On generalizations of fractional
calculus

by
Hafiz Muhammad Fahad

A thesis

submitted for the degree of Master of Science
in
Mathematics

Supervised by
Dr. Mujeeb ur Rehman

Department of Mathematics

School of Natural Sciences
National University of Sciences and Technology

H-12, Islamabad, Pakistan

© Hafiz Muhammad Fahad, 2019



FORM TH-4
National University of Sciences & Technoloqy

MS THESIS WORK

We hereby recommend that the dissertation prepared under our supervision
by: Hafiz Muhammad Fahad, Regn No. 00000203315 Titled: On_generalizations of

fractional calculus be accepted in partial fulfillment of the requirements for the award of

MS degree.

Examination Committee Members

1. Name: DR. MUHAMMAD ISHAQ Signature:

2. Name: DR. UMER SAEED Signature: 7Y =7

'External Examiner: DR. NASIR REHMAN Signature: \‘V‘R)/

Supervisor's Name DR. MUJEEB UR REHMAN Signature:

14~ 29-2-/9

Head of Department Date

COUNTERSINGED

O Ja"

Date: k l ZZJ[Q,;;(% Dean/Principal




THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS thesis written by Hafiz Muhammad Fahad,
(Registration No. 00000203315), of School of Natural Sciences has been vetted by

undersigned, found complete in all respects as per NUST statutes/regulations, is free of
plagiarism, errors, and mistakes and is accepted as partial fulfillment for award of
MS/M.Phil degree. It is further certified that necessary amendments as pointed out by
GEC members and external examiner of the scholar have also been incorporated in the

said thesis.

Signature: 7 ,b

L=

Name of Supervisor: Dr. Mujeeb ur Rehman

Date: A0 *m}u = 9,10
I R

Signature (HoD): %

Date: 27— F=ds |

o

Signature (Dean/Principal):

Date: a8l o

ey




Dedication

To my loving parents, brothers and prospective wife.

il



Acknowledgements

All praises are for Almighty Allah, the most gracious and the most merciful, Who
created this entire universe. I am highly grateful to Him for showering His countless
blessings upon me and giving me the ability and strength to complete this thesis
successfully and blessing me more than I deserve.

I am greatly indebted to my supervisor Dr. Mujeeb ur Rehman, for his continuous
support and guidance during my thesis. Without his expertise and help, this work
would not have been possible. My understanding and appreciation of the subject are
entirely due to his efforts and positive response to my queries. I would also like to
thank the Head of Department and the entire faculty of the Mathematics Department
for their kind help during my research work.

My studies at NUST have been made more memorable and enjoyable by my class-
mates and friends. I would like to give special thanks to Burhan Jafeer and Usman
Rashid for valuable advices, suggestions, and friendship.

Finally, with the deepest gratitude, I acknowledge the support of my family. A huge
thanks to my parents, my brothers and my wife-to-be Hafsa Bashir for supporting me
all the way through my studies. Indeed words cannot express how grateful I am for all
of the sacrifices they have made for me. Without their prayers and support, I would
never be able to reach here. T am thankful to all those people who directly or indirectly

helped me to complete my thesis.

Hafiz Muhammad Fahad

iv



Abstract

The first part of this thesis focuses on substantial fractional operators which play an
important role in the modeling of anomalous diffusion. We propose a new generalized
substantial fractional integral. We also propose generalizations of fractional substan-
tial derivatives both in the Riemann-Liouville and Caputo sense. Furthermore, we
investigate elementary properties of these operators. In the end, we consider a family
of generalized substantial fractional differential equations and discuss the existence,

uniqueness and continuous dependence of solutions on initial data.

The second part of this thesis establishes a generalization of the Hadamard type
fractional calculus which has been named as the ®-Hadamard type fractional calculus.
We give conditions for which the ®-Hadamard type fractional integral is bounded in a
generalized space. We develop sufficient conditions for the existence of the $-Hadamard
type fractional derivative. Finally, some properties and integration by parts formulas

of fractional calculus in the frame of these operators are established.

By inspiration of some new developments in ®-fractional calculus, we develop, in
the third part of the thesis, some new properties and uniqueness of the ®-Laplace
transform in the settings of ®-fractional calculus. The ultimate goal of this part of
the thesis is to reveal the efficiency of ®-Laplace transform for solving ®-fractional

ordinary and partial differential equations.
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Chapter 1

Introduction

Fractional calculus has its roots in the end of the seventeenth century when Leibniz
devised the notation = f(z) to denote the nth-order derivative of a function f. De
I’'Hospital then asked about the meaning of this derivative when n = % Thus, this led
to a new and emerging field called fractional calculus. Nowadays this field has become
very popular amongst the researchers due to compulsive use of fractional differential
equations (FDEs) in engineering, physics, economics and other branches of sciences
[9, 15, 26, 33, 36, 38, 43].

Fractional integration and differentiation are generalizations of notions of integer-
order integration and differentiation, of which nth derivatives and n-fold integrals are
particular cases [34]. There are many different forms of fractional operators in the
field of fractional calculus, including Riemann-Liouville(RL), Caputo, Erdelyi-Kober,
Hadamard, Grunwald-Letnikov, Hilfer, Reisz, Katugampola and many others [1, 17,
20, 22, 23, 25, 26, 33, 36, 37|. Each definition has its own backgrounds and conditions,
as a result of which these definitions are inequivalent to each other. Many of these
definitions are specific cases of generalized fractional operators. As examples, we have
the Katugampola, ®-RL, ®-Caputo and ®-Hilfer operators which are generalized forms
for the other classical operators. In consideration of the matter that there is a wide
family of fractional operators available in literature which makes choosing the favorable

operator a challenging effort while dealing with a physical problem. So it is logical to

investigate and develop the generalizations of classical fractional operators to overcome



the issue of choosing an appropriate operator.

The organization of this thesis is as follows. Chapter 2 is devoted to the pre-
liminaries. In Chapter 3, we focus on substantial fractional operators which play an
important role in modeling anomalous diffusion. We introduce the generalized substan-
tial fractional integral, and derivatives both in RL and Caputo sense. Moreover, we
obtain the relations between the generalized substantial fractional operators and some
other fractional operators including Katugampola, standard RL, standard substantial
and Hadamard fractional operators. Proofs of the composition rules in the settings
of generalized substantial fractional operators also form the part of this chapter. Fur-
thermore, while considering a class of generalized substantial FDEs, we discuss the

existence, uniqueness and continuous dependence of solutions on initial data.

As of now, Hadamard-type fractional operators have not been investigated in much
detail, as compared to the other classical fractional operators. A generalized form
for the Hadamard-type fractional operators has not yet been developed by researchers.
Thus, in Chapter 4, we present the ®-Hadamard type fractional operators which gener-
alize the classical Hadamard and Hadamard-type fractional operators. We give condi-
tions under which the ®-Hadamard type fractional integral is bounded in a generalized
space and analyze sufficient conditions for the existence of the ®-Hadamard type frac-
tional derivative. Furthermore, we drive composition properties and several formulas

of fractional integration by parts in the settings of these operators.

Chapter 5 of this thesis establishes some new properties and uniqueness of the ®-
Laplace transform in the settings of ®-fractional calculus. This is significant because
integral transforms like Laplace, Fourier, generalized Laplace and p-Laplace are effec-
tive tools for obtaining analytic solutions to some classes of FDEs [18, 19, 26, 33, 38, 40].
As of today, no research has been done to use integral transforms for obtaining ana-
lytic solutions to FDEs in the ®-Hilfer fractional derivative settings. In this manner,
we make use of ®-Laplace transform for finding analytic solutions to some classes of
FDEs in the settings of ®-RL, ®-Caputo and ®-Hilfer fractional derivatives. Chapter

6 finally makes concluding statements about this thesis and its main results.



Chapter 2

Preliminaries

In this chapter, some prerequisite definitions of fractional operators are evoked that

reader should familiar with. Moreover, we recall some definitions of special functions.

2.1 Substantial fractional operators

Before introducing the fractional operators, we first give some notations for the sake
of convenience in developing the notations further. The notation ,0™ := (% + O’)m
where (% + a)m =@D4+0)D+0)(D+0) - (D+0) appears frequently in liter-
ature [8]. Together with the operator ,®, in the sequel we shall use the operator

SOLLTSES (tlp_p 4 + o)™, where 0 € R and p # 0. Additionally, the generalized differen-

tiop am
p dtm?

Qr la,b] = {f:et'Pf(t) € AC™[a,b]} and A2 [a,b] := {f:e”"t'"Pf € Lya,b]}
where AC|a, b] is the space of absolutely continuous functions and L,a,b] (1 < p < 00)

tial operator, defined as will be denoted by ®"”. We define function spaces

denotes the space of measurable functions on [a, b]. For the sake of simplicity 2, and

2y, will be denoted by 2, and (2,, respectively.

Definition 2.1.1. |8, 11| Let n and o be real numbers such that n > 0 and f €
Alla,b] then substantial fractional integral operator is defined as J7f(t) = ﬁ NG
s)1~Le=o(t=9) f(s)ds. Furthermore, for f € Q™[a,b], m — 1 < n < m, the RL type sub-
stantial fractional derivative is defined as D7f(t) = ®™J™ " f(t). On the other hand,

the Caputo type substantial fractional derivative is defined as “D7f(t) = J" D™ f(t).



2.2 Katugampola fractional operators

For p # 0, let JLP f(t) f f(s ), where d(s”) = ps”~'ds. Then mth iterate of the

integral operator J.* is given by

arest) = [aw [Cae [Cawy [ s

__r tp_spmfl $)s” Yds
—b(m)/Gu ym f(s)s L ds.

Replacing the m by real n > 0in (2.2.1), the Katugampola fractional integral is defined

(2.2.1)

as
Definition 2.2.1. [20] For p # 0, 7 > 0 and f € A}[a,b], the Katugampola fractional
integral is given by

WS = 50 / (10 — 7)1 f ()5 ds.

Furthermore, for m—1 <n < m and f € Q7'[a,b] the RL type Katugampola fractional
derivative is defined as D17 f(t) = D"™PF" " f(t) and the Caputo-type Katugampola
is defined as D7 f(t) = JIr—"1PD™P f(t).

Remark 2.2.2. We have introduced a slight modification in the definition of Katugam-
pola fractional integral operator. The factor p'~7 in the original definition is now
replaced with p. This avoids the repeated reappearance of some factors of p in calcu-

lations 26, p. 103].

It is to be noted that DY*JL7f(¢) = f(t). A repeated application of this identity
leads us to the identity ®™*J7 f(t) = f(t). Furthermore JLrD* f(t) = [' D7 f(s)d(s")
= [, d(f(s)) = f(t) = f(a). Similarly J2rD>*f(t) = f(t) — f(a) — (t* — ap)@’pf(a)-
Generally speaking, a repeated application of the preceding steps leads to a Taylor
type expansion of f as

m—1 k,p a
=% D@ (4o _ oyt 4 gmemyme g, (2.2.2)

k!
k=0

The Katugampola fractional differential and integral operators satisfy following prop-

erties [5, 31]:



(P1) For f € Agla,b], JRr3er f(t) = JgP 0P f(t) = JHor f(t).

(P2) For ¢ = n, and [ € Ajfa,b], DPPISPf() = I~ f(t) and “DPPIPf(t) =
JPE(R).

(P3) Forp>1and m —1<n<mand f € Q}[a,b], we have

m—1
~7] P@ﬁ pf Z 1lms—>a+ @7) h pf( )(tp . ap)nfl.

—  o(np—k+1)

Specifically, for 0 < n < 1, J1PD™ f(t) = f(t) — %(tﬂ — aP)n L,

(P4) For f € Q7[a,b] and ¢ > 7,

m—1 P
WD f ) = 1) Y 2 Dy

k!
k=0

Lemma 2.2.1. Assume that f € Q)'[a,b]. Then ;D™P(e”" f(t)) = e 7"D™" f(t)
and e ;D™P(f(t)) = D™P (e f(t)).

Proof. We prove this Lemma by induction. For m = 1, we have

D f(0) = S () + oo 1) = D),

Assume the conclusion follows for m — 1. Then,

D f(H)) = DDA f(1)) = DM (e D Tf (1))
= e "D f(L).

Second identity can be obtained in a similar way. O]

2.3 A review of Hadamard type fractional calculus

In this section, we give a brief overview of Hadamard type fractional calculus. We recall
the definitions of Hadamard type fractional operators and state some basic results in
the settings of Hadamard type fractional calculus. The proofs of these results can be

seen in [6, 24, 27].



Definition 2.3.1. |6, 24| The Hadamard type fractional integral with parameter p € R
of the given function f(t) with order n > 0 is defined as

et =i [ (7)) (ed) 0%

where ¢ € (a,b) and 0 < a < b < 0.

Definition 2.3.2. [6, 24] The Hadamard type fractional derivative with parameter
i € R of the given function f(t) is defined as

u Qg J(t) = 76" (a3 1 f (1))

where § = t<

sm—1<n<meN,te€(ab)and 0<a<b< oo.

In Definitions 2.3.1 and 2.3.2, for the particular case that u = 0, the Hadamard
type fractional integral and derivative reduce back to the classical Hadamard fractional

integral and derivative, respectively.

Lemma 2.3.1. For Hadamard type fractional integral HJZJW and fractional derivative

D,

t © d
(a) lim 30, F(E) = / G) IO
(b) lim 30, f(8) = f(2),
n—0t

(¢) Tim D, 0(6) = (0

the following properties hold

(d) lim @7, f(t) =t f (1),

n—(m—1)*
(¢) Tim 5D, (t) = 8" 1 (1),

Lemma 2.3.2. If 0 < n < 1 and ¢ > 0. Then, for the Hadamard type fractional

integral and derivative, the following relations hold

T P A N B (O SN
H"a*ﬂﬂ{t (o) }_b(CJrn)t (5)

¢-1 5 ¢—n—1
HQZ*’“{” (1) }:b(c(g)n)” CHE

@}



Theorem 2.3.3. letm—-1<n<(<meN 1<p<oo,0<a<b< oo and
let p,c € R, such that p > c. Then for f € XP(a,b) and xJ.- S ACY. [a,b], the

following relation holds
HDge i, f (1) = 1D F (1),

Theorem 2.3.4. Let ( > n >0, m—1<n<m €N, my—1<{<my €N,
0<a<b<oo, 1<p<ooandlety,c€R withu>c. Then for f € AC[a,b] and
D uf € X?(a,b), there holds

w35 DL (1) = mIF(1).

Prior to introducing the ®-Laplace transform, we first recall some definitions from

the classical and fractional calculus.

2.4 Fractional integrals and derivatives of a function
with respect to another function

In view of the fact that there is a large class of fractional operators available in literature
which makes choosing the appropriate approach a difficult task while dealing with a
given problem. So it becomes important to introduce the generalizations of classical
fractional operators to overcome the issue of choosing an adequate operator. In this

section we invoke some generalized definitions of fractional integrals and derivatives.

Definition 2.4.1. |26, 32, 38| Let 1 be a real number such that n > 0, —o0 < a <
b < oo, m=[n]+1, f be an integrable function defined on [a,b] and ® € C*([a,b]) be
an increasing function such that ®’(¢) # 0 for all ¢ € [a, b]. Then, the ®-RL fractional

integral and ®-RL fractional derivative of a function f of order n are defined as

3 (1) = ﬁ / (20) ~ ()" #/(s)f(s)ds (2.4.1)
and
0110 = () 0 2.4
respectively.



It is to be noted that for ®(t) — ¢, I7®f(t) — J7f(t) which is the standard RL
integral. Moreover for ®(t) — In(t) the integral defined in (2.4.1) approaches to the

Hadamard fractional integral.

By inspiration from Caputo’s concept [7] of the fractional derivative, Almeida [2]

presents the following Caputo version of (2.4.2) and studies some important properties.

Definition 2.4.2. Let n be a real number such that n > 0, —o0 < a < b < o0,
m=[n]+1, f, ® € C"([a,b]) be the functions such that ® is increasing and ®'(¢) # 0
for all ¢ € [a,b]. Then, the ®-Caputo fractional derivative of a function f of order 7 is
defined as

OITf(t) =T (qwl(w %) ") (2.4.3)

Taking ®(¢) — In(¢) and ®(t) — t, we get the Caputo-type Hadamard fractional

derivative [12] and Caputo fractional derivative [38] respectively.

Motivated by the definitions of ®-RL and Hilfer fractional derivatives, Sousa and
Oliveira [41] introduce the ®-Hilfer fractional derivative, which we recall in the following

definition.

Definition 2.4.3. [41]| Let n be a real number such that n > 0, —oo < a < b < o0,
m = [n]+1, f, ® € C™([a, b, R) be the functions such that ® is increasing and ®'(¢) # 0
for all t € [a,b]. Then, the ®-Hilfer fractional derivative of a function f of order n and
type 0 < ¢ <1 is given by

1 d\™
o) =5 (G ) WO (244)

2.5 Laplace and Fourier transforms

Definition 2.5.1. Assuming the function f is defined for ¢ > 0, the Laplace transform
of a function f, denoted by £ {f}, is defined by the improper integral

L{f)} = / e Y f(t)dt (2.5.1)
0
provided that the integral in (2.5.1) exists for all v larger than or equal to some vy.

8



Definition 2.5.2. Assume that f is a piecewise smooth, continuous and absolutely
integrable function. Then the Fourier transform of a function f, denoted by §{f} or

f(k), is defined by .
s{r0y = [ e 252

where k is the Fourier transform variable. The inverse Fourier transform of § {f(t)}

is defined by

F {S {f(t)}} _ 1 /Oo e f(k)dk. (2.5.3)

21 J_ o

2.6 Some special functions

There are several special functions that are considered to be helpful for finding the

solutions of FDEs. In the following definitions, we state a few of them.

Definition 2.6.1. The entire function
Wi(z,n,() = ——F—, wheren>—-1, (€C 2.6.1
) ;J!b(m +¢) 26.1)
which is valid in the whole complex plane, is known as the Wright function. It appeared
for the first time in [46, 47| in connection with E. M. Wright’s investigations in the
asymptotic theory of partitions.

In 28], Gosta Mittag-Leffler introduced the well-known Mittag-Leffler function
¢,(2), given by

¢, () = ; b(n;—;n neC, Re(n) > 0. (2.6.2)

Later on, a natural generalization of €,(z) was discussed by Wiman in [45]. He intro-

duced the function €, ((2) as

€clz)=>_ NCTENSL n,( €C, Re(n) > 0. (2.6.3)

=0
If we consider ( = 1 in (2.6.3), we obtain the Mittag-Leffler function (2.6.2). In [35],

Prabhakar presented the more generalized version of (2.6.2)-(2.6.3), which we recall in

the following definition.



Definition 2.6.2. The Prabhakar function is defined by the series representation

o0

N 1 o(y + 7)2
€ (2) = 50 ;j!b(nj ol n,¢,v € C, Re(n) > 0. (2.6.4)

It is an entire function of order 1/Re(n), which is also known as the three parameter
Mittag-Leffler function. This function plays a necessary role in the explanation of the
anomalous dielectric properties in heterogeneous systems. Some important properties

of this function can be seen in [13, 25, 30, 39|.

Definition 2.6.3. The Gamma function in the half-plane is defined by the integral
b(z) = / £l tdt, Re(z) > 0. (2.6.5)
0
It was introduced by the famous mathematician L. Euler as a natural extension of the

factorial operation n! from positive integers n to real and even complex values of the

argument n.

10



Chapter 3

(GGeneralized substantial fractional
operators and well-posedness of
Cauchy problem

In this chapter, we introduce the generalized substantial fractional operators and ana-
lyze the fundamental properties of fractional calculus in the frame of these new general-
ized operators. Furthermore, well-posedness results for a class of generalized substantial

FDEs constitute part of this chapter.

3.1 Generalized substantial fractional integral and
derivatives

By motivation of the definitions of substantial fractional operators, here we introduce
new definitions for the substantial fractional operators by establishing generalizations
of the Katugampola fractional operators. We also establish a relation between the
generalized substantial fractional operators and the Katugampola fractional operators.
For p # 0 and o € R, define ,J7f(t) = [! f(s)e ?®=*")d(s). Then generalized

substantial integral of order m is given by mth iterate of the integral ,J.* as

t t1 tn—1
APepe) = [ e [Ceet By [ et )

t
— —b(fn) / (tF — s”)m_le_"(tp_sp)f(s)s”_lds.

(3.1.1)

11



We observe that ,D'*,JL°f(t) = f(t). By repeated application of this iden-
tity, we are lead to the identity ,9"°,37?f(t) = f(t). Thus for m > n, we have
SOMTP gmeme f(t) = f(t). Application of the operator ,0™” to both sides of this
identity leads to the identity ,©™*f(t) = ;O™ g™ ™ f(t). This relation will lead
us to the definition of generalized fractional derivative. Moreover, ,JL, DN f(t) =

a

fj(stp% +0)f(s)d(s?) = f(t) — f(a)e ¥ =2") In general, the repeated application of

this process leads us to the generalized Taylor expansion involving generalized operators

@ —ayt
lim , D"k
o(m —k + l)s—1>rz?+gg /()

m

gD f(t) = f(t) — e Y

k=1
provided f € Q7[a, b].
Definition 3.1.1. For real numbers o, p # 0, n > 0 and f € A}W[a,b], we define

generalized substantial integral as

N 0 t Sp—le—a(tp—s”)
A1) = o [ T s

Furthermore, the RL type generalized substantial fractional derivative is defined as

SONPf(t) = ,DMP,Jr"P f(t) where m — 1 < n < m.

It is to be noted that for o — 0, ,J"* f(t) — J1*f(t), which is the Katugampola
fractional integral. Furthermore, for ¢ = 0 and p — 1, the generalized substantial
integral approaches the standard RL integral and the lower limit a — —oo leads to
the Weyl fractional integral. For o # 0 and p = 1 the generalized substantial integral
becomes the standard substantial integral. Finally for ¢ = 0 and p — 0, we get the

Hadamard fractional integral.

Definition 3.1.2. For m — 1 <n < m, a < b < co and f € Q7 [a,b. Then the

generalized Caputo type substantial derivative is defined as

m—1 U©k7 o
SO f(t) = ;D0 (f(t) - Z k;‘f(a)(tp — af)ke(t"~a )>.
k=0 :

Theorem 3.1.3. Assume n >0, 0 >0, p > 0 and {fx}32, is a uniformly convergent

sequence of continuous functions on [0,b]. Then
(030" lim fie)(¢) = (lim 5357 fi) (2).
k—00 k—o00

12



Proof. We denote the limit of sequence {fy}3>, by f. It is well-known that f is

continuous. We then have following estimates

o Le(t) = SO < L /0 P — )T (e ) (fuls) — f(s))lds

— o)
p ' 1( p p)n g
< gl Sl [ 700 = sy ds
b(n) 0
bP
= m”fk — [l
The conclusion follows, since ||fx — f|loc = 0 as k — oo uniformly on [0, b]. O

In the forthcoming results, we shall demonstrate the relationship between RL type

Katugampola fractional operators and the generalized substantial fractional operators.
Lemma 3.1.1. Assuming f € A} [a,b]. Then ;31 f(t) = e~ 7" Fir (e f(t)).
Theorem 3.1.4. Assuming f € Q) [a,0]. Then ;D0 f(t) = e " D1r(e f(t)).

Proof. By the definition (3.1.1) of the substantial fractional differential operator, Lemma
2.2.1, Lemma 3.1.1 and definition 2.2.1 we have

ADIF(H) = DT L(E) = D" (eI (1))
= DT (1)) = e DR f(1)).

]

Now we will introduce the composition properties of the generalized substantial

operators. First we show that the generalized integral satisfies the semi-group property.
Theorem 3.1.5. Let ,¢ >0 and f € A} [a,b]. Then ;327,357 f(t) = -J0P f(1).

Proof. Using (P1) and Lemma 3.1.1 repeatedly we have

oI (3 (1) = 0T (e T (e [ (1)) = e TP (T F (1)) = S TuTL S (1)

13



Theorem 3.1.6. Let m —1<n<m, (>nand f € A} Ja,b]. Then
ngjpasgpf(t) = U~§_n’pf(t)'

The proof of Theorem 3.1.6 is the same as the proof of the Theorem 3.1.5. Therefore

we omit it.

Theorem 3.1.7. Assume n >0, m—1<n<m and .33 " f € Q" [a,b]. Then

I DR f(t) = f(t) —e 7 i W —ay™ DI f(s).
’ ’ = m
¥a 7 —1 (7] ]{?—|—1 sim
Specifically, for 0 <n <1 we have
p _ ar\n—1
30,00 (1) = £1) — e Oy giang(s)
b(T]) s—a’t

Proof. Using Leibniz rule, the following relation can be established.

t="r d t p—1_—c(tP—sP) t p—1_—0c(tP—sP)
(——+a)/ H—_UQZ”’f(s)ds:n/ D1 f(s)ds.

P dt (tp — sp) n (tp — Sp)l n
(3.1.2)
By definition of ,J/*, we have
P _RYP p o [rs e D0 £(5)d 3.1.3
5 o ’ t) = o ' . e
110) = o | S D) (3.13)
From Eq. (3.1.2) and (3.1.3), we get
N p tH=r ( /t Sp—le—a(tp—sp)
e DN f(1) = —(—— ) Z  owf(s)ds.  (3.1.4
CDa f() b(T]—i—l) p dt+ " (tp_Sp)_n a f(s> S ( )
From Definition 3.1.1 and Eq. (3.1.4), we find
N p H="r /tsplea(tpsp) sl=r (
o gy (4 ) [ S
Durf) o+ D\ pat ) ), = \pds 0

X DML T f(s)ds

Applying integration by parts and the product rule for classical derivatives, we have

—o(tP—a”)

I DL A1) =

tt=r d
_ lim , @™ 1, gm-me Pl
() (17 — )7 Ciriew i)

14



t Sp_le—a-(t/’—sp) 1 —d m—2,p ~m-—n,p
X/a (tr — sP)1-7 < p Eng) . A (s de

Continuing in this manner, we get

tp_apn k

7,0 o(tP—ar) n—k,p
DU f(1) = Z o) 2L

P () [ ey
er(77—7"1+1) pdt+a . (tP—sp)m—n 7T f(s)ds

where

P (tlp d >/ sleo ]
N . N1 O ’ = t).
o(n—m+1)\ p dt+0 . (tP — sp)ym—n 70 f(s)ds = f(t)
Finally, we get the desired result

tp_apn k

LD (1) = (t) = e i D77 f(s).

P (7] k —|—1 s—>a
L]

Theorem 3.1.8. Assume f € [a b]. Then the generalized Caputo type substantial

derivative can be written as

' (tr—s5°)
~m— p e
COTPL(H) = AT, D™(t) = SD™(f(s))ds.
SOA(1) = o3 10 = 5 | @ ()i
Proof. By using the Definition 3.1.2 and Eq. (3.1.2), we have
SO (1) = LD F(1).
By applying the Definition 3.1.2, and the properties (P1) and (P2), we get

COIPf(t) = D™ J0 PTG D™ f(t) = qD ™I I D™ (1)
= GATTDf(L).

Lemma 3.1.2. For f € O]'[a,b], the operator ;D7* satisfies the relation
SO f(t) = T DR (e f(L)).

15



Proof. By using the Lemma 2.2.1, Lemma 3.1.1 and Theorem 3.1.8 we have

SO () = 37D (1) = e I D" f (1)
= TR (1)) = DI F(1).

Theorem 3.1.9. Let m —1<n<m, ( >n and f € Q' [a,b]. Then
ST f(t) = 43T ().
By use of Lemma 3.1.1 and Lemma 3.1.2, the result can be easily proved.

Theorem 3.1.10. Assume m — 1 <n <m and f € Q7 [a,b]. Then
m—1 @kpf
SIPPEDP [ (1) Z e~ o= a”)(tp _ ap)k'
=0
Proof. From Lemma 3.1.2 and Lemma 3.1.1, we have

D) = 30 (7T DIN (1)) = €T TI DI F (1))

Now by property (P4), we have

STLEDLF() = e (e f (1) = Y T (¢ — o))
k=0
m—1
= /(1) - ”Qk};f @)oot — aoyt
k=0

16
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Figure 3.1: Fractional integrals ,J7° of f(t) = (t* — a?)%e ",

Example 3.1.11. Consider f(t) = (t* — a”)°e~°". Then from Lemma 3.1.1 we have
I f(t) = e 7" J1P(tP — af)¢. Now by Lemma 3 in [31], we have

(S i

m(ﬂ’ — af)"e. (3.1.5)

oJa’f(t) =
Fractional integrals of f(t), for different values of ), {, o and p are graphically illustrated
in Fig. 3.1. Now we compute the RL substantial derivative of f(t) = (t* — a”)%e~".
Note that
t=r d
DU (tF — ) = ——(t’ —a”)* = ((t’ — a”)" . (3.1.6)
p dt
Therefore, from the definition of the RL substantial derivative, Lemma 2.2.1 and Eq.

17



(3.1.6), we have

cdenp [ —ote o(C+1) ot _
SO (¢ :U@Lpa 1-n,p at?l (4P _ aP\S | = " Lp ot (4P _ qP)STNHL
2 f (1) e )] = g e T - )
(¢ +1)e ™ - d(¢ +1)e " .
= 7 ybee gt = P — P\,
o=+ o ) o=+ )

Similarly, Caputo type substantial derivative of f(t) = (t* —a”)%e°"" can be computed

as

EQZ’pf(t) — a”i—n,pU@Lp [e—at" (t” _ aP)C} — 03(11—77,/) [e—at”gl,p(@p _ ap)()]
— ~1—n,pe—0t”@170(tp _ aﬂ)C — e—Ut”sl—n,p@Lp(tp _ ap)C

o0Vq

, 1 —otP
= Ce‘”t 3(11—77&(750 _ ap)c—l _ Z((CC—E 77)1 1) (t" _ ap)c—n.

3.2 Existence and uniqueness of solutions

When solving a FDE, the existence and uniqueness results have their own significance.
It becomes necessary to notice, in advance, whether or not there is a solution to a
given FDE. Keeping this in view, here we prove the equivalence between the initial
value problem (IVP) and the Volterra equation. Then, using this equivalence along
with Weissinger’s fixed point theorem, we prove the existence and uniqueness of solution

for the following IVP

oD f(t) = g(t, f(t)), t>0, (3.2.1)
SOPPF0) =by, ke {0,1,2,..,m—1}, (3.2.2)

where 0 > 0, p > 0, n >0, m = [n], D" is the generalized Caputo-type substantial

fractional derivative and f : RT x R — R.

For K > 0, h* > 0 and b4, ..., b,, € R, define the set

m—1
Hi= (6 (1) 0 <t < B[ (1) — e zﬁw <K
k=0

We assume the following while establishing the subsequent results of this section:

18



(H1) g : H — R is both continuous and bounded in H;

(H2) g satisfies the Lipschitz condition with respect to the second variable, i.e. for

some constant L > 0 and for all (¢, f(t)), (t, f(t)) € H, we have

lg(t, f(1) = g(t, F(1)] < LIF(t) = F(2)]-

We introduce some notations, for the sake of convenience.

L ~
Let h = min{h*,ﬁ, (W) m’} where M := sup, ,jeu [9(7,y)| and h being a

1

positive real number, fulfills the inequality h < (@); These notations occur

frequently in this section. The generalizations of the existence and uniqueness results

presented in [21, 29, 10|, are the main results of this section.

Theorem 3.2.1. Assume that h > 0 and f : Rt x R — R s conlinuous. Then
f € C[0,h] is the solution of IVP (3.2.1)(3.2.2) if and only if f € C[0, h] satisfies the
Volterra equation

m—1

U S Sy T (e £(5))ds.
25D o) fy ey

Proof. Let f € C[0,h] be a solution of the Volterra equation

—_

b~ b
flt) =e b(k—il)t‘”“ + 5307 (t, f(1)).

k=0

Apply <D to both sides of the above equation. Using Theorem 3.1.5 and Example

3.1.11, we get
m—1 b
& ) k C 3 —0 C 3 ~T],
SON () = D G e DN SO g0, /1)
k=0
=g(t, f(t))

Now we apply ,©%” to both sides of the Volterra equation, where 0 < k& < m — 1.

19



Using Theorem 3.1.5, Theorem 3.1.9 and Example 3.1.11, we have

D f(t) = cDEPeT 0T - DR Pt f(1))

- bj b(j+1) oot 4p(i= p~p~ k,
_ (( tt(k:)> JDke ke g1ke gt f(1))

Joijrl) ]—k:+1)
= 1o—k) p toerr) '
o PR / 5L g(s, f(s))ds.
j;o o(y —k+ o(n—k) Jo (tr—sp)l-ntk

It is clear that for j < k, the summands become identically zero because the reciprocal
of the Gamma function for non-positive integers, vanishes. Furthermore, for k < j, the
summands vanish if ¢ = 0. Since n — k is a positive real number, so the integral also
vanishes when ¢ = 0. Thus, we are left with the case j = k.

b
@k,p _ k —otP yp(k—k) _
A 1(0) ok —k+1)° ! o~ O

Conversely, we assume that f € C|0, h] is the solution of the given IVP. Using the
initial conditions (3.2.2) and result of Theorem 3.1.10 and applying ,J¢” to both sides
of the FDE (3.2.1), we get the Volterra equation. ]

Theorem 3.2.2. Assume that f satisfies (H1) and (H2). Then, the Volterra equation

et p [ e d
Z b /C + 1 b(n) /0 (tp _ Sp)l_ns Q(S;f(5>> S

k=0

possesses a uniquely determined solution f € C[0, h].

Proof. Define a set

m—1

oot Z b ‘ K
k=0

B:=( feC[0,h]: sup

OStSh

equipped with the norm ||.||s
11l = sup |£(t)]
0<t<h

20



It can be seen that (B, ||.||) is a Banach space. Define the operator E by

m—1

b,

. —otf 4 boemotr=s) _
B0 = L G oy, o 9SO

It is easy to check that Ef is continuous on the interval [0, h] for f € B. Furthermore,

m—1

t —o(tP—sP)
V=I5 [ e et s

P — 30)1 n

t p—1
< Py / S
o(n)  Jo (tP —sP)tn
p P M

Pyt M e
o(n) pm  b(n+1) T

for t € [0, h], the last step follows from the definition of h. The result of this is that
Ef e Bfor f € B,ie. E is the self-map.

From the definition of the operator £ and the Volterra equation, it follows that the

fixed points of E are the solutions of the Volterra equation.

To prove that the operator E has a unique fixed point, we use Weissinger’s fixed

point theorem. For f1, fo € B, first we will show the following inequality

Lh?

|E? fi — B fol g < <W> 1f1 = fal|B-

Clearly, the above inequality is true for the case j = 0. Assuming that it is true for
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j=k—1. For j = k, we have

|1E*fr = E*fol |5 = sup

0<t<h

— sup ‘EE’“‘l fi(t) — EEM fz(t)‘

E*fi(t) — B*fult)|

0<t<h
_ pe 7D sr k-1 k-1
12&b)/ ﬁ_yln(wﬂ Fi(3)) = gls, B als)) ) s

IN

s / LN TSV AT
0<t<h b( ) | Jo (P —sP)im

{ } k lfl _Ek_leHB

=Q5‘Quﬁ ol

d(n+1) o(n+1)
completes the proof. O

- J
Since h < h, we have < Lh?7 ) < 1. Thus, the series Z < LhP1 ) is convergent. This

The following presents an example for which a general method to determine the
analytical solution is not available, but Theorem 3.2.1 and Theorem 3.2.2 allow us to

comment on the existence of its unique solution.

Example 3.2.3. Consider the IVP

2

cy0.5,2 —t? (f(t))
A T

f(0) = bo. (3.2.4)

(3.2.3)

Tt can easily verifiable that g(t, f(t)) = te " (JE( 22)2)2 is both, continuous and bounded

in H. Furthermore, we show that f satisfies the Lipschitz condition

R A () R 0100
g(tf(t))l—‘t 1+ (f(D)? +(f(t))?

1
()’ - O
(4 (F@+ (1))

42
te™t

lg(t, (1)) —

= ‘te’t2
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Since 14 (f(t))2>1and 1+ (f(1))®> > 1, so

lg(t, (1)) - < { sup [ (F)+ ﬂ»Hum 1)
h

0<t<h
sup [ f(t)| + sup [f(t)

{ 0<t<h 0<t<h }

= (K1 + )| f(t) — f(1),

IN

where L := h(K; + K») is the Lipschitz constant. Thus, the hypotheses (H1) and
(H2) hold. From Theorem 3.2.1 and Theorem 3.2.2; we can deduce that there exists a
unique solution of IVP (3.2.3)-(3.2.4).

3.3 Continuous dependence of solutions on the given
data

In this section, first we prove a Gronwall-type inequality, which is the generalized
version of Gronwall-type inequalities, presented in [48, 14, 3]. Without any doubt, this
inequality plays a significant role in the qualitative theory of integral and differential
equations. Furthermore, we present an analysis of the continuous dependence of the

solutions of FDEs on the given data.

Theorem 3.3.1. Assume that p and q are non-negative integrable functions and g is

a non-negative and non-decreasing continuous function on |a, b|.

If

t Spflefa(tf”fs”)

mws«w+¢ﬂaw/ p(s)ds, Vit € [a,b],

o =)

Moreover, if q is non-decreasing, then

tP — aP)

p(1) < ) [o(oon) (=
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Proof. Define operator A as

Then,
p(t) < q(t) + Ap(t).

Iterating successively, for n € N, we obtain

n—1
p(t) < Afq(t) + Amp(t).
k=0
By mathematical induction, we show that if f is non-negative, then,

wp(e) < o [EEROE ot oyt g

For k =1, the equality holds. Assuming that it is true for k € N

Ak+1f( ) (Akf( )) < A(plfkn /T [9(;():5]7;)] efa(TP—sP)(Tp . Sp)knflspflf(s)ds>

t p—1,—o(tP—77) e [T o7 k
gty [ T o [ 00U

X 6_0(79—50)(7,) — sp)k"_lsp_lf(s)ds> dr.

By assumption, ¢ is non-decreasing, so g(7) < g(t), V 7 < t. Thus, we have

o(n)* , o(ths 1
Ak+1f<t) < ( p k:Jrl)n k+l/ / o(t s) Tp)n 17_,0 1
)
X (1F — )k" YsP=Lf(s)dsdr.

Using the Fubini’s Theorem and the Dirichlet’s technique, we get

ag(0) <COL ey gy [*emete— g

=g
~~
7~
S
S~—
<

t
X / (tF — 7PY1 P (P — sP\en=ldrds

_ (s((Z;)) p2—(k+1)n(g(t))k+1 /a e—a(tﬂ—sp)sp—lf(s)

N AIGLED T
(pb(kn+n) & ) >d
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t (k+1)

_ 1—(k+1)n/ [9(t)o(n)] —o(tr—s) (4p _ gp\(k+1)n—1gp—1

=p e s s f(s)ds.
o O((k+1)n) ( ) ()

Now we prove that A"p(t) — 0 as n — oo. Since g is continuous on [a,b], so by

Weierstrass theorem, 3 a constant M > 0 such that g(t) < M, VYVt € [a,b]

Mo (n)]"

g
= A"p(t) < pl_”"/ e oW =) (p — gP )=l gr=lp(g)ds.
(v - (¢~ ) (5

Consider the series -
S [Mb(m)]"
= b(nn)
Using the relation
U
i 20 ()™
noo b(na) + 1)
and the ratio test, we deduce that the series converges and therefore A"p(t) — 0 as

n — oo. Thus,

o) < 3 Atql)

O

Next we will look at the dependence of the solution of a FDE on the initial values.
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Theorem 3.3.2. Assume that f is the solution of the IVP (3.2.1) — (3.2.2) and f is
the solution of the following IVP

cOPf(t) = g(t, (1), >0, (3.3.1)
SR F(0) = ¢, ke {0,1,2,...,m—1}. (3.3.2)

Let € := maxg—o1, _m—1 |0k — cx|. If € is sufficiently small, then 3 some constant h > 0

such that f and f are defined on [0, h], and

sup |£(t) — f(t)] = Oe).

0<t<h

Proof. Let f and f be defined on [0, hy] and [0, ho], respectively. Take h = min {hq, ho},
then both the functions f and f, are at-least defined on the interval [0,h]. Define
§(t) := f(t) — f(t), then & is the solution of the following IVP

D) = g(t, f(t) — g(t, f(1)), ¢>0, (3.3.3)
sD5(0) = b, — e, k€{0,1,2,....,m—1}. (3.3.4)

The IVP (3.3.3) — (3.3.4) is equivalent to the Volterra equation

mlb

_ ot p [t et p—1 ;
ZO (k+1 b(n)/o (o —sryin° (g(s,f(s))—g(s,f(s))>ds

Taking the absolute of above equation and using the triangle inequality and the Lips-

chitz condition on g, we get

|0(2)]
m—1
_ | ,—otr bk p t e_U(tp—sp) P )
‘ t kz:% (k?—l-l b(n) /0 (t/’—sp)l—ns 1<g(s,f(3)) _Q(Saf(s))>d3‘
.y m—1 tpk p t e—o’(tp_sp) . )
< ‘ t ,; o) ‘bk - Ck) + 5() /O i 1‘9(37]"(8)) —g(s, f(s))|ds
m—1
i pL e A
= z:% o(k+1) 70,r{}??{m_1 ’bk Gk T o(n) /0 (tr — sP)l—nS ! f(s) — f(s)|ds

m—1

pk L t —O'(t”—sp)
P e .
me S ST o, o el
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Taking p(t) = [6(t)], ¢(t) = me 7' 22— and ¢(t) = ”"L , and using Theorem 3.3.1,

k=0 b(k+1) o(n)
we find
m—1 m—1
hrk hrk
o)) < _ L < _ LhP") =
8(0)) S e 3 Ly L) < me D s L) = Ofe)
and this completes the proof. O

Now we present an example to verify the statement of Theorem 3.3.2.
Example 3.3.3. The unique analytical solutions of the following four TVPs
P00 i) = 0.9(1), f1(0) =1, fo(0) = 1.2, f5(0) = 1.4, £,(0) = L6,

are given by
£i(t) = £i(0)e ™" &) 5(0.9t%%), 0<t < h.

Plots of these solutions are given in Fig. 3.2.

1.8

16K

14f

0.4
0

Figure 3.2: Graphs of solutions from Example 3.3.3.

From Fig. 3.2, we can see that the change in the solutions is bounded by the change
in the initial conditions on the closed interval [0, h]. Thus, Example 3.3.3 verifies the

statement of the Theorem 3.3.2.
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In the next theorem, we analyze the dependence of the solution of the FDE on the

force function g¢.

Theorem 3.3.4. We assume that f is the solution of the IVP (3.2.1) — (3.2.2) and f
1s the solution of the following IVP

cDYf(t) = a(t, f(1), >0, (3.3.5)
LOFPF(0) = by, ke{0,1,2,...,m—1}, (3.3.6)

where g satisfies the same conditions as g. Let € := max, 5, u |9(1, F) =gt f()].
If € is sufficiently small, then 3 some constant h > 0 such that f and f are defined on
[0, h], and

sup |f(t) = f(1)] = O(e).

0<t<h

Proof. Let f and f be defined on [0, 2] and [0, ky], respectively. Take h = min {hy, hy},
then both the functions f and f, are at least defined on the interval [0, h]. Define

~

d(t) == f(t) — f(¢), then ¢ is the solution of the following IVP

CDPO(t) = gt, f(1) — §(t, f(t), >0, (3.3.7)
sDFP5(0) =0, ke{0,1,2,...m—1}. (3.3.8)

The IVP (3.3.7) — (3.3.8) is equivalent to the Volterra equation

310 = 5 [ e ol 16D~ 0 ) .

() Jo (&= )1
Taking the absolute of the above equation and using the Lipschitz condition on g, we
get

e—o(t”—s/))

30 =l [ ™ (ot 76D - 6. 60)
+ (905, f() = 3(s. f(5))) ] s

<ol [ e ot 16— s Fo) s

o(n tP — sP)l=n
" /ot %SHMS, £(s) = (s, f(s))‘ds}
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: /0 max ‘Q(Saf(S)) — §(s, f(s))|ds

b(n t”-spl'" (s.f(s)eH

)
gm0t =s")
/277) /0 (tr — s)1-n s’ ‘5(8)‘(13

pL [t eo®=s) €
< P
—v<n>/o (g T= R 0| LRy

om t o—o(tP—sP)
< h + pL/ c sP 1‘ ‘ds
d(n+1)  o(n) Jo (7 —sP)n

Taking p(t) = [6(t)], q(t) = 2% and g(t) = ’JZ—L and using the Theorem 3.3.1, we

1P

(n+1) o(n)’
find
chP chP"
¢, (L' < &, (LhT) = O(e).
300 < g gy Eallt) < g (L) = O(0)
Thus, the proof is complete. O]

Finally, we explore the consequences of perturbing the order of the FDE.

Theorem 3.3.5. Assume that f is the solution of the IVP (3.2.1) — (3.2.2) and f is
the solution of the following IVP

CONf(t) = g(t, f(t), t>0, (3.3.9)
LR F(0) = by, ke {0,1,2,...,m—1}, (3.3.10)

where 7 > n and m := [7]]. Let e :=17 —n and

0 if m=m,
max{]bk] m<k<m-— 1} otherwise.

€ .=

If € and € are sufficiently small, then 3 some constant h > 0 such that [ and f are
defined on [0, h], and
sup [f(t) = f(1)] = O(e) + O(&).

0<t<h

Proof. Let f and f be defined on [0, 2] and [0, ky), respectively. Take h = min {hy, h,},
then both the functions f and f, are at-least defined on the interval [0, h]. Define
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Ok b P /t e o=
b(k+1)t +b(77) 0 (tp_sp)l—ns g(s, f(s))ds

+/0 (/) tP b-(;f)”‘ B p(t b—(;)p)”_ )e—U(tpfsp)Spflg<S’ f(s))ds.

Taking the absolute of the above equation and using the Lipschitz condition on g, we

get

m—1
hpk pL t efa(tpfsp)
B < b ‘ P=L15(s)|d
= bk+1"“+b )/O(tp—sp)l—ns 0(s)lds

=m

Eod

tp _ Sp -1 p(tp _ Sp)ﬁ—l

o(7])

sPds

+ max :17
(z y)EH y

. pL e
<(9(e)+ )/0 (

tp_sp)l 77
-1
+M/ ‘ - ‘dv.

The zero of above integrand can be seen to be vy = (%) m. If h < vy, then absolute

—a(tP sP)

s 1|5( )lds

value sign can be taken outside the integral. In the other case, the interval of integration
must be separated at vy, and each integral can be evaluated without difficulty. Thus

in any case, we find that the integral is bounded by O(77 — ) = O(¢). Hence, we have

t e—a(tp—sp)
5(5)] < O@F) + O(e) + b’zf;) /0 e o lds

and using Theorem the 3.3.1, we obtain the desired result. O
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Chapter 4

d-Hadamard type fractional calculus

In this chapter, we present a generalization of the Hadamard type fractional calculus
which has been named as the ®-Hadamard type fractional calculus. Moreover, we
discuss conditions for which the ®-Hadamard type fractional integral is bounded in
a generalized space ngc(a, b). We also prove sufficient conditions for the existence of
®-Hadamard type fractional derivative. Finally, we give proofs of some basic properties

and integration by parts formulas of fractional calculus.

4.1 Generalization of the Hadamard type fractional
operators

Motivated by definitions of the ®-RL, ®-Caputo and Hadamard type fractional oper-
ators, we present a modified construction of the general case of the Hadamard type
fractional operators. We introduce new definitions of the Hadamard type fractional
operators by generalizing these operators. The new generalization is based on the ob-
servation that for m € N, the ®-Hadamard type fractional integral, of order m, is given

by the mth iteration of the integral 53, as below:

w0 = ey [ s, [ %d [ @y s,
EOACORCE SAREE -

(4.1.1)
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Thus, the fractional version of (4.1.1) is given below

~1,® _ L rre(s)\! o)\ D' (s)ds
H‘ja,uf(t>_b(n)/a (q)(t)) (logq)(s)) f(s) B(s) where n € R, (4.1.2)

We next define the ®-Hadamard type fractional operators in the following defini-

tions.

Definition 4.1.1. Let n be a real number such that n >0, m —1 <n <m, —oo <
a < b < oo, f be an integrable function defined on [a,b] and ® € C'([a,b]) be an
increasing function such that ®'(t) # 0 for all ¢ € [a,b]. Then, the left and right-sided

®-Hadamard type fractional integrals of a function f of order n are defined as

w3t f(t) = L/j <®(S>)# (log w)n_lf(s) DS o g > a, (4.1.3)

b(n) o(1) D(s) P(s)
and
it py L [T(RON (BN (Pls)ds
a0 =g [ (Gig) (eag) 0% ere<h w1
respectively.

It is noteworthy that for ®(t) — t, xJI" — yJ?, which is the Hadamard type
fractional integral. Moreover, for ®(t) — t and pu = 0, we obtain yJ% — J which

is the classical Hadamard fractional integral.

Definition 4.1.2. Let n be a real number such that n > 0, m —1 <n <m, —oo <
a < b < oo, f be an integrable function defined on [a,b] and ® € C'([a,b]) be an
increasing function such that ®'(t) # 0 for all ¢ € [a,b]. Then, the left and right-sided

®-Hadamard type fractional derivatives of a function f of order n are defined as

a®0E () = gDt w1, for t > a, (4.1.5)
and
wD)L () = a D) w3 M f (), fort < b, (4.1.6)

respectively, where

w22 = 0} (g ) (@0 (@.17)



and
WO = e (g ) @y (1.18)

In 1967, the definition of the RL fractional derivative was reformulated by Caputo
in such a way that he switched the order of the ordinary derivative with the fractional
integral operator |7|. By motivation of this reformulation, we present the following

definition.

Definition 4.1.3. Assume that n > 0, m — 1 < n < m, [ is the interval —oco < a <
b < oo, f,® € C™(I) two functions such that ® is increasing and ®'(t) # 0 for all
t € I. Then, the left and right-sided Caputo ®-Hadamard type fractional derivatives

of order n are defined as
GOIL F() = w3l T aD (1), fort > a, (4.1.9)

and

GOPT F(t) = w3 PO f(1), fort <b, (4.1.10)

respectively.

Lemma 4.1.1. For the ®-Hadamard type fractional integral HJZ’?# and fractional

derivative H@a+ , the following properties hold

st - | (30) 1%

(b) lim, ndu () = f(b),
(c) lim w7, f(t) = f(1)
(@) n—>(l7inrr_l1)+ ngfjuf(ﬂ = {®(t)} Ham B ()} f (1),

(¢) lim uD,1(t) = {2(0)) 5™ (B0} ()

md _ (e 4\
where § ¢—<¢,(t)a) .
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Proof. For (a), taking n = 1 in the definition of ®-Hadamard type fractional integral

HﬁZf)#, the desired result is obtained.

get

For (b), considering the definition of ;37" and applying integration by parts, we
O (%) ( o ) o Tk
(Y (w0 o
—;< )2 ]
A { (Y (e 20Y s
+/: (33)"a[ (3 0] -

Taking the limit as n — 07, we obtain

i 32,00 = (e ) @) +50) - (Fd) @) = 70

n—0+ @(t)

a

For (c), consider the definition of H@Zf)u

o= oo () eor s [ (36)

B(1) ' (s)ds
() 1O <>}

Taking the limit as 7 — 0% and applying the Leibniz rule, we get

i w222, 0) = (o) (%) {@(t)}“{ [ (G2 f<s>‘1);§2§l3} - 1)

Similarly, one can prove (d) and (e). Therefore, we omit the proofs here. Hence, the

Lemma 4.1.1 is proved. O
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Lemma 4.1.2. If0 <n <1 and ¢ > 0, then the following relations hold

¢—1 ¢+n—1
H:JZL:D?M {{Cb(t)}“ (log %) } = o) {®(t)} " (log %> , (4.1.11)

o(n+¢) ®(a)
¢—1 ¢—n—1
o {{(I)(t)}_“ (log %) } - - <E<E)n>{¢>(t)}_“ (log %) (41.12)

Proof. First we prove (4.1.11). Using the definition of HSijM, we have

H:stfu{{@(t)}u (10g%)“}: Ly / (1og )n_l

y (log @(s))<—1 P’ (s)ds

o(t)
D(s)

®(a) O(s)
oy log($2) : : :
Substituting y = = and using the relation between the Beta function and the
tog (563

Gamma function, we obtain

-1 ¢+n—1
st o ()} st (v 35)

1
></ (1—y)" 'y ldy
0

() i (1og 2O
“bim -0 W) (1%(@)) |

Thus, we have proved our lemma for the integral. The proof for the relation (4.1.12)

can be done in a similar manner as above. O
Fractional integrals and derivatives of f(t), for ( = 2, a = 1, p = 1 and different

functions ®(t) are illustrated graphically in Fig. 4.1 and Fig. 4.2, respectively.

4.2 d-Hadamard type fractional integral operator in
the space Xg .(a,b)

In this section, we discuss the conditions under which the ®-Hadamard type fractional

integral operator HJZ::DM is bounded in the space Xg ,(a,b) (c € R, 1 < p < 00) of those
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(a) ®(t) =+, 0.1 <n<0.9.

-

D(t)

®(a)

 of £(t) = {@(t)} ™ (log

,®

Figure 4.1: Fractional integrals yJ
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(4.2.2)

({(I)(t)}c \f(t)|) , forceR.

— esssup
a<t<b

1 f[|xge,
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(a) ®(t)=+101<n<0.9. (b) ®(t)=t,0.1<7n<0.9.

C_
Figure 4.2: Fractional derivatives HQZF,N of f(t) ={P(t)} " (log g(@))

If we consider ¢ = £ and ®(t) = t, then the space X% (a,b) coincides with the space
p ,C

LP(a,b) with

3=

b
£l = /iﬂm%ﬂ for 1 < p < oo

and

1flloo = esssup | £(t)] for c € R.
a<t<b

In the theorem below, for a non-negative increasing function ® and p > ¢, we prove

that the ®-Hadamard type fractional integral operator H\TZ’S i is well-defined on the
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space Xg .(a,b).

Theorem 4.2.1. Letn > 0, 1 < p <00, 0 <a < b < oo, ® be a non-negative
increasing function and p,c € R be such that @ > c. Then the operator HTJZf“ 18

bounded in Xg .(a,b) and

1632 Fllxe . < K| fllxz, (4.2.3)
where n
K- b(n1+1> (log igg) for p=c (4.2.4)
while
K= ﬁ(u oy (n, (11— ¢)log i(?)) for > c. (4.2.5)

Proof. First we discuss the case 1 < p < oo. Using the definition of Hijfiﬂ and Eq.

(4.2.1), we find
i) (5) (exa5)

b
R W RTO

=

& (s)ds | ' (t)dt \ "
T30 | T ) '

Making the substitution ®(s) = %, we get
e vl o7 (50) {D(u))w RGO
n g, = o {log @)y i
il = | [ S et P

iS]
=

Since f(t) € Xg (a,b), thus %f(t) € LP(a,b) and by applying the generalized
(¢ D

Minkowsky inequality, we have

o 1 () e s
e AN L) R LI
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=1 (®(u)(a) '
X /b {o(t)}” f(cb‘l(;(i)))) q)qu)dt du
1o GE@) [t eeew , '(s)ds :
:@[m) </ rsor a(s)

x {® ()} {log ®(u)}" @' (u)du

and hence
30" WSz < M| fllxs
where 1 o (;{’gf;;)
M- s /q) ARy o @)} @ ) (4.2.6)

When p = ¢, then we have

o1 GE) pa®wde 1 o(b)\"
M‘W/M) Hog () ™ = S ) (logm) |

If 1 > ¢, then making the substitution s = (u — ¢)log ®(u) in Eq. (4.2.6) and by using

the definition of the incomplete Gamma function, we have

2(b)

(g feaes(EE) L (o) I 10
v=t ¢ =T ”("’(“ C)b%(a))‘

Thus the result is proved for 1 < p < oc.

Next we assume that p = oco. Then by using the definition of HﬁZf’# and Eq.
(4.2.2), we have

(@)l f(t)) <ot [ (R (1og )" oy Bt

K@) fllxg,

ko= ) (i) S5
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where




Substituting ®(u) = <1>(( )) in the above equation, we get

o1 (200 w
KO =0 [ ) )y 1o (20

0(n) Jo-11) D(u)
If 4 =c. then for any a <t <b
IS NP S UM
K0 = (o) <srn (W) - 029

If i > ¢, then making the substitution s = (u — ¢) log ®(u) and by using the definition

of the incomplete Gamma function, we find

1 _ _ (1)
Kit)=—pu—c "’y(n,,u—c"llog—).
(1) = gy = (= o 3
Since (v, t) is an increasing function, thus for any a < ¢ < b it follows that
1 _ _ O (b)
Kit) < —(u—-c 777(77,,11—0"110g ) 4.2.9
(1) < 550 =07 (= 0 g 5 (129)

o(1)
Hence, from Eqs. (4.2.7)-(4.2.9), we see that for any a <t <b
[} n3", 10| < Klfllxg,

where K is given by Eqs. (4.2.4) and (4.2.5) when p = ¢ and p > ¢, respectively. Thus

we have proved the result for p = oco. O

Remark 4.2.2. The result for ®-Hadamard type fractional integral operator in The-
orem 4.2.1 is analogous to the classical RL fractional integral operator [38]. Moreover,
considering the case that ®(t) = ¢, we have an analogous conclusion for Hadamard type
fractional integral operator. Taking into consideration ®(¢) =t and g = 0, Theorem

4.2.1 holds true in the settings of Hadamard fractional integral operator [24].

4.3 Existence of the P-Hadamard type fractional deriva-
tive

In this section, we present sufficient conditions for the existence of the ®-Hadamard

type fractional derivative H@Zf, i in the space
ACs la,b] = {h: [a,b] = C: 5””‘*1’@’{ {o(t)}" h( } € ACa b]} (4.3.1)
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k
where 4 € R and 6%® = ( g,%%) . Here ACTa,b] is the set of absolutely continuous

functions on [a, b] which coincides with the space of primitives of Lebesgue measurable

functions i.e.

h(t) € AC[a,b] <= h(t) = / t h(s)dt + (4.3.2)

where h(s) € Ly(a,b).

In the following theorem, we characterize the space ACH; M[a, b|.

Theorem 4.3.1. The space ACJ “[a, b] consists of those and only those functions g(t),

which are represented in the form

o0 = {000} 4 s [ (ton ) i + S (o 20 )

k=0
(4.3.3)
Proof. Let g(t) € ACH; [a,b]. Then by Egs. (4.3.1) and (4.3.2), we have
t ~
s {a(n)} o)} = / h(s)ds + e (4.3.4)

i.e.

Sl {oenron}] = S [ s+ e

Therefore, we have

o2 L {o(t)} g(t) | = / log %ﬁ(s)d’s T Cm—z + Cm-y log :II;((Z))

Repeating this procedure i times, we get

o { o)} g1} = (i . 1)! /at (log %)H ada + i e (log i)((i)))k |
~ (4.3.5)

Substituting ¢ = m in Eq. (4.3.5), we get Eq. (4.3.3).
Conversely, let g(t) be represented by the Eq. (4.3.3), i.e.

{o(t)} g(t) = ﬁ /at (10g %) " h(s)ds + mz_:lck (10g :II;((?))k

k=0
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Applying 6%® on both sides of the above equation, we get

s (o0} o)} i [ (1 jlf(“)))m h(s)ds
g

For : = m — 1, we obtain
t A~
e {o(0)} o)} = [ hids +e

where ¢ = (m — 1)!¢,,—1 and hence, according to Eq. (4.3.2), we deduce that g(t) €
ACT: M[a, b]. Thus, the proof of the theorem is complete. H

Remark 4.3.2. From Eq. (4.3.4), we have h(s) = g/, ,(s). Furthermore, it follows
from our proof that ¢; = %% where k = 0,1,...,m — 1 and g;(t) = 5’“74’{((I>(t))“g(t)}.
Hence, g(t) can be represented as

a

(4.3.6)

Now we give proof of a result giving sufficient conditions for the existence of the

®-Hadamard type fractional derivative.

Theorem 4.3.3. Let n > 0, m = [n] + 1, p € R and g(t) € AC§; [a,b]. Then the
®-Hadamard type fractional derivative H@Zfﬂg exists almost everywhere on |a,b] and

may be represented in the form

. BN (s
O 9(t) ={2(t)} { / (10g%) bg(m—_(%ds

e ()"
DIy (logm>

k=0

(4.3.7)

42



Proof. Since g(t) € ACJy M[a, b], by substituting the form for g(¢) given in Eq. (4.3.6)

into the definition of the ngf)w we get

¢ men=1 w0 (a4 ¢
it = (oo) s [ogg) {50 ()
a k=0 ’
s o w ml G (1) w w s
+/a (l g@<u>> om -1 }‘1’<S>d'
(4.3.8)

Considering the term involving the double integral in the above equation and by using

the Dirichlet formula for the change of order of the integration, we obtain
' o)\ O(s)\" " i) | ¥(s)
log —= 1 e d d
/a (Ogcms)) / (O%(u)) (m— D1 9(s)
t t m—n—1 m—1 x;
Gm—1 (1) / o(t) ®(s) ®'(s)
= == log —= 1 dsdu.
/ (m=1!J, (0g<1><s> Fow) e

tog (53

Evaluating the inner integral by making the substitution y = oo (M )
P(u)

g

Z

and by using

s

the definition of the Beta function, we find

[ (o) [ (eeits)” i

A )

By substituting this relation into Eq. (4.3.8) and taking 6™ ®-differentiation, we obtain
the required result. O

Remark 4.3.4. The result for ®-Hadamard type fractional differential operator in
Theorem 4.3.3 is the analogue of the classical RL fractional differential operator [38].
Moreover, when we consider the case that ®(¢) = ¢, we can make an analogous conclu-
sion for the Hadamard type fractional differential operator. Considering ®(¢) = ¢ and
i = 0, Theorem 4.3.3 can be seen to hold true in the settings of Hadamard fractional

differential operator [24].
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4.4 Semi-group and reciprocal properties of >-Hadamard
type fractional operators

In this section, we give proof of the semi-group and reciprocal properties of the ®-

Hadamard type fractional integral operators.

Theorem 4.4.1. Letn >0, (>0,1<p<o0,0<a<b< oo, ® be a non-negative
increasing function and p,c € R be such that p > c. Then for f € ch(a, b), the
following property holds

a3 35T () = w3 F(8). (4.4.1)
Proof. Using the definition of ®-Hadamard type fractional integral Hijf ., and the

Dirichlet formula, we obtain

LI e / (35) ()
ey e Ao
s | (50 o { [ (me5)”
)

d(s) 1<I>' '(u)du
< (ros 3 } ()

d(u

s 5

Evaluating the inner integral by making the substitution y = 1 (
og

)
5)

>9<

&)

and using the

'94

definition of the Beta function, we get

10 =g [ (55) 70 { (veg)

(3 10 (e (o)}
t W\ * n+¢—1 u

- (771+C)/ (507) (o) @750
—Hda+ Hﬁﬁf f(@t).
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Hence, the proof of the Theorem 4.4.1 is complete. O]

Now we consider the composition between the ®-Hadamard type fractional deriva-

tive HDEZ?“ of order ¢ and fractional integral HﬁZfﬂ of order 7.

Theorem 4.4.2. Letn > (> 0,1 <p<oo0,0<a<b<oo, & be a non-negative
increasing function and p,c € R be such that uw > c. Then for f € X(%C(a, b), the
following property holds. That is,

uDYE m I (1) = w3 (1), (4.4.2)

M

Particularly, if ( =n € N, then

w30 F () = WL F (), (4.4.3)

Proof. Let n —1 < ( < n, such that n € N. If ( = n, then

WD 90 = (20} (0 ) () (14.4)

Using the definition of HC}Z’?M and Eq. (4.4.4), we obtain

il it 1) = o)+ (e ) (204 L ey
(i) 0%

By application of the Leibniz rule and by using the relation d(n + 1) = nd(n), we have

st g0 -t (302) B0 [ (5 (o 88)
' (u)du
D (u)

(o) () s,

Repeating this procedure k£ times, where 1 < k < n, we find

HQZE) H:JZE) ft)={®o(t)}* (3&?)%) ) (D)} 13T £ (1)
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and the particular case follows for k = n.

If n—1<({ <n, then Eq. (4.4.2) follows from Eqs. (4.4.1) and (4.4.3):

n 0 Iyl (8 = w0 T I f (0 = n D I = w3 ().
(44.5)

Hence, the theorem has been proved. O

Theorem 4.4.3. Letn >0, m—1<n<m,0<a<b<oo, p€R, P beanon-

negative increasing function. Assuming f such that g3 "q’f € ACH: #[a, b]. Then,

~1, @ n,® _ ®(a)\" - 1 D(t) ek n—k,®
i, 10 = 10-(5 ) Xy () Bmaoritso

Particularly, for 0 <n <1 we have

Proof. Using the Leibniz rule, the following relation can be established.
- Lra(s)\" D(t)\" P’ (s)ds
o))} oLt “/ log ——= | u®" f(t
ey o omy [ (55) (org) »2R 0750

of () (38 s

By the definition of HGZf > We have

2t 10 = o [ (B (o g )" o s B (1

From Eq. (4.4.6) and (4.4.7), we get

@ n,® M c1,P H IO
H327+7#H©a+’#f(t) :ﬁ{@(t)} o {(b(t)} /a (q)((tg)

D)\ e d'(s)ds
< (osgg) woRt 0055

From the definition of H’D"f and Eq. (4.4.8), we find

0 gy w0 o [ () (o 20)

(
(B0} 6 {00} WD ) T

(4.4.6)

(4.4.8)

46



Applying integration by parts, we have

et (S8) (428

. —1,&8  ~m-n,®
i U )

bo (o) "o fowy [ (50) (legg)
{0} 5 {00} w01 ()

By continuation in this manner, we get

3D () = - (223) ) 2 m (k’g %)

m
k=1

lim+H©"_k’¢f(s)

+
s—a atp

1 —B 1, w [ P(s)\"
s (0} e oy [ (55)

S\ e d'(s)ds
X (log CI)(S)) H gt f(s)

where

F(t) = D)} M {a(1)}"

o(n—m+1)

S (5) (meta) e

Hence, we obtain our desired result.

Remark 4.4.4. Taking into consideration the case that ®(t) = ¢, we have analogous
conclusions for the Hadamard type fractional operators. Furthermore, considering
®(t) =t and p = 0, all of the theorems in this section are seen to hold true in the

settings of the Hadamard fractional operators [26, 27|.

4.5 Fractional integration by parts formulas

In the proofs of Lemma 4.1.1 and Theorem 4.4.3, we use one of the most important
techniques of classical calculus: integration by parts. In this section we derive sev-
eral formulas of integration by parts in the settings of ®-Hadamard type fractional

operators.
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Lemma 4.5.1. Letn >0, m—-1<n<m,p>1,q>1, andé—i—% <14n(p#1and
q # 1 in the case when i + % =1+n). If f(t) € X3 (a,b) and g(t) € Xg .(a,b), then

/a 2((:; FO) 30 g(t)dt = / ‘z’g))g(tmgv_‘%uf@)dt. (4.5.1)

Proof. Using the definition of H\TZ’-?, i and the Dirichlet formula, we have
b 9'(t) 1 [Pt Erd(s)\" o)\
)3T tdt:—/ t/ log ——=%
[ wfontaon = [ 350 [ (35) (e
P'(s)d
(s)ds ,,

(s
i | 500 [ (563) (oe35)

(
x f(t) )dtds

x g(s)

o'(t
o(t)

— / g((;)g“)ﬁz’-i f(t)dt.

Hence, our result is proved. O]

Theorem 4.5.1. Assume that n > 0, m —1 < n < m, f(t) € ACf la,b] and
g9(t) € Xg (a,b) where 1 < p < oo. Then, the relation below holds

b b F/
[ romoga = [T 0swgp, {30 50 far

m—1
B(1) n
- Xl g0 et
k=0

'(t)

b

a

Proof. Using the definition of z@"F | we have

at,w’

/ab f(t)HQZ t)dt = / ft) H@;ﬂf Hﬁﬁ nq)g(t)dt
[owor 3 )

x {o(t)}" HSZ?F’Z’Cbg(t)}dt
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Using integration by parts, we find

[ st v = 1) (20} ) (HOAY oy o)

- /ab { @8 %)m {e@®)}" Hﬁzi‘,z"l’g@)}

)

() m—1,& ~m—-n,®
() () @ H‘jaer, g(t)

O JPT N § ()
v [ Bt ey, {5 s }ar

Again by application of integration by parts, we get

b

a

b

/ PR glt)de ;f,((”)f( DD R (1)

a

@ t m— ~mM—
O {0 | L

- / b (i((f)) w7, { 0 f(t)} dt.

Continuing in this manner, we get
/ F&) Y Z " (t)} PR G]

/ab (g((f Hijl n® gt a0 {cf/((i))f@)} dt.

H
l.’)
/—’H
S::

+

Using Lemma 4.5.1, we have

/vbf(t) @77"1’ (t)dt_mX_:l @k,qn q)(t) f(t) ~k—n+1,® (t)
i H~ o+ ,9 = H~p- @’(t) H‘jaJﬁu g

k=0
+ /a %g(t)lfgg'z’:@[{@gf’i {%f(t)} dt.

Finally by using the definition of C@Z? , we get the required result. [

b

a

Theorem 4.5.2. Assume that n > 0, m —1 < n < m, f(t) € ACy [a,b] and
g9(t) € Xg (a,b) where 1 < p < oo. Then, the following relation holds
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[ romop g~ [T g0, { o a

-1

_ Z H@Sfju { s((?)f(t)} Hg’gj’zﬂ,@g(t)

k=0

b

a

Proof. Tt is easy to derive the required result by using the technique demonstrated in

the previous result. So we have omitted the straightforward but lengthy details. O
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Chapter 5

d-Laplace transform method and its
applications to ®-FDEs

In this chapter, we present some new properties and uniqueness of the ®-Laplace
transform. Moreover, we discuss the effectiveness of this generalized transform and
make use of it for solving the ordinary and partial FDEs in the settings of ®-RL,

®-Caputo and P-Hilfer fractional derivatives.

5.1 The ®-Laplace transform

In this section, we discuss a generalized integral transform, that has been introduced
by Jarad and Abdeljawad [19], and which can be used to solve linear FDEs in the frame
of ®-RL, ®-Caputo and ®-Hilfer fractional derivatives. This new integral transform
is the obvious generalization of classical Laplace transform. Throughout this thesis,
we call it the ®-Laplace transform. In the settings of ®-fractional calculus, some new

properties and uniqueness of the ®-Laplace transform constitute part of this section.

Definition 5.1.1. Let f : [0,00) — R be a real valued function and ® be a non-
negative increasing function such that ®(0) = 0. Then the ®-Laplace transform of f
is denoted by £4 {f} and is defined by

Fv)=£s {f()} = /OOO e PO (1) f(t)dt (5.1.1)
for all v.
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Definition 5.1.2. A function f :[0,00) — R is of ®-exponential order ¢ > 0 if there

exists a positive constant M such that for all t > T
‘ f(t)) < Me®®,

Symbolically, we write
ft)=0e®®)  as t— oo

Example 5.1.3. If f(t) =1 for ¢t > 0, then

> 1
Lo {1} :/ e 0P (tydt = =, for v > 0. (5.1.2)
0

v

Example 5.1.4. If f(t) = ¢*®® where a is a constant, then
1

Lo {eaq)(t)} = / e~ =M (1) dt = , for v>a.
0 vV —a
Example 5.1.5. If f(t) = (®(¢))" where n € N, then
" n!
Lo {((1)"} = PEIST for v>0.
Differentiating (5.1.2) with respect to v, we get
> 1
Lo {@(1)} = / e P () D(t)dt = . (5.1.3)
0 v

Differentiation of (5.1.3) with respect to v yields

£ {002} = [ e 00 (0 = 2.

3
Similarly, differentiating (5.1.2) with respect to v, n times gives

Lo {(D(1)"} = Vﬁl'

Remark 5.1.6. If n > —1 is a real number, then

2y {(@(p)} = 2D

pn+l

which can easily be shown by making a suitable substitution and afterwards using the

definition of Gamma function.
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In the following examples we calculate the ®-Laplace transform of some special

functions.

Example 5.1.7. Assume that Re(n) <L If f(t) = (A(@(t))”) where
¢, denotes the Mittag-LefHler function (2.6.2), then

£q>{€n</\(<1>(t )} meH B(t))"

1=

(o) )\Z
= Z b(m—+1)£ {(q’(t))m}
_ i‘; N a(in+1)

b(m + 1) yintl

Example 5.1.8. Assume that Re(n)

(1) = (@))€, (A(@(1)")
where €, , denotes the Wiman function or two parameter Mittag-Leffler function

(2.6.3), then

o { @) €0 (N@0)) | = 208 3 2oty
_ i A (i +n)

o(in +mn) virtn

I\
=)

i

:%20(1/77)‘: v — N\

A
N

Example 5.1.9. Assume that Re(n) > 0 and < LI f(t) = (D(1) e . (A(@(t))")
where €) - denotes the Prabhakar function (2.6.4), then by Definition 5.1.1 and the Bi-

nomial series, we have

2 {001 (o)) } = 2§ 3 S0 Doy
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S (o)
= Ab(y+9) d(ni + Q)
_Zl‘b(mv%) pmte

=<

L by ) AN
_E; il <ﬁ> N

Next, we state sufficient conditions for the existence of ®-Laplace transform of a

function.

Theorem 5.1.10. If f : [0,00) — R is a piecewise continuous function and is of

$-exponential order, then the ®-Laplace transform of [ exists for v > c.

Proof. We have

‘Qq,{f(t)}‘:’ /Oooe”q’(t@’(t)f(t)dt‘g / e 0 ]f ]dt (5.1.4)

<M/ —vo(t ec®®) gt

= , forv > c.
v—rc

Thus, the proof of Theorem 5.1.10 is complete. O

Remark 5.1.11. From Eq. (5.1.4), it follows that lim,

Lo {J(} )] = 0, ie.
lim, o Lo {f(t)} (v) = 0. This property can be named as the limiting property of the

®-Laplace transform.

In the following Theorems, we state the ®-Laplace transforms of the ®-RL and
d-Caputo fractional operators [19].

Theorem 5.1.12. Let n > 0 and f be of ®-exponential order, piecewise continuous

function over each finite interval [0,T]. Then
2 {0 N0} = v g {11} (5.1.5)
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Theorem 5.1.13. If n > 0, m = [n] + 1, and f(t), TP E(), LT L, .

. j
QmLEGIY £ (1) where DI = (ﬁ%) , are continuous on (0, 00) and of ®-exponential

order, while DF® f(t) is piecewise continuous on [0,00). Then

e {20070} =i (£} — 3 v @) 0),

Theorem 5.1.14. Ifn > 0, m = [n]+1, and f(t), DVCf(t), D2Tf(t),..., D™ L2 f(1)
are continuous on [0,00) and of ®-exponential order, while DT f(t) is piecewise con-

tinuous on [0,00). Then

e {10} = vga {100} — S v @ ) 0).

Definition 5.1.15. [19] Let f and g be of ®-exponential order, piecewise continuous
functions over each finite interval [0,7]. Then, we define the ®-convolution of f and g
by

t=0—1(d(1))
(o)) = [ F(e7 (@) - 8(7))g(r)@()dr.  (5.L6)

In the following theorem, we discuss the commutativity, associativity and distribu-

tivity of the ®-convolution of two functions.

Theorem 5.1.16. Let f and g be of ®-exponential order, piecewise continuous func-

tions over each finite interval [0,T). Then
(a) f*s9=gx*s [.
(b) (f *eg)*a h = [ *s (9o h).
(c) [+ (ag+bh)=af *¢ g+ bf x¢ h.

Proof. The proof of (a) can be seen in [19]. For (b), consider the left-hand side and
using (5.1.6) we have

t=0—1(d(t))
TRIICEY) (f %0 0) () (97 (B(1) — B(s) )/ (s)ds
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S—
—
s
s
9
=
w
— =
|
By
=
\‘:’/
<
&

TH(@(t) — 2(s))

By setting v = @7 H(®(s) — ®(u)), we get

o1 ()~ (u))
{Fro g}t / Few | g(0)h (B (@(1) — D(u) — D (0)))
' (v)dvdu
- / F(@)®' () { 0 g} (t)du
() % {g 50 B} (£).

The proof of (¢) is easy. So we omit the straightforward details. m

Remark 5.1.17. Consider a set A of all ®-Laplace transformable functions then A
forms a commutative semi-group with respect to the binary operation %¢. Moreover,
A does not form a group because f~! x¢ g is not ®-Laplace transformable, generally

speaking.
In the following theorem, we prove the uniqueness of the ®-Laplace transform.

Theorem 5.1.18. Assume that [ and g are piecewise continuous functions on [0,00)
and of ®-exponential order ¢ > 0. If F(v) = G(v) for v > a, then f(t) = g(t) for all
t>0.

Proof. Since F(v) = G(v), so £¢ {f — g} = 0. Thus, we will prove that if £4 { f(¢)} (v) =
0 for all v > a then f(t) =0 for all ¢ > 0.
Fixing vy > a and making the substitution u = e=®® in (5.1.1), then for v = vy +n+1

we get

0 P /Ooo e 020~ (1) £ (1) dt = /01 u” {ul’of (@' (—Inu)) }(c;ul ;
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where n = 0,1,2,... Assume that r(u) = u”f (CD_I (—lnu)) which is a piecewise

continuous function on (0, 1] and

lim 7(u) = lim e %® £(¢) = 0.

u—0 t—o00

If we consider r(0) = 0, then h is a piecewise continuous function satisfying

1
/ p(u)r(u)du =0 (5.1.8)

0
where p is any polynomial. Thus, if 7 has a power series expansion which converges

uniformly on [0, 1], then Eq. (5.1.8) can be rewritten as

/o r(u)r(u)du = 0. (5.1.9)

On the contrary, suppose that r is not a zero function then we can find a point ug €
(0,1), an interval I = [ug — co, uo + ¢o] C [0,1] and a constant ¢ such that r(u) > ¢ >0
for all w € I. If we set #(u) = e~ ) then clearly Eq. (5.1.9) holds. Thus for

ug-+co co 5
Jp :/ 7(u)du :/ e dx
uo—co —cCo
1 1—ug )
Jy = / 7(u)du = / e “dx
uo+co co

ug—cCco —Co 2
J3 = / 7(u)du :/ e Vdx.
0 —ug

If we set [ = ffooo e~*dz, then clearly [ > 0 and for a given ¢ > 0, we deduce

l
J12§, OSJQSG, OSJgSE

Since r(u) > ¢ > 0 for all uw € I and |h| < ng where ng € N, we have
/ 7(u)r(u)du
[0,1]\

1
l
/ 7(u)r(u)du > EC — 2npe >0
0

r = u — ug, we have

and

and

S 2n06

and hence

provided € < 4576, contradicting Eq. (5.1.9). Thus, r is the zero function which implies
0

that f is the zero function and thus, this completes the proof. O
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5.2 The d-Laplace transform of the ¢-Hilfer fractional
derivative

In this section, we compute the ®-Laplace transform of the ®-Hilfer fractional deriva-

tive.

Theorem 5.2.1. If >0, m =[] + 1, 0 < ( < 1, and f(t), D3I OmM2 p(1) €
C'[0,00) and of ®-exponential order for j = 0,1,2,--- 'm — 1, while Qg’c’q)f(t) is
piecewise continuous on [0,00). Then

Lo {DUSF 1)} = 780 {F(1)} = D prt iy g £y o),

i

3

Il
o

Proof. From the definition of the integral operator ®7“® f and (5.1.1), we have

@ P} = o {sgm—"%‘b (355) 321‘4’(7”"7”‘17(15)} .

Using Theorem 5.1.13 and 5.1.12, we get

s { @0} =y { (wai) US‘C)(W‘")"I’J‘(t)}
=< [y {90 )}

m—1

_ Z Vm—z‘—l(@i@jél—o(m—n),@f)(o)]
i—0

:V*C(m*n) [mef(lfc)(mfn)g(b {(j(()lfo(mfﬁ)@f) (t)}

m—1
m—i—1/~(1—=C)(m—n)—i,P
=2 E T ()

=0

m—1 ‘
=1"8s {f(t)} — Vm(1—4)+nC—z—1(j((]l—C)(m—n)—z,<1>f)(O>
=0
Thus, we have completed the proof. B
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5.3 Effectiveness of the o-Laplace transform method
for solving fractional-order differential equations

In this section, we examine and investigate the effectiveness of the ®-Laplace transform

method for solving fractional-order differential equations of the following type

COITy(t) = Ay(t) + g(t), 0<n<1, t>0, (5.3.1)

y(0) = %o, (5.3.2)

where C@Q*‘I’ is the ®-Caputo fractional differential operator, A is a n X n constant

matrix and ¢(t) is an n-dimensional continuous function.

Theorem 5.3.1. Let (5.3.1)-(5.3.2) has a unique and continuous solution y(t). Assume
that g(t) is continuous on [0,00) and ®-exponentially bounded, then y(t) and DY y(t)
are both ®-exponentially bounded.

Proof. Tt can be noticed that (5.3.1)-(5.3.2) is equivalent to the Volterra equation given

below

y(t) = o + ﬁ/{) (P(t) — @(T))nfl (1) {Ay(T) + g(1)} dr, 0<t<oo. (53.3)

By assumption, g(t) is ®-exponentially bounded, so there exist positive constants ¢, M
and large enough T such that ||g(¢)|| < Me®® for all t > T. For t > T, (5.3.3) can

be written as

y(t) = 4o + ﬁ / (B(t) — ®(r))"" /() {Ay(r) + g(r)} dr
1 ! n—1 =,
+ W?)/T (@(t) — <I>(7')) (1) {Ay(T) + g(T)} dr.

Since, y(t) is a unique and continuous solution of (5.3.1) — (5.3.2) on [0,00), thus

Ay(t) + g(t) is bounded on [0,7] that is there exists a constant [ > 0 such that
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[|Ay(t) + g(t)|| <. So, we get

Ol < Nl + 5o [ (@) = ()" @'(r)ar

o(n) Jo
1 t n—=1 =,
+ oo / (@(t) — ®(r)"" &' ()| A]] lly(r)lldr
1 ¢ n—1 =,
+ o / (B(t) — ()" &' ()] |g(r)|dr.

Using e ¢®t) < e7e®(1) ¢=c®(t) < e=<®() ||g(¢)|| < Me®® and multiplying the above

inequality by e=“®® we find

lefcq)(t)

o(n)

ly(®)lle™*® < [[golle™**® +

/0 ((t) - (r))" " ®'(r)dr

6chD(t) t 1
+ o [ (@) = 8@) " @Al ) ar
e—ci’(t) t 1
oo L (@0 = 20)" ¥ @lg(r)ar
~ (T le—cq)(T) . .
< Illle® + == (@) = (@(2) - #(T)")
L T (@0 - 0™ #0) ) e ar

+ % /t ((I)(t) — (ID(T))T?*1 @'(T)ec(q)(T)_q)(t))dT

o(n) Jo
o U(T))re= ™ M [ _
< c®(T) / cs, m ld
< llgolle Ty Ty OO0

F e [ (@00 - o)™ 0 e " dr
< Jlgollecom 4 (BN M

no(n) ch
Al — ()" V(7 AVle—c®) gr
" b(n)/o (@(t) = @(7))" (7) [ly(r)[le=*dr.

Assume that

H(D(T))e 2T M A
T L )L LT S 1

_ ()
no(n) cn’ o(n) () = [ly(@)] ;

then, we have
t

) <t [ (@) = 0m)" 0 i)l
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Using the Gronwall-inequality [42], we deduce that
r(t) < g, (114l (@(1) - @(7)" ) < a&, (|14]] (2()"). (5.3.4)
For 0 <n<1,u>0,t>0, the following inequality can be easily proved
¢, (u(@(1)") < Ce’™0, where ¢ > 0. (5.3.5)
From (5.3.4) and (5.3.5), we have
r(t) < aCellAIN "5

and finally, we get
Iyl < aceltan e,

Thus, y(t) is ®-exponentially bounded.

Furthermore, from Eq. (5.3.1), we have

128"y @11 < [IAll ly@)I + g (@)
< a|A[|CelUAD e} 2@ 4 ppeer

< (aHAHC + M) oL U1AINY 7} a(t)

Thus, C’i)g’q)y(t) is also ®-exponentially bounded and this completes the proof. O]

Similar results can be proved for fractional-order differential equations in the set-

tings of ®-RL and ®-Hilfer fractional derivatives.

5.4 Applications

In this section, by using the ®-Laplace transformation method, and in the settings
of ®-RL, ®-Caputo and ®-Hilfer fractional derivatives, we state and find solutions of
different classes of linear FDEs with constant coefficients. We now divide this section

into the following subsections:
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5.4.1 Solutions of some non-homogeneous linear ®-RL and -
Caputo FDEs

In this subsection, we use the ®-Laplace transformation method to solve the FDEs in

the frame of ®-RL and ®-Caputo fractional derivatives.
Theorem 5.4.1. [19] The FDE
DPy(t) — My(t) = f(t), 0<n<1, XeER, (5.4.1)

with initial condition

(T )y(0) =¢, ceR, (5.4.2)
has the solution
y(t) = (1)) €y (A@(1)) + (@) €y (AM@(1))7) %0 F (1)
Theorem 5.4.2. [19] The FDE
CQIPy(t) — My(t) = f(t), 0<n<1, NeR, (5.4.3)

with initial condition

y(0) =¢, c€eR, (5.4.4)

has the solution

y(t) = Can(A(@(t))") +(2(1)" €, (A(cb(t))”) *q f(t). (5.4.5)

Remark 5.4.3. Sometimes natural states are more adequately modeled by FDEs. As
an example, if we consider ®(¢) = ¢t and f(t) = 0 in (5.4.3) then the resulting FDE
is more appropriate for modeling the population growth than the ordinary differential
equation [4]. Moving a step forward, Almeida [2] showed that by considering different

®’s, a population growth model can be reproduced with more accuracy.
Corollary 5.4.4. Consider a special case of IVP (5.4.3)-(5.4.4)
CQIPy(t) —y(t) =1, 0<n<1, (5.4.6)
y(0) = 1. (5.4.7)

Then
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(a) y(t) = € (3) + 13, n(th),  for @(t) = VA
(b) y(t) = €(t") + 1€, (1), for B(r)=t.
(¢) y(t) = €,() + 1€, (127),  Jor (1) =12,

Proof. (b) From (5.1.6) and (5.4.5), we have

t t nk+n—1
1) = & (" n—1 MNdr = " —d
y(t) = €,( )"’/0 T €, (Th)dT = €, ( )+/0 ;b(nk-l-ﬁ) T

$nk+n

n n
() +§: S PT—— = &, (1) 4+ "€, 1 (1)

Similarly, one can prove part (a) and (c). Plots of solutions (a), (b) and (c) are given

in Fig.5.1 (a), (b) and (c), respectively. O

Theorem 5.4.5. The fractional diffusion equation

0" 0%u
o0 = o where 0 <n <1, (5.4.8)
with initial and boundary conditions
u(z,t) = 0 as |x| — oo, (5.4.9)
(T Mz, t)| = f(z), zeR, (5.4.10)
t=0

has the solution

u(z,t) = /_00 G(z — z,t) f(z)dz,

oo

where
1 n_
2

m@(t))

Proof. By application of the Fourier transform to both sides of (5.4.8) and (5.4.10)

G(z,t) =

(- e 53)

with respect to x, and by using (5.4.9), we have
D%k, t) = —kka(k, t), (5.4.11)
(35" Yk, t) = f(k). (5.4.12)
t=
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PO B N W A O O
v

(¢) 9<t<10,001 <o <1, ®(t) = 2.

Figure 5.1: Solutions of IVP (5.4.6)-(5.4.7).

Applying the ®-Laplace transform to both sides of (5.4.11) with respect to ¢, and using
(5.4.12), we get

f(k)
(v + Kkk?)

_ e {f(k)(cb(t))”‘lén,n( - HkQ(q’(t”")} !

Lo {u(k,t)} =

and from the above equality, we find
ak,t) = FUN@(1)"' €, (= nk3(@(1))"). (5.4.13)
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The inverse Fourier transform of (5.4.13) gives

(e, t) = /_ " Glo — 5,0 f(7)di (5.4.14)

o0
where

Glat) = + / Oo((b(t))”‘léw< — RR(@(0))") cos(ka) .

™ —0o0
The above integral can be evaluated by using the ®-Laplace transform of G(x,t) with
respect to t as

€4 {G(z,t)} = %/w _cos(he) o,

oo (VT + KE?)

Finally,
1 n_ || n
G(x,t) = —=(D(1))>2 1W(——,,,——,—>.
Thus, this completes the proof. O]

It is noteworthy that for ®(¢) =t and n = 1, the Cauchy problem (5.4.8)-(5.4.10)
reduces to the classical diffusion problem, and solution (5.4.14) reduces to the classical

fundamental solution.

5.4.2 Solutions of some general ®-Hilfer FDEs

Assume that
0<m < <1, OSCJSL CLJ'ER for j =1,2.

Consider the ®-Hilfer FDE
a D y(t) + asDg Py (t) + asy(t) = (1), (5.4.15)
with initial conditions
(3 (0) = b, for j =1,2. (5.4.16)
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For dielectric relaxation in glasses, Hilfer introduced an equation of the form (5.4.15)
in [16]. Z. Tomovski et al. [44] obtained the solution of a particular case of Cauchy

problem (5.4.15)-(5.4.16) when ®(¢) = t, in the space of Lebesgue integrable functions.

In the following Theorem, using ®-Laplace transform we find the general solution

of the IVP (5.4.15)-(5.4.16).

Theorem 5.4.6. The IVP (5.4.15)-(5.4.16) has the solution

1 — ai\’t o Vidri —1 i as
u(t) =3 (- ) [(@@))W WERE e (o (R(0)”) e F (1)
=0
—m)i —m2)—1 i a3
+a2b2(q)(t))(772 G e) 1anl_,l(ﬁzfnl)i+n2+é“2(1*772) ( B (l_z(q)(t))n2>
—m)i —n1)—1gi as
+a1by ((I)(t))(m G 1an;l(nz—m)i-i-nz-kﬁ(l—m) ( a a—2(CI>(t))’72>] '

Proof. Applying ®-Laplace transform to both sides of (5.4.15) and using the initial

conditions (5.4.16), we have

@ " pGa(m2—1)
Lo {y(t)} = (D{f( )} + by
a V™ + asv™ + as a1V + agV'™® + as (5.4.17)
VC1(7]1*1) -
+ a1y

a VM + asv™ + ag

Furthermore, for j = 1,2 we have

yc.j("]j_l) 1 VCJ (n;—1) 1
AU + asV™ +as  as \ U + - 4o ( m )
as

o 1 a3
V’72+£
- o) T Nt
az

=£o 1 Z < — Z_;)i(q)(t))(nz—m)i+nz+é‘j(1—nj)—1

as
n2,(m2—m )i+n2+¢; (1-n;)

x @it ( - (cp(t))m)]
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and
pmi

Lo {f(t)}

aivVm + asV + as

< al)i
as (1/772_|_a_3>
a2

a2

as

il Lo {f(t)}

i Z ( _ @)i(q)(t))(mm)anl

X e ( - a—z(é(t))”"’) o f <t>1 :

Thus, from Equation (5.4.17) we find

1 > ap\? —m)i —1 i
Y (s) =— Z ( — _1> Lo [(@(t))(nz M )itn2 1677;1(7727”1)“772 ( _ =
i=0

+a2b2((I)(t»(?72*711)i+n2+C2(1*772)*1@i+1 < i

n2,(n2—m)i+n2+¢2(1-n2)

—|—a1b1 ((I)(t))<772_771)i+772+§1(1—n1)—1@i—&-l ( B

n2,(n2—m)i+n2+¢1(1-m)

and finally we have

az

1 > ap i )i 1 i as
w0 =3 (= 5) jewye e, (-

a
2 =0

—|—a2b2(cI)(t))(772—771)i+n2+C2(1—n2)—1 in+1 ( _

n2,(n2—m)i+n2+¢2(1-n2)

+ayby ((I)(t))(772—771)i+772+41(1—771)—1Qsi+1 ( B

n2,(m2—n1)i+n2+¢1(1—n1)

Theorem 5.4.7. Assume that 0 <n <y <n3 <1, 0< (G <1anda; €R forj=

1,2,3. Then the IVP

@D Y (0) + @Dy (D) + @D (1) + ay(t) = F1),
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as
a2

(@(6)) 2 ()

as

(@())
“a(0))]

as

(5.4.19)

(5.4.18)



has the solution

(1) =3 S () )bt oo

il
i=0 3 k=0

- a4
X {albl((P(t))Cl(l m)ans,(ns—nz)i+(772—n1)k+773+41(1—771)( - a—g(@(t))’”’)

Qy

“aw)r)

a3

+a353(q)(t))43(1—773) Qinzsy(%—m)i-f—(m—?71)’9+773+C3(1—773) ( -

i+1 Q4 .
+QETIS:(”S*772)i+(772*771)k+773( - _((I)(t))m> *o f(t)} .

+a2b?(q)(t))<2(l_n2) ens,(773*772)i+(772*711)k+773+42(1*772) < -

a3

Proof. Using the technique demonstrated in the previous result, it is simple to produce
the derivation of the solution. So here we omit the straightforward but tedious details.

O

Remark 5.4.8. For dielectric relaxation in glycerol over 12 decades in frequency, Hilfer
introduced an equation of the form (5.4.18) in [16]. Z. Tomovski et al. [44] obtained
the solution of a particular case of Cauchy problem (5.4.18)-(5.4.19) when

O(t)=t, as=1, f(t)=0, n=¢ =1 for j=1,2,3.
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Chapter 6

Conclusion

In the first part of this thesis a generalized version of substantial fractional operators
has been presented, which we have named as the generalized substantial fractional
operator. Some basic properties of fractional calculus in the settings of this operator
have been proved. By taking into consideration a class of FDEs in the settings of gen-
eralized substantial fractional derivative, we have discussed the existence, uniqueness

and continuous dependence of its solutions on initial data.

We have presented, in the second part of this thesis, a generalized form for the
Hadamard type fractional operators named as the ®-Hadamard type fractional op-
erators. We have given proofs for the important properties of the new generalized
operators. Conditions have been given under which the ®-Hadamard type fractional
integral is bounded in a generalized space and sufficient conditions for the existence of
the ®-Hadamard type fractional derivative have been established. We have proved the
semi-group and reciprocal properties for the generalized operators. Finally, we have
derived the fractional integration by parts formulas in the frame of the ®-Hadamard

type fractional operators.

In the third and last part of this thesis, we have given proof for the several important
properties and uniqueness of the ®-Laplace transform. We have used this generalized
transform for solving linear FDEs in the settings of ®-Hilfer fractional derivative.

In future work, we will introduce the ®-type generalizations of the generalized

substantial fractional operators. Furthermore, we will introduce some other generalized
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integral transforms which may help to solve FDEs in the frame of the generalized

substantial fractional operators and ®-Hadamard type fractional operators.

However, we as researchers, are well aware that we are still unable to geometrically
and physically interpret fractional integration and differentiation, generally speaking, as
compared to being able to simply interpret the integer-order integrals and derivatives.
Thus, further work and research can be done to give physical and geometric meaning
to fractional order integrals and derivatives, so that we may be able to aptly apply

these operators in the physical world.
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