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Abstract

In the current study, optimal configurations for finned annulus, filled with porous media,

have been investigated to maximize the convective heat transfer and minimize the fric-

tion effect subject to constant heat flux boundary conditions. Genetic algorithm (GA)

has been employed to find out the optimal geometry out of vast choices of geometrical

parameters; ratio of radii of the inner to outer pipe and sector angle of channel. Fi-

nite difference method (FDM) is applied to compute the governing mathematical model.

Chilton-Colburn j factor is employed as the objective function and numerical solutions of

the momentum and energy equations are used as function values to the optimizer. The

results indicate that for a fixed Prandtl number (Pr) the optimal geometry transforms

with the variation in permeability of the porous media which is in line with the physics of

the problem. This thesis interpolates material from the paper submitted by the author [1].
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Optimization is an emerging technique in the sphere of Computational Fluid Dynamics

(CFD) for finding the best results for numerical simulation in the various disciplines

of applied sciences and engineering problems affiliated with fluid flow and heat transfer

phenomena. It is a technique employed to find the best possible solution to a problem.

In the field of applied sciences and engineering, optimization usually leads to the search

of a point where the value of objective function is at its minimum or maximum. It is

more effective and efficient method in the right direction after denying the old hit and

trial methods. It has helped reduce cost and effort and save time, for the expensive

experiments held for construction and maturation of fresh products.

There are a variety of methods available for the optimization of ones problem which can

be easily executed on a computer. Optimization can be categorized into uni-disciplinary

and multi-disciplinary based on the kind of results that are needed. Optimization tech-

niques that are uni-disciplinary are divided into gradient based algorithms, evolution-

ary algorithms, simulated annealing algorithms and hybrid algorithms. Whereas multi-
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disciplinary optimization techniques characterized into Collaborative Optimization (CO),

Concurrent Subspace Optimization (CSSO), Bi-Level Integrated System Synthesis (BLISS)

and Analytical Target Cascading (ATC). When restraints are applied on the objective

function of optimization, it is termed as constrained optimization otherwise it is uncon-

strained optimization.

Surface elongation and extension has been a significant technique used to increase the

heat transfer rate between fundamental surfaces and the medium surrounding it. Fins are

the most popular extended surfaces widely used in the fields of petroleum manufacturing,

electronics, chemical factory, power plants, nuclear processes, aerodynamics etc. Fins can

be adjoined inside or outside a pipe or between two concentric pipes for the amplification

of heat transfer rate. Although fins are quite useful in increasing heat transfer rate as

they provide more surface area for heat transfer however they posses a few draw backs of

increasing friction, weight, cost etc. Hence optimization of duct and fin configuration has

become an intriguing sphere of study. By optimizing the radius of concentric pipes and

number of fins used, we can raise the heat transfer rate and decrease the friction effect.

Hence optimization of duct and fin configuration has become an intriguing sphere of study.

In the current research, we have optimized the radius of concentric pipes and number of

fins used to raise the heat transfer rate and drop the friction effect for two concentric pipes

which have longitudinal fins joined within the annulus between the internal and external

pipe.

Some elementary definitions and fundamental concepts are included in this chapter.

Also a detailed literature review has been carried out of the problem solved in succeeding

chapters.

1.2 Literature Review

Fluid flow and heat transfer have always been an area of interest for scientists. F. Liu [2]

studied that duct geometry has great impact on bifurcation structures, heat transfer
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enhancement potential and flow stability of forced convection. It is concluded that when

friction of flow experiences a minor boost, a noteworthy raise in heat transfer potential

is observed. This can be achieved by rearranging the flow from one branch to another. I.

Kurtbas and N. Celik. [3] experimentally investigated mixed convection heat transfer of a

fluid flowing through a horizontal rectangular channel. Open-cell metal foams of different

porosities are placed in the channel. Average and local Nusselt numbers were calculated

as the functions of Reynolds and Richardson numbers. It was concluded that the average

Nusselt number experiences a rapid upsurge that is proportional to the pore density and

the local Nusselt number rises quickly regarding a analyst value of Reynolds number.

K. Hooman et al. [4] analyzed the properties of first and second law of thermodynam-

ics for fully developed convective transfer of heat within a porous saturated duct having a

rectangular cross section. Three different thermal boundary conditions were imposed un-

der which analytical results for Nusselt number and temperature distribution were given.

It was concluded that heat transfer rate is best, when porous media shape parameter is

less than 10 and the sides of the duct along the width are heated while others are insu-

lated. Whereas when porous media shape parameter is greater than 10, the best results

are obtained when only one side of duct is insulated.

M. R. H. Nobari and M. T. Mehrabani [5] numerically discussed flow and heat transfer

carried out in curved shaped eccentric annuli. This study investigates the influence of

Dean Number, curvature of annulus, eccentricity and Prandth number on fluid flow field

and thermal traits, when thermal boundary conditions are altered. It is observed that

when dean number is large, rate of heat transfer can be escalated for curved eccentric

annuli. This contrasts with straight annuli behavior .The amplification of rate of heat

transfer in eccentric curved annuli, for large dean number relies on curvature ratio and

eccentricity of annulus. Z. Y. Li et al. [6] employed mixing length theory on annular sector

ducts to simulate a flow that is fully developed and turbulent in nature. Five apex angles

along and four radius ratios with the Reynolds number ranging in 104 - 105 are considered

in this research. The study showed that the friction factor, gathered from the turbulence
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models does not coincide with test data and mixing length theory is best suited for heat

transfer through fully developed flow.

E. H. Zaim and S. A. G. Nassab [7] numerically analyzed convective heat transfer

through water. For this research supercritical pressure is being applied on water flowing

through a narrow annulus. Inlet fluid temperature governs the Nusselt number and when

the temperature advances to pseudo-critical level Nusselt number escalates. O. Zeitoun

and A. S. Hegazy [8] numerically investigated the heat transfer rate for laminar flow

through pipes with fins of different height attached in it. The wall temperature is spread

uniformly. It was concluded that when pipes are taken to be internally finned then fin

height has a great impact on the flow and heat transfer characteristics. M. J. Lin et al. [9]

numerically studied developing laminar flow and heat transfer in annular sector ducts.

It was concluded that both entrance lengths, hydrodynamic and thermal, experience a

decreases when the sector angle along with the ratio of diameters of inner and outer pipe

expand. Also the development of hydrodynamic boundary layer falls short to that of

thermal boundary layer. I. K. Adegun et al. [10] numerically analyzed forced convection

heat transfer in finned elliptical ducts and the influence that Reynolds number, Prandtl

number, aspect ratio, fin heights, number of fins and orientations of the duct has on

the heat transfer coefficient, history of temperature and velocity vector. They employed

Finite Difference Method (FDM) to uncover the solution. Results show that eight fins

optimize heat transfer. Nusselt number, average velocity and bulk fluid temperature are

improved when inclination angle is between 0o and 75o. For 50 ≤ Reynoldsnumber ≤ 200

the inclinations do not have a significant effect on heat transfer rate but when the value of

Reynolds number exceeds the critical 200, the influence of inclination is more noticeable.

M. Kaviany [11] studied laminar fluid flow in a porous media contained between two

parallel plates. The plates are kept at a constant and equal pressure. The study concluded

that in case of a fully developed field, the Nusselt number increases with the rise in

shape parameter of porous media. The excess pressure drop has opposite effect than the

effect of Nusselt number, it decreases with the increase in the value of shape parameter.
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Muhammad Ishaq et al. [12] studied laminar forced convective heat transfer when the

flow is assumed to be fully developed and the fluid is moving through a finned double

pipe annulus. The fins are taken to be triangular with alternating heights. Simulations

are carried out under the boundary condition of constant heat transfer rate per unit axial

length applied on the heat transferring surfaces. Different height fins are employed in two

groups and their influence on heat transfer in finned ducts is determined, along with the

configuration of annulus. Discontinuous Galerkin Finite Element Method (DG-FEM) is

adapted to solve the governing equations. Friction factor, Nusselt number and Colburn’s j

factor are investigated for numerous geometries. It was observed that when fins of various

heights are activated in two groups, the flow and thermal attributes can be improved by

adjusting the velocity and temperature distribution. O. Cekmer et al. [13] studied laminar,

fully developed forced convection heat transfer through a parallel plate channel. The

problem was modeled with the help of asymmetric uniform heat flux boundary conditions.

The results showed that the variation in the overall Nusselt number is continuous for all

considered values of the Darcy number, and it does not depend on the heat flux ratio. H. J.

Sung et al. [14] numerically analyzed forced convection heat transfer and fluid flow through

a channel which is partially filled with porous media. Governing equations are solved by

employing Brinkman- Forchheimer extended Darcy model for porous media. The results

indicate that as the thickness of porous substrate increases or Darcy number decreases,

the rate of fluid flow experiences an upsurge. While keeping the Darcy number constant,

when the ratio of thermal conductivities increase, the heat transfer rate experiences an

upsurge. The practicality of using porous media to increase heat transfer is also analyzed.

It was found that thicker and denser porous media is not suitable, while considering

pressure drop in electrical cooling equipment.

Optimization of heat transfer in a double tube with fins attached in it was carried

out by S. Colle and C. R. Maliska [15] where the flow was considered to be laminar.

They also formed an association between the Reynolds number, friction factor, height,

fin radius and the number of fins. Genetic algorithm was used for the optimization of
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fin configuration carried out by G. Fabbri [16] where the temperature is distributed in

two dimensions. The study was conducted to investigate the fin thickness for which fin

effectiveness is maximum. Z. Iqbal et al. [17] conferred on the optimization of fin shape

adhered with the exterior of an inner pipe about a double pipe geometry. The research

concludes that PCHIP yields the optimal fin shape. The optimization of fin shape is highly

reliant on the ratio of radii, number of fins, control points and characteristic length. All

these parameters establish the fin profile to be triangular or wavy (one or more crest) for

equivalent diameter and the fin profile can be parabolic and wavy for hydraulic diameter.

Trapezoidal, parabolic and triangular fins can be used to bring about 312% improvement

in Nusselt number. Z. Iqbal et al. [18] took up the optimization of a double pipe with

trapezoidal fins attached with the inner pipe. Genetic algorithm and trust region methods

are employed for the optimization of finned annulus. The maximum optimal value of

Nusselt number has tremendous inclination upon the measurement of internal pipe. The

optimum number of fins is directly proportional to the radius of inner pipe. When fins are

abundant in number the optimum value can be actualized for higher fins. The dependence

of Nusselt number on measure of internal pipe amplifies with the amount of fins employed.

Genetic algorithm is more expensive than Trust Region method but it gives more reliable

results and converges to global optimum. Z. Iqbal et al. [19] optimized an annulus with

parabolic fins for convective heat transfer rate. Genetic algorithm and Trust Region

method have been employed as the optimization techniques. The optimal configuration

relies on both the hydraulic and equivalent diameter. When parabolic fins are compared

with triangular and trapezoidal fins, its optimal configuration indicates that no fin shape

is perfect according to every criteria. Z. Iqbal et al. [20] optimized the configuration of

longitudinal fins adhered to the outer surface of the inner pipe in concentric pipe geometry.

The researchers maximized the conjugate heat transfer coefficient by employing genetic

algorithm. It is concluded that the optimal fin shape is dependent on the number of

fins and their characteristic length, conduction properties of the heated surfaces and

number of control points. The optimal fin shape that maximizes the conjugate heat
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transfer coefficient is wavy and the optimal fin configuration improves the Nusselt number

till 289%. M. Iqbal and H. Afaq [21] numerically analyzed fluid flow and heat transfer

through an annular sector duct filled with porous media which indicated that an optimum

geometry exists where we can observe heat transfer rate at its peak. Also as far as we

know no research has been conducted to find the optimum value of fluid flow and heat

transfer through porous media filled inside an annular sector duct. Hence my research

work is motivated by this topic.

1.3 Preliminaries

In this section we will consider some basic concepts concerning our study, along with some

useful dimensionless quantities.

1.3.1 Fluid Flow

Fluid

A fluid can be defined as “a substance that deforms continuously when acted on by a

shearing stress of any magnitude”. Fluids take the shape of the container and they have

the ability to flow [22].

Steady and Unsteady Flow

All the characteristics of a steady state flow are taken as independent of time. It can be

mathematically represented as
∂φ

∂t
= 0 (1.1)

where φ is any property of the fluid like velocity, density etc and
∂

∂t
is partial derivative

with respect to time. If a fluid flow does not satisfy the above property it is called unsteady

or transient flow [22].
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Laminar and Turbulent Flow

If the Reynolds number of fluid is less than 2100 than the flow is considered to be laminar.

However when the value of Reynolds number is more than 4000 than the flow can be taken

as turbulent. Laminar flow consists of trajectories that are smooth, regular and do not

change direction. Whereas fluid flow in which the particles of the fluid keep changing

direction is taken as turbulent flow [22].

Compressible and Incompressible Fluids

When the fluid density is constant inside the fluid flow then it is taken as incompressible

fluid, contrarily the fluid flow is considered compressible. Incompressibility of a fluid can

be expressed as
Dρ

Dt
= 0 (1.2)

here ρ is fluid density and D/Dt represents the material derivative, that can be written

in the form
D

Dt
=

∂

∂t
+ V.∇

here V is the velocity of fluid flow and ∇ is the differential operator. Here the value of ∇

in Cartesian and cylindrical coordinate systems can be given respectively as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ (1.3)

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez (1.4)

where î, ĵ and k̂ are unit vectors in x, y and z directions respectively and (er, eθ, ez)

represent unit vector in radial, angular and axial directions respectively.
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Viscosity

Viscosity of a fluid measures the fluid resistance when shear stress is applied on it. µ

is the measure of the fluid viscosity and it is recognized as the viscosity coefficient. It

represents proportionality constant among ratio of shear stress and the velocity gradient

which can be represented in mathematical form as

τ = µ
∂v

∂y
(1.5)

Viscous and Inviscid Fluids

Viscous fluids are fluids possessing a finite value of viscosity. Otherwise the fluids that

have negligible amount of viscosity or viscosity is absent are considered as inviscid fluids.

Generally the viscosity of a fluid is never zero but for special cases or ideal fluids, viscosity

is taken to be negligible [23].

Newtonian and Non-Newtonian Fluids

The fluids that abide by Newton’s law of viscosity are called Newtonian fluids. Where

Newton’s law of viscosity states that shear stress is linearly proportional to velocity gra-

dient. Its mathematical form can be written as

τ = µ
∂v

∂y

here µ is the coefficient of viscosity. Whereas fluids that disobey Newtons law of viscosity

are termed as Non-Newtonian fluids. This can be mathematically written in the following

form

τ = k

(
∂v

∂y

)n
here k is the consistency index (it indicates the consistency of something) and n is known

as the flow behavior index(it is the amount of non-Newtonian characteristic of a fluid). If

we take n = 1 then the fluid is Newtonian, contrarily it would be non-Newtonian [22].
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Bulk mean velocity

The velocity of a fluid differs at each cross section so a singular value of velocity is needed

for calculations and this need is fulfilled by bulk mean velocity, when dealing with internal

flows. Mathematically bulk mean velocity can be defined with the help of its relation with

mass flow rate through a duct as [24].

ṁ = ρumAc, (1.6)

where Ac is the cross sectional area of duct, ρ is the density of fluid and um is the bulk

mean velocity which is given by

um =
1

Ac

∫∫
rudrdθ (1.7)

1.3.2 Mathematical Models Governing Fluid Flow

Here generalized mathematical models governing fluid flow will be considered which are

rooted in the law of conservation of momentum and conservation of mass.

Generalized Continuity Equation

The equation of continuity can be derived from the law of conservation of mass that is

given as that rate of mass entering a system is equal to rate of mass leaving a system.

The continuity equation can be mathematically expressed as [25]

∂ρ

∂t
+∇. (ρV) = 0 (1.8)

Here V represents the velocity of fluid and ∇ is the differential operator already discussed

before in equation (1.3) and (1.4).

Generalized Momentum Equation

The momentum equation can be derived from the law regarding the conservation of mo-

mentum, which in turn is rooted in Newtons second law of motion. Generally this is
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known as Navier-Stokes equation and its compact form can be penned down in three

dimensional Cartesian coordinates as:

ρ
DV

Dt
= −∇P + µ∇2τ + ρg (1.9)

here we consider V as the velocity vector of fluid, ∇ is the differential operator, g is the

vector representing all forces on the body in three dimensions, P denotes the pressure

appearing over the fluid and the stress tensor appears as τ . Generally these are known as

the Navier-Stokes equation and they can be expressed mathematically as [25]

ρ
Du

Dt
= −∂P

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρgx (1.10)

ρ
Dv

Dt
= −∂P

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρgy (1.11)

ρ
Dw

Dt
= −∂P

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρgz (1.12)

The components of τ for Newtonian fluids, calculated by Stokes can be expressed as [25]

τxx = λ (∇.V ) + 2µ
∂u

∂x
(1.13)

τyy = λ (∇.V ) + 2µ
∂v

∂y
(1.14)

τzz = λ (∇.V ) + 2µ
∂w

∂z
(1.15)

τxy = τyx = µ

(
∂v

∂x
+
∂u

∂y

)
(1.16)

τzy = τyz = µ

(
∂w

∂y
+
∂v

∂z

)
(1.17)

τxz = τzx = µ

(
∂w

∂x
+
∂u

∂z

)
(1.18)

Where µ is the viscosity and λ is the second viscosity coefficient expressed as

λ = −2

3
µ (1.19)
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1.3.3 Heat Transfer

Heat transfer is a phenomenon of transferring energy due to a temperature difference in

different regions. Heat is transferred from a region of higher temperature to a region of

lower temperature. Whenever there exists some temperature gradient between different

media or within the same medium heat transfer occurs. [24].

Heat Exchanger

Heat exchanger is a device used for the transfer or exchange of heat between two or more

fluids. The fluids can be in direct connect to each other or separate by a media.

1.3.4 Modes of Heat Transfer

The modes of transferring heat can be categorized into heat transfer by Conduction,

Convection and Radiation.

Conduction

Heat trasfer with respect to conduction can be viewed as the heat transfered from one

extreme temperature point to another mild temperature point within a body or between

different bodies that are in contact with one another. Conduction is a heat exchange

between atoms and molecules.

Heat transfer process can be analyzed with help of rate equation which calculates

energy transferred per unit time. For a plane wall that is one-dimensional with temper-

ature distribution represented by T (x), conduction rate equation generally known as the

Fouriers law can be written as [24]

q
′′

x = −κdT
dx

(1.20)

Here q
′′
x denotes the heat flux (W/m2), κ represents the thermal conductivity of wall

(W/m.K) (thermal aspect of wall). The negative sign is present because heat is transferred

from higher to lower temperature.
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Convection

As the molecules of a fluid are in a constant state of motion hence the functioning of

heat transfer due to convection comprises of irregular molecule movement (diffusion) that

brings about energy transfer. The fluid motion, that can be bulk or macroscopic, is

also responsible for energy transition. Convection occurs between boundary layer and

the moving fluid when their exists a temperature difference between them as a result of

the velocity and thermal boundary layer development (which is produced when a fluid

and a surface, that is in contact with it, are at alternating temperatures) [24]. Thus

the particles of a fluid that are directly connected with the boundary tend to attain the

surface temperature hence the first heated layer of fluid transfers heat to the next layer

and so on. This forms temperature gradients in fluid. Thermal boundary layer constitutes

of fluid containing temperature gradients.

By definition convection consists of two processes that is heat transfer with random

molecular motion and bulk motion of fluid. Heat transfer by diffusion prevails when fluid

velocity is low. At the contact area between fluid and surface heat is transferred by

random molecular motion (diffusion) only, because the velocity is zero. Heat transfer due

to bulk motion of fluid occurs when the boundary layer progresses in the direction of flow.

Ultimately the heat transferred through this layer reaches the fluid outside the boundary

layer.

Convection can be forced, free or mixed. Forced convection occurs when the flow is

caused by external factors, such as a fan, a pump, or atmospheric winds. Whereas free

(natural) convection occurs due to density differences which are caused by temperature

variation. For example the rising of a hot balloon and rising of smoke through chimney.

Mixed convection occurs when free and forced convection work together to transmit heat.

For example a fan blowing air on a heated plate in upward direction. Latent heat exchange

can cause convection which is commonly associated to a phase alternation in a fluid that

occurs among the liquid and vapor states. Boiling and condensation processes can be
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involved in this.

Despite the nature of the convection heat transfer process, the appropriate rate equa-

tion is of the form:

q
′′

= h (Ts − T∞) (1.21)

which is known as Newtons law of cooling [24], where q
′′

is the convective heat flux

(W/m2), where h (W/m2.K) is the convection heat transfer coefficient, Ts and T∞ are

the surface and fluid temperatures respectively.

Radiation

Radiation is a process in which energy is emitted from matter at non-zero temperatures

in form of electromagnetic waves, particles or rays by matter [24]. Solids and liquids,

both states can exhibit the phenomenon of radiation. Electromagnetic waves transmit

the energy that is created by radiation process. Radiation process can occur without the

aid of any medium. So radiation is more efficient in vacuum.

1.3.5 Bulk mean temperature

Just like velocity of a fluid, at each cross section the temperature of a fluid also changes

hence bulk mean temperature is required. It can be represented by Tb and it is defined as

Tb =
1

umAc

∫∫
uTrdrdθ (1.22)

Where um represents the bulk mean velocity of a fluid, T is associated with fluid

temperature and Ac gives the cross sectional area of computational domain.

1.3.6 Generalized Energy Equation

The first law of thermodynamics can be generalized to form energy equation. It could

be understood from the first law of thermodynamics that the rate of change of energy

within an element of fluid is same as the sum of net flux of heat into element and rate
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of work done on the element due to body and surface forces. The energy equation in

non-conservation form can be written as [25]

ρ
D

Dt

(
e+

V 2

2

)
= ρq̇ +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

d∂y

)
+

∂

∂z

(
k
∂T

d∂z

)
− ∂up

∂x
− ∂vp

∂y
− ∂wp

∂z

+
∂uτxx
d∂x

+
∂uτyx
d∂y

+
∂uτzx
d∂z

+
∂vτxy
d∂x

+
∂vτyy
d∂y

+
∂vτzy
d∂z

+
∂uτxx
d∂x

+
∂uτyx
d∂y

+
∂wτzz
d∂z

+ ρg.V

(1.23)

here T represents the fluid temperature, µ gives the density of the fluid and τ repre-

sents the stress tensors whose components are given by equations (1.13)-(1.18) as men-

tioned earlier.

1.3.7 Fluid Flow and Heat Transfer Parameters

In this section, we will discuss some parameters that are important for the understanding

of this research.

Hydraulic Diameter

It is the characteristic length of any duct regardless of its shape. It can be described as

the ratio between cross sectional area and wetted parameter [24].

Dh = 4
Ac
pw

(1.24)

where Ac is cross sectional area and pw is the wetted parameter of the duct.

Dimensionless Quantities

They are pure numbers that are deficient of physical unit. Dimensionless quantities can

be represented in product or fraction form of quantities that have physical units but all

their units are canceled off each other to form a dimensionless quantity. Dimensionless

quantities are very helpful in comparing different systems and determining the behavior

of a system. They can also simplify the solution finding process of a system.
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Reynolds Number

It is a non-dimensional quantity. Reynolds number (Re) is taken as the ratio from inertia

to viscous forces. If Reynolds number is small it shows that the forces of inertia are less

than viscous forces thus resulting in a laminar flow whereas if it is large then the flow is

turbulent as the viscous forces are less than inertia forces. It can be written as [24]

Re =
umDh

ν
(1.25)

here um represents the fluid’s bulk mean velocity, Dh serves as the hydraulic diameter

whereas ν =
µ

ρ
.

Fanning Friction Factor

It describes the ratio between shearing stress and kinetic energy density of local flow. It

is applied in the calculations of fluid flow. It can be written as [24]

f =
τs
ρu2m
2

(1.26)

Where τs is the stress exerted on wall and its expression is given as

τs = −µ
(
du

dr

)
r=ro

(1.27)

The term fRe, that describes the multiplication of fanning friction factor to Reynolds

number, is employed for the calculation of friction present in fluid flow. It can be written

as

fRe = − dP

2µdz

D2
h

um
(1.28)

Nusselt Number

It is a dimensionless quantity and it is the ratio of heat transfer by convection and heat

transfer by conduction. A large Nusselt number means convection is more than conduction

and a small Nusselt number shows more amount of conduction than convection. Larger the
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Nusselt number, higher would be the transfer of heat. Nusselt number can be represented

by the following equation [24]

Nu =
hL

κ
(1.29)

Where h is convective heat transfer coefficient, L is diameter of ducts and κ is the thermal

conductivity. It can be observed that Nusselt number is equal to the value of dimensionless

temperature gradient at the surface and it is employed to measure heat transfer due to

convection at the surface.

Prandtl Number

Prandtl number describes a dimensionless quantity which is the ratio of momentum dif-

fusivity (it is the ratio of viscosity coefficient to density of fluid) to thermal diffusivity (it

is the thermal conductivity of a medium divided by density and specific heat capacity).

It approximates the dominance of conduction or convection in a fluid flow. It can be

expressed as [24]

Pr =
υ

β
=
µcp
κ

(1.30)

here absolute or dynamic viscosity is represented by µ, cp depicts the specific heat capacity

whereas κ expresses thermal conductivity.

J Factor

Colburn’s j factor is a non-dimensional quantity which is an analogy that relates heat

transfer coefficients, mass transfer coefficients and friction factor. It can be expressed in

mathematical form as [34]

jfactor =
NuPr

−1
3

fRe
(1.31)

here Pr is the Prandth number which is a dimensionless quantity that is the ratio between

momentum diffusivity to thermal diffusivity. Its mathematically expression can be seen

through equation (1.30). J factor is very significant in our research as it provides a direct

correlation between Nu and fRe, later this would help us in the optimization of results.
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1.3.8 Boundary Conditions

Boundary conditions are important in the search of a mathematical solution of any prob-

lem. A few boundary conditions are given as

Velocity Boundary Conditions

There is a variety of boundary conditions available for finite volume method. A few of

the most commonly used of them are: inlet, outlet and wall boundary conditions. Inlet

boundary condition suggests that all the flow variables must be described at the inlet

boundaries, especially velocity. Outlet boundary condition is similar to inlet boundary

condition except that flow variables must be specified at the outlet of a duct. When no

disturbance occurs in the flow than flow turns to be full developed flow and an outlet

can be introduced there. The gradient of velocity is taken to be equal to zero at the

outlet parallel to the flow direction. Wall boundary condition commonly known as no-slip

condition describes that during the course of a fluid flow when an inviscid fluid passes

over any firm fixed obstruction then it is essential for the normal velocity of fluid, which

is at the surface of the obstacle, to be zero. Customarily, the tangential velocity of a

fluid has some finite value. So when we observe the interaction of a viscous fluid with a

firm fixed obstruction, it can be noted that the normal and tangential components of its

velocity turn out to be zero at the surface of the obstruction. This case where both the

vertical and tangential velocity component of fluid is zero is called no slip condition [26].

Thermal Boundary Conditions

A number of boundary conditions can be applied on the inner walls of a duct. We will

discuss four main thermal boundary conditions here, that is H1, H2, T . H1 boundary

condition [28] implicates a constant axial heat flux per unit length of the duct along with

a steady peripheral temperature of the duct’s heated surface. Hence by this condition

it can be understood that there is infinite heat conduction by the surface of duct in the
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radial and transverse directions but heat conduction is negligible in axial direction. It can

be suggested for highly conductive ducts with small peripheral temperature gradients.

Whereas H2 boundary implies that wall heat transfer rate should be constant axially

and peripheral, at every cross section. T [27] boundary condition suggests that the wall

temperature is kept constant through the peripheral and axial length of the duct wall.

This boundary condition is applied usually on evaporators, condensers and high velocity

flow liquid to gas heat exchangers.

1.3.9 Boundary Layers

The boundary layer notion is important for the understanding of convective heat transfer

from a heated surface to the fluid passing over it. In this section the concept of velocity

and thermal boundary layers is explained.

Velocity Boundary Layer

Due to no slip condition when fluid particles pass over a surface, the particles in contact

with the surface acquire zero velocity. These particles then obstruct the motion of the

particles of the next fluid layer and this action passes on to the next layer until at a finite

distance from the surface, the retardation effect becomes negligible. As the distance of

the fluid particles, from the bounding surface increases the axial component of velocity

increases from zero to the free stream value of velocity. Hence fluid flow can be catego-

rized into two different regions, the boundary layer through which the velocity gradient

and shear stresses are large and another region outside the boundary layer where veloc-

ity gradient and shear stress are negligible. As the distance from surface increases the

thickness of the boundary layer becomes large. As this boundary layer is relevant to fluid

velocity so it is specified as velocity boundary layer [24].
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Thermal Boundary Layer

The concept of thermal boundary layer is relevant to the concept of velocity boundary

layer. The fluid particles that are in direct contact with the heated surface assume the

temperature of that surface. Then these particles exchange energy with the adjoining

fluid layer and this energy is in turn passed on to the next layer hence a temperature

gradient is formed. The fluid region containing these temperature gradients is known as

the thermal boundary layer [24].
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Chapter 2

Solution Strategies

2.1 Introduction

In this chapter, the solution strategies of fluid flow and heat transfer will be discussed.

Where the fluid is considered to be Newtonian, that is flowing through an annular sector

duct packed with Darcy-Brinkman’s porous media. Constant heat flux boundary condi-

tions were applied to model the problem, as it was discussed earlier by M. Iqbal and H.

Afaq [21]. They observed the presence of an optimal geometry for which a separate study

should be carried out. The presence of this optimal geometry suggests the occurrence of

a duct configuration for which heat transfer rate is maximum along with a minimum fic-

tion effect. To find such a geometry optimization techniques namely trust region method

and genetic algorithm would be analyzed and later we will choose a technique for the

optimization of our problem. Also results have been validated with literature.

2.2 Problem Formulation

Lets study a steady state, laminar flow that is thermally and hydro-dynamically fully

developed. The fluid is taken to be incompressible, viscous and Newtonian flowing through

an annular sector duct packed with Darcy-Brinkmans porous media. Vertical fins are
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inserted in the ducts annulus between the external and internal pipe (as displayed by

figure 2.1a). The radius of internal and external pipe is considered to be ri and ro

respectively and the sector angle that is the angle between two consecutive fins is taken

as 2α. Geometrical symmetry can be observed in the figure 2.1a, on account of that

the computational domain is considered as half of the region that is contained between

successive fins (seen through figure 2.1b). Hence computational sector angle is taken as

α and sector length is represented by ro − ri. Forced convection is carried out by moving

heated fluid through inner pipe whereas cold fluid through outer pipe synchronously. The

outer pipes external surface is insulated to prevent heat loss across this surface. Hence

the only heat transferring surfaces are the inner pipe and longitudinal fins.

The modeling of the problem undergoes constant heat flux boundary conditions, com-

monly known as H1 boundary conditions [28], that are applied on the inner side of the

heat transferring surfaces. The only driving force is taken as constant pressure gradient

in the axial direction.

(a) Cross-sectional view of concentric pipes
(b) Computational domain

Figure 2.1: Geometry of duct

The conservation relations of mass and momentum along with the continuity equation

can be written in the cylindrical polar coordinates as:
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Continuity Equation

∂ρ

∂t
+
∂ (ρru)

r∂r
+
∂ρv

r∂θ
+
∂ρw

∂z
= 0 (2.1)

Momentum Equations

Momentum equations are defined as

ρ

(
∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r

)
= −∂P

∂r
+ µ

[
∂

r∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

]
+ µ

[
∂2u

∂z2
− u

r2
− 2

r2
∂v

∂θ

]
+ ρgr (2.2)

ρ

(
∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+ w

∂v

∂z
− uv

r

)
= −1

r

∂P

∂θ
+ µ

(
∂

r∂r

(
r
∂v

∂r

))
+ µ

(
1

r2
∂2v

∂θ2
+
∂2v

∂z2
− v

r2
+

2

r2
∂u

∂θ

)
+ ρgθ (2.3)

ρ

(
∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z

)
= −∂P

∂z
+ µ

(
∂

r∂r

(
r
∂w

∂r

))
+ µ

(
1

r2
∂2w

∂θ2
+
∂2w

∂z2

)
+ ρgz

(2.4)

The Darcy-Brinkmans conservation relations for momentum can be viewed in the

cylindrical polar coordinates as [21]. Momentum equations in cylindrical polar coordinates

for Darcy-Brinkman’s porous media can be written as:

ρ

(
∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
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r
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(
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+ ρgr (2.5)
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ρ

(
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(2.7)

In the above equations, K is considered as the permeability of the medium, ρ is density of

the medium (fluid), (u, v, w) are the velocity components of the fluid, P is the pressure

exerted by the fluid, µ is the dynamic viscosity and (gr, gθ, gz) are components the gravi-

tational vector on the fluid or it can be summed up as the body forces on the fluid. After

the application of the geometric conditions and assumptions for this study, the continuity

equation is satisfied and momentum equations reduce to

∂P

∂r
= 0 (2.8)

∂P

∂θ
= 0 (2.9)

µ

(
∂

r∂r

(
r
∂w

∂r

)
+

1

r2
∂2w

∂θ2
− w

K

)
− ∂P

∂z
= 0 (2.10)

The equations (2.8) and (2.9) show the absence of pressure gradient in radial (r) and

angular (θ) directions. Hence the expression given in (2.10) can be reduced as

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
− w

K
=

1

µ

∂P

∂z
(2.11)

Where the prescribed boundary conditions on reduced momentum equation are

for r = ri, w = 0 0 ≤ θ ≤ α (2.12)

for r = ro, w = 0 0 ≤ θ ≤ α (2.13)

for θ = 0,
∂w

∂θ
= 0 ri ≤ r ≤ ro (2.14)

for θ = α, w = 0 ri ≤ r ≤ ro (2.15)

24



To make above reduced momentum equation and its boundary equations dimensionless

we introduce the following parameters

R =
r

ro
R̃ =

ri
ro

(2.16)

ŵ = − w

1

µ
r2o
∂P

∂z

K̂ =
K

r2o
(2.17)

Here K̂ is Darcy number. So now with the help of above parameters (2.16) and (2.17),

the dimensionless momentum equation could be expressed in the following form

∂2ŵ

∂R2
+

1

R

∂ŵ

∂R
+

1

R2

∂2ŵ

∂θ2
− ŵ

K̂
= −1 (2.18)

The boundary conditions are now transformed into

for R = R̃, ŵ = 0 0 ≤ θ ≤ α (2.19)

at R = 1, ŵ = 0 0 ≤ θ ≤ α (2.20)

at θ = 0,
∂ŵ

∂θ
= 0 ri ≤ r ≤ ro (2.21)

at θ = α, ŵ = 0 ri ≤ r ≤ ro (2.22)

Energy Equation

The energy equation can be used to observe the heat transfer through a fluid flow. For

cylindrical polar coordinates it can be expressed as

ρcp(
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)
(2.23)

where ρ is taken as the density of fluid, κ is the thermal conductivity of fluid and cp as

the specific heat capacity. Due to assumptions taken for this study the energy equation

can be reduced to
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
=
ρcp
κ

(w
∂T

∂z
) (2.24)
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The boundary conditions for the governing equation can be written in the following from

T = Tw(z) at r = ri, 0 ≤ θ ≤ α (2.25)

∂T

∂r
= 0 at r = ro, 0 ≤ θ ≤ α (2.26)

∂T

∂θ
= 0 at θ = 0, ri ≤ r ≤ ro (2.27)

T = Tw(z), at θ = α, ri ≤ r ≤ ro (2.28)

where Tw is taken as the wall temperature that varies axially with the coordinate z, for

a constant rate of heat throughout the pipe. For a smooth heat transfer the temperature

distribution and wall temperature should be different and alter axially. For a temperature

field independent of axial coordinate we form a non-dimensional parameter τ , where the

flow is taken to be thermally fully developed.

τ =
T − TW

q
′

κ

(2.29)

Here q
′

is taken as heat transfer rate per unit length in axial direction of duct. After

incorporating τ into energy equation (2.24) it reduces to
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∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
=

w

Acwm

q
′

K
(2.30)

To make reduced energy equation and its boundary equations dimensionless we introduce

the same parameters as given in (2.16) and (2.17). Hence (2.30) in non-dimensional form

is expressed as.
∂2τ

∂R2
+

1

R

∂τ

∂R
+

1

R2

∂2τ

∂θ2
=

ŵ

Acŵm
(2.31)

Where ŵm represents the non-dimensional mean velocity. The dimensionless parameters

transform the boundary conditions (2.25)-(2.28) of energy equation into:

at R = R̃, τ = 0 , 0 ≤ θ ≤ α (2.32)
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at R = 1,
∂τ

∂R
= 0 , 0 ≤ θ ≤ α (2.33)

at θ = 0,
∂τ

∂θ
= 0 , R̃ ≤ R ≤ 1 (2.34)

at θ = α, τ = 0, , R̃ ≤ R ≤ 1 (2.35)

2.3 Discretization

Finite difference method (FDM) is employed to discretize the governing equations (2.18)

and (2.31) by applying five point stencil with second order approximations, which are

given as
∂2w

∂R2
=
w(i+ 1, j)− 2w(i, j) + w(i− 1, j)

h2
+O(h2) (2.36)

∂2w

∂θ2
=
w(i, j + 1)− 2w(i, j) + w(i, j − 1)

k2
+O(k2) (2.37)

∂w

∂R
=
w(i+ 1, j)− w(i− 1, j)

2h
+O(h2) (2.38)

Whereas the same discretization are valid for energy equation with slight adjustments.

∂2τ

∂R2
=
τ(i+ 1, j)− 2τ(i, j) + τ(i− 1, j)

h2
+O(h2) (2.39)

∂2τ

∂θ2
=
τ(i, j + 1)− 2τ(i, j) + τ(i, j − 1)

k2
+O(k2) (2.40)

∂τ

∂R
=
τ(i+ 1, j)− τ(i− 1, j)

2h
+O(h2) (2.41)

Here h and k represent the size of a step in R and θ direction respectively. The above

approximations can be placed in governing equations and later they can be simplified

using a numerical technique called SOR method.
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2.4 Numerical Technique

Successive Over Relaxation (SOR) method is employed to solve the discretized equation.

The general form of SOR method can be written as

X
(k+1)
i = (1− ω)Xk

i +
ω

aii
(bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i

aijx
k
j ) (2.42)

Where ω is the relaxation factor. aii, aij, bi and k are constants. All computations have

been done in MATLAB.

2.5 Validation of Results

In this section we have conducted a comparison of the calculated values of fRe and Nu

for present study, with those already present in literature [21]. With the help of table 2.1

we demonstrate the calculated and literature value comparison for Nu where R̃ = 0.25,

R̃ = 0.5 and α is taken as 0.524.

The table 2.2 is used to evaluates the comparison for fRe where we consider values for

R̃ = 0.25, R̃ = 0.5 and α is taken as 1.047.

Table 2.1: Validation of results for K̂ = 100 and K̂ = 0.001 at α = 0.524

K̂ R̃
Nu

% change in Nu
Calculated literature

100
0.25 3.3505 3.3494 0.03

0.5 3.0750 3.0740 0.03

0.001
0.25 4.2392 4.2315 0.18

0.5 3.8129 3.8049 0.2

The tables 2.1 and 2.2 both help to demonstrate that the % change for fRe and Nu

calculated in present study is lower than 1% hence it can be concluded that the calculations
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Table 2.2: Validation of results for K̂ = 100 and K̂ = 0.001 at α = 1.047

K̂ R̃
fRe

% change in fRe
Calculated literature

100
0.25 15.2551 15.2591 0.03

0.5 17.2364 17.2436 0.04

0.001
0.25 518.5591 519.7828 0.24

0.5 341.6646 342.5348 0.25

made are correct and have a high compatibility with literature.

2.6 Optimization Methods

In this section we will study two methods for the optimization i.e Genetic Algorithm

(GA) and Trust Region Method (TRM) and select one out of these to be used for our

research problem. Both techniques have totally different frame work to leave no doubt in

our conclusion; Genetic algorithm is of probabilistic nature whereas trust region method

is deterministic in character. The implementation of these techniques helps to determine

their efficiency and other traits for optimizing a problem. We execute these procedures

for optimization using mathematical codes in MATLAB. To understand the optimization

techniques better their general frame-work is discussed below.

Trust Region Method (TRM)

Trust region method [30, 31] is an iterative numerical algorithm that is widely used for

optimization of non-linear convex problems. It can work with both constrained and un-

constrained problems. They are quite popular due to their robust nature, fast convergence

rate and application to ill-conditioned problems. By default trust region method tries to

locate a region of trust around an initial point in which it trusts to find the optimum
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value. This trust region is usually a neighborhood centered at the current base point.

It approximates the optimum value of the problem, within the trust region by using a

quadratic model problem that reflects on the behavior of the main objective function. The

approximations are made by employing second order Taylor series. The two-dimensional

subproblem has a variety of exact and approximate methods to reach it’s solution. A gen-

eral characterization of trust region method for constrained mathematical optimization is

discussed below.

Lets examine a problem that has to be minimized, with bounds on its parameter

f(x), where xεRn (2.43)

lb ≤ x ≤ ub (2.44)

Here Rn is the domain in which optimum value of f(x) is investigated; lb and ub are

lower and upper bounds of f(x) respectively. For simplification we first discuss trust

region method for unconstrained problem so the bound constraints given in equation

2.44 is ignored for now. While considering a unconstrained optimization, its constrained

sub-problem can be written in the form

min
q
{mk(q) = fk + qTgk +

1

2
qTHkq , s.t ‖Dkq‖2 ≤ ∆k} (2.45)

Here Dk represents the diagonal scaling matrix whereas ∆k describes the scalar radius

associated with trust region on its k-th iteration. This model problem is then restricted

to the trust region and solved for it. A overlook of the general steps for trust region

algorithm for unconstrained problems can be described as:

1. First let ∆1 > 0, k=1 then chose the initial point x1. The algorithm heuristically

choses four constants ζ1, ζ2; δ1, δ2 that fulfill the condition that 0 < ζ1 ≤ ζ2 < 1

and 0 < δ1 ≤ δ2 < 1. The usual choice for ζ1 = 0.1, ζ2 = 0.9 and δ1 = δ2 = 0.5.

2. Construct a quadratic model subproblem for your original problem with the help of

equation 2.45. Simplify the model problem to find the trial step value of q.
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3. Now the algorithm determines f(xk + q) and sets a reduction model %k of f where

%k =
f(xk)− f(xk + q)

mk(xk)−mk(xk + q)
(2.46)

Now if the value of

f(xk + q) < f(xk) (2.47)

along with ζ2 ≤ %k then the algorithm concludes that a good quadratic model was

constructed and the step that is considered is valid, that is xk+1 = xk + q, hence

the region of trust could now be expanded; otherwise if equation (2.47) holds and

ζ1 ≤ %k < ζ2 then q is taken to be a valid step and the base/center point becomes

xk+1 = xk + q but the trust region shrinks and if equation (2.47) holds but ζ1 > %k

then the step is dismissed and worked out again and the base point remains constant

i.e xk+1 = xk .

4. The trust region radius is upgraded with each iteration, with the increase or decrease

in the size of trust region. This process is repeated until the algorithm achieves

convergence. Where

Set ∆k+1 =


[∆k,∞) if %k ≥ ζ2

[δ2∆k,∆k] if %k ∈ [ζ1, ζ2)

[δ1∆k, δ2∆k] if %k < ζ1

(2.48)

After the unconstrained problem we go back to equation 2.43 and 2.44 to analyze a con-

strained problem. The lower and upper bound vectors can have the values of their com-

ponents ranging to negative and positive infinity respectively. This method is employed

to form a string of feasible points. Through each iteration the robustness and feasibility

can be retained by scaling of the modified Newton step which is based on Kuhn-Tucker’s

condition [32] and expansion in step size is caused by reflections.

The scaling of the modified Newtons step can be achieved through Kuhn-Tucker’s

necessary condition for 2.43 and 2.44.

(D(x))−2gk = 0 (2.49)
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Here the value of D(x) is

D(xk) = diag(|vk|
−1
2 ) (2.50)

For 1 ≤ i ≤ n, the vector vk = v(xk) can be described as

1. If gi < 0 and ubi <∞ then vi = xi − ubi

2. If gi ≥ 0 and lbi > −∞ then vi = xi − lbi

3. If gi < 0 and ubi =∞ then vi = −1

4. If gi ≥ 0 and lbi = −∞ then vi = 1

As a non-linear system of equations 2.49 is not necessarily differentiability all over

its domain hence this non-differentiability, which occurs when vi = 0 can be prevented

by confining xk i.e. lb < xk < ub. The scaled modified Newton step qk defined for a

non-linear system 2.49 is taken as a solution to the following linear system, at its k-th

iteration

M̂kDkq
N
k (xk) = −ĝk (2.51)

Here we can describe see that ĝk = D−1k gk = diag(|vk|
1
2 )gk and M̂k = D−1k HkD

−1
k +

diag(gk)J
v
k . It is observed that Jv(x)εRnxn is the Jacobian of |v(x)|. When the value

of every component of lb and ub vectors is finite then the Jacobian is found to be Jv =

diag(sign(gk)). For vi = 0 we can denote jvii = 1. For a point where the value of gi = 0, vi

is not necessarily differentiable then we can take jvii = 0 at that point. But we can ignore

this kind of non-differentiable behavior because of the insignificance of the value of vi.

Also vi is discontinuous at this particular point but |vi|.gi shows a continuous behavior.

As mentioned before the step size can be expanded by employing refractions, that can be

described with regard to a distinct step by: When there exists a step p which intersects

through a bounded constraint hence we can write reflection step as


pR = p apart from i− th component

pRi = −pi for i− th component
(2.52)
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Here when p crosses the first bounded constraint it is considered as the i-th bound, it can

be upper or lower bound. There are a number of stopping criteria used by trust region

algorithm. For this study the stopping criteria are taken as

1. The tolerance of the function is more than the value of first-order optimality and

tolerance is more than maximum constraint volition.

2. The difference in successive values of x or objective function is smaller than the

tolerance.

3. The constraints are satisfied within the default constraint tolerance value.

The function trust region method have a number of limitations that make it difficult for

the implementation of this numerical optimization technique. The limitations are listed

below as

1. TRM may deliver local minimal or maximal point.

2. For trust region reflective algorithm, a gradient in the function is needed.

3. Also the trust region reflective algorithm does not let upper and lower bounds to be

equal.

2.6.1 Genetic Algorithm

Genetic algorithm (GA) [16,29] is a global search procedure used to solve both constrained

and unconstrained optimization problems. It is inspired from Darwin’s theory of evolu-

tion. It belongs to the class of Evolutionary Algorithms (EA) and applies almost the same

technique as EA to optimize the solution by natural selection and survival of the fittest.

For each iteration the GA selects random parents/points from population/domain to gen-

erate offspring, which if satisfy the stopping criteria provide solution to the optimization

problem but if not then the next iteration starts. Hence gradually the points proceed

towards an optimum solution. The general outline of the algorithm can be constructed as
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1. Generation

Genetic algorithm starts off by creating a random initial population from the vari-

ables.

2. Fitness Evaluation

GA creates new populations, from the old population, at each iteration by deter-

mining the fitness value (f(x)) of every point in current population that can be

expressed as f(x) ∀x ε population(oldgeneration).

3. Reproduction

The next fresh generation is created through the following steps:

(a) Selection

The fitness values are converted into an adaptable range of values and parent

points are selected from the data. These parents are chosen on the basis of

selection criteria such as roulette wheel selection, tournament selection etc and

are called elites. These elites are then passed to the next generation. Offspring

points are then created either by mutation or crossover.

(b) Crossing-over

The elite pair of parent generation is then spliced to form new off-spring gener-

ation by combining the good attributes of a parent pair. Without crossover of

parent pair the new points/children generated will be a replica of their parents.

A few customary operators applied for crossing-over are point, arithmetic, lin-

ear, and heuristic crossover.

(c) Mutation

Based on probability off-springs are mutated by making random changes to a

parent.

(d) Acceptation

The offspring replaces their parents thus forming a new generation.
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4. Stopping Criteria

The algorithm moves to evaluating the fitness value of each new generation and

repeats all steps until stopping criteria is met.

Genetic algorithm is favored for optimization over other procedures due to its accuracy

and reliable nature. Because GA works on many points in the domain relative to the

objective function so it escapes local maxima and minima and strives for global minima.

The objective function does not necessarily need to be in refined form or in specific

formula, GA can work directly on domain points and fitness values can be gained with

help of experimentation. It can work quite efficiently to solve large scale problem.

On the other hand every technique has its short comings some of them can be men-

tioned as GA is expensive. Sometimes it can take days to reach the convergence/stopping

criteria. Ever now and then premature convergence occurs that disrupts the search of

global optimum. It has a high probability to reach global optimum but it is an undirected

search due to generation of a random initial population so it cannot always be directed

towards optimal solution area.

2.6.2 GA and TRM : A Comparison

A single optimization technique can not be adopted for all problems hence we have to chose

the more suitable method according to our problem, its constraints and the limitations

of that technique. Here we will consider a simple problem, apply both genetic algorithm

and trust region method to compare their properties and results by employing MATLAB

platform. This will facilitate us in determining which method is more suitable for our

problem.

Sample Problem

Let us consider a objective function or fitness function as

f = ex14x21 + 2x22 + 4x1x2 + 2x2 + 1 (2.53)
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The initial point is taken as xo = [−1, 1] for TRM.The optimum value found is put forth

by employing both genetic algorithm (GA) and trust region method (TRM). The table

2.3 shows a detailed comparison of both techniques. Also the figure 2.2 visually aid us by

presenting the results of both algorithms. Genetic algorithm can be visualized through

best fitness plot that provides best and mean function value through each iteration and

best individual plot to show vector entries of the best individual through each generation

, whereas the results of trust region method are shown by current point plot that demon-

strates the point value at current iteration and function value plot that gives the best

function value at each iteration.

Table 2.3: A comparison of Trust Region Method and Genetic Algorithm with tolerance

e−6

Method optimum function
x

number of Optimum function
value x1 x2 iterations count

GA 1.260057884924656e-298 -700.328 70.541 51 global 2600

TRM 1.3911e-14 0.5 -1 5 local 6

It can be observed from the table 2.3 and visualized through the figure 2.2 that al-

though TRM has a accelerated convergence but it failed to reach global minimum for a

very simple problem instead it converged to a local optimum point. Whereas although

GA consumes a lot of time but it is more reliable and converges to global optimum most

of the time. Also TRM requires an initial point and gradient function to be provided

whereas genetic algorithm makes no such demands. Hence it can be concluded that ge-

netic algorithm is more appropriate choice for our problem which is a lot more complex

than the above presented problem.
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(a) (b)

Figure 2.2: (a):GA-best fitness and best individual plot (b):TRM-current point and func-

tion value plot
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Chapter 3

Optimal Configuration of an Annular

Sector Duct

3.1 Introduction

Optimization is immensely significant in the study of computational fluid mechanics. In

this chapter we will optimize fluid flow and heat transfer through the computational

domain that was examined in the preceding chapter. Results will be evaluated for the

product of fanning friction factor to Reynolds number (fRe) and Nusselt number (Nu).

Their response to the alterations in ratio of radii, permeability and number of fins will be

analyzed. Also optimized geometries for different permeabilities will be observed.

The mathematical problem is essentially the same as discussed in chapter 2 and it is

modeled with the same boundary conditions.

3.2 Optimization Problem

For current research, optimization of a finned annulus is carried out which is created by

concentric pipes, with constraints on the physical attributes of the duct. The ratio of radii

(R̃ =
ri
ro

) and number of fins (nof ) are bounded to provide us a better understanding of
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the behavior of objective function. The Colburn’s j factor is maximized for ratio of radii

and sector angle of channel. Colburn’s j factor is a non-dimensional quantity which is

an analogy that relates heat transfer coefficients, mass transfer coefficients and friction

factor.

The significance of this research can be highlighted through the figures 3.2 and 3.1. In

the figures 3.2 and 3.1, we demonstrate the effect of R̃ on Nu and fRe respectively for a

given value of permeability. These figures express a general trend for distinct values of R̃.

Here the value of permeability is kept constant at 0.001 i.e K̂ = 0.001 . It is observed in

figure 3.1 that with the increase in nof, fRe experiences a downward slope for all values

of R̃. Also it can be observed that with the increase in the value of R̃, the passage for

fluid flow decreases hence the curve that shows the trend of fRe starts straightening out,

the peak values of graph decreases but a general increase in the value of fRe is observed,

this happens due to the constriction in space which restricts the motion of fluid hence

causing friction effect to increase. Now through figure 3.2 it could be observed that when

R̃ is small, in the beginning (for smaller values of nof ) Nu increases then gradually starts

decreasing (for larger values of nof ) whereas with the increasing value of R̃ the trend is

reversed. This non-monotonic behavior is an indication of an optimal geometry for which

heat transfer rate can be maximized. The detail on the behavior of fRe and Nu to that

of nof can be observed in [21].

Hence our aim is to find an optimum solution for which heat transfer rate is maximum

whereas friction effect is at its minimum. We can visualize the behavior of Nu and fRe for

a handful of values of R̃ by taking 0.1 increment between adjacent values of R̃ through the

figures 3.2 and 3.1, which represent the results for only eight values of R̃ against K̂ = 0.001

. Now if we take full range of parameters i.e nof = [2:24] hence α ∈ [0.1309 1.5707] and

R̃ ∈ [0.1 0.75] this would generate an infinite number of choices hence searching for an

optimum value where j factor is maximum seems to be a gigantic task. Therefore this

necessitates the usage of a numerical optimization technique hence genetic algorithm is

employed which searches for the optimum through all the available choices.
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Our objective is to maximize the heat transfer rate and minimize the friction effect

simultaneously, which can prove to be a difficult task. This can be achieved with the

help of Colburn’s j factor quite easily, which is a correlation between the Nusselt number

(Nu) and the product of fanning friction and Reynold’s number (fRe). Genetic algorithm

maximizes the value of j factor. Hence through Colburn’s j factor Nu is being maximized

and fRe minimized simultaneously, this solves our problem of choosing the best desirable

result perfectly.

3.2.1 Modeling of Genetic Algorithm

Genetic algorithm is employed for finding the best possible results under the assumptions

taken for fluid flow and heat transfer as stated above. Also the computational domain

remains consistent as mentioned earlier.

Objective Function

The objective function or fitness function for genetic algorithm is taken as the inverse of

Colburn’s j factor, which is minimized for ratio of radii and sector angle of channel. Hence

by maximizing the j factor we increase the convective heat transfer rate and minimize the

friction effect.

Constraints

The prime parameters i.e ratio of radii R̃ and the sector angle α (which is shown with

the help of number of fins (nof) )are bounded by the restrains on their range. For the

present optimization process, the range on parameters are taken to be nof = [2:24] hence

α ∈ [0.1309 1.5707] and R̃ ∈ [0.1 0.75].
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Figure 3.1: Values of fRe for various R̃

Figure 3.2: Values of Nu for for various R̃

Penalty Functions

Genetic algorithms can be directly applied to unconstrained problems. If the need arises

to apply GA on constrained problems then the most commonly used method to handle

constraints is penalty function. Penalty function transforms constrained problems to
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unconstrained problems and then solves them. For more information on penalty function

refer to [33].

3.3 Results and Discussion

In this section we will be discussing the results of fluid flow and heat transfer for optimal

geometries at Prandtl number 0.707, which is Pr for air. Also a comparison has been

made for objective function value when Pr is set to be 7.01, which is Pr for water.

The results of Genetic algorithm, when Prandtl number is fixed at 0.707 and perme-

ability i.e K̂ ∈ [0.001 100] can be visualized through figures 3.3 and 3.4 . The figure 3.3

is the graphical representation of the best and mean scores of penalty function, through

each generation. As our number of fins are bound to be integers and our optimization lies

in the category of constrained optimization hence genetic algorithm minimizes penalty

function instead of fitness function. The figure 3.3 exhibit the behavior of inverse of j

factor i.e.
1

jfactor
by its best and mean values versus generations. It can be seen, in an

individual plot, that in the initial generations the best and mean penalty values are far

apart but rapidly the maximum value declines and comes almost in line with the mean

score values until the algorithm converges, the stopping criteria is met and generations

of objective function stop. This shows that genetic algorithm is working by decreasing

the value of fitness function through each generation. Also as the permeability of porous

medium, K̂ increases shown in figure 3.3(a)-3.3(f) the best penalty value decreases. This

occurs due to the more available space for fluid flow hence friction effect and convective

heat transfer decrease but the decrease in friction is more prominent than heat transfer

hence this results in a decline in the objective function value.

The figure 3.4 portrays the minimum, maximum and the average values of fitness

function in each generation, it is recognized as the range plot. The sub-figures (3.4 a)-

(3.4 f) describe effect of permeability K̂ on the fitness function through generations. It

can be observed that best, worst and mean scores of objective function come close to
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each other with each passing generation as genetic algorithm converges. Similar to the

phenomena that was observed in Best Fitness Plot, it can be seen through each sub-figure

in figure 3.4 that with the increases in K̂ the over all objective function value decelerates.

Also with the rising value of K̂ the free available space for fluid flow increases hence the

friction effect represented by fRe and heat transfer recognized through Nu decreases but

the decrease in fRe is greater than Nu so objective function experiences a decrease in its

value.

Table 3.1 demonstrates the influence of permeability on the optimum geometry exhib-

ited by geometric components such as ratio of radii R̃ and number of fins (nof ) where the

Prandtl number is fixed to be 0.707. The corresponding optimum values of Nu and fRe

are also given for each value of permeability in porous media, along with the maximum

value of objective function (j factor). Where nof is bounded as: nof = [2 : 24], α ∈

[0.1309 1.5707] and R̃ ∈ [0.1 0.75]. The table shows that with the decrease in perme-

ability of porous media the value of objective function gradually declines, whereas fRe

and Nu increases but the upsurge in fRe is more notable than the increase in Nu. As j

factor is a correlation between Nu and fRe then this behavior of Nu and fRe decreases

the value of j factor. The changes in fRe and Nu arises due to the high dependence of

friction factor and Nusselt number on the conduct of ratio of radii, number of fins and

permeability.

It can be observed that with the decrease in K̂, the optimum or best value of R̃

experiences a slow decrease in its value whereas nof is constant at maximum value of

fins. So due to less free space, as both R̃ and permeability of porous media are small

fRe becomes large but it is still the least, most feasible amount for a particular value

of permeability. Nu experiences slight fluctuations which are very minuscule but on the

whole it increases. This slight elevation in the value of Nu can be due to porous media,

as permeability decreases the porous media becomes more packed hence helps increase

the rate of heat conduction. The optimum value of number of fins is seen to be at its

maximum value because as the fins are taken to be highly conductive then greater the
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amount of heat conducting surface more will be the rate of convective heat transfer. With

the decreases in K̂, the optimum value of R̃ experiences a minute decreases hence more

space is available for fluid flow which creates a balance with the low permeability, so that

the desired surge in Nu is achieved.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Best fitness plot at Pr=0.707 for (a):K̂ = 0.001 (b): K̂ = 0.01 (c): K̂ = 0.1

(d): K̂ = 1 (e): K̂ = 10 (f): K̂ = 100
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Range plot at Pr= 0.707 when (a):K̂ = 0.001 (b): K̂ = 0.01 (c): K̂ = 0.1

(d): K̂ = 1 (e): K̂ = 10 (f): K̂ = 100
46



It is noted that optimal value of ratio of radii R̃ at each value of K̂, is found almost

midway in the range set for R̃ i.e R̃ ∈ [0.1 0.75]. This behavior indicates that optimum

value does not occur when R̃ at its maximum because for large values of R̃, fRe raises (due

to less available space for fluid flow) which is not our desired outcome. Genetic algorithm

looks past the smaller values in range of R̃ for optimum because although friction effect

decreases so does the convective heat transfer rate due to large distance between heated

surfaces. Hence a middle value gives optimum.

Table 3.1: Effect of permeability on geometric parameters

K̂
Geometric Components

j factor fRe Nu
R̃ nof

100 0.570127758897386 24 0.308111604235642 15.605687585626500 4.283486819490765

10 0.570115335784497 24 0.308026794022231 15.610494379960882 4.283626772414494

1 0.569991181369073 24 0.307181547770969 15.658558525894634 4.285025151868879

0.1 0.568709076515744 24 0.299005429710323 16.139216984288254 4.299005558385511

0.01 0.553392324178606 24 0.237719484798629 20.944235305204661 4.435430311389410

0.001 0.416706766714202 24 0.088042418303868 65.787935927488192 5.159940515716588

We exhibit in the table 3.2, the impact of two different permeabilities on optimum

duct geometry where a comparison is done for the value of Prandtl number taken to be

7.01, which is Pr for water at 20 degree centigrade and Pr= 0.707. The table shows that,

with the decrease in permeability of porous media, for both values of Prandtl number, j

factor shows a steady decline. This occurs due to the co-dependence of j factor on fRe and

Nu. fRe and Nu increases with the decrease in K̂ but the upsurge in fRe is more notable

than the increase in Nu. The value of j factor for Pr= 0.707 is more then that of Pr=

7.01 at every K̂; because when Pr is small, thermal diffusivity is more than kinematic

viscosity means thermal boundary layer increases so there is a faster heat transfer rate,
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whereas for larger values of Pr velocity boundary layer shows an upsurge but that can be

at the cost of an increase in friction effect (refer to definition of Prandtl number 1.3.7).

So to increase heat transfer rate Pr should be kept small; hence at Pr=0.707, j factor

shows greater values than Pr=7.01 as j factor is ratio of Nu to the product of fRe and

a power of Pr. The optimum R̃ show a decreasing trend with the decrease in K̂ and it

is same for both the values of Pr up-till the eighth decimal place. As our aim was to

maximize j factor hence a smaller value of Pr is more preferable for greater heat transfer

and the reduction of friction effect. The optimum nof occur in a constant manner at its

maximum range value, for the two Pr, due to the high conductivity of heat transferring

surface of fins. Hence optimum duct geometry, at which we get maximum heat transfer

and minimum friction effect shows a slight difference for both values of Pr at each K̂.

Table 3.2: A comparison of optimum geometric parameters between Pr = 0.707 and Pr

= 7.01

K̂
Pr=0.707 Pr=7.01

j factor R̃ nof j factor R̃ nof

100 0.308111 0.570127759 24 0.143420 0.570127761 24

10 0.308027 0.570115335 24 0.143380 0.570115374 24

1 0.307181 0.569991181 24 0.142987 0.569991177 24

0.1 0.299005 0.568709076 24 0.139181 0.568709079 24

0.01 0.237719 0.553392324 24 0.110653 0.553392317 24

0.001 0.088042 0.416706767 24 0.040982 0.416706732 24

Now the impact created by various permeabilities over the optimum velocity profile

would be analyzed, where K̂ ∈ [0.001 100]. The figure 3.5 show the velocity contours

for the optimal value of R̃ and α. After examining the sub-figures (3.5 a) to (3.5 f) an

increase in the velocity gradients among adjacent layers in the fluid as K̂ declines can

be observed. This is the reason behind the decrease in bulk velocity and increases the
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fRe with decreasing permeability. As the permeability falls the maximum velocity region

grows.

Figures 3.6 exhibit the isotherms for optimal value of R̃ and α, at each K̂. The sub-

figures (3.6 (a))-(3.6 (f)) demonstrate the influence created by decreasing the permeability

on the temperature profile. Through the impressions of sub-figures a temperature differ-

ence from the heated surfaces can be observed, heated surfaces being the wall of inner

pipe and the fin surface. Through the sub-figures (3.6 (a))-(3.6 (f)) it can be detected

that, with the decline in permeability heat transfer increases gradually as the temperature

variance among heated surface and the fluid flowing over it grows at a particular point.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Velocity profile at Pr=0.707 for (a):K̂ = 100 (b): K̂ = 10 (c): K̂ = 1 (d): K̂

= 0.1 (e): K̂ = 0.01 (f): K̂ = 0.001
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Temperature profile at Pr=0.707 for (a):K̂ = 100 (b): K̂ = 10 (c): K̂ = 1

(d): K̂ = 0.1 (e): K̂ = 0.01 (f): K̂ = 0.001
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Chapter 4

Conclusions and Further work

In this research, the optimization of an annulus sector duct filled with Darcy-Brinkman’s

porous media has been conducted. We have optimized ratio of radii and number of fins

by employing genetic algorithm (GA) while considering j factor as our objective function.

The problem is subjected to H1 boundary condition, executed at the insides of heat

conducting surfaces. Where all the heat transferring surfaces in the duct are considered

isothermal. A comparison has been conducted for objective function at Prandth number

0.707 and 7.01. Also the influence of various permeabilities on optimal geometries was

analyzed.

4.1 Conclusions

The following results can be summarized from the study conducted above

• With the decrease in permeability, the optimum values of fRe and Nu both exhibit

an increase.

• The optimal number of fins is at its upper bound value and it remains consistent

for all values of permeabilities.

• The optimum j factor decreases with the decrease in permeability due to the increase
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in values of fRe and Nu but the upsurge in fRe is more prominent than Nu.

4.2 Further extensions

Furthermore this study opens doors to extend this work in various directions. Some of

them are given as under

• For this research, we have taken the fins to be fully conductive but other conduction

effects, such as conjugate approach, through the longitudinal fins can be considered.

• Geometric parameters such as height, thickness and shape of fins can be altered.

• In current study, we have only considered limited cases for Prandtl number, con-

sidering water and air at certain temperatures. Hence the value of Prandtl number

can be manipulated.

• A dimensionless environment is considered for present study which can be changed.

53



References

[1] H. Hareem, M. Iqbal, Optimal configuration of an annular sector duct filled with

porous media. Communications in Mathematics and Application, submitted.

[2] F. Liu, The effect of geometries on heat transfer enhancement of thermal fluids in

curved ducts. Applied Thermal Engineering, 90 (2015), 590–595.

[3] I. Kurtbas, N. Celik, Experimental investigation of forced and mixed convection heat

transfer in a foam filled horizontal rectangular channel, International Journal of Heat

and Mass Transfer, 52 (2009), 1313–1325.

[4] K. Hooman, H. Gurgenci, A. A. Merrikh, Heat transfer and entropy generation opti-

mization of forced convection in porous-saturated ducts of rectangular cross-section,

International Journal of Heat and Mass Transfer, 50 (2007), 2051–2059.

[5] M. R. H. Nobari, M. T. Mehrabani, A numerical study of fluid flow and heat transfer

in eccentric curved annuli, International Journal of Thermal Sciences 49 (2010), 380–

396.

[6] Z. Y. Li, T. C. Hung, W. Q. Tao, Numerical simulation of fully developed turbu-

lent flow and heat transfer in annular-sector ducts, Heat and Mass Transfer, 38(4-5)

(2002), 369-377.

[7] E. H. Zaim and S. A. G. Nassab, Numerical investigation of laminar forced convection

of water upwards in a narrow annulus at supercritical pressure, Energy, 35(10) (2010),

4172–4177.

54



[8] O. Zeitoun, A. S. Hegazy, Heat transfer for laminar flow in internally finned pipes

with different fin heights and uniform wall temperature, Heat Mass Transfer 40 (2004)

253-259.

[9] M. J. Lin, Q. W. Wang, W. Q. Tao, Developing Laminar Flow and Heat Transfer in

Annular-Sector Ducts, Heat Transfer Engineering 21(2) (2000) 53–61.

[10] I. K. Adegun, T. S. Jolayemi , O. A. Olayemi , A. M. Adebisi. numerical simulation

of forced convection heat transfer in inclined elliptical ducts with multiple internal

longitudinal fins. Alexandria Eng. J. (2017).

[11] M. Kaviany, Laminar flow through a porous channel bounded by isothermal parallel

plates, International Journal Heat Mass Transfer, 28(4) (1985), 851–858.

[12] M. Ishaq, K. S. Syed, Z. Iqbal, A. Hassan, A. Ali, DG-FEM based simulation of lam-

inar convection in an annulus with triangular fins of different heights, International

Journal of Thermal Sciences 72 (2013), 125–146.

[13] O. Cekmer, M. Mobedi, B. Ozerdem , I. Pop, Fully developed forced convection heat

transfer in a porous channel with asymmetric heat flux boundary conditions,Transport

in Porous Media 90(3) (2011) 791.

[14] H. J. Sung, S. Y. Kim, J. M. Hyun, Forced convection from an isolated heat source

in a channel with porous medium, International Journal Heat and Fluid Flow, 16

(1995), 527–535.

[15] S. Colle, C. R. Maliska, Optimization of finned double tubes for heat transfer in

laminar flow, Brazilian Congress on Mechanical Engineering, vol. B. Rio de Janeiro,

Universidade Fedural, (1976), 475-490.

[16] G. Fabbri, A genetic algorithm for fin profile optimization, International Journal of

Heat and Mass Transfer, 40 (9) (1997), 2165–2172.

55



[17] Z. Iqbal , K. S. Syed and M. Ishaq, Optimal fin shape in finned double pipe with fully

developed laminar flow, Applied Thermal Engineering 51 (2013), 1202–1223.

[18] Z. Iqbal , K. S. Syed, M. Ishaq, Optimal configuration of finned annulus in a double

pipe with fully developed laminar flow, Applied Thermal Engineering, 31 (2011),

1435–1446.

[19] Z. Iqbal, K. S. Syed, M. Ishaq, Optimal convective heat transfer in double pipe with

parabolic fins, International Journal of Heat and Mass Transfer, 54 (2011), 5415-5426.

[20] Z. iqbal, K. S. Syed, M. Ishaq, Fin design for conjugate heat transfer optimization in

double pipe, International Journal of Thermal Sciences, 94 (2015), 242–258.

[21] M. Iqbal, H. Afaq, Fluid flow and heat transfer through an annular sector duct filled

with porous media, Journal of porous media, 18(7) (2015), 679–687.

[22] B. R. Munson, D. F. Young, T. H. Okiishi, W. W. Huebsch, Fundamentals of Fluid

Mechanics, J. Wiley and Sons, 6 (2009).

[23] R. W. Fox, A. T. McDonald, P. J. Pritchard, Introduction to Fluid Mechanics, J.

Wiley and Sons, 6 (2009).

[24] F. P. Incropera, D. P. DeWitt, T. Bergman, A. Lavine, Fundamentals of Heat and

Mass Transfer, J. Wiley, 6 (2007).

[25] Jr. J. D. Anderson, Computational Fluid Dynamics. McGraw Hill, 1 (1995).

[26] H. K. Versteeg, W. Malalasekera An introduction to computational fluid dynam-

ics:The finite volume method. Longman scientific and technical, 2 (1995).
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