMDuj.

(1). As j − (i − 1) = m + m+1
2

, therefore from equations (3.19) and (3.5), we obtain

d(ui−1, uj) = m−1
2

.

(2). Note that j − (i + 1) = m + m+1
2
− 2. From equations (3.15) and (3.5), we get

d(ui+1, uj) = m+1
2

.
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(3). Using equations (3.23) and (3.8), we obtain d(vi, uj) = m+1
2

.

Next we show that uj MD ui.

(1). We have (j + 1) − i = m + m+1
2

. Using equations (3.19) and (3.5), we get

d(ui, uj+1) = m−1
2

.

(2). For (j− 1)− i = m+ m+1
2
− 2, equations (3.15) and (3.5) yields that d(ui, uj−1) =

m+1
2

.

(3). From equations (3.23) and (3.8), d(ui, vj) = m+1
2

.

Thus ui and uj are MMD.

Assume j − i = m+ m+1
2
− 2. We know that

N(ui) = {vi, ui+1, ui−1},

N(ui+m+m+1
2
−2) = {vi+m+m+1

2
−2, ui+m+m+1

2
−3, ui+m+m+1

2
−1}.

By using equations (3.15) and (3.5), we obtain

d(ui, uj) = m+1
2

.

First we show that uiMDuj.

(1). We have j−(i−1) = m+ m+1
2
−1. From equations (3.23) and (3.10), d(ui−1, uj) =

m+1
2

.

(2). Note that j−(i+1) = m+ m+1
2
−3. From equations (3.25) and (3.9), d(ui+1, uj) =

m−1
2

.

(3). Using equations (3.15) and (3.4), we have d(vi, uj) = m−1
2

.

Next we show that ujMDui.

(1). We have (j+1)−i = m+ m+1
2
−1. From equations (3.23) and (3.10), d(ui, uj+1) =

m+1
2

.

(2). Note that (j−1)−i = m+ m+1
2
−3. From equations (3.25) and (3.9), d(ui, uj−1) =

m−1
2

.

(3). By using equations (3.15) and (3.4), we obtain d(ui, vj) = m−1
2

.

Thus ui MMD uj.
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(b). Let m−1
2

is odd. Then we will prove that viMMDuj if and only if j−i ∈ {m+1
2
,m+

m+1
2
− 1}.

On contrary, assume that j − i /∈ {m+1
2
,m + m+1

2
− 1}. Since m−1

2
is odd, therefore

equations (3.30) and (3.31) tells us that

j − i ∈
{
F1 \

{
m+ 1

2
,m+

m+ 1

2
− 1

}}
∪ {F2} ∪ {m} . (3.51)

Subcase I. First assume that j − i ∈ F1 \
{

m+1
2
,m+ m+1

2
− 1
}

. Then from equation

(3.4), we get

d(vi, uj) = k + 1.

When k is even. We know that uj−1 and uj+1 ∈ N(uj). Suppose j− i = k(m−1). We can

write (j−1)− i = k(m−1)−1 ∈ F2. From equations (3.8), d(vi, uj−1) = k+2 > d(vi, uj).

Let j − i = k(m + 1). Then (j + 1) − i = k(m + 1) + 1 ∈ F2. From equation (3.8)

d(vi, uj+1) = k + 2 > d(vi, uj).

Next, suppose k is odd. Also ui ∈ N(vi). Then from equation (3.5), we have

d(ui, uj) = k + 2 > d(vi, uj).

Thus vi and uj are not MMD.

Subcase II. Now suppose that j − i ∈ F2. Then equation (3.8) yields

d(vi, uj) = k + 2.

When k is even. Let j−i = k(m−1)−1. Then (j−1)−i = k(m−1)−2 = (k+2)(m−1) ∈

F1. Also uj−1 ∈ N(uj). From equation (3.4), we get d(vi, uj−1) = k + 3 > d(vi, uj). If

j− i = k(m+ 1) + 1, then we know that uj+1 ∈ N(uj). Also (j + 1)− i = k(m+ 1) + 2 =

(k + 2)(m+ 1) ∈ F1. From equation (3.4), d(vi, uj+1) = k + 3 > d(vi, uj).

Next, suppose k is odd and we know that ui ∈ N(vi). From equation (3.9), we get

d(ui, uj) = k + 3 > d(vi, uj).
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Summing up, we conclude that vi and uj are not MMD.

Subcase III.

Let j − i ∈ m. Then from equation (3.11), we have

d(vi, ui+m) = 3.

We know that ui ∈ N(vi). Then again from equation (3.11), we obtain

d(ui, ui+m) = 4.

This shows vi and uj are not MMD.

Now we prove the converse.

Let j − i = m+1
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1},

N(ui+m+1
2

) = {vi+m+1
2
, ui+m+1

2
+1, ui+m+1

2
−1}.

From equations (3.30) and (3.4), we obtain

d(vi, uj) = m+1
2

.

We first show that viMDuj.

(1). Since j − (i+m+ 1) = −m+1
2
− 1, therefore using equations (3.36) and (3.4), we

get d(vi+m+1, uj) = m+1
2

.

(2). Note that j − (i + m − 1) = −m+1
2

+ 1. From equations (3.37) and (3.4),

d(vi+m−1, uj) = m−1
2

.

(3). By equations (3.30) and (3.6), d(ui, uj) = m+1
2

.

Next we show that ujMDvi.

(1). We have (j+1)− i = m+1
2

+1. From equations (3.39) and (3.8), d(vi, uj+1) = m−1
2

.

(2). Note that (j−1)−i = m+1
2
−1. From equations (3.48) and (3.8), d(vi, uj−1) = m+1

2
.

(3). Equations (3.30) and (3.3) yields d(vi, vj) = m−1
2

.

This proves vi and uj are MMD.

Suppose j − i = m+ m+1
2
− 1. We know that
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N(vi) = {ui, vi+m+1, vi+m−1},

N(ui+m+m+1
2
−1) = {vi+m+m+1

2
−1, ui+m+m+1

2
−2, ui+m+m+1

2
}.

From equation (3.31) and (3.4), we get

d(vi, uj) = m+1
2

.

We will show that viMDuj.

(1). From equations (3.38) and (3.4), d(vi+m+1, uj) = m−1
2

for j−(i+m+1) = m+1
2
−2.

(2). For j − (i+m− 1) = m+1
2

, we get d(vi+m−1, uj) = m+1
2

by using equations (3.30)

and (3.4).

(3). By using equations (3.31) and (3.6), d(ui, uj) = m+1
2

.

Next, we prove ujMDvi.

(1). We have (j+1)−i = m+ m+1
2

. From equations (3.41) and (3.8), d(vi, uj+1) = m+1
2

.

(2). Note that (j−1)−i = m+ m+1
2
−2. From equations (3.40) and (3.8), d(vi, uj−1) =

m−1
2

.

(3). By using equations (3.31) and (3.3), d(vi, vj) = m−1
2

.

This proves viMMDuj.

(c). Let m−1
2

is even. Then we will prove that viMMDuj if and only if j − i ∈

{m+1
2
− 1,m+ m+1

2
}. On contrary, assume that j − i /∈ {m+1

2
− 1,m+ m+1

2
}.

Since m−1
2

is even, therefore from equations (3.18) and (3.19), it holds that

j − i ∈
{
F1 \

{
m+ 1

2
− 1,m+

m+ 1

2

}}
∪ {F2} ∪ {m}. (3.52)

Subcase I. Suppose that j− i ∈ F1 \
{

m+1
2
− 1,m+ m+1

2

}
. Then from equation (3.4),

we have

d(vi, uj) = k + 1.

Let k is even. Note that uj−1 and uj+1 ∈ N(uj). Let j − i = k(m− 1). We can write

(j − 1) − i = k(m − 1) − 1 ∈ F2. From equation (3.8), we obtain d(vi, uj−1) = k + 2 >
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d(vi, uj). If j− i = k(m+1), then we have (j+1)− i = k(m+1)+1 ∈ F2. From equation

(3.8), we get d(vi, uj+1) = k + 2 > d(vi, uj).

Now suppose k is odd and ui ∈ N(vi). From equation (3.5), we get

d(ui, uj) = k + 2 > d(vi, uj).

This shows vi and uj are not MMD.

Subcase II.

Suppose that j − i ∈ F2. Equation (3.8) tells us

d(vi, uj) = k + 2.

Suppose k is even. Let j − i = k(m − 1) − 1. Note that uj−1 ∈ N(uj). We have

(j − 1) − i = k(m − 1) − 2 = (k + 2)(m − 1) ∈ F1. From equation (3.4), we obtain

d(vi, uj−1) = k + 3 > d(vi, uj). Assume j − i = k(m+ 1) + 1. Then we have (j + 1)− i =

k(m + 1) + 2 = (k + 2)(m + 1) ∈ F1. As we know that uj+1 ∈ N(uj), therefore from

equation (3.4), d(vi, uj+1) = k + 3 > d(vi, uj).

Next, suppose k is odd. We know that ui ∈ N(vi). From equation (3.9), we obtain

d(ui, uj) = k + 3 > d(vi, uj).

This shows vi and uj are not MMD.

Subcase III.

Assume that j − i ∈ m. From equation (3.11), we have

d(vi, ui+m) = 3.

We know that ui ∈ N(vi). By using equation (3.11), we get

d(ui, ui+m) = 4 > d(vi, ui+m).

Thus vi and uj are not MMD.

Now we prove the converse.

Suppose j − i = m+1
2
− 1. We know that
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N(vi) = {ui, vi+m+1, vi+m−1},

N(ui+m+1
2
−1) = {vi+m+1

2
−1, ui+m+1

2
, ui+m+1

2
−2}.

From equations (3.18) and (3.4), it holds that

d(vi, uj) = m+1
2

.

We show viMDuj.

(1).We have j−(i+m+1) = −m+1
2
−2. From equations (3.20) and (3.4), d(vi+m+1, uj) =

m−1
2

.

(2). Note that j−(i+m−1) = −m+1
2

. From equations (3.21) and (3.4), d(vi+m−1, uj) =

m+1
2

.

(3). By using equations (3.18) and (3.5), we obtain d(ui, uj) = m−1
2

.

Next, we prove that ujMDvi.

(1). As (j + 1) − i = m+1
2

, therefore using equations (3.22) and (3.8), we have

d(vi, uj+1) = m+1
2

.

(2). Note that (j−1)−i = m+1
2
−2. From equations (3.26) and (3.8), d(vi, uj−1) = m−1

2
.

(3). Equations (3.18) and (3.3), tells us that d(vi, vj) = m−1
2

.

Thus viMMDuj.

Now suppose that j − i = m+ m+1
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1},

N(ui+m+m+1
2

) = {vi+m+m+1
2
, ui+m+m+1

2
−1, ui+m+m+1

2
+1}.

Equations (3.19) and (3.4), yields

d(vi, uj) = m+1
2

.

We show that viMDuj.

(1). We have j−(i+m+1) = m+1
2
−1. From equations (3.18) and (3.4), d(vi+m+1, uj) =

m+1
2

.

(2).Note that j−(i+m−1) = m+1
2

+1. From equations (3.14) and (3.4), d(vi+m−1, uj) =

m−1
2

.
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(3). By using equations (3.19) and (3.5), we get d(ui, uj) = m−1
2

.

Now we prove that uj MD vi.

(1). We have (j+ 1)− i = m+ m+1
2

+ 1. From equations (3.27) and (3.8), d(vi, uj+1) =

m−1
2

.

(2). Note that (j−1)−i = m+ m+1
2
−1. From equations (3.23) and (3.8), d(vi, uj−1) =

m+1
2

.

(3). By using equations (3.19) and (3.3), d(vi, vj) = m−1
2

.

This proves vi and uj are MMD.

(d). Let m−1
2

is odd. Then we will prove that viMMDvj if and only if j − i ∈

{m, m−1
2
,m+ m−1

2
+ 1}.

On contrary, suppose that j− i /∈ {m, m−1
2
,m+ m−1

2
+ 1}. Since m−1

2
is odd, therefore

from equations (3.43) and (3.42), it holds that

j − i ∈ F1 ∪
{
F2 \

{
m− 1

2
,m+

m− 1

2
+ 1

}}
. (3.53)

Subcase I. First assume that j − i ∈ F1. Then from equation (3.3), we have

d(vi, vj) = k.

We know that uj ∈ N(vj). From equation (3.4), we get

d(vi, uj) = k + 1 > d(vi, vj).

Hence vi and vj are not MMD.

Subcase II.

Next, assume that j − i ∈ F2 \
{

m−1
2
,m+ m−1

2
+ 1
}

. Then from equation (3.7), we

obtain

d(vi, vj) = k + 3.

Note that vj+m+1, vj+m−1 ∈ N(vj). Let j − i = k(m + 1) + 1. We can write (j +

m + 1) − i = k(m + 1) + 1 + m + 1 = (k + 1)(m + 1) + 1 ∈ F2. From equation (3.7),

we have d(vj+m+1, vi) = k + 4 > d(vi, vj). If j − i = k(m − 1) − 1, then we have
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(j + m − 1) − i = k(m − 1) − 1 + m − 1=(k + 1)(m − 1) − 1 ∈ F2. By equation (3.7),

d(vj+m−1, vi) = k + 4 > d(vi, vj).

This shows that vi and vj are not MMD.

Now we prove the converse. Let j − i = m. We know that

N(vi) = {ui, vi+m+1, vi+m−1)},

N(vi+m) = {vi+1, vi−1, ui+m}.

From equation (3.11), we get

d(vi, vj) = 4.

We first show that viMDvj.

(1). We have j − (i+m− 1) = 1. From equations (3.12) and (3.7), d(vi+m−1, vj) = 3.

(2). Note that j−(i+m+1) = −1. From equations (3.13) and (3.7), d(vi+m+1, vj) = 3.

(3). From equation (3.11), d(ui, vj) = 3.

Next we prove that vjMDvi.

(1). We have (j −m+ 1)− i = 1. From equations (3.12) and (3.7), d(vi, vi+1) = 3.

(2). Note (j −m− 1)− i = −1. From equations (3.13) and (3.7), d(vi, vi−1) = 3.

(3). From equation (3.11), d(vi, uj) = 3.

This shows that vi and vj are MMD.

Suppose j − i = m−1
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1},

N(vi+m−1
2

) = {vi+m−1
2

+m+1, vi+m−1
2

+m−1, ui+m−1
2
}.

From equations (3.43) and (3.7), we obtain

d(vi, vj) = m+3
2

.

We first show that vi MD vj.

(1). As j − (i+m+ 1) = −m−1
2
− 1, therefore equations (3.44) and (3.7) tells us that

d(vi+m+1, vj) = m+1
2

.
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(2). From equations (3.45) and (3.7), we have d(vi+m−1, vj) = m+3
2

for j−(i+m−1) =

−m−1
2

+ 1.

(3). Using equations (3.43) and (3.8), we get d(ui, vj) = m+1
2

.

Now we show that vjMDvi.

(1). We have (j + m + 1) − i = m + m−1
2

+ 1. From equations (3.42) and (3.7),

d(vi, vj+m+1) = m+3
2

.

(2). Note that (j + m − 1) − i = m + m−1
2
− 1. From equations (3.46) and (3.7),

d(vi, vj+m−1) = m+1
2

.

(3). By using equations (3.43) and (3.8), we obtain d(vi, uj) = m+1
2

.

Hence vi and vj are MMD.

Suppose j − i = m+ m−1
2

+ 1. We have

N(vi) = {ui, vi+m+1, vi+m−1},

N(vi+m+m−1
2

+1) = {vi+m−1
2

+2, vi+m−1
2
, ui+m+m−1

2
}.

Equations (3.42) and (3.7) yields

d(vi, vj) = m+3
2

.

We first show that viMDvj.

(1). We have j−(i+m−1) = m−1
2

+2. From equations (3.47) and (3.7), d(vi+m−1, vj) =

m+1
2

.

(2). Note that j− (i+m+1) = m−1
2

. From equations (3.43) and (3.7), d(vi+m+1, vj) =

m+3
2

.

(3). Using equations (3.42) and (3.8), we have d(ui, vj) = m+1
2

.

Next we show that vjMDvi.

(1). We have (j−m+1)−i = m−1
2

+2. From equations (3.47) and (3.7), d(vi, vj−m+1) =

m+1
2

.

(2). Note that (j−m−1)− i = m−1
2

. From equations (3.43) and (3.7), d(vi, vj−m−1) =

m+3
2

.

(3). We have d(vi, uj) = m+1
2

by using equations (3.42) and (3.8).
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This proves that vi and vj are MMD.

(e). Let m−1
2

is even. Then we will prove that viMMDvj if and only if j − i ∈

{m, m+1
2
,m+ m+1

2
− 1}.

On contrary, assume that j− i /∈ {m, m+1
2
,m+ m+1

2
− 1}. Since m−1

2
is even, therefore

from equations (3.22) and (3.23), it holds that

j − i ∈ F1 ∪
{
F2 \

{
m+ 1

2
,m+

m+ 1

2
− 1

}}
. (3.54)

Subcase I. First assume that j − i ∈ F1. From equation (3.3), we have

d(vi, vj) = k.

We know that ui ∈ N(vi), therefore from equation (3.4), we get

d(ui, vj) = k + 1 > d(vi, vj).

This shows vi and vj are not MMD.

Subcase II.

Suppose that j − i ∈ F2 \
{

m+1
2
,m+ m+1

2
− 1
}

.

Then from equation (3.7), we obtain

d(vi, vj) = k + 3.

Note vj+m+1 ∈ N(vj). Let j − i = k(m + 1) + 1. We can write (j + m + 1) − i =

k(m + 1) + 1 + m + 1 = (k + 1)(m + 1) + 1 ∈ F2. From equation (3.7), we have

d(vj+m+1, vi) = k + 4 > d(vi, vj). If j − i = k(m − 1) − 1, then (j + m − 1) − i =

k(m − 1) − 1 + m − 1=(k + 1)(m − 1) − 1 ∈ F2. Using equation (3.7), we obtain

d(vj+m−1, vi) = k + 4 > d(vi, vj). This shows that vi and vj are not MMD.

Now we prove the converse.

Let j − i = m. We know that

N(vi) = {ui, vi+m+1, vi+m−1},

N(vi+m) = {vi+1, vi−1, ui+m}.
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From equation (3.11), we have

d(vi, vj) = 4.

We first show that viMDvj.

(1). We have j − (i+m− 1) = 1. From equations (3.12) and (3.7),

d(vi+m−1, vj) = 3.

(2). Note that j−(i+m+1) = −1. From equations (3.13) and (3.7), d(vi+m+1, vj) = 3.

(3). By using equation (3.11), we obtain d(ui, vj) = 3.

Next we show that vjMDvi.

(1). Since (j − m + 1) − i = 1, therefore from equations (3.12) and (3.7), we have

d(vi, vi+1) = 3.

(2). From equations (3.13) and (3.7), we get d(vi, vi−1) = 3 for (j −m− 1)− i = −1.

(3). Equation (3.11) yields that d(vi, uj) = 3.

This shows that vi and vj are MMD.

Suppose j − i = m+1
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1},

N(vi+m+1
2

) = {vi+m+1
2

+m+1, vi+m+1
2

+m−1, ui+m+1
2
}.

From equations (3.22) and (3.7), we get

d(vi, vj) = m+3
2

.

We first show that viMDvj.

(1).We have j−(i+m+1) = −m+1
2
−1. From equations (3.29) and (3.7), d(vi+m+1, vj) =

m+3
2

.

(2). Note that j − (i + m − 1) = −m+1
2

+ 1. From equations (3.28) and (3.7),

d(vi+m−1, vj) = m+1
2

.

(3). From equations (3.22) and (3.8), d(ui, vj) = m+1
2

.

Next We show that vjMDvi.
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(1). Using equations (3.27) and (3.7), we get d(vi, vj+m+1) = m+1
2

for (j+m+ 1)− i =

m+ m+1
2

+ 1.

(2). As (j +m− 1)− i = m+ m+1
2
− 1, therefore from equations (3.23) and (3.7), tells

us that d(vi, vj+m−1) = m+3
2

.

(3). Using equations (3.22) and (3.8), we obtain d(vi, uj) = m+1
2

.

Hence vi and vj are MMD.

Suppose that j − i = m+ m+1
2
− 1. We know that

N(vi) = {ui, vi+m+1, vi+m−1},

N(vi+m+m+1
2
−1) = {vi+m+1

2
−2, vi+m+1

2
, ui+m+m+1

2
−1}.

From equations (3.23) and (3.7), we get

d(vi, vj) = m+3
2

.

We first show that viMDvj.

(1). We have j − (i+m− 1) = m+1
2

. From equations (3.22) and (3.7), d(vi+m−1, vj) =

m+3
2

.

(2).Note that j−(i+m+1) = m+1
2
−2. From equations (3.26) and (3.7), d(vi+m+1, vj) =

m+1
2

.

(3). By using equations (3.23) and (3.8), we get d(ui, vj) = m+1
2

.

Next, we show that vj is maximally distant from vi.

(1). We have (j −m+ 1)− i = m+1
2

. From equations (3.22) and (3.7), d(vi, vj−m+1) =

m+3
2

.

(2).Note that (j−m−1)−i = m+1
2
−2. From equations (3.26) and (3.7), d(vi, vj−m−1) =

m+1
2

.

(3). By using equations (3.23) and (3.8), we have d(vi, uj) = m+1
2

.

Hence vi and vj are MMD.

This completes the proof.
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In Theorem 3.2, we have seen that only these pair of vertices are mutually maximally

distant vertices in GP (2m,m− 1). We know that only these vertices will be adjacent in

strong resolving graph GPSR(2m,m− 1) of GP (2m,m− 1).

Theorem 3.3. Let m ≥ 7 and m ≡ 1 mod 2. Then β(GPSR(2m,m− 1)) = m.

Proof. Let i, j ∈ {1, 2, . . . , 2m} and we construct the largest independent set forGPSR(2m,m−

1) from S = V (GPSR(2m,m− 1)) = {u1, u2, . . . , u2m, v1, v2, . . . , v2m}.

Suppose m−1
2

is odd. By Theorem 3.2, the vertices ui and uj are adjacent inGPSR(2m,m−

1) if and only if |j− i| ∈ {m, m+1
2
, m+1

2
+ 1,m+ m+1

2
− 1,m+ m+1

2
− 2}. Similarly vertices

vi and vj are adjacent in GPSR(2m,m− 1) if and only if |j− i| ∈ {m, m−1
2
,m+ m−1

2
+ 1}.

Also the vertices vi and uj are adjacent in GPSR(2m,m − 1) if and only if |j − i| ∈

{m+1
2
,m+ m+1

2
− 1}. Suppose ui is contained in an independent set S, then uj /∈ S where

j = i + m+1
2

and i ∈ {1, 2, . . . , 2m}. Otherwise, ui ∼ uj contradicts the definition of

independent set. Likewise, let vi is contained in an independent set S, then vj /∈ S where

j = i + m−1
2

and i ∈ {1, 2, . . . , 2m}. By removing these vertices from S we construct a

new set S1 = {u1, u2, . . . , um+1
2
, v1, v2, . . . , vm−1

2
}. It is straight forward to observe that S1

is largest independent set.

Now suppose that m−1
2

is even.

By Theorem 3.2, the vertices ui and uj are adjacent in GPSR(2m,m− 1) if and only

if |j − i| ∈ {m, m+1
2
, m+1

2
+ 1,m + m+1

2
− 1,m + m+1

2
− 2}. Similarly, vertices vi and

vj are adjacent in GPSR(2m,m − 1) if and only if |j − i| ∈ {m, m+1
2
,m + m+1

2
− 1}.

Suppose ui, vi are contained in an independent set S, then uj, vj /∈ S where j = i +

m+1
2

and i ∈ {1, 2, . . . , 2m}. Otherwise, ui ∼ uj and vi ∼ vj which contradicts the

definition of an independent set. By removing uj and vj from S, we construct a new set,

S1 = {u1, u2, . . . , um+1
2
, v1, v2, . . . , vm+1

2
}. Also note that vi and ui+m+1

2
−1 are adjacent in

GPSR(2m,m − 1). Since we assumed vi ∈ S1, then ui+m+1
2
−1 /∈ S1. Thus we have a new

set S2 = {u1, u2, . . . , um−1
2
, v1, v2, . . . , vm+1

2
}. It is straight forward to observe that S2 is

largest independent set.
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Hence β(GPSR(2m,m− 1)) = m.

Theorem 3.4. Let GP (2m,m− 1) be the generalized Petersen graph, where m ≥ 7 and

m ≡ 1 (mod 2). Then (sdimGP (2m,m− 1)) is 3m.

Proof. The order of GP (2m,m− 1) is 4m. By Theorem 3.1 and Theorem 3.3, the vertex

covering number of GPSR(2m,m− 1) is 3m. Hence by Theorem 2.4, sdim(GP (2m,m−

1)) = α(GSR(2m,m− 1)) = 3m.

In next section, we compute strong metric dimension of GP (2m,m−1) for m ≥ 6 and

m ≡ 0 (mod 2).

3.3 Strong metric dimension of GP (2m,m − 1) when

m is even.

Let m ≡ 0 (mod 2) and m ≥ 6 and also let i, j ∈ {1, 2, . . . , 2m}. We define F3 and F4

by:

F3 =
{
k(m− 1), k(m+ 1) | 0 ≤ k ≤ m

2

}
, (3.55)

F4 =
{
k(m− 1)− 1, k(m+ 1) + 1 | 0 ≤ k ≤ m

2
− 2
}
, (3.56)

in such a way that if l ∈ F3 or F4, then 1 ≤ l ≤ 2m, otherwise l is modulo 2m. When

0 ≤ k ≤ m
2

, and let k ≡ 0 (mod 2) or k ≡ 1 (mod 2), then the set F3 contains even and

odd integers respectively of the form k(m−1) or k(m+1) from 1, . . . , 2m. Similarly, when

0 ≤ k ≤ m
2
− 2, and let k ≡ 0 (mod 2) or k ≡ 1 (mod 2), then the set F4 contains odd

and even integers respectively of the form k(m− 1)− 1 or k(m + 1) + 1 from 1, . . . , 2m.

This shows that |j − i| ∈ F3 ∪ F4 ∪ {m}.
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Let GP (2m,m − 1) be the generalized Petersen graph, where m ≥ 6 and m ≡ 0

(mod 2). Let i, j ∈ {1, 2, . . . , 2m}. Then using structure of GP (2m,m− 1), the distances

between vertices of GP (2m,m− 1) are given by:

(a). When |j − i| ∈ F3:

d(vi, vj) = k, (3.57)

d(vi, uj) = k + 1, (3.58)

d(ui, uj) =

 k k ≡ 0(mod 2),

k + 2 k ≡ 1(mod 2).
(3.59)

If m
2
≡ 1 (mod 2) and k = m

2
, then

d(ui, uj) = k. (3.60)

(b). When |j − i| ∈ F4:

d(vi, vj) = k + 3, (3.61)

d(vi, uj) = k + 2, (3.62)

d(ui, uj) =

 k + 1, k ≡ 0(mod 2),

k + 3, k ≡ 1(mod 2).
(3.63)

(c). When |j − i| = m:

d(vi, vj) = 4, d(uj, vi) = d(ui, vj) = 3, d(ui, uj) = 4. (3.64)

We have the following equivlance classes to modulo 2m which are helpful for computing

sdim(GP (2m,m− 1)) where m is an even integer.

m+ 1 ≡
(
m

2
− m− 2

2

)
(m+ 1) ∈ F3, (3.65)

m− 1 ≡
(
m

2
− m− 2

2

)
(m− 1) ∈ F3, (3.66)
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1 ≡ (0)(m+ 1) + 1 ∈ F4, (3.67)

−1 ≡ (0)(m− 1)− 1 ∈ F4. (3.68)

If m
2
≡ 0 (mod 2), then

m

2
+ 1 ≡

(m
2
− 1
)

(m− 1) ∈ F3, (3.69)

m+
m

2
− 1 ≡

(m
2
− 1
)

(m+ 1) ∈ F3, (3.70)

m

2
+ 2 ≡

(m
2
− 3
)

(m− 1)− 1 ∈ F4, (3.71)

m

2
≡
(m

2

)
(m+ 1) ∈ F3, (3.72)

m+
m

2
≡
(m

2

)
(m− 1) ∈ F3, (3.73)

m+
m

2
− 2 ≡

(m
2
− 3
)

(m+ 1) + 1 ∈ F4, (3.74)

−m
2

+ 1 ≡
(m

2
− 2
)

(m− 1)− 1 ∈ F4, (3.75)

−m
2
− 1 ≡

(m
2
− 1
)

(m+ 1) ∈ F3, (3.76)

m

2
− 1 ≡

(m
2
− 2
)

(m+ 1) + 1 ∈ F4, (3.77)

m+
m

2
+ 1 ≡

(m
2
− 2
)

(m− 1)− 1 ∈ F4. (3.78)
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If m
2
≡ 1 (mod 2), then

m+
m

2
− 2 ≡

(m
2
− 2
)

(m+ 1) ∈ F3, (3.79)

m+
m

2
≡
(m

2

)
(m+ 1) ∈ F3, (3.80)

m+
m

2
− 1 ≡

(m
2
− 2
)

(m+ 1) + 1 ∈ F4, (3.81)

m

2
+ 1 ≡

(m
2
− 2
)

(m− 1)− 1 ∈ F4, (3.82)

m

2
≡
(m

2

)
(m− 1) ∈ F3, (3.83)

m

2
+ 2 ≡

(m
2
− 2
)

(m− 1) ∈ F3, (3.84)

−m+ 1

2
≡
(m

2
− 1
)

(m+ 1) ∈ F3, (3.85)

−m
2
− 1 ≡

(m
2
− 2
)

(m+ 1) + 1 ∈ F4, (3.86)

m

2
− 1 ≡

(m
2
− 1
)

(m+ 1) ∈ F3, (3.87)

m+
m

2
+ 1 ≡

(m
2
− 1
)

(m− 1) ∈ F3, (3.88)

−m
2

+ 1 ≡
(m

2
− 1
)

(m− 1) ∈ F3. (3.89)

Theorem 3.5. Let GP (2m,m− 1) be the generalized Petersen graph, where m ≥ 6 and

m ≡ 0 (mod 2). Then for each i, j ∈ {1, . . . , 2m}, the following holds:
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(a). uiMMDuj if and only if |j − i| ∈ {m, m
2

+ 1,m+ m
2
− 1}.

(b). viMMDuj if and only if |j − i| ∈ {m
2
,m+ m

2
}.

(c). viMMDvj if and only if |j − i| = m.

Proof. Let i, j ∈ {1, 2, . . . , 2m}. Without loss of generality, assume that i ≤ j.

(a). We prove uiMMDuj if and only if j − i ∈ {m, m
2

+ 1,m+ m
2
− 1}.

Suppose that j − i /∈ {m, m
2

+ 1, m
2

+m− 1}.

Case 1. When m
2

is odd. From equations (3.81) and (3.82), it holds that

j − i ∈
{
F3 ∪ F4 \

{m
2

+ 1,
m

2
+m− 1

}}
. (3.90)

Subcase 1. Let j − i ∈ F3. If k is even, then from equation (3.59), we have

d(ui, uj) = k.

Also vi ∈ N(ui). Equation (3.58) yields

d(vi, uj) = k + 1.

Thus d(vi, uj) > d(ui, uj), that is, ui and uj are not MMD.

If k is odd, then equation (3.59) tells us that

d(ui, uj) = k + 2.

Let j − i = k(m − 1). Note that ui+1 ∈ N(ui) and j − (i + 1) = k(m − 1) − 1, that is,

j − (i + 1) ∈ F4. By equation (3.63), d(ui+1, uj) = k + 3. Thus d(ui+1, uj) > d(ui, uj).

Let j − i = k(m + 1). Then (j + 1) − i = k(m + 1) + 1, that is, (j + 1) − i ∈ F4. Also

uj+1 ∈ N(uj). By equation (3.63), d(ui, uj+1) = k+ 3 > d(ui, uj). Thus ui and uj are not

MMD.

Subcase 2. Next, assume that j − i ∈ F4 \
{

m
2

+ 1, m
2

+m− 1
}

. If k is even, then

from equation (3.63), we have

d(ui, uj) = k + 1.
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Note that vi ∈ N(ui). Using equation (3.62), we have

d(vi, uj) = k + 2.

Thus d(vi, uj) > d(ui, uj), that is, ui and uj are not MMD.

If k is odd then, from equation (3.63), we have

d(ui, uj) = k + 3.

Let j − i = k(m− 1)− 1. Then

(j − 1)− i = k(m− 1)− 2 = k(m− 1) + 2(m− 1) = (k + 2)(m− 1).

That is, (j − 1)− i ∈ F3. But d(ui, uj−1) = (k + 2) + 2 > d(ui, uj).

Let j − i = k(m+ 1) + 1. Then

(j + 1)− i = k(m+ 1) + 2 = k(m+ 1) + 2(m+ 1) = (k + 2)(m+ 1).

Thus (j + 1)− i ∈ F3. Then k + 2 is odd and by equation (3.59), we obtain

d(ui, uj+1) = (k + 2) + 2 > d(ui, uj).

This shows that ui and uj are not MMD.

Case 2. When m
2

is even. From equations (3.69) and (3.70), it holds that

j − i ∈
{
F3 \

{m
2

+ 1,
m

2
+m− 1

}}
∪ F4. (3.91)

Subcase 1. Let j − i ∈ F3 \
{

m
2

+ 1, m
2

+m− 1
}

. If k is even, then from equation

(3.59), we obtain

d(ui, uj) = k.

Also vi ∈ N(ui). Using equation (3.58), we have

d(vi, uj) = k + 1.

Thus d(vi, uj) > d(ui, uj), that is, ui and uj are not MMD.

If k is odd, then equation (3.59) tells us that
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d(ui, uj) = k + 2.

Let j − i = k(m − 1). Note that ui+1 ∈ N(ui) and j − (i + 1) = k(m − 1) − 1, that is,

j−(i+1) ∈ F4. By equation (3.63), we get d(ui+1, uj) = k+3. Thus d(ui+1, uj) > d(ui, uj).

Let j − i = k(m + 1). Then (j + 1) − i = k(m + 1) + 1, that is, (j + 1) − i ∈ F4. Also

uj+1 ∈ N(uj) and by using equation (3.63), we have d(ui, uj+1) = k+ 3 > d(ui, uj). Thus

ui and uj are not MMD.

Subcase 2. Suppose that j − i ∈ F4. If k is even, then from equation (3.63), we

obtain

d(ui, uj) = k + 1.

Note that vi ∈ N(ui) and from equation (3.62), we have

d(vi, uj) = k + 2.

Thus d(vi, uj) > d(ui, uj), that is, ui and uj are not MMD.

If k is odd, then equation (3.63) yields that

d(ui, uj) = k + 3.

Let j − i = k(m− 1)− 1. Then

(j − 1)− i = k(m− 1)− 2 = k(m− 1) + 2(m− 1) = (k + 2)(m− 1).

That is, (j − 1)− i ∈ F3. But from (3.59), d(ui, uj−1) = (k + 2) + 2 > d(ui, uj).

Let j − i = k(m+ 1) + 1. Then

(j + 1)− i = k(m+ 1) + 2 = k(m+ 1) + 2(m+ 1) = (k + 2)(m+ 1).

Thus (j + 1)− i ∈ F3. Then k + 2 is odd and by using equation (3.59), we obtain

d(ui, uj+1) = (k + 2) + 2 > d(ui, uj).

This shows that ui and uj are not MMD.
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Now we prove the converse. We know that GP (2m,m − 1) is 3-regular graph, so for

proving uiMMDuj we show that for each wi ∈ N(ui) the distance d(wi, uj) ≤ d(ui, uj)

and vice versa.

Let j − i = m. We know that

N(ui) = {vi, ui+1, ui−1}, (3.92)

N(ui+m) = {vi+m, ui+m+1, vi+m−1}. (3.93)

From equation (3.64), we have

d(ui, ui+m) = 4.

Also from equations (3.57)∼(3.63) and equations (3.65)∼(3.66), we have

d(ui, vi+m) = d(ui, ui+m+1) = d(ui, ui+m−1) = d(ui+m, vi) (3.94)

= d(ui+m, ui+1) = d(ui+m, ui−1) = 3. (3.95)

Thus uiMMDui+m.

Case 1. When m
2

is odd.

Now let j − i = m
2

+ 1. We know that

N(ui) = {vi, ui+1, ui−1}, (3.96)

N(ui+m
2
+1) = {vi+m

2
+1, ui+m

2
+2, ui+m

2
}. (3.97)

From equations (3.63) and (3.82), we have

d(ui, ui+m
2
+1) = m

2
+ 1.

We first show that uiMDuj.

(1). As j − (i − 1) = m
2

+ 2, therefore from equations (3.84) and (3.59), we get

d(ui−1, uj) = m
2

.

(2). For j− (i+ 1) = m
2

. By using equations (3.83) and (3.60), we get d(ui+1, uj) = m
2

.

(3). From equations (3.82) and (3.62), we have d(vi, uj) = m
2

.

Now we prove that ujMDui.
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(1). We have (j + 1) − i = m
2

+ 2. From equations (3.84) and (3.59), we obtain

d(ui, uj+1) = m
2

.

(2). Note that (j−1)−i = m
2

. Equations (3.83) and (3.60) tells us that d(ui, uj−1) = m
2

.

(3). From equations (3.82) and (3.62), we get d(ui, vj) = m
2

.

Thus ui and uj are MMD.

Let j − i = m+ m
2
− 1. We know that

N(ui) = {vi, ui+1, ui−1}, (3.98)

N(ui+m+m
2
−1) = {vi+m+m

2
−1, ui+m+m

2
−2, ui+m+m

2
}. (3.99)

From equations (3.63) and (3.81), we get

d(ui, ui+m+m
2
−1) = m

2
+ 1.

We first show that uiMDuj.

(1). We have j − (i− 1) = m+ m
2

. From equations (3.80) and (3.60), d(ui−1, uj) = m
2

.

(2). For j−(i+1) = m+m
2
−2, from equations (3.79) and (3.59), we obtain d(ui+1, uj) =

m
2

.

(3). Using equations (3.81) and (3.62), we have d(vi, uj) = m
2

.

Now we prove that ujMDui.

(1). We have (j + 1)− i = m+ m
2

. From equations (3.80) and (3.60), d(ui, uj+1) = m
2

.

(2). Note that (j−1)−i = m+m
2
−2. From equations (3.79) and (3.59), d(ui, uj−1) = m

2
.

(3). From equations (3.81) and (3.62), we have d(ui, vj) = m
2

.

Thus ui and uj are MMD.

Case 2. When m
2

is even.

Let j − i = m
2

+ 1. We know that

N(ui) = {vi, ui+1, ui−1}, (3.100)

N(ui+m
2
+1) = {vi+m

2
+1, ui+m

2
+2, ui+m

2
}. (3.101)

From equations (3.59) and (3.69), we have
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d(ui, ui+m
2
+1) = m

2
+ 1.

We first show that uiMDuj.

(1). As j−(i−1) = m
2

+2, therefore from equations (3.71) and (3.63), d(ui−1, uj) = m
2

.

(2). Using equations (3.72) and (3.59), we get d(ui+1, uj) = m
2

for j − (i+ 1) = m
2

.

(3). Equations (3.69) and (3.58) yields d(vi, uj) = m
2

.

Next, we prove that ujMDui.

(1). Equations (3.71) and (3.63) tells us that d(ui, uj+1) = m
2

for(j + 1)− i = m
2

+ 2.

(2). Note that (j−1)−i = m
2

. From equations (3.72) and (3.59), we have d(ui, uj−1) =

m
2

.

(3). Using equations (3.69) and (3.58), we have d(ui, vj) = m
2

.

Thus ui and uj are MMD.

Let j − i = m+ m
2
− 1. We know that

N(ui) = {vi, ui+1, ui−1}, (3.102)

N(ui+m+m
2
−1) = {vi+m+m

2
−1, ui+m+m

2
−2, ui+m+m

2
}. (3.103)

From equations (3.59) and (3.70), we obtain

d(ui, ui+m+m
2
−1) = m

2
+ 1.

We first show that uiMDuj.

(1). We have j − (i− 1) = m+ m
2

. From equations (3.73) and (3.59), d(ui−1, uj) = m
2

.

(2). We note that j − (i + 1) = m + m
2
− 2. From equations (3.74) and (3.63),

d(ui+1, uj) = m
2

.

(3). From equations (3.70) and (3.58), we get d(vi, uj) = m
2

.

Now we prove that ujMDui.

(1). We have (j + 1)− i = m+ m
2

. From equations (3.73) and (3.59), d(ui, uj+1) = m
2

.

(2). Note that (j−1)−i = m+m
2
−2. From equations (3.74) and (3.63), d(ui, uj−1) = m

2
.

(3). Using equations (3.70) and (3.58), we obtain d(ui, vj) = m
2

.

Thus ui and uj are MMD.
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(b). We prove viMMDuj if and only if j − i ∈ {m
2
,m+ m

2
}.

Suppose that j − i /∈ {m
2
,m+ m

2
}.

Case 1.

Let j − i = m. From equation (3.64), we have

d(vi, uj) = 3.

Also ui ∈ N(vi). By equation (3.64), we have d(ui, uj) = 4 > d(vi, uj). It is easily

seen that vi and uj are not MMD.

Case 2.

If m
2

is odd, then from equations (3.83) and (3.80) [or if m
2

is even, then from equations

(3.72) and (3.73)], it holds that

j − i ∈
{
F3 \

{m
2
,m+

m

2

}
∪ F4

}
. (3.104)

Subcase 1. Let j − i ∈ F3 \
{

m
2
,m+ m

2

}
. From equation (3.58), we get

d(vi, uj) = k + 1.

Suppose k is odd. We know that ui ∈ N(vi). Therefore from equation (3.59), we have

d(ui, uj) = k + 2.

Thus d(ui, uj) > d(vi, uj), that is, vi and uj are not MMD.

Let k is even and j−i = k(m−1). Note that uj−1 ∈ N(uj) and (j−1)−i = k(m−1)−1,

that is, (j−1)−i ∈ F4. By equation (3.62), d(vi, uj−1) = k+2. Thus d(ui, uj−1) > d(vi, uj).

Let j − i = k(m + 1). Then (j + 1) − i = k(m + 1) + 1, that is, (j + 1) − i ∈ F4. Also

uj+1 ∈ N(uj) and by equation (3.62), we have d(vi, uj+1) = k+ 2 > d(vi, uj). Thus vi and

uj are not MMD.

Subcase 2. Next, assume that j − i ∈ F4. From equation (3.62), we have

d(vi, uj) = k + 2.

Suppose k is odd. Note that ui ∈ N(vi) and from equation (3.63), we have
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d(ui, uj) = k + 3.

Thus d(ui, uj) > d(vi, uj), that is, vi and uj are not MMD.

Let k is even and j − i = k(m− 1)− 1. Then

(j − 1)− i = k(m− 1)− 2 = k(m− 1) + 2(m− 1) = (k + 2)(m− 1).

That is, (j−1)−i ∈ F3. From equation (3.58), we have d(vi, uj−1) = (k+2)+1 > d(vi, uj).

Let j − i = k(m+ 1) + 1. Then

(j + 1)− i = k(m+ 1) + 2 = k(m+ 1) + 2(m+ 1) = (k + 2)(m+ 1).

Thus (j + 1)− i ∈ F3. By equation (3.58), we obtain

d(vi, uj+1) = (k + 2) + 1 > d(vi, uj).

This shows that vi and uj are not MMD.

Now we prove the converse.

Case 1. Let m
2

is odd. Also let j − i = m
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1}, (3.105)

N(ui+m
2

) = {vi+m
2
, ui+m

2
+1, ui+m

2
−1}. (3.106)

From equations (3.58) and (3.83), we have

d(vi, ui+m
2

) = m
2

+ 1.

We first show that viMDuj.

(1). We have j−(i+m−1) = −m
2

+1. From equations (3.89) and (3.58), d(vi+m−1, uj) =

m
2

.

(2).Note that j−(i+m+1) = −m
2
−1. From equations (3.86) and (3.62), d(vi+m+1, uj) =

m
2

.

(3). Using equations (3.83) and (3.60), we get d(ui, uj) = m
2

.

Now we prove that ujMDvi.
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(1). Since (j + 1) − i = m
2

+ 1, therefore from equations (3.82) and (3.62), we obtain

d(vi, uj+1) = m
2

.

(2). Using equations (3.87) and (3.58), we get d(vi, uj−1) = m
2

for (j − 1)− i = m
2
− 1.

(3). From equations (3.83) and (3.57), we obtain d(vi, vj) = m
2

.

Thus vi and uj are MMD.

Next assume j − i = m+ m
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1}, (3.107)

N(ui+m+m
2

) = {vi+m+m
2
, ui+m+m

2
−1, ui+m+m

2
+1}. (3.108)

From equations (3.58) and (3.80), we have

d(vi, ui+m+m
2

) = m
2

+ 1.

We first show that viMDuj.

(1). We have j−(i+m−1) = m
2

+1. From equations (3.82) and (3.62), d(vi+m−1, uj) =

m
2

.

(2). We can obtain j − (i + m + 1) = m
2
− 1. From equations (3.87) and (3.58),

d(vi+m+1, uj) = m
2

.

(3). Equations (3.80) and (3.60) yields that d(ui, uj) = m
2

.

Now we prove that ujMDvi.

(1). We have (j+1)−i = m+ m
2

+1. From equations (3.88) and (3.58), d(vi, uj+1) = m
2

.

(2). Note that (j−1)−i = m+m
2
−1. From equations (3.81) and (3.62), d(vi, uj−1) = m

2
.

(3). Using equations (3.80) and (3.57), we obtain d(vi, vj) = m
2

.

Thus vi and uj are MMD.

Case 2. Let m
2

is even. Also let j − i = m
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1}, (3.109)

N(ui+m
2

) = {vi+m
2
, ui+m

2
+1, ui+m

2
−1}. (3.110)

From equations (3.58) and (3.72), we have
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d(vi, ui+m
2

) = m
2

+ 1.

We first show that vi is maximally distant from uj.

(1). Using equations (3.75) and (3.62), we get d(vi+m−1, uj) = m
2

for j − (i+m− 1) =

−m
2

+ 1.

(2). Since j− (i+m+ 1) = −m
2
− 1, therefore equations (3.76) and (3.58) tells us that

d(vi+m+1, uj) = m
2

.

(3). From equations (3.72) and (3.59), we get d(ui, uj) = m
2

.

Now we prove that uj is maximally distant from vi.

(1). We have (j + 1)− i = m
2

+ 1. From equations (3.69) and (3.58), d(vi, uj+1) = m
2

.

(2). Note that (j − 1)− i = m
2
− 1. From equations (3.77) and (3.62), d(vi, uj−1) = m

2
.

(3). From equations (3.72) and (3.57), we get d(vi, vj) = m
2

.

Thus vi and uj are MMD.

Suppose that j − i = m+ m
2

. We know that

N(vi) = {ui, vi+m+1, vi+m−1)}, (3.111)

N(ui+m+m
2

) = {vi+m+m
2
, ui+m+m

2
−1, ui+m+m

2
+1}. (3.112)

From equations (3.58) and (3.73), we have

d(vi, ui+m+m
2

) = m
2

+ 1.

We first show that viMDuj.

(1). We have j−(i+m−1) = m
2

+1. From equations (3.69) and (3.58), d(vi+m−1, uj) =

m
2

.

(2). Since j − (i + m + 1) = m
2
− 1, therefore from equations (3.77) and (3.62), we

obtain d(vi+m+1, uj) = m
2

.

(3). Equations (3.73) and (3.59) yields that d(ui, uj) = m
2

.

Now we prove that ujMDvi.

(1). We have (j+1)−i = m+ m
2

+1. From equations (3.78) and (3.62), d(vi, uj+1) = m
2

.

(2). Note that (j−1)−i = m+m
2
−1. From equations (3.70) and (3.58), d(vi, uj−1) = m

2
.
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(3). Using equations (3.73) and (3.57), we get d(vi, vj) = m
2

.

Thus vi and uj are MMD.

(c). We will prove that viMMDvj if and only if j − i = m.

Suppose that j − i 6= m. Then j − i ∈ F3 ∪ F4.

Case 1. Let j − i ∈ F3. Then from equation (3.57), we have

d(vi, vj) = k.

Note that uj ∈ N(vj) and from equation (3.58), we get

d(vi, uj) = k + 1.

Thus d(vi, uj) > d(vi, vj). This shows that vi and vj are not MMD.

Case 2. Suppose that j − i ∈ F4. Then from equation (3.61), we have

d(vi, vj) = k + 3.

First note that vj+(m−1), vj+(m+1) ∈ N(vj). If j−i = k(m−1)−1, then let j′ = j+(m−1).

Also j′−i = j−i+(m−1) = k(m−1)−1+m−1 = (k+1)(m−1)−1. Thus j′−i ∈ F4. By

equation (3.61), we have d(vi, vj′) = (k+1)+3 > d(vi, vj). If j− i = k(m+1)+1, then let

j′ = j+(m+1). Also j′− i = j− i+(m+1) = k(m+1)+1+(m+1) = (k+1)(m+1)+1.

Thus j′ − i ∈ F4. By equation (3.61), we have d(vi, vj′) = (k + 1) + 3 > d(vi, vj). This

proves that vi and vj are not MMD.

Now we prove tha converse. Let j − i = m. Then

N(vi) = {ui, vi+(m+1), vi+(m−1)},

N(vj) = {uj, vj+1, vj−1}.
(3.113)

From equations (3.67), (3.68) and equations (3.57), (3.64), we have

d(vi, vj) = 4,

d(ui, vj) = d(vi+(m+1), vj) = d(vi+(m−1), vj) = d(uj, vi) = d(vi+1, vi) = d(vi−1, vi) = 3.

Thus viMMDvi+m. This completes the proof.
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Theorem 3.6. Let m ≥ 6 and m ≡ 0 mod 2. Then β(GPSR(2m,m− 1)) = m.

Proof. Let i, j ∈ {1, 2, . . . , 2m} and we construct the largest independent set forGPSR(2m,m−

1) from S = V (GPSR(2m,m − 1)) = {u1, u2, . . . , u2m, v1, v2, . . . , v2m}. By Theorem

3.5, the vertices ui and uj are adjacent in GPSR(2m,m − 1) if and only if |j − i| ∈

{m, m
2

+1,m+ m
2
−1}. Similarly, the vertices vi and vj are adjacent in GPSR(2m,m−1) if

and only if |j−i| = m. Suppose ui is contained in an independent set S, then uj /∈ S where

|j−i| = m
2

+1 and i ∈ {1, 2, . . . , 2m}. Likewise, let vi is contained in an independent set S,

then vj /∈ S where |j − i| = m and i ∈ {1, 2, . . . , 2m}. By removing these vertices from S

we construct a new set S1 = {u1, u2, . . . , um
2
+1, v1, v2, . . . , vm}. We know that ui and vi+m

2

are adjacent in GPSR(2m,m−1). Since we assumed ui ∈ S1, then vj /∈ S1 for |j− i| = m
2

.

By deleting vj from S1, we obtain a new set S2 = {u1, u2, . . . , um
2
+1, v1, v2, . . . , vm

2
}. Also

note that ui and vi+m+m
2

are adjacent in GPSR(2m,m − 1). For i = m
2

+ 1, we have

um
2
+1 ∼ v1. This shows um

2
+1 /∈ S2. Thus we have S3 = {u1, u2, . . . , um

2
, v1, v2, . . . , vm

2
}.

It is straight forward to observe that S3 is largest independent set.

Hence β(GPSR(2m,m− 1)) = m.

Theorem 3.7. Let GP (2m,m− 1) be the generalized Petersen graph, where m ≥ 6 and

m ≡ 0 (mod 2). Then sdimGP (2m,m− 1) is 3m.

Proof. The order of GP (2m,m − 1) is 4m. By Theorem 3.3 and Theorem 3.1, the ver-

tex covering number of GPSR(2m,m − 1) is 3m. Hence by Theorem 2.4, sdim(G) =

α(GSR(2m,m− 1)) = 3m.
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